Table of Contents
Headings formatted in bold-italic have changed since the last version.

	
Preface
	Welcome to the Book!

	First-Generation Book

	The Book’s Structure

	The Trails

	About the Updates

	About the APK Edition

	Source Code and Its License

	Creative Commons and the Four-to-Free (42F) Guarantee

	Acknowledgments

	
Key Android Concepts
	Android Applications

	Android Devices

	Don’t Be Scared

	
Choosing Your Development Toolchain
	Android Studio

	Eclipse

	IntelliJ IDEA

	Command-Line Builds via Gradle

	Yet Other Alternatives

	IDEs… And This Book

	What We Are Not Covering

	
Tutorial #1 - Installing the Tools
	But First, Some Notes About Android’s Emulator

	Step #1: Checking Your Hardware

	Step #2: Setting Up Java and 32-Bit Linux Support

	Step #3: Install Android Studio

	Step #4: Install the SDKs and Add-Ons

	In Our Next Episode…

	
Android and Projects	Projects and Android Studio

	
Tutorial #2 - Creating a Stub Project
	About Our Tutorial Project

	About the Rest of the Tutorials

	About Our Tools

	Step #1: Importing the Project

	Step #2: Get Ready for the x86 Emulator

	Step #3: Set Up the AVD

	Step #4: Set Up the Device

	Step #5: Running the Project

	In Our Next Episode…

	
Getting Around Android Studio
	Navigating The Project Explorer

	Running Projects

	Viewing Output

	Accessing Android Tools

	Android Studio and Release Channels

	Visit the Trails!

	
Contents of Android Projects
	What You Get, In General

	More About the Directory Structure

	What You Get Out Of It

	
Introducing Gradle and the Manifest
	Gradle: The Big Questions

	Obtaining Gradle

	Versions of Gradle and the Android Gradle Plugin

	Gradle Environment Variables

	Examining the Gradle Files

	Introducing the Manifest

	Things In Common Between the Manifest and Gradle

	Other Gradle Items of Note

	Where’s the GUI?

	The Rest of the Manifest

	Learning More About Gradle

	Visit the Trails!

	
Tutorial #3 - Manifest Changes
	Some Notes About Relative Paths

	Step #1: Supporting Screens

	Step #2: Blocking Backups

	Step #3: Ignoring Lint

	In Our Next Episode…

	
Some Words About Resources
	String Theory

	Got the Picture?

	Dimensions

	The Resource That Shall Not Be Named… Yet

	
Icons
	App Icons… And Everything Else

	Creating an App Icon with the Asset Studio

	Creating Other Icons with the Asset Studio

	
Tutorial #4 - Adjusting Our Resources
	Step #1: Changing the Name

	Step #2: Changing the Icon

	Step #3: Running the Result

	In Our Next Episode…

	
The Theory of Widgets
	What Are Widgets?

	Size, Margins, and Padding

	What Are Containers?

	The Absolute Positioning Anti-Pattern

	The Theme of This Section: Themes

	
The Android User Interface
	The Activity

	Dissecting the Activity

	Using XML-Based Layouts

	
Basic Widgets
	Common Concepts

	Introducing the Graphical Layout Editor

	And Now, Some Notes About the Book’s Sample Projects

	Assigning Labels

	A Commanding Button

	Fleeting Images

	Fields of Green. Or Other Colors.

	More Common Concepts

	Visit the Trails!

	
Debugging Your App
	Get Thee To a Stack Trace

	The Case of the Confounding Class Cast

	Point Break

	
The Classic Container Classes
	Introducing the Sampler App

	RTL and Your Layouts

	LinearLayout and the Box Model

	All Things Are Relative

	Tabula Rasa

	Hey, What About ConstraintLayout?

	Turning Back to RTL

	
Other Common Widgets and Containers
	Just a Box to Check

	Don’t Like Checkboxes? How About Toggles or Switches?

	Turn the Radio Up

	Scrollwork

	Making Progress with ProgressBars

	Framing the Scene

	Visit the Trails!

	
Tutorial #5 - Creating a Layout
	Step #1: Creating a New Layout Resource

	Step #2: Defining the UI

	In Our Next Episode…

	
GUI Building, Continued
	Making Your Selection

	Including Includes

	Preview of Coming Attractions

	
AdapterViews and Adapters
	Adapting to the Circumstances

	Lists of Naughty and Nice

	Clicks versus Selections

	Spin Control

	Grid Your Lions (Or Something Like That…)

	Fields: Now With 35% Less Typing!

	Customizing the Adapter

	Visit the Trails!

	
The WebView Widget
	Role of WebView

	Daddy, Where Do WebViews Come From?

	Adding the Widget

	Loading Content Via a URL

	Links and Redirects

	Supporting JavaScript

	Alternatives for Loading Content

	Listening for Events

	Addressing the Link/Redirect Behavior

	Opting Out of Google Monitoring

	Visit the Trails!

	
Defining and Using Styles
	Styles: DIY DRY

	Elements of Style

	Themes: Would a Style By Any Other Name…

	What Happens If You Have No Theme

	Android Studio’s Theme Editor

	
Dependencies
	What’s a Dependency?

	Dependency Scopes

	Depending on a Local JAR

	What’s an Artifact?

	Artifacts and Repositories

	Major Library Families from Google

	Requesting Dependencies

	The Android Support Library

	
Tutorial #6 - Adding a Library
	Step #1: Getting Rid of Existing Cruft

	Step #2: Requesting New Dependencies

	In Our Next Episode…

	
Introducing ConstraintLayout
	Why Another Container?

	Comparing with the Classics

	Getting ConstraintLayout

	Using Widgets and Containers from Libraries

	Using a ConstraintLayout

	Converting Existing Layouts

	Visit the Trails!

	
RecyclerView
	AdapterView and its Discontents

	Enter RecyclerView

	A Trivial List

	Divider Options

	Handling Click Events

	Visit the Trails!

	
The Action Bar
	Bar Hopping

	Yet Another History Lesson

	Your Action Bar Options

	Setting the Target

	Defining the Resource

	Applying the Resource

	Responding to Events

	The Rest of the Sample Activity

	MENU Key, We Hardly Knew Ye

	Action Bars, Live in Living Color!

	Visit the Trails!

	
Vector Drawables
	Getting the Artwork

	VectorDrawableCompat

	
Tutorial #7 - Setting Up the Action Bar
	Step #1: Adding Some Icons

	Step #2: Defining Some Options

	Step #3: Loading and Responding to Our Options

	Step #4: Supporting Older Devices

	Step #5: Trying It Out

	In Our Next Episode…

	
Android’s Process Model
	When Processes Are Created

	BACK, HOME, and Your Process

	Termination

	Foreground Means “I Love You”

	You and Your Heap

	
Activities and Their Lifecycles
	Creating Your Second (and Third and…) Activity

	Warning! Contains Explicit Intents!

	Using Implicit Intents

	Extra! Extra!

	Pondering Parcelable

	Asynchronicity and Results

	Schroedinger’s Activity

	Life, Death, and Your Activity

	When Activities Die

	Walking Through the Lifecycle

	Recycling Activities

	Application: Transcending the Activity

	The Case of the Invisible Activity

	
Tutorial #8 - Setting Up An Activity
	Step #1: Creating the Stub Activity Class and Manifest Entry

	Step #2: Launching Our Activity

	In Our Next Episode…

	
The Tactics of Fragments
	The Six Questions

	Where You Get Your Fragments From

	Your First Fragment

	The Fragment Lifecycle Methods

	Your First Dynamic Fragment

	Fragments and the Action Bar

	
Tutorial #9 - Starting Our Fragments
	Step #1: Create a SimpleContentFragment

	Step #2: Examining SimpleContentFragment

	In Our Next Episode…

	
Swiping with ViewPager
	Pieces of a Pager

	Paging Fragments

	Paging Other Stuff

	Indicators

	Revisiting the Containers Sampler

	
Tutorial #10 - Rigging Up a ViewPager
	Step #1: Add a ViewPager to the Layout

	Step #2: Creating a ContentsAdapter

	Step #3: Setting Up the ViewPager

	In Our Next Episode…

	
Resource Sets and Configurations
	What’s a Configuration? And How Do They Change?

	Configurations and Resource Sets

	Screen Size and Orientation

	Coping with Complexity

	Choosing The Right Resource

	API-Versioned Resources

	Default Change Behavior

	State Saving Scenarios

	Your Options for Configuration Changes

	Blocking Rotations

	And Now, a Word From the Android Project View

	Configuration Challenges

	
Material Design Basics	Your App, in Technicolor!

	
Dealing with Threads
	The Main Application Thread

	Getting to the Background

	Asyncing Feeling

	Alternatives to AsyncTask

	And Now, The Caveats

	Event Buses

	Visit the Trails!

	
Requesting Permissions
	Frequently-Asked Questions About Permissions

	Characteristics of Permissions

	New Permissions in Old Applications

	Android 6.0+ Runtime Permission System

	A Simple Runtime Permission Abstraction

	
Assets, Files, and Data Parsing
	Packaging Files with Your App

	Files and Android

	Working with Internal Storage

	Working with External Storage

	Removable Storage

	Multiple User Accounts

	Linux Filesystems: You Sync, You Win

	StrictMode: Avoiding Janky Code

	Files, and Your Development Machine

	XML Parsing Options

	JSON Parsing Options

	Using Files with Implicit Intents

	Visit the Trails!

	
Tutorial #11 - Adding Simple Content
	Step #1: Adding Some Content

	Step #2: Using SimpleContentFragment

	Step #3: Launching Our Activities, For Real This Time

	Step #4: Getting a Bit More Material

	Step #5: Seeing the Results

	In Our Next Episode…

	
Tutorial #12 - Displaying the Book
	Step #1: Adding a Book

	Step #2: Creating a ModelFragment

	Step #3: Defining Our Model

	Step #4: Examining Our Model

	Step #5: Defining Our Event

	Step #6: Loading Our Model

	Step #7: Registering for Events

	Step #8: Adapting the Content

	Step #9: Showing the Content When Loaded

	Step #10: Attaching our ModelFragment

	Step #11: Showing the Content After a Configuration Change

	Step #12: Setting Up StrictMode

	In Our Next Episode…

	
Using Preferences
	Getting What You Want

	Stating Your Preference

	Collecting Preferences with PreferenceFragment

	Android Studio’s Preferences Editor

	Types of Preferences

	
Tutorial #13 - Using Some Preferences
	Step #1: Defining the Preference XML Files

	Step #2: Creating Our Preference Activity

	Step #3: Adding To Our Action Bar

	Step #4: Launching the Preference Activity

	Step #5: Loading the Preferences

	Step #6: Saving the Last-Read Position

	Step #7: Restoring the Last-Read Position

	Step #8: Keeping the Screen On

	In Our Next Episode…

	
SQLite Databases
	Introducing SQLite

	Thinking About Schemas

	Start with a Helper

	Getting Data Out

	The Rest of the CRUD

	Hey, What About Hibernate?

	But, What About Room?

	Visit the Trails!

	
Tutorial #14 - Saving Notes
	Step #1: Adding a DatabaseHelper

	Step #2: Examining DatabaseHelper

	Step #3: Creating a NoteFragment

	Step #4: Examining NoteFragment

	Step #5: Creating the NoteActivity

	Step #6: Examining NoteActivity

	Step #7: Add Notes to the Action Bar

	Step #8: Defining a NoteLoadedEvent

	Step #9: Loading a Note from the Database

	Step #10: Loading the Note Into the Fragment

	Step #11: Updating the Database

	Step #12: Saving the Note

	Step #13: Adding a Delete Action Bar Item

	Step #14: Closing the NoteFragment When Deleted

	In Our Next Episode…

	
Internet Access
	DIY HTTP

	What About HttpClient?

	HTTP via DownloadManager

	Using Third-Party Libraries

	SSL

	Using HTTP Client Libraries

	Visit the Trails

	
Intents, Intent Filters
	What’s Your Intent?

	Stating Your Intent(ions)

	Responding to Implicit Intents

	Requesting Implicit Intents

	ShareActionProvider

	Practice Safe Content Resolution

	
Broadcasts and Broadcast Receivers
	The Stopped State

	Example System Broadcasts

	The Order of Things

	Keeping It Local

	Visit the Trails!

	
Tutorial #15 - Sharing Your Notes
	Step #1: Adding a ShareActionProvider

	Step #2: Sharing the Note

	Step #3: Testing the Result

	In Our Next Episode…

	
Services and the Command Pattern
	Why Services?

	Setting Up a Service

	Communicating To Services

	Scenario: The Music Player

	The Power of the PendingIntent

	Communicating From Services

	Scenario: The Downloader

	JobIntentService

	IntentService or JobIntentService?

	Services and Configuration Changes

	When Do Services End?

	Background Service Limitations

	
Tutorial #16 - Updating the Book
	Step #1: Adding a Stub DownloadCheckService

	Step #2: Tying the Service Into the Action Bar

	Step #3: Defining Our Event

	Step #4: Defining Our JSON

	Step #5: Defining Our Retrofit Interface

	Step #6: Retrieving Our JSON Via Retrofit

	Step #7: Downloading the Update

	Step #8: Unpacking the Update

	Step #9: Using the Update

	In Our Next Episode…

	
Tutorial #17 - Supporting Large Screens
	Step #1: Creating Our Layouts

	Step #2: Loading Our Sidebar Widgets

	Step #3: Opening the Sidebar

	Step #4: Loading Content Into the Sidebar

	Step #5: Removing Content From the Sidebar

	
Backwards Compatibility Strategies and Tactics
	Think Forwards, Not Backwards

	Aim Where You Are Going

	A Target-Rich Environment

	Lint: It’s Not Just For Belly Buttons

	A Little Help From Your Friends

	Avoid the New on the Old

	Testing

	Keeping Track of Changes

	
System Services
	What is a System Service?

	What System Services Are There?

	
Google Play Services
	What Is Google Play Services?

	What Is In the Play Services SDK?

	Adding Play Services to Your Project

	
Getting Help
	Questions. Sometimes, With Answers.

	Heading to the Source

	
Working with Library Modules
	Prerequisites

	Creating a Library Module

	Using a Library Module

	Library Modules and the Manifest

	Library Modules and Transitive Dependencies

	Limitations of Library Modules

	
Gradle and Tasks
	Key Build-Related Tasks

	Results

	
Gradle Build Variants
	Prerequisites

	Objectives of the Project Structure

	Terminology

	Configuring the Stock Build Types

	Adding Build Types

	Adding Product Flavors and Getting Build Variants

	Doing the Splits

	Gradle and Android Studio

	
Manifest Merger Rules
	Prerequisites

	Manifest Scenarios

	Pieces of Manifest Generation

	Examining the Merger Results

	Viewing Merged Manifests in Android Studio

	Merging Elements and Attributes

	Employing Placeholders

	
Signing Your App
	Prerequisites

	Role of Code Signing

	What Happens In Debug Mode

	Production Signing Keys

	
Distribution
	Prerequisites

	Get Ready To Go To Market

	
Writing a Gradle Plugin
	Prerequisites

	Customizing a Gradle Build

	Some Use Cases for a Custom Plugin

	Writing a Plugin

	Distributing the Plugin

	Using the Plugin

	Creating a Real Plugin

	
Code Generation
	Prerequisites

	What Drives the Custom Code?

	Java as Poetry

	Writing a Code Generation Plugin

	Using the Generated Code

	
Advanced Gradle for Android Tips
	Prerequisites

	Gradle, DRY

	Automating APK Version Information

	Adding to BuildConfig

	
Testing with JUnit4
	Prerequisites

	Instrumentation Tests and Unit Tests

	Writing JUnit4 Test Cases

	Configuring Gradle

	Running Your Instrumentation Tests

	Testing Android Library Projects

	Testing and Runtime Permissions

	The Android Test Orchestrator

	
Testing with Espresso
	Prerequisites

	Adding a Shot of Espresso

	Writing Tests in Espresso

	The Espresso Test Recorder

	Stronger Espresso

	Opting Out of Analytics

	Waiting for the World to Change

	
Testing with UI Automator
	Prerequisites

	What Is UI Automator?

	Why Choose UI Automator Over Alternatives?

	Gradle and Android Studio Settings

	Creating a Test Case

	Performing Device-Level Actions

	Starting Your Activity

	Getting Proxies for Widgets and Containers

	Interacting with Widgets

	Asserting Conditions

	Running Your Tests

	Finding Your Widgets

	Using the UI Automator Viewer

	
Measuring Test Coverage
	Prerequisites

	Who Tests the Testers?

	Some Types of Test Coverage

	Coverage and Your Instrumentation Tests

	
Unit Testing
	Prerequisites

	I Thought We Were Already Unit Testing?

	Scenario: Clean Architecture

	Setting Up Unit Testing

	Writing POJO Unit Tests

	Running Unit Tests

	Mocking Android

	
MonkeyRunner and the Test Monkey
	Prerequisites

	MonkeyRunner

	Monkeying Around

	
Java 8 Lambda Expressions
	Prerequisites

	The Basic Idea

	Using Lambda Expressions

	Alternative: Method References

	
Rx Basics
	Prerequisites

	Life is But a Stream

	Action and Reaction

	A Rx For What Ails You

	Rx and Lambdas

	A Simple Stream

	Be Your Own Stream

	Removing the AsyncTask

	Lambdas and Lifetimes

	Streaming from a Resource

	Error Handling

	Transmogrification

	Rx-Enabled Libraries

	Further Reading

	What About LiveData?

	
Notifications
	Prerequisites

	What’s a Notification?

	Notifications and Channels

	Showing a Simple Notification

	The Activity-Or-Notification Scenario

	Big (and Rich) Notifications

	Foreground Services

	Disabled Notifications

	
Advanced Notifications
	Prerequisites

	Being a Good Citizen

	More About Channels

	Wear? There!

	Stacking Notifications

	Avoiding Wear

	Other Wear-Specific Notification Options

	Remote Input, On-Device

	Notification Groups

	Lockscreen Notifications

	Priority, Importance, and Heads-Up Notifications

	Full-Screen Notifications

	Progress Notifications

	Custom Views

	Life After Delete

	The Mysterious Case of the Missing Number

	Notifications and MessagingStyle

	Changes in API Level 23

	Sounds and Android 7.0

	Auto-Timeout

	
Multi-Window Support
	Prerequisites

	A History of Windows

	What The User Sees

	What Your Code Sees

	Opting Out

	Opting In

	Configuring the Layout

	Avoiding Stutter

	Managing the Background

	How Low Can You Go?

	Parallel Processing

	Split-Screen, HOME, and Your Activity

	Split-Screen and Orientations

	Forcing Your App Into Multi-Window/Multi-Instance

	Supporting Legacy Proprietary Multi-Window

	Freeform Multi-Window Mode

	Picture-in-Picture

	Multi-Display Support

	
Advanced ConstraintLayout
	Prerequisites

	Barriers to Entry

	Disclosing Your Bias

	Centering Yourself

	Keeping Things Proportional

	Constraining Sizes

	Chains, Without the Whips

	Going in a Circle

	Groups of Views… But Not ViewGroups

	
GridLayout
	Prerequisites

	Issues with the Classic Containers

	The New Contender: GridLayout

	GridLayout and the Android Support Package

	Our Test App

	Replacing the Classics

	Implicit Rows and Columns

	Row and Column Spans

	
Dialogs and DialogFragments
	Prerequisites

	DatePickerDialog and TimePickerDialog

	AlertDialog

	DialogFragments

	DialogFragment: The Other Flavor

	Dialogs: Modal, Not Blocking

	
Advanced ListViews
	Prerequisites

	Multiple Row Types, and Self Inflation

	Choice Modes and the Activated Style

	Custom Mutable Row Contents

	From Head To Toe

	Enter RecyclerView

	
Action Modes
	Prerequisites

	A Matter of Context

	Manual Action Modes

	Multiple-Choice-Modal Action Modes

	Long-Click To Initiate an Action Mode

	
Other Advanced Action Bar Techniques
	Prerequisites

	Action Layouts

	Action Views and Action Providers

	Searching with SearchView

	Floating Action Bars

	
Toolbar
	Prerequisites

	Basic Toolbar Mechanics

	Use Case: Split Action Bar

	Use Case #2: Replacement Action Bar

	
AppCompat: The Official Action Bar Backport
	Prerequisites

	Ummmm… Why?

	The Basics of Using AppCompat

	Other AppCompat Effects

	Toolbar and AppCompat

	To Material, or Not to Material

	
The Android Design Support Library
	Prerequisites

	GUIs and the Support Package

	Adding the Library… and What Comes With It

	Introducing CWAC-CrossPort

	Snackbars: Sweeter than Toasts

	Absolutely FABulous

	Material Tabs with TabLayout

	Floating Labels

	
Advanced RecyclerView
	Prerequisites

	What About Cursors?

	Grids

	Varying the Items

	Mutable Row Contents

	Changing the Contents

	The Order of Things

	Other Bits of Goodness

	Animating the Deltas

	ListAdapter. No, Not That ListAdapter.

	Expandable Rows

	RecyclerView as Pager

	Declaring a LayoutManager in the Layout

	Transcript Mode

	
Advanced Uses of WebView
	Prerequisites

	Friends with Benefits

	Navigating the Waters

	Settings, Preferences, and Options (Oh, My!)

	Security and Your WebView

	Android 8.0 WebView Changes

	Chrome Custom Tabs

	
The Input Method Framework
	Prerequisites

	Keyboards, Hard and Soft

	Tailored To Your Needs

	Tell Android Where It Can Go

	Fitting In

	Jane, Stop This Crazy Thing!

	
Fonts and Text
	Prerequisites

	Love The One You’re With

	Yeah, But Do We Really Have To Do This in Java?

	Here a Glyph, There a Glyph

	Auto-Sizing TextView

	Justified Text

	
Rich Text
	Prerequisites

	The Span Concept

	Loading Rich Text

	Editing Rich Text

	Saving Rich Text

	Manipulating Rich Text

	
Animators
	Prerequisites

	ViewPropertyAnimator

	The Foundation: Value and Object Animators

	Animating Custom Types

	Hardware Acceleration

	The Three-Fragment Problem

	
Legacy Animations
	Prerequisites

	It’s Not Just For Toons Anymore

	A Quirky Translation

	Fading To Black. Or Some Other Color.

	When It’s All Said And Done

	Loose Fill

	Hit The Accelerator

	Animate. Set. Match.

	Active Animations

	
Custom Drawables
	Prerequisites

	Where Do These Things Go?

	ColorDrawable

	AnimationDrawable

	StateListDrawable

	ColorStateList

	LayerDrawable

	TransitionDrawable

	LevelListDrawable

	ScaleDrawable and ClipDrawable

	InsetDrawable

	ShapeDrawable

	BitmapDrawable

	Composite Drawables

	A Stitch In Time Saves Nine

	
Mapping with Maps V2
	Prerequisites

	A Brief History of Mapping on Android

	Where You Can Use Maps V2

	Licensing Terms for Maps V2

	What You Need to Start

	The Book Samples… And You!

	Setting Up a Basic Map

	Playing with the Map

	Map Tiles

	Placing Simple Markers

	Seeing All the Markers

	Flattening and Rotating Markers

	Sprucing Up Your “Info Windows”

	Images and Your Info Window

	Setting the Marker Icon

	Responding to Taps

	Dragging Markers

	The “Final” Limitations

	A Bit More About IPC

	Finding the User

	Drawing Lines and Areas

	Gestures and Controls

	Tracking Camera Changes

	Maps in Fragments and Pagers

	Animating Marker Movement

	Maps, of the Indoor Variety

	Taking a Snapshot of a Map

	SupportMapFragment vs. MapView

	About That AbstractMapActivity Class…

	Helper Libraries for Maps V2

	Problems with Maps V2 at Runtime

	Problems with Maps V2 Deployment

	What Non-Compliant Devices Show

	Mapping Alternatives

	
Crafting Your Own Views
	Prerequisites

	Pick Your Poison

	Colors, Mixed How You Like Them

	ReverseChronometer: Simply a Custom Subclass

	AspectLockedFrameLayout: A Custom Container

	Mirror and MirroringFrameLayout: Draw It Yourself

	
Advanced Preferences
	Prerequisites

	Introducing PreferenceActivity

	Intents for Headers or Preferences

	Conditional Headers

	Dependent Preferences

	Nested Screens

	Listening to Preference Changes

	Defaults, and Defaults

	Listening to Preference Value Changes

	Dynamic ListPreference Contents

	Dealing with External Changes to Preferences

	Preferences in Device Settings App

	
Custom Dialogs and Preferences
	Prerequisites

	Your Dialog, Chocolate-Covered

	Preferring Your Own Preferences, Preferably

	
Progress Indicators
	Prerequisites

	Progress Bars

	ProgressBar and Threads

	Tailoring Progress Bars

	Progress Dialogs

	Title Bar and Action Bar Progress Indicators

	Direct Progress Indication

	
More Fun with Pagers
	Prerequisites

	Hosting ViewPager in a Fragment

	Pages and the Action Bar

	ViewPagers and Scrollable Contents

	Showing More Pages

	Columns for Large, Pages for Small

	
Focus Management and Accessibility
	Prerequisites

	Prepping for Testing

	Controlling the Focus

	Accessibility and Focus

	Accessibility Beyond Focus

	Accessibility Beyond Impairment

	
Miscellaneous UI Tricks
	Prerequisites

	Full-Screen and Lights-Out Modes

	Offering a Delayed Timeout

	
Event Bus Alternatives
	Prerequisites

	A Brief Note About the Sample Apps

	Standard Intents as Event Bus

	LocalBroadcastManager as Event Bus

	greenrobot’s EventBus 3.x

	Hey, What About Otto?

	
Tasks
	Prerequisites

	First, Some Terminology

	And Now, a Bit About Task Killers

	A Canary for the Task’s Coal Mine

	The Default User Experience

	Explaining the Default Behavior

	Basic Scenarios for Changing the Behavior

	Dealing with the Persistent Tasks

	Documents As Tasks

	Other Task-Related Activity Properties

	Other Task-Related Activity Methods

	
The Assist API (“Now On Tap”)
	Prerequisites

	What Data Gets Disclosed

	Adding to the Data

	Removing from the Data

	Blocking Assist as a User

	Implementing Your Own Assistant

	
The Autofill API
	Prerequisites

	The Pieces of the Puzzle

	The User Experience

	What Data Gets Disclosed

	Blocking Autofill as a User

	Supporting Autofill with Standard Widgets

	Supporting Autofill with Custom Widgets

	Dealing with Dynamic Changes

	Security Requirements of Autofill Services

	
The Data Binding Framework
	Prerequisites

	The What, Now?

	The Basic Steps

	The Extended Layout Resource

	The Binding Expression Language

	Observables and Updating the Binding

	Two-Way Binding

	Other Features of Note

	
Drag and Drop
	Prerequisites

	The Scope of Drag and Drop

	The Pieces of Drag-and-Drop

	Drag-and-Drop, within an Activity

	Drag-and-Drop, Between Apps

	Detecting Cross-App Drag Events

	Intra-App Cross-Window Drag-and-Drop

	Pondering Legacy Multi-Window

	Dragging and Dropping Simple Stuff

	Multi-Action Drag-and-Drop

	Nested Drop Targets

	Pondering Standards

	Pondering Accessibility

	
Keyboard and Mouse Input
	Prerequisites

	Offering Keyboard Shortcuts

	Custom Copy-and-Paste

	Physical Keyboards and Focusing

	Offering Mouse Context Menus

	Offering Tooltips

	Pointer Capture

	
Viewing PDFs
	Prerequisites

	The Criteria

	The Classic Solution: ACTION_VIEW

	The Really Bad Idea: Google Docs

	The Built-In Option: PdfRenderer

	The Thunder Lizard Choice: PDF.js

	The Native Approach: Pdfium

	What To Choose?

	
Home Screen App Widgets
	Prerequisites

	App Widgets and Security

	The Big Picture for a Small App Widget

	Crafting App Widgets

	Another and Another

	App Widgets: Their Life and Times

	Controlling Your (App Widget’s) Destiny

	One Size May Not Fit All

	Lockscreen Widgets

	Preview Images

	Being a Good Host

	
Adapter-Based App Widgets
	Prerequisites

	AdapterViews for App Widgets

	Building Adapter-Based App Widgets

	
Publishing Slices
	What’s a Slice?

	A Tale of Two Slices

	Slice Sizes

	Setting Up a Slice

	Binding a Slice

	Trying a Slice

	The User Flow

	The SliceAction

	The Slice Item Templates

	Actions and Sizes

	Asynchronous Slices

	Warning: Make No Rendering Assumptions

	Other Slice Viewer Features

	
Hosting Slices
	What You Need to Know

	Why?

	How?

	The Catch: Discovering Slices

	Slices… from the Web?

	
Advanced Permissions
	Prerequisites

	Securing Yourself

	Signature Permissions

	The Custom Permission Vulnerability

	Custom Dangerous Permissions, and Android 6.0

	Finding the Available Permissions

	
Restricted Profiles and UserManager
	Prerequisites

	Android Tablets and Multiple User Accounts

	Determining What the User Can Do

	Impacts of Device-Level Restrictions

	Enabling Custom Restrictions

	Implicit Intents May Go “Boom”

	
Device Authentication
	Prerequisites

	Is the Device Secure?

	Reconfirming the User

	Fingerprints

	
Keys and the Keystore
	Prerequisites

	Terminology

	Getting a KeyStore

	Creating a Key

	Tying the Key to Device Authentication

	Learning More About Your Key

	Encrypting Data

	Time-Limited Device Authentication

	Encrypting Passphrases

	A Key(Store) Limitation

	
Miscellaneous Security Techniques
	Prerequisites

	Public Key Validation

	Choosing Your Signing Keysize

	Avoiding Accidental APIs

	Other Ways to Expose Data

	Jacking Attacks

	Using FLAG_SECURE

	
Content Provider Theory
	Prerequisites

	Using a Content Provider

	Building Content Providers

	Issues with Content Providers

	
Content Provider Implementation Patterns
	Prerequisites

	The Single-Table Database-Backed Content Provider

	The Local-File Content Provider

	The Protected Provider

	The Stream Provider

	FileProvider

	StreamProvider

	
The Loader Framework
	Prerequisites

	Introducing the Loader Framework

	Using CursorLoader

	What Else Is Missing?

	What Happens When…?

	Writing a Custom Loader

	
The ContactsContract and CallLog Providers
	Prerequisites

	Introducing You to Your Contacts

	Pick a Peck of Pickled People

	Spin Through Your Contacts

	Makin’ Contacts

	Looking at the CallLog

	
The CalendarContract Provider
	Prerequisites

	You Can’t Be a Faker

	Do You Have Room on Your Calendar?

	Calendar Permissions

	Querying for Events

	Penciling In an Event

	
The MediaStore Provider
	Prerequisites

	What Is the MediaStore?

	MediaStore and “Other” External Storage

	How Does My Content Get Indexed?

	How Do I Retrieve Video from the MediaStore?

	
Consuming Documents
	Prerequisites

	The Storage Access… What?

	The Storage Access Framework Participants

	Picking How to Pick (a Peck of Pickled Pepper Photos)

	Opening a Document

	Why We Want Things To Be Openable

	The Rest of the CRUD

	The DocumentFile Helper

	CWAC-Document and DocumentFileCompat

	Getting Durable Access

	Another Durable Example: Diceware

	Document Trees

	Getting a Tree: Example

	Scoped Directory Access Bug

	Android 8.0 Changes

	
Providing Documents
	Prerequisites

	Have Your Content, and Provide it Too

	Key Provider Concepts

	Pieces of a Provider

	Optional Provider Capabilities

	
Encrypted Storage
	Prerequisites

	Scenarios for Encryption

	Obtaining SQLCipher

	Using SQLCipher

	SQLCipher Limitations

	Passwords and Sessions

	About Those Passphrases…

	Encrypted Preferences

	IOCipher

	
Packaging and Distributing Data
	Prerequisites

	Packing a Database To Go

	
Advanced Database Techniques
	Prerequisites

	Full-Text Indexing

	
Data Backup
	Prerequisites

	First, Some Terminology

	Differing Definitions of “Backup”

	Implementing IT-Style Backup

	The Google Backup Bootstrap

	Boosting Backup Security

	Alternative Approaches

	
SSL
	Prerequisites

	Basic SSL Operation

	Problems in Paradise

	Introducing Network Security Configuration

	SSL Problems and Network Security Configuration

	Other SSL Strengthening Techniques

	Advanced Uses of CWAC-NetSecurity

	NetCipher

	
NetCipher
	Prerequisites

	Network Security’s Got Onions

	The NetCipher HTTP Integration APIs

	The Rest of the Builder API

	
Miscellaneous Network Topics
	Prerequisites

	Downloading Files

	Data Saver

	
Audio Playback
	Prerequisites

	Get Your Media On

	MediaPlayer for Audio

	Other Ways to Make Noise

	
Audio Recording
	Prerequisites

	Recording by Intent

	Recording to Files

	Recording to Streams

	Raw Audio Input

	Requesting the Microphone

	
Video Playback
	Prerequisites

	Moving Pictures

	
Using the Camera via 3rd-Party Apps
	Prerequisites

	Being Specific About Features

	Still Photos: Letting the Camera App Do It

	Permissions and Third-Party Camera Apps

	A Matter of Orientation

	Scanning with ZXing

	Videos: Letting the Camera App Do It

	Using a Camera Library

	Directly Working with the Camera

	
Working Directly with the Camera
	Prerequisites

	Notes About the Code Snippets

	A Tale of Two APIs

	Performing Basic Camera Operations

	Configuring the Still Camera

	And Now, The Problems

	
Media Routes
	Prerequisites

	Terminology

	A Tale of Two MediaRouters

	Attaching to MediaRouter

	User Route Selection with MediaRouteActionProvider

	Using Live Video Routes

	Using Remote Playback Routes

	
Supporting External Displays
	Prerequisites

	A History of External Displays

	What is a Presentation?

	Playing with External Displays

	Detecting Displays

	A Simple Presentation

	A Simpler Presentation

	Presentations and Configuration Changes

	Presentations as Fragments

	Another Sample Project: Slides

	Device Support for Presentation

	Presentations from a Service

	Hey, What About Chromecast?

	
Google Cast and Chromecast
	Prerequisites

	Here a Cast, There a Cast

	Common Chromecast Development Notes

	Your API Choices

	Senders and Receivers

	Supported Media Types

	Cast SDK Dependencies

	Developing Google Cast Apps

	
The “Ten-Foot UI”
	Prerequisites

	What is the “Ten-Foot UI”?

	Overscan

	Navigation

	Stylistic Considerations

	The Leanback UI

	Testing Your Theories

	
Putting the TVs All Together: Decktastic
	Prerequisites

	Introducing Decktastic

	Implementing Decktastic

	
Creating a MediaRouteProvider
	Prerequisites

	Terminology

	DIY Chromecast

	Creating the MediaRouteProvider

	Consuming the MediaRouteProvider

	Implementing This “For Realz”

	
The Media Projection APIs
	Prerequisites

	Requesting Screenshots

	Recording the Screen

	
AlarmManager and the Scheduled Service Pattern
	Prerequisites

	Scenarios

	Options

	A Simple Example

	The Five set…() Varieties

	The Four Types of Alarms

	When to Schedule Alarms

	Archetype: Scheduled Service Polling

	Warning: Not All Android Devices Play Nice

	Debugging Alarms

	Android 6.0 and the War on Background Processing

	Android 7.0 and OnAlarmListener

	
PowerManager and WakeLocks
	Prerequisites

	Keeping the Screen On, UI-Style

	The Role of the WakeLock

	What WakefulIntentService Does

	
JobScheduler
	Prerequisites

	The Limitations of AlarmManager

	Enter the JobScheduler

	Employing JobScheduler

	Pondering Backoff Criteria

	Other JobScheduler Features

	JobScheduler Period Limits

	GcmNetworkManager

	Periodic Work, Across Device Versions

	Android 6.0 and “the War on Background Processing”

	Scheduling Content Monitoring

	
Accessing Location-Based Services
	Prerequisites

	Location Providers: They Know Where You’re Hiding

	Finding Yourself

	On the Move

	Getting Locations via PendingIntent

	Are We There Yet? Are We There Yet? Are We There Yet?

	Testing… Testing…

	Alternative Flavors of Updates

	The Fused Option

	Locations and Features

	
The Fused Location Provider
	Prerequisites

	Why Use the Fused Location Provider?

	Why Not Use the Fused Location Provider?

	Finding Our Location, Once

	Getting Periodic Locations

	
Working with the Clipboard
	Prerequisites

	Working with the Clipboard

	ClipData and Drag-and-Drop

	Monitoring the Clipboard

	The Android 4.3 Clipboard Bug

	
Telephony
	Prerequisites

	Report To The Manager

	You Make the Call!

	No, Really, You Make the Call!

	
Working With SMS
	Prerequisites

	Sending Out an SOS, Give or Take a Letter

	Monitoring and Receiving SMS

	The SMS Inbox

	Asking to Change the Default

	SMS and the Emulator

	SMS Tokens

	
NFC
	Prerequisites

	What Is NFC?

	To NDEF, Or Not to NDEF

	NDEF Modalities

	NDEF Structure and Android’s Translation

	The Reality of NDEF

	Sources of Tags

	Writing to a Tag

	Responding to a Tag

	Expected Pattern: Bootstrap

	Mobile Devices are Mobile

	Enabled and Disabled

	Android Beam

	Beaming Files

	Another Sample: SecretAgentMan

	Additional Resources

	
Device Administration
	Prerequisites

	Objectives and Scope

	Defining and Registering an Admin Component

	Going Into Lockdown

	Passwords and Device Administration

	Getting Along with Others

	
Basic Use of Sensors
	Prerequisites

	The Sensor Abstraction Model

	Considering Rates

	Reading Sensors

	Batching Sensor Readings

	
Printing and Document Generation
	Prerequisites

	The Android Print System

	About the Sample App

	Printing a Bitmap

	Printing an HTML Document

	Printing a PDF File

	Printing Using a Canvas

	Print Jobs

	Printing, Threads, and Services

	Printing Prior to Android 4.4

	HTML Generation

	PDF Generation Options

	
Basic Bluetooth RFCOMM
	Prerequisites

	A Quick Bit of Scope

	About the Sample App

	Bluetooth and Permissions

	The Rx for Your Bluetooth

	I Can Haz Bluetooth?

	I Feel a Bond Between Us

	A Voyage of Discovery

	Serving and Shouting

	Reach Out and Touch Someone

	Ping and Pong

	Differences with Android Things

	
Dealing with Different Hardware
	Prerequisites

	Filtering Out Devices

	Runtime Capability Detection

	Dealing with Device Bugs

	
Writing and Using Parcelables
	Prerequisites

	The Role of Parcelable

	Writing a Parcelable

	The Limitations of Parcelable

	Beware the PendingIntent

	
Responding to URLs
	Prerequisites

	Manifest Modifications

	Creating a Custom URL

	Reacting to the Link

	App Links

	
App Shortcuts
	Prerequisites

	Enabling Deep Dives

	App Shortcuts, from the User’s POV

	Offering Manifest App Shortcuts

	Offering Dynamic App Shortcuts

	Privacy, Security, and App Shortcuts

	
PackageManager Tricks
	Prerequisites

	Asking Around

	Preferred Activities

	Middle Management

	
Remote Services and the Binding Pattern
	Prerequisites

	The Binding Pattern

	When IPC Attacks!

	Service From Afar

	Tightening Up the Security

	Servicing the Service

	Thinking About Security

	The “Everlasting Service” Anti-Pattern

	
Advanced Manifest Tips
	Prerequisites

	Just Looking For Some Elbow Room

	Using an Alias

	Getting Meta (Data)

	
Miscellaneous Integration Tips
	Prerequisites

	Direct Share

	Take the Shortcut

	Homing Beacons for Intents

	Integrating with Text Selection

	Quick Settings and TileService

	Installing Packages

	Deleting Packages

	Detecting Changes in Packages

	
Android Studio Editors and Dialogs
	Prerequisites

	Project Structure

	Translations Editor

	
Advanced Emulator Capabilities
	Prerequisites

	Other Notable Configuration Options

	The Emulator Sidebar

	Emulator Window Operations

	Headless Operation

	
Lint and the Support Annotations
	Prerequisites

	What It Is

	When It Runs

	What to Fix

	What to Configure

	Support Annotations

	
Inspecting Layouts
	Launching the Layout Inspector

	Viewing the View Hierarchy

	Inspections and Captures

	
Screenshots and Screencasts
	Prerequisites

	Collecting from Android Studio

	Screencasts

	Collecting from the Command Line

	Collecting from Another App

	Tips and Tricks

	
ADB Tips and Tricks
	Prerequisites

	This is the Droid That You Are Looking For

	Installing and Uninstalling Apps

	Playing with Permissions

	Starting and Stopping Components

	Killing Processes and Clearing Data

	Changing Display Metrics

	
Stetho
	Wait, Wut? Chrome?

	Basic Stetho Integration

	Connecting Chrome to Your App

	What You Get In Chrome Dev Tools

	Getting Help with Stetho

	Hey, What About Sonar?

	
Issues with Speed
	Prerequisites

	Getting Things Done

	Your UI Seems… Janky

	Not Far Enough in the Background

	Playing with Speed

	
Finding CPU Bottlenecks
	Prerequisites

	Android Studio’s Profiler

	Method Tracing

	Other General CPU Measurement Techniques

	UI “Jank” Measurement

	
Focus On: NDK
	Prerequisites

	The Role of the NDK

	Introducing CWAC-AndDown

	Installing the NDK

	The Contents of an NDK Project

	Building Your Library

	libhoudini and the NDK

	
Improving CPU Performance in Java
	Prerequisites

	Reduce CPU Utilization

	Reduce Time on the Main Application Thread

	Improve Throughput and Responsiveness

	
Finding and Eliminating Jank
	Prerequisites

	The Case: ThreePaneDemoBC

	Are We Janky?

	Finding the Source of the Jank

	Where Things Went Wrong

	Removing the Jank

	Frame Metrics API

	
Issues with Bandwidth
	Prerequisites

	You’re Using Too Much of the Slow Stuff

	You’re Using Too Much of the Expensive Stuff

	You’re Using Too Much of Somebody Else’s Stuff

	You’re Using Too Much… And There Is None

	
Focus On: TrafficStats
	Prerequisites

	TrafficStats Basics

	Example: TrafficMonitor

	Other Ways to Employ TrafficStats

	
Measuring Bandwidth Consumption
	Prerequisites

	On-Device Measurement

	Off-Device Measurement

	Android Studio Profiler

	
Being Smarter About Bandwidth
	Prerequisites

	Bandwidth Savings

	Bandwidth Shaping

	Avoiding Metered Connections

	Data Saver

	
Issues with Application Heap
	Prerequisites

	You Are in a Heap of Trouble

	Determining Your Heap Size At Runtime

	Fragments of Memory

	Getting a Trim

	Warning: Contains Graphic Images

	Releasing SQLite Memory

	Cheating

	The 1MB IPC Transaction Limit

	
Finding Memory Leaks
	Prerequisites

	Android Studio Profiler

	Getting Heap Dumps

	Analyzing Heap Dumps in Android Studio

	Common Leak Scenarios

	A Canary in a Leaky Coal Mine

	
Issues with System RAM
	Prerequisites

	Can’t We All Just Get Along?

	Contributors to System RAM Consumption

	Measuring System RAM Consumption: Tools

	Measuring System RAM Consumption: Runtime

	Learn To Let Go (Of Your Heap)

	
Issues with Battery Life
	Prerequisites

	You’re Getting Blamed

	Not All Batteries Are Created Equal

	Stretching Out the Last mWh

	
Power Measurement Options
	Prerequisites

	batterystats and the Battery Historian

	PowerTutor

	Battery Screen in Settings Application

	BatteryInfo Dump

	
Sources of Power Drain
	Prerequisites

	Screen

	Disk I/O

	WiFi and Mobile Data

	GPS

	Camera

	Additional Sources

	
Addressing Application Size Issues
	Prerequisites

	The APK Analyzer

	Java Code, and the 64K Method Limit

	Native Code

	Images

	APK Expansion Files

	
Crash Reporting Using ACRA
	Prerequisites

	What Happens When Things Go “Boom”?

	Introducing ACRA

	Where ACRA Reports Crashes

	ACRA Integration Basics

	What the User Sees

	What You See

	ACRA and Processes

	
In-App Diagnostics
	Prerequisites

	The Diagnostic Activity

	The Diagnostic Overlay

	
Anti-Patterns
	Prerequisites

	Leak Threads… Or Things Attached to Threads

	Use Large Heap Unnecessarily

	Misuse the MENU Button

	Interfere with Navigation

	Use android:sharedUserId

	Implement a “Quit” Button

	Terminate Your Process

	Try to Hide from the User

	Use Multiple Processes

	Hog System Resources

	
Widget Catalog: AdapterViewFlipper
	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Widget Catalog: CalendarView
	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Widget Catalog: DatePicker
	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Widget Catalog: ExpandableListView
	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Widget Catalog: SeekBar
	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Widget Catalog: SlidingPaneLayout
	Declaring a SlidingPaneLayout

	Visual Representation

	Interacting with a SlidingPaneLayout

	
Widget Catalog: StackView
	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Widget Catalog: TabHost and TabWidget
	Deprecation Notes

	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Widget Catalog: TimePicker
	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Widget Catalog: ViewFlipper
	Key Usage Tips

	A Sample Usage

	Visual Representation

	
Device Catalog: Chrome and Chrome OS
	Prerequisites

	How This Works

	Chrome OS Form Factors

	Testing Your App on Chrome OS

	Be Prepared To Be Wiped Out

	Compatibility and Your App

	Your App on Chrome OS

	Distribution Options

	Getting Help

	
Device Catalog: BlackBerry
	I Thought BlackBerry Had Their Own OS?

	What Else Is Different?

	What Are We Making?

	Getting Your Development Environment Established

	How Does Distribution Work?

	
Device Catalog: Android TV
	Prerequisites

	Hey, Wait a Minute… I Thought the Name Was “Google TV”?

	Some Android TV Hardware

	What Features and Configurations Does It Use?

	What Is Really Different?

	Getting Your Development Environment Established

	How Does Distribution Work?

	
Device Catalog: Amazon Fire TV and Fire TV Stick
	Prerequisites

	Introducing the Fire TV Devices

	What Features and Configurations Do They Use?

	What Is Really Different?

	Casting and Fire TV

	Getting Your Development Environment Established

	Working with the Remote and Controller

	How Does Distribution Work?

	Getting Help

	
Device Catalog: Samsung DeX
	DeX Screen Modes

	Other App Impacts

	For More Information

	
Appendix A: CWAC Libraries
	cwac-document

	cwac-layouts

	cwac-netsecurity

	cwac-presentation

	cwac-provider

	cwac-saferoom

	cwac-security

	
Appendix B: Android 8.0
	The War on Background Processing, Continued

	JobScheduler Enhancements

	Auto-Fill

	Notification Channels

	Other Changes with Notifications

	Multi-Window Changes

	WebView Changes

	ContentProvider Changes

	Storage Access Framework Changes

	Package Management

	Fonts as Resources

	Other Major Changes in Android 8.0

	Other Minor Changes in Android 8.0

	
Appendix C: Android 9.0
	Major Breaking Changes

	Major Features

	Other Notable Changes

	Notes About the Support Library

	Getting Help with 9.0

	
Appendix D: Community Theater and the Appinars
	Viewing the Appinar Roster

	Managing Appinars

	Viewing an Appinar

Preface
Welcome to the Book!
Thanks!
Thanks for your interest in developing applications for Android! Android has
grown from nothing to arguably the world’s most popular smartphone OS in a few
short years. Whether you are developing applications for the public, for your
business or organization, or are just experimenting on your own, I think you
will find Android to be an exciting and challenging area for exploration.
And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.
First-Generation Book
Android app development can be divided into two generations:

	First-generation app development uses Java as the programming language
and leverages the Android Support Library and the android.arch edition of
the Architecture Components

	Second-generation app development more often uses Kotlin as the programming
language and leverages AndroidX and the rest of Jetpack (which
includes an AndroidX edition of the Architecture Components)

This book is a first-generation book. It explores the android.arch edition of
the Architecture Components and it uses Java for most of the examples.
Second-generation material can be found in CommonsWare’s “Elements” book series.
Of particular note, Elements of Android Jetpack
is the replacement introductory Android app development book from CommonsWare.
The Book’s Structure
As you may have noticed, this is a rather large book.
To make this vast quantity of material manageable, the chapters are
divided into the core chapters and a series of trails.
The core chapters represent many key concepts that Android developers need to
understand in order to build an app. While an occasional “nice to have” topic
will drift into the core — to help illustrate a point, for example — the core
chapters generally are fairly essential.
The core chapters are designed to be
read in sequence and will interleave both traditional technical book prose
with tutorial chapters, to give you hands-on experience with the
concepts being discussed. Most of the tutorials can be skipped, though the first
two — covering setting up your SDK environment and creating a project –
everybody should read.
The bulk of the chapters are divided into trails, covering some particular
general topic, from data storage to advanced UI effects to performance measurement
and tuning. Each trail will have several chapters. However, those chapters, and
the trails themselves, are not necessarily designed to be read in any order.
Each chapter in the trails will point out prerequisite chapters or concepts
that you will want to have covered in advance. Hence, these chapters are mostly
reference material, for when you specifically want to learn something about a
specific topic.
The core chapters will link to chapters in the trails, to show you where you
can find material related to the chapter you just read. So between the
book’s table of contents, this preface, the search tool in your digital book
reader, and the cross-chapter links, you should have plenty of ways of finding
the material you want to read.
You are welcome to read the entire book front-to-back if you wish. The trails
will appear after the core chapters. Those trails will be in a reasonably logical
order, though you may have to hop around a bit to cover all of the prerequisites.
The Trails
Here is a list of all of the trails and the chapters that pertain to those
trails, in order of appearance (except for those appearing in the list
multiple times, where they span major categories):
Code Organization and Gradle

	Working with Library Projects

	Gradle and Tasks

	Gradle Build Variants

	Manifest Merger Rules

	Signing Your App

	Distribution

	Advanced Gradle for Android Tips

Testing

	Testing with JUnit4

	Testing with Espresso

	Testing with UIAutomator

	Measuring Test Coverage

	Unit Testing

	MonkeyRunner and the Test Monkey

Rx

	Java 8 Lambda Expressions

	Rx Basics

Advanced UI

	Notifications

	Advanced Notifications

	Multi-Window Support

	Advanced ConstraintLayout

	GridLayout

	Dialogs and DialogFragments

	Advanced ListViews

	Action Modes and Context Menus

	Other Advanced Action Bar Techniques

	Toolbar

	AppCompat: The Official Action Bar Backport

	Advanced RecyclerView

	The Android Design Support Library

	Advanced Uses of WebView

	The Input Method Framework

	Fonts

	Rich Text

	Animators

	Legacy Animations

	Custom Drawables

	Mapping with Maps V2

	Crafting Your Own Views

	Advanced Preferences

	Custom Dialogs and Preferences

	Progress Indicators

	More Fun with Pagers

	Focus Management and Accessibility

	Miscellaneous UI Tricks

	Event Bus Alternatives

	Tasks

	The Assist API (“Now On Tap”)

	The Auto-Fill API

	Data Binding

	Drag-and-Drop

	Keyboard and Mouse Input

	Viewing PDFs

Integrated UIs

	Home Screen App Widgets

	Adapter-Based App Widgets

	Publishing Slices

Security

	SSL

	NetCipher

	Encrypted Storage

	Advanced Permissions

	Restricted Profiles and UserManager

	Device Authentication

	Keys and the Keystore

	Miscellaneous Security Techniques

Data Storage and Retrieval

	Content Provider Theory

	Content Provider Implementation Patterns

	The Loader Framework

	The ContactsContract Provider

	The CalendarContract Provider

	The MediaStore Provider

	Consuming Documents

	Providing Documents

	Encrypted Storage

	Packaging and Distributing Data

	Advanced Database Techniques

	Data Backup

Advanced Network Topics

	SSL

	NetCipher

	Miscellaneous Network Capabilities

Media

	Audio Playback

	Audio Recording

	Video Playback

	Using the Camera via 3rd-Party Apps

	Working Directly with the Camera

	The MediaStore Provider

	Media Routes

	Supporting External Displays

	Google Cast and ChromeCast

	The “10 Foot UI”

	Putting the TVs All Together: Decktastic

	Creating a MediaRouteProvider

	The Media Projection APIs

Hardware and System Services

	AlarmManager and the Scheduled Service Pattern

	PowerManager and WakeLocks

	JobScheduler

	Accessing Location-Based Services

	The Fused Location Provider

	Working with the Clipboard

	Telephony

	Working With SMS

	NFC

	Device Administration

	Basic Use of Sensors

	Printing and Document Generation

	Basic Bluetooth RFCOMM

	Dealing with Different Hardware

Integration and Introspection

	Writing and Using Parcelables

	Responding to URLs

	App Shortcuts

	PackageManager Tricks

	Remote Services and the Binding Pattern

	Advanced Manifest Tips

	Miscellaneous Integration Tips

Other Tools

	Android Studio Dialogs and Editors

	Advanced Emulator Capabilities

	Lint and the Support Annotations

	Inspecting Layouts

	Screenshots and Screencasts

	ADB Tips and Tricks

	Stetho

	Finding CPU Bottlenecks

	Finding Memory Leaks

Tuning Android Applications

	Issues with Speed

	Finding CPU Bottlenecks

	NDK

	Improving CPU Performance in Java

	Finding and Eliminating Jank

	Issues with Bandwidth

	Focus On: TrafficStats

	Measuring Bandwidth Consumption

	Being Smarter About Bandwidth

	Issues with Application Heap

	Finding Memory Leaks

	Issues with System RAM

	Issues with Battery Life

	Other Power Measurement Options

	Sources of Power Drain

	Addressing Application Size Issues

Miscellaneous Topics

	Crash Reporting with ACRA

	In-App Diagnostics

	Anti-Patterns

Widget Catalog

	AdapterViewFlipper

	CalendarView

	DatePicker

	ExpandableListView

	SeekBar

	SlidingPaneLayout

	StackView

	TabHost

	TimePicker

	ViewFlipper

Device Catalog

	Chrome and Chrome OS

	BlackBerry

	Google TV

	Amazon Fire TV

	Samsung DeX

Appendices

	Appendix A: CWAC Libraries

	Appendix B: Android 8.x

	Appendix C: P Developer Preview

	Appendix D: Community Theater and the Appinars

About the Updates
This book is updated frequently, typically every 6-8 weeks.
Each release has notations to show what is new or changed compared with the
immediately preceding release:

	The Table of Contents shows sections with changes in bold-italic font

	Those sections have changebars on the right to denote specific paragraphs
that are new or modified

About the APK Edition
In addition to classic digital book formats (PDF, EPUB, MOBI/Kindle),
this book is available as an Android app, in the form of an APK file.
This app has an integrated digital book reader, showing you the same
contents as you would find in the EPUB version of the book. However,
it has a few features that are unique.
First, it has a very fast full-text-search index built in. You can
quickly search for keywords, class names, and the like, with sub-second
response time on most Android hardware. You can even use boolean
search clauses (e.g., search on encryption OR decryption).
Second, it has Community Theater, where you can view appinars, or
app-based training modules. These are presentations, complete with
slides, videos, screencasts, source code, and more. Through Community
Theater, you can view available appinars, download those of interest,
and watch them when you want.
The APK edition of the book reader works on Android 4.0.3 and higher,
though the Community Theater portion only works on Android 4.4 and
higher.
Installation instructions for the APK edition can be found
on the CommonsWare Web site.
Details about using Community Theater can be found
in an appendix of this book.
Source Code and Its License
The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the
Android projects are licensed under the
Apache 2.0 License, in case you have the
desire to reuse any of it.
If you wish to use the source code from the GitHub repository, please follow the
instructions on that repository’s home page for details of how to use the projects
in various development environments, notably Android Studio.
Copying source code directly from the book, in the PDF editions, works best
with Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.
Creative Commons and the Four-to-Free (42F) Guarantee
Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0
license as of the
fourth anniversary of its publication date, or when 4,000 copies of the edition
have been sold, whichever comes first. That means that, once four years have
elapsed (perhaps sooner!), you can use this prose for non-commercial purposes.
That is our Four-to-Free Guarantee to our readers and the broader community.
For the purposes of this guarantee, new Warescriptions and renewals will be
counted as sales of this edition, starting from the time the edition is
published.
This edition of this book will be available under the aforementioned Creative
Commons license on 1 February 2023. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.
For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site
Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license does
not automatically release all editions under that license.
Acknowledgments
I would like to thank the Android team, not only for putting out a good
product, but for invaluable assistance on the Android Google Groups and
Stack Overflow.
I would also like to thank the thousands of readers of past editions
of this book, for their feedback, bug reports, and overall support.
Of course, thanks are also out to the overall Android ecosystem, particularly
those developers contributing their skills to publish libraries, write
blog posts, answer support questions, and otherwise contribute to the strength
of Android.
Portions of this book are reproduced from work created and shared by the
Android Open Source Project and used according to terms described in the
Creative Commons 2.5 Attribution License.
Key Android Concepts
No doubt, you are in a hurry to get started with Android application development.
After all, you are reading this book, aimed at busy coders.
However, before we dive into getting tools set up and starting in on actual programming,
it is important that we “get on the same page” with respect to several high-level
Android concepts. This will simplify further discussions later in the book.
Android Applications
This book is focused on writing Android applications. An application is something
that a user might install from the Play Store or otherwise download to their
device. That application should have some user interface, and it might have other
code designed to work in the background (multi-tasking).
This book is not focused on modifications to the Android firmware, such as writing
device drivers. For that, you will need to seek
other resources.
This book assumes that you have some hands-on experience with Android devices, and
therefore you are familiar with buttons like HOME and BACK, the built-in Settings
application, the concept of a home screen and launcher, and so forth. If you have
never used an Android device, you are strongly encouraged to get one
(new or used) and spend some time with it before starting in on
learning Android application development.
Programming Language
The vast majority of Android applications are written exclusively in Java. Hence,
that is what this book will spend most of its time on and will demonstrate with
a seemingly infinite number of examples.
However, there are other options:

	You can write parts of the app in C/C++, for performance gains, porting over existing
code bases, etc.

	You can write an entire app in C/C++, mostly for games using OpenGL for 3D animations

	You can write the guts of an app in HTML, CSS, and JavaScript, using tools to
package that material into an Android application that can be distributed through
the Play Store and similar venues

	And so on

Some of this will be covered later in the book, but the vast majority
of this book is focused on Java-based app development.
The author assumes that you know Java at this point. If you do not, you will need
to learn Java before you go much further. You do not need to know everything about
Java, as Java is vast. Rather, focus on:

	
Language fundamentals (flow control, etc.)

	Classes and objects

	
Methods and data members

	Public, private, and protected

	Static and instance scope

	Exceptions

	Threads

	Collections

	Generics

	File I/O

	Reflection

	Interfaces

The links are to Wikibooks material on those topics, though there are countless
other Java resources for you to consider.
Google also supports Kotlin as a programming language for Android apps. Kotlin
can be used as a replacement for Java. While Kotlin has plenty of benefits,
it is also a relatively new programming language. This book is focused on
the Android SDK, more so than on Java (or Kotlin), and so regardless of which
of those two languages you use, the material in this book will be relevant.
This book’s examples are mostly in Java, due to that being the dominant Android
app development language today.
Components
When you first learned Java — whether that was yesterday or back when dinosaurs
roamed the Earth — you probably started off with something like this:

class SillyApp {
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

In other words, the entry point into your application was a public static void method
named main() that took a String array of arguments. From there, you were
responsible for doing whatever was necessary.
However, there are other patterns used elsewhere in Java. For example, you do not
usually write a main() method when writing a Java servlet. Instead, you
extend a particular class supplied by a framework (e.g., HttpServlet) to create
a component, then write some metadata that enumerates your components and tell
the framework when and how to use them (e.g., WEB.XML).
Android apps are closer in spirit to the servlet approach. You will not write
a public static void main() method. Instead, you will create subclasses
of some Android-supplied base classes that define various application
components. In addition, you will create some metadata that
tells Android about those subclasses.
There are four types of components,
all of which will be covered extensively in this book:
Activities
The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a desktop
application, or the page in a classic Web app. It represents a chunk of your
user interface and, in some cases, a discrete entry point into your app (i.e., a way
for other apps to link to your app).
Normally, an activity will take up most of the screen, leaving space for some
“chrome” bits like the clock, signal strength indicators, and so forth.
However, bear in mind that on some devices, the user will be able to work
with more than one activity at a time, such as split-screen mode on a phone
or tablet. So, while it is easy to think of activities as being equivalent
to the screen, just remember that this is a simplification, and that
reality is more complicated (as reality often is).
Services
Activities are short-lived and can be shut down at any time, such as when the
user presses the BACK button. Services, on the
other hand, are designed to keep running, if needed, independent of any
activity, for a moderate period of time. You might use a service for checking for
updates to an RSS feed, or
to play back music even if the controlling activity is no longer operating. You
will also use services for scheduled tasks (akin to Linux or macOS “cron jobs”)
and for exposing
custom APIs to other applications on the device, though the latter is a relatively
advanced capability.
Content Providers
Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android development
model encourages you to make your own data available to other applications, as
well as your own — building a content provider lets you do that, while
maintaining a degree of control over how your data gets accessed.
So, for example, if you have a PDF file that you downloaded on behalf of
the user, and you want to allow the user to view that PDF file, you
might create a content provider to make that PDF file available to
other apps. You can then start up an activity that will be able to
view that PDF, where Android and the user will determine what PDF-viewing
activity handles that request.
Broadcast Receivers
The system, or applications, will send out broadcasts from time to time,
for everything from the battery getting low, to when the screen turns off,
to when connectivity changes from WiFi to mobile data. A broadcast receiver
can arrange to listen for these broadcasts and respond accordingly.
Widgets, Containers, and Resources
Most of the focus on Android application development is on the UI layer and
activities.
Most Android activities use what is known as “the widget framework” for
rendering their user interface, though you are welcome to use the 2D (Canvas)
and 3D (OpenGL) APIs as well for more specialized GUIs.
In Android terms, a widget is the “micro” unit of user interface. Fields, buttons,
labels, lists, and so on are all widgets. Your activity’s UI, therefore,
is made up of one or more of these widgets. This is a common approach in most
UI toolkits, and so most likely you have already worked with buttons, labels,
fields, and similar sorts of widgets somewhere else previously.
If you have more than one widget — which is fairly typical — you will need
to tell Android how those widgets are organized on the screen. To do that, you
will use various container classes referred to as layout managers. These will
let you put things in rows, columns, or more complex arrangements as needed.
To describe how the containers and widgets are connected, you will typically
create a layout resource file. Resources in Android refer to things like
images, strings, and other material that your application uses but is not
in the form of some programming language source code. UI layouts are another
type of resource. You will create these layouts either using a structured tool,
such as an IDE’s drag-and-drop GUI builder, or by hand in XML form.
Sometimes, your UI will work across all sorts of devices: phones, tablets,
televisions, etc. Sometimes, your UI will need to be tailored for different
environments. You will be able to put resources into resource sets that indicate
under what circumstances those resources can be used (e.g., use these for
normal-sized screens, but use those for larger screens).
We will be examining all of these concepts, in much greater detail, as we
get deeper into the book.
Apps and Packages
Given a bucket of source code and a basket of resources, the Android build
tools will give you an application as a result. The application comes in
the form of an APK file. It is that APK file that you will upload to the
Play Store or distribute by other means.
Each Android application has a package name, also referred to as an
application ID. A package name must fulfill
three requirements:

	It must be a valid Java package name, as some Java source code will be
generated by the Android build tools in this package

	No two applications can exist on a device at the same time with the
same application ID

	No two applications can be uploaded to the Play Store having the
same application ID

When you create your Android project — the repository of that source code
and those resources — you will declare what package name is to be used for
your app. Typically, you will pick a package name following the Java package
name “reverse domain name” convention (e.g., com.commonsware.android.foo).
That way, the domain name system ensures that your package name prefix
(com.commonsware) is unique, and it is up to you to ensure that the rest
of the package name distinguishes one of your apps from any other.
Android Devices
There are well in excess of one billion Android devices in use today, representing
thousands of different models from dozens of different manufacturers. Android
itself has evolved since Android 1.0 in 2008. Between different device types
and different Android versions, many a media pundit has lobbed the term “fragmentation”
at Android, suggesting that creating apps that run on all these different
environments is impossible.
In reality, it is not that bad. Some apps will have substantial trouble, but most
apps will work just fine if you follow the guidance presented in this book and
in other resources.
Types
Android devices come in all shapes, sizes, and colors. However, there are three
dominant “form factors”:

	the phone

	the tablet

	the notebook (mostly, these run Chrome OS, which has some support for Android apps)

Beyond that, there are several less-common form factors

	the television (TV)

	the wearable (smart watches, etc.)

	the desktop (a device designed to be plugged into a monitor, keyboard, and mouse)

You will often hear developers and pundits refer to these form factors, and this
book will do so from time to time as well. However, it is important that you
understand that Android has no built-in concept of a device being a “phone” or a
“tablet” or a “TV”. Rather, Android distinguishes devices based on capabilities
and features. So, you will not see an isPhone() method anywhere, though you can
ask Android:

	what is the screen size?

	does the device have telephony capability?

	etc.

Similarly, as you build your applications, rather than thinking of those
form factors, focus on what capabilities and features you need. Not only will
this help you line up better with how Android wants you to build your apps,
but it will make it easier for you to adapt to other form factors that will
come about such as:

	airplane seat-back entertainment centers

	in-car navigation and entertainment devices

	and so on

The Emulator
While there are ~2 billion Android devices representing
~10,000 device models, probably you do not have one of each model. You may only
have a single piece of Android hardware. And if you do not even have that,
you most certainly will want to acquire one before trying to publish an Android
app.
To help fill in the gaps between the devices you have and the devices that
are possible, the Android developer tools ship an emulator. The emulator
behaves like a piece of Android hardware, but it is a program you run on your
development machine. You can use this emulator to emulate many different
devices, with different screen sizes and Android OS versions, by creating
one or more Android virtual devices, or AVDs.
In an upcoming chapter, we will discuss how you
install the Android developer tools and
how you will be able to create these AVDs and run the emulator.
OS Versions and API Levels
Android has come a long way since the early beta releases from late 2007.
Each new Android OS version adds more capabilities to the platform and more
things that developers can do to exploit those capabilities.
Moreover, the core Android development team tries very hard to ensure
forwards and backwards compatibility. An app you write today should work
unchanged on future versions of Android (forwards compatibility), albeit
perhaps missing some features or working in some sort of “compatibility mode”.
And there are well-trod paths for how to create apps that will work both
on the latest and on previous versions of Android (backwards compatibility).
To help us keep track of all the different OS versions that matter to us as
developers, Android has API levels. A new API level is defined when an
Android version ships that contains changes that affect developers. When
you create an emulator AVD to test your app, you will indicate what API level
that emulator should emulate. When you distribute your app, you will indicate
the oldest API level your app supports, so the app is not installed on older
devices.
At the time of this writing, the API levels of significance to most Android
developers are:

	API Level 19 (Android 4.4)

	API Level 22 (Android 5.1)

	API Level 23 (Android 6.0)

	API Level 24 (Android 7.0)

	API Level 25 (Android 7.1)

	API Level 26 (Android 8.0)

Here, “of significance” refers to API levels that have a reasonable number
of Android devices — 5% or more, as reported by
the “Platform Versions” dashboard chart.
The latest version of Android is 9.0, API Level 28.
Note that API Level 20 was used for the version of Android 4.4 running on
the first-generation “Android Wear” devices (now referred to as “Wear OS”).
Unless you are specifically developing
apps for Wear, you will not be worrying much about API Level 20.
Dalvik and ART
In terms of Android, Dalvik and ART are virtual machines (VM)s.
Virtual machines are
used by many programming languages, such as Java, Perl, and Smalltalk.
Dalvik and ART are designed to work much like a Java VM, but optimized for
embedded Linux environments.
Primarily, the difference between the two is that ART is used on Android 5.0
and higher, while Dalvik was used on older devices. In truth, the story
is more complicated than this, but this will do for now.
So, what really goes on when somebody writes an Android application is:

	Developers write Java-syntax source code, leveraging class libraries
 published by the Android project and third parties.

	Developers compile the source code into Java VM bytecode, using the
 javac compiler that comes with the Java SDK.

	Developers translate the Java VM bytecode into Dalvik VM bytecode,
 which is packaged with other files into a ZIP archive with the .apk
 extension (the APK file).

	An Android device or emulator runs the APK file, causing the bytecode
 to be executed by an instance of a Dalvik or ART VM.

From your standpoint, most of this is hidden by the build tools. You pour
Java source code into the top, and the APK file comes out the bottom.
However, there will be places from time to time where the differences between
the Dalvik VM and the traditional Java VM will affect application developers,
and this book will point out some of them where relevant.
Processes and Threads
When your application runs, it will do so in its own process. This is not
significantly different than any other traditional operating system. Part
of Dalvik’s magic is making it possible for many processes to be running
many Android applications at one time without consuming ridiculous amounts
of RAM.
Android will also set up a batch of threads for running your app. The thread
that your code will be executed upon, most of the time, is variously called
the “main application thread” or the “UI thread”. You do not have to set it
up, but, as we will see later in the book, you will need to pay attention
to what you do and do not do on that thread. You are welcome to fork your
own threads to do work, and that is fairly common, though in some places
Android handles that for you behind the scenes.
Don’t Be Scared
Yes, this chapter threw a lot of terms at you. We will be going into greater
detail on all of them in this book. However, Android is like a jigsaw puzzle
with lots of interlocking pieces. To be able to describe one concept in detail,
we will need to at least reference some of the others. Hence, this chapter was
meant to expose you to terms, in hopes that they will sound vaguely familiar
as we dive into the details.
Choosing Your Development Toolchain
Before you go much further in your Android endeavors (or possibly endeavours,
depending upon your preferred spelling),
you will need to determine what toolchain you will use to build your Android applications.
Android Studio
The current Google-backed Android IDE is Android Studio. Based on
IntelliJ IDEA,
Android Studio is the new foundation of Google’s efforts
to give Android developers top-notch development tools.
The next chapter contains a section with instructions on
how to set up Android Studio.
Note, though, that Android Studio requires a fairly powerful
development machine to work well: a fast CPU, lots of RAM (8GB or more), and an
SSD are all strongly recommended.
Eclipse
Eclipse is also a popular IDE, particularly for Java development. Eclipse was
Google’s original IDE for Android development, by means of the Android
Developer Tools (ADT) add-in, which gives the core of Eclipse awareness of
Android.
The ADT add-in, in essence, takes regular Eclipse operations and extends them
to work with Android projects.
Note, though, that Google has discontinued maintenance of ADT. The Eclipse
Foundation is setting up the “Andmore” project
to try to continue work on
allowing Eclipse to build Android apps. This book does not cover the
Andmore project at this time, and developers are strongly encouraged
to not use the ADT-enabled Eclipse from Google.
IntelliJ IDEA
While Android Studio is based on IntelliJ IDEA, you can still use the
original IntelliJ IDEA for Android app development. A large subset of the
Android Studio capabilities are available in the Android plugin for IDEA.
Plus, the commercial IDEA Ultimate Edition will go beyond Android Studio in many areas
outside of Android development.
In particular, if you are looking for “the one true IDE” that you can
use for Android and non-Android projects, you should consider IntelliJ
IDEA. Android Studio is nice, but it is mostly for Android projects.
Command-Line Builds via Gradle
And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much of
what is accomplished via an IDE can be accomplished through command-line
equivalents, meaning a shell and an editor is all you truly need.
The recommended way to build Android apps outside of an IDE is by means of
Gradle. Google has published a Gradle plugin that teaches Gradle how to build
Android apps. Android Studio itself uses Gradle for its builds, so a single
build configuration (e.g., build.gradle files) can be used both from an IDE
and from a build automation tool like a continuous integration server.
An upcoming chapter gets into more about what Gradle (and the
Android Gradle Plugin) are all about.
Yet Other Alternatives
Other IDEs have their equivalents of the ADT, albeit with minimal
assistance from Google. For example, NetBeans has support via the NBAndroid add-on,
and reportedly this has advanced substantially in the past few years.
You will also hear reference to using Apache Ant for doing command-line builds
of Android apps. This has been supplanted by the Android Gradle Plugin at this
time, and there is little support for Apache Ant anymore. Newcomers to Android are encouraged
to not invest time in new work with Apache Ant for Android development projects.
IDEs… And This Book
You are encouraged to use Android Studio as you work through this book. You are welcome
to use another IDE if you wish. You are even welcome to skip the IDE outright
and just use an editor.
This book is focused primarily on demonstrating Android capabilities and the
APIs for exploiting those capabilities. Hence, the sample code will work with
any IDE. However, this book will cover some Android Studio-specific instructions,
since that is the predominant Android IDE in use today.
What We Are Not Covering
In the beginning (a.k.a., 2007), we were lucky to have any means of creating an Android
app.
Nowadays, there seems to be no end to the means by which we can create an Android app.
There are a few of these “means”, though, that are specifically out of scope for
this book.
App Inventor
You may also have heard of a tool named App Inventor and wonder where it fits
in with all of this.
App Inventor was originally created by an education group within Google, as a
means of teaching students how to think about programming constructs (branches,
loops, etc.) and create interesting output (Android apps) without classic
programming in Java or other syntax-based languages. App Inventor is purely
drag-and-drop, both of widgets and application logic, the latter by means of
“blocks” that snap together to form logic chains.
App Inventor was donated by Google to MIT, which has recently re-opened it
to the public.
However, App Inventor is a closed system — at the present time, it does not
somehow generate Java code that you can later augment. That limits you to whatever
App Inventor is natively capable of doing, which, while impressive in its own
right, offers a small portion of the total Android SDK capabilities.
App Generators
There are a seemingly infinite number of “app generators” available as online services.
These are designed mostly for creating apps for specific vertical markets, such as
apps for restaurants or apps for grocers. The resulting apps are mostly “brochure-ware”,
with few capabilities beyond a mobile Web site, yet still requiring the user to find,
download, and install the app. Few of these generators provide the source
code to the generated app, to allow the apps to be customized beyond what the generator
generates.
Tutorial #1 - Installing the Tools
Now, let us get you set up with the pieces and parts necessary to build an Android
app.
NOTE: The instructions presented here are accurate as of the time of this
writing. However, the tools change rapidly, and so these instructions may be
out of date by the time you read this. Please refer to the
Android Developers Web site
for current instructions, using this as
a base guideline of what to expect.
But First, Some Notes About Android’s Emulator
The Android tools include an emulator, a piece of software that pretends to be
an Android device. This is very useful for development — not only does it mean
you can get started on Android without a device, but the emulator can help test
device configurations that you do not own.
There are two types of emulator: x86 and ARM. These are the two major types
of CPUs used for Android devices. You really want to be able to use
the x86 emulator, as the ARM emulator is extremely slow.
However, to use the x86 emulator,
your development machine must have things set up properly
first. Linux users need KVM, while Mac and Windows users need the
“Intel Hardware Accelerated Execution Manager” (a.k.a., HAXM).
Also, this only works for certain CPU architectures, ones that support virtualization
in hardware:

	Intel Virtualization Technology (VT, VT-x, vmx) extensions

	AMD Virtualization (AMD-V, SVM) extensions (Linux only)

Those virtualization extensions must also be enabled in your device’s BIOS, and other
OS-specific modifications may be required.
Also, at least for newer API levels, your CPU
must support SSSE3 extensions,
though the details of this requirement are not documented as of October 2017.
Part of the Android Studio installation process will try to set you
up to be able to use the x86 emulator. Make note of any messages that you
see in the installation wizard regarding “HAXM” (or, if you are running Linux, KVM),
as those will be important later.
Step #1: Checking Your Hardware
Compiling and building an Android application, on its own, can be a
hardware-intensive process, particularly for larger projects. Beyond that,
your IDE and the Android emulator will stress your development machine
further. Of the two, the emulator poses the bigger problem.
The more RAM you have, the better. 8GB or higher is a very good idea if you
intend to use an IDE and the emulator together. If you can get an SSD for
your data storage, instead of a conventional hard drive, that too can dramatically
improve the IDE performance.
A faster CPU is also a good idea. The Android SDK emulator, as of 2016,
supports CPUs with multiple cores — previously, it only supported a single
core. However, other processes on your development machine will be competing
with the emulator for CPU time, and so the faster your CPU is, the better
off you will be. Ideally, your CPU has 2 to 4 cores, each 2.5GHz or faster at
their base speed.
Beyond that, to use the x86 emulator — the emulator that runs well — you
need a CPU with certain features:

 	Development OS
 	CPU Requirements

 	Windows
 	an Intel CPU with support for VT-x, EM64T, and “Execute Disable” (XD)

 	Mac
 	any

 	Linux
 	an Intel CPU with support for VT-x, EM64T, and “Execute Disable” (XD), or an AMD CPU with support for AMD-V

If your CPU does not meet those requirements, you will want to have 1+
Android devices available to you, so that you can test on hardware.
Also, if you are running Windows or Linux,
you need to ensure that your computer’s BIOS is set up to support
Intel’s virtualization extensions. Unfortunately, many PC manufacturers
disable this by default. The details of how to get into your BIOS settings
will vary by PC, but usually it involves rebooting your computer and
pressing some function key on the initial boot screen. In the BIOS settings,
you are looking for references to “virtualization” or “VT-x”. Enable
them if they are not already enabled. macOS machines come with virtualization
extensions pre-enabled.
Step #2: Setting Up Java and 32-Bit Linux Support
When you write Android applications, you typically write them in Java source
code. That Java source code is then turned into the stuff that Android actually
runs (Dalvik bytecode in an APK file).
Android Studio, starting with version 2.2, ships with its own private
copy of OpenJDK 8, and it will use that by default. You are welcome
to install and use your own JDK if you wish, though ideally it is for
Java 8.
If your development OS is Linux, make sure that you can run 32-bit Linux
binaries. This may or may not already be enabled in your Linux distro.
For example, on Ubuntu 17.10, you may need to run the following to get
the 32-bit binary support installed that is needed by the Android build tools:

sudo apt-get install libncurses5:i386 libstdc++6:i386 zlib1g:i386

Step #3: Install Android Studio
As noted in the previous chapter, there are a few developer tools
that you can choose from.
This book’s tutorials focus on Android Studio. You are welcome to attempt
to use Eclipse, another IDE, or no IDE at all for building Android apps.
However, you will need to translate some of the tutorials’ IDE-specific
instructions to be whatever is needed for your development toolchain of
choice.
At the time of this writing, the current production version of Android Studio is
3.1, and this book covers that version. If you are reading this in the future,
you may be on a newer version of Android Studio, and there may be some differences
between what you have and what is presented here.
You have two major download options.
You can get the latest shipping version of Android Studio from
the Android Studio download page.

[image: Android Studio Download Page]

Figure 1: Android Studio Download Page
Or, you can download Android Studio 3.1 — the version used in this edition
of this book — directly, for:

	Windows

	macOS

	Linux

Windows users can download a self-installing EXE, which will add suitable
launch options for you to be able to start the IDE.
macOS users can
download a DMG disk image and install it akin to other macOS software, dragging
the Android Studio icon into the Applications folder.
Linux users (and power Windows users) can download a ZIP file, then
unZIP it to some
likely spot on your hard drive.
Android Studio can then be run from the studio batch file
or shell script from your Android Studio installation’s bin/ directory.
Step #4: Install the SDKs and Add-Ons
Next, we need to review what pieces of the Android SDK we have already and
perhaps install some new items. To do that, you need to access the SDK Manager.
When you first run Android Studio, you may be asked if you want to import
settings from some other prior installation of Android Studio:

[image: Android Studio First-Run Settings Migration Dialog]

Figure 2: Android Studio First-Run Settings Migration Dialog
For most users, particularly those using Android Studio for the first time,
the “I do not have…” option is the correct choice to make.
Then, after a short splash screen and a potentially long “Finding Available
SDK Components” progress dialog, you will be taken to the Android Studio
Setup Wizard:

[image: Android Studio Setup Wizard, First Page]

Figure 3: Android Studio Setup Wizard, First Page
Just click “Next” to advance to the second page of the wizard:

[image: Android Studio Setup Wizard, Second Page]

Figure 4: Android Studio Setup Wizard, Second Page
Here, you have a choice between “Standard” and “Custom” setup modes.
Most likely, right now, the “Standard” route will be fine for your environment.
If you go the “Standard” route and click “Next”, you should be taken
to a wizard page where you can choose your UI theme:

[image: Android Studio Setup Wizard, UI Theme Page]

Figure 5: Android Studio Setup Wizard, UI Theme Page
Choose whichever you like, then click Next,
to go to a wizard page to verify what will be downloaded and installed:

[image: Android Studio Setup Wizard, Verify Settings Page]

Figure 6: Android Studio Setup Wizard, Verify Settings Page
Clicking Next may take you
to a wizard page explaining some information about the Android emulator:

[image: Android Studio Setup Wizard, Emulator Info Page]

Figure 7: Android Studio Setup Wizard, Emulator Info Page
What is explained on this page may not make much sense to you. That
is perfectly normal, and we will get into what this page is trying to
say later in the book. Just click “Finish” to begin
the setup process. This will include downloading a copy of the Android
SDK and installing it into a directory adjacent to where Android Studio
itself is installed.
When that is done, after clicking “Finish”, Android
Studio will busily start downloading stuff to your development machine.
If you are running Linux, and your installation crashes with an
“Unable to run mksdcard SDK tool” error, go back to Step #2
and set up 32-bit support on your Linux environment.
Clicking “Finish” will then take you
to the Android Studio Welcome dialog:

[image: Android Studio Welcome Dialog]

Figure 8: Android Studio Welcome Dialog
Then, in the welcome dialog, click Configure, to bring up a configuration
drop-down list:

[image: Android Studio Welcome Dialog, Configure Drop-Down List]

Figure 9: Android Studio Welcome Dialog, Configure Drop-Down List
There, tap on SDK Manager to bring up the SDK Manager.
Using SDK Manager and Updating Your Environment
You should now have the SDK Manager open, as part of the overall
default settings for Android Studio:

[image: Android SDK Manager, SDK Platforms Tab]

Figure 10: Android SDK Manager, “SDK Platforms” Tab
The “SDK Platforms” tab lists the versions of Android that you can
compile against. The latest version of Android (or possibly a preview edition)
is usually installed
when you set up Android Studio initially. However, for the tutorials,
please also check “Android 7.1 (Nougat)”
in the list if it is not already checked, and then click the
“Apply” button to download and install those versions. You may
need to accept a license confirmation dialog as part of this
process — review the license, and if you accept it, click Next to
begin the download:

[image: Android SDK Manager, License Confirmation Dialog]

Figure 11: Android SDK Manager, License Confirmation Dialog
When that has completed, you can click “Finish” to close up the download
dialog, and then you will be returned to the SDK Manager.
Then, you can close up the SDK Manager
by clicking the OK button.
In Our Next Episode…
… we will create an Android project that will serve as the basis for all our
future tutorials, plus set up our emulator and device.
Android and Projects
When you work on creating an app for Android, you will do so by working in a
“project”. The project is a directory containing your source code and other
files, like images and UI definitions. Your IDE or other build tools will
take what is in your project and generate an Android app (APK) as output.
The details of how you get started with a project vary based upon what
IDE you are using, so this chapter goes through the various
possibilities.
Projects and Android Studio
With Android Studio, to work on a project, you can either create a new project from scratch,
you can copy an existing Android Studio project to a new one, or you can import an existing
Android project into Android Studio. The following sections will review the steps needed
for each of these.
Creating a New Project
You can create a project from one of two places:

	If you are at the initial dialog that you first encountered when you opened
Android Studio, choose the “Start a new Android Studio project…” menu item

	If you are inside the Android Studio IDE itself, choose File > New > New Project…
from the main menu

This brings up the new-project wizard:

[image: Android Studio Create-Project Wizard, First Page]

Figure 12: Android Studio Create-Project Wizard, First Page
The first page of the wizard is where you can specify:

	The application name, which is the initial name of your project as seen by the user, in places
like your home screen launcher icon and the list of installed applications.

	The package name, which refers to a Java package name (e.g., com.commonsware.empublite). This
package name will be used for generating some Java source code, and it also is used as
a unique identifier of this app, as was mentioned earlier in this book.

	The directory where you want the project files to go

	Whether you know right now if you will be using C++ or not, as part
of the Android Native Development Kit (NDK)

	Whether you know right now if you will be using Kotlin or not

Nothing that you choose here is permanent; you can revise everything later
on if needed. The most painful to change is the package name, so ideally you
choose a good value up front.
By default, the package name will be made up of two pieces:

	The domain name that you specify in the “Company Domain” field

	The application name, converted into all lowercase with no spaces or other
punctuation

If this is not what you want, click the “Edit” button on the far right side
of the proposed package name, which will now allow you to edit the package name
directly:

[image: Android Studio Create-Project Wizard, First Page, with Editable Package Name]

Figure 13: Android Studio Create-Project Wizard, First Page, with Editable Package Name
Clicking “Next” will advance you to a wizard page where you indicate what
sort of project you are creating, in terms of intended device type (phones/tablets,
TVs, etc.) and minimum required SDK level:

[image: Android Studio Create-Project Wizard, Second Page]

Figure 14: Android Studio Create-Project Wizard, Second Page
The “Minimum SDK” refers to how far back in Android’s version history you are willing
to support. The lower the value you specify here, the more Android devices can run your app,
but the more work you will have to do to test whether your app really does support those
devices.
Developers just starting out on Android should only check “Phone and Tablet”
as the device type, leaving the other checkboxes unchecked.
The default “Minimum SDK” value also usually is a good
choice, and it can be changed readily in your project, as we will see
later in the book.
Clicking “Next” advances you to the third page of the wizard, where you can
choose if Android Studio should create an initial activity for you, and if so, based
on what template:

[image: Android Studio Create-Project Wizard, Third Page]

Figure 15: Android Studio Create-Project Wizard, Third Page
None of these templates are especially good, as they add a lot of
example material that you will wind up replacing.
“Empty Activity” is the best
of the available options for first-time Android developers, simply because
it adds the least amount of this “cruft”.
If you choose any option other than “Add No Activity”, clicking “Next” will advance
you to a page in the wizard where you can provide additional details about the
activity to be created:

[image: Android Studio Create-Project Wizard, Fourth Page]

Figure 16: Android Studio Create-Project Wizard, Fourth Page
What options appear here will vary based upon the template you chose in the
previous page. Common options include “Activity Name” (the name of the Java
class for your activity) and “Layout Name” (the base name of an XML file that will
contain a UI definition of your activity).
The “Backwards Compatibility (AppCompat)”
checkbox indicates if you want to use a library known as
AppCompat. We will discuss using libraries
later in the book, as well as what this “AppCompat”
is. Unless you know for certain that you want to use AppCompat — and few
of this book’s example apps do — uncheck this checkbox.
Clicking “Finish” will generate your project files.
Copying a Project
Android Studio projects are simply directories of files, with no special metadata
held elsewhere. Hence, to copy a project, just copy
its directory.
Importing a Project
You can import a project from one of two places:

	If you are at the initial dialog that you first encountered when you opened
Android Studio, choose the “Import Project…” menu item

	If you are inside the Android Studio IDE itself, choose File > New… > Import Project…
from the main menu

Then, choose the directory containing the project to be imported.
What happens now depends upon the nature of the project.
If the project was already set up for use with Android Studio, or at least
with the Android Gradle Plugin, the Android Studio-specific files will be created (or
updated) in the project directory.
However, if the project was not set up for Android Studio (or at least for the Android Gradle Plugin), but does
have Eclipse project files (or at least a project.properties file),
you will be led through an Eclipse import wizard. This will be fairly uncommon
nowadays.
Tutorial #2 - Creating a Stub Project
Creating an Android application first involves creating an Android “project”.
As with many other development environments, the project is where your source
code and other assets (e.g., icons) reside. And, the project contains the
instructions for your tools for how to convert that source code and other
assets into an Android APK file for use with an emulator or device, where
the APK is Android’s executable file format.
Hence, in this tutorial, we kick off development of a sample Android application, to give
you the opportunity to put some of what you are learning in this book
in practice.
About Our Tutorial Project
The application we will be building in these tutorials is called EmPubLite.
EmPubLite will be a digital book reader, allowing users to read
a digital book like the
one that you are reading right now.
EmPubLite will be a partial implementation of
the EmPub reader used for the APK
version of this book. EmPub itself is a fairly extensive application, so
EmPubLite will have only a subset of its features.
The “Em” of EmPub and EmPubLite stands for “embedded”. These readers are
not designed to read an arbitrary EPUB or MOBI formatted book that you might
download from somewhere. Rather, the contents of the book (largely an unpacked
EPUB file) will be “baked into” the reader APK itself, so by distributing
the APK, you are distributing the book.
About the Rest of the Tutorials
Of course, you may have little interest in writing a digital book reader app.
The tutorials presented in this book are certainly optional. There is no
expectation that you have to write any code in order to get value from
the book. These tutorials are here simply as a way to help those of you
who “learn by doing” have an opportunity to do just that.
Hence, there are any number of ways that you can use these tutorials:

	You can ignore them entirely. That is not the best answer, but you
are welcome to do it.

	You can read the tutorials but not actually do any of the work. This
is the best low-effort answer, as it is likely that you will learn things
from the tutorials that you might have missed by simply reading the non-tutorial
chapters.

	You can follow along the steps and actually build the EmPubLite app.

	You can download the answers
from the book’s GitHub repository.
There, you will find one directory per tutorial, showing the results of having
done the steps in that tutorial. For example, you will find a T2-Project/
directory containing a copy of the EmPubLite sample app after having completed
the steps found in this tutorial.
You can import these projects into your IDE,
examine what they contain, cross-reference them back to the tutorials themselves,
and run them.

Any of these are valid options — you will need to choose for yourself what
you wish to do.
About Our Tools
The instructions in the remaining tutorials should be accurate for Android Studio 3.0.x.
The instructions may work for other versions of this IDE, but there may
also be some differences.
Step #1: Importing the Project
We need to create the Android project for EmPubLite.
Normally, you would use the new-project wizard to create a new project. However,
the problem with the new-project wizard is that Google keeps changing what
the new-project wizard generates. In most situations, that is not a huge problem.
However, it becomes a problem for tutorials like this one, as if Google changes
what is in the new project, the tutorial’s instructions become out of date.
So, instead, we will import an existing project, so we can start from a stable base.
Visit the releases page of this book’s GitHub repository.
Then, scroll down to this book’s version and download the EmPubLite-Starter.zip
file for it. UnZIP that project to some place on your development machine. It will
unZIP into an EmPubLite/ directory.
Then, import the project. From the Android Studio welcome dialog, that is handled
by the “Import project (Eclipse ADT, Gradle, etc.)” option. From an existing
open Android Studio IDE window, you would use File > New > Import Project… from
the main menu.
Importing a project brings up a typical directory-picker dialog. Pick the EmPubLite/
directory and click OK to begin the import process. This may take a while,
depending on the speed of your development machine. A “Tip of the Day” dialog
may appear, which you can dismiss.
At this point, you should have an empty Android Studio IDE window, probably with
an error message, such as:

[image: Android Studio, As Initially Launched, Showing Error]

Figure 17: Android Studio, As Initially Launched, Showing Error
or:

[image: Android Studio, As Initially Launched, Showing a Different Error]

Figure 18: Android Studio, As Initially Launched, Showing a Different Error
In the “Messages Gradle Sync” tool pane, towards the bottom of the screen, you
may have a “Failed to find Build Tools revision 27.0.3”. Each Android project
states what version of the development tools it uses, and this one uses a version
slightly older than the current. In that tool pane, the “Install Build Tools 27.0.3 and sync project”
message is a hyperlink — click that to download the missing bits. This is a
common pattern with these error messages, where the message will contain a link
to try to fix the problem.
Or, if you get “Failed to find target with hash string android-25…”, there
should be a “Install missing platform(s) and sync project” link. Click that to try
to fix the problem.
Next, after several moments, you will get a pop-up dialog like this one:

[image: Android Studio, Update Recommendation Dialog]

Figure 19: Android Studio, Update Recommendation Dialog
The trigger for this dialog is similar to the trigger for the preceding error
message: the project that you imported is looking to use some older tools
than what is the latest-and-greatest. For projects that you create yourself from
scratch, you will not get this message, as the new-project wizard always uses
the latest tools… even if that is not always the best idea. For projects like
this one, that you import from elsewhere, this dialog is common. For the purposes
of these tutorials, click the “Don’t remind me again for this project” button.
For other projects that you import, you could opt to click the “Update” button,
which will adjust the project to use the newer tools, though this may cause
compatibility problems that you would have to debug.
The “Project” tool — docked by default on the left side, towards the
top — brings up a way for you to view what is in the project.
Android Studio has several ways of viewing the contents
of Android projects. The default one, that you are presented with when
creating or importing the project, is known as the “Android view”:

[image: Android Studio Android View]

Figure 20: Android Studio “Android View”
While you are welcome to navigate your project using it, the tutorial chapters
in this book, where they have screenshots of Android Studio, will show the
project view:

[image: Android Studio Project View]

Figure 21: Android Studio “Project View”
To switch to this view — and therefore match what the tutorials
will show you — click the “Android” entry above the tree, to display a drop-down
of different views. Choose “Project”, and that will switch you to the
project view used by these tutorials.
Step #2: Get Ready for the x86 Emulator
Your first decision to make is whether or not you want to bother setting up an emulator
image right now. If you have an Android device, you may prefer to start testing
your app on it, and come back to set up the emulator at a later point. In
that case, skip to Step #4.
Otherwise, here is what you may need to do, based on the operating system
on your development machine.
Windows
If your CPU met the requirements, and you successfully enabled the right things
in your system’s BIOS, the Android Studio installation should have
installed HAXM, and you should be ready to go.
If, on the other hand, you got some error messages in the installation
wizard regarding HAXM, you would need to address those first.
Mac
The wizards of Cupertino set up their Mac hardware to be able to run
the Android x86 emulator, which is awfully nice of them, considering that
Android competes with iOS. The Android Studio installation wizard should
have installed HAXM successfully, and you should be able to continue
with the next step of the tutorial.
Linux
The Android x86 emulator on Linux does not use HAXM. Instead, it uses
KVM, a common Linux virtualization engine.
If, during the Android Studio installation process, the wizard showed you
a page that said that you needed to configure KVM, you will need to do just
that before you can set up and use the x86 emulator. The details of how
to set up KVM will vary by Linux distro (e.g.,
Ubuntu).
Step #3: Set Up the AVD
The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The
AVD Manager is where you create these AVDs.
Note that Android Studio now has its own implementation of the AVD Manager that
is separate from the one Android developers have traditionally used. You may
see screenshots of the older AVD Manager in blog posts, Stack Overflow
answers, and the like. The AVD Manager still fills the same role, but it has
a different look and feel.
To open the AVD Manager in Android Studio, choose Tools > AVD Manager
from the main menu.
You should be taken to “welcome”-type screen:

[image: Android Studio AVD Manager, Welcome Screen]

Figure 22: Android Studio AVD Manager, Welcome Screen
Click the “Create Virtual Device” button,
which brings up a “Virtual Device Configuration” wizard:

[image: Android Studio Virtual Device Configuration Wizard, First Page]

Figure 23: Android Studio Virtual Device Configuration Wizard, First Page
The first page of the wizard allows you to choose a device profile
to use as a starting point for your AVD. The “New Hardware Profile”
button allows you to define new profiles, if there is no existing profile
that meets your needs.
Since emulator speeds are tied somewhat to
the resolution of their (virtual) screens, you generally aim for a device
profile that is on the low end but is not completely ridiculous. For
example, an 800x480 or 1280x768 phone would be considered by many people to be fairly
low-resolution. However, there are plenty of devices out there at that
resolution (or lower), and it makes for a reasonable starting emulator.
If you want to create a new device profile based on an existing one — to
change a few parameters but otherwise use what the original profile had –
click the “Clone Device” button once you have selected your starter profile.
However, in general, at the outset, using an existing profile is perfectly
fine. The Galaxy Nexus or Nexus 4 images are likely choices to start with.
Clicking “Next” allows you to choose an emulator image to use:

[image: Android Studio Virtual Device Configuration Wizard, Second Page]

Figure 24: Android Studio Virtual Device Configuration Wizard, Second Page
The emulator images are spread across three tabs:

	“Recommended”

	“x86 Images”

	“Other Images”

For the purposes of the tutorials, you do
not need an emulator image with the “Google APIs” — those
are for emulators that have
Google Play Services in them and related apps like Google Maps.
However,
in terms of API level, you can choose anything from API Level 15 (Android 4.0.3)
on up. You should have one or more suitable images already set up for
you, courtesy of having installed Android Studio.
If you click on the
x86 Images tab, you should see some images with a “Download” link, and others
without it:

[image: Android Studio Virtual Device Configuration Wizard, x86 Images]

Figure 25: Android Studio Virtual Device Configuration Wizard, x86 Images
The emulator images
with “Download” next to them will trigger a one-time download of the files
necessary to create AVDs for that particular API level and CPU architecture
combination, after another license dialog and progress dialog:

[image: Android Studio Component Installer Dialog, Downloading API 23 ARM Image]

Figure 26: Android Studio Component Installer Dialog, Downloading API 23 ARM Image
Once you have identified the image(s) that you want — and have downloaded
any that you did not already have — click on one of
them in the wizard:

[image: Android Studio Virtual Device Configuration Wizard, After Choosing Image]

Figure 27: Android Studio Virtual Device Configuration Wizard, After Choosing Image
Clicking “Next” allows you to finalize the configuration of your AVD:

[image: Android Studio Virtual Device Configuration Wizard, Third Page]

Figure 28: Android Studio Virtual Device Configuration Wizard, Third Page
A default name for the AVD is suggested, though you are welcome to replace
this with your own value.
Change the AVD name, if necessary, to something valid: only letters, numbers,
spaces, and select punctuation (e.g., ., _, -, (,)) are supported.
The rest of the default values should be fine for now.
Clicking “Finish” will return you to the main AVD Manager, showing your
new AVD. You can then close the AVD Manager window.
Step #4: Set Up the Device
You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application
(e.g., upload it to the Play Store). And, perhaps you already have a device
– maybe that is what is spurring your interest in developing for Android.
If you do not have an Android device that you wish to set up for development,
skip this step.
The first step to make your device ready for use with development is to go into
the Settings application on the device. What happens now depends a bit on your
Android version:

	On Android 1.x/2.x, go into Applications, then into Development

	On Android 3.0 through 4.1, go into “Developer options” from the main
Settings screen

	On Android 4.2 and higher, go into About, tap on the build number seven
times, then press BACK, and go into “Developer options” (which was formerly
hidden)

[image: Developer Options, in Settings App]

Figure 29: Developer Options, in Settings App
You may need to slide a switch in the upper-right corner of the screen to the
“ON” position to modify the values on this screen.
Generally, you will want to scroll down and
enable USB debugging, so you can use your device
with the Android build tools:

[image: Debugging Options, in Settings App]

Figure 30: Debugging Options, in Settings App
You can leave the other settings alone for now if
you wish, though you may find the “Stay awake” option to be handy, as it saves
you from having to unlock your phone all of the time while it is plugged into
USB.
Note that on Android 4.2.2 and higher devices, before you can actually
use the setting you just toggled, you will be prompted to allow
USB debugging with your specific development machine via a dialog box:

[image: Allow USB Debugging Dialog]

Figure 31: Allow USB Debugging Dialog
This occurs when you plug in the device via the USB cable and have the driver
appropriately set up. That process varies by the operating system of your
development machine, as is covered in the following sections.
Windows
When you first plug in your Android device, Windows will attempt to find a
driver for it. It is possible that, by virtue of other software you have
installed, that the driver is ready for use. If it finds a driver, you are
probably ready to go.
If the driver is not found, here are some options for getting one.
Windows Update
Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have
supplied its driver to Microsoft.
Standard Android Driver
In your Android SDK installation, if you chose to install the “Google USB Driver”
package from the SDK Manager, you will find an extras/google/usb_driver/
directory, containing a generic Windows driver for Android devices. You can try
pointing the driver wizard at this directory to see if it thinks this driver is
suitable for your device. This will often work for Nexus devices.
Manufacturer-Supplied Driver
If you still do not have a driver, the
OEM USB Drivers
in the developer documentation may help you find one for download from your
device manufacturer. Note that you may need the model number for your device,
instead of the model name used for marketing purposes (e.g., GT-P3113 instead
of “Samsung Galaxy Tab 2 7.0”).
macOS and Linux
Odds are decent that simply plugging in your device will “just work”. You can
see if Android recognizes your device via running adb devices in a shell
(e.g., macOS Terminal), where adb is in your platform-tools/ directory of
your SDK. If you get output similar to the following, the build tools detected your
device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this command
did not work, you may need to add some udev rules. For example, here is a
51-android.rules file that will handle the devices from a handful of
manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01", MODE="0666", OWNER="<me>"
SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either reboot
the computer or otherwise reload the udev rules (e.g., sudo service udev reload).
Then, unplug and re-plug in the device and see if it is detected.
Step #5: Running the Project
Now, we can confirm that our project is set up properly by running it
on a device or emulator.
To do that in Android Studio, just press the Run toolbar button (usually depicted as a green rightward-pointing
triangle).
You will then be presented with a dialog indicating where you want the
app to run: on some existing device or emulator, or on some newly-launched
emulator:

[image: Android Studio Device Chooser Dialog]

Figure 32: Android Studio Device Chooser Dialog
If you do not have an emulator running, choose one from the list,
then click OK. Android Studio will launch
your emulator for you.
And, whether you start a new emulator instance or reuse an existing one,
your app should appear on it:

[image: Android 7.0 Emulator with EmPubLite]

Figure 33: Android 7.0 Emulator with EmPubLite
Note that you may have to unlock your device or emulator to actually see the
app running.
The first time you launch the emulator for a particular AVD, you may see this
message:

[image: Android Emulator Cold-Boot Warning]

Figure 34: Android Emulator Cold-Boot Warning
The emulator now behaves a bit more like an Android device. Closing the
emulator window used to be like completely powering off a phone, but now
it is more like tapping the POWER button to turn off the screen. The next
time you start that particular AVD, it will wake up to the state in which
you left it, rather than booting from scratch (“cold boot”). This speeds up
starting the emulator. Occasionally, though, you will have the need to start
the emulator as if the device were powering on. To do that, in the AVD Manager,
in the drop-down menu in the Actions column, choose “Cold Boot Now”.
In Our Next Episode…
… we will modify the AndroidManifest.xml file of our tutorial project.
Getting Around Android Studio
This chapter will serve as a quick tour of the Android Studio IDE,
to help you get settled in. Other Android-specific capabilities of
Android Studio will be explored in the chapters that follow.
Navigating The Project Explorer
After the main editing area — where you will modify your Java source
code, your resources, and so forth — the piece of Android Studio you
will spend the most time with is the project explorer, usually available
on the left side of the IDE window:

[image: Android Studio Project Explorer, Showing Android Project View]

Figure 35: Android Studio Project Explorer, Showing Android Project View
This explorer pane has two main “project views” that an Android developer will
use: the Android project view and the classic project view.
Android Project View
By default, when you create or import a project, you will wind up in the Android
project view.
In theory, the Android project view is designed to simplify working with
Android project files. In practice, it may do so, but only for some advanced
developers. On the whole, it makes the IDE significantly more complicated for
newcomers to Android, as it is rather difficult to see where things are and
what relates to what.
We will return to the Android project view
a bit later in the book and explain its benefits
relative to resources and
Gradle’s source sets.
However, for most of the book — most importantly, for the tutorials –
we will use the classic project view.
Classic Project View
To switch to the classic project view, click the pair of arrowheads
to the right of the “Project Files” tab just above
the tree in the explorer, and choose Project:

[image: Android Studio Project Explorer, Showing Project View Drop-Down]

Figure 36: Android Studio Project Explorer, Showing Project View Drop-Down
On some machines, in some cases, the pair of arrowheads is instead a single
drop-down arrowhead next to the currently-chosen view (e.g., Android).
Switching to the project view will change the contents of the tree to show you all of the files,
in their associated directories:

[image: Android Studio Project Explorer, Showing Classic Project View]

Figure 37: Android Studio Project Explorer, Showing Classic Project View
This project view is much like its equivalent in other IDEs, allowing you
to find all of the pieces of your Android project. We will be exploring
what those pieces are, and how their files are organized in our projects,
in the next chapter.
Context Menus in the Explorer
Right-clicking over a directory or file in the explorer will give you
a context menu with a variety of options. Some of these will be typical
of any sort of file manager, such as “cut”, “copy”, and/or “paste” options.
Some of these will be organized according to how Android Studio manages
application development, such as the “Refactor” sub-menu, where you can
rename or move files around. Yet others will be specific to Android Studio,
such as the ability to invoke wizards to create certain types of Android
components or other Java classes.
Opening Files from the Explorer
Double-clicking on a file usually opens that file in a tab that allows
you to edit that file, using some sort of editor.
Some file types, like images, can be opened but not edited, as Android
Studio does not have editors for all file types.
Running Projects
Of course, as you change your app, you will want to try it out and see
if it works, whether on a device or an emulator.
The Basics
As noted in Tutorial #2, to run your project, just press
the Run toolbar button:

[image: Android Studio Run Controls, Showing Green Arrow to Run the App]

Figure 38: Android Studio Run Controls, Showing Green Arrow to Run the App
You will then be presented with a dialog indicating where you want the
app to run:

[image: Android Studio Device Chooser Dialog]

Figure 39: Android Studio Device Chooser Dialog
The “Connected Devices” category lists any devices or running emulators
that the build tools can find. Some may be disabled due to compatibility
issues, such as having an emulator for an old version of Android where
your app requires a newer version of Android.
The “Available Emulators” category lists all AVDs that you have
defined in the AVD Manager that are not already running. Again, you may
find that some are disabled for compatibility reasons.
The “Create New Emulator” button brings up the wizard to create a new
AVD, just like the one you can launch from the AVD Manager.
“Instant Run”
Next to the green “run” arrow button in the toolbar is a lightning bolt button.
Sometimes, this will be grayed out and unusable. Other times, it will appear
in yellow:

[image: Android Studio Run Controls, With Instant Run Enabled]

Figure 40: Android Studio Run Controls, With Instant Run Enabled
This button performs what is called “Instant Run”. Instead of building your
app and pushing the app to the device or emulator, Instant Run attempts to
patch your existing app based on whatever changes you made to the project
since you last ran it.
On the plus side, Instant Run is very fast. However, the patched app is not
exactly the same as would be your app built from scratch. Feel free to use this
for smaller changes if you wish.
Viewing Output
Beyond your app itself, Android Studio will generate other sorts of diagnostic
output, in the form of “console”-style transcripts of things that have occurred.
The two of these that probably will matter most for you are the Build view and
Logcat.
Build View
By default, docked on the bottom edge of your Android Studio window
is a “Build” item. Tapping on that will open up a pane showing the
output of attempts to build your application.
The default view is a tree of steps that Android Studio and Gradle took to build
your app:

[image: Android Studio Build View, Tree Format]

Figure 41: Android Studio Build View, Tree Format
The second item down in the tool strip on the side will toggle you between
the tree and the raw text output from the Gradle build:

[image: Android Studio Build View, Console Format]

Figure 42: Android Studio Build View, Console Format
If you are running into build problems, the console format usually is more
informative.
Logcat
Messages that appear at runtime — including the all-important Java stack
traces triggered by bugs in your code — are visible in Logcat. The
Logcat tool docked towards the lower-left corner of your Android Studio
window will display Logcat when tapped:

[image: Android Studio Logcat Tool]

Figure 43: Android Studio Logcat Tool
Logcat is explained in greater detail a bit later in this book.
Accessing Android Tools
Not everything related to Android is directly part of Android Studio itself.
In some cases, tools need to be shared between users of Android Studio, users
of Eclipse, and users of “none of the above”. In some cases, while the long
term direction may be to incorporate the tools’ functionality directly into
Android Studio, that work simply has not been completed to date.
Here are some noteworthy Android-related tools that you can access via
the Tools main menu option.
SDK and AVD Managers
As we saw in Tutorial #1, the SDK Manager is Android’s tool
for downloading pieces of the Android SDK, including:

	“SDK Platform” editions, allowing us to compile against a particular
API level

	ARM and (sometimes) x86 emulator images

	Documentation

	Updates to the core build tools

	Etc.

You can launch the SDK Manager via Tools > SDK Manager from the
Android Studio main menu, or by clicking on the “droid in a box” toolbar
button:

[image: Android Studio SDK Manager Toolbar Icon]

Figure 44: Android Studio SDK Manager Toolbar Icon
The AVD Manager is the tool for creating emulators that emulate
certain Android environments, based upon API level, screen size, and other
characteristics.
You can launch the AVD Manager via Tools > AVD Manager from the
Android Studio main menu, or by clicking the “droid and a screen” toolbar
button:

[image: Android Studio AVD Manager Toolbar Icon]

Figure 45: Android Studio AVD Manager Toolbar Icon
Android Studio and Release Channels
When you install Android Studio for the first time, your installation will
be set up to get updates on the “stable” release channel. Here, a “release
channel” is a specific set of possible upgrades. The “stable” release
channel means that you are getting full production-ready updates. Android Studio
will check for updates when launched, and you can manually check for updates
via the main menu (e.g., Help > Check for Update… on Windows and Linux).
If an update is available, you will be presented with a dialog box showing
you details of the update:

[image: Android Studio Update Dialog]

Figure 46: Android Studio Update Dialog
Choosing “Release Notes” will bring up a Web page with release notes
for the new release. Clicking “Update and Restart” does pretty much what
the button name suggests: it downloads the update and restarts the IDE,
applying the update along the way.
Clicking the “Updates” hyperlink in the dialog brings up yet another
dialog, allowing you to choose which release channel you want to subscribe
to:

[image: Android Studio Update Release Channel Dialog]

Figure 47: Android Studio Update Release Channel Dialog
You have four channels to choose from:

	Stable, which is appropriate for most developers

	Beta, which will get updates that are slightly ahead of stable

	Dev, which is even more ahead than is the beta channel

	Canary, which is updated very early (and the name, suggestive of
a “canary in a coal mine”, indicates that you are here to help debug
the IDE)

Visit the Trails!
Android Studio’s Project Structure dialog and Translations Editor
are covered later in this book.
Contents of Android Projects
The Android build system
is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android — the Android build tools
do a few extra things to prepare the actual application that will run on the
device or emulator.
Here is a quick primer on the project structure, to help you
make sense of it all, particularly for the sample code referenced in this book.
What You Get, In General
The details of exactly what files are in your project depend on a variety
of things:

	What IDE and version the project was used to create the project

	What project template was used to create the project

	What other changes have been made to the project after it was created

However, usually, there are many elements in common.
The Modules
A default Android Studio project will have an app/ directory off of the
project root directory (i.e., the directory in which you told Android Studio
to create the project). That app/ directory represents what Android Studio
refers to as a module. Most projects just have this one app/ module, though
you can have more than one module if needed.
The Source Sets
Inside of app/ you will find a src/main/ directory. This represents the
main source set, and it contains all of the “source” that your project is
contributing to build the application. Here, “source” means more than just
programming language source code (e.g., Java). It also includes other types
of files, such as resources and the manifest, that contribute to the app.
The Manifest
Inside of app/src/main/, you will find a file named AndroidManifest.xml.
AndroidManifest.xml is an XML file describing the application being
built and what components — activities, services, etc. — are being
supplied by that application. You can think of it as being the “table of
contents” of what your application is about, much as a book has a “table
of contents” listing the various parts, chapters, and appendices that appear
in the book.
We will examine the manifest a bit more closely starting in
the next chapter.
The Java
When you created the project, if you had Android Studio create an activity
for you, you
supplied the class name of the “main” activity for the
application (e.g., MainActivity). That will be combined with the package name
that you provided for the project to determine the fully-qualified class
name for this activity (e.g., com.commonsware.android.MainActivity).
You will find that
your project’s Java source tree already has the package’s directory tree in place,
plus a class representing your requested activity (e.g.,
com/commonsware/android/MainActivity.java). This will be inside the
main source set, so the full path from the project root would be something
like app/src/main/java/com/commonsware/android/MainActivity.java.
You are welcome to modify this
file and add Java classes as needed to implement your application,
and we will demonstrate that countless times as we progress through this book.
Elsewhere — in directories that you normally do not work with — the Android
build tools will also be code-generating some source code for you each time you
build your app. One of the code-generated Java classes (R.java) will be
important for controlling our user interfaces from our own Java code, and we will
see many references to this R class as we start building applications in earnest.
The Resources
You will also find that your project has a res/ directory tree inside of
the main source set. This holds
“resources” — static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some of
the subdirectories you will find or create under res/ include:

	
res/drawable/ and res/mipmap-*/ (for a few values of *)
for images (PNG, JPEG, etc.)

	
res/layout/ for XML-based UI layout specifications

	
res/menu/ for XML-based menu specifications

	
res/raw/ for general-purpose files (e.g., an audio clip, a CSV file of
account information)

	
res/values/ for strings, dimensions, and the like

	
res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/mipmap-hdpi/. This
indicates that the directory of resources should only be used in certain
circumstances — in this case, the mipmap resources are designed for
devices with high-density screens.
We will cover all of these, and more, later in this book.
The Build Instructions
The IDE needs to know how to take all of this stuff and come up with an Android
APK file. Some of this is already “known” to the IDE based upon how the IDE
was written. But some details are things that you may need to configure from
time to time, and so those details are stored in files that you will edit, by
one means or another, from your IDE.
In Android Studio, most of this knowledge is kept in files
named build.gradle. These are for a build engine known as Gradle,
that Android Studio uses to build APKs and other Android outputs.
More About the Directory Structure
All of those items are stored in a particular directory structure
in an Android Studio project… at least by default. Android
Studio and Gradle are powerful and can be configured to handle
other structures, though most projects stick with the standard setup.
The Root Directory
In the root directory of your project, the most important item is the
app/ directory representing your application module. We will look at that more
in the next section.
Beyond the app/ directory, the other noteworthy files in the root of your
project include:

	
build.gradle, which is part of the build instructions for your project,
as is described above

	Various other Gradle-related files (settings.gradle, gradle.properties,
gradlew, gradlew.bat, and so forth)

	
local.properties, which indicates where your Android SDK tools reside

	An .iml file, where Android Studio holds some additional metadata
about your project

	A .gitignore file, representing standard rules for what should and should
not go into version control, particularly with respect to the Git version
control system

Eventually, you will have:

	A build/ directory, containing the compiled output of your app,
plus various reports and other files related to the build process and
app testing

	A .gradle/ directory, containing Gradle executable code

	An .idea/ directory — this, along with the .iml file, represents
data needed by IntelliJ IDEA, on which Android Studio is based

The App Directory
The app/ directory, and its contents, are where you will spend most of
your time as a developer. Only infrequently do you need to manipulate the files in
the project root.
The most important thing in the app/ directory is the src/ directory,
which is the root of your project’s source sets. We will explore those more
in the next section.
Beyond the src/ directory, there are a few other items of note in
app/:

	A build/ directory, which will hold the outputs of building your
app, including your APK file

	A build.gradle file, where most of your project-specific Gradle
configuration will go, to teach Android Studio how to build your app

	An app.iml file, containing more Android Studio metadata

	Another .gitignore file, for overrides to the Git version control rules
from the .gitignore file in the project root

	
proguard-rules.pro, which are rules for a tool called ProGuard, which helps
reduce the size of your app

The Source Sets
Source sets are where the “source” of your project is organized. As noted earlier,
“source” not only refers to programming language source code (e.g., Java), but
other types of inputs to the build, such as your resources.
The source set that you will spend most of your time in is main/. You
may also have stub source sets named androidTest and test, for use in testing
your app, as will be covered later in the book.
Inside of a source set, common items include:

	Java code, in a java/ directory

	Resources, in a res/ directory

	Assets, in an assets/ directory, representing other static files you wish packaged with the
application for deployment onto the device

	Your AndroidManifest.xml file

[image: Android Studio Project Explorer, Showing EmPubLite]

Figure 48: Android Studio Project Explorer, Showing EmPubLite
Some projects will have additional items, usually tied to specific add-on tools
that the project happens to employ.
What You Get Out Of It
As part of running your app on a device or emulator, the IDE will generate
an APK file. You will find this
in the build/outputs/apk directory of your module’s directory,
(e.g., app/build/outputs/apk for a traditional Android Studio project).
The APK file is a ZIP archive containing your compiled Java classes along with
packaged versions of the rest of your source (e.g., resources, manifest). The
APK is what gets distributed to your users, whether through an app distribution
service like Google’s Play Store or through other means.
Introducing Gradle and the Manifest
In the discussion of Android Studio, this book has mentioned something
called “Gradle”, without a lot of explanation.
In this chapter, the mysteries of Gradle will be revealed to you.
(well, OK, some of the mysteries…)
We also mentioned in passing in the previous chapter the concept
of the “manifest” — AndroidManifest.xml — as being a special file in our
Android projects.
On the one hand, Gradle and the manifest are not strictly related.
On the other hand, some (but far from all) of the things that we can
set up in the manifest can be overridden in Gradle.
So, in this chapter, we will review both what Gradle is, what the
manifest is, what each of their roles are, and the basics of how they
tie together.
Gradle: The Big Questions
First, let us “set the stage” by examining what this is all about, through
a series of fictionally-asked questions (FAQs).
What is Gradle?
Gradle is software for building software, otherwise
known as “build automation software” or “build systems”. You may have used
other build systems before in other environments, such as make (C/C++),
rake (Ruby), Ant (Java), Maven (Java), etc.
These tools know — via intrinsic
capabilities and rules that you teach them — how to determine what needs to be
created (e.g., based on file changes) and how to create them. A build system
does not compile, link, package, etc. applications directly, but instead directs
separate compilers, linkers, and packagers to do that work.
Gradle uses a domain-specific language (DSL) built on top of Groovy
to accomplish these tasks.
What is Groovy?
There are many programming languages that are designed to run on top of the
Java VM. Some of these, like JRuby and Jython, are implementations of other
common programming languages (Ruby and Python, respectively). Other languages
are unique, and Groovy is one of those.
Groovy scripts look a bit like a mashup of Java and Ruby. As with Java,
Groovy supports:

	Defining classes with the class keyword

	Creating subclasses using extends

	Importing classes from external JARs using import

	Defining method bodies using braces ({ and })

	Objects are created via the new operator

As with Ruby, though:

	Statements can be part of a class, or simply written in an imperative style,
like a scripting language

	Parameters and local variables are not typed

	Values can be automatically patched into strings, though using slightly
different syntax ("Hello, $name" for Groovy instead of "Hello, #{name}" for
Ruby)

Groovy is an interpreted language, like Ruby and unlike Java. Groovy scripts
are run by executing a groovy command, passing it the script to run.
The Groovy runtime, though, is a Java JAR and requires a JVM in order to
operate.
One of Groovy’s strengths is in creating a
domain-specific language
(or DSL). Gradle, for example, is a Groovy DSL for doing software builds.
Gradle-specific capabilities appear to be first-class language constructs,
generally indistinguishable from capabilities intrinsic to Groovy. Yet,
the Groovy DSL is largely declarative, like an XML file.
To some extent, we get the best of both worlds: XML-style definitions
(generally with less punctuation), yet with the ability to “reach into Groovy”
and do custom scripting as needed.
What Does Android Have To Do with Gradle?
Google has published the Android Gradle Plugin, which gives Gradle the
ability to build Android projects. Google is also using Gradle and the Android Gradle Plugin
as the build system behind Android Studio.
Obtaining Gradle
As with any build system, to use it, you need the build system’s engine
itself.
If you will only be using Gradle in the context of Android Studio, the IDE
will take care of getting Gradle for you. If, however, you are planning on
using Gradle outside of Android Studio (e.g., command-line builds), you will
want to consider where your Gradle is coming from. This is particularly
important for situations where you want to build the app with no IDE in sight,
such as using a continuous integration (CI) server, like Jenkins.
Also, the way that Android Studio works with Gradle — called the Gradle Wrapper –
opens up security issues
for your development machine, if you are the sort to download open source projects
from places like GitHub and try using them.
Direct Installation
What most developers looking to use Gradle outside of Android Studio
will wind up doing is installing Gradle directly.
The Gradle download page contains
links to ZIP archives for Gradle itself: binaries, source code, or both.
You can unZIP this archive to your desired location on your development
machine.
Linux Packages
You may be able to obtain Gradle via a package manager on Linux
environments. For example, there is
an Ubuntu PPA for Gradle.
The gradlew Wrapper
If you are starting from a project that somebody else has published,
you may find a gradlew and gradlew.bat file in the project
root, along with a gradle/ directory.
This represents the “Gradle Wrapper”.
The Gradle Wrapper consists of three pieces:

	the batch file (gradlew.bat) or shell script (gradlew)

	the JAR file used by the batch file and shell script (in the
gradle/wrapper/ directory)

	the gradle-wrapper.properties file (also in the
gradle/wrapper/ directory)

Android Studio uses the gradle-wrapper.properties file to determine
where to download Gradle from, for use in your project, from the
distributionUrl property in that file:

#Thu May 10 08:57:09 EDT 2018
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-4.4-all.zip

(from Basic/Button/gradle/wrapper/gradle-wrapper.properties)
When you create or import a project, or if you change the version of
Gradle referenced in the properties file, Android Studio will download
the Gradle pointed to by the distributionUrl property and install
it to a .gradle/ directory (note the leading .) in your project.
That version of Gradle will be what Android Studio uses.
RULE #1: Only use a distributionUrl that you trust.
If you are importing an Android project from a third party — such as
the samples for this book — and they contain the
gradle/wrapper/gradle-wrapper.properties file, examine it to see
where the distributionUrl is pointing to. If it is loading from
services.gradle.org, or from an internal enterprise server, it is
probably trustworthy. If it is pointing to a URL located somewhere
else, consider whether you really want to use that version of Gradle,
considering that it may have been tampered with.
The batch file, shell script, and JAR file are there to support
command-line builds. If you run the gradlew command, it will use a local
copy of Gradle installed in .gradle/ in the project. If there is no
such copy of Gradle, gradlew will download Gradle from the
distributionUrl, as does Android Studio. Note that Android Studio
does not use gradlew for this role — that logic is built into
Android Studio itself.
RULE #2: Only use a gradlew that you REALLY trust.
It is relatively easy to examine a .properties file to check a
URL to see if it seems valid. Making sense of a batch file or
shell script can be cumbersome. Decompiling a JAR file and making
sense of it can be rather difficult. Yet, if you use gradlew
that you obtained from somebody, that script and JAR are running
on your development machine, as is the copy of Gradle that they
install. If that code was tampered with, the malware has complete
access to your development machine and anything that it can reach,
such as servers within your organization.
Note that you do not have to use the Gradle Wrapper at all. If
you would rather not worry about it, install a version of Gradle
on your development machine yourself and remove the Gradle Wrapper
files. You can use the gradle command to build your app
(if your Gradle’s bin/ directory is in your PATH), and Android
Studio will use your Gradle installation (if you teach it where
to find it, such as via the GRADLE_HOME environment variable).
Versions of Gradle and the Android Gradle Plugin
The Android Gradle Plugin that we will use to give Gradle
“super Android powers!” is updated periodically. Each update has its
corresponding required version of Gradle. Google maintains a page
listing the Gradle versions supported by each Android Gradle Plugin version
If you are using the Gradle Wrapper, you are using an installation
of Gradle that is local to the project. So long as the version of
Gradle in the project matches the version of the Android Gradle Plugin requested
in the project’s build.gradle file — as will be covered later in this chapter — you
should be in fine shape.
If you are not using the Gradle Wrapper, you will need to decide
when to take on a new Android Gradle Plugin release and plan to update your
Gradle installation and build.gradle files in tandem at that point.
Gradle Environment Variables
If you installed Gradle yourself,
you will want to define a GRADLE_HOME environment variable, pointing to
where you installed Gradle, and to add the bin/ directory inside of
Gradle to your PATH environment variable.
You may also consider setting up a GRADLE_USER_HOME environment variable,
pointing to a directory in which Gradle can create a .gradle/ subdirectory,
for per-user caches and related materials. By default, Gradle will use your
standard home directory.
Examining the Gradle Files
An Android Studio project usually has two build.gradle files, one at the
project level and one at the “module” level (e.g., in the app/ directory).
The Project-Level File
The build.gradle file in the project directory controls the Gradle
configuration for all modules in your project. Right now, most likely you
only have one module, and many apps only ever use one module. However,
it is possible for you to add other modules to this project, and we will
explore reasons for doing so later in this book.
Here is a typical top-level build.gradle file:

// Top-level build file where you can add configuration options common to all sub-projects/modules.

buildscript {

 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:3.0.0'

 // NOTE: Do not place your application dependencies here; they belong
 // in the individual module build.gradle files
 }
}

allprojects {
 repositories {
 google()
 jcenter()
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

buildscript
In Groovy terms, a “closure” is a block of code wrapped in braces ({ }).
The buildscript closure
in Gradle is where you configure the JARs and such
that Gradle itself will use for interpreting the rest of the file. Hence,
here you are not configuring your project so much as you are configuring
the build itself.
The repositories closure inside the buildscript closure
indicates where plugins can come from. Here, jcenter() is a built-in
method that teaches Gradle about JCenter, a
popular location for obtaining open source libraries. Similarly, google()
is a built-in method that teaches Gradle about a site where it can download
plugins from Google.
The dependencies closure indicates what is required to be able to run the
rest of the build script. classpath 'com.android.tools.build:gradle:3.0.0' is
not especially well-documented by the Gradle team. However the
'com.android.tools.build:gradle:3.0.0' portion means:

	Find the com.android.tools.build group of plugins

	Find the gradle artifact within that group

	Ensure that we have version 3.0.0 of the plugin

The first time you run your build, with the buildscript closure as shown above,
Gradle will notice that you do not have this dependency. It will then
download that artifact from Google, as Google serves up its plugin from its own
site nowadays.
Sometimes, the last segment of the version is replaced with a + sign
(e.g., 3.0.+). This tells Gradle to download the latest version, thereby
automatically upgrading you to the latest patch-level (e.g., 3.0.1 at
some point).
allprojects
The allprojects closure says “apply these settings to all modules
in this project”. Here, we are setting up jcenter() and google() as places to
find libraries used in any of the modules in our project. We will use lots of
libraries in our projects — having these “repositories” set up in allprojects
makes it simpler for us to request them.
The Module-Level Gradle File
In your app/ module, you will also find a build.gradle file. This
has settings unique for this module, independent of any other module
that your project may have in the future.
Here is a typical module-level build.gradle file:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 26
 defaultConfig {
 applicationId "com.commonsware.myapplication"
 minSdkVersion 21
 targetSdkVersion 26
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }
}

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support.constraint:constraint-layout:1.0.2'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1'
}

For now, let’s focus on some key elements of this file.
dependencies
This build.gradle file also has a dependencies closure. Whereas
the dependencies closure in the buildscript closure in the top-level
build.gradle file is for libraries used by the build process, the
dependencies closure in the module’s build.gradle file is for
libraries used by your code in that module.
We will get into the concept of these libraries later in the book.
android
The android closure contains all of the Android-specific configuration
information. This closure is what the Android plugin enables, where
the plugin itself comes from the apply plugin: 'com.android.application'
line at the top, coupled with the classpath line from the project-level
build.gradle file.
But before we get into what is in this closure, we should “switch gears”
and talk about the manifest file, as what goes in the android closure
is related to what goes in the manifest file.
Introducing the Manifest
The foundation for any Android application is the manifest file:
AndroidManifest.xml. This will be in
your app module’s src/main/ directory (the main source set) for typical
Android Studio projects.
Here is where you declare
what is inside your application — the activities, the services, and so on.
You also indicate how these pieces attach themselves to the overall Android
system; for example, you indicate which activity (or activities) should appear
on the device’s main menu (a.k.a., launcher).
When you create your application, you will get a starter manifest generated for
you. For a simple application, offering a single activity and nothing else, the
auto-generated manifest will probably work out fine, or perhaps require a few
minor modifications. On the other end of the spectrum, the manifest file for
the Android API demo suite is over 1,000 lines long. Your production Android
applications will probably fall somewhere in the middle.
As mentioned previously, some items can be defined in both the manifest and in a build.gradle
file. The approach of putting that stuff in the manifest
still works. For Android Studio users, you will probably use the Gradle
file and not have those common elements be defined in the manifest.
Things In Common Between the Manifest and Gradle
There are a few key items that can be defined in the manifest and
can be overridden in build.gradle statements. These items are fairly
important to the development and operation of our Android apps as well.
Package Name and Application ID
The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.empublite">

Note the android namespace declaration. You will only use the namespace on
many of the attributes, not the elements (e.g., <manifest>, not <android:manifest]).
The biggest piece of information you need to supply on the <manifest> element
is the package attribute.
The package attribute will always need to be in the manifest, even
for Android Studio projects. The package attribute will control where
some source code is generated for us, notably some R and BuildConfig
classes that we will encounter later in the book.
Since the package value is used for Java code generation, it has to be
a valid Java package name. Java convention says that the package name
should be based on a reverse domain name (e.g., com.commonsware.myapplication),
where you own the domain in question. That way, it is unlikely that anyone
else will accidentally collide with the same name.
The package also serves as our app’s default “application ID”. This
needs to be a unique identifier, such that:

	no two apps can be installed on the same device at the same time
with the same application ID

	no two apps can be uploaded to the Play Store with the same application ID
(and other distribution channels may have the same limitation)

By default, the application ID is the package value, but Android Studio
users can override it in their Gradle build files. Specifically, inside
of the android closure can be a defaultConfig closure, and inside
of there can be an applicationId statement:

android {
 // other stuff

 defaultConfig {
 applicationId "com.commonsware.myapplication"
 // more other stuff
 }
}

Not only can Android Studio users override the application ID in the
defaultConfig closure, but there are ways of having different application
ID values for different scenarios, such as a debug build versus a release build.
We will explore that more later in the book.
minSdkVersion and targetSdkVersion
Your defaultConfig closure inside the android closure in your module’s
build.gradle file has a pair of properties named minSdkVersion and
targetSdkVersion. Technically, these override values that could be defined
via a <uses-sdk> element in the manifest, though few projects will have such
an element nowadays.
Of the two, the more critical one is minSdkVersion.
This indicates what is the oldest version of Android
you are testing with your application. The value of the attribute is an integer
representing the Android API level. So, if you are only testing
your application on Android 4.1 and newer versions of Android, you would set
your minSdkVersion to be 16. The initial value is what you requested when
you had Android Studio create the project.
You can also specify a targetSdkVersion. This
indicates what version of Android you are thinking of as you are writing your
code. If your application is run on a newer version of Android, Android may do
some things to try to improve compatibility of your code with respect to
changes made in the newer Android. Nowadays, most Android developers should
specify a target SDK version of 15 or higher. We will start to explore
more about the targetSdkVersion as we get deeper into the book;
for the moment, whatever your IDE gives you as a default value is probably
a fine starting point.
Version Code and Version Name
Similarly, the defaultConfig closure has versionCode and versionName
properties. In principle, these override android:versionName and android:versionCode
attributes on the root <manifest> element in the manifest, though you will
not find many projects using those XML attributes.
These two values represent the versions of your application. The
versionName value is what the user will see for a version indicator
in the Applications details screen for your app
in their Settings application.
Also, the version name is used by the Play Store
listing, if you are distributing your application that way. The version
name can be any string value you want.
The versionCode, on the other
hand, must be an integer, and newer versions must have higher version codes
than do older versions. Android and the Play Store will compare the version
code of a new APK to the version code of an installed application to determine
if the new APK is indeed an update. The typical approach is to start the
version code at 1 and increment it with each production release of your
application, though you can choose another convention if you wish. During
development, you can leave these alone, but when you move to production,
these attributes will matter greatly.
Other Gradle Items of Note
The android closure has a compileSdkVersion property.
compileSdkVersion specifies the API level to be compiled against,
usually as a simple API level integer
(e.g., 19). This indicates what Java classes, methods, and so on are available
to you when you write your app. Typically, you set this to be the latest
production release of Android, using the values noted
earlier in the book.
The android closure may have a buildToolsVersion property.
buildToolsVersion indicates the version of the Android SDK build tools
that you wish to use with this project. The Android Gradle Plugin really
is a thin wrapper around a series of “build tools” that handle most of the work
of creating an APK out of your project. If your android closure does not
have buildToolsVersion, the Android Gradle Plugin will use its own
default version of these build tools, and for many projects this will suffice.
In this book, most projects will state their buildToolsVersion, though some
will skip that line and use the plugin-provided default.
Where’s the GUI?
You might wonder why we have to slog through all of this Groovy
code and wonder if there is some GUI for affecting Gradle settings.
The answer is yes… and no.
There is the project structure dialog,
that allows you to maintain some of this stuff. And you are welcome
to try it. However, the more complex your build becomes, the more
likely it is that the GUI will not suffice, and you will need to work
with the Gradle build files more directly. Hence, this book will tend
to focus on the build files.
The Rest of the Manifest
Not everything in the manifest can be overridden in the Gradle build
files. Here are a few key items that will always be defined in the manifest,
not in a build.gradle file.
An Application For Your Application
In your initial project’s manifest, the primary child of the <manifest> element
is an <application> element.
By default, when you create a new Android project, you get a single
<activity> element inside the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.myapplication"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name="MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

The <activity> element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (sometimes) an
<intent-filter> child element describing under what conditions this activity
will be displayed. The stock <activity> element sets up your activity to
appear in the launcher, so users can choose to run it. As we’ll see later in
this book, you can have several activities in one project, if you so choose.
The android:name attribute, in this case, has a bare Java class name
(MainActivity). Sometimes, you will see android:name with a fully-qualified
class name (e.g., com.commonsware.myapplication.MainActivity). Sometimes,
you will see a Java class name with a single dot as a prefix (e.g., .MainActivity).
Both MainActivity and .MainActivity refer to a Java class that will be in your
project’s package — the one you declared in the package attribute
of the <manifest> element.
Supporting Multiple Screens
Android devices come with a wide range of screen sizes, from 2.8” tiny
smartphones to 46” TVs. Android divides these into four buckets, based
on physical size and the distance at which they are usually viewed:

	Small (under 3”)

	Normal (3” to around 4.5”)

	Large (4.5” to around 10”)

	Extra-large (over 10”)

By default, your application will support small and
normal screens. It also will support large and extra-large screens via some
automated conversion code built into Android.
To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element to your manifest. This enumerates the screen sizes you have
explicit support for. For example, if you are providing
custom UI support for large or extra-large screens, you will want to have the
<supports-screens> element. So, while the starting manifest file works,
handling multiple screen sizes is something you will want to think about.
You wind up with an element akin to:

<supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 android:xlargeScreens="true" />

Much more information about providing solid support for all screen sizes,
including samples of the <supports-screens> element, will be found later
in this book as we cover large-screen strategies.
Other Stuff
As we proceed through the book, you will find other elements being added
to the manifest, such as:

	
<uses-permission>, to tell the user that you need permission to use
certain device capabilities, such as accessing the Internet

	
<uses-feature>, to tell Android that you need the device to have certain
features (e.g., a camera), and therefore your app should not be installed
on devices lacking such features

	
<meta-data>, for bits of information needed by particular extensions to
Android, such as by FileProvider.

These and other elements will be introduced elsewhere in the book.
Learning More About Gradle
This book will go into more about Gradle, both in the core chapters and
in the trails. But, the focus will be on the Android Gradle Plugin, and Gradle itself
offers a lot more than that.
The Gradle Web site hosts documentation,
links to Gradle-specific books, and
links to other Gradle educational resources.
Visit the Trails!
There are a few more chapters in this book getting into more details about
the use of Gradle and the Android Gradle Plugin.

	
Gradle and Tasks explains how we ask Gradle to do things
on our behalf (“tasks”), such as compile our APK for us

	
Gradle and Build Variants gets into
what capabilities we get from the Gradle project structure,
including the ability to configure “build types” and “product flavors”

There is also the “Advanced Gradle for Android Tips” chapter for
other Gradle topics, and the chapter on manifest merging in Gradle.
Tutorial #3 - Manifest Changes
As we build EmPubLite, we will need to make a number of changes to our
project’s manifest. In this tutorial, we will take care of a couple of these
changes, to show you how to manipulate the AndroidManifest.xml file. Future
tutorials will make yet more changes.
Android Studio users will also get their first chance to work with the
build.gradle file.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results of
this tutorial
in the book’s GitHub repository.
Some Notes About Relative Paths
In these tutorials, you will see references to relative paths, like AndroidManifest.xml,
res/layout/, and so on.
You should interpret these paths as being relative to the app/src/main/
directory within the project, except as otherwise noted. So, for example, Step #1 below
will ask you to open AndroidManifest.xml — that file can be found in
app/src/main/AndroidManifest.xml from the project root.
Step #1: Supporting Screens
Our application will restrict its supported screen sizes. Tablets make for
ideal ebook readers. Phones can also be used, but the smaller the phone, the
more difficult it will be to come up with a UI that will let the user do
everything that is needed, yet still have room for more than a sentence or two
of the book at a time.
So, let’s add a <supports-screens> element to keep our
application off “small” screen devices (under 3” diagonal size).
Android Studio users can double-click on AndroidManifest.xml in the project
explorer.
As a child of the root <manifest> element, add a <supports-screens] element as follows:

<supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 android:xlargeScreens="true"/>

Step #2: Blocking Backups
If you look at the <application> element, you will see that it
has a few attributes, including android:allowBackup="true".
This attribute indicates that EmPubLite should participate in
Android’s automatic backup system.
That is not a good idea, until you understand the technical
and legal ramifications of that choice, which we will explore
much later in this book.
In the short term, change android:allowBackup to be false.
Step #3: Ignoring Lint
Even after that change, the application element name may have a
beige background. If you hover your mouse over it and look at the
explanatory tooltip, you will see
that it is complaining that this app is not indexable, and that you
should add an ACTION_VIEW activity to the app.
This is ridiculous.
This app (hopefully) will never wind up on the Play Store, and
so Google’s “app indexing” capability will never be relevant.
Put your text cursor somewhere inside the application element name
and press Alt-Enter (or Option-Return on macOS).
This should bring up a popup window showing
some “quick fixes” for the problem:

[image: Quick Fixes]

Figure 49: Quick Fixes
Choose the “suppress” option. Then, press Ctrl-Alt-L
(or Command-Option-L on macOS) to reformat the file. You will wind up with
something like:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.empublite"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 android:xlargeScreens="true" />

 <application
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme"
 tools:ignore="GoogleAppIndexingWarning">
 <activity android:name=".EmPubLiteActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/AndroidManifest.xml)
The <application> element now has a
tools:ignore="GoogleAppIndexingWarning" attribute, and the root
<manifest> element defines the tools XML namespace. The net effect
is that we are telling the build tools — specifically the Lint utility –
that it should ignore this particular issue.
In Our Next Episode…
… we will make some changes to the resources of our tutorial project
Some Words About Resources
It is quite likely that by this point in time, you are “chomping at the
bit” to get into actually writing some code. This is understandable. That
being said, before we dive into the Java source code for our stub project,
we really should chat briefly about resources.
Resources are static bits of information held outside the Java source code.
As we discussed previously, resources are stored as files under the res/
directory in your source set (e.g., app/src/main/res/).
Here is where you will find all your icons and other images,
your externalized strings for internationalization, and more.
These are separate from the Java source code not only because they are different
in format. They are separate because you can have multiple definitions of a
resource, to use in different circumstances. For example, with
internationalization, you will have strings for different languages. Your Java
code will be able to remain largely oblivious to this, as Android will choose
the right resource to use, from all candidates, in a given circumstance
(e.g., choose the Spanish string if the device’s locale is set to Spanish).
We will cover all the details of these resource sets
later in the book. Right
now, we need to discuss the resources in use by our stub project, plus one more.
This chapter will refer to the res/ directory as a shorthand for the
app/src/main/res/ directory of the project.
String Theory
Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it
helps with internationalization (I18N) and localization (L10N).
Even if you are not going to translate your strings to other
languages, it is easier to make corrections if all the strings are in one spot
instead of scattered throughout your source code.
Plain Strings
Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as a
resource. The string element takes a name attribute, which is the unique
name for this string, and a single text element containing the text of the
string:

<resources>
 <string name="quick">The quick brown fox...</string>
 <string name="laughs">He who laughs last...</string>
</resources>

One tricky part is if the string value contains a quote or an
apostrophe. In those cases, you will want to escape those values, by
preceding them with a backslash (e.g., These are the times that try men\'s souls).
Or, if it is just an apostrophe, you could enclose the value in quotes
(e.g., "These are the times that try men's souls.").
For example, a project’s strings.xml file could look like this:

<resources>
 <string name="app_name">EmPubLite</string>
</resources>

(from EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/res/values/strings.xml)
We can reference these string resources from various locations, in our Java
source code and elsewhere. For example, the app_name string resource often is used
in the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.empublite"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 android:xlargeScreens="true" />

 <application
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme"
 tools:ignore="GoogleAppIndexingWarning">
 <activity android:name=".EmPubLiteActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/AndroidManifest.xml)
Here, the android:label attribute of the <application> element
refers to the app_name string resource. This will appear in a few places in
the application, notably in the list of installed applications in Settings. So, if you wish to change
how your application’s name appears in these places, simply adjust the
app_name string resource to suit.
The syntax @string/app_name tells Android “find the string resource named
app_name”. This causes Android to scan the appropriate strings.xml file
(or any other file containing string resources in your res/values/ directory)
to try to find app_name.
Um, Wait, My Manifest Does Not Look Like That
When you view a manifest like that in Android Studio, it may appear as though
you are not using resources, as you may not see @string/... references:

[image: AndroidManifest.xml, As Initially Viewed in Android Studio]

Figure 50: AndroidManifest.xml, As Initially Viewed in Android Studio
Here, android:label looks as though it is the hard-coded value “EmPubLite”.
However, notice that the attribute value is formatted differently than the others.
The rest are green text with a white background, while this one is gray text with
a shaded background.
That is because Android Studio is lying to you.
If you hover your mouse over the value, you will see the real attribute
appear just below it:

[image: AndroidManifest.xml, With Mouse Hovering Over EmPubLite]

Figure 51: AndroidManifest.xml, With Mouse Hovering Over “EmPubLite”
And, if you click on the fake value, you will see the real XML, with the real
string resource value.
What is happening is that Android Studio, by default, will substitute a candidate
value for the resource in its presentation of the manifest, other resources
that refer to resources, and even Java code. Any time you see that gray-on-light-blue
formatting, remember that this is not the real value, and that you have to uncover
the real value via hovering over it or clicking on it.
Styled Text
Many things in Android can display rich text, where the text has been formatted
using some lightweight HTML markup: , <i>, and <u>. Your
string resources support this, simply by using the HTML tags as you would in
a Web page:

<resources>
 <string name="b">This has bold in it.</string>
 <string name="i">Whereas this has <i>italics</i>!</string>
</resources>

CDATA. CDATA Run. Run, DATA, Run.
Since a strings resource XML file is an XML file, if your
message contains [,], or & characters (other than the formatting
tags listed above), you will need to use
a CDATA section:

<string name="report_body">
<![CDATA[
<html>
<body>
<h1>TPS Report for: {{reportDate}}</h1>
<p>Here are the contents of the TPS report:</p>
<p>{{message}}</p>
<p>If you have any questions regarding this report, please
do not ask Mark Murphy.</p>
</body>
</html>
]]>
 </string>

The Directory Name
Our string resources in our stub project are in the res/values/strings.xml
file. Since this directory name (values) has no suffixes,
the string resources in that
directory will be valid for any sort of situation, including any locale for
the device. We will need additional directories, with distinct strings.xml
files, to support other languages. We will cover how to do that
later in this book.
Editing String Resources
If you double-click on a string resource file, like res/values/strings.xml,
in Android Studio, you are
presented the XML and edit it that way. There is an option for entering
a dedicated string translation view, covered
later in this book.
Multi-Locale Support
Android 7.0+ users can indicate that they support more than one language:

[image: Android 7.0 Language Settings]

Figure 52: Android 7.0 Language Settings
The user can choose the relative priorities of these languages, by
grabbing the handle on the right side of the row and dragging the language
higher or lower in the list.
This has impacts on resource resolution for any locale-dependent
resources, such as strings. Now Android will check multiple languages
for resource matches, before falling back to the default language
(e.g., whatever you have in res/values/strings.xml). Hence, it is
important that you ensure that you have a complete set of strings for
every language that you support, lest the user perhaps wind up with
a mixed set of languages in the UI.
You can find out what languages the user has requested via a LocaleList
class and its getDefault() static method. This, as the name suggests,
has a list of Locale objects representing the user’s preferred languages.
If you had previously been using Locale alone for this (e.g., for
specialized in-app language assistance beyond resources), you will want
to switch to LocaleList for Android 7.0 and beyond.
Got the Picture?
All Android versions support images in the PNG, JPEG, and GIF
formats. GIF is officially
discouraged, however; PNG is the overall preferred format. Android also supports
some proprietary XML-based image formats, though we will not discuss those
at length until later in the book. Many newer versions of Android also
support Google’s WebP image format, though this is not especially popular.
There are two types of resources that use images like these: drawables
and mipmaps. In truth, they are nearly identical. Mipmaps are used mostly
for “launcher icons” — the icons seen in home screen launchers that identify
activities that the user can start. Drawables hold everything else.
(if you are a seasoned Android developer and are reading this section:
while drawable resources might be removed when packaging an APK, such as
for the Android Gradle Plugin split system for making density-specific
editions of an app, mipmap resources are left alone, apparently)
It is possible to have res/drawable/ and res/mipmap/ directories
in an Android module. However, you will not find bitmaps there usually.
Instead, those reside in directories like res/drawable-mdpi/ and
res/drawable-hdpi/.
These refer to distinct resource sets. The suffixes (e.g., -mdpi,
-hdpi) are filters, indicating under what circumstances the images
stored in those directories should be used. Specifically, -ldpi indicates images
that should be used on devices with low-density screens (around 120 dots-per-inch,
or “dpi”). The -mdpi suffix indicates resources for medium-density
screens (around 160dpi), -hdpi indicates resources for high-density
screens (around 240dpi). -xhdpi indicates resources for
extra-high-density screens (around 320dpi), -xxhdpi indicates
extra-extra-high-density screens (around 480dpi), -xxxhdpi indicates
extra-extra-extra-high-density screens (around 640dpi), and so on.
In the EmPubLite tutorial project, you will find a series of mipmap
directories with the same sorts of suffixes (e.g., res/mipmap-hdpi).
Inside each of those directories, you will see an ic_launcher.png file.
This is the stock icon that will be used for your application in the home
screen launcher. Each of the images is of the same icon, but the higher-density
icons have more pixels. The objective is for the image to be roughly the same
physical size on every device, using higher densities to have more detailed
images.
Our AndroidManifest.xml file then references our ic_launcher icon
in the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.empublite"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 android:xlargeScreens="true" />

 <application
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme"
 tools:ignore="GoogleAppIndexingWarning">
 <activity android:name=".EmPubLiteActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/AndroidManifest.xml)
Note that the manifest simply refers to @mipmap/ic_launcher, telling Android
to find a mipmap resource named ic_launcher. The resource reference does not
indicate the file type of the resource — there is no .png in the resource
identifier. This means you cannot have ic_launcher.png and ic_launcher.jpg
in the same project, as they would both be identified by the same identifier.
You will need to keep the “base name” (filename sans extension) distinct for
all of your images.
Also, the @mipmap/ic_launcher reference does not mention what screen density
to use. That is because Android will choose the right screen density to use,
based upon the device that is running your app. You do not have to worry about
it explicitly, beyond having multiple copies of your icon.
If Android detects that the device has a screen density for which you lack
an icon, Android will take the next-closest one and scale it.
Some Notes About WebP
Android 4.0 added partial support for Google’s WebP image format, and Android 4.3 devices
support the previously-missing features (lossless compression and transparency). WebP serves
as a replacement for both PNG and JPEG, and in some circumstances it can
result in smaller on-disk sizes for near-equivalent image quality.
Android Studio, starting with version 2.3, has special support to help you convert
drawable resources and other images from JPEG and PNG to WebP. Simply
right-click over the image in the project tree and choose “Convert to WebP” from
the context menu.
Initially, you are given a window for controlling the quality and output:

[image: WebP Converter in Android Studio]

Figure 53: WebP Converter in Android Studio
“Lossy encoding” refers to the type performed by JPEG, taking into account that
humans have limited ability to distinguish similar colors to achieve tighter
compression. “Lossless encoding” refers to the type performed by PNG, where
the compressed image is identical to the original, just as a ZIP file’s contents
are identical to the files before they were ZIPped. For lossy encoding, you can
choose a quality percentage, where higher quality images will not compress as well.
You can also:

	Skip anything that results in a bigger image (as sometimes WebP will be bigger
than the JPEG or PNG equivalent)

	Skip a type of PNG called a nine-patch PNG, used for widget
backgrounds

	Skip images that use transparency, in case your minSdkVersion will not support
such images

If you choose lossy compression and leave the “preview” checkbox checked, you are
then presented with a window showing the results of the conversion at your
requested quality level:

[image: WebP Conversion Preview]

Figure 54: WebP Conversion Preview
You can adjust the quality slider below the images to see how the image
changes with different quality levels and how much additional disk savings you
will get from the WebP conversion.
When you are done, the WebP converter will replace your old PNG or JPEG file
with the converted WebP image.
Dimensions
Dimensions are used in several places in Android to describe distances, such as
a widget’s size. There are several different units of measurement available
to you:

	
px means hardware pixels, whose size will vary by device, since not all
devices have the same screen density

	
in and mm for inches and millimeters, respectively, based on the actual
size of the screen

	
pt for points, which in publishing terms is 1/72nd of an inch (again,
based on the actual physical size of the screen)

	
dip (or dp) for density-independent pixels — one dip equals one hardware pixel
for a ~160dpi resolution screen, but one dip equals two hardware pixels on
a ~320dpi screen

	
sp for scaled pixels, where one sp equals one dip for normal
font scale levels, increasing and decreasing as needed based upon
the user’s chosen font scale level in Settings

Dimension resources, by default, are held in a dimens.xml file in the
res/values/ directory that also holds your strings.
To encode a dimension as a resource, add a dimen element to dimens.xml,
with a name
attribute for your unique name for this resource, and a single child text
element representing the value:

<resources>
 <dimen name="thin">10dip</dimen>
 <dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis
is a placeholder for your unique name for the resource (e.g., thin and fat
from the sample above). In Java, you reference dimension resources by the
unique name prefixed with R.dimen. (e.g., Resources.getDimension(R.dimen.thin)).
While our stub project does not use dimension resources, we will be seeing
them soon enough.
Editing Dimension Resources
As with most types of XML resources, Android Studio just has you edit
the XML directly, when you double-click on the resource in the project
explorer.
The Resource That Shall Not Be Named… Yet
Your stub project also has a res/layout/ directory, in addition to the ones
described above. That is for UI layouts, describing what your user interface
should look like. We will get into the details of that type of resource as we
start examining our user interfaces in
an upcoming chapter.
Icons
Icons are drawable resources. Except when they are mipmap resources.
And except when they are multiple resources, combined together at runtime
to create an image with a “squircle” background. And…
Are you confused yet?
In theory, setting up icons for your app would be quite simple, and for
years that was the case. Nowadays, setting up an app icon is unnecessarily
complex, though at least Android Studio has an Asset Studio tool
to try to make it a bit simpler.
In this chapter, we will explore what it takes to set up one of these
app icons.
App Icons… And Everything Else
Each app has an icon. This is used for places like the list of installed
apps in Settings. Traditionally — and to reduce user confusion — this
icon is also used for the home screen launcher.
Google has been making this icon increasingly complicated over the past few years:

	App icons are mipmap resources, while everything else is a drawable
resource

	Android 7.1 introduced the concept of a separate “round icon” that an app
can have, which would be used in place of the regular app icon on certain
Android 7.1 devices… then dropped this feature with Android 8.0

	Android 8.0 introduced the concept of “adaptive icons”, where you have
to provide separate “foreground” and “background” images, mostly so that
certain home screen launchers can shape the background image as they want
(square, round, “squircle”, etc.)

Most other icons — other than notification icons –
are comparatively straightforward.
Creating an App Icon with the Asset Studio
If you right-click over pretty much any directory in the Android Studio
tree, the context menu will have an “Image Asset” option. This is also
available from File > New > Image Asset. This brings up the Asset Studio,
to help you to assemble icons.
By default, the Asset Studio has its “Icon Type” drop-down set for
“Launcher Icons (Adaptive and Legacy)”, which is how you set up an app
icon nowadays:

[image: Asset Studio, As Initially Launched]

Figure 55: Asset Studio, As Initially Launched
The overall name for your launcher icon is found in the Name field, above
the tabs. The default is ic_launcher, and unless you have a good reason
to change it, you are best served by leaving it alone.
Foreground Layer
What you would ordinarily think of as your icon is what Android Studio
and Android 8.0+ refer to as the “Foreground Layer”. The Asset Studio
starts on the Foreground Layer tab for you to configure this layer.
Your icon can come from three main sources:

	Some image of your own design, which you would load into the Foreground
Layer tab by selecting the Image radio button, then clicking the “…”
button next to the Path field, to browse your development machine and
find that image

	A piece of canned clip art, which you would choose by clicking on the
“Clip Art” radio button, clicking the “Clip Art” button to choose the image,
and clicking the Color button to choose a color to apply to that image:

[image: Asset Studio, Showing Clip Art Options]

Figure 56: Asset Studio, Showing Clip Art Options

	A letter or two, which you would choose by clicking on the Text radio
button, filling in 1-2 letters in the Text field, choosing a font from your
development machine in the adjacent drop-down, and clicking the Color button
to choose a color to apply to the font:

[image: Asset Studio, Showing Text Options]

Figure 57: Asset Studio, Showing Text Options
For all three of these, you can:

	Choose the name to use for this image, in the “Layer Name” field

	Choose, via the Trim radio buttons, whether to remove all transparent
space from the edges of the image (“Yes”) or not (“No”)

	Resize the image from its default size

That latter choice is particularly important, as you need to keep your
foreground layer content within the “safe zone”. That shows up in the previews
as a dark gray circle. So long as your foreground layer is in the safe
zone, you should not have to worry about any launcher accidentally cutting
off part of the layer when it renders your app icon.
Background Layer
In the preview area, by default, you will see a blue-green grid behind your
foreground layer. That is the default background layer. If you would like
to use something else, click the “Background Layer” tab:

[image: Asset Studio, Showing Background Layer]

Figure 58: Asset Studio, Showing Background Layer
Your two main options are:

	a flat color

	an image of your choosing (akin to the foreground, where you click the “…”
button next to the Path field to pick the background image)

The background needs to be designed to be cropped into a variety of shapes,
such as those shown in the preview (circle, various rounded forms of squares,
etc.). Hence, outside of flat colors, typical backgrounds will be gradients
or simple patterns, such as the default grid.
Legacy
On Android 8.0+ devices, the foreground layer, background layer, and launcher-chosen
shape (e.g., squircle) combine to create your app icon.
On older devices, the app icon is whatever you choose it to be, where the Legacy
tab helps you decide what that is:

[image: Asset Studio, Showing Legacy Options]

Figure 59: Asset Studio, Showing Legacy Options
The most important legacy option is the “Legacy Icon (API <= 25)” section.
If your minSdkVersion is below 26, this will be the icon rendition
that will be used as your app icon by default. The Asset Studio will merge
your foreground and background layers itself, then apply your selected
shape from the drop-down (e.g., square).
For Android 7.1 devices, you can also opt to have the Asset Studio create
a separate round icon, that you can declare in your manifest, as will be
seen later in this chapter.
If you are going to be distributing your app through the Play Store, you
can also generate a Play Store rendition of your icon. This is reminiscent
of the legacy icon, but at a higher resolution.
Generating the Icon
Once you have adjusted your app icon via the three tabs, click Next at the
bottom of the Asset Studio wizard. This will bring up the final wizard
page, showing you what will be generated for you by the wizard:
The Output Directories tree shows you each file that will be created or replaced.
Those that show up in red are ones that will be replaced; ones that show
up in black are new files. Typically, unless you changed the icon or layer
names, most of the files will be replacements for files that exist already.
Some of these files will be typical bitmap-style resources. Some are
vector drawables.
Using In Your Manifest
Then, in your manifest, you can have android:icon and optionally
android:roundIcon attributes on the <application> element to associate
your icons with your app. If you did not change the names of the icons,
then your manifest should already have the appropriate attribute values.

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.myapplication"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Creating Other Icons with the Asset Studio
In principle, you can use the Asset Studio to create other types of icons,
by choosing another type of icon from the drop down, such as “Action Bar and
Tab Icons”.
In practice, the Asset Studio does not do much for you here, other than
create multiple versions of your icon for different screen densities.
For most Android app developers, there are two other options:

	Get icons at the right resolutions for different densities from your
graphic designer, perhaps exported from Adobe Photoshop

	Create vector icons, as will be covered in an upcoming chapter

Tutorial #4 - Adjusting Our Resources
Our EmPubLite project has some initial resources. However, the defaults are not what
we want for the long term. So, in addition to adding new resources in future
tutorials, we will fix the ones we already have in this tutorial.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Changing the Name
Our application shows up everywhere as “EmPubLite”:

	In the title bar of our activity

	As the caption under our icon in the home screen launcher

	In the Application list in the Settings app

	And so on

We should change that to be “EmPub Lite”, adding a space for easier reading,
and to illustrate that this is a “lite” version of the full EmPub application.
Double-click on the res/values/strings.xml file in your project explorer.
In the XML editor for the string resources, you will find
an element that looks like:

<string name="app_name">EmPubLite</string>

Change the text node in this element to EmPub Lite.
Then save your changes, giving you something like:

<resources>
 <string name="app_name">EmPub Lite</string>
</resources>

Step #2: Changing the Icon
The build tools provide us with a stock icon to use for the launcher — the
actual image used varies by Android tools release. However, we can change
it to something else. For example, we could use the icon portion of the CommonsWare logo:

[image: CommonsWare]

Figure 60: CommonsWare
Download the molecule PNG file from
the CommonsWare Web site
and save it somewhere on your development machine.
Then, right-click over the res/ directory in your main source set
in the project explorer, and choose New > Image Asset from the context
menu. That will bring up the Asset Studio wizard:

[image: Asset Studio Wizard, First Page]

Figure 61: Asset Studio Wizard, First Page
In the Icon Type drop-down, choose “Launcher Icons (Legacy only)”. This will
change the wizard to look like:

[image: Asset Studio Wizard, First Page, Legacy Mode]

Figure 62: Asset Studio Wizard, First Page, Legacy Mode
Click the “Image” radio button in the “Asset Type” row.
Then, click the “…” to the right of the “Path” field and choose
the molecule.png file that you downloaded. Also, ensure that “Scaling”
is set to
“Shrink to Fit”,
and choose “None” from the “Shape” drop-down.
This
should give you a preview of what the icons will look like:

[image: Asset Studio Wizard, First Page, After Loading Image]

Figure 63: Asset Studio Wizard, First Page, After Loading Image
Leave the rest of the wizard alone, then click Next to proceed to
the next page:

[image: Asset Studio Wizard, Second Page]

Figure 64: Asset Studio Wizard, Second Page
You should get a warning towards the bottom, indicating that
if you finish the wizard, you will overwrite existing files. This
is expected, as we are trying to replace the old ic_launcher.png
files with new ones. So, go ahead and click Finish.
Step #3: Running the Result
If you run the resulting app, you will see that it shows up with the
new name and icon, such as in the launcher:

[image: EmPubLite with New Icons]

Figure 65: EmPubLite with New Icons
In Our Next Episode…
… we will start to modify the main UI of our tutorial project.
The Theory of Widgets
There is a decent chance that you have already done work with widget-based UI
frameworks. In that case, much of this chapter will be review, though checking
out the section on the absolute positioning anti-pattern should
certainly be worthwhile.
There is a chance, though, that your UI background has come from places where
you have not been using a traditional widget framework, where either you have
been doing all of the drawing yourself (e.g., game frameworks) or where the
UI is defined more in the form of a document (e.g., classic Web development).
This chapter is aimed at you, to give you some idea of what we are talking about
when discussing the notion of widgets and containers.
What Are Widgets?
Wikipedia has a nice definition of a widget:

In computer programming, a widget (or control) is an element of a graphical user interface (GUI) that displays an information arrangement changeable by the user, such as a window or a text box. The defining characteristic of a widget is to provide a single interaction point for the direct manipulation of a given kind of data. In other words, widgets are basic visual building blocks which, combined in an application, hold all the data processed by the application and the available interactions on this data.

(quote from the 7 March 2014 version of the page)
Take, for example, this Android screen:

[image: A Sample Android Screen]

Figure 66: A Sample Android Screen
Here, we see:

	some text, like “Phone-only, unsynced co…” and “PHONE”

	an icon of a contact “Rolodex” card

	some data entry fields with hints like “Name” and “Company”

	some “spinner” drop-down lists (the items with the arrowheads pointing southeast)

	some gray divider lines

Everything listed above is a widget. The user interface for most Android screens
(“activities”) is made up of one or more widgets.
This does not mean that you cannot do your own drawing. In fact, all the existing widgets
are implemented via low-level drawing routines, which you can use for everything from your
own custom widgets to games.
This also does not mean that you cannot use Web technologies. In fact, we will see later
in this book
a widget designed to allow you to embed Web content into an Android activity.
However, for most non-game applications, your Android user interface will be made up of
several widgets.
Size, Margins, and Padding
Widgets have some sort of size, since a zero-pixel-high, zero-pixel-wide widget is not
especially user-friendly. Sometimes, that size will be dictated by what is inside the
widget itself, such as a label (TextView) having a size dictated by the text in the
label. Sometimes, that size will be dictated by the size of whatever holds the
widget (a “container”, described in the next section), where the widget wants to take
up all remaining width and/or height. Sometimes, that size will be a specific set of
dimensions.
Widgets can have margins. As with CSS, margins provide separation between a widget and
anything adjacent to it (e.g., other widgets, edges of the screen). Margins are really
designed to help prevent widgets from running right up next to each other, so they
are visually distinct. Some developers, however, try to use margins as a way to hack
“absolute positioning” into Android, which is an anti-pattern that we will examine
later in this chapter.
Widgets can have padding. As with CSS, padding provides separation between the contents
of a widget and the widget’s edges. This is mostly used with widgets that have some
sort of background, like a button, so that the contents of the widget (e.g., button
caption) does not run right into the edges of the button, once again for visual
distinction.
What Are Containers?
Containers are ways of organizing multiple widgets into some sort of structure. Widgets
do not naturally line themselves up in some specific pattern — we have to define that
pattern ourselves.
In most GUI toolkits, a container is deemed to have a set of children. Those children
are widgets, or sometimes other containers. Each container has its basic rule for how
it lays out its children on the screen, possibly customized by requests from the children
themselves.
Common container patterns include:

	put all children in a row, one after the next

	put all children in a column, one below the next

	arrange the children into a table or grid with some number of rows and columns

	anchor the children to the sides of the container, according to requests made by those
children

	anchor the children to other children in the container, according to requests made by those
children

	stack all children, one on top of the next

	and so on

In the sample activity above, the dominant pattern is a column, with things laid out
from top to bottom. Some of those things are rows, with contents laid out left to right.
However, as it turns out, the area with most of those widgets is scrollable.
Android supplies a handful of containers, designed to handle most common scenarios,
including everything in the list above. You are also welcome to create your own custom
containers, to implement business rules that are not directly supported by the existing
containers.
Note that containers also have size, padding, and margins, just as widgets do.
The Absolute Positioning Anti-Pattern
You might wonder why all of these containers and such are necessary. After all, can’t
you just say that such-and-so widget goes at this pixel coordinate, and this other
widget goes at that pixel coordinate, and so on?
Many developers have taken that approach — known as absolute positioning –
over the years, to their eventual regret.
For example, many of you may have used Windows apps, back in the 1990’s, where when
you would resize the application window, the app would not really react all that
much. You would expand the window, and the UI would not change, except to have big empty
areas to the right and bottom of the window. This is because the developers simply said
that such-and-so widget goes at this pixel coordinate, and this other
widget goes at that pixel coordinate, regardless of the actual window size.
In modern Web development, you see this in the debate over
fixed versus fluid Web design.
The consensus seems to be that fluid designs are better, though frequently they are more
difficult to set up. Fluid Web designs can better handle differing browser window
sizes, whether those window sizes are because the user resized their browser window
manually, or because those window sizes are dictated by the screen resolution of the
device viewing the Web page. Fixed Web designs — effectively saying that such-and-so
element goes at such-and-so pixel coordinate and so on — tend to be easier to build but
adapt more poorly to differing browser window sizes.
In mobile, particularly with Android, we have a wide range of possible screen resolutions,
from QVGA (320x240) to beyond 1080p (1920x1080), and many values in between. Moreover, any
device manufacturer is welcome to create a device with whatever resolution they so desire
– there are no rules limiting manufacturers to certain resolutions. Hence, as developers,
having the Android equivalent of fluid Web designs is critical, and the way you will
accomplish that is by sensible use of containers, avoiding absolute positioning. The
containers (and, to a lesser extent, the widgets) will determine how extra space is
employed, as the screens get larger and larger.
The Theme of This Section: Themes
In Web development, we have had stylesheets for quite a while. Through such
Cascading Style Sheets (CSS)
files, we can stipulate various rules about how our Web pages should look.
This includes:

	Establishing a default look for certain HTML tags by tag name (e.g., setting
the font and size for all [h1> and <h2> elements)

	Establishing a look for specific HTML elements by class or ID (e.g.,
setting the width of a specific <div> to a certain number of CSS pixels)

In Android, the equivalent concepts can be found in styles and themes.
Styles are a collection of values for properties (e.g., have a foreground color
of red). These can be applied to specific widgets (e.g., this label should
adopt this style), or they can be employed by “themes” that provide the default
look for all sorts of widgets and other elements of our UI.
Of course, you do not have to declare any theme for your app. Android will
give you a default look-and-feel without any specific theme. That look-and-feel
has varied over the years, though, affecting the visual fundamentals of
various Android widgets. These themes have names by which we refer to them:
Theme, Theme.Holo, and Theme.Material.
In the Beginning, There Was “Theme”, And It Was Meh
Way back in Android 1.0, the default theme was known simply as Theme.
Technically, all themes inherit from Theme, much as how later CSS stylesheets
effectively “inherit” the settings established by prior stylesheets.
The Theme UI had a particular look to it:

[image: Labels, Fields, and Buttons in Theme]

Figure 67: Labels, Fields, and Buttons in Theme
For example:

	At the top of the screen, we had a thin gray “title bar” with the
name of our app

	The focused field (an EditText widget) had a bright orange
outline, whereas normally it was a plain white rectangle

	The buttons (“OK” and “Cancel”) were… well… buttons

Holo, There!
Android 3.0 (API Level 11) introduced a new default theme,
Theme.Holo, with the so-called “holographic widget theme”.
This changed the look of our UI somewhat:

[image: Labels, Fields, and Buttons in Theme.Holo]

Figure 68: Labels, Fields, and Buttons in Theme.Holo
Now:

	At the top of the screen, we have an “action bar”, containing
our app’s logo and name

	The focused field has a blue “underbracket”, whereas normally
it is gray

	The buttons are styled slightly differently, with a bigger font,
alternative backgrounds, etc.

Considering the Material
Android 5.0 changed the default theme yet again, to
Theme.Material:

[image: Labels, Fields, and Buttons in Theme.Material]

Figure 69: Labels, Fields, and Buttons in Theme.Material
Now:

	The action bar at the top of the screen no longer shows
the app icon

	Our field is indicated by an underline, which is teal when
focused or gray when unfocused

	The buttons are now forced into all-caps font, with
a slightly smaller font size and subtly different background
than we had with Theme.Holo

Doing More with Themes
Of course, we can do a lot more than just use these. There
are other stock themes, with different characteristics.
Furthermore, we can customize the themes, by defining our
own (inheriting from a stock theme) and changing some of
the properties (e.g., replacing the teal color with something
else).
We will get much more into creating custom styles and themes
later in the book.
However, we will see the effects of Theme, Theme.Holo, and
Theme.Material on stock widgets in an upcoming chapter.
The Android User Interface
The project you created in an earlier tutorial was just the
default files generated by the Android build tools — you did not write any
Java code yourself. In this chapter, we will examine the basic Java code and
resources that make up an Android activity.
The Activity
The Java source code that you maintain will be in a standard Java-style tree of
directories based upon the Java package you chose when you created the project
(e.g., com.commonsware.android results in com/commonsware/android/).
Android Studio will have that source, by default, in app/src/main/java/ off
of the top-level project root.
If, in the new-project wizard, you elected to create an
activity, you will have, in the innermost directory, a Java source file representing
an activity class.
A very simple activity looks like:

package com.commonsware.empublite;

import android.app.Activity;
import android.os.Bundle;

public class EmPubLiteActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Dissecting the Activity
Let’s examine this Java code piece by piece:

package com.commonsware.empublite;

import android.app.Activity;
import android.os.Bundle;

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
By default, the package declaration is the same as the one you used when creating
the project. And, like any other Java project, you need to import any classes
you reference. Most of the Android-specific classes are in the android
package.
Remember that not every Java SE class is available to Android programs! Visit
the Android class reference
to see what is and is not available.

public class EmPubLiteActivity extends Activity {

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Activities are public classes, inheriting from the android.app.Activity base
class (or, possibly, from some other class that itself inherits from Activity).
You can have whatever data members you decide that you need, though the initial
code has none.

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
The onCreate() method is invoked when the activity is started. We will discuss the Bundle
parameter to onCreate() in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon creation.
The first thing you normally should do in onCreate() is chain upward to the
superclass, so the stock Android
activity initialization can be done. The only other statement in our stub project’s onCreate() is a call to
setContentView(). This is where we tell Android what the user interface is
supposed to be for our activity.
This raises the question: what does R.layout.main mean? Where did this R come
from?
To explain that, we need to start thinking about layout resources and how
resources are referenced from within Java code.
Using XML-Based Layouts
As noted in the previous chapter,
Android uses a series of widgets and containers to describe
your typical user interface. These all inherit from an android.view.View
base class, for things that can be rendered into a standard widget-based
activity.
While it is technically possible to create and attach widgets and containers to our activity
purely through Java code, the more common approach is to use an XML-based layout
file. Dynamic instantiation of widgets is reserved for more complicated
scenarios, where the widgets are not known at compile-time (e.g., populating a
column of radio buttons based on data retrieved off the Internet).
With that in mind, it’s time to break out the XML and learn how to lay out
Android activity contents that way.
What Is an XML-Based Layout?
As the name suggests, an XML-based layout is a specification of its widgets’
relationships to each other — and to containers — encoded in XML
format. Specifically, Android considers XML-based layouts to be resources, and
as such layout files are stored in the res/layout/ directory inside your
Android project (or, as we will see later, other layout resource sets, like
res/layout-land/ for layouts to use when the device is held in landscape).
As has been noted elsewhere in this book, the initial location of res/
is in app/src/main/ for Android Studio.
Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one View. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face of
the button should be rendered in a boldface font style.
For example, here is a res/layout/main.xml file that could be used with
the aforementioned activity:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout android:id="@+id/main"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.commonsware.empublite.EmPubLiteActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />
</RelativeLayout>

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/res/layout/main.xml)
The class name of a widget or container — such as RelativeLayout or TextView
– forms the name of the XML
element. Since TextView is an Android-supplied widget, we can just use the bare
class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as
well (e.g., com.commonsware.android.MyWidget).
The root element needs to declare the Android XML namespace
(xmlns:android="http://schemas.android.com/apk/res/android").
All other elements will be children of the root and will inherit that namespace
declaration.
The attributes are properties of the widget or container, describing what it
should look and work like. For example, the android:layout_width and
android:layout_height
attributes on the TextView element make a request from the child (TextView) to
its parent (a RelativeLayout) for what size the child should be.
We will get into details about these attributes, their possible values, and
their uses, in upcoming chapters. Note that those attributes in the tools
namespace (e.g., tools:context) are there solely to support the Android
build tools, and do not affect the runtime execution of
your project.
Android’s SDK ships with a tool (aapt) which uses the layouts. This tool
will be automatically invoked by your Android tool chain (e.g., Android Studio).
Of particular importance to you as a developer is that
aapt generates an R.java source file, allowing you to access layouts
and widgets within those layouts
directly from your Java code. In other words, this is where that magic R
value used in setContentView() comes from. We will discuss that a bit more
later in this chapter.
XML Layouts and Your IDE
If you are using Android Studio,
and you double-click on the res/layout/main.xml file
in your project, you will not initially see that XML. Instead, you will be
taken to the graphical layout editor:

[image: Android Studio Graphical Layout Editor]

Figure 70: Android Studio Graphical Layout Editor
We will go into much more detail about using the graphical layout editor
in an upcoming chapter, as we start to work more with specific widgets and
containers.
Why Use XML-Based Layouts?
Almost everything you do using XML layout files can be achieved through Java
code. For example, you could use setText() to have a button display a
certain caption, instead of using a property in an XML layout. Since XML layouts
are yet another file for you to keep track of, we need good reasons for using
such files.
Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as the aforementioned graphical layout editors in Android
Studio.
Such GUI builders could,
in principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits — that is far simpler if the data is in
a structured format like XML than in a programming language. Moreover, keeping
the generated bits separated out from hand-written code makes it less likely
that somebody’s custom-crafted source will get clobbered by accident when the
generated bits get re-generated. XML forms a nice middle ground between
something that is easy for tool-writers to use and easy for programmers to work
with by hand as needed.
Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
XAML,
Adobe’s Flex, Google’s GWT, and
Mozilla’s XUL all take a similar
approach to that of Android: put layout details in an XML file and put
programming smarts in source files (e.g., JavaScript for XUL). Many
less-well-known GUI frameworks, such as ZK, also use
XML for view definition. While “following the herd” is not necessarily the best
policy, it does have the advantage of helping to ease the transition into
Android from any other XML-centered view description language.
Using Layouts from Java
Given that you have painstakingly set up the widgets and containers for your
view in an XML layout file named main.xml stored in res/layout/, all you
need is one statement in your activity’s onCreate() callback to use that
layout, as we saw in our stub project’s activity:

setContentView(R.layout.main);

Here, R.layout.main tells Android to load in the layout (layout) resource
(R) named main.xml (main).
Basic Widgets
Every GUI toolkit has some basic widgets: fields, labels, buttons, etc.
Android’s toolkit is no different in scope, and the basic widgets will provide
a good introduction as to how widgets work in Android activities. We will
examine a number of these in this chapter.
Common Concepts
There are a few core features of widgets that we need to discuss at the outset,
before we dive into details on specific types of widgets.
Widgets and Attributes
As mentioned in a previous chapter, widgets have attributes
that describe how they should behave. In an XML layout file, these are literally
XML attributes on the widget’s element in the file. Usually, there are corresponding
getter and setter methods for manipulating this attribute at runtime from
your Java code.
If you visit the JavaDocs for a widget, such as
the JavaDocs for TextView,
you will see an “XML Attributes” table near the top. This lists all of the
attributes defined uniquely on this class, and the “Inherited XML Attributes”
table that follows lists all those that the widget inherits from superclasses,
such as View. Of course, the JavaDocs also list the fields, constants,
constructors, and public/protected methods that you can use on the widget
itself.
This book does not attempt to explain each and every attribute on each and
every widget. We will, however, cover the most popular widgets and the most
commonly-used attributes on those widgets.
Referencing Widgets By ID
Many widgets and containers only need to appear in the XML layout file and do
not need to be referenced in your Java code. For example, a static label
(TextView) frequently only needs to be in the layout file to indicate where
it should appear.
Anything you do want to use in your Java source, though, needs an
android:id.
The convention is to use @+id/... as the id value (where the ...
represents your locally-unique name for the widget) for the first
occurrence of a given id value in your layout file. The second and subsequent
occurrences in the same layout file should drop the + sign.
Android provides a few special android:id values, of the form
@android:id/... — we will see some of these in various chapters of this
book.
To access our identified widgets, use findViewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated by
Android in the R class as R.id.something (where something is the specific
widget you are seeking).
This concept will become important as we try to attach listeners to our widgets
(e.g., finding out when a checkbox is checked) or when we try referencing
widgets from other widgets in a layout XML file (e.g., with RelativeLayout).
All of this will be covered later in this chapter.
The Curious Case of the Cast
Most sample code that you will see for Android will show the results of the
findViewById() call being cast to some other class:

TextView tv=(TextView)findViewById(R.id.name);

That is because for most of Android’s existence, findViewById() returned a View,
so we would need to down-cast that to a more appropriate class.
However, if you are using Android Studio 3.0+, with an app with a compileSdkVersion
of 26 or higher, you will notice that you no longer
need those casts. Any existing ones will show up in gray, with a tooltip indicating
that the cast is unnecessary.
What happened is that Android 8.0 changed findViewById() to return T, using Java
generics to automatically cast it to the data type you request in the assignment.
Casts are a compile-time thing in Java — they do not appear in compiled code and
have no effects at runtime. As a result, code that skips the casts works perfectly
fine on older devices as well.
Size
Most of the time, we need to tell Android how big we want our widgets to be.
Occasionally, this will be handled for us — we will see an example of that
with TableLayout in an upcoming chapter. But generally we need to provide
this information ourselves.
To do that, you need to supply android:layout_width and
android:layout_height attributes on your widgets in the XML layout file. These
attributes’ values have three flavors:

	You can provide a specific dimension, such as 125dip to indicate the
widget should take up exactly a certain size (here, 125 density-independent
pixels)

	You can provide wrap_content, which means the widget should take up as
much room as its contents require (e.g., a TextView label widget’s content
is the text to be displayed)

	You can provide match_parent, which means the widget should fill up all
remaining available space in its enclosing container

The latter two flavors are the most common, as they are independent of screen
size, allowing Android to adjust your view to fit the available space.
Note that you will also see fill_parent. This is an older synonym for
match_parent. match_parent is the recommended value going forward, but
fill_parent will certainly work.
This chapter focuses on individual widgets. Size becomes much more important
when we start combining multiple widgets on the screen at once, and so we will
be spending more time on sizing scenarios in later chapters.
The layout_ prefix on these attributes means that these attributes represent
requests by the widget to its enclosing container. Whether those requests
will be truly honored will depend a bit on what other widgets there are in the
container and what their requests are.
Introducing the Graphical Layout Editor
If you open a layout resource in Android Studio, by default you will
see the graphical layout editor:

[image: Android Studio Graphical Layout Editor]

Figure 71: Android Studio Graphical Layout Editor
This offers a drag-and-drop means of defining the contents of that
layout resource.
Android IDEs have had drag-and-drop GUI building capability for several
years, dating back to when Eclipse was the official IDE. However,
Android Studio 2.2 made some significant changes in the way the
drag-and-drop GUI builder looks and works, and later updates have changed
it further. This book covers the current
look-and-feel, but older blog posts, Stack Overflow answers,
and similar resources may refer to aspects of previous GUI builders.
With all that in mind, let’s look at the different pieces of the
graphical layout editor.
Palette
The upper-left side of the graphical layout editor is the
Palette tool:

[image: Palette Tool]

Figure 72: Palette Tool
This lists all sorts of widgets and containers that you can drag and drop.
They are divided into categories (“Widgets”, “Text”, “Layouts”, etc.)
with many options in each. A few are not strictly widgets or containers
but rather other sorts of XML elements that you can have in a layout
resource (e.g., <fragment>, <requestFocus>). Some — such as the RecyclerView
shown in the above screenshot — are from libraries and will have a “download”
icon adjacent to them to help illustrate that.
As we cover how to use the graphical layout editor, we will see how
to create and configure several of these widgets, containers, and other
items.
Preview
The main central area of the graphical layout editor consists of
two perspectives on your layout resource contents. The one on the left
is a preview of what your UI should resemble, if this layout were
used for the UI of an activity:

[image: UI Preview]

Figure 73: UI Preview
This pours your layout resource contents into a preview frame that has
aspects of a regular Android device, such as the navigation bar at the
bottom and the status bar at the top.
If you drag items out of the Palette and drop them into the preview area,
they will be added to your layout resource.
Blueprint
To the right of the preview area is the blueprint view. This also
visually depicts your layout resource. However, rather than showing
you a preview of what your UI might look like, it visually represents
what widget and container classes you are using. And, for some types
of containers, it will show some of the sizing and positioning rules
that you are using for children of that container:

[image: Blueprint]

Figure 74: Blueprint
For a trivial layout resource, the blueprint view does
not show you much. It will become more useful with more complex layout
resources. In particular, it is very useful when you have designated
some widgets or containers as being invisible, as they will show up in the
blueprint but not in the preview:

[image: Layout Resource with Invisible TextView]

Figure 75: Layout Resource with Invisible TextView
Preview Toolbar
Above the preview and blueprint is a bi-level toolbar that allows you to configure
various aspects of the preview and blueprint appearance and behavior.
Upper Left Toolbar
From left to right, the upper left portion of the toolbar contains:

	A drop-down to toggle whether you see the preview, the blueprint,
or both

	A toggle to control whether you are seeing the layout as applied
to portrait or landscape perspectives

	A drop-down to choose what device size and resolution should be used
for the preview, culled from your emulator images and the available
device definitions

	A drop-down to choose what API level should be used for the simulated
UI of the preview

	A button to choose what theme to use for presenting
the UI of the preview

	A button to choose what language to use for determining which of your
string resources gets used in the preview

[image: Preview Toolbar, Top Level]

Figure 76: Preview Toolbar, Top Level
A couple of those — particularly the theme selector — pertain to topics
that we will explore later in the book.
Upper Right Toolbar
On the upper right side of the toolbar are:

	Zoom controls

	A button to reset the zoom to fill the area available for the preview
and/or blueprint

	An “info” icon indicating if there are any warnings or errors associated
with your layout resource

[image: Preview Toolbar, Bottom Level, Right Side]

Figure 77: Preview Toolbar, Bottom Level, Right Side
The left side of the bottom level of the preview toolbar will change,
based upon the selected widget or container, offering options for you
to be able to make simple changes to whatever is selected. We will see
examples of this over the next few chapters
Component Tree
Towards the bottom-left corner is the component tree:

[image: Component Tree]

Figure 78: Component Tree
This gives you a full tree of all of the widgets and containers
inside of this layout resource. It corresponds to the tree of XML
elements in the layout resource itself.
Clicking on any item in the component tree highlights it in
both the preview and blueprint views, plus it switches to that widget
or container for the attributes pane.
Attributes
When a widget or container is selected — whether via the component tree,
clicking on it in the preview, or clicking on it in the blueprint –
the Attributes pane on the right will allow you to manipulate how that
widget or container looks and behaves.
By default, it will bring up a condensed roster of the most important
attributes:

[image: Attributes Pane, Showing Condensed Roster]

Figure 79: Attributes Pane, Showing Condensed Roster
Clicking the “View all attributes” link, or the opposing-arrows toolbar
button, switches to a list of all attributes:

[image: Attributes Pane, Showing Full Roster]

Figure 80: Attributes Pane, Showing Full Roster
You can also click the magnifying glass icon in the toolbar of this pane
to search for available attributes by name:

[image: Attributes Pane, Showing Search Results]

Figure 81: Attributes Pane, Showing Search Results
We will see what many of these attributes are and how to work with them
over the course of the next few chapters.
For the attributes in the full roster, you can click the star icon on the
left to mark them as “favorites”, as seen with the “visibility” attribute
in the above screenshot.
Those favorite attributes show up in the condensed roster, in the section
labeled “Favorite Attributes”.
Text Tab
Towards the bottom of the graphical layout tool, you will see that it
contains two sub-tabs. One, “Design”, encompasses everything described
above. The other, “Text”, allows you to edit the raw XML that is the
actual content of the layout resource:

[image: Text Sub-Tab in Layout Editor]

Figure 82: Text Sub-Tab in Layout Editor
By default, the entire area is devoted to the text editor. However,
when the Text sub-tab is active, a “Preview” tool will appear docked
on the right side of the Android Studio window. Clicking that will
display the preview from the Design sub-tab:

[image: Text Sub-Tab with Preview]

Figure 83: Text Sub-Tab with Preview
Clicking on items in the preview will highlight the corresponding
XML element in the text editor.
And Now, Some Notes About the Book’s Sample Projects
This book profiles hundreds of sample apps, demonstrating everything from
how to display text on the screen to how to scan NFC tags or work with the
clipboard.
These sample apps are housed in a Git repository on GitHub.
They are all open source, and the vast majority are licensed under the
Apache Software License 2.0, in case you copy any of the code.
The Git repo uses tags that match the book version numbers (e.g., the v8.8 tag
is for Version 8.8 of the book). Hence, to get the source code that matches
your book version, you can:

	Clone the repo (e.g., git clone https://github.com/commonsguy/cw-omnibus.git)
and then checkout a particular tag; or

	Download the ZIP archive associated with a particular book version

For those projects that you wish to examine in Android Studio, you can use
File > New > Import Project to import the project. However, you have to do this
on a project-by-project basis, importing each project directory as needed.
Roughly speaking, any directory that has settings.gradle in it is a project
directory, particularly with respect to this book’s samples.
Starting with the next section, the book will be displaying code from these
sample projects. Links will point you to a particular sample project or to
a specific file in that project, such as a layout resource or Java source file.
Those links go to the GitHub repository, but you can use that information to
help you identify where the corresponding file is on your development machine,
if you elected to download the code.
Assigning Labels
The simplest widget is the label, referred to in Android as a TextView. Like
in most GUI toolkits, labels are bits of text not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a “Name:” label
before a field where one fills in a name).
In Java, you can create a label by creating a TextView instance. More
commonly, though, you will create labels in XML layout files by adding a
TextView element to the layout, with an android:text attribute to set the
value of the label itself. If you need to swap labels based on certain
criteria, such as internationalization, you may wish to use a string resource
reference in android:text instead (e.g., @string/label).
For example, in
our last tutorial,
we still are using the automatically-generated
res/layout/main.xml file, containing, among other things, a TextView:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout android:id="@+id/main"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.commonsware.empublite.EmPubLiteActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

</RelativeLayout>

(from EmPubLite-AndroidStudio/T4-Resources/EmPubLite/app/src/main/res/layout/main.xml)
Android Studio Graphical Layout Editor
The TextView widget is available in the “Widgets” category of the Palette
in the Android Studio graphical layout editor:

[image: Palette, Plain TextView in Widgets Category]

Figure 84: Palette, “Plain TextView” in Widgets Category
You can drag that TextView from the palette into a layout file in the main
editing area to add the widget to the layout. Or, drag it over the top of some container
you see in the Component Tree pane of the editor to add it as a child of that specific
container.
Clicking on the new TextView
will set up the
Attributes pane with the various attributes of the widget, ready for you to change as
needed.
Editing the Text
The “Text” attribute will allow you to choose or define a
string resource to serve as the text to be displayed:

[image: Attributes Pane, Showing TextView text Attribute]

Figure 85: Attributes Pane, Showing TextView “text” Attribute
The “text” with a paintbrush icon allows you to provide a separate piece of
text that will show up in the preview, but not be used by your app at
runtime.
You can either type
a literal string right in the Attributes pane row, or you can click the “…”
button to the right of the field to pick a string resource:

[image: String Resources Dialog]

Figure 86: String Resources Dialog
You can highlight one of those resources and click “OK” to use it. Or, towards
the upper-right of that dialog, there is an “Add new resource” drop-down. When viewing
string resources, that drop-down will contain a single command: “New string Value…”.
Choosing it will allow you to define a new string resource via another dialog:

[image: New String Resource Dialog]

Figure 87: New String Resource Dialog
You can give your new string resource a name, the actual text of the string itself,
the filename in which the string resource should reside (strings.xml by default),
and which values/ directory the string should go into (values by default). You
will also choose the “source set” — for now, that will just be main. Once
you accept the dialog, your new string resource will be applied to your TextView.
Editing the ID
The “ID” attribute will allow you to change the android:id value
of the widget:

[image: Attributes Pane, Showing ID Field]

Figure 88: Attributes Pane, Showing ID Field
The value you fill in here is what goes after the @+id/ portion (e.g., textView2).
This works for all widgets, not just TextView.
Notable TextView Attributes
TextView has numerous other attributes of relevance for labels, such as:

	
android:typeface to set the typeface to use for the label (e.g.,
monospace)

	
android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

	
android:textColor to set the color of the label’s text, in RGB hex format
(e.g., #FF0000 for red) or ARGB hex format (e.g., #88FF0000 for a translucent
red)

These attributes, like most others, can be modified through the Attributes pane.
For example, in the
Basic/Label
sample project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/profound"
 />

(from Basic/Label/app/src/main/res/layout/main.xml)
Just that layout alone, with the stub Java source provided to your app,
along with appropriate string resources, gives you:

[image: The LabelDemo Sample Application]

Figure 89: The LabelDemo Sample Application
A Commanding Button
Android has a Button widget, which is your classic push-button “click me
and something cool will happen” widget. As it turns out,
Button is a subclass of TextView, so everything discussed in the preceding
section in terms of formatting the face of the button still holds.
For example, in the
Basic/Button
sample project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button"/>

</LinearLayout>

(from Basic/Button/app/src/main/res/layout/main.xml)
Just that layout alone, with the stub Java source provided to your app,
along with appropriate string resources, gives you:

[image: Button Widget]

Figure 90: Button Widget
Android Studio Graphical Layout Editor
As with the TextView widget, the Button widget is available in the “Buttons” portion of the Palette
in the Android Studio graphical layout editor:

[image: Widgets Palette, Button Shown Highlighted]

Figure 91: Widgets Palette, Button Shown Highlighted
You can drag that Button from the palette into a layout file in the main
editing area to add the widget to the layout. The Attributes pane will then let you
adjust the various attributes of this Button. Since Button inherits from TextView,
most of the options are the same (e.g., “Text”).
Tracking Button Clicks
Buttons are command widgets — when the user presses a button, they expect something
to happen.
To define what happens when you click a Button, you can:

	Define some method on your Activity that holds the button that takes a
single View parameter, has a void return value, and is public

	In your layout XML, on the Button element, include the android:onClick
attribute with the name of the method you defined in the previous step

For example, we might have a method on our Activity that looks like:

public void someMethod(View theButton) {
 // do something useful here
}

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button
 android:onClick="someMethod"
 ...
/>

This is enough for Android to “wire together” the Button with the click
handler. When the user clicks the button, someMethod() will be called.
Another approach is to skip android:onClick, instead calling setOnClickListener()
on the Button object in Java code. When a Button is used directly by an activity,
this is not typically used — android:onClick is a bit cleaner. However, when we
start to talk about fragments, you will see that android:onClick
does not work that well with fragments, and so we will use setOnClickListener() at
that point.
Fleeting Images
Android has two widgets to help you embed images in your activities:
ImageView and ImageButton. As the names suggest, they are image-based
analogues to TextView and Button, respectively.
Each widget takes an android:src attribute (in an XML layout) to specify what
picture to use. These usually reference a drawable resource (e.g., @drawable/icon).
ImageButton, a subclass of ImageView, mixes in the standard Button
behaviors, for responding to clicks and whatnot.
For example, take a peek at the main.xml layout from the
Basic/ImageView
sample project:

<?xml version="1.0" encoding="utf-8"?>
<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/icon"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:adjustViewBounds="true"
 android:src="@drawable/molecule"/>

(from Basic/ImageView/app/src/main/res/layout/main.xml)
The result, just using the code-generated activity, is simply the image:

[image: The ImageViewDemo sample application]

Figure 92: The ImageViewDemo sample application
Android Studio Graphical Layout Editor
The ImageView widget can be found in the “Widgets” portion of the
Palette in the Android Studio graphical layout editor:

[image: Widgets Palette, ImageView Shown Highlighted]

Figure 93: Widgets Palette, ImageView Shown Highlighted
ImageButton appears alongside ImageView in that tool palette.
When you drag one of these into the preview or blueprint, you are immediately
greeted by a dialog to choose a drawable resource or color to use for the image:

[image: Image Resource Dialog]

Figure 94: Image Resource Dialog
Unfortunately, you have no choice but to choose one of these, as
due to a bug,
if you click Cancel to exit the dialog, it also abandons the entire
drag-and-drop operation.
You can drag these into a layout file, then use the Attributes pane to set
their attributes. Like all widgets, you will have an “id” option to set
the android:id value for the widget. Two others of importance, though,
are more unique to ImageView and ImageButton:

	“src” allows you to choose a drawable resource to use as the image
to be displayed, which will be filled in by whatever you chose in the
resource dialog

	“contentDescription” provides the text that will be used to describe
the image to users that have accessibility services enabled (e.g., TalkBack),
such as visually impaired users

	“scaleType” opens a drop-down menu where you can choose how the image is
to be scaled:

[image: Scale Types in Android Studio Attributes Pane]

Figure 95: Scale Types in Android Studio Attributes Pane
We will examine those scale types more in the next section.
Scaling Images
It is possible, perhaps even probable, that our ImageView size will not exactly
match the size of the images that we are trying to display. ImageView supports
a variety of “scale types” that indicate how Android should try to deal with the
discrepancy between the size/aspect ratio of the image and the size/aspect ratio of
the ImageView itself.
These values can be seen in the JavaDocs in
the ImageView.ScaleType class.
The default (fitCenter) simply scales up the image to best fit the available space.
Of note, a choice of “center” will center the image in the available space but will
not scale up the image:

[image: The ImageViewDemo Sample, Set to center]

Figure 96: The ImageViewDemo Sample, Set to center
A choice of centerCrop will scale the image so that its shortest dimension
fills the available space and crops the rest:

[image: The ImageViewDemo Sample, Set to centerCrop]

Figure 97: The ImageViewDemo Sample, Set to centerCrop
A choice of fitXY will scale the image to fill the space, ignoring the aspect
ratio:

[image: The ImageViewDemo Sample, Set to fitXY]

Figure 98: The ImageViewDemo Sample, Set to fitXY
Fields of Green. Or Other Colors.
Along with buttons and labels, fields are the third “anchor” of most GUI
toolkits. In Android, they are implemented via the EditText widget, which is
a subclass of the TextView used for labels.
Along with the standard TextView attributes (e.g., android:textStyle),
EditText has others that will be useful for you in constructing fields,
notably android:inputType, to describe what sort of input your EditText
expects (numbers? email addresses? phone numbers?). A thorough explanation of
android:inputType and its interaction with input method editors (a.k.a.,
“soft keyboards”) will be discussed in an upcoming chapter.
For example, from the
Basic/Field
sample project, here is an XML layout file showing
an EditText:

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/field"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:inputType="textMultiLine"
 android:text="@string/license"
 />

(from Basic/Field/app/src/main/res/layout/main.xml)
Note that we have android:inputType="textMultiLine", so users will be able to enter in
several lines of text. We also have defined the initial text to be the value
of a license string resource.
The result, once built and installed into the emulator, is:

[image: FieldDemo, in Theme.Material]

Figure 99: FieldDemo, in Theme.Material
Android Studio Graphical Layout Editor
The Android Studio Graphical Layout’s Palette has a whole section dedicated primarily to EditText
widgets, named “Text”:

[image: Widgets Palette, Plain Text Shown Highlighted]

Figure 100: Widgets Palette, “Plain Text” Shown Highlighted
The first entry is a TextView. The second entry (“Plain Text”) is a
general-purpose EditText. The rest come pre-configured
for various scenarios, such as a password.
You can drag any of these into your layout, then use the Attributes pane to
configure relevant attributes. The “Id” and “Text” attributes
are the same as found on TextView, as are many other attributes, inherited from TextView.
Notable EditText Attributes
The “Hint” item in the Attributes pane allows you to set a “hint” for
this EditText. The “hint” text will be shown in light gray in the EditText
widget when the user has not entered anything yet. Once the user starts typing
into the EditText, the “hint” vanishes. This might allow you to save on
screen space, replacing a separate label TextView.
The “Input Type” item in the Attributes pane allows you to describe what sort
of input you are expecting to receive in this EditText, lining up with many
of the types of fields you can drag from the Palette into the layout:

[image: Android Studios Text Fields InputType List]

Figure 101: Android Studio’s Text Fields InputType List
The inputType attribute will be covered in greater detail in
an upcoming chapter.
More Common Concepts
All widgets, including the ones shown above, extend View. The View base
class gives
all widgets an array of useful attributes and methods beyond those already
described.
Padding
Widgets have a minimum size, one that may be influenced by what is inside of
them. So, for example, a Button will expand to accommodate the size of its
caption. You can control this size using padding. Adding padding will increase
the space between the contents (e.g., the caption of a Button) and the edges
of the widget.
Padding can be set once in XML for all four sides (android:padding) or on a
per-side basis (android:paddingLeft, etc.). Padding can also be set in Java
via the setPadding() method. On Android 8.0+, there is also android:paddingHorizontal
and android:paddingVertical, to set the padding on both sides of a single
axis.
The value of any of these is a dimension — a combination of a unit of
measure and a count. So, 10dip is 10 density-independent
pixels, 2mm is 2 millimeters, etc.
Margins
By default, widgets are tightly packed, one next to the other. You can control
this via the use of margins, a concept that is reminiscent of the padding
described previously.
The difference between padding and margins comes in terms of the background.
For widgets with a transparent background — like the default look of a
TextView — padding and margins have similar visual effect, increasing
the space between the widget and adjacent widgets. However, for widgets with a
non-transparent background — like a Button — padding is considered
inside the background while margins are outside. In other words, adding padding
will increase the space between the contents (e.g., the caption of a Button)
and the edges, while adding margin increases the empty space between the edges
and adjacent widgets.
Margins can be set in XML, either on a per-side basis (e.g.,
android:layout_marginTop) or on all sides via android:layout_margin. Once
again, the value of any of these is a dimension — a combination of a unit
of measure and a count, such as 5dp for 5 density-independent pixels. On
Android 8.0+, there is also android:layout_marginHorizontal and
android:layout_marginVertical, to set the margin on both sides of a single axis.
Colors
There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a drawable to serve as the
background). Others, like android:textColor on TextView (and subclasses)
can take a ColorStateList, including via the Java setter (in this case,
setTextColor()).
A ColorStateList allows you to specify different colors for different
conditions. For example, when you get to selection widgets in an upcoming
chapter, you will see how a TextView has a different text color when it is
the selected item in a list compared to when it is in the list but not
selected. This is handled via the default ColorStateList associated with
TextView.
If you wish to change the color of a TextView widget in Java code, you have
two main choices:

	Use ColorStateList.valueOf(), which returns a ColorStateList in which all
states are considered to have the same color, which you supply as the parameter
to the valueOf() method. This is the Java equivalent of the
android:textColor approach, to make the TextView always be a specific color
regardless of circumstances.

	Create a ColorStateList with different values for different states, either
via the constructor or via an XML drawable resource. This will be covered
much later in the book.

Other Useful Attributes
Some additional attributes on View most likely to be used include:

	
android:visibility, which controls whether the widget is initially visible

	
android:nextFocusDown, android:nextFocusLeft, android:nextFocusRight,
and android:nextFocusUp, which control the focus order if the user uses the
D-pad, trackball, or similar pointing device

	
android:contentDescription, which is roughly equivalent to the alt
attribute on an HTML tag, and is used by accessibility tools to help
people who cannot see the screen navigate the application — this is very
important for widgets like ImageView

We will see more about the focus attributes and android:contentDescription in
the chapter on focus management and accessibility, later in this book.
Useful Methods
You can toggle whether or not a widget is enabled via setEnabled() and see if
it is enabled via isEnabled(). One common use pattern for this is to disable
some widgets based on a CheckBox or RadioButton checked state. We will explore
CheckBox, RadioButton, and similar sorts of widgets
a bit later in the book.
You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus once your disabling
operation is complete.
To help navigate the tree of widgets and containers that make up an activity’s
overall view, you can use:

	
getParent() to find the parent widget or container

	
findViewById() to find a child widget with a certain ID

	
getRootView() to get the root of the tree (e.g., what you provided to the
activity via setContentView())

Visit the Trails!
You can learn more about Android’s input method framework — what you might think
of as soft keyboards — in a later chapter.
Another chapter in the trails covers the use of fonts,
to tailor your TextView
widgets (and those that inherit from them, like Button).
Yet another chapter in the trails covers rich text formatting,
both for presenting
formatted text in a TextView (e.g., inline boldface) and for collecting
formatted text from the user via a customized EditText.
Debugging Your App
Now that we are starting to manipulate layouts and Java code more
significantly, the odds increase that we are going to somehow do it
wrong, and our app will crash.

[image: A Crash Dialog on Android 4.0.3]

Figure 102: A Crash Dialog on Android 4.0.3
In this chapter, we will cover a few tips on how to debug these sorts
of issues.
Get Thee To a Stack Trace
If you see one of those “Force Close” or “Has Stopped” dialogs, the first
thing you will want to do is examine the Java stack trace that is
associated with this
crash. These are logged to a facility known as Logcat, on your device
or emulator.
To view Logcat, you have two choices:

	Use the adb logcat command at the command line (or something that uses
adb logcat, such as various colorizing scripts available online)

	Use the Logcat tab in Android Studio

There are also Logcat apps on the Play Store, such as aLogcat, that will
display the contents of Logcat. However, for security and privacy reasons,
on Android 4.1 and higher devices, such apps will only be able to show you
their Logcat entries, not those from the system, your app, or anyone else.
Hence, for development purposes, it is better to use one of the other
alternatives outlined above.
Logcat in Android Studio
The Logcat view is available at any time, from pretty much anywhere in
Android Studio, by means of clicking on the Android tool window entry, usually
docked at the bottom of your IDE window:

[image: Minimized Tool Windows in Android Studio, Showing Logcat Tool]

Figure 103: Minimized Tool Windows in Android Studio, Showing Logcat Tool
Tapping on that will bring up some Android-specific logs in an
“Android DDMS” tool window, with a tab for “Devices | logcat”:

[image: Android DDMS Tool Window, Showing Logcat]

Figure 104: Android DDMS Tool Window, Showing Logcat
Logcat will show your stack traces, diagnostic information from the operating
system, and anything you wish to include via calls to static methods on the
android.util.Log class. For example, Log.e() will log a message at error
severity, causing it to be displayed in red.
If you want to send something from Logcat to somebody else, such as via an
issue tracker, just highlight the text and copy it to the clipboard, as you would
with any text editor.
The “trash can” icon atop the tool strip on the left is the “clear log” tool.
Clicking it will appear to clear Logcat. It definitely clears your Logcat view,
so you will only see messages logged after you cleared it. Note, though, that
this does not actually clear the logs from the device or emulator.
In addition, you can:

	Use the “Log level” drop-down to filter lines based on severity, where messages
for your chosen severity or higher will be displayed

	Use the search field to the right of the “Log level” drop-down to filter items
based on a search string

	Set up more permanent filters via the drop-down to the right of the search field

The Case of the Confounding Class Cast
If you crash, the stack trace might suggest that there is a problem tied to
your resources. One common flavor of this is a ClassCastException when you
call findViewById(). For example, you might call
(Button)findViewById(R.id.button), yet get a
ClassCastException: android.widget.LinearLayout as a result, indicating
that while you thought your findViewById() call would return a Button,
it really returned a LinearLayout.
Often times, this is not your fault. Sometimes, the R values get out of sync
with pre-compiled classes from previous builds. This most often occurs just
after you change your mix of resources (e.g., add a new layout).
To resolve this, you need to clean your project.
To do this, in Android Studio, choose “Build > Clean Project” from the main menu.
So, if you get a strange crash that seems like it might be related to resources,
clean your project. If the problem goes away, you are set — if the problem
persists, you will need to do a bit more debugging.
Point Break
One of the hallmarks of Java IDEs is the ability to do real-time debugging,
using breakpoints and the like. In that respect, Android Studio
works for Android apps in the same way that IntelliJ IDEA and Eclipse work
for Java apps. You can debug on an emulator or any Android device for
which you enabled USB debugging (as you may have done in Tutorial #1).
Lacking any Android Studio-specific documentation, you will wind up
referring to the documentation for IntelliJ IDEA
to learn how to use its debugger.
With Android Studio, the run controls in the toolbar will give you
some options for debugging your app:

[image: Android Studio Run Controls]

Figure 105: Android Studio Run Controls
The bug-shaped button to the right of the “run” green triangle will
launch your app and attach the debugger, so breakpoints will be honored.
If your app is already running, and you want to debug the running
process, you can do that via the toolbar button that looks like a phone
with a small bug in the lower-right corner.
The Classic Container Classes
Containers — sometimes referred to as layout managers — organize widgets
on the screen. Containers position and size widgets based upon rules that
you supply along with key device characteristics, such as available screen size.
Three containers have dominated Android app development since Android’s
introduction in late 2007: LinearLayout, RelativeLayout, and TableLayout.
This chapter focuses on those. Later chapters will explore other container
classes, such as 2016’s ConstraintLayout.
Introducing the Sampler App
The
Containers/Sampler
sample project has a bunch of layout resources that this chapter will
use to illustrate how these containers work.
If you were to run this sample app, you would see a series of tabs,
with one layout displayed per tab:

[image: Sampler App, As Initially Launched]

Figure 106: Sampler App, As Initially Launched
We are not going to get into the Java code associated with this
sample app in this chapter. That code relies on other topics, like
fragments and
the ViewPager widget, that we
have not gotten to yet. We will come back to this sample app and
see how the tabs were implemented then. For now, the focus is on the
layout files showing specific techniques for using these classic containers.
RTL and Your Layouts
Most of the world’s languages are written left-to-right. So, in this
paragraph, you read the letters and words starting from the left edge
of a line across to the right edge.
Arabic and Hebrew, among others,
are written right-to-left. The abbreviation “RTL” refers to these
languages.
Originally, Android was focused purely on left-to-right (LTR) languages.
As a result, you see attributes referring to things with respect to left
and right (e.g., android:paddingLeft).
Slowly, Android improved its RTL support. In particular, starting with
API Level 17 (Android 4.2), analogue attributes were added, replacing
“left” with “start” and “right” with “end”. When using “start”/“end”
attributes (e.g., android:paddingStart), “start” refers to where
you start reading a line of text, and “end” refers to where you end
reading a line of text:

 	Language Direction
 	“Start” Means…
 	“End” Means…

 	LTR
 	Left
 	Right

 	RTL
 	Right
 	Left

In general, we want the GUI to flow with the language direction. Things
that you might have on the left with an LTR language usually go on the right
with an RTL language, and so forth.
However, since these “start” and “end” attributes are new to API Level 17,
you cannot use them on older devices. Sometimes, we will wind up
either using the old “left”/“right” attributes or using both types of
attributes, to cover all device versions.
We will revisit RTL language support a bit later in this chapter.
LinearLayout and the Box Model
LinearLayout represents Android’s approach to a box model — widgets or child
containers are lined up in a column or row, one after the next.
Concepts and Attributes
To configure a LinearLayout, you have four main areas of control besides the
container’s contents: the orientation, the fill model, the weight, the gravity.
Orientation
Orientation indicates whether the LinearLayout represents a row or a column.
Just add the android:orientation property to your LinearLayout element in
your XML layout, setting the value to be horizontal for a row or vertical
for a column.
The orientation can be modified at runtime by invoking setOrientation() on
the LinearLayout, supplying it either HORIZONTAL or VERTICAL.
Fill Model
The point behind a LinearLayout — or any of the Android container classes
– is to organize multiple widgets. Part of organizing those widgets is determining
how much space each gets.
LinearLayout takes an “eldest child wins” approach towards allocating space.
So, if we have a LinearLayout with three children, the first child will get
its requested space. The second child will get its requested space, if there
is enough room remaining, and likewise for the third child. So if the first
child asks for all the space (e.g., this is a horizontal LinearLayout and
the first child has android:layout_width="match_parent"), the second and
third children will wind up with zero width.
Weight
But, what happens if we have two or more widgets that should split the available free
space? For example, suppose we have two multi-line fields in a column, and we
want them to take up the remaining space in the column after all other widgets
have been allocated their space.
To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns), you must also set
android:layout_weight. This property indicates what proportion of the free
space should go to that widget. If you set android:layout_weight to be the
same non-zero value for a pair of widgets (e.g., 1), the free space will be
split evenly between them. If you set it to be 1 for one widget and 2 for
another widget, the second widget will use up twice the free space that the
first widget does. And so on.
The weight for a widget is zero by default.
Another pattern for using weights is if you want to allocate sizes on a
percentage basis. To use this technique for, say, a horizontal layout:

	Set all the android:layout_width values to be 0 for the widgets in the
layout

	Set the android:layout_weight values to be the desired percentage size for
each widget in the layout

	Make sure all those weights add up to 100

If you want to have space left over, not allocated to any widget, you can
add an android:weightSum attribute to the LinearLayout, and ensure that
the sum of the android:layout_weight attributes of the children are less than
that sum. The children will each get space allocated based upon the ratio
of their android:layout_weight compared to the android:weightSum, not
compared to the sum of the weights. And there will be empty space that takes
up the rest of the room not allocated to the children.
Gravity
By default, everything in a LinearLayout is start- and top-aligned. So, if you
create a row of widgets via a horizontal LinearLayout, the row will be
flush on the start side of the screen (e.g., left in a LTR language).
If that is not what you want, you need to specify a gravity. Unlike the
physical world, Android has two types of gravity: the gravity of a widget
within a LinearLayout, and the gravity of the contents of a widget or
container.
The android:gravity property of some widgets and containers — which also
can be defined via setGravity() in Java — tells Android to slide the contents
of the widget or container in a particular direction. For example,
android:gravity="right" says to slide the contents of the widget to the
right; android:gravity="right|bottom" says to slide the contents of the
widget to the right and the bottom.
Here, “contents” varies. TextView supports android:gravity, and the
“contents” is the text held within the TextView. LinearLayout supports
android:gravity, and the “contents” are the widgets inside the container. And
so on.
Children of a LinearLayout also have the option of specifying
android:layout_gravity. Here, the child is telling the LinearLayout “if
there is room, please slide me (and me alone) in this direction”. However,
this only works in the direction opposite the orientation of the LinearLayout
– the children of a vertical LinearLayout can use android:layout_gravity
to control their positioning horizontally (start or end), but not
vertically.
For a row of widgets, the default is for them to be aligned so their texts are
aligned on the baseline (the invisible line that letters seem to “sit on”),
though you may wish to specify a gravity of center_vertical to center the
widgets along the row’s vertical midpoint.
Android Studio Graphical Layout Editor
The LinearLayout container can be found in the “Layouts” portion of the Palette
of the Android Studio graphical layout editor:

[image: Layouts Palette in Android Studio Graphical Layout Editor]

Figure 107: Layouts Palette in Android Studio Graphical Layout Editor
You can drag either the “LinearLayout (vertical)” or “LinearLayout (horizontal)”
into a layout XML resource, then start dragging in children to go into the
container.
When your LinearLayout is the selected widget, a few new toolbar buttons
will appear over the preview:

[image: LinearLayout Toolbar Buttons]

Figure 108: LinearLayout Toolbar Buttons
The only one of these that works is the left hand one, which
toggles the LinearLayout between vertical
and horizontal orientation.
When one of the children of the LinearLayout is the selected widget, the
toolbar changes:

[image: LinearLayout Toolbar Buttons, For Selected Child]

Figure 109: LinearLayout Toolbar Buttons, For Selected Child
From left to right, the buttons:

	Toggle the parent LinearLayout between horizontal and vertical orientations

	Align the child widgets’ baselines (where a “baseline” is the invisible line that
text appears to sit upon)

	Removes the android:layout_weight attribute, if it has one

	Toggle the width between match_parent and wrap_content

	Toggle the height between match_parent and wrap_content

Example: Bottom-then-Top
Those rules will make more sense once we work through some examples.
The first example is where we have two widgets. One widget should take
up its “natural” amount of space, anchored to the bottom of the screen.
The other widget should fill all the remaining space:

[image: Bottom-then-Top Layout, Using LinearLayout]

Figure 110: Bottom-then-Top Layout, Using LinearLayout
The XML
The layout XML that generated that screenshot consists of a vertical
LinearLayout and two Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:baselineAligned="false">

 <Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:text="@string/button" />

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/another_button" />
</LinearLayout>

(from Containers/Sampler/app/src/main/res/layout/bottom_then_top_ll.xml)
The LinearLayout has its sizes (android:layout_width, android:layout_height)
set each to match_parent, so it will
fill up all space available to it. In this sample app, that will be everything
below the tabs.
Both Button widgets have their android:layout_width attributes
also set to match_parent, so they
will fill up all available space on the screen horizontally.
The bottom Button has its android:layout_height set to wrap_content,
so it will only take up as much space as is needed to render its caption
and background around it.
The top Button has android:layout_height set to 0dp. If we did not
do anything else, that would result in an impossibly-short button.
However, we also have android:layout_weight="1".
When this gets rendered on the screen, LinearLayout will make two
passes through its children. On the first pass, it asks for how much
space each child wants, based upon the android:layout_height values
(since this is a vertical LinearLayout). The first Button will ask for
0 pixels of space, while the bottom Button will ask for however much
it needs for its content. Then, the second pass of the LinearLayout
through its children asks for their weights. The first Button has a
weight of 1, while the bottom Button has the default weight of 0.
As a result, the top Button gets 1/1 = 100% of all pixels left over
from what the first pass used. This causes the top Button to become
tall, shoving the bottom Button to the bottom of the screen.
Android Studio Graphical Layout Editor
You can create a new layout resource by right-clicking over the res/layout/
directory and choosing “New > Layout resource file” from the right-mouse
context menu. You then get a dialog where you can give the new resource
a name and choose the root container for that layout:

[image: New Layout Resource Dialog]

Figure 111: New Layout Resource Dialog
What you get by default depends a bit on your project:

	If your project has ConstraintLayout available to it,
the default will be a ConstraintLayout

	Otherwise, the default will be a vertical LinearLayout

As you drag Button widgets into the layout, they are initially
given a width of match_parent and a height of wrap_content:

[image: Vertical LinearLayout, with Two Button Widgets]

Figure 112: Vertical LinearLayout, with Two Button Widgets
Clicking the top button, then setting the layout_weight attribute
to 1 in the Attributes pane, gives the desired look:

[image: Vertical LinearLayout, with Weighted Button Widgets]

Figure 113: Vertical LinearLayout, with Weighted Button Widgets
Note that layout_weight may only appear for you in the “View all
attributes” perspective of the Attributes pane, rather than in the simplified list.
Example: Stacked-Percent
Weights can get more elaborate than just giving all extra room to one
widget.
The stacked-percent scenario allocates space on a percentage basis
to all of the children of the LinearLayout. In the sample app,
we have a layout file with three buttons, taking up 50%, 30%, and 20%
of the space in a vertical LinearLayout:

[image: Stacked-Percent Layout, Using LinearLayout]

Figure 114: Stacked-Percent Layout, Using LinearLayout
The XML
This time, the layout resource XML has all three Button widgets
with heights of 0:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="50"
 android:text="@string/fifty_percent"/>

 <Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="30"
 android:text="@string/thirty_percent"/>

 <Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="20"
 android:text="@string/twenty_percent"/>

</LinearLayout>

(from Containers/Sampler/app/src/main/res/layout/stacked_percent_ll.xml)
So, the first pass that the LinearLayout makes through its children,
each child asks for 0 pixels of height, meaning that all of the LinearLayout
space is available for the second pass.
On the second pass, the children report weights of 50, 30, and 20, respectively.
50+30+20=100, so the top Button gets 50/100 (50%) of the space, the
middle Button gets 30/100 (30%) of the space, and the bottom Button
gets 20/100 (20%) of the space.
Note that you would get the same results with weights of 5, 3, and 2.
Really, it is the ratios of the weights that matter. However, if you are
used to thinking in terms of percentages — perhaps due to past experience
with other GUI toolkits — you can use integer percentages if you want.
Android Studio Graphical Layout Editor
Constructing this using the graphical layout editor is similar to
the previous example:

	Create the new layout resource, choosing a LinearLayout as the root
container.

	Drag three Button widgets into the LinearLayout.

	Using the Attributes pane, set the android:layout_height values on
the three Button widgets to 0dp

	Using the Attributes pane, set the android:layout_weight values
to the three Button widgets.
Note, as before, that the weight may not be on the condensed attributes list.
You may need to view all attributes to have access to it:

[image: Vertical LinearLayout, with Full Attributes List]

Figure 115: Vertical LinearLayout, with Full Attributes List
Example: URL Dialog
Of course, you are not limited to one axis. You can nest LinearLayout
widgets to structure things along both the X and the Y axis.
For example, you might be aiming for a dialog-style form like this:

[image: URL-Dialog Layout, Using LinearLayout]

Figure 116: URL-Dialog Layout, Using LinearLayout
The XML
This layout resource is a bit more complicated, as we are now up
to four widgets plus three LinearLayout containers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="4dp"
 android:layout_marginStart="4dp"
 android:text="@string/url" />

 <EditText
 android:id="@+id/entry"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="text" />

 </LinearLayout>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="end"
 android:orientation="horizontal">

 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/cancel" />

 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/ok" />
 </LinearLayout>

</LinearLayout>

(from Containers/Sampler/app/src/main/res/layout/url_dialog_ll.xml)
The outer LinearLayout is vertical, serving to stack the two horizontal
LinearLayout rows. Each of those horizontal LinearLayout containers
has a height of wrap_content and a width of match_parent, so they span
the width of the screen but only need as much height as is required to
render their widget contents.
The first of our four widgets is the TextView. Since it is in the first
horizontal LinearLayout, it will be flush on the one side (left in a
LTR language like English). However, we have 4dp of margin, using both
the older android:layout_marginLeft and the newer, RTL-capable
android:layout_marginStart attributes. So, the widget is inset a bit
from the edge.
The second widget is the EditText. It has a width of match_parent,
so it will take over all remaining space after the TextView.
The bottom LinearLayout has android:gravity="end", which will cause
its contents to slide towards the end side of the LinearLayout (right
in a LTR language like English). It contains the two Button widgets, and
that is why the two Button widgets are slid over to the opposite end
of the form.
Android Studio Graphical Layout Editor
Not surprisingly, the more complex the layout you want to create, the more
work is required to create it. The IDE only helps to a point.
So, to construct this layout, you would need to:

	Create the new layout resource, choosing a LinearLayout as the root
container.

	Drag a “LinearLayout (horizontal)” item from the Palette into the
vertical LinearLayout. This unfortunately results in the
new LinearLayout consuming all of the space of its parent, as its
height and width are both match_parent by default:

[image: Vertical LinearLayout Holding Horizontal LinearLayout]

Figure 117: Vertical LinearLayout Holding Horizontal LinearLayout

	Using the Attributes pane, set the padding to be 8dp on all sides:

[image: 8dp Padding on the Horizontal LinearLayout]

Figure 118: 8dp Padding on the Horizontal LinearLayout

	Drag a TextView into the horizontal LinearLayout in the Component Tree,
and set its text to URL:, its width to wrap_content, and remove its
layout_weight value:

[image: Horizontal LinearLayout with TextView]

Figure 119: Horizontal LinearLayout with TextView

	Drag a “Plain Text” EditText into the horizontal LinearLayout,
setting its width to be match_parent, its text to be empty,
its inputType to be something appropriate (e.g., textUri, since
in theory this field should hold a URL), and remove its weight.
Note that you may find it
easier to drag the widget into its container via the Component Tree
tool, as you can better control the order of the children that way:

[image: Horizontal LinearLayout with TextView and EditText]

Figure 120: Horizontal LinearLayout with TextView and EditText

	Drag another “LinearLayout (horizontal)” item from the Palette, but
this time drop it on the “LinearLayout(vertical)” in the Component Tree,
then reordering the children in the Component Tree to put the new
LinearLayout at the bottom:

[image: Component Tree with Two Horizontal LinearLayouts]

Figure 121: Component Tree with Two Horizontal LinearLayouts

	Adjust the height of both LinearLayout widgets to be wrap_content.

	Drag two Button widgets into that lower LinearLayout in the
Component Tree:

[image: Two Buttons in Lower Horizontal LinearLayout]

Figure 122: Two Buttons in Lower Horizontal LinearLayout

	Remove the weights from both Button widgets via the Attributes pane:

[image: Two Smaller Buttons in Lower Horizontal LinearLayout]

Figure 123: Two Smaller Buttons in Lower Horizontal LinearLayout

	Change the gravity of the lower horizontal LinearLayout to be
end, using the Attributes pane:

[image: Two Smaller Right-Flush Buttons in Lower Horizontal LinearLayout]

Figure 124: Two Smaller Right-Flush Buttons in Lower Horizontal LinearLayout

	Change the captions on the buttons to “OK” and “Cancel”:

[image: Buttons with Desired Captions]

Figure 125: Buttons with Desired Captions
Now, having done all of that, the right-most toolbar button above the
preview and blueprint will now be a yellow triangle,
indicating some warnings about the layout that we built. Tapping
that icon will display a pane with messages explaining what
Android Studio does not like:

[image: Layout Warning Messages]

Figure 126: Layout Warning Messages
Each of the warnings in the list usually has an explanation, some
suggested fixes, and other explanatory information. Clicking the
button for a suggested fix will apply that fix and clear up that warning.
Some of the warnings may come from the captions for the TextView
and Button widgets. If you just type a string into the Attributes
pane, that fills in the literal string into the layout, and ideally
we use string resources. For those, the “Extract string resource”
suggested fix will allow you to define those as string resources.
Some of those warnings will be about certain things about styles
(e.g., “Buttons in button bars should be borderless”). While in the
long run you might care about those warnings, in the short term, while
you are learning Android, ignoring the warnings using the suggested
fix is a good idea.
One of those warnings will be about a missing android:labelFor attribute,
which is part of the accessibility support system in Android,
which we will explore later. Another is about the order of the buttons,
which Google disagrees with.
Example: A Bigger Form
Not everything in a form has to be inside a horizontal
LinearLayout which is itself inside a vertical LinearLayout.
You only need a horizontal LinearLayout when you have a row that
contains two or more widgets. For single-widget rows, they can just
be simple children of vertical LinearLayout.
For example, perhaps you have a more elaborate form in mind, with
several fields and other widgets, like this one:

[image: Form Layout, Using LinearLayout]

Figure 127: Form Layout, Using LinearLayout
The XML
The form’s layout resource resembles the URL-dialog scenario
from earlier:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:padding="8dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/name" />
 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="text" />
 </LinearLayout>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/home_planet" />
 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="text" />
 </LinearLayout>

 <CheckBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/android_programmer" />

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/favorite_food" />
 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="text" />
 </LinearLayout>

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/do_something" />

</LinearLayout>

(from Containers/Sampler/app/src/main/res/layout/form_ll.xml)
However, note that the CheckBox and the Button are not themselves
wrapped in horizontal LinearLayout containers. They are merely direct
children of the vertical LinearLayout. In this case, both are set to
have a width of match_parent, though that is not required — you could
have them set to wrap_content if you prefer.
We will look at CheckBox in greater detail in
an upcoming chapter.
Android Studio Graphical Layout Editor
Setting up this form follows the same basic recipe as was used for
the simpler dialog form from earlier in this chapter:

	Set up a layout resource rooted in a vertical LinearLayout

	Drag a horizontal LinearLayout into the vertical LinearLayout

	Drag a TextView and an EditText into the horizontal LinearLayout
and configure as needed

	Repeat those last two steps for each of the other five rows

[image: Bigger Form, As Seen in Android Studio]

Figure 128: Bigger Form, As Seen in Android Studio
The Problem
If you look back at the screenshot, you will notice that the labeled
EditText widgets are ragged, in terms of their layout. Each
EditText immediately follows the TextView label, without regard
to any sort of “columns”. That is because each LinearLayout is
largely independent. You cannot readily have one row depend upon
the other rows.
A TableLayout would be a better choice for this sort
of a form, as there we can have distinct columns of labels and fields.
We will see how TableLayout handles this structure later in this
chapter.
All Things Are Relative
RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You
can place Widget X below and to the left of Widget Y, or have Widget Z’s bottom
edge align with the bottom of the container, and so on.
Concepts and Attributes
To make all this work, we need ways to reference other widgets within an XML
layout file, plus ways to indicate the relative positions of those widgets.
Positions Relative to Container
The easiest relations to set up are tying a widget’s position to that of its
container:

	
android:layout_alignParentTop says the widget’s top should align with the
top of the container

	
android:layout_alignParentBottom says the widget’s bottom should align
with the bottom of the container

	
android:layout_alignParentStart says the widget’s start side should align
with the start side of the container

	
android:layout_alignParentEnd says the widget’s end side should align
with the end side of the container

	
android:layout_centerHorizontal says the widget should be positioned
horizontally at the center of the container

	
android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

	
android:layout_centerInParent says the widget should be positioned both
horizontally and vertically at the center of the container

All of these attributes take a simple boolean value (true or false).
Also, there are android:layout_alignParentLeft and android:layout_alignParentRight
attributes, for pre-Android 4.2 devices or for cases where you want to
position irrespective of language direction.
Note that the padding of the widget is taken into account when performing these
various alignments. The alignments are based on the widget’s overall cell
(combination of its natural space plus the padding).
Relative Notation in Attributes
The remaining attributes of relevance to RelativeLayout take as a value the
identity of a widget in the container. To do this:

	Put identifiers (android:id attributes) on all elements that you will need
to address

	Address these widgets from other widgets using the identifiers

The first occurrence of an id value should have the plus sign (@+id/widget_a);
the second and subsequent times that id value is used in the layout file should
drop the plus sign (@id/widget_a). This allows the build tools to better help
you catch typos in your widget id values — if you do not have a plus sign
for a widget id value that has not been seen before, that will be caught at
compile time.
For example, if Widget A appears in the RelativeLayout before Widget B, and
Widget A is identified as @+id/widget_a, Widget B can refer to Widget A in one
of its own attributes via the identifier @id/widget_a.
Positions Relative to Other Widgets
There are four attributes that control position of a widget vis-à-vis other
widgets:

	
android:layout_above indicates that the widget should be placed above the
widget referenced in the property

	
android:layout_below indicates that the widget should be placed below the
widget referenced in the property

	
android:layout_toStartOf indicates that the widget should be placed to the
start of the widget referenced in the property

	
android:layout_toEndOf indicates that the widget should be placed to the
end of the widget referenced in the property

There are also android:layout_toLeftOf and android:layout_toRightOf
attributes for use with older devices.
Beyond those four, there are five additional attributes that can control one
widget’s alignment relative to another:

	
android:layout_alignTop indicates that the widget’s top should be aligned
with the top of the widget referenced in the property

	
android:layout_alignBottom indicates that the widget’s bottom should be
aligned with the bottom of the widget referenced in the property

	
android:layout_alignStart indicates that the widget’s starting edge should be
aligned with the starting edge of the widget referenced in the property

	
android:layout_alignEnd indicates that the widget’s ending edge should be
aligned with the ending edge of the widget referenced in the property

	
android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the “baseline” is that invisible line that
text appears to sit on)

The last one is useful for aligning labels and fields so that the text appears
“natural”. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field’s box with the top
of the label, which will cause the text of the label to be higher on-screen
than the text entered into the field.
Android Studio Graphical Layout Editor
You will find RelativeLayout in the “Legacy” section of the Palette in the Android Studio
Graphical Layout editor. You can drag that into your layout XML resource.

[image: Legacy Section of Palette, RelativeLayout Highlighted]

Figure 129: Legacy Section of Palette, RelativeLayout Highlighted
As you drag other widgets into your RelativeLayout, you will see arrows
hinting at the rules that will be applied if you drop the widget at the
current mouse location:

[image: Dragging a Widget in a RelativeLayout]

Figure 130: Dragging a Widget in a RelativeLayout
Getting the rules that you want may or may not be possible purely through
drag-and-drop. You may need to just drop the widget into the RelativeLayout
and manually adjust the rules, whether by using the Attributes pane or by
editing the XML directly.
Example: Bottom-then-Top
Earlier in the chapter, we saw how to implement the bottom-then-top
pattern using a LinearLayout, where we had
a small button on the bottom and a large button on the top. The large
button was set to take up all space that was not required by the small
button.
We can achieve the same result using a RelativeLayout.
The XML
As with the LinearLayout scenario, we have one container plus the
two Button widgets. In this case, the container is a RelativeLayout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_above="@+id/another_button"
 android:layout_alignParentTop="true"
 android:text="@string/button" />

 <Button
 android:id="@id/another_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="@string/another_button" />
</RelativeLayout>

(from Containers/Sampler/app/src/main/res/layout/bottom_then_top_rl.xml)
The bottom Button has the same size as before, with android:layout_width
set to match_parent and android:layout_height set to wrap_content.
However, it also has android:layout_alignParentBottom="true", anchoring
it to the bottom of the RelativeLayout. Since the RelativeLayout fills
all available space, the bottom Button is anchored to the bottom of the
screen, in effect.
The top Button has two RelativeLayout positioning attributes:

	
android:layout_above="@+id/another_button", so it is placed above
the bottom Button

	
android:layout_alignParentTop="true", so it is anchored to the top
of the RelativeLayout

Given these rules, it does not matter what the android:layout_height
attribute value is. The Button will be stretched between those two
anchor points: the top of the RelativeLayout and the top of the bottom
Button.
Android Studio Graphical Layout Editor
By default, when creating a new layout resource file, you get either a
ConstraintLayout or a
vertical LinearLayout as the root element. You can change that by
replacing the “Root element” value with any other widget or container
class name, such as RelativeLayout:

[image: New Layout Resource with RelativeLayout]

Figure 131: New Layout Resource with RelativeLayout
However, from there, using the drag-and-drop capabilities will start
to be more of a pain than they are worth.
You can drag a Button into the RelativeLayout, for example:

[image: RelativeLayout and Button]

Figure 132: RelativeLayout and Button
However, you get no visual feedback after you drop the widget of what
the rules are that the IDE chose, based on your drag-and-drop location.
If you rummage through the Attributes pane, you will see that the
rules are reflected in some checkbox attributes for the boolean
RelativeLayout android:layout_ attributes, plus margins based on how
far from the RelativeLayout edges you placed the widget:

[image: Button Attributes in RelativeLayout]

Figure 133: Button Attributes in RelativeLayout
Fixing those through the Attributes pane is no easier than is fixing them
through the XML editor. Arguably, using the Attributes pane is slower.
Example: URL Dialog
We also used LinearLayout to create the “URL dialog” UI,
where we had the labeled field along with “OK” and “Cancel” buttons.
That same structure can also be built using a RelativeLayout.
With LinearLayout, we needed three containers: one vertical LinearLayout
wrapped around two horizontal LinearLayouts. RelativeLayout is simpler from
that standpoint, as we only need one RelativeLayout. The complexity moves
into the widgets instead:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/entry"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:layout_marginLeft="4dp"
 android:layout_marginStart="4dp"
 android:text="@string/url"/>

 <EditText
 android:id="@id/entry"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_toRightOf="@id/label"
 android:layout_toEndOf="@id/label"
 android:inputType="text"/>

 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignRight="@id/entry"
 android:layout_alignEnd="@id/entry"
 android:layout_below="@id/entry"
 android:text="@string/ok"/>

 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignTop="@id/ok"
 android:layout_toLeftOf="@id/ok"
 android:text="@string/cancel"/>

</RelativeLayout>

(from Containers/Sampler/app/src/main/res/layout/url_dialog_rl.xml)
All the RelativeLayout itself needs is its size, set the same as with
vertical LinearLayout in the earlier version of this sample — a width
of match_parent and a height of wrap_content.
Other than android:layout_width and android:layout_height, all of the
widget attributes with layout_ are rules used by children of a RelativeLayout
for positioning. So, we have:

 	Widget
 	Horizontal Anchor
 	Vertical Anchor

 	TextView
 	left/start side of the RelativeLayout, with 4dp of margin
 	baseline of the EditText

 	EditText
 	right/end side of the TextView

 	top of the RelativeLayout

 	“OK” Button

 	right/end edge of the EditText

 	bottom of the EditText

 	“Cancel” Button

 	left/start edge of the “OK” Button

 	top of the “OK” Button

Since the EditText width is set to match_parent, it will fill all
the space in the “row” after the TextView. Since the “OK” Button
horizontal position is tied to the EditText, the Button slides over
to the edge of the screen, dragging along the connected “Cancel” Button.
As a result, we get the same basic UI:

[image: URL-Dialog Layout, Using RelativeLayout]

Figure 134: URL-Dialog Layout, Using RelativeLayout
Example: Overlap
RelativeLayout also has a feature that LinearLayout lacks — the
ability to have widgets overlap one another. Later children of a
RelativeLayout are “higher in the Z axis” than are earlier children, meaning
that later children will overlap earlier children if they are set up to occupy
the same space in the layout.
Here, we have two buttons, where the “I am small” button overlaps
the “I am big” button:

[image: Overlap Layout, Using RelativeLayout]

Figure 135: Overlap Layout, Using RelativeLayout
The layout is fairly simple:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="@string/big"
 android:textSize="120dip"
 android:textStyle="bold"/>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:text="@string/small"/>

</RelativeLayout>

(from Containers/Sampler/app/src/main/res/layout/overlap_rl.xml)
The first Button is set to fill the screen. The second Button is set to be
centered inside the parent, but only take up as much space as is needed for its
caption. Hence, the second Button will appear to “float” over the first
Button.
Both Button widgets can still be clicked, though clicking on the smaller
Button does not also click the bigger Button. Your clicks will be handled
by the widget on top in the case of an overlap like this.
On Android 5.0 and higher, it is possible to achieve a similar effect
with LinearLayout by using the android:elevation attribute to control
the Z axis, where higher elevation values mean higher on the Z axis, floating
over those that are lower on the Z axis.
Tabula Rasa
If you like HTML tables, you will like
Android’s TableLayout. It allows you to position your widgets in a grid
to your specifications. You control the number of rows and columns, which
columns might shrink or stretch to accommodate their contents, and so on.
TableLayout works in conjunction with TableRow. TableLayout controls the
overall behavior of the container, with the widgets themselves poured into one
or more TableRow containers, one per row in the grid.
Concepts and Attributes
For all this to work, we need to figure out how widgets work with rows and
columns, plus how to handle widgets that live outside of rows.
Putting Cells in Rows
Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly
how many rows appear in the table.
The number of columns are determined by Android; you control the number of
columns in an indirect fashion.
First, there will be at least one column per widget in your longest row. So if
you have three rows, one with two widgets, one with three widgets, and one with
four widgets, there will be at least four columns.
However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
 <TextView android:text="URL:" />
 <EditText
 android:id="@+id/entry"
 android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.
Ordinarily, widgets are put into the first available column. In the above
fragment, the label would go in the first column (column 0, as columns are
counted starting from 0), and the field would go into a spanned set of three
columns (columns 1 through 3). However, you can put a widget into a
different column via the android:layout_column property, specifying the
0-based column the widget belongs to:

<TableRow>
 <Button
 android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third
column (column 2). The OK button then goes into the next available column,
which is the fourth column.
Non-Row Children of TableLayout
Normally, TableLayout contains only TableRow elements as immediate
children. However, it is possible to put other widgets in between rows. For
those widgets, TableLayout behaves a bit like LinearLayout with vertical
orientation. The widgets automatically have their width set to match_parent,
so they will fill the same space that the longest row does.
Stretch, Shrink, and Collapse
By default, each column will be sized according to the “natural” size of the
widest widget in that column (taking spanned columns into account). Sometimes,
though, that does not work out very well, and you need more control over column
behavior.
You can place an android:stretchColumns property on the TableLayout.
This lists the column or columns that should absorb any extra space
on the row, if the natural width of the columns collectively is narrower
than the available horizontal space. You can:

	List a single column to be stretched (e.g., android:stretchColumns="0"
to stretch the first column)

	Provide a comma-delimited list of columns to be stretched
(e.g., android:stretchColumns="0,1"
to stretch the first two columns)

	Use * to indicate that all columns should be stretched, akin to
using equal android:layout_weight values in a horizontal
LinearLayout (e.g., android:stretchColumns="*")

Conversely, you can place an android:shrinkColumns property on the
TableLayout. Again, this should be a single column number, a
comma-delimited list of column numbers, or * as shorthand for referring
to all columns. The columns listed in this property
will try to word-wrap their contents to reduce the effective width of the
column — by default, widgets are not word-wrapped. This helps if you have
columns with potentially wordy content that might cause some columns to be
pushed off the right side of the screen.
You can also leverage an android:collapseColumns property on the
TableLayout, again with a column number or comma-delimited list of column
numbers (* is not documented as an available option).
These columns will start out “collapsed”, meaning they will be part of
the table information but will be invisible. Programmatically, you can collapse
and un-collapse columns by calling setColumnCollapsed() on the TableLayout.
You might use this to allow users to control which columns are of importance to
them and should be shown versus which ones are less important and can be hidden.
You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().
Android Studio Graphical Layout Editor
You will find TableLayout and TableRow
in the “Layouts” section of the Palette in the Android Studio
graphical layout editor:

[image: Layouts Section of Palette, TableLayout Highlighted]

Figure 136: Layouts Section of Palette, TableLayout Highlighted
Given a TableLayout, you can drag one or more TableRow containers
into it, then start dragging widgets into the rows, much as you might
set up nested LinearLayout containers.
Example: A Bigger Form
One area where TableLayout excels is with forms, particularly if you are
using the classic two-column “label and widget” structure for the form.
This is because TableLayout can give you real columns, whereas
LinearLayout and RelativeLayout cannot.
As with most TableLayout usages, the immediate children of ours
are mostly TableRow containers, each providing the contents for
the columns:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="8dp"
 android:stretchColumns="1">

 <TableRow>
 <TextView android:text="@string/name" />
 <EditText android:inputType="text" />
 </TableRow>

 <TableRow>
 <TextView android:text="@string/home_planet" />
 <EditText android:inputType="text" />
 </TableRow>

 <TableRow>
 <CheckBox
 android:layout_column="1"
 android:text="@string/android_programmer" />
 </TableRow>

 <TableRow>
 <TextView android:text="@string/favorite_food" />
 <EditText android:inputType="text" />
 </TableRow>

 <Button android:text="@string/do_something" />

</TableLayout>

(from Containers/Sampler/app/src/main/res/layout/form_tl.xml)
The TableLayout itself has android:stretchColumns="1", so all leftover
space in the rows will go to the second column (with the first column having
an index of 0).
The first, second, and fourth TableRow each have the same structure,
with a TextView label preceding the EditText where the user can fill
in the data. The third TableRow, though, has only one child:
the CheckBox. And, our Button lies outside of any TableRow, as
a direct child of the root TableLayout. Both the CheckBox and the
Button will exist on a row of their own. The difference is that
the CheckBox goes in the second column, courtesy of android:layout_column="1",
whereas the Button will span the entire row (the way TableRow containers
span the entire width of the TableLayout).
So, compared with
the original LinearLayout version of this sample,
our TableLayout columns are neat and aligned:

[image: Form Layout, Using TableLayout]

Figure 137: Form Layout, Using TableLayout
Example: URL Dialog
The “URL dialog” layout, previously seen implemented using
LinearLayout and
RelativeLayout,
can also be implemented using a TableLayout. This is not the most
natural use of a TableLayout, but you can do it if you wanted.
As with the form sample above, we start with a root TableLayout having
android:stretchColumns="1" to give all extra space to the second column…
even though we will wind up with a total of four columns this time:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1">

 <TableRow>

 <TextView
 android:layout_marginLeft="4dip"
 android:layout_marginStart="4dip"
 android:text="@string/url" />

 <EditText
 android:id="@+id/entry"
 android:layout_span="3"
 android:inputType="text" />
 </TableRow>

 <TableRow>

 <Button
 android:id="@+id/cancel"
 android:layout_column="2"
 android:text="@string/cancel" />

 <Button
 android:id="@+id/ok"
 android:text="@string/ok" />
 </TableRow>

</TableLayout>

(from Containers/Sampler/app/src/main/res/layout/url_dialog_tl.xml)
The EditText in the first TableRow has android:layout_span="3", indicating
that it should span to fill three columns. That, plus our one TextView,
means that the first row is set up for four columns in total.
The first Button in the second TableRow has android:layout_column="2",
indicating that it should go into the third column. The other Button
will go into the next column (the fourth column in this case), and the
first two columns are skipped. So, this row also is set up for four columns.
So, when android:stretchColumns="1" is applied, the extra space will
be given to the “contents” of the second column:

	the EditText in the first row

	the empty space preceding the two Button widgets in the second row

Hey, What About ConstraintLayout?
In 2016, Google introduced ConstraintLayout, with a vision of it
becoming the fourth major container and perhaps the default one that
you would choose. ConstraintLayout has its benefits, to be certain.
However, it requires the use of a library, and we have not yet covered
how to attach libraries to an Android module.
So, we will discuss ConstraintLayout a bit later in the book.
Turning Back to RTL
In order for the “start”/“end” attributes to work, you need to have
android:supportsRtl="true" in your <application> element in your manifest.
Most newly-created projects will have this attribute already set for
you by the new-project wizard.
To see how your app behaves with RTL — without having to learn Arabic
or Hebrew, if you are not literate in those languages — you can force
Android to use RTL layout rules with any language on Android 4.2+ devices.
To do this, go into the Settings app of the device or emulator
and choose “Developer options”. In there, scroll down to the
“Force RTL layout direction” item. By default, this is turned off, and
so layout direction is determined by the user’s chosen language:

[image: Developer Options in Settings, Normal Mode]

Figure 138: Developer Options in Settings, Normal Mode
Tapping that switch uses RTL layout rules — with “start” referring
to the right and “end” referring to the left — for all languages:

[image: Developer Options in Settings, Forced-RTL Mode]

Figure 139: Developer Options in Settings, Forced-RTL Mode
As a reminder, if “Developer options” is not in the list of Settings
categories, go into the “About device” category, find the build number
item, and tap on it seven times. This will enable “Developer options”
back on the main list of Settings categories.
Other Common Widgets and Containers
In the chapter on basic widgets, we left out all of the classic
“two-state” widgets, such as checkboxes and radio buttons. We will examine those
and other related widgets in this chapter.
Beyond the classic general-purpose containers (LinearLayout,
RelativeLayout, TableLayout), there are other specialized containers,
like FrameLayout and RadioGroup, that you will use from time to
time. We will examine those in this chapter as well.
Just a Box to Check
The classic checkbox has two states: checked and unchecked. Clicking the
checkbox toggles between those states to indicate a choice (e.g., “Add rush
delivery to my order”).
In Android, there is a CheckBox widget to meet this need. It has TextView
as an ancestor, so you can use TextView properties like android:textColor
to format the widget.
Within Java, you can invoke:

	
isChecked() to determine if the checkbox has been checked

	
setChecked() to force the checkbox into a checked or unchecked state

	
toggle() to toggle the checkbox as if the user clicked upon it

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox
changes.
For example, from
the Basic/CheckBox sample project,
here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/check"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/unchecked"/>

(from Basic/CheckBox/app/src/main/res/layout/main.xml)
The corresponding CheckBoxDemo.java retrieves and configures the behavior of
the checkbox:

package com.commonsware.android.checkbox;

import android.app.Activity;
import android.os.Bundle;
import android.widget.CheckBox;
import android.widget.CompoundButton;

public class CheckBoxDemo extends Activity implements
 CompoundButton.OnCheckedChangeListener {
 CheckBox cb;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 cb=(CheckBox)findViewById(R.id.check);
 cb.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (isChecked) {
 cb.setText(R.string.checked);
 }
 else {
 cb.setText(R.string.unchecked);
 }
 }
}

(from Basic/CheckBox/app/src/main/java/com/commonsware/android/checkbox/CheckBoxDemo.java)
Note that the activity serves as its own listener for checkbox state changes
since it implements the OnCheckedChangeListener interface (set via
cb.setOnCheckedChangeListener(this)). The callback for the listener is
onCheckedChanged(), which receives the checkbox whose state has changed and
what the new state is. In this case, we update the text of the checkbox to
reflect what the actual box contains.

[image: CheckBoxDemo Sample App, with CheckBox Checked]

Figure 140: CheckBoxDemo Sample App, with CheckBox Checked
Android Studio Graphical Layout Editor
The CheckBox widget can be found in the “Buttons” portion of the
Palette in the Android Studio Graphical Layout editor:

[image: Widgets Palette, CheckBox Shown Highlighted]

Figure 141: Widgets Palette, CheckBox Shown Highlighted
You can drag it into the layout and configure it
as desired using the Attributes pane. As CheckBox inherits from TextView, most
of the settings are the same as those you would find on a regular TextView.
Don’t Like Checkboxes? How About Toggles or Switches?
A similar widget to CheckBox is ToggleButton. Like CheckBox,
ToggleButton is a two-state widget that is either checked or unchecked.
However, ToggleButton has a distinct visual appearance:

[image: ToggleButtonDemo Sample, Unchecked]

Figure 142: ToggleButtonDemo Sample, Unchecked

[image: ToggleButtonDemo Sample, Checked]

Figure 143: ToggleButtonDemo Sample, Checked
Otherwise, ToggleButton behaves much like CheckBox. You can put it in a
layout file, as seen in
the Basic/ToggleButton sample:

<?xml version="1.0" encoding="utf-8"?>
<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toggle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

(from Basic/ToggleButton/app/src/main/res/layout/main.xml)
You can also set up an OnCheckedChangeListener to be notified when the user
changes the state of the ToggleButton.
Similarly, Android has a Switch widget, showing the state via a small
“ON/OFF” slider:

[image: SwitchDemo Sample, Unchecked]

Figure 144: SwitchDemo Sample, Unchecked

[image: SwitchDemo Sample, Checked]

Figure 145: SwitchDemo Sample, Checked
Switch, like CheckBox and ToggleButton, inherits from CompoundButton,
and therefore shares a common API, for methods like toggle(), isChecked(),
and setChecked(). And, as with the others, you can put it in a
layout file, as seen in
the Basic/Switch sample:

<?xml version="1.0" encoding="utf-8"?>
<Switch xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toggle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

(from Basic/Switch/app/src/main/res/layout/main.xml)
The biggest limitation with Switch is that it was only added to the Android SDK
in API Level 14. If your minSdkVersion is set to 14 or higher, you are welcome
to use Switch. If your minSdkVersion is set to something lower than 14, though,
you will either need to choose something else or get into more complicated
scenarios, like using a library that offers a backport of Switch. We will cover
those more complicated scenarios later in the book; for now, it is simplest to
only use Switch if your minSdkVersion is set to 14 or higher.
Android Studio Graphical Layout Editor
The ToggleButton and Switch widgets can be found in the “Buttons”
portion of the
Palette in the Android Studio Graphical Layout editor:

[image: Widgets Palette, ToggleButton Highlighted]

Figure 146: Widgets Palette, ToggleButton Highlighted
You can drag either widget into the layout and configure it
as desired using the Attributes pane.
Turn the Radio Up
As with other implementations of radio buttons in other toolkits, Android’s
radio buttons are two-state, like checkboxes, but can be grouped such that only
one radio button in the group can be checked at any time.
CheckBox, ToggleButton, Switch, and RadioButton all inherit from CompoundButton,
which in turn inherits from TextView. Hence, all the standard TextView properties for
font face, style, color, etc. are available for controlling the look of radio
buttons. Similarly, you can call isChecked() on a RadioButton to see if it
is selected, toggle() to change its checked state, and so on,
like you can with a CheckBox.
Most times, you will want to put your RadioButton widgets inside of a
RadioGroup. The RadioGroup is a LinearLayout that indicates a set of radio buttons whose state is
tied, meaning only one button out of the group can be selected at any time. If
you assign an android:id to your RadioGroup in your XML layout, you can
access the group from your Java code and invoke:

	
check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

	
clearCheck() to clear all radio buttons, so none in the group are checked

	
getCheckedRadioButtonId() to get the ID of the currently-checked radio
button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to
RadioButton widgets that are immediate children of the RadioGroup. You
cannot have other containers between the RadioGroup and its RadioButton
widgets.
For example, from
the Basic/RadioButton sample application,
here is an XML
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <RadioButton android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rock" />

 <RadioButton android:id="@+id/radio2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/scissors" />

 <RadioButton android:id="@+id/radio3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/paper" />
</RadioGroup>

(from Basic/RadioButton/app/src/main/res/layout/main.xml)
Using the stock Android-generated Java for the project and this layout, you get:

[image: RadioButtonDemo, with Scissors Checked]

Figure 147: RadioButtonDemo, with “Scissors” Checked
Note that the radio button group is initially set to be completely unchecked at
the outset. To preset one of the radio buttons to be checked, use either
setChecked() on the RadioButton or check() on the RadioGroup from
within your onCreate() callback in your activity. Alternatively, you can use
the android:checked attribute on one of the RadioButton widgets in the
layout file.
Android Studio Graphical Layout Editor
The RadioGroup container and RadioButton widget can be found in the “Buttons”
portion of the
Palette in the Android Studio Graphical Layout editor:

[image: Widgets Palette, RadioGroup Highlighted]

Figure 148: Widgets Palette, RadioGroup Highlighted
Dragging a RadioGroup into the preview works much like dragging a LinearLayout
into the preview. You get a box into which you can drag other widgets, such
as the RadioButton found in the “Widgets” section of the Palette.
Scrollwork
Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for
doing this is to use scrolling, so only part of the information is visible at
one time, the rest available via scrolling up or down.
ScrollView is a container that provides scrolling for its contents. You can
take a layout that might be too big for some screens, wrap it in a
ScrollView, and still use your existing layout logic. It just so happens that
the user can only see part of your layout at one time, the rest available via
scrolling.
For example, here is a ScrollView used in an XML layout file
(from the Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="0">
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#000000"/>
 <TextView android:text="#000000"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#440000" />
 <TextView android:text="#440000"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#884400" />
 <TextView android:text="#884400"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#aa8844" />
 <TextView android:text="#aa8844"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffaa88" />
 <TextView android:text="#ffaa88"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffffaa" />
 <TextView android:text="#ffffaa"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80dip"
 android:background="#ffffff" />
 <TextView android:text="#ffffff"
 android:paddingLeft="4dip"
 android:layout_gravity="center_vertical" />
 </TableRow>
 </TableLayout>
</ScrollView>

(from Containers/Scroll/app/src/main/res/layout/main.xml)
Without the ScrollView, the table would take up at least 560
density-independent pixels (7 rows at 80 dips each,
based on the View declarations). There may be some devices
with screens capable of showing that much information, but many will be
smaller. The ScrollView lets us keep the table as-is, but only present part
of it at a time.
On the stock Android emulator, when the activity is first viewed, you see:

[image: The ScrollViewDemo sample application]

Figure 149: The ScrollViewDemo sample application
Notice how only five rows and part of the sixth are visible. You can scroll up and down to see the
remaining rows. Also note how the right side of the content gets clipped by the
scrollbar — be sure to put some padding on that side or otherwise ensure
your own content does not get clipped in that fashion.
Android also has HorizontalScrollView, which works like ScrollView…
just horizontally. This would be good for forms that might be too wide rather
than too tall. Note that ScrollView only scrolls vertically and
HorizontalScrollView only scrolls horizontally.
Also, note that you cannot put scrollable items into a ScrollView. For
example, a ListView widget — which we will see in
an upcoming chapter — already knows how to scroll. You do not need to
put a ListView in a ScrollView, and if you were to try, it would not work
very well.
And, a ScrollView or HorizontalScrollView can only have one child — if
you want more than one, wrap the children in a suitable container class
(e.g., a LinearLayout) and put
that inside the ScrollView or HorizontalScrollView.
Android Studio Graphical Layout Editor
The ScrollView and HorizontalScrollView widgets appear in the “Containers”
section of the Palette in the Graphical Layout editor.
You can drag one of these into your layout XML resource, then drag one child
into it.
Making Progress with ProgressBars
If you are going to fork background threads to do work on behalf of the
user, you will want to think about keeping the user informed that work is
going on. This is particularly true if the user is effectively waiting for that
background work to complete.
The typical approach to keeping users informed of progress is some form of
progress bar, like you see when you copy a bunch of files from place to
place in many desktop operating systems. Android supports this through
the ProgressBar widget.
A ProgressBar keeps track of progress, defined as an integer, with 0
indicating no progress has been made. You can define the maximum end of
the range — what value indicates progress is complete — via setMax(). By
default, a ProgressBar starts with a progress of 0, though you can start from
some other position via setProgress().
Android 8.0 adds setMin() and android:min to set the lower end of the range
to a custom value, instead of the default of 0.
If you prefer your progress bar to be indeterminate — meaning that it will
show a general animated effect, rather than a specific amount of progress –
use setIndeterminate(), setting it to true.
In your Java code, you can either positively set the amount of progress that
has been made (via setProgress()) or increment the progress from its
current amount (via incrementProgressBy()). You can find out how much
progress has been made via getProgress().
Framing the Scene
Android has a FrameLayout class. Like LinearLayout, RelativeLayout,
and TableLayout, FrameLayout exists to size and position its children.
However, FrameLayout has a very simple pair of layout rules:

	All children go in the upper-start corner (e.g., upper-left for LTR languages),
unless android:gravity indicates to position the children elsewhere

	Later children are higher on the Z axis than are earlier children,
as with RelativeLayout, so children can overlap

The result is that all the widgets are stacked one on top of another.
This may seem useless. And, truth be told, it is not used nearly as commonly
as are other containers.
Primarily, FrameLayout is used in places where we want to reserve space
for something, but we do not know what the “something” is at compile time.
The decision of what the “something” is will be made at runtime, where
we will use Java code to put something in the FrameLayout. We will see
this pattern used with fragments, later in the book.
Occasionally, FrameLayout is literally used for “framing”, where we want
some sort of a border around a child. In this case, the background of the
FrameLayout (e.g., android:background) defines what the frame should
look like. We will see this approach used in a few places, such as in
the chapter on adding drag-and-drop to your app.
Visit the Trails!
The trails portion of the book contains a widget catalog,
providing capsule descriptions
and samples for a number of widgets not described elsewhere in this book.
You might also be interested in GridLayout, which is an
alternative to the classic LinearLayout, RelativeLayout, and TableLayout
containers.
Tutorial #5 - Creating a Layout
Later in these tutorials, we are going to allow the user to write down
notes related to the book. These notes will be stored in a database and
can be viewed, modified, or deleted as the user sees fit.
In this tutorial, we are going to set up the layout resource to allow
the user to fill in these notes.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of this tutorial
in the book’s GitHub repository.
Step #1: Creating a New Layout Resource
Right-click over the res/layout/ directory and choose New > “Layout resource file”
from the context menu. This brings up the New Layout Resource File dialog:

[image: Android Studio New Layout Resource File Dialog]

Figure 150: Android Studio New Layout Resource File Dialog
Fill in editor as the “Layout File Name”, leave the rest of the dialog
alone, and click the “OK” button.
Step #2: Defining the UI
That should have opened up the graphical layout editor for this new
editor layout resource:

[image: Graphical Layout Editor]

Figure 151: Graphical Layout Editor
Drag a “Multiline Text” widget from the Text section of the
Palette into the preview area.
In the attributes pane, change the android:layout_width and
android:layout_height each to be match_parent and
change the ID to editor:

[image: Graphical Layout Editor Attributes Pane]

Figure 152: Graphical Layout Editor Attributes Pane
Next, in the attributes pane, click on the “hint” entry, then click the “…”
button to the right of it. This will open up a string resource picker dialog:

[image: Android Studio String Resource Picker Dialog]

Figure 153: Android Studio String Resource Picker Dialog
Towards the upper right, click the “Add new resource” drop-down and choose
“New string Value…” from it, to bring up the string resource editor dialog:

[image: Android Studio New String Resource Dialog]

Figure 154: Android Studio New String Resource Dialog
Fill in a resource name of hint and a value of Enter notes here.
Leave the rest of the dialog alone, and click OK.
Then, back in the attributes pane, switch to viewing all of the attributes,
rather than just the subset. Scroll down to the gravity property,
fold it open, and change the checked values to “top” and “start”.
If you look at the layout XML in the Text sub-tab, you should have
something like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">

 <EditText
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:inputType="textMultiLine"
 android:ems="10"
 android:id="@+id/editor"
 android:hint="@string/hint"
 android:gravity="top|start" />
</LinearLayout>

(from EmPubLite-AndroidStudio/T5-Layout/EmPubLite/app/src/main/res/layout/editor.xml)
Your hint may appear to be "Enter notes here", as if you had directly typed
that in rather than creating a string resource.
As was covered earlier, Android Studio is lying to you.
Click on the "Enter notes here" to see the actual string resource reference.
In Our Next Episode…
… we will attach a third-party library to our tutorial project.
GUI Building, Continued
If you are using an IDE, and you have been
experimenting with the graphical layout editor and drag-and-drop
GUI building, this chapter will cover some other general features
of this editor that you may find useful.
Even if you are not using an IDE, you may want to at least skim
this chapter, as you will find a few tricks that will be relevant
for you as well.
Making Your Selection
Clicking on a widget makes it the selected widget, meaning that the
toolbar buttons will affect that widget (or, sometimes, its container,
depending upon the button). Selected widgets have a thin blue border
with blue square “grab handles” for adjusting its size and position.

[image: Android Studio, Selected Widget in Graphical Layout Editor]

Figure 155: Android Studio, Selected Widget in Graphical Layout Editor
Clicking on a container also selects it. However, there may or
may not be a blue border — in particular, containers that fill the
screen (match_parent for width and height) do not seem to get the
border.
Sometimes, though, you want to select a container that you cannot reach,
because its contents are completely filled with widgets. In
these cases, click on the widget or container in the Component Tree
pane to select it.
Including Includes
Sometimes, you have a widget or a collection of widgets
that you want to reuse across multiple layout XML resources. Android
supports the notion of an “include” that allows this. Simply create
a dedicated layout XML resource that contains the widget(s) to reuse,
then add them to your main layouts via an <include> element:

<include layout="@layout/thing_we_are_reusing" />

You can even assign the <include> element a width or height if
needed, as if it were just a widget or container.
The IDE makes it easy for you to take widgets from an existing
layout XML resource and extract them into a separate layout XML resource,
replacing them with an <include> element. Multi-select the widgets
in the blueprint or design views, or in the Preview tool when on the Text
sub-tab of the layout editor. Then, right-click and choose
Refactor > Extract Layout from the context menu. This will display
a dialog where you can fill in the file name of your resulting resource:

[image: Android Studio Extract Layout Dialog]

Figure 156: Android Studio Extract Layout Dialog
If you are extracting multiple widgets that are not wrapped in their own
container, the IDE will automatically wrap them in a <merge> element:

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- widgets go here -->
</merge>

This is necessary purely from an XML standpoint — you cannot have multiple
root elements in an XML file. When the <merge> is added to another layout
via <include>, the <merge> element itself evaporates, leaving behind its
children.
Preview of Coming Attractions
At the top of the graphical layout editor, you will find a series of
drop-downs that allow you to tailor what the preview looks like:

[image: Android Studio Preview Controls]

Figure 157: Android Studio Preview Controls
Your IDE will choose some likely defaults based upon your project settings,
but you are welcome to change them as you see fit. Notable changes include:

	What version of Android is used for the preview (as widget styling
changes from time to time in Android releases)

	What language is used for your string resources?

	What size and resolution of screen is used?

	Is it displayed in portrait or landscape?

These only affect the preview, so they show you (approximately) what your
layout will look like under those conditions, but they do not modify anything
about your layout XML itself.
AdapterViews and Adapters
If you want the user to choose something out of a collection of somethings,
you could use a bunch of RadioButton widgets. However, Android has a series
of more flexible widgets than that, particularly for scenarios where the
collection is not knowable when you are writing your app: the results of a
Web service call, the results of a database query, etc.
Popular visual representations of collections include:

	Vertically-scrolling lists of rows, where each row represents an item

	Vertically-scrolling grids of items, where each horizontal “row” contains a
set number of items, divided into columns

	Drop-down lists

	Trees

Android has two major solutions for this sort of problem. RecyclerView is
the newer solution. For lists, grids, and trees, you should start by considering
RecyclerView. However, RecyclerView comes in the form of a library, and you
often use other libraries to extend it (e.g., for supporting trees). Since we have
not covered libraries yet, we will hold off discussing RecyclerView until
a bit later in the book.
The classic solution involved subclasses of AdapterView, such as:

	
ListView, which is your typical “list box”

	
Spinner, which (more or less) is a drop-down list

	
GridView, offering a two-dimensional roster of choices

	
ExpandableListView, a limited “tree” widget, supporting two levels in the
hierarchy

and many more.
At their core, these are ordinary widgets. You will find them in your tool
palette of your IDE’s graphical layout editor, and can drag them and position
them as you see fit.
Their base AdapterView class is so named because it partners
with objects implementing the Adapter interface to determine what choices are
available for the user to choose from.
RecyclerView also uses adapters, though with a slightly different API than
what AdapterView uses. And there are some scenarios — such as drop-down list –
where RecyclerView is not really an option, and where AdapterView (particularly
Spinner) will be the best choice. So, in this chapter, we will examine
the AdapterView family, partly for historical reasons, partly for background
for learning about RecyclerView, and partly for ongoing use in specific
scenarios.
Adapting to the Circumstances
An Adapter is your bridge between your model data and that data’s visual
representation in the AdapterView:

	an Adapter might “adapt” an Invoice into a View that would serve
as a row in a ListView

	an Adapter might “adapt” a Book into a View that would serve as a
cell in a GridView

	and so on

Android ships with several Adapter classes ready for your use, where
the different adapter classes are designed to “adapt” different sorts of
collections (e.g., arrays versus results of database queries). Android
also has a BaseAdapter class that can serve as the foundation for your
own Adapter implementation, if you need to “adapt” a collection of data
that does not fit any of the Adapter classes supplied by Android.
Using ArrayAdapter
The easiest adapter to use is ArrayAdapter — all you need to do is wrap
one of these around a Java array or java.util.List instance, and you have a
fully-functioning adapter:

String[] items={"this", "is", "a", "really", "silly", "list"};
new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items);

One flavor of the ArrayAdapter constructor takes three parameters:

	The Context to use (typically this will be your activity instance)

	The resource ID of a view to use (such as a built-in system resource ID, as
shown above)

	The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the
list and wrap each of those strings in the view designated by the supplied
resource. android.R.layout.simple_list_item_1 simply turns those strings into
TextView objects. Those TextView widgets, in turn, will be shown in the
list or spinner or whatever widget uses this ArrayAdapter. If you want to see
what android.R.layout.simple_list_item_1 looks like, you can find a copy of
it in your SDK installation — just search for simple_list_item_1.xml.
We will see in a later section how to subclass an Adapter
and override row creation, to give you greater control over how rows and cells
appear.
Lists of Naughty and Nice
The classic listbox widget in Android is known as ListView. Include one of
these in your layout, invoke setAdapter() to supply your data and child
views, and attach a listener via setOnItemSelectedListener() to find out when
the selection has changed. With that, you have a fully-functioning listbox.
However, if your activity is dominated by a single list, you might well
consider creating your activity as a subclass of ListActivity, rather than
the regular Activity base class. If your main view is just the list, you do
not even need to supply a layout — ListActivity will construct a full-screen
list for you. If you do want to customize the layout, you can, so long as you
identify your ListView as @android:id/list, so ListActivity knows which
widget is the main list for the activity.
For example, here is a layout pulled from
the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</LinearLayout>

(from Selection/List/app/src/main/res/layout/main.xml)
It is just a list with a label on top to show the current selection.
The Java code to configure the list and connect the list with the label is:

package com.commonsware.android.list;

import android.app.ListActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

public class ListViewDemo extends ListActivity {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 @Override
 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items[position]);
 }
}

(from Selection/List/app/src/main/java/com/commonsware/android/list/ListViewDemo.java)
With ListActivity, you can set the list adapter via setListAdapter() —
in this case, providing an ArrayAdapter wrapping an array of Latin
strings. To find out when the list selection changes, override
onListItemClick() and take appropriate steps based on the supplied child view
and position (in this case, updating the label with the text for that position).
The results?

[image: ListViewDemo, After User Taps on consecteteur]

Figure 158: ListViewDemo, After User Taps on “consecteteur”
The second parameter to our ArrayAdapter —
android.R.layout.simple_list_item_1 — controls what the rows look like.
The value used in the preceding example provides the standard Android list row:
a big font with lots of padding to offer a large touch target for the user.
Clicks versus Selections
One thing that can confuse some Android developers is the distinction between
clicks and selections. One might think that they are the same thing —
after all, clicking on something selects it, right?
Well, no. At least, not in Android. At least not all of the time.
Android is designed to be used with touchscreen devices and non-touchscreen
devices. Historically, Android has been dominated by devices that only offered
touchscreens. However, there are various devices powered by Android and connected
to TVs. Most TVs are not touchscreens, and so users of those TV-using Android
devices will use some sort of remote control to drive Android. And
some Android devices offer both touchscreens and some other sort of pointing
device — D-pad, trackball, arrow keys, etc.
To accommodate both styles of device, Android sometimes makes a distinction
between selection events and click events. Widgets based on the “spinner”
paradigm — including Spinner — treat everything as
selection events. Other widgets — like ListView and GridView —
treat selection events and click events differently. For these widgets,
selection events are driven by the pointing device, such as using arrow keys to
move a highlight bar up and down a list. Click events are when the user either
“clicks” the pointing device (e.g., presses the center D-pad button) or taps
on something in the widget using the touchscreen.
Choice Modes
By default, ListView is set up simply to collect clicks on list entries.
Sometimes, though, you want a list that tracks a user’s choice, or possibly
multiple choices. ListView can handle that as well, but it requires a few
changes.
First, you will need to call setChoiceMode() on the ListView in Java code
to set the choice mode, classically supplying either CHOICE_MODE_SINGLE or
CHOICE_MODE_MULTIPLE as the value. You can get your ListView from a
ListActivity via getListView(). You can also declare this via the
android:choiceMode attribute in your layout XML.
Then, rather than use android.R.layout.simple_list_item_1 as the layout for
the list rows in your ArrayAdapter constructor, you can use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.
For example, here is an activity layout from
the Selection/Checklist sample project:

<?xml version="1.0" encoding="utf-8"?>
<ListView
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:drawSelectorOnTop="false"
 android:choiceMode="multipleChoice"
/>

(from Selection/Checklist/app/src/main/res/layout/main.xml)
It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.
Our activity just uses a standard ArrayAdapter on our list of Latin words,
but uses android.R.layout.simple_list_item_multiple_choice as the row layout:

package com.commonsware.android.checklist;

import android.app.ListActivity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class ChecklistDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_multiple_choice,
 items));
 }
}

(from Selection/Checklist/app/src/main/java/com/commonsware/android/checklist/ChecklistDemo.java)
What the user sees is the list of words with checkboxes down the right edge:

[image: Multiple-Choice Mode]

Figure 159: Multiple-Choice Mode
If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if
we wanted to check (or un-check) a specific entry ourselves.
Clicks versus Selections, Revisited
If the user clicks a row in a ListView, a click event is registered,
triggering things like onListItemClick() in an OnItemClickListener. If the
user uses a pointing device to change a selection (e.g., pressing up and down
arrows to move a highlight bar in the ListView), that triggers
onItemSelected() in an OnItemSelectedListener.
Many times, particularly if the ListView is the entire UI at present, you
only care about clicks. Sometimes, particularly if the ListView is adjacent
to something else (e.g., on a TV, where you have more screen space and do not
have a touchscreen), you will care more about selection events. Either way, you
can get the events you need.
Spin Control
In Android, the Spinner is the equivalent of the drop-down selector you might
find in other toolkits. Clicking the Spinner
drops down a list for the user to choose an item
from. You basically get the ability to choose an item from a list without taking up all
the screen space of a ListView, at the cost of an extra click
to make a change.
As with ListView, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().
To tailor the view used when displaying the drop-down perspective,
you need to configure the adapter, not the Spinner widget. Use the
setDropDownViewResource() method to supply the resource ID of the view to use.
For example, culled from
the Selection/Spinner sample project,
here is an XML layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <Spinner android:id="@+id/spinner"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

(from Selection/Spinner/app/src/main/res/layout/main.xml)
This is the same view as shown in a previous section, just with a Spinner
instead of a ListView.
To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 items);

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);
 }

 @Override
 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 selection.setText(items[position]);
 }

 @Override
 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }
}

(from Selection/Spinner/app/src/main/java/com/commonsware/android/selection/SpinnerDemo.java)
Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)), as Spinner widgets only support
selection events, not click events. This works because the activity implements
the OnItemSelectedListener interface. We configure the adapter not only with
the list of fake words, but also with a specific resource to use for the
drop-down view (via aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple_spinner_item as the built-in View for showing items
in the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.
What we get is:

[image: SpinnerDemo, as Initially Launched]

Figure 160: SpinnerDemo, as Initially Launched

[image: SpinnerDemo, with Spinner Drop-Down List Displayed]

Figure 161: SpinnerDemo, with Spinner Drop-Down List Displayed
Grid Your Lions (Or Something Like That…)
As the name suggests, GridView gives you a two-dimensional grid of items to
choose from. You have moderate control over the number and size of the columns;
the number of rows is dynamically determined based on the number of items the
supplied adapter says are available for viewing.
There are a few properties which, when combined, determine the number of
columns and their sizes:

	
android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns based
on available space and the properties listed below.

	
android:verticalSpacing and android:horizontalSpacing indicate how much
whitespace there should be between items in the grid.

	
android:columnWidth indicates how wide each column should be, in terms
of some dimension value (e.g., 40dp or @dimen/grid_column_width).

	
android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not taken up
by columns or spacing — this should be columnWidth to have the columns
take up available space or spacingWidth to have the whitespace between
columns absorb extra space.

Otherwise, the GridView works much like any other selection widget — use
setAdapter() to provide the data and child views, invoke
setOnItemClickListener() to find out when somebody clicks on a cell in the
grid, etc.
For example, here is an XML layout from
the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <GridView
 android:id="@+id/grid"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:verticalSpacing="40dip"
 android:horizontalSpacing="5dip"
 android:numColumns="auto_fit"
 android:columnWidth="100dip"
 android:stretchMode="columnWidth"
 android:gravity="center"
 />
</LinearLayout>

(from Selection/Grid/app/src/main/res/layout/main.xml)
For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android
(android:numColumns = "auto_fit")
based on our horizontal spacing (android:horizontalSpacing = "5dip")
and columns width (android:columnWidth = "100dip"), with the columns
absorbing any “slop” width left over (android:stretchMode = "columnWidth").
The Java code to configure the GridView is:

package com.commonsware.android.grid;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

public class GridDemo extends Activity
 implements AdapterView.OnItemClickListener {
 private TextView selection;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 GridView g=(GridView) findViewById(R.id.grid);
 g.setAdapter(new ArrayAdapter<String>(this,
 R.layout.cell,
 items));
 g.setOnItemClickListener(this);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }
}

(from Selection/Grid/app/src/main/java/com/commonsware/android/grid/GridDemo.java)
The grid cells are defined by a separate res/layout/cell.xml file, referenced
in our ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="14dip"
/>

(from Selection/Grid/app/src/main/res/layout/cell.xml)
With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator’s screen:

[image: GridDemo, as Initially Launched]

Figure 162: GridDemo, as Initially Launched

[image: GridDemo, Scrolled to the Bottom of the Grid]

Figure 163: GridDemo, Scrolled to the Bottom of the Grid
GridView, like ListView, supports both click events and selection events.
In this sample, we register an OnItemClickListener to listen for click events.
Fields: Now With 35% Less Typing!
The AutoCompleteTextView is sort of a hybrid between the EditText (field)
and the Spinner. With auto-completion, as the user types, the text is treated
as a prefix filter, comparing the entered text as a prefix against a list of
candidates. Matches are shown in a selection list that folds down from the
field. The user can either type out an entry (e.g., something not in the list)
or choose an entry from the list to be the value of the field.
AutoCompleteTextView subclasses EditText, so you can configure all the
standard look-and-feel aspects, such as font face and color.
In addition, AutoCompleteTextView has an android:completionThreshold
property, to indicate the minimum number of characters a user must enter before
the list filtering begins.
You can give AutoCompleteTextView an adapter containing the list of candidate
values via setAdapter(). However, since the user could type something not in
the list, AutoCompleteTextView does not support selection listeners. Instead,
you can register a TextWatcher, like you can with any EditText, to be
notified when the text changes. These events will occur either because of
manual typing or from a selection from the drop-down list.
Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from
the Selection/AutoComplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <AutoCompleteTextView android:id="@+id/edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="3"/>
</LinearLayout>

(from Selection/AutoComplete/app/src/main/res/layout/main.xml)
The corresponding Java code is:

package com.commonsware.android.auto;

import android.app.Activity;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.widget.ArrayAdapter;
import android.widget.AutoCompleteTextView;
import android.widget.TextView;

public class AutoCompleteDemo extends Activity
 implements TextWatcher {
 private TextView selection;
 private AutoCompleteTextView edit;
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);
 edit=(AutoCompleteTextView)findViewById(R.id.edit);
 edit.addTextChangedListener(this);

 edit.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
 items));
 }

 @Override
 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 selection.setText(edit.getText());
 }

 @Override
 public void beforeTextChanged(CharSequence s, int start,
 int count, int after) {
 // needed for interface, but not used
 }

 @Override
 public void afterTextChanged(Editable s) {
 // needed for interface, but not used
 }
}

(from Selection/AutoComplete/app/src/main/java/com/commonsware/android/auto/AutoCompleteDemo.java)
This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this
case, we are only interested in the first, and we update the selection label
to match the AutoCompleteTextView’s current contents.
Here we have the results:

[image: AutoCompleteDemo, as Initially Launched]

Figure 164: AutoCompleteDemo, as Initially Launched

[image: AutoCompleteDemo, After Entering a Few Matching Letters]

Figure 165: AutoCompleteDemo, After Entering a Few Matching Letters

[image: AutoCompleteDemo, After Auto-Complete Value Was Selected]

Figure 166: AutoCompleteDemo, After Auto-Complete Value Was Selected
Note that the red underline in the preceding screenshot is due to spelling correction.
Like EditText, AutoCompleteTextView supports hinting at spelling errors. The
emulator’s language is set to English, as there is no option in it for Latin.
Customizing the Adapter
The humble ListView is one of the most important widgets in all of Android,
simply because it is used so frequently. Whether choosing a contact to call or
an email message to forward or an ebook to read, ListView widgets are
employed in a wide range of activities.
Of course, it would be nice if they were more than just plain text.
The good news is that they can be as fancy as you want, within the limitations
of a mobile device’s screen, of course. However, making them more elaborate
takes some work.
Note that while this section will be using ListView as the AdapterView,
the same techniques hold for any AdapterView.
The Single Layout Pattern
The simplest way of creating custom ListView rows (or GridView cells or
whatever) is when they all have the same basic structure and can be created
from the same layout XML resource. This does not mean they have to be strictly
identical, but that you can make whatever changes you need just by configuring
the widgets (e.g., make some things VISIBLE or GONE).
This is not especially difficult, though it does take a few more steps than
what we have seen previously.
Step #0: Get Things Set Up Simply
First, create your activity (e.g., ListActivity), get your data (e.g., array
of Java strings), and set up your AdapterView with a simple adapter following
the steps outlined in the preceding sections.
Here, we will examine
the Selection/Dynamic sample project.
We will use a simple ListActivity
(taking the default layout of a full-screen ListView) and use the same list
of 25 Latin words used in earlier samples. However, this time, we want to
have a more elaborate row, taking into account the length of the Latin word.
Step #1: Design Your Row
Next, create a layout XML resource that will represent one row in your ListView
(or cell in your GridView or whatever).
For example, our res/layout/row.xml resource will use a pair of nested
LinearLayout containers to organize two TextView widgets and an ImageView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:padding="2dip"
 android:src="@drawable/ok"
 android:contentDescription="@string/icon"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="25sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"/>
 </LinearLayout>

</LinearLayout>

(from Selection/Dynamic/app/src/main/res/layout/row.xml)
The ImageView will use one of two drawable resources, one for short words, and
another for long words.
Step #2: Extend ArrayAdapter
If you just used R.layout.row with a regular ArrayAdapter, it would work,
insofar as it would not crash. However, ArrayAdapter only knows how to update
a single TextView in a row, so it would ignore our other TextView, let alone
the ImageView.
So, we need to create our own ListAdapter, by creating our own subclass of
ArrayAdapter.
Since an Adapter is tightly coupled to the AdapterView that uses it, it
is typically simplest to make the custom ArrayAdapter subclass be an inner
class of whoever manages the AdapterView. Hence, in our sample, we will create an
IconicAdapter inner class of our ListActivity.
Step #3: Override the Constructor and getView()

The IconicAdapter constructor can chain to the superclass and supply the
necessary data, such as our Java array of Latin words. The real fun comes
when we override getView():

package com.commonsware.android.fancylists.three;

import android.app.ListActivity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.TextView;

public class DynamicDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setListAdapter(new IconicAdapter());
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(DynamicDemo.this, R.layout.row, R.id.label, items);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 TextView size=(TextView)row.findViewById(R.id.size);

 size.setText(String.format(getString(R.string.size_template), items[position].length()));

 return(row);
 }
 }
}

(from Selection/Dynamic/app/src/main/java/com/commonsware/android/fancylists/three/DynamicDemo.java)
Our getView() implementation does three things:

	It chains to the superclass’ implementation of getView(), which returns to
us an instance of our row View, as prepared by ArrayAdapter. In particular,
our word has already been put into one TextView, since ArrayAdapter does
that normally.

	It finds our ImageView and applies a business rule to set which icon should
be used, referencing one of two drawable resources (R.drawable.ok and
R.drawable.delete).

	It finds our other TextView and populates it as well, by pulling in the value
of a string resource and using String.format() to pour in our word length.

Note that we call findViewById() not on the activity, but rather on the row
returned by the superclass’ implementation of getView().
Always call findViewById() on something that is guaranteed to give you a unique result.
In the case of an AdapterView, there will be many rows, cells, etc. — calling
findViewById() on the activity might return widgets with the right name but
from other rows or cells.
This gives us:

[image: The Dynamic Sample Application]

Figure 167: The Dynamic Sample Application
The approach of overriding getView() works for ArrayAdapter, but some other
types of adapters would have alternatives. We will see that mostly with
CursorAdapter, profiled in upcoming chapters.
Optimizing with the ViewHolder Pattern
A somewhat expensive operation we do a lot with more elaborate list rows is call
findViewById(). This dives into our row and pulls out widgets by
their assigned identifiers, so we can customize the widget contents (e.g.,
change the text of a TextView, change the icon in an ImageView). Since
findViewById() can find widgets anywhere in the tree of children of the row’s
root View, this could take a fair number of instructions to execute,
particularly if we keep having to re-find widgets we had found once before.
In some GUI toolkits, this problem is avoided by having the composite View
objects, like our rows, be declared totally in program code (in this case,
Java). Then, accessing individual widgets is merely the matter of calling a
getter or accessing a field. And you can certainly do that with Android, but
the code gets rather verbose. What would be nice is a way where we can still
use the layout XML yet cache our row’s key child widgets so we only have to
find them once.
That’s where the holder pattern comes into play, in a class we will call
ViewHolder.
All View objects have getTag() and setTag() methods. These allow you to
associate an arbitrary object with the widget. What the holder pattern does is
use that “tag” to hold an object that, in turn, holds each of the child widgets
of interest. By attaching that holder to the row View, every time we use the
row, we already have access to the child widgets we care about, without having
to call findViewById() again.
So, let’s take a look at one of these holder classes (taken from
the Selection/ViewHolder sample project,
a revised version of the Selection/Dynamic sample from before):

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;

class ViewHolder {
 ImageView icon=null;
 TextView size=null;

 ViewHolder(View row) {
 this.icon=(ImageView)row.findViewById(R.id.icon);
 this.size=(TextView)row.findViewById(R.id.size);
 }
}

(from Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolder.java)
ViewHolder holds onto the child widgets, initialized via findViewById() in
its constructor. The widgets are simply package-protected data members,
accessible from other classes in this project… such as a ViewHolderDemo
activity. In this case, we are only holding onto two widgets — the icon and
the second label –
since we will let ArrayAdapter handle our first label for us. In our case,
we are holding onto the TextView and ImageView widgets that we want to
populate in getView().
Using ViewHolder is a matter of creating an instance whenever we inflate a
row and attaching said instance to the row View via setTag(), as shown in
this rewrite of getView(), found in ViewHolderDemo:

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ViewHolder holder=(ViewHolder)row.getTag();

 if (holder==null) {
 holder=new ViewHolder(row);
 row.setTag(holder);
 }

 if (getModel(position).length()>4) {
 holder.icon.setImageResource(R.drawable.delete);
 }
 else {
 holder.icon.setImageResource(R.drawable.ok);
 }

 holder.size.setText(String.format(getString(R.string.size_template), items[position].length()));

 return(row);
 }

(from Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolderDemo.java)
If the call to getTag() on the row returns null, we know we
need to create a new ViewHolder, which we then attach to the row via
setTag() for later reuse. Then, accessing the child widgets is merely a
matter of accessing the data members on the holder.
This takes advantage of the fact that rows in a ListView get recycled –
a 25,000-row list does not create 25,000 rows. The recycling itself is handled
for us by ArrayAdapter, so we simply have to create our ViewHolder when
needed and reuse the existing ViewHolder when a row gets recycled. The
first time the
ListView is displayed, all new rows need to be created, and we wind up
creating a ViewHolder for each. As the user scrolls, rows get recycled, and
we can reuse their corresponding ViewHolder widget caches. We will cover
this recycling process in greater detail in a later chapter.
Note that the getModel() method shown here retrieves our model String
for a given position, by using getListAdapter() (to retrieve our
IconicAdapter from the activity’s ListView) and getItem() (to retrieve
the data, held by the adapter, represented by the position):

 private String getModel(int position) {
 return(((IconicAdapter)getListAdapter()).getItem(position));
 }

(from Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolderDemo.java)
Dealing with Multiple Row Layouts
The story gets significantly more complicated if our mix of rows is more
complicated. For example, here is the Sound screen in the Settings application:

[image: Sound Settings Screen]

Figure 168: Sound Settings Screen
It may not look like it, but that is a ListView. However, not all the rows
look the same:

	Some have one line of text (e.g., “Volumes”)

	Some have two lines of text (e.g., “Silent mode” plus “Off”)

	Some have one line of text and a CheckBox (e.g., “Vibrate and ring”)

	Some are headings with totally different text formatting
(e.g., “RINGTONE & NOTIFICATIONS”)

This is handled by having more than one row layout XML resource used by the
adapter. The complexity comes not only in managing those different resources
and determining which to use when, but in just having more than one resource –
after all, we only teach ArrayAdapter how to use one. We will examine how
to handle this scenario in a later chapter.
Visit the Trails!
To learn more about ListView, you can turn to Advanced ListViews,
which covers other tricks you can do with a ListView.
The WebView Widget
HTML has come a long way from Sir Tim Berners-Lee’s original vision of using
it to publish physics papers.
Not surprisingly, displaying HTML, CSS, and JavaScript in mobile applications
is fairly popular, not only for creating full-fledged Web browsers, but for
rendering HTML content from RSS/Atom feeds, from HTML-formatted email messages,
ebooks (like the one you are reading), and so forth.
There are a couple of ways to display HTML in Android, with the most powerful
being the WebView widget, the focus of this chapter.
Role of WebView
If your HTML is fairly limited in scope, such as what you might find in the
body of a status update on Twitter, you can use the static fromHtml() method
on the Html utility class to parse an HTML-formatted string into something
that you can put into a TextView. TextView can render simple formatting
like styles (bold, italic, etc.), font faces (serif, sans serif, etc.), colors,
links, and so forth.
However, sometimes your needs for HTML transcend what TextView can handle.
You will not be browsing Facebook using TextView, for example.
In those cases, WebView will be the more appropriate widget, as it can
handle a much wider range of HTML tags. WebView can also handle CSS and
JavaScript, which Html.fromHtml() would simply ignore. WebView can also
assist you with common “browsing” metaphors, such as history list of visited
URLs to support backwards and forwards navigation.
On the other hand, WebView is a much more expensive widget to use, in terms
of memory consumption, than is TextView.
Daddy, Where Do WebViews Come From?
Originally, the story was simple: WebView was powered by a fairly
complete copy of WebKit, Apple’s open source Web rendering
engine that powers Safari and, originally, Chrome.
In Android 4.4, Google switched rendering engines. Depending on who
you asked, WebView was powered by Chromium
or Blink. Chromium is an open source
browser that forms the foundation for Google’s Chrome, and Blink is
a fork of WebKit created by Opera and Google that, in turn, powers
Chromium.
Starting in Android 5.0, the implementation of WebView was no
longer a part of Android. Rather, it became a separate “System WebView”
app, distributed through the Play Store. The idea was that
this app could be updated independently of the device firmware, so that
WebView bugs could be fixed more rapidly and distributed to more
devices. This also means that Google can distribute new and exciting
bugs more quickly (and independently of Android OS version),
as will be discussed later in the chapter.
In Android 7.0, the implementation of WebView will be from one of two
places:

	the proprietary Chrome browser app, or

	the System WebView app, for devices where Chrome is disabled

The documented dependency of WebView on apps distributed through the Play Store
makes things very murky for non-Play ecosystem devices, such as most devices
in China. Most likely, individual manufacturers do their own thing
with respect to updating WebView.
As a result, from the standpoint of security and compatibility, WebView
is a “hot mess”.
Adding the Widget
For simple stuff, WebView is not significantly different than any other
widget in Android — pop it into a layout, tell it what URL to navigate to
via Java code, and you are done.
As you can see in
the WebKit/Browser1 sample application,
here is a simple layout with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<WebView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/webkit"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
/>

(from WebKit/Browser1/app/src/main/res/layout/main.xml)
As with any other widget, you need to tell it how it should fill up the space
in the layout (in this case, it fills all remaining space).
And, just as with other widgets, you can add it using your IDE’s graphical
layout editor. An Android Studio user can drag a WebView out of the “Containers”
section of the tool palette.
Note that WebView knows how to scroll its own contents, so you do not need
to put it in a ScrollView or HorizontalScrollView.
Loading Content Via a URL
There are a number of ways to load HTML content into a WebView widget.
The simplest is to use the loadUrl() method, which takes a URL and retrieves
its contents over the Internet. For example, here is the activity source code
for the WebKit/Browser1 sample application:

package com.commonsware.android.browser1;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemo1 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 browser.loadUrl("https://commonsware.com");
 }
}

(from WebKit/Browser1/app/src/main/java/com/commonsware/android/browser1/BrowserDemo1.java)
However, we also have to make one change to AndroidManifest.xml, adding a line
where we request permission to access the Internet:

 <uses-permission android:name="android.permission.INTERNET"/>

(from WebKit/Browser1/app/src/main/AndroidManifest.xml)
If we fail to add this permission, the browser will refuse to load pages. We will
discuss more about this “permission” concept in a later chapter.
The resulting activity looks like a Web browser, just with hidden scrollbars:

[image: The Browser1 Sample Application (image from June 2015)]

Figure 169: The Browser1 Sample Application (image from June 2015)
As with a regular Android Web browser, you can pan around the page by dragging
it, while the directional pad moves you around all the focusable elements on
the page.
What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar. WebView does not provide any of that — if you want those
sorts of UI features, you will need to implement those yourself (e.g., use
an EditText or AutoCompleteTextView for a browser address bar).
Links and Redirects
The sample shown above loads the CommonsWare home page. The links in that
page are clickable. Exactly what happens when you click on the link,
though, depends upon circumstances.
Traditionally, the default behavior for when the user clicks on a link
in a WebView is for the linked-to Web page to be launched in a Web
browser. However, the “Android System WebView” released in early June
2015 changed that default behavior, so now the linked-to Web page opens
up in the WebView itself. Since Android 4.4 and older devices do not
have the “Android System WebView”, this means that the default behavior
of link clicks varies by device, which is not fun.
Also, if you try loading a page using loadUrl(), and the server issues
a server-side redirect (e.g., HTTP 301 or 304 response), the default
behavior is the same as a simple click of a link:

	On devices with “Android System WebView” 43.0.2357.121 or newer,
the redirected-to page shows up in the WebView

	Everywhere else, the redirected-to page appears in a separate Web
browser app

We will cover how to address this problem later in this chapter.
Supporting JavaScript
Now, you may be tempted to replace the URL in the above source code with something
else, such as Google’s home page or something else that relies upon JavaScript.
You will find that such pages do not work especially well by default. That is
because, by default, JavaScript is turned off in WebView widgets.
If you want to enable
JavaScript, call getSettings().setJavaScriptEnabled(true); on the WebView
instance. At this point, any JavaScript referenced by your Web page should work
normally.
There are some fancy tricks you can perform with WebView and JavaScript,
such as having JavaScript call Java code or vice versa. These techniques will
be covered in a later chapter.
Alternatives for Loading Content
loadUrl() works with:

	
http:// and https:// URLs

	
file:// URLs pointing to the local filesystem

	
file:///android_asset/ URLs pointing to one of your application’s assets,
as will be discussed later in this book

	
content:// URLs pointing to a ContentProvider that is publishing content
available for streaming, as will be discussed much later in this book

Instead of loadUrl(), you can also use loadData(). Here, you supply the
HTML for the WebView to display. You might use this to:

	display a manual that was installed as a file with your application package

	display snippets of HTML you retrieved as part of other processing, such as
the description of an entry in an Atom feed

	generate a whole user interface using HTML, instead of using the Android
widget set

There are two flavors of loadData(). The simpler one allows you to provide
the content, the MIME type, and the encoding, all as strings. Typically, your
MIME type will be "text/html; charset=UTF-8" and your encoding will be null for ordinary
HTML.
For example, if you replace the loadUrl() invocation in the previous example
with the following:

browser.loadData("<html><body>Hello, world!</body></html>",
 "text/html; charset=UTF-8", null);

You get:

[image: The Browser2 sample application]

Figure 170: The Browser2 sample application
This is also available as a fully-buildable sample, as
WebKit/Browser2.
There is also a loadDataWithBaseURL() method. This takes, among other parameters,
the “base URL” to use when resolving relative URLs in the HTML. Any relative
URL (e.g., [img src="images/foo.png"]) will be interpreted as being relative
to the base URL supplied to loadDataWithBaseURL(). If you find that you have
content that refuses to load properly with loadData(), try loadDataWithBaseURL()
with a null base URL, as sometimes that works better, for unknown reasons.
Listening for Events
Particularly if you are going to use the WebView as a local user interface
(vs. browsing the Web), you will want to be able to get control at key times,
particularly when users click on links. You will want to make sure those links
are handled properly, either by loading your own content back into the
WebView, by submitting an Intent to Android to open the URL in a full
browser, or by some other means. We will discuss using an Intent to launch
a Web browser in a later chapter.
One hook into the WebView activity is via setWebViewClient(), which takes
an instance of a WebViewClient implementation as a parameter. The supplied
callback object will be notified of a wide range of events, ranging from when
parts of a page have been retrieved (onPageStarted(), etc.) to when you, as
the host application, need to handle certain user- or circumstance-initiated
events, such as:

	onTooManyRedirects()

	onReceivedHttpAuthRequest()

	etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is
passed a URL (plus the WebView itself) and you return true if you will
handle the request or false if you want default handling (e.g., actually
fetch the Web page referenced by the URL). In the case of a feed reader
application, for example, you will probably not have a full browser with
navigation built into your reader, so if the user clicks a URL, you probably
want to use an Intent to ask Android to load that page in a full browser.
But, if you have inserted a “fake” URL into the HTML, representing a link to
some activity-provided content, you can update the WebView yourself.
For example, let’s amend the first browser example to be an application
that, upon a click, shows the current time.
From
WebKit/Browser3,
here is the revised Java:

package com.commonsware.android.webkit;

import android.app.Activity;
import android.os.Bundle;
import android.text.format.DateUtils;
import android.webkit.WebView;
import android.webkit.WebViewClient;
import java.util.Date;

public class BrowserDemo3 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);
 browser.setWebViewClient(new Callback());

 loadTime();
 }

 void loadTime() {
 String page=
 "<html><body>"
 + DateUtils.formatDateTime(this, new Date().getTime(),
 DateUtils.FORMAT_SHOW_DATE
 | DateUtils.FORMAT_SHOW_TIME)
 + "</body></html>";

 browser.loadData(page, "text/html; charset=UTF-8", null);
 }

 private class Callback extends WebViewClient {
 @Override
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 loadTime();

 return(true);
 }
 }
}

Here, we load a simple Web page into the browser (loadTime()) that consists
of the current time, made into a hyperlink to a fake URL. We also attach
an instance of a WebViewClient subclass, providing our implementation of
shouldOverrideUrlLoading(). In this case, no matter what the URL, we want to
just reload the WebView via loadTime().
Running this activity gives us:

[image: The Browser3 Sample Application]

Figure 171: The Browser3 Sample Application
Clicking the link will cause us to rebuild the page with the new time.
Note that we are using a DateUtils utility class supplied by Android for
formatting our date and time. The big advantage of using DateUtils is that
this class is aware of the user’s settings for how they prefer to see the
date and time (e.g., 12- versus 24-hour mode).
There is also a WebChromeClient that you can register with a WebView via
a call to setWebChromeClient(). This object will be called when various things
occur in the WebView that might pertain to a browser’s “chrome” (i.e., the
things outside the HTML rendering area). For example, onJSAlert() will be
called on your WebChromeClient when JavaScript code calls alert().
Addressing the Link/Redirect Behavior
Given that Google, through “Android System WebView” 43.0.2357.121, has
changed the default behavior for when users click on links or redirects,
it is in your best interests to avoid the default, since the default
varies.
To do this, you can use WebViewClient and shouldOverrideUrlLoading(),
as indicated above.
The
WebKit/Browser4
is a clone of the original sample from this chapter, with one change:
adding in a WebViewClient to force all link clicks to alter the
WebView contents, regardless of what version of Android or the
“Android System WebView” we are using:

package com.commonsware.android.browser4;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class BrowserDemo4 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 browser.setWebViewClient(new WebViewClient() {
 @Override
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 view.loadUrl(url);

 return(true);
 }
 });

 browser.loadUrl("http://commonsware.com");
 }
}

(from WebKit/Browser4/app/src/main/java/com/commonsware/android/browser4/BrowserDemo4.java)
Here, the WebViewClient is an instance of an anonymous inner class,
and shouldOverrideUrlLoading() just turns around and calls loadUrl()
on the WebView to handle the new URL. shouldOverrideUrlLoading() returns
true to indicate that it is handling the event.
Opting Out of Google Monitoring
Google is interested in monitoring everything that your user does with your
use of WebView. App developers should consider whether this is appropriate
and is covered by the app’s terms and conditions that the user agrees to. If not,
app developers should opt out of this behavior.
“Anonymous” Metrics
Google states that, by default, all apps will submit “anonymous diagnostic data to Google”.
While it is described as requiring user consent, the user does not appear to
ever be asked for consent. That, coupled with no published information about
what this “diagnostic data” is or how it is made “anonymous”, means that app
developers should assume a worst-case scenario: Google wants to monitor everything
and will assume user consent.
To opt out of this, add the following element to your <application> element
in your manifest:

<meta-data android:name="android.webkit.WebView.MetricsOptOut"
 android:value="true" />

Of course, we have no idea if the opt-out request will be honored, just as we
do not know if user consent will be requested. However, at least from a legal
liability standpoint, opting out should help in case you are sued based on
this WebView behavior.
Safe Browsing
For a few years, WebView has offered integration with the “Safe Browsing” feature
of Chrome. This checks URLs against a database, maintained by Google, that
lists sites identified as being sources of malware or implementing social
engineering attacks (e.g., fake login screens). WebView will show warning
messages if you attempt to load such a page into the WebView, either directly
or via user navigation.
Historically, Safe Browsing was an opt-in feature: developers had to call
setSafeBrowsingEnabled(true) on the WebSettings object to enable this
capability. In 2018, Google switched it to be opt-out instead, with Safe Browsing
enabled by default.
There are two ways that Google could be validating URLs, based on their own
Safe Browsing API docs:

	Hashing the URL and using the hashed version for validation

	Sending the entire URL to Google for validation

The latter approach has significant privacy issues, as it means that every URL
that the user visits in your WebView is sent to Google. Unfortunately, Google
does not document which of these approaches is used by WebView. Also, there
is no sign that the user has to agree to this behavior.
You can opt out of this programmatically via:

wv.getSettings().setSafeBrowsingEnabled(false)

(where wv is a WebView)
Or, to opt out of this for all WebView instances used in your application,
add this XML element to your <application> element in the manifest:

<meta-data android:name="android.webkit.WebView.EnableSafeBrowsing"
 android:value="false" />

If you later opt into Safe Browsing via setSafeBrowsingEnabled(), this will
override the default that you established via the <meta-data> element.
As a result, you have three main options here:

	Opt out, probably via the manifest

	Opt out initially via the manifest, but if the user agrees to allow Safe
Browsing, opt into it via setSafeBrowsingEnabled()

	Accept the default opt-in behavior, relying on your app’s terms of service
to represent adequate warning to the user that Google might monitor every URL
that is shown in the WebView

Visit the Trails!
You can learn more about powerful tricks with WebView, including integrating
the Java and JavaScript environments, in a later chapter.
Defining and Using Styles
As noted in an earlier chapter, Android
offers styles and themes, filling the same sort of role that
CSS does in Web development. In that earlier chapter, we covered
the basic roles of styles and themes, plus introduced the three
classic theme families:

	Theme

	Theme.Holo

	Theme.Material

In this chapter, we will take a slightly “deeper dive” into styles
and themes, exploring how you can create your own and apply them to your
app’s UI.
Styles: DIY DRY
The purpose of styles is to encapsulate a set of attributes that you intend to
use repeatedly, conditionally, or otherwise wish to keep separate from your
layouts proper. The primary use case is “don’t repeat yourself” (DRY) — if
you have a bunch of widgets that look the same, use a style to use a single
definition for “look the same”, rather than copying the look from widget to
widget.
And that paragraph will make a bit more sense if we look at an example,
specifically
the Styles/NowStyled sample project.
This is a trivial project,
with a full-screen button that shows the date and time of when the activity was
launched or when the button was pushed. This time, though, we want to change
the way the text on the face of the button appears, and we will do so using a
style.
The res/layout/main.xml file in this project has a style attribute on
the Button:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:text=""
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 style="@style/bigred"
/>

(from Styles/NowStyled/app/src/main/res/layout/main.xml)
Note that the style attribute is part of stock XML and therefore is not in
the android namespace, so it does not get the android: prefix.
The value, @style/bigred, points to a style resource. Style resources are
values resources and can be found in the res/values/ directory in your
project, or in other resource sets (e.g., res/values-v11/ for values
resources only to be used on API Level 11 or higher). The convention is for
style resources to be held in a styles.xml file, such as the one from the
NowStyled project:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="bigred">
 <item name="android:textSize">30sp</item>
 <item name="android:textColor">#FFFF0000</item>
 </style>
</resources>

(from Styles/NowStyled/app/src/main/res/values/styles.xml)
The <style> element supplies the name of the style, which is what we use when
referring to the style from a layout. The <item> children of the <style>
element represent values of attributes to be applied to whatever the style is
applied towards — in our example, our Button widget. So, our Button
will have a comparatively large font (android:textSize set to 30sp) and
have the text appear in red (android:textColor set to #FFFF0000).
Just defining the style and applying it to the widget gives us the desired results:

[image: The Styles/NowStyled sample application]

Figure 172: The Styles/NowStyled sample application
Elements of Style
There are four elements to consider when applying a style:

	Where do you put the style attributes to say you want to apply a style?

	What attributes can you define via a style?

	How do you inherit from a previously-defined style (one of your own or one
from Android)?

	What values can those attributes have in a style definition?

Where to Apply a Style
The style attribute can be applied to a widget, to only affect that widget.
The style attribute can be applied to a container, to affect that container.
However, doing this does not automatically style its children. For example,
suppose res/layout/main.xml looked instead like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 style="@style/bigred">
 <Button
 android:id="@+id/button"
 android:text=""
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</LinearLayout>

The resulting UI would not have the Button text in a big red font, despite
the style attribute. The style only affects the container, not the contents
of the container.
You can also apply a style to an activity or an application as a whole, though
then it is referred to as a “theme”, which will be covered
a bit later in this chapter.
The Available Attributes
When styling a widget or container, you can apply any of that widget’s or
container’s attributes in the style itself. So, if it shows up in the “XML
Attributes” or “Inherited XML Attributes” portions of the Android JavaDocs, you
can put it in a style.
Note that Android will ignore invalid styles. So, had we applied the bigred
style to the LinearLayout as shown above, everything would run fine, just
with no visible results. Despite the fact that LinearLayout has no
android:textSize or android:textColor attribute, there is no compile-time
failure nor a runtime exception.
Also, layout directives, such as android:layout_width, can be put in a style.
Inheriting a Style
You can also indicate that you want to inherit style attributes from another
style, by specifying a parent attribute on the <style> element.
For example, take a look at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

(note: in some renditions of this book, you may see the <item> element split
over two lines — this is caused by word-wrapping, as this element should
be all on one line)
Here, we are indicating that we want to inherit the Theme.Holo style from
within Android. Hence, in addition to all of our own attribute definitions, we
are specifying that we want all of the attribute definitions from Theme.Holo
as well.
In many cases, this will not be necessary. If you do not specify a parent, your
attribute definitions will be blended into whatever default style is being
applied to the widget or container.
That ?android:attr looks a bit bizarre, but we will get into what that
syntax means in the next section.
The Possible Values
Typically, the value that you will give those attributes in the style will be
some constant, like 30sp or #FFFF0000.
Sometimes, though, you want to perform a bit of indirection — you want to
apply some other attribute value from the theme you are inheriting from. In
that case, you will wind up using the somewhat cryptic ?android:attr/ syntax,
along with a few related magic incantations.
For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

Here, we are indicating that the value of android:background is not some
constant value, or even a reference to a drawable resource (e.g.,
@drawable/my_background). Instead, we are referring to the value of some
other attribute — activatedBackgroundIndicator — from our inherited
theme. Whatever the theme defines as being the activatedBackgroundIndicator
is what our background should be.
This portion of the Android style system is very under-documented, to the point
where Google itself recommends you look at the
Android source code listing the various styles
to see what is possible.
This is one place where inheriting a style becomes important. In the
example shown in this section, we inherited from Theme.Holo, because we
specifically wanted the activatedBackgroundIndicator value from Theme.Holo.
That value might not exist in other styles, or it might not have the value we
want.
Themes: Would a Style By Any Other Name…
Themes are styles, applied to an activity or application, via an
android:theme attribute on the <activity> or <application> element. If
the theme you are applying is your own, just reference it as @style/..., just
as you would in a style attribute of a widget. If the theme you are applying,
though, comes from Android, typically you will use a value with
@android:style/ as the prefix, such as @android:style/Theme.Holo.Dialog or
@android:style/Theme.Holo.Light.
In a theme, your focus is not so much on styling widgets, but styling the
activity itself. For example, here is the definition of
@android:style/Theme.Holo.NoActionBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
 fills the entire screen -->
<style name="Theme.Holo.NoActionBar.Fullscreen">
 <item name="android:windowFullscreen">true</item>
 <item name="android:windowContentOverlay">@null</item>
</style>

It specifies that the activity should take over the entire screen, removing the
status bar on phones (android:windowFullscreen set to
true). It also specifies that the “content overlay” — a layout that
wraps around your activity’s content view — should be set to nothing
(android:windowContentOverlay set to @null), having the effect of removing
the title bar.
What Happens If You Have No Theme
Most of the sample apps that we have examined so far have not defined
a theme, either at the <application> level or the <activity> level.
What happens here then depends upon the device that your app runs upon:

	On an Android 1.x or 2.x device, you will get Theme as your theme

	On an Android 3.x or 4.x device, if your minSdkVersion or targetSdkVersion
is 11 or higher, you will get Theme.Holo as your theme; otherwise,
you will stick with Theme as your theme

	On an Android 5.0+ device, if your targetSdkVersion is 14
or higher, you will get Theme.Material as your theme; otherwise,
your app behaves as in the 3.x/4.x scenario above

As a result, your app is far from “broken”, despite the lack of an
explicit theme. It does mean, though, that your app will have a different
look on those different Android OS levels, a look that will tend to have
your app blend in more with other apps on that same device.
However, once you want to start customizing your theme, you will now
run into a problem: having different themes for different OS versions.
An Android 2.x device knows nothing about Theme.Material, for example,
so you cannot simply create a custom theme based on Theme.Material
and expect it to work. As we will see
in a later chapter, the solution
winds up being versioned resources, where you have different theme
definitions for different API levels.
Of course, if your minSdkVersion is high enough, resource versioning
is less of an issue. For example, if your minSdkVersion is 21, all
devices that your app runs upon should know about Theme.Material, just
as if your minSdkVersion were 11 or higher, all devices that your app
would run on would know about Theme.Holo.
Android Studio’s Theme Editor
Android Studio has a dedicated theme editor,
which allows you to (somewhat) preview your theme and (somewhat)
modify it visually.
When you open a style or theme resource, you will get a banner across
the top of the XML editor, offering to open the theme in the theme
editor:

[image: The Styles/NowStyled Style Resource, with Banner]

Figure 173: The Styles/NowStyled Style Resource, with Banner
Clicking the “Open editor” link in that banner will bring up the
Theme Editor tab:

[image: The Android Studio Theme Editor]

Figure 174: The Android Studio Theme Editor
If the style resource does not define a style being used as a theme –
as is the case with the NowStyled sample app, you wind up with a
pretty, albeit read-only, way of seeing how colors and settings
in the theme will affect the action bar (labeled here as the “app bar”),
buttons, and so forth.
If you open the Theme Editor on a style resource that is being used
as a theme, you may get a preview of that custom theme:

[image: The Android Studio Theme Editor, For an Actual Theme]

Figure 175: The Android Studio Theme Editor, For an Actual Theme
In places where you have overridden certain colors, such as the
android:colorPrimary attribute for a Theme.Material-based
theme, you can use a color picker to replace that color with a different
value:

[image: The Android Studio Theme Editors Color Picker Dialog]

Figure 176: The Android Studio Theme Editor’s Color Picker Dialog
As the dialog notes, if you change the color in the dialog, the editor
will update the associated resources to match, and show you the revised
value in the preview:
[image: The Android Studio Theme Editor, For an Revised Theme]
Dependencies
While you are writing some code for an app, the vast majority of the code
that is the app comes from other developers. Some might be teammates on your
development team, but far more comes from outsiders: Google and other Android
developers.
Some of this you have seen already. You did not write Activity, TextView,
and similar classes. Instead, they came from the Android SDK, written (primarily)
by Google.
Beyond the Android SDK, though, there are thousands of libraries that developers
have access to, including many from Google itself. We add these as dependencies
in our projects, to use their code alongside ours.
What’s a Dependency?
Roughly speaking, the code and assets that make up an app come from three
sources.
The source that you tend to focus on personally is the code that you and people that
you know are writing for this app.
There is the source that comes from your compileSdkVersion, representing the
Android SDK that you are linking to.
Everything else, generally speaking, is a dependency.
From a pure technical standpoint, dependencies are listed in build.gradle
files in dependencies closures.
Dependency Scopes
One dependencies closure appears in the project-level build.gradle file,
inside of a buildscript closure:

// Top-level build file where you can add configuration options common to all sub-projects/modules.

buildscript {

 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:3.0.0'

 // NOTE: Do not place your application dependencies here; they belong
 // in the individual module build.gradle files
 }
}

allprojects {
 repositories {
 google()
 jcenter()
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

Those list places where Gradle plugins come from. You are always depending
upon the Android Gradle Plugin, and some other developers publish Gradle
plugins that you may elect to use in the future.
However, the dependencies closure that we tend to think about the most
is the one in our module’s build.gradle file, such as app/build.gradle,
such as this closure:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support.constraint:constraint-layout:1.0.2'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1'
}

Here, there are three types of statements:

	
implementation says “here is a dependency that I want to use for everything”

	
androidTestImplementation says “here is a dependency that I want to use
for instrumentation tests”

	
testImplementation says “here is a dependency that I want to use for
unit testing”

There are other possibilities, and we will be exploring those and the testing-related
statements later in this book. For now, we will focus on implementation
statements.
Depending on a Local JAR
The first of those implementation statements is:

 implementation fileTree(dir: 'libs', include: ['*.jar'])

This pulls in any JAR files that happen to be in the libs/ directory of this
module.
JARs, as you probably know, are libraries containing Java code, as created by
standard Java build tools (javac, jar, etc.). For the first decade-plus
of Java’s existence, we distributed reusable bits of code in the form of JAR
files. You would download a JAR from a Web site, drop it into your project,
and through something like this implementation statement, say that your project
should use the JAR.
In Android, the contents of these JARs are packaged into your APK. And, whatever
public classes happen to be in those JARs are available to you at compile time.
However, in general, using plain JARs nowadays is considered to be a bad idea.
There is no information in a JAR about:

	What version of the library the JAR represents — while this could be part
of the filename, files can be renamed far too easily

	What other libraries this JAR requires — at best, you find that out from
documentation, then need to hunt down those JARs and see what they require, and
so on

Instead, nowadays, you should try to use artifacts, rather than bare JAR files.
What’s an Artifact?
An artifact is usually represented in the form of two files:

	The actual content, such as a JAR

	A metadata file, paired with the JAR, that has information about “transitive
dependencies” (i.e., the other artifacts that this artifact depends upon)

Artifacts and Repositories
Artifacts are housed in artifact repositories. Those repositories not only
contain the artifacts, but they organize the artifacts for easy access. This
includes organizing them by version, so you can request a specific version
of an artifact and get it, instead of an older (or possibly newer) version
of that same artifact.
Some artifact repositories are public. A typical Android project will use
two such repositories:

	JCenter, a popular place for open source artifacts

	Google’s repository, for things like the Android Gradle Plugin

There are other general-purpose artifact repositories, such as Maven Central or
jitpack.io. There are specialty repositories, such as the one used by the author
of this book for his artifacts. And there can be private repositories, such as
ones used by organizations for their own private artifacts, used by their private
projects.
Major Library Families from Google
Beyond what strictly is part of the Android SDK, Google publishes a lot
of libraries that developers can opt into by declaring them as dependencies.
These include:

	The Android Support Library, which is the original and largest collection
of support code that Google publishes, and which will be used frequently
throughout the remainder of this book

	The ConstraintLayout library, which we will explore in
an upcoming chapter

	The Architecture Components, which are covered in
Android’s Architecture Components, a
companion volume to this book by the same author

	The data binding library, which we will explore in an upcoming chapter

	The testing support library, which contains several classes that we will
examine in the chapters on app testing

	The Play Services SDK, which will we cover briefly later in the book

Requesting Dependencies
With all that as background, let’s explore a bit more about how those
implementation statements are working and how you can add your own
for other dependencies that you may want to use.
Find What You Need
First, you need to identify the dependencies that address whatever problems
you need to solve.
Many dependencies will be covered in this book. Yet more are covered in the
aforementioned Android’s Architecture Components book. A few more are in
the developer documentation.
The biggest catalog of open source dependencies is
the Android Arsenal. Here you can browse and
search for dependencies. Each listing will contain links to where you can
find out more about that particular library, typically in the form of a GitHub
repository.
Configure the Repositories
If you are using one of Google’s libraries, a project created in Android Studio
3.0+ should be set up with the proper artifact repository already.
Your project also comes pre-configured to pull from JCenter, where many open
source libraries are from. As a result, for the vast majority of libraries,
you do not need to configure an additional artifact repository.
But, sometimes you do.
For example, the author of this book has published a number of open source
libraries, collectively referred to as the CommonsWare Android Components (CWAC).
They are published in the author’s own artifact repository. When you visit
the GitHub repository for one of these libraries, you will see that in the
installation instructions, it has a sample repositories closure:

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

You can do one of two things:

	Add that maven {} closure to the repositories closure in the allprojects
closure in your top-level build.gradle file

	Add the entire sample repositories closure to your module’s build.gradle
file

Either of these will make this artifact repository available to you for that
module. The first approach makes it available for all modules in your app, which
may become useful if later you create a library module.
So, when you review the documentation for a dependency, it should indicate
what artifact repository to use, and you need to ensure that you are set up
to use that repository.
Identify the Dependencies and Versions
Each artifact has an identifier made up of three pieces: a group ID, an artifact
ID within the group, and a version number.

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support.constraint:constraint-layout:1.0.2'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1'
}

The first implementation statement shown above pulls in bare JARs located
in your project’s filesystem. The remaining statements in this dependencies
closure represent artifacts. The three ones that begin with com.android are from
Google, while the one that starts with junit is an open source testing library
called JUnit.
You will see that all four of those artifacts have the three-part identifier:

	the group ID (e.g., com.android.support.constraint)

	the artifact ID (e.g., constraint-layout)

	the version number (e.g., 1.0.2)

Technically, the version number can contain wildcards. For example, while
1.0.2 indicates a specific version, 1.0.+ says “pick the latest among
all versions that start with 1.0”. This is convenient for getting patches,
but it means that on some random day, all of a sudden, you are using a new
version of the library, and that might cause problems. Typically, we do not
use wildcards, but instead just keep tabs on when the artifacts get new
versions. Android Studio will help with this, highlighting artifacts that
have newer versions available.
Add the Dependencies
Then, you just need to add the appropriate implementation lines for whatever
dependencies that you wish to add. So, for example, if you wanted to add
the CWAC-NetSecurity library to your project, in addition to adding that CWAC
repository to your repositories list, you could add:

implementation 'com.commonsware.cwac:netsecurity:0.4.4'

to your dependencies closure.
Note that many libraries showing sample code for adding them to your build.gradle
file will show a slightly different syntax:

compile 'com.commonsware.cwac:netsecurity:0.4.4'

That is because Android Studio 3.0 and Gradle 4.1 switched to a new syntax for
specifying dependencies. compile was replaced by implementation. If you
use compile, your Gradle build script will still work… for now. Eventually,
support for compile will be dropped, and so you should aim to use implementation
instead of compile going forward.
Also note that some of the sample projects in this book will use compile,
as the book slowly adjusts to the new syntax.
We will see lots of dependencies closures throughout the rest of this book,
showing different artifacts that we can depend upon.
The Android Support Library
The Android Support Library is a series of artifacts
distributed by Google, containing general-purpose classes
(in JARs and Android library projects) that are not part of the Android
SDK, but are available to Android developers.
What’s In There?
You can roughly divide the contents of the Android Support Library into
two major areas:

	“Backports” of capabilities added to newer versions of Android and the
Android SDK, so they can be used on older devices as well. By using the
backported classes, you can get the same abilities on a wider range of
devices than you could if you only used the classes in the Android SDK.

	New widgets, containers, or other classes that are not going to be
in the Android SDK (for ill-defined reasons) but that Google wishes to make
available for Android developers.

Example artifacts of the Android Support Library
include:

	
appcompat-v7, which is a backport of the action bar, a concept that we will
discuss in an upcoming chapter

	
recyclerview-v7, which is the home of the RecyclerView widget
that serves as an alternative to ListView and GridView

	
support-compat, with compatibility classes to make it easier to support both
old versions of Android and new ones

	
support-core-ui, offering some widgets and containers,
such as ViewPager

	
support-fragment, providing a backport of fragments

About the Names
What this book refers to as the “Android Support Library” has many names.
It was originally referred to as the Android Compatibility Library, at a time
when it only contained backports. Once Google started adding in things that
were not strictly related to “compatibility”, they started changing the name
to try to be more generic. Right now, “Android Support” seems to be fairly
consistent, either used standalone or in the form of “Android Support Library”
or “Android Support Libraries”.
About the -v Suffixes
Some artifact names have version suffixes, like recyclerview-v7. Others do
not, such as support-fragment. The -v7 naming convention used to indicate
the minSdkVersion supported by that artifact. Originally, recyclerview-v7
worked back to API Level 7 and did not support older versions of Android
than that.
However, that was a fairly inflexible system. Not only has Google abandoned
it for newer artifacts, but the actual value no longer has meaning.
In particular, the entire Android Support Library only supports back
to API Level 15 at this point, with a few exceptions that do not go back
even that far.
Getting It
Google is now distributing its libraries via their own Maven-style artifact
repository. With Android Studio 3.0, this repository is what you get from
that google() statement in the repositories closures.
For most libraries for most versions that you are likely to encounter,
the google() repository will have what you need. You can visit
the Google Maven Repository
site to see what artifacts and versions are served from it.
Originally, these libraries were distributed via the Android Support
Repository, one that you would have on your own hard drive, downloaded via
the SDK Manager.
Choosing a Version
Typically, and historically, developers would take a three-tier approach towards
the version of these libraries:

	When starting a new project, developers would use the then-current edition
of the libraries, along with the latest compileSdkVersion

	When a new patch release to the libraries was released — for example, from 25.3.0
to 25.3.1 — developers would update to that version, as usually the patches
fix bugs

	When it came time for the project to move to a new compileSdkVersion,
developers would move to the matching major version of the libraries (e.g., when
moving to compileSdkVersion 26, switch to version 26.1.0 of the libraries)

That is still a fine pattern… if your minSdkVersion is 15 or higher. For
many developers, that will be the case.
However, if you are aiming to still support Android 2.x devices, you have a problem:
starting with the v26 edition of the Support Library, the oldest version of
Android supported by the libraries is Android 4.0.3, API Level 15.
This means that you will need to stick with compileSdkVersion 25 and the v25
edition of the Support Library until such time as you either:

	Remove all ties to the Support Library, or

	Raise your minSdkVersion to 15 or higher

Attaching It To Your Project
You can add references to the Android Support Library’s libraries — whether those
libraries are simple JARs or Android library projects — via a few lines in your
dependencies closure, referencing the artifacts from the Android Support Repository.
Here are the implementation statements for some of the artifacts in
the Android Support Library:

implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'com.android.support:cardview-v7:28.0.0'
implementation 'com.android.support:design:28.0.0'
implementation 'com.android.support:exifinterface:28.0.0'
implementation 'com.android.support:gridlayout-v7:28.0.0'
implementation 'com.android.support:leanback-v17:28.0.0'
implementation 'com.android.support:mediarouter-v7:28.0.0'
implementation 'com.android.support:palette-v7:28.0.0'
implementation 'com.android.support:percent:28.0.0'
implementation 'com.android.support:recyclerview-v7:28.0.0'
implementation 'com.android.support:support-annotations:28.0.0'

Also, while you could add all of these to your project, that is not necessary.
Only attach dependencies for libraries that you are actually using. Having unused
libraries in your project just increases your APK size for no good reason. Hence,
most projects will have only a subset of the aforementioned lines.
Note that, in general, when using the Android Support libraries,
you should set your compileSdkVersion and targetSdkVersion
to be the same as the major
version of the library. So, for a 26.1.0 version of the library,
your compileSdkVersion should be 26.
Tutorial #6 - Adding a Library
We will want to use some third-party libraries in our project, to ease
development of the app:

	the Android Support library, specifically its android-support-v13 JAR

	greenrobot’s EventBus, for communication between various pieces of our app

	Google’s Gson parser of JSON data

	Square’s Retrofit, including its Gson-based converter code, for retrieving JSON data from Web services,

	Square’s OkHttp, for general HTTP requests,
like downloading a ZIP archive

	the CWAC-Security library,
by the author of this book, which contains some code for securely unpacking
a ZIP archive

	an implementation of tabs

Right now, we will just focus on arranging for our project
to be able to use the libraries. Later in the book, we will actually put the
libraries to use.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Getting Rid of Existing Cruft
If you look at the app/build.gradle file, you will see that we already
have some dependencies:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 androidTestImplementation('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 testImplementation 'junit:junit:4.12'
}

(from EmPubLite-AndroidStudio/T5-Layout/EmPubLite/app/build.gradle)
These dependencies are the sort of thing that gets added automatically
to your project by the new-project wizard. While you imported your starter
project, rather than creating it from scratch, the starter project has
these dependencies because it was created from the new-project wizard.
However, we are not going to use any of those dependencies:

	The implementation fileTree() line pulls in bare JAR files from the libs/
directory, and we will not be using bare JAR files

	The other statements pull in dependencies for testing, and while testing
is a fine thing to do, these tutorials do not have you write any test
cases

However, not only does the new-project wizard generate dependencies like these
for us, but it also code-generates some do-nothing test code that depends
upon these dependencies. So, we will leave those two test dependencies
alone, as it is simpler to ignore them than it is to clean that part
up.
But go ahead and delete the implementation fileTree statement, leaving
you with

dependencies {
 androidTestImplementation('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 testImplementation 'junit:junit:4.12'
}

You may get a yellow banner at the top of the editor, indicating that a “project sync”
is requested. Ignore that for the moment, as we will be making more changes
to this file.
Step #2: Requesting New Dependencies
Many of the dependencies we are going to set up now are available
from JCenter, and our project is already set up to pull from there.
However, the CWAC-Security library is not,
and so we will need to teach Gradle how to find that library.
To do that, add the following code
to your app/build.gradle file, above the dependencies closure:

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

(from EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle)
Then, add seven more lines to the dependencies closure, identifying the
libraries that we need:

dependencies {
 androidTestImplementation('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 testImplementation 'junit:junit:4.12'
 implementation 'org.greenrobot:eventbus:3.0.0'
 implementation 'com.google.code.gson:gson:2.8.0'
 implementation 'com.squareup.retrofit2:converter-gson:2.1.0'
 implementation 'com.squareup.okhttp3:okhttp:3.4.1'
 implementation 'com.commonsware.cwac:security:0.8.0'
 implementation 'com.android.support:support-v13:25.3.0'
 implementation 'io.karim:materialtabs:2.0.5'
}

(from EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle)
At this point, your app/build.gradle file should look something like:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 25

 defaultConfig {
 applicationId "com.commonsware.empublite"
 minSdkVersion 15
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }
}

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 androidTestImplementation('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 testImplementation 'junit:junit:4.12'
 implementation 'org.greenrobot:eventbus:3.0.0'
 implementation 'com.google.code.gson:gson:2.8.0'
 implementation 'com.squareup.retrofit2:converter-gson:2.1.0'
 implementation 'com.squareup.okhttp3:okhttp:3.4.1'
 implementation 'com.commonsware.cwac:security:0.8.0'
 implementation 'com.android.support:support-v13:25.3.0'
 implementation 'io.karim:materialtabs:2.0.5'
}

(from EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle)
If that “project sync” yellow banner is at the top of the editor,
click the “Sync Now” link in that banner to synchronize
the *.iml files with the changes you made to this build.gradle file.
If it is not there, choose File > Sync Project with Gradle Files to force that
resync.
In Our Next Episode…
… we will configure the action bar on our tutorial project.
Introducing ConstraintLayout
In 2016, Google released a new container class, ConstraintLayout,
that it hopes will become popular among Android developers as an
alternative to LinearLayout and RelativeLayout. Certainly,
Google is going to “pull out all the stops” to convince developers
to use ConstraintLayout, such as having it be used in many of the
activity templates employed by Android Studio’s new-activity wizard.
ConstraintLayout is useful, but it is not required for Android
app development, any more than LinearLayout and RelativeLayout
are. And, since ConstraintLayout is a library, it adds approximately 100KB
to the size of your Android app. Whether it is worth that extra space
is for you to decide.
Why Another Container?
LinearLayout, RelativeLayout, and (to a lesser extent) TableLayout
have served as the backbone of most Android apps. Previous attempts to
provide a new foundation container class — such as GridLayout –
have not proven to be particularly popular.
So, why did Google bother creating ConstraintLayout?
Drag-and-Drop GUI Builders
Google would like everyone to use Android Studio, and in particular for
everyone to use Android Studio’s drag-and-drop GUI builder.
How well a drag-and-drop GUI builder works depends a lot on how the
rules for laying out a UI get defined. With drag-and-drop gestures,
the developer is only providing you with X/Y coordinates of a widget,
based on where the developer releases the mouse button and completes
the drop. It is up to the GUI builder to determine what that really means
in terms of layout rules.
With LinearLayout, adding a widget is fairly easy:

	If the developer drops the widget between two existing children of
a LinearLayout, put the new widget in between the existing ones

	Otherwise, add the widget to the end of the LinearLayout where
the developer dropped it

TableLayout is a bit more involved but still not that bad, as we have
decades of experience of working with spreadsheets to know about inserting
rows and columns into a grid-like structure.
RelativeLayout, though, was difficult for a GUI builder to handle.
Often, the Android Studio GUI builder (and its predecessor in Eclipse)
would misinterpret the developers wishes. Sometimes, the rules the
developer wanted to express were simply unavailable through pure
drag-and-drop operations. As a result, developers had to dive into the
XML to get anything done. Being able to read layout XML is important –
otherwise, books like this would be unusable. However, forcing developers
to write the XML defeated the purpose of the GUI builder.
ConstraintLayout was created with GUI building in mind, to make it a
bit easier to infer the right rules based upon where the developer happens
to drop a widget.
Performance
RelativeLayout, LinearLayout with android:layout_weight, and
TableLayout with android:stretchColumns/android:shrinkColumns, all
require two passes over their children to determine final sizes and positions.
For example, with a weighted LinearLayout, you need to make one pass
to calculate the directly-expressed sizes (e.g., android:layout_height),
followed by a second pass to allocate the remaining space according to
the weight.
This gets exacerbated by the fact that changing the details of a widget
often causes the sizes to have to be recomputed. Suppose that you change
the text in a TextView with android:layout_width="wrap_content".
Changing the text changes the horizontal space taken up by that text.
So, the TextView winds up telling its container “hey, please recompute
the sizes and positions”, as the larger TextView might now cause
shifts in other children of the container. Depending on how the container
itself is sized, it might need to tell its container to recompute
the sizes and positions.
Cascading upward to have parents re-size/re-position their children
gets very expensive for deep hierarchies, where we have containers holding
containers holding containers holding containers and so on. One change
in text of a TextView might cause that whole hierarchy to go through
re-size/re-position work.
All else being equal:

	Deeper view hierarchies are slower to render than are shallower ones

	View hierarchies where parents need two passes to size and position
their children are slower to render than are hierarchies where only
one pass is needed

ConstraintLayout is being designed with performance in mind, trying
to eliminate as many two-pass scenarios as possible and by trying
to eliminate the need for deeply-nested view hierarchies. Right now,
ConstraintLayout performance is not that
great. However, it is a focus area and should improve over time.
Comparing with the Classics
Stylistically, ConstraintLayout most closely resembles RelativeLayout.
As with RelativeLayout, you can anchor widgets to other widgets inside
the ConstraintLayout or to the boundaries of the ConstraintLayout itself.
Many structures that can be implemented using LinearLayout but not
RelativeLayout — such as allocating widget sizes based on weights –
can be handled by ConstraintLayout. ConstraintLayout is
designed to handle such conditional sizing without requiring two passes
through its children to determine those sizes.
However, TableLayout remains distinct. ConstraintLayout does not
have the notion of columns, let alone sizing those columns based upon
their contents and layout rules.
Getting ConstraintLayout
To use ConstraintLayout, you do not need to do anything special with
your SDK Manager. All that you need to do is to request some version of
the com.android.support.constraint:constraint-layout artifact in your
dependencies closure of your module’s build.gradle file:

dependencies {
 implementation 'com.android.support:support-v4:27.1.1'
 implementation 'com.android.support.constraint:constraint-layout:1.1.2'
}

(from Containers/Sampler/app/build.gradle)
Using Widgets and Containers from Libraries
When you create layout resources using widgets and containers that are part
of the main Android SDK, you:

	Use android: prefixes for nearly every attribute, and

	Use a bare class name (e.g., Button), instead of a fully-qualified class
name (e.g., android.widget.Button), for nearly every element name

When you use widgets and containers from libraries — including those
from the Android Support libraries — you:

	Use a mix of an android: and app: prefixes for attributes, where
the app: ones are for attributes that are not part of the main Android SDK

	Use a fully-qualified class name for the element names
(e.g., android.support.constraint.ConstraintLayout)

That app: prefix requires another XML namespace declaration:
xmlns:app="http://schemas.android.com/apk/res-auto". Usually, this will
be added to your layout resource automatically or via a quick-fix.
When we start reviewing the XML for ConstraintLayout, you will see
both of these changes come into effect.
Using a ConstraintLayout
Back in the chapter on the classic container classes,
we reviewed several layouts from the
Containers/Sampler
sample project. That project also happens to use ConstraintLayout, and
it has several layouts that demonstrate how ConstraintLayout can be used
in place of the classic containers. They also serve to illustrate how
to use ConstraintLayout in general.
Basic Anchoring, Single Axis
In the chapter on classic containers, we had the “bottom-then-top”
scenario, with a small Button on the bottom, underneath another Button
that took up all the remaining space:

[image: Bottom-then-Top Layout, Using ConstraintLayout]

Figure 177: Bottom-then-Top Layout, Using ConstraintLayout
In addition to being able to implement this
using LinearLayout and
using RelativeLayout, you can implement this
using ConstraintLayout. Here, we are setting the sizes and locations
of two widgets, but only focusing on a single axis at the moment: the vertical
axis.
The XML
The ConstraintLayout approach resembles that of the RelativeLayout
implementation. We use layout rules to tie the bottom Button to the
bottom of the ConstraintLayout and tie the top Button between the
top of the ConstraintLayout and the top of the bottom Button:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:text="@string/button"
 app:layout_constraintBottom_toTopOf="@+id/another_button"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <Button
 android:id="@id/another_button"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:text="@string/another_button"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent" />
</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/bottom_then_top_cl.xml)
The bottom Button has three ConstraintLayout rules, such as
app:layout_constraintBottom_toBottomOf="parent". ConstraintLayout
rules are verbose and a bit odd-looking. It may help to unpack this into pieces:

	
app: is because ConstraintLayout comes from a library, not
the Android framework itself

	
layout_ is the standard prefix for rules based upon a widget’s
container, no different than what we saw with the classic containers

	
constraint is used in all the ConstraintLayout-specific rule
attribute names

	
Bottom indicates what side of the widget we are looking to anchor
(in this case, the bottom of the widget)

	
toBottomOf indicates what side of the target (parent) we want
to anchor to (in this case, the bottom of the ConstraintLayout)

The value associated with the rule attribute is either a widget ID of
another child of the same ConstraintLayout, or parent to indicate
the ConstraintLayout itself.
So, our Button is anchored to the bottom of the ConstraintLayout,
with its natural wrap_content height.
The three rules on the bottom Button are:

	
app:layout_constraintBottom_toBottomOf="parent", to tie the bottom
of the Button to the bottom of the ConstraintLayout

	
app:layout_constraintEnd_toEndOf="parent", to tie the end
of the Button to the end of the ConstraintLayout

	
app:layout_constraintStart_toStartOf="parent", to tie the start
of the Button to the start of the ConstraintLayout

Our top Button has four ConstraintLayout rule attributes:

	
app:layout_constraintBottom_toTopOf="@+id/another_button" anchors
the bottom of this Button to the top of the bottom Button, based
upon the ID of the bottom Button

	
app:layout_constraintTop_toTopOf="parent" anchors the top of
the top Button to the top of the ConstraintLayout

	
app:layout_constraintEnd_toEndOf="parent" anchors the end of
the top Button to the end of the ConstraintLayout

	
app:layout_constraintStart_toStartOf="parent" anchors the start of
the top Button to the start of the ConstraintLayout

Sizes of widgets also play a role here. The height of the bottom
Button is wrap_content, so it will be its natural height. The height
of the top Button is 0dp, indicating that we want to stretch it
between anchor points established by rules. The width of both buttons
is also 0dp, indicating that we want those buttons to be stretched
between anchor points along the horizontal axis.
Now, you might wonder why we do not just set the width of the buttons
to match_parent and skip the “start” and “end” rules. In an ideal world,
this is what we would do. The developers of ConstraintLayout
have other ideas, and those ideas include making match_parent useless.
If you try to use match_parent, the actual width that you get will
vary by circumstance and rarely actually fill the available space. So,
we are stuck with the 0dp-and-anchor-rules approach.
The Android Studio Graphical Layout Editor
As with other containers, you can create a new layout resource with
a ConstraintLayout as the root, by right-clicking over a layout
resource directory, choosing New > “Layout resource file” from the context
menu, and typing in android.support.constraint.ConstraintLayout
for the root element. Fortunately, auto-complete on the “Root element”
field allows you to just start typing ConstraintLayout, then choose the
fully-qualified class name from the drop-down list.
If you drag a widget into the ConstraintLayout and drop it in an
arbitrary spot, what you get at design time will be different than
what you get when you run the app. In the graphical layout editor,
the Button shows up where you drop it:

[image: ConstraintLayout, With Dragged-In Button]

Figure 178: ConstraintLayout, With Dragged-In Button
However, if you look at the XML that was generated, you will see that
the Button has no constraints. It does have a pair of attributes
with the tools: prefix: tools:layout_editor_absoluteX and
tools:layout_editor_absoluteY:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:id="@+id/button9"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button"
 tools:layout_editor_absoluteX="77dp"
 tools:layout_editor_absoluteY="36dp" />
</android.support.constraint.ConstraintLayout>

Attributes in the tools: namespace are suggestions to the development
tools and have no impact on the behavior of your app when it runs. In
this case, Android Studio remembers the upper-left corner of where
you dropped the Button. But, as a warning on the Button in the layout
editor will tell you, a Button without constraints will wind up
at coordinate (0,0) at runtime (basically, upper-left for LTR languages
and upper-right for RTL languages).
Dragging in a widget is insufficient. You also need to use the graphical
layout editor to define the constraints.
If you click on a widget that you dragged into the ConstraintLayout, and hover
your mouse over it,
the blueprint view will show squares on the corners and circles centered
on the edges, plus one or more bubbles beneath it:

[image: Blueprint View, Showing Annotated Widget]

Figure 179: Blueprint View, Showing Annotated Widget
The squares are resize handles. Most likely, you have seen this pattern
before, whether in IDEs, drawing tools, or other programs.
You would use this resizing approach if you wanted a fixed size for the widget.
Later switching to using dimension resources, rather than hard-coded values, for the
size values would be a good idea. You can also change the width and height
through the Attributes pane, as with widgets inside of other sorts of
containers.
The circles are more important, as they allow you to define the constraints,
by dragging a circle to some anchor point:

[image: Blueprint View, Showing Constraint Being Created]

Figure 180: Blueprint View, Showing Constraint Being Created
To create the bottom Button from the layout shown in the previous section,
you would set its width to be 0dp, then use the circles to establish
the three constraints, on the bottom, start, and end:

[image: Blueprint View, Showing Three Constraints on Bottom Button]

Figure 181: Blueprint View, Showing Three Constraints on Bottom Button
To create the top Button, you would drag another Button into the
ConstraintLayout, set its width and height to 0dp,
then set up the four constraints, one on each side. In the case of the
constraint starting from the bottom-edge circle of the top Button, you
would drag it to the top edge of the bottom
Button to tie those widgets together:

[image: Preview and Blueprint View, Showing Two Buttons]

Figure 182: Preview and Blueprint View, Showing Two Buttons
When you click on a widget inside a ConstraintLayout, the Attributes pane
has a strange-looking control above the regular properties:

[image: Constraint Configuration Thingy]

Figure 183: Constraint Configuration Thingy
This allows you to manage some aspects of the constraints. For example,
the four 0 values shown in that image turn into comboboxes when clicked, and
their values form the margins on that side of the widget.

[image: Constraint Configuration Thingy, Showing Margin Combobox]

Figure 184: Constraint Configuration Thingy, Showing Margin Combobox
The sawtooth lines inside the square indicate that the sizing rules are 0dp
for both axes. Clicking on one of the sawtooth lines will toggle between
states for that axis:

	
wrap_content, indicated by chevrons

	a fixed width, indicated by a sizing bar

	
0dp, for stretching the size to the available space, indicated by a sawtooth line

Basic Anchoring, Dual Axis
Of course, ConstraintLayout can control sizing and positioning
horizontally as well as vertically. The “URL dialog” scenario
from the chapter on classic containers can be implemented easily
enough using a ConstraintLayout:

[image: URL Dialog Layout, Using ConstraintLayout]

Figure 185: URL Dialog Layout, Using ConstraintLayout
Once again, the ConstraintLayout version resembles a more-complex
representation of the RelativeLayout version:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="4dip"
 android:layout_marginStart="4dip"
 android:text="@string/url"
 app:layout_constraintBaseline_toBaselineOf="@+id/entry"
 app:layout_constraintStart_toStartOf="parent" />

 <EditText
 android:id="@id/entry"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:inputType="text"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@id/label"
 app:layout_constraintTop_toTopOf="parent" />

 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/ok"
 app:layout_constraintEnd_toEndOf="@id/entry"
 app:layout_constraintTop_toBottomOf="@id/entry" />

 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/cancel"
 app:layout_constraintEnd_toStartOf="@id/ok"
 app:layout_constraintTop_toTopOf="@id/ok" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/url_dialog_cl.xml)
The TextView uses app:layout_constraintStart_toStartOf="parent"
to say that its starting edge aligns with the starting edge of the
ConstraintLayout. It also uses app:layout_constraintBaseline_toBaselineOf="@+id/entry"
to have its baseline align with the baseline of the EditText.
The EditText uses:

	
app:layout_constraintStart_toEndOf="@id/label" to have its starting
edge align with the ending edge of the TextView

	
app:layout_constraintEnd_toEndOf="parent" and
android:layout_width="0dp" to have its ending edge align with the ending
edge of the ConstraintLayout (and, therefore, span to fill the remaining
space in the row)

	
app:layout_constraintTop_toTopOf="parent" to have its top edge align
with the top edge of the ConstraintLayout

The “OK” Button has its ending edge align with that of the EditText
(app:layout_constraintEnd_toEndOf="@id/entry") and has its top edge
align with the bottom edge of the EditText
(app:layout_constraintTop_toBottomOf="@id/entry")
The “Cancel” Button has its ending edge align with the starting edge
of the “OK” Button (app:layout_constraintEnd_toStartOf="@id/ok") and
has its top edge align with the top edge of the “OK” Button
(app:layout_constraintTop_toTopOf="@id/ok")
Note that to create a baseline via drag-and-drop, you need to:

	Click on the “ab” icon in the blueprint below the widget whose baseline should be
constrained. This should enable a “lozenge” drag handle underneath the
text in the widget:

[image: Baseline Constraint Enabled]

Figure 186: Baseline Constraint Enabled

	Start dragging that “lozenge” shape, which will enable similar shapes on
other text-based widgets

	Drag the connection line to the “lozenge” in the other widget, to have the
first widget’s baseline depend upon the second widget’s baseline:

[image: Baseline Constraint Established]

Figure 187: Baseline Constraint Established
Playing the Percentages
In the chapter on the classic containers, we looked at
how you could
use weights with a LinearLayout to allocate size on a percentage basis.
However, we did not replicate that structure with RelativeLayout,
as RelativeLayout on its own has no way of working with percentages.
ConstraintLayout has two solutions for this. The simpler solution
uses app:layout_constraintHeight_percent and
app:layout_constraintWidth_percent attributes. These specify the size
along that axis as a percentage of the size of the ConstraintLayout. Values
range from 0 to 1, so 50% is represented as 0.5 as a floating-point value.
To use these attributes, the size of the widget needs to be 0dp (a.k.a.,
match_constraint) along the axis where the sizing should be dictated by
the percentage constraint.
So, here we have a ConstraintLayout edition of the stacked 50%/30%/20% set
of buttons shown earlier with a LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button android:id="@+id/fifty"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:text="@string/fifty_percent"

 app:layout_constraintHeight_percent="0.50"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <Button android:id="@+id/thirty"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:text="@string/thirty_percent"

 app:layout_constraintHeight_percent="0.30"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/fifty" />

 <Button
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:text="@string/twenty_percent"

 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/thirty" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/stacked_percent_cl.xml)
Each button is anchored to whatever is above it, whether that is the top
of the ConstraintLayout or the preceding button. Each has a height of 0dp,
and the first two have app:layout_constraintHeight_percent set to the appropriate value
(0.50 and 0.30 respectively). The bottom button is constrained to fill
the remaining space.
This gives the same visual results as we get with the LinearLayout:

[image: ConstraintLayout, Showing Stacked Percentage Buttons]

Figure 188: ConstraintLayout, Showing Stacked Percentage Buttons
There does not appear to be GUI support for setting up these constraints
in Android Studio 3.1.2, though perhaps it will be added later.
The second solution for percentage-based layouts — guidelines — will be covered
later in the book.
Converting Existing Layouts
After spending some time with ConstraintLayout, you might decide
that you want to try to standardize on it, converting existing
layouts based on other containers to use ConstraintLayout.
Android Studio can help with this. In the design tab of a layout,
if you right-click over an existing container in the component tree,
you will have a “Convert … to ConstraintLayout” context menu option.
The “…” will be replaced by the container class that you clicked
on (e.g., LinearLayout).

[image: Convert to ConstraintLayout Context Menu]

Figure 189: Convert to ConstraintLayout Context Menu
Choosing that menu option brings up a dialog for configuring the
conversion:

[image: Convert to ConstraintLayout Dialog]

Figure 190: Convert to ConstraintLayout Dialog
The default behavior is to not only change the container that you
clicked on, but all containers inside of it, to try to put everything
into a single ConstraintLayout. However, if you have Java code
that refers to some container that this conversion process would otherwise
remove — for example, you are calling findViewById() on a widget
ID that your Java code references — that container is left alone.
Unchecking the second checkbox results in a more aggressive conversion,
but it will leave you with broken Java code until you change whatever
logic you have there to deal with the revised layout.
For simple layouts, the conversion process works fairly well. For
complex layouts, the conversion process is more likely to give you
invalid results, requiring manual tinkering, reversion to the original
layout, or rewriting the layout from scratch.
So, you are welcome to try it out and see if it works, but do not be
surprised if it does not.
Visit the Trails!
There are more things that you can accomplish with a ConstraintLayout
beyond what is presented here. There is a chapter on
advanced ConstraintLayout techniques that get into more
complex scenarios.
If you are interested in other containers from libraries, the book
has a chapter on GridLayout.
RecyclerView
Visually representing collections of items is an important aspect of
many mobile apps. The classic Android implementation of this was
the AdapterView family of widgets: ListView, GridView, Spinner, and
so on. However, they had their limitations, particularly with respect to
advanced capabilities like animating changes in the list contents.
In 2014, Google released RecyclerView, via the Android Support package.
Developers can add the recyclerview-v7 artifact to their projects and use
RecyclerView as a replacement for most of the AdapterView family.
RecyclerView was written from the ground up to be a more flexible
container, with lots of hooks and delegation to allow behaviors to be
plugged in.
This had two major impacts:

	
RecyclerView is indeed much more powerful than its AdapterView
counterparts

	
RecyclerView, out of the box, is nearly useless, and wiring together
enough stuff to even replicate basic ListView/GridView functionality
takes quite a bit of code

In this chapter, we will review the basic use of RecyclerView, as an alternative
to ListView. A later chapter gets into more complex scenarios,
such as replacing GridView with RecyclerView.
AdapterView and its Discontents
AdapterView, and particularly its ListView and GridView
subclasses, serve important roles in Android application development.
And, for basic scenarios, they work reasonably well.
However, there are issues.
Perhaps the biggest tactical issue is that updating an AdapterView tends to be an
all-or-nothing affair. If there is a change to the model data — new
rows added, existing rows removed, or data changes that might affect
the AdapterView presentation — the only well-supported solution is
to call notifyDataSetChanged() and have the AdapterView rebuild
itself. This is slow and can have impacts on things like choice states.
And, if you wanted to get really elaborate about your changes, and
use animated effects to show where rows got added or removed, that was
halfway to impossible.
Strategically, AdapterView, AbsListView (the immediate parent of
ListView and GridView), and ListView are large piles of code
that resemble pasta to
many outsiders. There are so many responsibilities piled into these
classes that maintainability was a challenge for Google and extensibility
was a dream more than a reality.
Enter RecyclerView
RecyclerView is designed to correct those sorts of flaws.
RecyclerView, on its own, does very little other than help manage
view recycling (e.g., row recycling of a vertical list). It delegates
almost everything else to other classes, such as:

	a layout manager, responsible for organizing the views into
various structures (vertical list, grid, staggered grid, etc.)

	an item decorator, responsible for applying effects and light positioning
to the views, such as adding divider lines between rows in a vertical
list

	an item animator, responsible for animated effects as the model
data changes

This is on top of the adapters and view holders that were the hallmarks
of conventional AdapterView usage.
Because things like layout managers are handled via abstract classes
and replaceable concrete implementations, third-party developers can
contribute options for developers to use, just as Google does.
On the flip side, though, RecyclerView does much less “out of the box”
than does ListView or GridView. Not everything that is missing is
supplied anywhere in the recyclerview-v7 library, requiring that you
either roll a bunch of code yourself or rely upon those third-party
libraries to get anything much done.
A Trivial List
Back in the original chapter on AdapterView and adapters,
we had the Selection/Dynamic sample app. This app would display a list
of 25 Latin words, each with the word’s length and an accompanying icon
(different for short and long words):

[image: The Dynamic Sample Application]

Figure 191: The Dynamic Sample Application
Here, we will review the
RecyclerView/SimpleList
sample project, which is a first pass at porting the Selection/Dynamic
demo over to use RecyclerView.
The Dependency
Any project that wishes to use RecyclerView needs to have access
to the recyclerview-v7 library from the Android Support package.
Android Studio users can simply have a reference to it in the
top-level dependencies closure:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 implementation 'com.android.support:cardview-v7:27.1.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 }
}

(from RecyclerView/SimpleList/app/build.gradle)
However, if you are using recyclerview-v7, you want to use version 23 or higher
of that library. There are
changes to ART –
the Android runtime used on Android 5.0+ — that apparently will
break the older versions of recyclerview-v7 when running on Android
6.0+ devices.
A RecyclerViewActivity
With ListView, we could use ListActivity, to isolate some of the
ListView-management code. There is no RecyclerViewActivity in the
recyclerview-v7 library… but we can create one:

package com.commonsware.android.recyclerview.simplelist;

import android.app.Activity;
import android.support.v7.widget.RecyclerView;

public class RecyclerViewActivity extends Activity {
 private RecyclerView rv=null;

 public void setAdapter(RecyclerView.Adapter adapter) {
 getRecyclerView().setAdapter(adapter);
 }

 public RecyclerView.Adapter getAdapter() {
 return(getRecyclerView().getAdapter());
 }

 public void setLayoutManager(RecyclerView.LayoutManager mgr) {
 getRecyclerView().setLayoutManager(mgr);
 }

 public RecyclerView getRecyclerView() {
 if (rv==null) {
 rv=new RecyclerView(this);
 rv.setHasFixedSize(true);
 setContentView(rv);
 }

 return(rv);
 }
}

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/RecyclerViewActivity.java)
The important part is the getRecyclerView() method. Here, if we have
not already initialized the RecyclerView, we create an instance of it and
set it as the activity’s content view via setContentView(). Along the
way, we call setHasFixedSize(true) on the RecyclerView, to tell it
that its size should not be changing based upon the contents of the
adapter. This knowledge can help RecyclerView operate more efficiently.
The RecyclerViewActivity also has getAdapter() and setAdapter() analogues
for their ListActivity counterparts. We will explore the differences
in the adapter classes later in this section.
We also have a setLayoutManager() convenience method, that just calls
setLayoutManager() on the underlying RecyclerView — we will see what
a layout manager is in the context of RecyclerView
in the next section.
There are other features of ListActivity that are not mirrored here
in RecyclerViewActivity, just to keep RecyclerViewActivity short.
Notably, ListActivity supports either inflating a custom layout that
contains the ListView or creating its own. RecyclerViewActivity
does not support this, though it could with some minor extensions.
The LayoutManager
The “real” activity of the project is MainActivity, which consists
of a single method: onCreate()

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setLayoutManager(new LinearLayoutManager(this));
 setAdapter(new IconicAdapter());
 }

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java)
After chaining to the superclass, the first thing we do is call
setLayoutManager(), which will associate a RecyclerView.LayoutManager with
our RecyclerView. Specifically, we are using a LinearLayoutManager.
ListView has the notion of a vertically-scrolling list of
rows “baked into” its implementation. Similarly, GridView has the notion of
a two-dimensional vertically-scrolling grid “baked into” its implementation.
RecyclerView, on the other hand, knows absolutely nothing about how
to lay out its children. That work is delegated to a RecyclerView.LayoutManager, so that
different approaches can be plugged in as needed.
There are three concrete subclasses of the abstract RecyclerView.LayoutManager base
class that ship with recyclerview-v7:

	
LinearLayoutManager, which implements a vertically-scrolling list,
akin to ListView

	
GridLayoutManager, which implements a two-dimensional vertically-scrolling
list, akin to GridView

	
StaggeredGridLayoutManager, which implements a “staggered grid”, which
has columns of cells like a GridView, but where the cells do not have to
all have the same size

In addition, it is eminently possible to create your own RecyclerView.LayoutManager,
or use ones from third-party libraries.
In this example, though, we stick with a simple LinearLayoutManager, as
we are attempting to replicate the functionality of a ListView.
The Adapter
Our onCreate() method also calls setAdapter(), to associate an
RecyclerView.Adapter with our RecyclerView (specifically, a revised
version of our IconicAdapter from the original Selection/Dynamic
sample app). As with the AdapterView family,
RecyclerView uses an adapter to help convert our model data into
visual representations. However, the implementation of a RecyclerView.Adapter
is substantially different from a classic ListAdapter for use with
ListView or GridView.
Reminiscent of ArrayAdapter, a RecyclerView.Adapter uses generics,
and we declare what sort of stuff we are adapting. However, ArrayAdapter
uses the generic to describe the model data. RecyclerView.Adapter instead
uses the generic to identify a ViewHolder that will be responsible
for doing the work to actually tie model data to row widgets:

 class IconicAdapter extends RecyclerView.Adapter<RowHolder> {
 @Override
 public RowHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 return(new RowHolder(getLayoutInflater()
 .inflate(R.layout.row, parent, false)));
 }

 @Override
 public void onBindViewHolder(RowHolder holder, int position) {
 holder.bindModel(items[position]);
 }

 @Override
 public int getItemCount() {
 return(items.length);
 }
 }

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java)
In our case, IconicAdapter is using a RowHolder class that we will
examine in the next section.
A RecyclerView.Adapter has three abstract methods that need to be implemented.
One is getItemCount(), which fills the same role as does getCount()
with a ListAdapter, indicating how many items there will be in the
RecyclerView. In the case of IconicAdapter, this is based on the
length of the items static array of String objects, same as it was
with IconicAdapter in the Selection/Dynamic sample app:

 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java)
The other two methods are onCreateViewHolder() and onBindViewHolder().
These are a bit reminiscent of the newView() and bindView() methods
that are used by a CursorAdapter. However, rather than working directly
with views, onCreateViewHolder() and onBindViewHolder() work with
ViewHolder objects, as a formalization of the view holder pattern
seen originally in the chapter on selection widgets.
onCreateViewHolder(), as the name suggests, needs to create, configure,
and return a ViewHolder for a particular row of our list. It is passed
two parameters:

	a ViewGroup that will hold the views managed by the holder, mostly
for use with layout inflation, and

	an int that is the particular view type we are using, for cases where
we have multiple view types

The IconicAdapter implementation inflates our row view (R.layout.row)
and passes it to the RowHolder constructor, returning the resulting
RowHolder.
onBindViewHolder() is responsible for updating a ViewHolder based
upon the model data for a certain position. IconicAdapter
handles this by passing the model into a private bindModel() method
implemented on RowHolder.
There are many other methods you could override on RecyclerView.Adapter,
and we will see a few of those later in this chapter. But, for a simple
list, these three will suffice.
The ViewHolder
The RecyclerView.ViewHolder is responsible for binding data as needed
from our model into the widgets for a row in our list:

 static class RowHolder extends RecyclerView.ViewHolder {
 TextView label=null;
 TextView size=null;
 ImageView icon=null;
 String template=null;

 RowHolder(View row) {
 super(row);

 label=(TextView)row.findViewById(R.id.label);
 size=(TextView)row.findViewById(R.id.size);
 icon=(ImageView)row.findViewById(R.id.icon);

 template=size.getContext().getString(R.string.size_template);
 }

 void bindModel(String item) {
 label.setText(item);
 size.setText(String.format(template, item.length()));

 if (item.length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }
 }
 }

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java)
However, other than needing to use the base class of RecyclerView.ViewHolder,
there is no other particular protocol that is mandated between the
adapter and the view holder. You can invent your own API. Here, we use
the RowHolder constructor to pass in the row View, where the constructor
retrieves the individual widgets and sets up our string resource template.
Then, a private bindModel() method takes our model object (a String)
and binds it to the row’s widgets, applying our business rules along
the way.
The Results
As the project name suggests, this gives us a simple list:

[image: SimpleList RecyclerView Demo]

Figure 192: SimpleList RecyclerView Demo
As with ListView, RecyclerView (along with the RecyclerView.LayoutManager)
handles the vertical scrolling through our available rows.
What’s Missing?
However, we are lacking two things that we had in the Selection/Dynamic
edition of this sample that used a ListView.
First, there are no dividers between the rows. That may not be a huge
issue for this particular row layout, but other layouts may need more
assistance in visually separating one row from the next. We will explore
ways of accomplishing this in the next section.
Second, we are missing click events. The user can tap on rows as much as
she wants. Not only will the user not get any visual feedback from those
taps, but we have no setOnItemClickListener() to find out about
those taps. We will explore how to fill in this gap
later in the chapter.
RecyclerView also lacks a variety of other things that we could get
from a ListView, that we happen to not be using in this sample, such
as:

	choice modes, for checklists and such

	header and footer views

	any concept of a “selected” row

	filter support

	and so on

We will explore some of those and how to address them in this chapter.
Divider Options
There are two main approaches for visually separating items in a
RecyclerView:

	Ensure that this is handled via the layout itself, such as using
a CardView

	Use a RecyclerView.ItemDecoration to apply a common divider
between items

Both of these techniques will be covered in this chapter.
CardView
Cards are a popular visual metaphor in mobile development. Dividing
content collections (or aspects of a larger piece of content) into
cards makes it clearer how you can reorganize that content to fit
various screen sizes and orientations. In some cases, you might have
a single column of cards, while in other cases, you have cards arranged
more laterally.
In 2014, Google released cardview-v7, another library in the Android
Support package, that offers a CardView. CardView is a simple subclass
of FrameLayout, designed to provide a card UI, consisting of a rounded
rectangle and a drop shadow. In particular, CardView will use
Android 5.0’s default drop shadows based on widget elevation, while offering
emulated drop shadows on earlier Android releases. This way, you can get
a reasonably consistent look going back to API Level 7.
To use this, you will have to add the cardview-v7 library to your
app project. Android Studio users can just add a dependency on
the cardview-v7 artifact in the Android Support repository, as seen in the
RecyclerView/CardViewList
sample project:

dependencies {
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 implementation 'com.android.support:cardview-v7:27.1.1'
}

(from RecyclerView/CardViewList/app/build.gradle)
Then, you can wrap your row layout in a CardView (or, more accurately,
in an android.support.v7.widget.CardView):

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:cardview="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 cardview:cardCornerRadius="4dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:padding="2dip"
 android:src="@drawable/ok"
 android:contentDescription="@string/icon"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="25sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"/>
 </LinearLayout>

 </LinearLayout>
</android.support.v7.widget.CardView>

(from RecyclerView/CardViewList/app/src/main/res/layout/row.xml)
With no other code changes from the original RecyclerView/SimpleList sample,
we get this:

[image: CardViewList RecyclerView Demo]

Figure 193: CardViewList RecyclerView Demo
Note that drop shadows from CardView may not show up on Android 5.0+
emulators, particularly if you have Host GPU mode disabled in the
emulator AVD. The CardView itself will work fine, just without the
drop shadow effect.
Manual
A CardView may not be an appropriate visual approach for your list.
Perhaps you want a regular divider, like we had with ListView.
While that is possible, it is not especially straightforward.
RecyclerView considers things like dividers to be “item decorations”.
There is a RecyclerView.ItemDecoration abstract class that you can
extend to handle item decoration, and you can attach such a decoration
to a RecyclerView via addItemDecoration(). As the name suggests,
you can have more than one decorator if needed.
Originally, Google did not bother to provide any concrete implementation
of such a decoration. However, they eventually added a DividerItemDecoration
class that you can use for a simple, “out of the box” divider.
DividerItemDecoration
The
RecyclerView/DividerList
sample project demonstrates the use of DividerItemDecoration… which consists
of a single call to addItemDecoration():

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setLayoutManager(new LinearLayoutManager(this));

 getRecyclerView()
 .addItemDecoration(new DividerItemDecoration(this, LinearLayoutManager.VERTICAL));
 setAdapter(new IconicAdapter());
 }

(from RecyclerView/DividerList/app/src/main/java/com/commonsware/android/recyclerview/divider/MainActivity.java)
The DividerItemDecoration constructor just takes a Context and the orientation
to use. Here, though, the orientation refers to the orientation of the RecyclerView.
You might think that using LinearLayoutManager.VERTICAL here would mean that
the divider would be drawn vertically. Instead, it means that the RecyclerView
scrolls vertically, so dividers are drawn horizontally.
While DividerItemDecoration has a few configuration options — notably, a
setDrawable() method to override the default artwork to use for the divider –
the “out of the box” implementation largely matches the look of the ListView
divider:

[image: DividerItemDecoration, Applied to a RecyclerView]

Figure 194: DividerItemDecoration, Applied to a RecyclerView
DIY Decorators
As noted above, originally recyclerview-v7 did not come with an actual
divider. A few enterprising developers experimented with this, leading to
solutions like
this one, published as a GitHub gist.
The
RecyclerView/ManualDividerList
sample project demonstrates the use of such a decoration. It may be that what
you want for a decorator is more complex than what DividerItemDecoration
can offer, and so implementing your own decorator may be necessary.
First, we will need a drawable resource for the divider itself:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">

 <size
 android:width="1dp"
 android:height="1dp" />

 <solid android:color="@color/divider" />

</shape>

(from RecyclerView/ManualDividerList/app/src/main/res/drawable/item_divider.xml)
This is a ShapeDrawable, as is covered in the chapter on drawables.
The big thing is the solid fill, here pointing to a color resource for the
color to use for that fill:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="divider">#ffaaaaaa</color>
</resources>

(from RecyclerView/ManualDividerList/app/src/main/res/values/colors.xml)
The ShapeDrawable is given a size of 1dp square. In reality, it will be
resized on the fly by the decorator to fill the width of the RecyclerView.
Note that there is nothing especially magic about using this particular drawable.
You could have a gradient fill to have the divider taper off towards the ends
and be solid in the middle. Or, you could use a nine-patch PNG file,
a VectorDrawable on Android 5.0+, or anything else that will resize
well.
Next, we need a RecyclerView.ItemDecoration implementation, such as
the sample project’s HorizontalDividerItemDecoration:

package com.commonsware.android.recyclerview.manualdivider;

import android.graphics.Canvas;
import android.graphics.drawable.Drawable;
import android.support.v7.widget.RecyclerView;
import android.view.View;

// inspired by https://gist.github.com/polbins/e37206fbc444207c0e92

public class HorizontalDividerItemDecoration extends RecyclerView.ItemDecoration {
 private Drawable divider;

 public HorizontalDividerItemDecoration(Drawable divider) {
 this.divider=divider.mutate();
 }

 @Override
 public void onDrawOver(Canvas c, RecyclerView parent, RecyclerView.State state) {
 int left=parent.getPaddingLeft();
 int right=parent.getWidth()-parent.getPaddingRight();

 int childCount=parent.getChildCount();

 for (int i=0; i<childCount-1; i++) {
 View child=parent.getChildAt(i);
 RecyclerView.LayoutParams params=
 (RecyclerView.LayoutParams)child.getLayoutParams();

 int top=child.getBottom()+params.bottomMargin;
 int bottom=top+divider.getIntrinsicHeight();

 divider.setBounds(left, top, right, bottom);
 divider.draw(c);
 }
 }
}

(from RecyclerView/ManualDividerList/app/src/main/java/com/commonsware/android/recyclerview/manualdivider/HorizontalDividerItemDecoration.java)
This class takes the Drawable that is the divider as input, so it
can be used for different dividers as needed.
HorizontalDividerItemDecoration calls mutate() on the Drawable
to get a Drawable that can be changed independently of any original
instance of the Drawable. This is important when using Drawable
resources, as the Drawable instances get reused for other references to
the same resource, so changing the core Drawable itself (e.g., via
a setBounds() call) is unsafe.
The main logic of HorizontalDividerItemDecoration resides in the
onDrawOver() method. This will be called to let us draw over top
of the items in the RecyclerView. Here we:

	Determine the left and right extents to draw, relative to the left
and right edges of the RecyclerView, but subtracting the padding, so
that we only draw inside of that padding

	Iterate over the child views of the RecyclerView, find the vertical
location for that divider, resize the divider to fit the desired space,
and then draw the divider on the supplied Canvas, skipping the last
child so we do not draw a divider at the bottom of the list

Using that bit of magic, then, is merely a matter of attaching our
HorizontalDividerItemDecoration to our RecyclerView, done here
in onCreate() of MainActivity:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setLayoutManager(new LinearLayoutManager(this));

 Drawable divider=getResources().getDrawable(R.drawable.item_divider);

 getRecyclerView().addItemDecoration(new HorizontalDividerItemDecoration(divider));
 setAdapter(new IconicAdapter());
 }

(from RecyclerView/ManualDividerList/app/src/main/java/com/commonsware/android/recyclerview/manualdivider/MainActivity.java)
The rest of the sample project is a clone of the original SimpleList
sample project from the beginning of this chapter.
The result is that we have a divider drawn between the children:

[image: ManualDividerList RecyclerView Demo]

Figure 195: ManualDividerList RecyclerView Demo
Handling Click Events
However, having nice dividers does not address the larger problem:
responding to input.
The RecyclerView vision, overall, is that RecyclerView itself has
nothing much to do with input, other than scrolling. Anything having
to do with users clicking things and triggering some sort of response
is the responsibility of the views inside the RecyclerView, such
as the rows in a list-style RecyclerView.
This has its benefits. Clickable widgets, like a RatingBar, in a
ListView row had long been in conflict with click events on rows
themselves. Getting rows that can be clicked, with row contents that
can also be clicked, gets a bit tricky at times. With RecyclerView,
you are in more explicit control over how this sort of thing gets
handled… because you are the one setting up all of the on-click
handling logic.
Of course, that does not help the users much. Users do not care what
bit of code is responsible for input. Users simply want to provide
the input. If you present them with a vertically-scrolling list-style
UI, they will attempt to click on rows in the list and will expect some sort
of outcome.
The RecyclerView approach, though, means that you are largely on your
own for handling that input. This requires yet more code that, in an
ideal world, would be offered as an “out of the box” option by
RecyclerView.
Responding to Clicks
At its core, responding to clicks is a matter of setting an OnClickListener
on the appropriate Views.
So, for example, the
RecyclerView/CardClickList
sample project is a clone of the
CardViewList sample, where we call setOnClickListener() on the
row View in the RecyclerView.ViewHolder, now renamed RowController:

package com.commonsware.android.recyclerview.cardclicklist;

import android.support.v7.widget.RecyclerView;
import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;

class RowController extends RecyclerView.ViewHolder
 implements View.OnClickListener {
 TextView label=null;
 TextView size=null;
 ImageView icon=null;
 String template=null;

 RowController(View row) {
 super(row);

 label=(TextView)row.findViewById(R.id.label);
 size=(TextView)row.findViewById(R.id.size);
 icon=(ImageView)row.findViewById(R.id.icon);

 template=size.getContext().getString(R.string.size_template);

 row.setOnClickListener(this);
 }

 @Override
 public void onClick(View v) {
 Toast.makeText(v.getContext(),
 String.format("Clicked on position %d", getAdapterPosition()),
 Toast.LENGTH_SHORT).show();
 }

 void bindModel(String item) {
 label.setText(item);
 size.setText(String.format(template, item.length()));

 if (item.length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }
 }
}

(from RecyclerView/CardClickList/app/src/main/java/com/commonsware/android/recyclerview/cardclicklist/RowController.java)
In this sample, all the onClick() method does is show a Toast. However,
you could:

	Raise an event on an event bus, or

	Call a method on some supplied interface (e.g., passed into the RowController
constructor) to delegate the event to a higher-order controller, or

	Whatever else might be needed

In this case, since none of the widgets in the row are interactive and might
consume click events themselves, the user can tap anywhere on the row,
and the Toast will appear. If you have more complex scenarios — such as
a checklist where you have a CheckBox in the rows — you can decide for yourself
how to handle click events on different parts of the row. We will see checklists
in action later in this chapter.
Visual Impact of Clicks
However, if you run the CardClickList sample, you will notice one major
remaining flaw: there is no visual feedback to the user about the click
event. Yes, the Toast appears, but users are used to seeing some sort of
transient state change in the row itself on a click, such as a flash of
color. Once again, we have the ability to control this as we see fit… by
having the responsibility to make it happen at all.
There are a few approaches to this problem, such as the ones outlined in
this section.
Option #1: Translucent Selector on Top
An approach that Mark Allison suggested in
his Styling Android blog
mimics the drawSelectorOnTop approach available to ListView.
Using something like a FrameLayout, you layer a translucent selector
atop the rows, where the selector implements the click feedback.
The
RecyclerView/CardRippleList
sample project is a clone of CardClickList that takes
Mr. Allison’s approach. The revised row.xml takes advantage of the
fact that CardView is a subclass of FrameLayout, so it layers
a plain View atop the LinearLayout that is the core content of the
row:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:cardview="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 cardview:cardCornerRadius="4dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:padding="2dip"
 android:src="@drawable/ok"
 android:contentDescription="@string/icon"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="25sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"/>
 </LinearLayout>

 </LinearLayout>

 <View
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="?android:attr/selectableItemBackground" />

</android.support.v7.widget.CardView>

(from RecyclerView/CardRippleList/app/src/main/res/layout/row.xml)
The background of that View is the selectableItemBackground from
the current theme. On apps using Theme, this will give you an orange
flash. On apps using Theme.Holo, this will give you a blue flash. On
apps using Theme.Material, this will give you a ripple animation.
And, of course, you can supply your own override value for
selectableItemBackground to use your own StateListDrawable instead.
The downsize of this approach is that the View is higher on the Z
axis than is the rest of the row content. In this case, since the
rest of the row content is non-interactive, this is not a problem.
However, if we elect to put interactive widgets in the rows — such as
CheckBox widgets to implement a checklist — now our View will
prevent the user from interacting with those widgets.
Option #2: Background Selector
Another approach would be to apply the selectableItemBackground
to our existing row content, rather than to some separate selector
widget that overlays the row content. This is the approach taken
in the
RecyclerView/CardRippleList2
sample project. Here, the selectableItemBackground is applied to the
LinearLayout inside of the CardView:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:cardview="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 cardview:cardCornerRadius="4dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:background="?android:attr/selectableItemBackground">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:padding="2dip"
 android:src="@drawable/ok"
 android:contentDescription="@string/icon"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="25sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"/>
 </LinearLayout>

 </LinearLayout>

</android.support.v7.widget.CardView>

(from RecyclerView/CardRippleList2/app/src/main/res/layout/row.xml)
For non-interactive widgets, like our TextViews and ImageView,
touch events will get propagated to the LinearLayout, which will
trigger the changes in the state of the StateListDrawable that
is the LinearLayout background. Yet, if we change the rows to have
interactive widgets, those widgets will still be able to process their
own touch events, as we will see
later in this chapter.
However, particularly for this sample app, the visual effect is largely
the same as with CardRippleList: the user will get click feedback
based upon the selectableItemBackground in use given the activity’s
theme.
Option #3: Controlled Ripple Emanation Point
There is one problem with both click event implementations, though:
the ripples on Android 5.0 start in the center of each row.
According to the Material Design rules, the ripples should start where
the touch event occurs, so they seem to flow outward from the finger. This
was addressed in Android 5.1, but was a bug in Android 5.0
To fix this, you need to use the setHotspot() method, added to
Drawable in API Level 21.
setHotspot() provides to the drawable a “hot spot”, and
RippleDrawable apparently uses this as the emanation point for the
ripple effect. setHotspot() takes a pair of float values, presumably
with an eye towards using setHotspot() inside of an OnTouchListener,
as the MotionEvent reports X/Y positions of the touch event with
float values.
The
RecyclerView/CardRippleList3
sample project is a clone of CardRipple2 that adds this feature.
The row layout is the same as before. However, in RowController,
when setting up the row, we register an OnTouchListener, to find out
the low-level MotionEvent of when the user touches our row:

 RowController(View row) {
 super(row);

 label=(TextView)row.findViewById(R.id.label);
 size=(TextView)row.findViewById(R.id.size);
 icon=(ImageView)row.findViewById(R.id.icon);

 template=size.getContext().getString(R.string.size_template);

 row.setOnClickListener(this);

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 row.setOnTouchListener(new View.OnTouchListener() {
 @TargetApi(Build.VERSION_CODES.LOLLIPOP)
 @Override
 public boolean onTouch(View v, MotionEvent event) {
 v
 .findViewById(R.id.row_content)
 .getBackground()
 .setHotspot(event.getX(), event.getY());

 return(false);
 }
 });
 }
 }

(from RecyclerView/CardRippleList3/app/src/main/java/com/commonsware/android/recyclerview/cardripplelist3/RowController.java)
We only bother registering this listener on API Level 21+, as
there is no setHotspot() method on prior versions of Android and
therefore no need for the listener. However, if we are on an Android
5.0+ device, we intercept the touch event, pass it along
to setHotspot() on the background Drawable, and return false to
ensure that regular touch event processing proceeds.
The effect is subtle and may be difficult for you to discern. But,
if you look at the touch events in slow motion (e.g., screen record
a session, then examine the resulting video frame-by-frame), you will
see that the ripple effect appears to emanate from the touch point,
rather than from the row’s center as before. And, since this logic
is only used on API Level 21+, older devices are unaffected.
Visit the Trails!
The chapter on advanced RecyclerView techniques covers a lot
of other scenarios, including:

	Grids

	Checklists, single-select, and multi-select lists

	Dynamically updating RecyclerView content

	And much more!

The Action Bar
The action bar — that bar that runs across the top of your activity — is the
backbone of your UI. Here, you can provide actions for the user to perform related
to the current activity (e.g., “edit the contact that you are viewing”) or related
to the application as a whole (e.g., “here is the documentation”). Sometimes, these
actions will appear as toolbar buttons or other widgets in the action bar. Sometimes,
these actions will appear in the “overflow”, which amounts to a menu.
This chapter introduces the concept of the action bar and how to add actions to it.
Bar Hopping
Android has had many patterns for various “bars” as part of its UI. So, to
help explain what an action bar is, it helps if we review the history and role
of Android’s various bars.
Android 1.x/2.x
In the beginning, there was the status bar and the title bar.
The status bar was a thin strip across the top of the screen, used for things
like the clock, signal strength, battery charge, and notification icons (for
events like new unread email messages). This bar is technically part of the OS,
not your app’s UI.
The title bar was a thin gray strip beneath the status bar that, by default,
would hold the name of your application, much like the title bar of a browser
might show the name of a Web site.

[image: Status Bar and Title Bar]

Figure 196: Status Bar and Title Bar
Android 3.0-4.1, Tablets
When official support for tablets arrived with Android 3.0 in February 2011,
the story changed.
The status bar was replaced by the system bar, appearing at the bottom of the
screen. This had all of the contents of the old status bar, but also had the
soft keys for BACK, HOME, etc. Android 1.x and 2.x required that devices have
off-screen affordances for those operations; now, device manufacturers could
skip those and have the system bar offer them.
The action bar, by default, appears at the top of your activity, replacing
the old title bar. You can
define what goes in the action bar (icon, title, toolbar buttons, etc.).

[image: Action Bar and System Bar]

Figure 197: Action Bar and System Bar
The icon on the far left of the action bar also serves as a toolbar button,
if you wish. A common pattern for using this is to take the user back to the “main”
or “home” activity of your application.
Sometimes, the far right side of the action bar will contain a “…” affordance.
This is known as the “action overflow” or “overflow menu”:

[image: Action Bar with Open Overflow Menu]

Figure 198: Action Bar with Open Overflow Menu
Tapping it will give the user access to actions that might have been toolbar
buttons on a larger screen, but there was insufficient room. Also, low-priority
actions may be tucked into the overflow, rather than clutter up the screen with
too many toolbar buttons.
Android 4.0-4.4, Phones
Phone-sized devices were not supported by Android 3.x. They jumped from
Android 2.3 to 4.0, and along the way adopted some of the Android 3.x UI
features:

	Phone apps could have an action bar, like their tablet counterparts

	Device manufacturers could skip the BACK, HOME, etc. buttons and let a
partial system bar handle those

	The status bar remained intact from the Android 2.x approach

[image: Status Bar, Action Bar, and System Bar]

Figure 199: Status Bar, Action Bar, and System Bar
Android 4.2-4.4, Tablets
The Nexus 7, introduced in the summer of 2012, was a 7” tablet that did not
follow the tablet UI structure that all other standard Android tablets used.
Instead, it looked a bit like a really large phone, having a top status bar
along with a bottom system bar solely for the navigation buttons (BACK, HOME,
etc.). Apps, as before, could have an action bar as well.
Initially, it was thought that the Nexus 7 was going to be distinctive in that
regard. Instead, with Android 4.2, Google switched all tablets to this model,
restoring the status bar and relegating the system bar purely for navigation
buttons.

[image: Status Bar, Action Bar, and System Bar, on Nexus 7 Emulator]

Figure 200: Status Bar, Action Bar, and System Bar, on Nexus 7 Emulator
Android 5.0+
Functionally, the action bar is much the same in Android 5.0 as it was
in previous releases. However, aesthetically, it has dropped the icon and
made other minor stylistic adjustments.

[image: Action Bar on Android 5.0 Emulator]

Figure 201: Action Bar on Android 5.0 Emulator
Yet Another History Lesson
Back in the dawn of Android time, referred to by some as “the year 2007”, we had
options menus. These would rise up from the bottom of the screen based on
the user pressing a MENU key:

[image: Legacy Options Menu]

Figure 202: Legacy Options Menu
This is why you will see references to “options menu” scattered throughout
the Android SDK.
The action bar pattern was first espoused by Google at the 2010 Google I|O
conference. However, at the time, there was no actual implementation of this,
except in scattered apps, and definitely not in the Android SDK.
Android 3.0 — a.k.a., API Level 11 — added the action bar to
the SDK, and apps targeting that API level will get an action bar when running
on such devices.
Your Action Bar Options
There are several implementations of the action bar floating about. You will
probably be using the one that is part of Android itself, starting with API Level 11.
However, there are a couple of backports of the action bar if you need them.
Pure Native
As mentioned above, devices running Android 3.0 and higher have support for
the action bar as part of their firmware, and that support is exposed through
the Android SDK. For example, there is an ActionBar class, and you can get
an instance of it for your activity’s action bar via getActionBar().
However, this only works on devices running Android 3.0 and higher. If you
try calling getActionBar() on an older device, you will crash with a
VerifyError runtime exception. VerifyError is Android’s way of telling
you “while you compiled fine, something your compiled code refers to does not
exist”.
If your minSdkVersion is 11 or higher, you will be able to use the native
action bar, and that approach will be used in most of this book.
Backports
If your minSdkVersion is lower than 11, you have two major choices:

	Use the “menu” APIs in Android, which will add stuff to the action bar
on newer devices, but will result in the classic “options menu” on older
devices.

	Use the appcompat-v7 backport of the action bar, published by Google in
the Android Support package in August 2013.

This chapter assumes that your minSdkVersion is set to 11 or higher and you
will use the native action bar. A separate chapter in the trails cover the use
of appcompat-v7.
Note that the appcompat-v7 library not only backports
the action bar, but also attempts to backport part of Google’s Material
Design styling. Normally, Material Design only comes from Android 5.0
and the use of Theme.Material. The appcompat-v7 chapter
will cover the library’s effects both to the action bar and to other
aspects of your app’s UI.
A Quick Note About Toasts
In the sample app that follows, we use a Toast to let the user know some
work has been completed.
A Toast is a transient message, meaning that it displays and disappears on
its own without user interaction. Moreover, it does not take focus away
from the currently-active Activity, so if the user is busy writing the next
Great Programming Guide, they will not have keystrokes be “eaten” by the
message.
Since a Toast is transient, you have no way of knowing if the user even
notices it. You get no acknowledgment from them, nor does the message
stick around for a long time to pester the user. Hence, the Toast is mostly
for advisory messages, such as indicating a long-running background task is
completed, the battery has dropped to a low-but-not-too-low level, etc.
Making a Toast is fairly easy. The Toast class offers a static makeText()
method that accepts a String (or string resource ID) and returns a Toast
instance. The
makeText() method also needs the Activity (or other Context) plus a
duration. The duration is expressed in the form of the LENGTH_SHORT or
LENGTH_LONG constants to indicate, on a relative basis, how long the message
should remain visible. Once your Toast is configured, call its show()
method, and the message will be displayed.
Setting the Target
If you want proper action bar support, you will want to target
API Level 14 or higher at runtime. That involves setting the
targetSdkVersion property in your build.gradle file (for Android Studio
users) or setting the android:targetSdkVersion attribute of the <uses-sdk>
element of your manifest (for legacy pre-Gradle projects).
We see this in the manifest of
the ActionBar/ActionBarDemoNative
sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.inflation"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-sdk
 android:minSdkVersion="10"
 android:targetSdkVersion="19"/>

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name=".ActionBarDemoActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from ActionBar/ActionBarDemoNative/app/src/main/AndroidManifest.xml)
Specifically, we have android:targetSdkVersion set to 19. While 11 or higher
will give you an action bar, 14 or higher will solve a particular UI quirk
related to menu choices. Some Android 4.0+ devices, but not all, will show two
ways of getting at overflow menu items if you have your android:targetSdkVersion
set to a value between 11 and 13. You will have the “…” item in the
action bar itself and a second one in the system bar, on devices that have
one. Setting android:targetSdkVersion to 14 or higher resolves this.
Doing nothing else but the preceding steps would give us an action bar, but one
with no toolbar icons or action overflow menu. While perhaps visually appealing,
this is not terribly useful for the user, so we need to do some more work to
give the user actions to perform from the action bar.
Note that this manifest has a minSdkVersion of 10. This means that the
app can run on Android 2.3.3 devices. On those devices, though, the app
will not have an action bar, as the action bar did not exist then, and this
app is not using a backport like appcompat-v7. Instead, the app will have
an old-style options menu on API Level 10 devices. There is nothing intrinsically
wrong with this, though it does mean that your app will look different
on API Level 10 devices.
Defining the Resource
The easiest way to get toolbar icons and action overflow items into the action
bar is by way of a menu XML resource. This is called a “menu” resource for
historical reasons, as these resources originally were used for things like
the options menu.
You can add a res/menu/ directory to your project and place in there menu
XML resources, such as res/menu/actions.xml from
ActionBar/ActionBarDemoNative:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/add"
 android:icon="@drawable/ic_action_new"
 android:showAsAction="always"
 android:title="@string/add"/>
 <item
 android:id="@+id/reset"
 android:icon="@drawable/ic_action_refresh"
 android:showAsAction="always|withText"
 android:title="@string/reset"/>
 <item
 android:id="@+id/about"
 android:icon="@drawable/ic_action_about"
 android:showAsAction="never"
 android:title="@string/about">
 </item>

</menu>

(from ActionBar/ActionBarDemoNative/app/src/main/res/menu/actions.xml)
There are four things you will want to configure on every menu item (<item>
element in the XML):

	The ID of the item (via the android:id attribute
in XML). This will create another R.id value, associated with this menu item,
much like the R.id values for our widgets in our layouts. We will use this
ID to determine when the user clicks on one of our toolbar buttons or action
overflow items.

	The title of the item (via the android:title
attribute in XML). If this item winds up in the action overflow menu, or optionally
as part of its toolbar button, this text will appear. Also, this title will appear
as a “tooltip” on the action item in the action bar itself, if the user long-presses
on the icon (something few users know to do). Typically, you will use
a string resource reference (e.g., @string/add), to better support
internationalization.

	The icon for the item (via the android:icon
attribute in XML). If your item will appear as a toolbar button, this icon is
used with that button.

	Flags indicating how this item should be portrayed in the action bar (via the
android:showAsAction attribute in XML).
You will choose to have it be always a toolbar button, only be a toolbar
button ifRoom, or have it never be a toolbar button. You can also elect to
append |withText to either always or ifRoom, to indicate that you want
the toolbar button to be both the icon and the title, not just the icon. Note
that always is not guaranteed to be a toolbar button — if you ask for 100
always items, you will not have room for all of them. However, always items
get priority for space in the action bar over ifRoom items.

A Quick Note About Android Studio
Android Studio 2.2 introduced a new menu editor, modeled after the
graphical layout editor. When you open a menu resource, you get two
sub-tabs: a Text one with the XML, and a Design one to preview the
menu and, in theory, edit it:

[image: Android Studio Graphical Menu Editor]

Figure 203: Android Studio Graphical Menu Editor
Unfortunately, the Design sub-tab
suffers from this bug,
making it annoying to use. For the time being, you are better off working
with the XML directly.
Applying the Resource
From your activity, you teach Android about these action bar items by overriding
an onCreateOptionsMenu() method, such as this one from the
ActionBarDemoActivity of the ActionBar/ActionBarDemoNative sample project:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);

 return(super.onCreateOptionsMenu(menu));
 }

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)
Here, we create a MenuInflater and tell it to inflate our menu XML resource
(R.menu.actions) and pour them into the supplied Menu object. We then
chain to the superclass, returning its result.
Responding to Events
To find out when the user taps on one of these things, you will need to override
onOptionsItemSelected(), such as the ActionBarDemoActivity implementation
shown below:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch(item.getItemId()) {
 case R.id.add:
 addWord();

 return(true);

 case R.id.reset:
 initAdapter();

 return(true);

 case R.id.about:
 Toast.makeText(this, R.string.about_toast, Toast.LENGTH_LONG)
 .show();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)
You will be passed a MenuItem. You can call getItemId() on it and
compare that value to the ones from your menu XML resource (R.id.add and
R.id.reset). If you handle the event, return true; otherwise, return
the value of chaining to the superclass’ implementation of the method.
If you wish to respond to taps on your application icon, on the left of the
action bar, compare getItemId() to android.R.id.home, as that will be the
MenuItem used for that particular toolbar button. Note that if you have
your android:targetSdkVersion set to 14 or higher, you will also need to call
setHomeButtonEnabled(true) on the ActionBar (obtained via a call to getActionBar())
to enable this behavior. Note that this icon may not exist, particularly
if you are using Theme.Material on Android 5.0+.
The Rest of the Sample Activity
So, what is it that we really are doing here in ActionBarDemoActivity?
In many respects, this is reminiscent of the ListActivity demos from
an earlier chapter. We have an array of 25 Latin words,
and we want to display these in a list.
However, in this case, we are only showing five words at the outset. An
“add” action bar item will add additional words out of the main roster of
25 words, until the ListView holds all 25. A “reset” action bar item
will return us to the original 5 words.
ActionBarDemoActivity is a ListActivity. However, rather than set up our ArrayAdapter
directly in the onCreate() method as some of the other samples have done,
we delegate that work to an initAdapter() method. Moreover, that initAdapter()
method does its work a bit differently than what those other samples did:

 private void initAdapter() {
 words=new ArrayList<String>();

 for (int i=0;i<5;i++) {
 words.add(items[i]);
 }

 adapter=
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 words);

 setListAdapter(adapter);
 }

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)
Rather than create the ArrayAdapter straight out of the static items array,
we create a fresh ArrayList and pour the 5 elements from items into it, then create
the ArrayAdapter on the ArrayList. This may seem superfluous, but we will
take advantage of this approach with our action bar items.
When the user clicks the “reset” item in the action bar, we call
initAdapter() again, which gives our ListActivity a fresh set of 5 Latin
words to display:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch(item.getItemId()) {
 case R.id.add:
 addWord();

 return(true);

 case R.id.reset:
 initAdapter();

 return(true);

 case R.id.about:
 Toast.makeText(this, R.string.about_toast, Toast.LENGTH_LONG)
 .show();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)
When the user clicks the “add” item in the action bar, we call an addWord()
private method, which adds the next word out of the items array and appends
it to the ListView:

 private void addWord() {
 if (adapter.getCount()<items.length) {
 adapter.add(items[adapter.getCount()]);
 }
 }

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)
The net result of all of this is that we have an activity with our customized
action bar:

[image: ActionBarDemo, As Initially Launched, on Android 4.3]

Figure 204: ActionBarDemo, As Initially Launched, on Android 4.3
Among our action bar items is an “about” one that will always be in the overflow menu.
This will have three possible visual outcomes.
First, on devices without an off-screen MENU key, the overflow menu is represented by a
“…” button, which displays the overflow menu when clicked:

[image: ActionBarDemo, on Android 4.3 Large Screen, with Overflow]

Figure 205: ActionBarDemo, on Android 4.3 Large Screen, with Overflow

[image: ActionBarDemo, on Android 4.3 Large Screen, with Overflow Open]

Figure 206: ActionBarDemo, on Android 4.3 Large Screen, with Overflow Open
On Android 4.x devices with an off-screen MENU key, pressing the MENU key
will cause the overflow menu to rise up from the bottom of the screen:

[image: ActionBarDemo, on Android 4.3 Normal Screen, with Overflow]

Figure 207: ActionBarDemo, on Android 4.3 Normal Screen, with Overflow
Android 4.4+ devices should always have the “…” button, as is described
in the next section.
Android 2.3 devices that run this app will have no action bar:

[image: ActionBarDemo, on Android 2.3.3 Normal Screen]

Figure 208: ActionBarDemo, on Android 2.3.3 Normal Screen
However, pressing the MENU button will bring up the old-style options
menu, where our action items appear:

[image: ActionBarDemo, on Android 2.3.3 Normal Screen, Showing the Options Menu]

Figure 209: ActionBarDemo, on Android 2.3.3 Normal Screen, Showing the Options Menu
MENU Key, We Hardly Knew Ye
To expand upon the history lessons from earlier in this chapter,
all Android 1.x and 2.x devices had a MENU key, used
to bring up the options menu. With Android 3.0 and the advent of
the system/navigation bar, device manufacturers no longer needed
keys for HOME, BACK, and MENU. And, the action bar incorporated a
“…” affordance for accessing the overflow, for items that would
have been in the options menu and were not promoted to be toolbar
buttons in the action bar itself.
Confusion began when we started having devices that had a MENU
key and Android 3.0+. A few Android 2.x devices were upgraded
to Android 4.0, and hundreds of millions of Android devices,
from manufacturers like Samsung and HTC, shipped with Android 4.x
and a MENU key.
To accommodate this, the device would report whether it had a
“permanent menu key”, and the action bar would choose whether
to show the “…” affordance based upon the existence of this key.
Devices with a MENU key would not get the “…”, but instead would
use the MENU key to display the overflow.
This irritated many developers, for much the same reason as why
the MENU key irritated those developers back in Android 1.x/2.x:
the existence of a menu was not very discoverable. Many users
would eventually realize that tapping the MENU key might uncover
useful stuff, but not all users would make this connection.
However, now developers could see an obvious alternative, in the
form of the “…” affordance, and so they sought ways to trick the
action bar into showing the “…” even on devices that had a MENU
key.
And that was how the world worked… up until Android 4.4.
An
unannounced change in Android 4.4
is that the “…” button
should now always be shown in the action bar. The MENU key, if
it exists, will still work, showing the overflow. Ideally, it
shows the overflow as dropping down from the “…”, though that
is not required. And
the Compatibility Definition Document for Android 4.4
more forcefully suggests that the MENU key is obsolete.
None of this should directly affect your code. However:

	When taking screenshots, bear in mind that they will vary between
devices that have the “…” button and those that do not

	When writing documentation, or blog posts, or other instructional
material, try to phrase references to the overflow that will work for
both those users with a “…” button and those that do not

Action Bars, Live in Living Color!
On Android 4.0+, if you are using a Holo theme as a base, you may wish to
adjust the colors used by your action bar.
On Android 5.0+, if you are using a Material theme as a base, you will
want to adjust the colors used by your action bar. This is Google’s vision
for how branding should work, in lieu of having your icon be in the action bar.
The following sections outline some ways to affect the colors of your
action bar.
Material Tint Effects
Android 5.0 and Theme.Material make action bar colors easy to set
up, as part of an overall “tinting” approach.
The ActionBar/MaterialColor
sample project is a clone of the ActionBarDemoNative sample shown earlier
in this chapter, but one where:

	Our minSdkVersion is set to 21, so the app will only run on Android 5.0+

	We set up a custom theme, with specific tinting rules, that affect our
action bar colors

Color Resources
The theme will need to refer to colors, and the cleanest way to do that is
to set up color resources. Like all of our other resources, we give color
resources a name and a color value, usually in #RRGGBB or #AARRGGBB format.
Color resources are “value” resources, held by default in res/values/,
with the convention of using a colors.xml file for the actual colors.
For example, here is the res/values/colors.xml file from the MaterialColor
sample application:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primary">#3f51b5</color>
 <color name="primary_dark">#1a237e</color>
 <color name="accent">#ffee58</color>
</resources>

(from ActionBar/MaterialColor/app/src/main/res/values/colors.xml)
It defines three colors, primary, primary_dark, and accent, with
different colors for each. In Android Studio, editing this file shows a
tiny color swatch to help you visualize the colors:

[image: Color Resources in Android Studio]

Figure 210: Color Resources in Android Studio
Tinting a Theme
Then, given that we have definitions of our colors, we can apply those
colors to a custom theme, found in res/values/styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="AppTheme" parent="android:Theme.Material">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>
</resources>

(from ActionBar/MaterialColor/app/src/main/res/values/styles.xml)
Here, our AppTheme is inheriting from Theme.Material and is overriding
three tints: colorPrimary, colorPrimaryDark, and colorAccent, referring
to our three color resources in turn.
Note that we could have inherited from Theme.Material.Light had we wanted
a light “content area” (where our widgets go), or even
Theme.Material.Light.DarkActionBar for a light content area and a dark action
bar (before we start tailoring the action bar colors).
Applying the Theme
The application’s manifest declares that we will use AppTheme as the default
theme for our <application>, so all activities will use that theme unless
overridden at the activity level:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.abmatcolor"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-sdk
 android:minSdkVersion="21"
 android:targetSdkVersion="21"/>

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name="ActionBarDemoActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from ActionBar/MaterialColor/app/src/main/AndroidManifest.xml)
Also note that here is where we specify that minSdkVersion is 21. A new
Android Studio project would do that in build.gradle.
The Results
Everything else about the app is the same as the ActionBarDemoNative sample,
including our activity and the ListView that we are populating.
However, when we run this edition on an Android 5.0+ device or emulator, our
action bar takes on the requested colors, specifically the colorPrimary
value for the background color of the action bar:

[image: MaterialColor on Android 5.0 Emulator]

Figure 211: MaterialColor on Android 5.0 Emulator
The custom theme also affects the colors of certain widgets, as will be
covered later in the book.
Restoring the Icon (Sort Of)
While the Material Design philosophy skips the application icon that we used
to have in the action bar, there is a way to add it back for a Theme.Material
application, though it requires a little bit of work, as seen in the
ActionBar/MaterialLogo
sample project.
The key thing that you need to do is to call setDisplayShowHomeEnabled(true)
on your ActionBar object, which you get by calling getActionBar() in
your Activity:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 getActionBar().setDisplayShowHomeEnabled(true);

 initAdapter();
 }

(from ActionBar/MaterialLogo/app/src/main/java/com/commonsware/android/abmatlogo/ActionBarDemoActivity.java)
This will use whatever icon is set for the android:icon attribute
in your manifest as the “home” icon in your action bar:

[image: MaterialLogo on Android 5.0 Emulator]

Figure 212: MaterialLogo on Android 5.0 Emulator
If you would rather use a different icon, such as one that is scaled to fit the
action bar a bit better, you can call setIcon() on your ActionBar,
supplying the ID of a drawable resource (e.g., R.drawable.action_bar_icon)
that should be used instead of the drawable specified in the android:icon
attribute of your <activity> or <application> in the manifest.
Action Bar Style Generator
For Theme.Holo and kin, the tinting rules from Theme.Material will
not apply. Instead, you will need to do a fair bit of tinkering to get
the color scheme set up the way you want.
Or, you can use Jeff Gilfelt’s Action Bar Style Generator.
This is a Web site that allows you to design an action bar color scheme,
where the site will then generate for you everything that you need to
implement that color scheme.
Note that Mr. Gilfelt has marked this site as deprecated, with an eye
towards people using Theme.Material or the appcompat-v7 edition of
the action bar. The site works, but in all likelihood it will be discontinued
at some future date.
Also note that the site works best with Google’s Chrome or Chromium browsers,
though in testing, a recent edition of Firefox worked as well. As the
site indicates, “your mileage may vary with other browsers”.
Designing the Scheme
The site is dominated by a form for designing the color scheme and a preview
area to show what the design will look like:

[image: Action Bar Style Generator, As Originally Launched]

Figure 213: Action Bar Style Generator, As Originally Launched
In the “Style name” field, you can fill in the name you want to give
your custom theme. Whatever you fill in will be converted into all
lowercase with a leading capital letter, all following Theme.. So,
for example, filling in AppTheme will result in a style resource named
Theme.Apptheme.
For “Style compatibility”, choose “Holo”. For “Base theme”, choose the
base style you want:

	Light

	Dark

	Light with dark action bar

The next four options (“Action bar style”, “Action bar texture”,
“Tab hairline style”, “Neutral pressed states”) are for advanced features
and can be left at their defaults.
Scrolling further down the page, you will come to seven color pickers,
allowing you to tailor the colors to be used in your action bar
implementation. Each picker, when opened, allows you to choose a color
based on a fixed palette, then refined using a gradient selector. Or,
if you know specific colors (e.g., a graphic designer gave them to you),
you can fill the color into the supplied field:

[image: Action Bar Style Generator, Showing Action bar color Picker]

Figure 214: Action Bar Style Generator, Showing “Action bar color” Picker
As you change the colors, you will see what they impact on the preview.
At the bottom of the page is the “Output resources” frame:

[image: Action Bar Style Generator, Showing Output resources Frame]

Figure 215: Action Bar Style Generator, Showing “Output resources” Frame
Here, you can click on the “DOWNLOAD .ZIP” button to download a ZIP
archive containing your custom theme and all the associated resources
required to implement it.
Implementing the Scheme
UnZIP the contents of that ZIP archive into your project’s res/
directory (e.g., in a traditional Android Studio project, unZIP into
src/main/res/ in your app module).
It will add
a bunch of files, notably including a file in res/values/ whose
name is based upon the name you filled into the Web form for the
theme name (e.g., styles_apptheme.xml).
If you look at that file, you will see that it defines a custom
theme for you, named Theme. plus whatever you provided to that
form (converted into a leading capital letter and the rest lowercase).
That file will be rather lengthy, as it designates specific styles
to use for various facets of the action bar (e.g., android:actionBarStyle).
Here is the theme’s primary <style> resource element, defining
the theme itself:

 <style name="Theme.Apptheme" parent="@android:style/Theme.Holo">
 <item name="android:actionBarItemBackground">@drawable/selectable_background_apptheme</item>
 <item name="android:popupMenuStyle">@style/PopupMenu.Apptheme</item>
 <item name="android:dropDownListViewStyle">@style/DropDownListView.Apptheme</item>
 <item name="android:actionBarTabStyle">@style/ActionBarTabStyle.Apptheme</item>
 <item name="android:actionDropDownStyle">@style/DropDownNav.Apptheme</item>
 <item name="android:actionBarStyle">@style/ActionBar.Solid.Apptheme</item>
 <item name="android:actionModeBackground">@drawable/cab_background_top_apptheme</item>
 <item name="android:actionModeSplitBackground">@drawable/cab_background_bottom_apptheme</item>
 <item name="android:actionModeCloseButtonStyle">@style/ActionButton.CloseMode.Apptheme</item>

 </style>

(from ActionBar/HoloColor/app/src/main/res/values/styles_apptheme.xml)
To use this theme, just add an android:theme attribute to your
<application> (or perhaps individual <activity> elements) in your
manifest:

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name="ActionBarDemoActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

(from ActionBar/HoloColor/app/src/main/AndroidManifest.xml)
The resulting app will have a color scheme mirroring what you
defined on the form:

[image: Results of the Action Bar Style Generator]

Figure 216: Results of the Action Bar Style Generator
This screenshot, and the code snippets, comes from the
ActionBar/HoloColor
sample project, which is the same as the base action bar sample app
from this chapter with the custom theme applied.
Visit the Trails!
In addition to this chapter, you can
learn more about advanced action bar techniques
and learn about action modes, which temporarily replace the action
bar with new items for use with contextual operations.
Vector Drawables
Android 5.0 added native support for a VectorDrawable, which uses the
SVG path specification to represent vector art. However, unless your
minSdkVersion was 21 or higher, vector drawable resources were not that
useful, as there was no good way to support the same artwork on older
devices. You could somehow arrange to have PNGs for the same artwork, but
then, why bother with the vector artwork in the first place?
Nowadays, vector drawable resources are more practical. Not only do more
devices run Android 5.0+, but we have better tool support. Android Studio
offers a Vector Asset wizard that helps you add vector drawable resources
to your project, and the build system can automatically generate PNG
files at various densities to be used on older devices.
As a result, vector drawables have been gaining in popularity, particularly
for action bar icons.
Getting the Artwork
You have two major sources of vector drawable artwork: XML files already
in the vector drawable XML format, or SVG files that you wish to convert
to vector drawable XML format. Since writing the vector drawable XML by
hand will be difficult at best, most vector drawable XML will start
from an SVG file. Whether you do the conversion, or whether somebody else
did the conversion for you, is the major difference.
For SVG that you wish to try to convert to vector drawable XML, the
simpler the SVG is, the more likely it is that you will have success.
In particular, SVG features like gradients, patterns, and text are not supported.
The apparent vision is for vector drawable artwork to be used mostly for
things like action bar icons, where things like gradients and patterns
are not necessary.
Android Studio Vector Asset Wizard
The primary way most developers will get vector drawable XML into
their projects is via the Android Studio Vector Asset wizard. You can
bring this up by right-clicking over the res/ directory of your desired
source set, and choosing New > Vector Asset from the context menu:

[image: Android Studio Vector Asset Wizard]

Figure 217: Android Studio Vector Asset Wizard
The “Asset Type” radio group gives you two sources of imagery: a subset
of the official Material Design icons, or your own SVG or PSD file.
By default, the Material Icon radio button is selected. You can choose
which icon to display by tapping the “Icon” button, which by default
shows a rendition of the Android mascot. Tapping that button brings
up a grid of icons for you to choose from:

[image: Android Studio Vector Asset Wizard, Material Icon Selector]

Figure 218: Android Studio Vector Asset Wizard, Material Icon Selector
You can browse by category or search by name to try to find the icon that
you want from the library of available icons.
If you switch to the “Local file” radio button, the “Icon” button
is replaced by a “Path” field, where you can pick the file that you wish to use.
By default, the Vector Asset wizard is trying to make action bar icon-sized
images, 24dp square. You can override this by checking the “Override”
checkbox and specifying your own size. The
opacity slider allows you to indicate whether non-transparent pixels
should be translucent (value from 0-99) or solid (100). If the image
contains text or otherwise needs to be inverted for RTL languages, there
is a checkbox to enable auto-mirroring support for that.
Also note that you can define the resource name, below where you chose
the icon or SVG/PSD file. When importing a file, by default, the resource
name will be the same as the base name of the file.
Clicking the “Next” button brings up a confirmation screen, where you can
also change the module and source set if you perhaps brought up the wizard
in the wrong spot:

[image: Android Studio Vector Asset Wizard, Confirmation Screen]

Figure 219: Android Studio Vector Asset Wizard, Confirmation Screen
Clicking Finish will import the resource and add it to res/drawable/
in your project. When you build your project, if your minSdkVersion
is below 21, the Android Gradle Plugin will generate PNG files
to be used for those older devices. Note that these generated PNG files
show up in your build/ tree, not as part of your project source code.
The preview shown in the wizard should give you an indication if your
SVG is being imported properly:

[image: Android Studio Vector Asset Wizard, Showing Failed SVG Import]

Figure 220: Android Studio Vector Asset Wizard, Showing Failed SVG Import
However, even if the preview turned out OK, be sure to test your app,
both on Android 5.0+ and (if relevant) Android 4.4-and-older devices,
to ensure that your artwork looks the way you want it to.
Other Tools
Juraj Novák maintains a separate Android SVG to vector drawable XML
converter as a Web page. If you
are running into problems with the Vector Asset wizard’s import support,
you might consider trying this site. It may give you better vector
drawables directly, and it definitely gives you more indications about
why your SVG may not convert properly.
Using the Artwork
You use vector drawable resources the same way that you use any other
drawable resource. Under the covers, the Java class that handles
rendering the artwork is VectorDrawable… on Android 5.0+.
If your minSdkVersion is below 21, and you want to use generated
PNG files for the older devices, you need to add a line to the
defaultConfig closure in your android closure in your module’s
build.gradle file:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 24
 buildToolsVersion "24.0.1"

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 24
 vectorDrawables.generatedDensities = ['hdpi','xxhdpi']
 }
}

Specifically, you need to set the generatedDensities property
on the vectorDrawables object to an array of strings, identifying
the densities for which you want PNGs generated. As with other
drawable resources, devices operating on other densities than
those in your chosen list will re-sample icons from one of your
provided densities. If you have few vector drawables, you could
list more densities and not consume much APK space. The sample
shown above settles for two: hdpi for mid-range devices
and xxhdpi for high-end devices.
If your minSdkVersion
is 21 or higher, though, you do not need the generated PNG
files, as all devices that will run your app will be capable of using
the vector drawables natively.
VectorDrawableCompat
In February 2016, Google released support-vector-drawable. This
contains a VectorDrawableCompat class that supports vector drawables
going back to API Level 7. Google also released animated-vector-drawable,
which offers AnimatedVectorDrawableCompat, supported back to API Level 11.
Getting these going is tricky because they are largely undocumented and
have significant limitations.
The
Drawable/Vector
sample project demonstrates the use of VectorDrawableCompat.
In its res/drawables-nodpi/ directory, you will find a handful of
vector drawable resources, culled from the Android Open Source
Project. The sample app will show those in a pair of ListView
widgets in tabs:

	One will use VectorDrawableCompat and will work for all API levels
that the project supports (15 and higher, based on the project’s
minSdkVersion).

	One will use native vector drawable support. As you will see shortly,
we are going to disable the normal PNG generation from the vector
drawables, which means that this list will only show the icons on
Android 5.0 and higher, not older devices.

Gradle Configuration
To make VectorDrawableCompat work,
you need to have a dependency on com.android.support:support-vector-drawable
in your module’s build.gradle file, akin to your other Android Support
dependencies. In addition, you need vectorDrawables.useSupportLibrary = true
in the defaultConfig closure of your android closure
in your module’s build.gradle file:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.android.support:support-v13:27.1.1'
 implementation 'com.android.support:support-vector-drawable:27.1.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 generatedDensities=[]
 vectorDrawables.useSupportLibrary = true
 }
}

(from Drawable/Vector/app/build.gradle)
These latter steps disable the automatic generation of PNG files from
the vector drawable resources that would ordinarily happen by default.
Not generating PNG files saves us some disk space. On the other hand,
now we are locked into using the vector drawable backport for these
icons to be usable on older devices.
Use in Java
The sample app uses a ViewPager with tabs. The activity
simply sets up the ViewPager and tabs, using a SampleAdapter
for the ViewPager contents. SampleAdapter, in turn, loads a
VectorFragment or VectorCompatFragment into those tabs.
VectorFragment shows each of the icons in a row of a ListView,
along with the resource name:

package com.commonsware.android.vector;

import android.app.ListFragment;
import android.os.Build;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.TextView;

public class VectorFragment extends ListFragment {
 private static final Integer[] VECTORS={
 R.drawable.ic_account_circle,
 R.drawable.ic_check_circle_24px,
 R.drawable.ic_corp_badge,
 R.drawable.ic_corp_icon_badge,
 R.drawable.ic_corp_statusbar_icon,
 R.drawable.ic_eject_24dp,
 R.drawable.ic_expand_more_48dp,
 R.drawable.ic_folder_24dp,
 R.drawable.ic_more_items,
 R.drawable.ic_perm_device_info,
 R.drawable.ic_sd_card_48dp,
 R.drawable.ic_settings_24dp,
 R.drawable.ic_storage_48dp,
 R.drawable.ic_usb_48dp
 };

 @Override
 public void onViewCreated(View view,
 Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 setListAdapter(new VectorAdapter());
 }

 void applyIcon(ImageView icon, int resourceId) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
 icon.setImageResource(resourceId);
 }
 }

 class VectorAdapter extends ArrayAdapter<Integer> {
 VectorAdapter() {
 super(getActivity(), R.layout.row, R.id.title, VECTORS);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 ImageView icon=(ImageView)row.findViewById(R.id.icon);
 TextView title=(TextView)row.findViewById(R.id.title);

 applyIcon(icon, getItem(position));
 title.setText(getResources().getResourceName(getItem(position)));

 return(row);
 }
 }
}

(from Drawable/Vector/app/src/main/java/com/commonsware/android/vector/VectorFragment.java)
Specifically:

	Our array is a roster of the drawable resource IDs, named VECTORS

	
VectorFragment uses a VectorAdapter to populate the ListView

	
VectorAdapter, in getView(), uses getResourceName() on a
Resources object to get the resource name associated with a resource
ID, to show in a TextView in the row

	
VectorAdapter delegates to VectorFragment and its applyIcon()
method to populate the ImageView given a drawable resource ID

The VectorFragment implementation of applyIcon() simply calls
setImageResource() on the ImageView, supplying the drawable resource
ID. This works fine on Android 5.0 and higher, but it will fail on
older devices, because older Android devices do not know natively about
vector drawable resources. Hence, we only update the icon if we are on
API Level 21 or higher.
So, we get:

[image: Native Vector Drawables]

Figure 221: Native Vector Drawables
VectorCompatFragment extends VectorFragment and simply overrides
applyIcon():

package com.commonsware.android.vector;

import android.graphics.drawable.Drawable;
import android.support.graphics.drawable.VectorDrawableCompat;
import android.widget.ImageView;

public class VectorCompatFragment extends VectorFragment {
 @Override
 void applyIcon(ImageView icon, int resourceId) {
 Drawable d=VectorDrawableCompat.create(getResources(),
 resourceId, null);

 icon.setImageDrawable(d);
 }
}

(from Drawable/Vector/app/src/main/java/com/commonsware/android/vector/VectorCompatFragment.java)
Here, we use VectorDrawableCompat, and its static create() method,
to create a Drawable to apply to the ImageView via setImageDrawable().
create() takes three parameters:

	a Resources object

	a resource ID of a vector drawable

	an optional theme, or null to use the app’s default theme

This approach works on all versions of Android supported by VectorDrawableCompat,
which is API Level 7 and higher. However, on Android 5.0+ devices,
create() will actually use a native vector drawable; the backport is only
used on older devices.
The “Compat” tab shows the icons:
[image: Vector Drawables, Loaded via VectorDrawableCompat, Android 6.0]
Tutorial #7 - Setting Up the Action Bar
Next up is to configure the action bar to our EmPubLite application.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Starting in this tutorial, we will now begin editing Java source files. Some
useful Android Studio shortcut key combinations are:

	Alt-Enter (Option-Return on macOS)
for bringing up quick-fixes for the problem at the code
where the cursor is.

	Ctrl-Alt-O (Command-Option-O on macOS)
will organize your Java import statements, including
removing unused imports.

	Ctrl-Alt-L (Command-Option-L on macOS)
will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Android Studio or whatever
you have modified them to in Settings.

Step #1: Adding Some Icons
We are going to need a couple of icons for our action bar items. Nowadays,
the preferred approach for doing this is to start with vector drawables.
Right-click over the res/ directory and choose New > “Vector Asset”
from the context menu. This brings up the first page of the vector
asset wizard:

[image: Android Studio Vector Asset Wizard, As Initially Launched]

Figure 222: Android Studio Vector Asset Wizard, As Initially Launched
Click on the Icon button. This will bring up the material icon selector.
In the search field, type info, then click on the “info outline” icon:

[image: Android Studio Vector Asset Wizard, Material Icon Selector]

Figure 223: Android Studio Vector Asset Wizard, Material Icon Selector
Click “OK”. This will update the name of the asset to
ic_info_outline_black_24dp.
Click Next, then Finish, to add that icon as an XML file in res/drawable/.
Repeat that process to add a second vector asset, this time for “help outline” –
you can search on help to quickly get to this icon.
Step #2: Defining Some Options
Next, we will add a couple of low-priority action
items, for a help screen and an “about” screen.
Right click over the res/ directory in your project, and choose
New > “Android resource directory” from the context menu. This will bring
up a dialog to let you create a new resource directory:

[image: Android Studio New Resource Directory]

Figure 224: Android Studio New Resource Directory
Change the “Resource type” drop-down to be “menu”, then click OK to create the
directory.
Then, right-click over your new res/menu/ directory and choose
New > “Menu resource file” from the context menu. Fill in options.xml in the
“New Menu Resource File” dialog:

[image: Android Studio New Menu Resource Dialog]

Figure 225: Android Studio New Menu Resource Dialog
Then click OK to create the file. It will open up into a menu editor:

[image: Android Studio Menu Resource Editor]

Figure 226: Android Studio Menu Resource Editor
Unfortunately, the drag-and-drop capabilities of this editor have
many bugs. It will be simpler for you to switch to the Text sub-tab of
the editor, into
which you can paste the following content:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/help"
 android:icon="@drawable/ic_help_outline_black_24dp"
 android:title="@string/help">
 </item>
 <item
 android:id="@+id/about"
 android:icon="@drawable/ic_info_outline_black_24dp"
 android:title="@string/about">
 </item>

</menu>

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/menu/options.xml)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Also, you will need to add string resources for help and about, by adding
appropriate <string> elements to your existing res/values/strings.xml file:

<resources>
 <string name="app_name">EmPub Lite</string>
 <string name="hint">Enter notes here</string>
 <string name="help">Help</string>
 <string name="about">About</string>
</resources>

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/values/strings.xml)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Step #3: Loading and Responding to Our Options
Simply defining res/menu/options.xml is insufficient. We need to actually
tell Android to use what we defined in that file, and we need to add code to
respond to when the user taps on our items.
To do that, you will need to add an onCreateOptionsMenu() method
and an onOptionsItemSelected() method to EmPubLiteActivity, as follows:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.options, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.about:
 return (true);

 case R.id.help:
 return (true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
NOTE: Copying and pasting Java code may or may not work, depending on what
you are using to read the book. For the PDF, some PDF viewers (e.g., Adobe
Reader) should copy the code fairly well; others may do a much worse job.
Reformatting the code with Ctrl-Alt-L (Command-Option-L on macOS)
after pasting it in sometimes helps.
In onCreateOptionsMenu(), we are inflating res/menu/options.xml and pouring
its contents into the supplied Menu object, which will be used by Android
to populate our action bar.
In onOptionsItemSelected(), we examine the supplied MenuItem and route
to different branches of a switch statement based upon the item’s ID.
To get this to compile, you will need to add some imports as well:

import android.view.Menu;
import android.view.MenuItem;

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Android Studio users can press Alt-Enter (Command-Return on macOS)
with the cursor in a
class reference that
is missing its import to add that import.
Step #4: Supporting Older Devices
As was noted in the previous chapter, for our vector drawables
to work properly on older devices, we need to add a line to our
app/build.gradle file, identifying the particular screen densities for
which we want PNG editions of our vector drawables.
So, add a vectorDrawables.generatedDensities line
to the defaultConfig closure, resulting in an app/build.gradle
file that looks something like:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 25

 defaultConfig {
 applicationId "com.commonsware.empublite"
 minSdkVersion 15
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 vectorDrawables.generatedDensities = ['hdpi','xxhdpi']
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }
}

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 androidTestImplementation('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 testImplementation 'junit:junit:4.12'
 implementation 'org.greenrobot:eventbus:3.0.0'
 implementation 'com.google.code.gson:gson:2.8.0'
 implementation 'com.squareup.retrofit2:converter-gson:2.1.0'
 implementation 'com.squareup.okhttp3:okhttp:3.4.1'
 implementation 'com.commonsware.cwac:security:0.8.0'
 implementation 'com.android.support:support-v13:25.3.0'
 implementation 'io.karim:materialtabs:2.0.5'
}

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/build.gradle)
This will not have any immediate impact, as for Help and About, we are
not actually using the icons. Those items are set to always be in the
overflow. However, in later tutorials, we will add more action bar items,
and some of those will be in the action bar proper and will have vector
drawable icons. Furthermore, once you start using vector drawables,
it is best to add the generatedDensities to your build.gradle file,
so you are set once you really start using those vector drawables.
Step #5: Trying It Out
If you run this on an Android 4.4+ device or emulator, you should see a
“…” icon on the action bar:

[image: EmPubLite, Showing the Overflow Button]

Figure 227: EmPubLite, Showing the … Overflow Button
Pressing that brings up a menu showing our items:

[image: EmPubLite, Showing the Overflow Options]

Figure 228: EmPubLite, Showing the Overflow Options
In Our Next Episode…
… we will define our first new activity on the tutorial project.
Android’s Process Model
So far, we have been treating our activity like it is our entire application.
Soon, we will start to get into more complex scenarios, involving
multiple activities and other types of components, like services and content
providers.
But, before we get into a lot of that, it is useful to understand how all
of this ties into the actual OS itself. Android is based on Linux, and Linux
applications run in OS processes. Understanding a bit about how Android
and Linux processes inter-relate will be useful in understanding how our mixed
bag of components work within these processes.
When Processes Are Created
A user installs your app, goes to their home screen’s launcher, and taps on
an icon representing your activity. Your activity dutifully appears on the
screen.
Behind the scenes, what happened is that Android forked a copy of a process
known as the zygote. As a result of the way your process is forked
from the zygote, your process contains:

	A copy of the VM (Dalvik or ART), shared among all such processes via Linux
copy-on-write memory sharing

	A copy of the Android framework classes, like Activity and Button,
also shared via copy-on-write memory

	A copy of your own classes, loaded out of your APK

	Any objects created by you or the framework classes, such as the instance
of your Activity subclass

BACK, HOME, and Your Process
Suppose that you have an app with just one activity. From the home screen’s
launcher, the user taps on the icon associated with your app’s activity.
Then, with your activity in the foreground, the user presses BACK.
At this point, the user is telling the OS that she is done with your activity.
Control will return to whatever preceded that activity — in this case, the
home screen’s launcher.
You might think that this would cause your process to be terminated. After
all, that is how most desktop operating systems work. Once the user closes
the last window of the application, the process hosting that application
is terminated.
However, that is not how Android works. Android will keep your process around,
for a little while at least. This is done for speed and power: if the user
happens to want to return to your app sooner rather than later, it is more
efficient to simply bring up another copy of your activity again in the existing
process than it is to go set up a completely new copy of the process. This does
not mean that your process will live forever; we will discuss when your process
will go away later in this chapter.
Now, instead of the user pressing BACK, let’s say that the user pressed HOME
instead. Visually, there is little difference: the home screen re-appears.
Depending on the home screen implementation there may be a visible difference,
as BACK might return to a launcher whereas HOME might return to something else
on the home screen. However, in general, they feel like very similar operations.
The difference is what happens to your activity.
When the user presses BACK, your foreground activity is destroyed. We will
get into more of what that means in the next chapter. However, the key feature
is that the activity itself — the instance of your subclass of Activity –
will never be used again, and hopefully is garbage collected.
When the user presses HOME, your foreground activity is not destroyed…
at least, not immediately. It
remains in memory. If the user launches your app again from the home screen
launcher, and if your process is still around, Android will simply bring
your existing activity instance back to the foreground, rather than having to
create a brand-new one (as is the case if the user pressed BACK and destroyed
your activity).
What HOME literally is doing is bringing the home screen activity back to the
foreground, not otherwise directly affecting your process much.
Termination
Processes cannot live forever. They take up a chunk of RAM, for your classes and
objects, and these mobile devices only have so much RAM to work with. Eventually,
therefore, Android has to get rid of your process, to free up memory for other
applications.
How long your process will stick around depends on a variety of factors, including:

	What else the device is doing, either in the foreground (user using apps) or
in the background (e.g., automated checks for new email)

	How much memory the device has

	What is still running inside your process

Going back to the scenario from above, we have an application with a single
activity launched from the home screen,
where the user can return to the home screen either by pressing BACK
or by pressing HOME. You might think that this makes no difference at all on
when the process would be terminated, but that would be incorrect. Pressing
HOME would keep the process around perhaps a bit longer than would pressing BACK.
Why?
When the user presses BACK, your one and only activity is destroyed. When the
user presses HOME, your activity is not destroyed. Android will tend to keep
processes around longer if they have active (i.e., not destroyed) components in them.
The key word there is “tend”. Android’s algorithms for determining when to get
rid of what processes are baked into the OS and are, at best, lightly documented.
There is evidence to suggest that other criteria, such as process age, are also
taken into account, and so there may be times when a process that has an
activity running (but not in the foreground) might be terminated where a process
with no running activity might not. However, in general, processes with active
(not destroyed) components will stick around a bit longer than processes without
such components.
Foreground Means “I Love You”
Just because Android terminates processes to free up memory does not mean that
it will terminate just any process to free up memory. A foreground process –
the most common of which is a process that has an activity in the foreground –
is the least likely of all to be terminated. In fact, you can pretty much assume
that if Android has to kill off the foreground process, that the phone is very
sick and will crash in a matter of moments.
(and, fortunately, that does not happen very often)
So, if you are in the foreground, you are safe. It is only when you are not
in the foreground that you are at risk of having the process be terminated.
You and Your Heap
Processes take up RAM. A significant chunk of that RAM represents the objects
you create (a.k.a., “the heap”).
Those of you with significant Java backgrounds know that the Java VM loves RAM
(“can’t get enough of it!”). Java VMs routinely grab 64MB or 128MB of heap
space upon creating the process and will grow as big as you wish to let them
(e.g., -Xmx switch to the java command).
Android heap sizes are not that big, because Android is designed to run on mobile
devices with constrained amounts of RAM.
Your heap limit may be as low as 16MB, though values in the 32-48MB range are
more typical with current-generation devices. How much the heap limit will
be depends a bit on what version of Android is on the device. It depends quite
a lot, though, on the screen size, as bigger screens will tend to want to display
bigger bitmap images, and bitmap images can consume quite a bit of RAM.
The key is that the heap is small, and (generally speaking) you cannot adjust it
yourself. It is what it is. Small applications will rarely run into a problem
with heap space, but larger applications might. We will discuss tools and
techniques for measuring and coping with memory problems later in this book.
Activities and Their Lifecycles
An Android application will have multiple discrete UI facets. For example, a calendar
application needs to allow the user to view the calendar, view details of a single
event, edit an event (including adding a new one), and so forth. And on
smaller-screen devices, like most phones, you may not have room to squeeze all
of this on the screen at once.
To handle this, you can have multiple activities. Your calendar application
may have one activity to display the calendar, another to add or edit an event,
one to provide settings for how the calendar should work, another for your
online help, etc. Some of these activities might be private to your app,
while others might be able to be launched by third parties, such as your
“launcher” activity being available to home screens.
All of this implies that one of your activities has the means to start up
another activity. For example, if somebody clicks on an event from the
view-calendar activity, you might want to show the view-event activity for that
event. This means that, somehow, you need to be able to cause the view-event
activity to launch and show a specific event (the one the user clicked upon).
This can be further broken down into two scenarios:

	You know what activity you want to launch, probably because it is another
activity in your own application

	You have a reference to… something (e.g., a Web page), and you want your
users to be able to do… something with it (e.g., view it), but you do not
know up front what the options are

This chapter will cover both of those scenarios.
In addition, frequently it will be important for you to understand when activities
are coming and going from the foreground, so you can automatically save or refresh
data, etc. This is the so-called “activity lifecycle”, and we will examine it
in detail as well in this chapter.
Creating Your Second (and Third and…) Activity
Unfortunately, activities do not create themselves. On the positive side, this
does help keep Android developers gainfully employed.
Hence, given a project with one activity, if you want a second activity, you will
need to add it yourself. The same holds true for the third activity, the fourth
activity, and so on.
The sample we will examine in this section is
Activities/Explicit.
Our first activity, ExplicitIntentsDemoActivity, started off as just the default
activity code generated by the build tools. Now, though, its layout contains
a Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <Button
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:textSize="20sp"
 android:text="@string/hello"
 android:onClick="showOther"/>

</LinearLayout>

(from Activities/Explicit/app/src/main/res/layout/main.xml)
That Button is tied to a showOther() method in our activity implementation,
which we will examine shortly.
Defining the Class and Resources
To create your second (or third or whatever) activity, you first need to create
the Java class. You need to create a new Java source file,
containing a public Java class that extends Activity directly or indirectly.
You have two basic ways of doing this:

	Just create the class and resources yourself

	Use the Android Studio new-activity wizard

To use the Android Studio new-activity wizard,
right-click on your app/src/main/ source set directory in the project explorer, and
go into the New > Activity portion of the context menu. This will give you a submenu
of available activity templates — mostly the same roster of templates that we saw
back when we created the project in the first place.
If you choose one of those templates, you will be presented with a one-page wizard
in which to provide the details for this activity:

[image: Android Studio New-Activity Wizard, Showing Empty Activity Template]

Figure 229: Android Studio New-Activity Wizard, Showing Empty Activity Template
What you see here will be based upon the template you chose (e.g., activity name,
layout XML resource name) and will resemble those we saw back in the new-project
wizard.
Clicking “Finish” will then create the activity’s Java class, related resources (if any),
and manifest entry.
Populating the Class and Resources
Once you have your stub activity set up,
you can then add an onCreate() method to it (or edit an existing one created by
the wizard), filling in all the
details (e.g., setContentView()), just like you did with your first activity.
Your new activity may need a new layout XML resource or other resources,
which you would also have to create (or edit those created for you by the wizard).
In Activities/Explicit, our second activity is OtherActivity, with pretty
much the standard bare-bones implementation:

package com.commonsware.android.exint;

import android.app.Activity;
import android.os.Bundle;

public class OtherActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.other);
 }
}

(from Activities/Explicit/app/src/main/java/com/commonsware/android/exint/OtherActivity.java)
and a similarly simple layout, res/layout/other.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/other"
 android:textColor="#FFFF0000"
 android:textSize="20sp"/>

</LinearLayout>

(from Activities/Explicit/app/src/main/res/layout/other.xml)
Augmenting the Manifest
Simply having an activity implementation is not enough. We also need to add
it to our AndroidManifest.xml file. This is automatically handled for you
by the IDEs’ respective new-activity wizards. However, if you created the
activity “by hand”, you will need to add its manifest element, and over time
you will need to edit this element in many cases.
Adding an activity to the manifest is a matter of adding
another <activity> element to the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.exint"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk
 android:minSdkVersion="7"
 android:targetSdkVersion="11"/>

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name="ExplicitIntentsDemoActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name="OtherActivity"/>
 </application>

</manifest>

(from Activities/Explicit/app/src/main/AndroidManifest.xml)
You need the android:name attribute at minimum. Note that we do not
include an <intent-filter> child element, as we did with the original activity
has. For now, take it on faith that the original activity’s <intent-filter>
is what causes it to appear as a launchable activity in the home screen’s launcher.
We will get into more details of how that <intent-filter> works and when
you might want your own in a later chapter.
Warning! Contains Explicit Intents!
An Intent encapsulates a request, made to
Android, for some activity or other receiver to do something.
If the activity you intend to launch is one of your own, you may find it
simplest to create an explicit Intent, naming the component you wish to launch.
For example, from within your activity, you could create an Intent like this:

new Intent(this, HelpActivity.class);

This would stipulate that you wanted to launch the HelpActivity. HelpActivity
would need to have a corresponding <activity> element
in your AndroidManifest.xml file.
In Activities/Explicit, ExplicitIntentsDemoActivity has a showOther() method
tied to its Button widget’s onClick attribute. That method will use
startActivity() with an explicit Intent, identifying OtherActivity:

package com.commonsware.android.exint;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class ExplicitIntentsDemoActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void showOther(View v) {
 startActivity(new Intent(this, OtherActivity.class));
 }
}

(from Activities/Explicit/app/src/main/java/com/commonsware/android/exint/ExplicitIntentsDemoActivity.java)
Our launched activity shows the button:

[image: The Explicit Intents Demo, As Launched]

Figure 230: The Explicit Intents Demo, As Launched
Clicking the button brings up the other activity:

[image: The Explicit Intents Demo, After Clicking the Button]

Figure 231: The Explicit Intents Demo, After Clicking the Button
Clicking BACK would return us to the first activity. In this respect, the BACK
button in Android works much like the BACK button in your Web browser.
Using Implicit Intents
The explicit Intent approach works fine when the activity to be started is
one of yours.
However, you can also start up activities from the operating system or
third-party apps. In those cases, though, you will not have a Java Class
object representing the other activity in your project, so you cannot use
the Intent constructor that takes a Class.
Instead, you will use what are referred as the “implicit” Intent structure,
which looks an awful lot like how the Web works.
If you have done any work on Web apps, you are aware that HTTP is based
on verbs applied to URIs:

	We want to GET this image

	We want to POST to this script or controller

	We want to PUT to this REST resource

	Etc.

Android’s implicit Intent model works much the same way, just with a lot
more verbs.
For example, suppose you get a latitude and longitude from somewhere (e.g.,
body of a tweet, body of a text message). You decide that you want to display a
map on those coordinates. There are ways that you can embed a Google Map
directly in your app — and we will see how in a later chapter — but that is
complicated and assumes the user wants Google Maps. It would be better if
we could create some sort of generic “hey, Android, display an activity that
shows a map for this location” request.
Or, in a simpler scenario: we get a URL to a Web page from some source (e.g., Web
service call), and we want to open a Web browser on that page. This is illustrated in the
Activities/LaunchWeb
sample project.
We have a LaunchDemo activity that uses a layout containing a EditText
widget and a Button, among other things:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <EditText
 android:id="@+id/url"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/url"
 android:inputType="textUri"/>

 <Button
 android:id="@+id/browse"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="showMe"
 android:text="@string/show_me"/>

</LinearLayout>

(from Activities/LaunchWeb/app/src/main/res/layout/main.xml)
The Button is tied to a showMe() method on the activity itself, where
we want to bring up a Web browser on the URL entered into the
EditText widget:

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class LaunchDemo extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 }

 public void showMe(View v) {
 EditText url=(EditText)findViewById(R.id.url);

 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(url.getText().toString())));
 }
}

(from Activities/LaunchWeb/app/src/main/java/com/commonsware/android/activities/LaunchDemo.java)
Here, we take
the URL and convert it to a Uri via calling
Uri.parse(). Then, we can use an action called ACTION_VIEW
to try to display the desired Web page.
When launched, the user is presented with our data entry form:

[image: LaunchWeb Demo, As Initially Launched]

Figure 232: LaunchWeb Demo, As Initially Launched
We can fill in a URL:

[image: LaunchWeb Demo, After Data Entry]

Figure 233: LaunchWeb Demo, After Data Entry
If the device has one app that responds to an ACTION_VIEW Intent
on an https: scheme, clicking the “Show Me!” button will bring up that app,
probably a Web browser:

[image: EFF Home Page, Launched from LaunchWeb]

Figure 234: EFF Home Page, Launched from LaunchWeb
We will discuss what happens if there are no applications set up to handle
this Intent, or if there is more than one, in a later chapter.
Where Do We Get These Uri Values?
In this example, we used Uri.parse() to parse an https URL. This is a typical
approach for such URLs.
However, sometimes, what we want to view is on the device already, rather than
being online. In those cases, we do not use https, or even http. Instead,
we will use two other schemes: file and content.
The file scheme works more or less as it does with Web browsers. file:// plus
a path is a URL pointing to a file on the filesystem. We will get into working
with files a bit later in the book. Given a File object, we can
get the corresponding Uri via Uri.fromFile().
The content scheme is for a ContentProvider. This is one of our Android
components (along with activities, services, and broadcast receivers). A
content Uri points to some content from that provider: a contact, a stream,
a calendar entry, etc. Usually, we get these as Uri values directly. If,
somehow, you wind up with a String representation of a content Uri,
Uri.parse() can turn that back into a Uri. We will get more into
how to use a ContentProvider later in the book.
Extra! Extra!
Sometimes, we may wish to pass some data from one activity to the next. For
example, we might have a ListActivity showing a collection of our model
objects (e.g., books) and we have a separate DetailActivity to show information
about a specific model object. Somehow, DetailActivity needs to know which
model object to show.
One way to accomplish this is via Intent extras.
There is a series of putExtra() methods on Intent to allow you to supply
key/value pairs of data to be bundled into the Intent. While you cannot pass
arbitrary objects, most primitive data types are supported, as are strings and
some types of lists. The next section will explain
a bit more about what can go in an Intent extra.
Any activity can call getIntent() to retrieve the Intent used to start it
up, and then can call various forms of get... Extra() (with the ... indicating
a data type) to retrieve any bundled extras.
For example, let’s take a look at the
Activities/Extras
sample project.
This is mostly a clone of the Activities/Explicit sample from earlier in this
chapter. However, this time, our first activity will pass an extra to the second:

package com.commonsware.android.extra;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class ExtrasDemoActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void showOther(View v) {
 Intent other=new Intent(this, OtherActivity.class);

 other.putExtra(OtherActivity.EXTRA_MESSAGE, getString(R.string.other));
 startActivity(other);
 }
}

(from Activities/Extras/app/src/main/java/com/commonsware/android/extra/ExtrasDemoActivity.java)
We create the Intent as before, but then call putExtra(), supplying a key
(a static string named OtherActivity.EXTRA_MESSAGE) and a value (the R.string.other
string resource). Then, and only then, do we call startActivity().
Our revised OtherActivity then retrieves that extra, along with the inflated
TextView (via findViewById()) and pours that text in:

package com.commonsware.android.extra;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class OtherActivity extends Activity {
 public static final String EXTRA_MESSAGE="msg";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.other);

 TextView tv=(TextView)findViewById(R.id.msg);

 tv.setText(getIntent().getStringExtra(EXTRA_MESSAGE));
 }
}

(from Activities/Extras/app/src/main/java/com/commonsware/android/extra/OtherActivity.java)
Visually, the result is the same. Functionally, the text to be shown is passed
from one activity to the next.
Pondering Parcelable
As noted above, Intent extras cannot handle arbitrary objects. That is because,
most of the time, Intent extras get passed across process boundaries.
Even when you are calling startActivity() to start up one of your own
activities, that request passes from your process to a core OS process and back
to your process. The Intent extras come along for the ride.
Hence, Intent extras need to be something that can be converted into a byte
array, as part of the inter-process communication (IPC) that handles the passing
around of Intent objects. You will see this come up in other flavors of Android
IPC as well, such as remote services.
However, there are two ways in which you can try to make your own objects
work as Intent extras.
One approach is to implement Serializable on your class. This is a classic
Java construct, designed to allow instances of your class, and other
Serializable objects your instances hold onto, to be serialized into files
and later read back in.
Another approach is to implement Parcelable on your class. This is an Android
construct, one that is very similar to Serializable. However, Serializable
is designed for durable storage of objects, where the file might be read back
in months or years later. As such, Serializable has to deal with possible
changes to the Java code implementing those classes, and as such needs to have
hooks to help with converting old, saved objects into new objects. This adds
overhead. Parcelable is only concerned with converting objects into byte
arrays to pass across process boundaries. It can make the simplifying assumption
that the class definition is not changing from when the object is turned into
bytes and when the bytes are turned back into an object. As a result,
Parcelable is faster than Serializable for Android’s IPC use.
You are welcome to implement Parcelable on your own classes if you wish, at
which point they can be passed around via Intent extras. Beyond that, though,
any Java classes you see in the Android JavaDocs that implement Parcelable
can be put into Intent extras. So, for example, Uri implements Parcelable,
and so you can put a Uri into an Intent extra. Not everything in the Android
SDK is Parcelable, but some key classes like Uri are Parcelable.
A lot more detail on Parcelable, including how you can implement it on your
own classes, appears later in this book.
Asynchronicity and Results
Note that startActivity() is asynchronous. The other activity will not show up
until sometime after you return control of the main application thread to Android.
Normally, this is not much of a problem. However, sometimes one activity might
start another, where the first activity would like to know some “results” from
the second. For example, the second activity might be some sort of “chooser”, to
allow the user to pick a file or contact or song or something, and the first
activity needs to know what the user chose. With startActivity() being
asynchronous, it is clear that we are not going to get that sort of result
as a return value from startActivity() itself.
To handle this scenario, there is a separate startActivityForResult() method.
While it too is asynchronous, it allows the newly-started activity to supply a
result (via a setResult() method) that is delivered to the original activity
via an onActivityResult() method. We will examine startActivityForResult()
in greater detail in a later chapter.
Schroedinger’s Activity
An activity, generally speaking, is in one of four states at any point in time:

	
Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

	
Paused: the activity was started by the user, is running, and is visible,
but another activity is overlaying part of the screen. During this
time, the user can see your activity but may not be able to interact with it.
This is a relatively uncommon state, as most activities are set to fill the
screen, not have a theme that makes them look like some sort of dialog box.

	
Stopped: the activity was started by the user, is running, but it is
hidden by other activities that have been launched or switched to.

	
Dead: the activity was destroyed, perhaps due to the user pressing the BACK
button.

Life, Death, and Your Activity
Android will call into your activity as the activity transitions between the
four states listed above.
Note that for all of these, you should chain upward and invoke the superclass’
edition of the method, or Android may raise an exception.

onCreate() and onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in
all the examples. This will get called in two primary situations:

	When the activity is first started (e.g., since a system restart),
onCreate() will be invoked with a null parameter.

	If the activity undergoes what we refer to as a “configuration change”,
such as the screen being rotated, by default your activity will be
re-created and onCreate() will be called. We will discuss this scenario in
greater detail later in this book.

Here is where you initialize your user interface and set up anything that needs
to be done once, regardless of how the activity gets used.
On the other end of the lifecycle, onDestroy() may be called when the
activity is shutting down, such as because the activity called finish()
(which “finishes” the activity) or the user presses the BACK button. Hence,
onDestroy() is mostly for cleanly releasing resources you obtained in
onCreate() (if any), plus making sure that anything you started up outside of
lifecycle methods gets stopped, such as background threads.
Bear in mind, though, that onDestroy() may not be called. This would occur
in a few circumstances:

	You crash with an unhandled exception

	The user force-stops your application, such as through the Settings app

	Android has an urgent need to free up RAM (e.g., to handle an incoming
phone call), wants to terminate your process, and cannot take the time to call
all the lifecycle methods

Hence, onDestroy() is very likely to be called, but it is not guaranteed.
Also, bear in mind that it may take a long time for onDestroy() to be called.
It is called quickly if the user presses BACK to finish the foreground activity.
If, however, the user presses HOME to bring up the home screen, your activity
is not immediately destroyed. onDestroy() will not be called until Android
does decide to gracefully terminate your process, and that could be seconds,
minutes, or hours later.

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being
launched, or because it is being brought back to the foreground after having
been hidden (e.g., by another activity, by an incoming phone call).
The onStart() method is called in either of those cases. The onRestart()
method is called in the case where the activity had been stopped and is now
restarting.
Conversely, onStop() is called when the activity is about to be stopped.
It too may not be called, for the same reasons that onDestroy() would not
be called. However, onStop() is usually called fairly quickly after the
activity is no longer visible, so the odds that onStop() will be called are
even higher than that of onDestroy().

onPause() and onResume()

The onResume() method is called just before your activity comes to the
foreground, either after being initially launched, being restarted from a
stopped state, or after a pop-up dialog (e.g., incoming call) is cleared. This
is a great place to refresh the UI based on things that may have occurred since
the user last was looking at your activity. For example, if you are polling a
service for changes to some information (e.g., new entries for a feed),
onResume() is a fine time to both refresh the current view and, if
applicable, kick off a background thread to update the view (e.g., via a
Handler).
Conversely, anything that takes over user input —
mostly, the activation of another activity — will result in your
onPause() being called. Here, you should undo anything you did in
onResume(), such as stopping background threads, releasing any
exclusive-access resources you may have acquired (e.g., camera), and the like.
Once onPause() is called, Android reserves the right to kill off your
activity’s process at any point. Hence, you should not be relying upon
receiving any further events.
So, what is the difference between onPause() and onStop()? If an activity
comes to the foreground that fills the screen, your current foreground
activity will be called with onPause() and onStop(). If, however, an activity
comes to the foreground that does not fill the screen, your current
foreground activity will only be called with onPause(), as it is still
visible.
Stick to the Pairs
If you initialize something in onCreate(), clean it up in onDestroy().
If you initialize something in onStart(), clean it up in onStop().
If you initialize something in onResume(), clean it up in onPause().
In other words, stick to the pairs. For example, do not initialize something in onStart()
and try to clean it up in onPause(), as there are scenarios where onPause()
may be called multiple times in succession (i.e., user brings up a non-full-screen
activity, which triggers onPause() but not onStop(), and hence not onStart()).
Which pairs of lifecycle methods you choose is up to you, depending upon your
needs. You may decide that you need two pairs (e.g., onCreate()/onDestroy()
and onResume()/onPause()). Just do not mix and match between them.
When Activities Die
So, what gets rid of an activity? What can trigger the chain of events that
results in onDestroy() being called?
First and foremost, when the user presses the BACK button, the foreground
activity will be destroyed, and control will return to the previous activity in
the user’s navigation flow (i.e., whatever activity they were on before the
now-destroyed activity came to the foreground).
You can accomplish the same thing by calling finish() from your activity.
This is mostly for cases where some other UI action would indicate that the
user is done with the activity (e.g., the activity presents a list for the user
to choose from — clicking on a list item might close the activity).
However, please do not artificially add your own “exit”, “quit”, or other menu
items or buttons to your activity — just allow the user to use normal
Android navigation options, such as the BACK button.
If none of your activities are in the foreground any more, your application’s
process is a candidate to be terminated to free up RAM. As noted earlier,
depending on
circumstances, Android may or may not call onDestroy() in these cases
(onPause() and onStop() would have been called when your activities left
the foreground).
If the user causes the device to go through a “configuration change”, such as
switching between portrait and landscape, Android’s default behavior is to
destroy your current foreground activity and create a brand new one in its
place. We will cover this more in a later chapter.
And, if your activity has an unhandled exception, your activity will be
destroyed, though Android will not call any more lifecycle methods on it, as it
assumes your activity is in an unstable state.
Walking Through the Lifecycle
To see when these various lifecycle methods get called, let’s examine the
Activities/Lifecycle
sample project.
This project is the same as the Activities/Extras project, except that
our two activities no longer inherit from Activity directly. Instead, we
introduce a LifecycleLoggingActivity as a base class and have our activities
inherit from it:

package com.commonsware.android.lifecycle;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class LifecycleLoggingActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Log.d(getClass().getSimpleName(), "onCreate()");
 }

 @Override
 public void onRestart() {
 super.onRestart();

 Log.d(getClass().getSimpleName(), "onRestart()");
 }

 @Override
 public void onStart() {
 super.onStart();

 Log.d(getClass().getSimpleName(), "onStart()");
 }

 @Override
 public void onResume() {
 super.onResume();

 Log.d(getClass().getSimpleName(), "onResume()");
 }

 @Override
 public void onPause() {
 Log.d(getClass().getSimpleName(), "onPause()");

 super.onPause();
 }

 @Override
 public void onStop() {
 Log.d(getClass().getSimpleName(), "onStop()");

 super.onStop();
 }

 @Override
 public void onDestroy() {
 Log.d(getClass().getSimpleName(), "onDestroy()");

 super.onDestroy();
 }
}

(from Activities/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/LifecycleLoggingActivity.java)
All LifecycleLoggingActivity does is override each of the lifecycle methods
mentioned above and emit a debug line to Logcat indicating who called what.
When we first launch the application, our first batch of lifecycle methods is
invoked, in the expected order:

04-01 11:47:21.437: D/ExplicitIntentsDemoActivity(1473): onCreate()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onResume()

If we click the button on the first activity to start up the second, we get:

04-01 11:47:54.776: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:47:54.877: D/OtherActivity(1473): onCreate()
04-01 11:47:54.947: D/OtherActivity(1473): onStart()
04-01 11:47:54.974: D/OtherActivity(1473): onResume()
04-01 11:47:55.347: D/ExplicitIntentsDemoActivity(1473): onStop()

Notice that our first activity is paused before the second activity starts up,
and that onStop() is delayed on the first activity until after the second
activity has appeared.
If we press the BACK button on the second activity, returning to the first
activity, we see:

04-01 11:48:54.807: D/OtherActivity(1473): onPause()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onRestart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onResume()
04-01 11:48:55.257: D/OtherActivity(1473): onStop()
04-01 11:48:55.257: D/OtherActivity(1473): onDestroy()

Notice how, once again, going onto the screen happens in between onPause()
and onStop() of the activity leaving the screen. Also notice that onDestroy()
is called immediately after onStop(), because the activity was finished via
the BACK button.
If we now press the HOME button, to bring the home screen activity to the
foreground, we see:

04-01 11:50:30.347: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:50:32.227: D/ExplicitIntentsDemoActivity(1473): onStop()

There is a delay between onPause() and onStop() as the home screen does
its display work, and there is no onDestroy(), because the application is
still running and nothing finished the activity. Eventually, the device will
terminate our process, and if that happens normally, we would see the onDestroy()
Logcat message.
Recycling Activities
Let us suppose that we have three activities, named A, B, and C. A starts up
an instance of B based on some user input, and B later starts up an instance
of C through some more user input.
Our “activity stack” is now A-B-C, meaning that if we press BACK from C, we
return to B, and if we press BACK from B, we return to A.
Now, let’s suppose that from C, we wish to navigate back to A. For example,
perhaps the user pressed the icon on the left of our action bar, and we want
to return to the “home activity” as a result, and in our case that happens
to be A. If C calls startActivity(), specifying A, we wind up with an
activity stack that is A-B-C-A.
That’s because starting an activity, by default, creates a new instance of that
activity. So, now we have two independent copies of A.
Sometimes, this is desired behavior. For example, we might have a single
ListActivity that is being used to “drill down” through a hierarchical data
set, like a directory tree. We might elect to keep starting instances of that
same ListActivity, but with different extras, to show each level of that
hierarchy. In this case, we would want independent instances of the activity,
so the BACK button behaves as the user might expect.
However, when we navigate to the “home activity”, we may not want a separate
instance of A.
How to address this depends a bit on what you want the activity stack to look
like after navigating to A.
If you want an activity stack that is B-C-A — so the existing copy of A is brought
to the foreground, but the instances of B and C are left alone — then you
can add FLAG_ACTIVITY_REORDER_TO_FRONT to your Intent used with
startActivity():

Intent i=new Intent(this, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT);
startActivity(i);

If, instead, you want an activity stack that is just A — so if the user presses
BACK, they exit your application — then you would add two flags:
FLAG_ACTIVITY_CLEAR_TOP and FLAG_ACTIVITY_SINGLE_TOP:

Intent i=new Intent(this, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP | Intent.FLAG_ACTIVITY_SINGLE_TOP);
startActivity(i);

This will finish all activities in the stack between the current activity and
the one you are starting — in our case, finishing C and B.
Application: Transcending the Activity
Activity inherits from a class named Context. Many of the methods
that we are calling on our activities, like startActivity(), are inherited
from Context.
However, Activity is not the only relevant subclass of Context. We will
see Service later in the book, for example. And sometimes
we will see plain Context objects, such as when we cover BroadcastReceiver
later in the book.
Another Context of note is Application. An instance of Application is
created when our app starts up. The Application instance is a natural
singleton; there should be exactly one instance of Application in our
process.
Normally, this singleton is an instance of Application itself. However, we
can subclass Application if we wish, then include a reference to our custom
application class in an android:name attribute on the <application> element
in the manifest. Then, when Android starts up our app, it will create an instance
of our designated Application subclass, rather than creating an instance
of the ordinary Application class.
We can retrieve the Application object at any point by calling
getApplicationContext() on any Context object. getApplicationContext()
will return a Context; if we need to reference Application or our specific
Application subclass, we need to down-cast the returned Context to the
appropriate type.
We can use Application in a few ways in Android apps.
First and foremost, if we need to hold onto some other object in a static
data member, and that other object needs a Context, we really want it
to be using the Application, not an Activity, Service, etc. Because
Application is a singleton, it is effectively “pre-leaked”. We cannot somehow
leak it further by having another indirect static reference to it. In contrast,
suppose we have a static data member holding onto an Activity. Now,
when that Activity is destroyed, it (and all it holds, like widgets and
listeners) cannot be garbage-collected. This represents a memory leak.
You could even take it one step further and have the Application manage
this static data, rather than using separate singletons. There are pros and cons
to this approach, but on the whole Google is not a big fan of it. That
being said, Application has an onCreate() that is called shortly after
it is instantiated, and your subclass of Application could override that
and use it to initialize some “global” data.
However, while the JavaDocs indicate that there is an onTerminate() method
on Application — suggesting that we find out when the Application is going
away and our process is being terminated — that method is never called in
practice.
The Case of the Invisible Activity
Sometimes, you want an activity that has no UI.
This is rather unusual. Mostly, it will be cases where something
else in the system says that it needs you to have an activity, but
where you do not really have anything that you want to display to
the user in a traditional activity-style UI.
For example, home screen launcher icons only start up activities.
However, you may have a need for a home screen launcher that simply
triggers some work to be done in the background, perhaps using a service
(as will be discussed later in the book).
You have two ways of setting up an invisible activity, both involving
using a particular android:theme value on the <activity> element.
The most efficient option is to use Theme.Translucent.NoTitleBar.
This sets up your activity to have a transparent
background and no action bar. The user may still perceive that the
activity is around — for example, it will show up in the overview
screen (a.k.a., recent-tasks list). Also, since the activity is
“really there”, the user may not be able to interact with whatever
the user can see, such as the underlying home screen.
But, if the activity can finish() itself quickly, and is interacting
with the user in the meantime (e.g., displaying some system dialog),
you may be able to get away with this approach.
You will also see projects use a Theme.NoDisplay theme. This says
that there should be no window associated with this particular activity.
This too results in an invisible activity.
Occasionally, you need an invisible activity that has to hang around
for a few seconds, perhaps waiting on some callback result, before
it can be destroyed. Using Theme.NoDisplay will still work… but
only on older Android devices. On Android 6.0 and higher,
using Theme.NoDisplay without calling finish() in onCreate()
(or, technically, before onResume())
will crash your app.
This is why the recommendation is to use Theme.Translucent.NoTitleBar,
which does not suffer from this limitation.
Tutorial #8 - Setting Up An Activity
Of course, it would be nice if those “Help” and “About” menu choices that
we added in the previous tutorial actually did something.
In this tutorial, we will define another activity class, one that will be
responsible for displaying simple content like our help text and “about” details.
And, we will arrange to start up that activity when those action bar items
are selected. The activity will not actually display anything meaningful yet,
as that will be the subject of the next few tutorials.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results of
this tutorial
in the book’s GitHub repository.
Step #1: Creating the Stub Activity Class and Manifest Entry
First, we need to define the Java class for our new activity,
SimpleContentActivity.
Right-click on your main/ source set directory in the project explorer, and
choose New > Activity > Empty Activity from the context menu. This will bring
up a new-activity wizard:

[image: Android Studio New Activity Wizard]

Figure 235: Android Studio New Activity Wizard
Fill in SimpleContentActivity in the “Activity Name” field and
uncheck the “Generate Layout File” checkbox. Leave “Launcher Activity”
unchecked, and uncheck the “Backwards Compatibility (AppCompat)” checkbox.
If the package name drop-down is showing the app’s package
name, leave it alone. On the other hand, if the package name drop-down
is empty, click on it and choose
the app’s package name. Leave the source language drop-down set to Java.
Then click on Finish.
At this point, your SimpleContentActivity class should look like:

package com.commonsware.empublite;

import android.app.Activity;
import android.os.Bundle;

public class SimpleContentActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
}

(from EmPubLite-AndroidStudio/T8-Activities/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentActivity.java)
Step #2: Launching Our Activity
Now that we have declared that the activity exists and can be used, we can
start using it.
Go into EmPubLiteActivity and modify onOptionsItemSelected() to add in
some logic in the R.id.about and R.id.help branches, as shown below:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.about:
 Intent i=new Intent(this, SimpleContentActivity.class);
 startActivity(i);

 return(true);

 case R.id.help:
 i=new Intent(this, SimpleContentActivity.class);
 startActivity(i);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from EmPubLite-AndroidStudio/T8-Activities/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
In those two branches, we create an Intent, pointing at our new
SimpleContentActivity. Then, we call startActivity() on that Intent. Right
now, both help and about do the same thing — we will add some smarts to
have them load up different content later in this book.
You will need to add an import for android.content.Intent to get this to
compile.
If you run this app in a device or emulator, and you choose either the Help
or About menu choices… nothing much appears to happen.
In reality, what happens is that our SimpleContentActivity
appeared, but empty, as we have not given it a full UI yet.
In Our Next Episode…
… we will begin using fragments in our tutorial project.
The Tactics of Fragments
Activities are fine, but they are fairly inflexible. Development is moving
away from using activities as the core foundation of our UI. Activities will always
exist, but many times we use an activity mostly as a dumb container for other UI logic.
And, frequently, that UI logic is held in fragments.
Fragments are an optional layer you can put between your activities and your widgets.
The original vision for fragments was to make it easier to support early Android
tablets, allowing you to assemble tablet-sized UIs by snapping together a bunch
of phone-sized UIs that you use individually on phones.
Over time, fragments were used in more places and for more reasons. While fragments
are not required, Google strongly encourages their use. The Android Jetpack
initiative launched in 2018 specifically advocates having an app be a single
activity, with fragments for each “screen” of information.
This chapter will cover basic uses of fragments.
The Six Questions
In the world of journalism, the basics of any news story consist
of six questions,
the Five Ws and One H. Here, we will
apply those six questions to help frame what we are talking about with respect
to fragments.
What?
Fragments are not activities, though they can be used by activities.
Fragments are not containers (i.e., subclasses of ViewGroup), though typically
they create a ViewGroup.
Rather, you should think of fragments as being units of UI reuse. You define
a fragment, much like you might define an activity, with layouts and lifecycle
methods and so on. However, you can then host that fragment in one or several
activities, as needed.
Functionally, fragments are Java classes, extending from a base Fragment class.
Where??
Since fragments are Java classes, your
fragments will reside in one of your application’s Java packages. The simplest
approach is to put them in the same Java package that you used for your project
overall and where your activities reside, though you can refactor your UI
logic into other packages if needed.
Who?!?
Typically, you create fragment implementations yourself, then tell Android
when to use them. Some third-party Android library projects may ship
fragment implementations that you can reuse, if you so choose.
When?!!?
Some developers start adding fragments from close to the outset of application
development — that is the approach we will take in the tutorials. And, if you
are starting a new application from scratch, defining fragments early on is
probably a good idea. That being said, it is entirely possible to “retrofit”
an existing Android application to use fragments, though this may be a lot of
work. And, it is entirely possible to create Android applications without
fragments at all.
WHY?!?!?
Ah, this is the big question. If we have managed to make it this far through
the book without fragments, and we do not necessarily need fragments to create
Android applications, what is the point? Why would we bother?
There are many uses for fragments. For now, we’ll limit the discussion to just two:
supporting wide ranges of screen sizes, and supporting page-at-a-time UIs.
Screen Sizes
The original rationale for fragments was to make it easier to support multiple
screen sizes.
Android started out supporting phones. Phones may vary in size, from tiny
ones with less than 3” diagonal screen size,
to monsters that are over 5”. However, those
variations in screen size pale in comparison to the differences between
phones and tablets, or phones and TVs.
Some applications will simply expand to fill larger screen sizes. Many games
will take this approach, simply providing the user with bigger interactive
elements, bigger game boards, etc. Any one of the ever-popular Angry Birds game
series, when played on an tablet, gives you bigger birds and bigger pigs, not
a phone-sized game area surrounded by ad banners.
However, another design approach is to consider a tablet screen to really be
a collection of phone screens, side by side.

[image: Tablets vs. Handsets (image courtesy of Android Open Source Project)]

Figure 236: Tablets vs. Handsets (image courtesy of Android Open Source Project)
The user can access all of that functionality at once on a tablet, whereas
they would have to flip back and forth between separate screens on a phone.
For applications that can fit this design pattern, fragments allow you to
support phones and tablets from one code base. The fragments can be used by
individual activities on a phone, or they can be stitched together by a single
activity for a tablet.
Pages
UIs with swipeable pages — where the user can use horizontal swipe and fling gestures
to move from page to page — have become fairly popular. While there are a few
solutions for implementing this sort of thing, ViewPager is the most popular
choice. And, while there are a few solutions for creating pages in a ViewPager,
using fragments for pages is the most popular choice.
We will see ViewPager later in the book.
OMGOMGOMG, HOW?!?!??
Well, answering that question is what the rest of this chapter is for, plus
coverage of more advanced uses of fragments elsewhere in this book.
Where You Get Your Fragments From
Fragments were introduced in Android 3.0 (API Level 11). Shortly thereafter,
we wound up with two separate implementations:

	the one that is part of the Android framework classes: android.app.Fragment

	the one that is part of the Android Support Library: android.support.v4.app.Fragment

You might think that nowadays we would just use the native one, since few apps
will have a minSdkVersion below 11.
Alas, that is not the case.
The early implementations of fragments were riddled with bugs. The nice thing
about the library version of fragments is that you, the developer, get to choose
what version you use. By keeping up to date with your libraries, you get the
latest and greatest edition of fragments, with the most bug fixes. By contrast,
if you use the framework implementation, you might run into bugs on some API levels
but not others.
As of Android 9.0, the framework implementation of fragments is officially deprecated.
Google is now very aggressively steering you to use the Support Library implementation
of fragments, and this book will tend to focus on that implementation.
Your First Fragment
In many ways, it is easier to explain fragments by looking at an implementation,
more so than trying to discuss them as abstract concepts. So, in this section,
we will take a look at
the Fragments/Static
sample project. This is a near-clone of the
Activities/Lifecycle
sample project from the previous chapter. However,
we have converted the launcher activity from one that will host widgets directly
itself to one that will host a fragment, which in turn manages widgets.
The Library
The Support Library artifact that holds the fragment implementation that we will
use is support-fragment, so we request that in the app/build.gradle file:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 }
}

dependencies {
 implementation "com.android.support:support-fragment:27.1.1"
}

(from Fragments/Static/app/build.gradle)
The Fragment Layout
Our fragment is going to manage our UI, so we have a res/layout/mainfrag.xml
layout file containing our Button:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/showOther"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="@string/hello"
 android:textSize="20sp"/>

(from Fragments/Static/app/src/main/res/layout/mainfrag.xml)
Note, though, that we do not use the android:onClick attribute. We will explain
why we dropped that attribute from the previous editions of this sample shortly.
The Fragment Class
The project has a ContentFragment class that will use this layout and handle
the Button.
Specifically, ContentFragment extends android.support.v4.app.Fragment,
the library implementation of the Fragment class. Note that auto-complete
in Android Studio or other IDEs might also suggest android.app.Fragment, but
that is the framework implementation, which we are trying to avoid.
As with activities, there is no constructor on a typical Fragment subclass.
The primary method you override, though, is not onCreate() (though, as we
will see later in this chapter, that is possible). Instead, the primary method
to override is onCreateView(), which is responsible for returning the
UI to be displayed for this fragment:

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.mainfrag, container, false);

 result.findViewById(R.id.showOther).setOnClickListener(this);

 return(result);
 }

(from Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/ContentFragment.java)
We are passed a LayoutInflater that we can use for inflating a layout file,
the ViewGroup that will eventually hold anything we inflate, and the
Bundle that was passed to the activity’s onCreate() method.
While we are used to framework classes loading our layout resources for us,
we can “inflate” a layout resource at any time using a LayoutInflater. This
process reads in the XML, parses it, walks the element tree, creates Java objects
for each of the elements, and stitches the results together into a parent-child
relationship.
Here, we inflate res/layout/mainfrag.xml, telling Android that its contents
will eventually go into the ViewGroup but not to add it right away. While
there are simpler flavors of the inflate() method on LayoutInflater, this
one is required in case the ViewGroup happens to be a RelativeLayout, so
we can process all of the positioning and sizing rules appropriately.
We also use findViewById() to find our Button widget and tell it that
we, the fragment, are its OnClickListener. ContentFragment must then
implement the View.OnClickListener interface to make this work. We do this
instead of android:onClick to route the Button click events to the fragment,
not the activity.
Since we implement the View.OnClickListener interface, we need the corresponding
onClick() method implementation:

 @Override
 public void onClick(View v) {
 ((StaticFragmentsDemoActivity)getActivity()).showOther(v);
 }

(from Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/ContentFragment.java)
Any fragment can call getActivity() to find the activity that hosts it. In
our case, the only activity that will possibly host this fragment is
StaticFragmentsDemoActivity, so we can cast the result of getActivity() to
StaticFragmentsDemoActivity, so that we can call methods on our activity. In
particular, we are telling the activity to show the other activity, by means
of calling the showOther() method that we saw in the original
Activities/Lifecycle sample (and will see again shortly).
That is really all that is needed for this fragment. However, ContentFragment
also overrides many other fragment lifecycle methods, and we will examine these
later in this chapter.
The Activity Layout
Originally, the res/layout/main.xml used by the activity was where we had our
Button widget. Now, the Button is handled by the fragment. Instead, our
activity layout needs to account for the fragment itself.
In this sample, we are going to use a static fragment. Static fragments are
easy to add to your application: just use the <fragment> element in a layout
file, such as our revised res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:name="com.commonsware.android.sfrag.ContentFragment"/>

(from Fragments/Static/app/src/main/res/layout/main.xml)
Here, we are declaring our UI to be completely comprised of one fragment,
whose implementation (com.commonsware.android.sfrag.ContentFragment) is
identified by the android:name attribute on the <fragment> element. Instead
of android:name, you can use class, though most of the Android documentation
has now switched over to android:name.
Android Studio users can drag a fragment out of the “Containers” section of the
graphical layout editor tool palette, if desired, rather than setting up the <fragment> element
directly in the XML.
The Activity Class
StaticFragmentsDemoActivity — our new launcher activity — looks identical
to the previous version, with the exception of the class name:

package com.commonsware.android.sfrag;

import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class StaticFragmentsDemoActivity extends
 LifecycleLoggingActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void showOther(View v) {
 Intent other=new Intent(this, OtherActivity.class);

 other.putExtra(OtherActivity.EXTRA_MESSAGE,
 getString(R.string.other));
 startActivity(other);
 }
}

(from Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/StaticFragmentsDemoActivity.java)
Since the res/layout/main.xml file has the <fragment> element, the fragment
is simply loaded into position in the call to setContentView().
However, the LifecycleLoggingActivity superclass now extends
android.support.v4.app.FragmentActivity. To use the library implementation
of fragments, you need to use the android.support.v4 classes consistently:

	Have your fragments inherit from android.support.v4.app.Fragment

	Have your activities inherit from android.support.v4.app.FragmentActivity

Note that you can have other layers in the inheritance hierarchy between your
class and the library implementation of fragments. For example, a popular
activity base class is AppCompatActivity, a part of the appcompat-v7
library that we will introduce later in this book.
AppCompatActivity inherits from android.support.v4.app.FragmentActivity, so
any activity that inherits from AppCompatActivity will be able to use the
library implementation of fragments.
The Fragment Lifecycle Methods
Fragments have lifecycle methods, just like activities do. In fact, they
support most of the same lifecycle methods as activities:

	onCreate()

	
onStart() (but not onRestart())

	onResume()

	onPause()

	onStop()

	onDestroy()

By and large, the same rules apply for fragments as do for activities with
respect to these lifecycle methods (e.g., onDestroy() may not be called).
In addition to those and the onCreateView() method we examined earlier in
this chapter, there are other lifecycle methods that you can elect to
override if you so choose.
onAttach() will be called first, even before onCreate(), letting you know
that your fragment has been attached to an activity. You are passed the
Activity that will host your fragment.
onViewCreated() will be called after onCreateView(). This is particularly
useful if you are inheriting the onCreateView() implementation but need
to configure the resulting views. For example, you need to attach an adapter
to a ListFragment — a common place to do that is in onViewCreated(),
as you know that the ListView is set up at that time.
onActivityCreated() will be called
to indicate that the activity’s onCreate() has completed. If there is something
that you need to initialize in your fragment that depends upon the activity’s
onCreate() having completed its work, you can use onActivityCreated() for
that initialization work.
onDestroyView() is called before onDestroy(). This is the counterpart to
onCreateView() where you set up your UI. If there are things that you need
to clean up specific to your UI, you might put that logic in onDestroyView().
onDetach() is called after onDestroy(), to let you know that your fragment
has been disassociated from its hosting activity.
onAttach() Versus onAttach()
If you set your project to have a compileSdkVersion of 23 or higher,
and you attempt to override onAttach(), you may get a deprecation warning:

[image: Android Studio, Showing Deprecated onAttach()]

Figure 237: Android Studio, Showing Deprecated onAttach()
That is because there are two versions of onAttach() (and onDetach())
starting with API Level 23. One takes an Activity as a parameter, and
the other takes a Context as a parameter.
The roles of onAttach() and onDetach() are the same with either parameter:
let you know when the fragment has been attached to or detached from its
host. However, now, the host could be anything that extends Context,
not merely an Activity.
On API Level 22 and below, though, only the Activity flavor of onAttach()
and onDetach() exists. This leads to a conundrum, as you try to determine
exactly how to handle this for your app.
On the whole, if your minSdkVersion is below 23, overriding just
onAttach(Activity) is your best route. It will work on all Android
devices that support fragments. Overriding only onAttach(Context) will
not work, as older devices will ignore it (despite Activity being
a subclass of Context). You could override both methods, but on API
Level 23+ devices, both flavors will be called, which may or may not
be a good idea for your Fragment subclass.
Your First Dynamic Fragment
Static fragments are fairly simple, once you have the Fragment implementation:
just add the <fragment> element to where you want to have the fragment appear
in your activity’s layout.
That simplicity, though, does come with some costs. We will review some of those
limitations in an upcoming chapter.
Those limitations can be overcome by the use of dynamic fragments. Rather than
indicating to Android that you wish to use a fragment by means of a <fragment>
element in a layout, you will use a FragmentTransaction to add a fragment at
runtime from your Java code.
With that in mind, take a look at the
Fragments/Dynamic
sample project.
This is the same project as the one for static fragments, except this time
we will adjust OtherActivity to use a dynamic fragment, specifically a
ListFragment.
The ListFragment Class
ListFragment serves the same role for fragments as ListActivity does for
activities. It wraps up a ListView for convenient use. So, to have a more
interesting OtherActivity, we start with an OtherFragment that is a
ListFragment, designed to show our favorite 25 Latin words as seen in
previous examples.
Just as a ListActivity does not need to call setContentView(), a
ListFragment does not need to override onCreateView(). By default, the
entire fragment will be comprised of a single ListView. And just as ListActivity
has a setListAdapter() method to associate an Adapter with the ListView,
so too does ListFragment:

package com.commonsware.android.dfrag;

import android.app.Activity;
import android.os.Bundle;
import android.support.v4.app.ListFragment;
import android.util.Log;
import android.view.View;
import android.widget.ArrayAdapter;

public class OtherFragment extends ListFragment {
 private static final String[] items= { "lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante", "porttitor", "sodales",
 "pellentesque", "augue", "purus" };

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 setListAdapter(new ArrayAdapter<>(getActivity(),
 android.R.layout.simple_list_item_1, items));
 }

(from Fragments/Dynamic/app/src/main/java/com/commonsware/android/dfrag/OtherFragment.java)
We call setListAdapter() in onViewCreated(), as we know that the
ListView is now ready for use.
This class also overrides many fragment lifecycle methods, logging their results,
akin to our other Fragment and LifecycleLoggingActivity.
The Activity Class
Now, OtherActivity no longer needs to load a layout — we have removed
res/layout/other.xml from the project entirely. Instead, we will use a
FragmentTransaction to add our fragment to the UI:

package com.commonsware.android.dfrag;

import android.os.Bundle;

public class OtherActivity extends LifecycleLoggingActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new OtherFragment()).commit();
 }
 }
}

(from Fragments/Dynamic/app/src/main/java/com/commonsware/android/dfrag/OtherActivity.java)
To work with a FragmentTransaction, you need the FragmentManager. This object
knows about all of the fragments that exist in your activity.
Unfortunately, this is another one of those places where history, and the Java programming
language, cause us some hiccups.
To get the FragmentManager from a FragmentActivity, you need to call
getSupportFragmentManager(). You will find that there is also a getFragmentManager()
method. However, that is for the framework implementation of fragments, not the
library implementation. To work with the library implementation of fragments,
you need to call getSupportFragmentManager() instead.
Given a FragmentManager, you can start a FragmentTransaction by calling
beginTransaction(), which returns the FragmentTransaction object.
FragmentTransaction operates on the builder pattern, so most methods on
FragmentTransaction return the FragmentTransaction itself, so you can chain a
series of method calls one after the next.
We call two methods on our FragmentTransaction: add() and commit(). The add()
method, as you might guess, indicates that we want to add a fragment to the
UI. We supply the actual fragment object, in this case by creating a new
OtherFragment. We also need to indicate where in our layout we want this
fragment to reside. Had we loaded a layout, we could drop this fragment in
any desired container. In our case, since we did not load a layout, we supply
android.R.id.content as the ID of the container to hold our fragment’s
View. Here, android.R.id.content identifies the container into which the
results of setContentView() would go — it is a container supplied by
Activity itself and serves as the top-most container for our content.
Just calling add() is insufficient. We then need to call commit() to make
the transaction actually happen.
You might be wondering why we are trying to find a fragment in our
FragmentManager before actually creating the fragment. We do that to help deal with
configuration changes, and we will be exploring that further
in an upcoming chapter.
Fragments and the Action Bar
Fragments can add items to the action bar by calling setHasOptionsMenu(true) from
onCreate() (or any other early lifecycle method). This indicates to the
activity that it needs to call onCreateOptionsMenu() and onOptionsItemSelected()
on the fragment.
The
Fragments/ActionBarNative
sample application demonstrates this. This has the same functionality as does the
ActionBar/ActionBarDemoNative sample from the chapter on the action bar,
just with the activity converted into a dynamic fragment.
In onCreate(), we call setHasOptionsMenu(true), to indicate that we are interested
in participating in the action bar:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);
 setHasOptionsMenu(true);
 }

(from Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragment.java)
(we will discuss that setRetainInstance(true) call in a later chapter)
That will trigger our fragment’s onCreateOptionsMenu() and onOptionsItemSelected()
methods to be called at the appropriate time:

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.actions, menu);

 super.onCreateOptionsMenu(menu, inflater);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch(item.getItemId()) {
 case R.id.add:
 addWord();

 return(true);

 case R.id.reset:
 initAdapter();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragment.java)
Here, we initialize our action bar from the R.menu.actions menu XML resource,
along with the logic to respond to the add and reset action bar items.
Our activity does not need to do anything special to allow the fragment to
contribute to the action bar — it just sets up the dynamic fragment:

package com.commonsware.android.abf;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class ActionBarFragmentActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new ActionBarFragment()).commit();
 }
 }
}

(from Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragmentActivity.java)
Tutorial #9 - Starting Our Fragments
Much of the content of a digital book to be viewed in EmPubLite will be in
the form of HTML and related assets (CSS, images, etc.). Hence, we will
eventually need to render our content in a WebView widget, for best results
with semi-arbitrary HTML content.
To do this, we will set up fragments for the bits of content:

	each chapter (or, in our case, HTML file containing chapters)

	other material, like our “help” and “about” pages

Right now, we will focus on just setting up some of the basic classes for
these fragments — we will load them up with content and display them over
the next few tutorials.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Create a SimpleContentFragment
Android has a WebViewFragment for the native API Level 11+ implementation of
fragments, designed to show some Web content in a WebView. In this step, we will
create a subclass of WebViewFragment that adds in a bit of EmPubLite-specific
business logic.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > “Java Class” from the context menu. That will
bring up a new-class dialog:

[image: Android Studio New Class Dialog]

Figure 238: Android Studio New Class Dialog
Fill in SimpleContentFragment for the name and android.app.Fragment
for the superclass. Then, click OK to create this class.
Then, replace the contents of the fragment class with the following code:

package com.commonsware.empublite;

import android.annotation.SuppressLint;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.webkit.WebViewFragment;

public class SimpleContentFragment extends WebViewFragment {
 private static final String KEY_FILE="file";

 static SimpleContentFragment newInstance(String file) {
 SimpleContentFragment f=new SimpleContentFragment();

 Bundle args=new Bundle();

 args.putString(KEY_FILE, file);
 f.setArguments(args);

 return(f);
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }

 @SuppressLint("SetJavaScriptEnabled")
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=
 super.onCreateView(inflater, container, savedInstanceState);

 getWebView().getSettings().setJavaScriptEnabled(true);
 getWebView().getSettings().setSupportZoom(true);
 getWebView().getSettings().setBuiltInZoomControls(true);
 getWebView().loadUrl(getPage());

 return(result);
 }

 private String getPage() {
 return(getArguments().getString(KEY_FILE));
 }
}

(from EmPubLite-AndroidStudio/T9-Fragments/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentFragment.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Step #2: Examining SimpleContentFragment
SimpleContentFragment is simple, with a total of four methods:

	
onCreate(), where we call setRetainInstance(true) — the utility of this
will be examined in greater detail in an upcoming chapter.

	
onCreateView(), where we chain to the superclass (to have it create the
WebView), then configure it to accept JavaScript and support zoom operations.
We then have it load some content, retrieved in the form of a URL from a
private getPage() method. Finally, we return what the superclass returned
from onCreateView() — effectively, we are simply splicing in our own
configuration logic.

	a newInstance() static
factory method. This method creates an instance of SimpleContentFragment,
takes a passed-in String (pointing to the file to load), puts it in a
Bundle identified as KEY_FILE, hands the Bundle to the fragment as its
arguments, and returns the newly-created SimpleContentFragment.

	
getPage(), where it returns a value out of the “arguments” Bundle
supplied to the
fragment — specifically the string identified as KEY_FILE.

This means that anyone wanting to use SimpleContentFragment should use the
factory method, to provide the path to the content to load. We will see why we
implemented SimpleContentFragment this way in the next chapter.
In Our Next Episode…
… we will set up horizontal swiping of book chapters in our tutorial project.
Swiping with ViewPager
Android, over the years, has put increasing emphasis on UI design and having
a fluid and consistent user experience (UX). While some mobile operating systems
take “the stick” approach to UX (forcing you to abide by certain patterns or
be forbidden to distribute your app), Android takes “the carrot” approach,
offering widgets and containers that embody particular patterns that they
espouse. The action bar, for example, grew out of this and is now the backbone
of many Android activities.
Another example is the ViewPager, which allows the user to swipe horizontally
to move between different portions of your content. However, ViewPager is
not distributed as part of the firmware, but rather via the Android Support
package. Hence, even though
ViewPager is a relatively new widget, you can use it on Android 1.6 and up.
This chapter will focus
on where you should apply a ViewPager and how to set one up.
Pieces of a Pager
AdapterView classes, like ListView, work with Adapter objects, like
ArrayAdapter. ViewPager, however, is not an AdapterView, despite adopting
many of the patterns from AdapterView. ViewPager, therefore, does not work
with an Adapter, but instead with a PagerAdapter, which has a slightly
different API.
Android ships two PagerAdapter implementations in the Android Support package:
FragmentPagerAdapter and FragmentStatePagerAdapter. The former is good for
small numbers of fragments, where holding them all in memory at once will work.
FragmentStatePagerAdapter is for cases where holding all possible fragments
to be viewed in the ViewPager would be too much, where Android will discard
fragments as needed and hold onto the (presumably smaller) states of those
fragments instead.
Paging Fragments
The simplest way to use a ViewPager is to have it page fragments in and out
of the screen based on user swipes.
To see this in action, this section will examine the
ViewPager/Fragments
sample project.
The project has a dependency on the Android Support package, in order to be
able to use ViewPager. In Android Studio, this is a implementation statement in the
dependencies closure of build.gradle:

dependencies {
 implementation "com.android.support:support-fragment:27.0.2"
 implementation "com.android.support:support-core-ui:27.0.2"

(from ViewPager/Fragments/app/build.gradle)
The Activity Layout
The layout used by the activity just contains the ViewPager. Note that since
ViewPager is not in the android.widget package, we need to fully-qualify
the class name in the element:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
</android.support.v4.view.ViewPager>

(from ViewPager/Fragments/app/src/main/res/layout/main.xml)
Note that ViewPager is not available for drag-and-drop in the IDE graphical
designers, probably because it comes from the Android Support package and therefore
is not available to all projects.
The Activity
As you see, the ViewPagerFragmentDemoActivity itself is blissfully small:

package com.commonsware.android.pager;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
import android.support.v4.view.ViewPager;

public class ViewPagerFragmentDemoActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ViewPager pager=findViewById(R.id.pager);

 pager.setAdapter(new SampleAdapter(getSupportFragmentManager()));
 }
}

(from ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/ViewPagerFragmentDemoActivity.java)
All we do is load the layout, retrieve the ViewPager via findViewById(),
and provide a SampleAdapter to the ViewPager via setAdapter().
The PagerAdapter
Our SampleAdapter inherits from FragmentPagerAdapter and implements two
required callback methods:

	
getCount(), to indicate how many pages will be in the ViewPager, and

	
getItem(), which returns a Fragment for a particular position within the
ViewPager (akin to getView() in a classic Adapter)

package com.commonsware.android.pager;

import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;

public class SampleAdapter extends FragmentPagerAdapter {
 public SampleAdapter(FragmentManager mgr) {
 super(mgr);
 }

 @Override
 public int getCount() {
 return(10);
 }

 @Override
 public Fragment getItem(int position) {
 return(EditorFragment.newInstance(position));
 }
}

(from ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/SampleAdapter.java)
Here, we say that there will be 10 pages total, each of which will be an
instance of an EditorFragment. In this case, rather than use the
constructor for EditorFragment, we are using a newInstance() factory method.
The rationale for that will be explained in the next section.
The Fragment
EditorFragment will host a full-screen EditText widget, for the user to
enter in a chunk of prose, as is defined in the res/layout/editor.xml resource:

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/editor"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:inputType="textMultiLine"
 android:gravity="left|top"
 />

(from ViewPager/Fragments/app/src/main/res/layout/editor.xml)
We want to pass the position number of the fragment within the ViewPager, simply
to customize the hint displayed in the EditText before the user types in anything.
With normal Java objects, you might pass this in via the constructor, but it is
not a good idea to implement a constructor on a Fragment. Instead, the recipe
is to create a static factory method (typically named newInstance()) that will
create the Fragment and provide the parameters to it by updating the fragment’s
“arguments” (a Bundle):

 static EditorFragment newInstance(int position) {
 EditorFragment frag=new EditorFragment();
 Bundle args=new Bundle();

 args.putInt(KEY_POSITION, position);
 frag.setArguments(args);

 return(frag);
 }

(from ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/EditorFragment.java)
You might be wondering why we are bothering with this Bundle, instead of just
using a regular data member. The arguments Bundle is part of our “saved instance
state”, for dealing with things like screen rotations — a concept we will get into
later in the book. For the moment, take it on faith that this is
a good idea.
In onCreateView() we inflate our R.layout.editor resource, get the EditText
from it, get our position from our arguments, format a hint containing the
position (using a string resource), and setting the hint on the EditText:

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.editor, container, false);
 EditText editor=result.findViewById(R.id.editor);
 int position=getArguments().getInt(KEY_POSITION, -1);

 editor.setHint(String.format(getString(R.string.hint), position + 1));

 return(result);
 }

(from ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/EditorFragment.java)
The Result
When initially launched, the application shows the first fragment:

[image: ViewPager on Android 4.3, Showing First Editor]

Figure 239: ViewPager on Android 4.3, Showing First Editor
However, you can horizontally swipe to get to the next fragment:

[image: A ViewPager in Use on Android 4.0.3]

Figure 240: A ViewPager in Use on Android 4.0.3
Swiping works in both directions, so long as there is another page in your
desired direction.
Paging Other Stuff
You do not have to use fragments inside a ViewPager. A regular PagerAdapter
actually hands View objects to the ViewPager. The supplied fragment-based
PagerAdapter implementations get the View from a fragment and use that, but
you are welcome to create your own PagerAdapter that avoids fragments.
Hence, if you want ViewPager to page things other than fragments,
the solution is to not
use FragmentPagerAdapter or FragmentStatePagerAdapter, but instead create your own
implementation of the PagerAdapter interface, one that avoids the use of fragments.
Indicators
By itself, there is no visual indicator of where the user is within the set of
pages contained in the ViewPager. In many instances, this will be perfectly
fine, as the pages themselves will contain cues as to position. However, even
in those cases, it may not be completely obvious to the user how many pages
there are, which directions for swiping are active, etc.
Hence, you may wish to attach some other widget to the ViewPager that can help
clue the user into where they are within “page space”.
PagerTitleStrip and PagerTabStrip
The primary built-in indicator options available to use are PagerTitleStrip and
PagerTabStrip.
As the name suggests, PagerTitleStrip is a strip that shows titles of your pages.
PagerTabStrip is much the same, but the titles are formatted somewhat like tabs,
and they are clickable (switching you to the clicked-upon page), whereas PagerTitleStrip
is non-interactive.
To use either of these, you first must add it to your layout, inside your
ViewPager, as shown in the res/layout/main.xml resource of the
ViewPager/Indicator
sample project, a clone of the ViewPager/Fragments project that adds a
PagerTabStrip to our UI:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v4.view.PagerTabStrip
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"/>

</android.support.v4.view.ViewPager>

(from ViewPager/Indicator/app/src/main/res/layout/main.xml)
Here, we set the android:layout_gravity of the PagerTabStrip to top,
so it appears above the pages. You could similarly set it to bottom to have
it appear below the pages.
Our SampleAdapter needs another method: getPageTitle(), which will return
the title to display in the PagerTabStrip for a given position:

package com.commonsware.android.pager2;

import android.app.Fragment;
import android.app.FragmentManager;
import android.content.Context;
import android.support.v13.app.FragmentPagerAdapter;

public class SampleAdapter extends FragmentPagerAdapter {
 Context ctxt=null;

 public SampleAdapter(Context ctxt, FragmentManager mgr) {
 super(mgr);
 this.ctxt=ctxt;
 }

 @Override
 public int getCount() {
 return(10);
 }

 @Override
 public Fragment getItem(int position) {
 return(EditorFragment.newInstance(position));
 }

 @Override
 public String getPageTitle(int position) {
 return(EditorFragment.getTitle(ctxt, position));
 }
}

(from ViewPager/Indicator/app/src/main/java/com/commonsware/android/pager2/SampleAdapter.java)
Here, we call a static getTitle() method on EditorFragment. That is a refactored
bit of code from our former onCreateView() method, where we create the string
for the hint — we will use the hint text as our page title:

package com.commonsware.android.pager2;

import android.app.Fragment;
import android.content.Context;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;

public class EditorFragment extends Fragment {
 private static final String KEY_POSITION="position";

 static EditorFragment newInstance(int position) {
 EditorFragment frag=new EditorFragment();
 Bundle args=new Bundle();

 args.putInt(KEY_POSITION, position);
 frag.setArguments(args);

 return(frag);
 }

 static String getTitle(Context ctxt, int position) {
 return(String.format(ctxt.getString(R.string.hint), position + 1));
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.editor, container, false);
 EditText editor=(EditText)result.findViewById(R.id.editor);
 int position=getArguments().getInt(KEY_POSITION, -1);

 editor.setHint(getTitle(getActivity(), position));

 return(result);
 }
}

(from ViewPager/Indicator/app/src/main/java/com/commonsware/android/pager2/EditorFragment.java)

[image: ViewPager and PagerTabStrip on Android 4.3, Showing Second Page]

Figure 241: ViewPager and PagerTabStrip on Android 4.3, Showing Second Page
Other Indicator Options
There are many other options for tab-style indicators with a ViewPager.
TabLayout is the only other one officially supported by Google. It
comes from the Design Support library,
which in turn requires appcompat-v7.
Most of the options are open source libraries.
The Android Arsenal’s roster of ViewPager add-ons
mostly consists of indicators, both those formatted like tabs and those
that use other approaches.
Revisiting the Containers Sampler
Earlier in the book, we looked at many different layout resources from
the
Containers/Sampler
sample project. These were to illustrate how different layout structures
work. The whole UI is wrapped up in a ViewPager with a PagerTabStrip.
However, we set up the FragmentPagerAdapter and the fragments
based on a roster of available sample layouts, driven by resources.
The Layout
The layout that is used for the ViewPager and PagerTabStrip is
largely the same as what we saw earlier in this chapter:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v4.view.PagerTabStrip
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"/>

</android.support.v4.view.ViewPager>

(from Containers/Sampler/app/src/main/res/layout/main.xml)
So, we have a ViewPager named pager, with a PagerTabStrip
anchored at the top via android:layout_gravity="top".
The Data
The data about what layouts to show as tabs is contained in a pair
of array resources. Array resources, as the name suggests, are resources
that hold onto a collection of items. The convention is that they go
in res/values/arrays.xml, though the actual filename is not required
to be arrays.xml.
The sample app has a res/values/arrays.xml file, containing two
array resources: a <string-array> named titles and a generic
<array> named layouts:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="titles">
 <item>No Container</item>
 <item>Bottom-then-Top: LinearLayout</item>
 <item>Bottom-then-Top: RelativeLayout</item>
 <item>Bottom-then-Top: ConstraintLayout</item>
 <item>Stacked Percent: LinearLayout</item>
 <item>Stacked Percent: ConstraintLayout</item>
 <item>Stacked Percent: ConstraintLayout Guideline</item>
 <item>URL Dialog: LinearLayout</item>
 <item>URL Dialog: RelativeLayout</item>
 <item>URL Dialog: TableLayout</item>
 <item>URL Dialog: ConstraintLayout</item>
 <item>Form: TableLayout</item>
 <item>Form: LinearLayout</item>
 <item>Form: ConstraintLayout</item>
 <item>Overlap: RelativeLayout</item>
 <item>Center: RelativeLayout</item>
 <item>Center: ConstraintLayout</item>
 <item>Bias: ConstraintLayout</item>
 <item>Bias: LinearLayout</item>
 <item>Bias: ConstraintLayout Peers</item>
 <item>Aspect: ConstraintLayout</item>
 <item>Center Align: LinearLayout</item>
 <item>Center Align: ConstraintLayout</item>
 <item>Chains: ConstraintLayout</item>
 <item>Circular Constraints</item>
 <item>ConstraintLayout Groups</item>
 <item>ConstraintLayout Child Sizes</item>
 <item>ConstraintLayout Size</item>
 </string-array>
 <array name="layouts">
 <item>@layout/no_container</item>
 <item>@layout/bottom_then_top_ll</item>
 <item>@layout/bottom_then_top_rl</item>
 <item>@layout/bottom_then_top_cl</item>
 <item>@layout/stacked_percent_ll</item>
 <item>@layout/stacked_percent_cl</item>
 <item>@layout/stacked_percent_cl_guideline</item>
 <item>@layout/url_dialog_ll</item>
 <item>@layout/url_dialog_rl</item>
 <item>@layout/url_dialog_tl</item>
 <item>@layout/url_dialog_cl</item>
 <item>@layout/form_tl</item>
 <item>@layout/form_ll</item>
 <item>@layout/form_cl</item>
 <item>@layout/overlap_rl</item>
 <item>@layout/center_rl</item>
 <item>@layout/center_cl</item>
 <item>@layout/bias_cl</item>
 <item>@layout/bias_ll</item>
 <item>@layout/bias_peers_cl</item>
 <item>@layout/aspect_cl</item>
 <item>@layout/center_align_ll</item>
 <item>@layout/center_align_cl</item>
 <item>@layout/chains_cl</item>
 <item>@layout/circle_cl</item>
 <item>@layout/group_cl</item>
 <item>@layout/childsize_cl</item>
 <item>@layout/size_cl</item>
 </array>
</resources>

(from Containers/Sampler/app/src/main/res/values/arrays.xml)
As the name suggests, a <string-array> holds strings. Here, it holds
literal strings. Alternatively, those could be references to string
resources, using the same @string/... naming convention that we have
seen elsewhere in the book.
The layouts array holds references to the corresponding layout resources,
using @layout/... syntax to identify those resources.
These two arrays are set up in the same order, so the first title
is used for the first layout, the second title is used for the second
layout, and so on.
The Fragment
The fragment for the pages in the ViewPager is a static nested class
within the MainActivity, named LayoutFragment. This is atypical;
usually a fragment will be in its own Java class. That is because usually
a fragment has a lot of code associated with it. In this case, LayoutFragment
is rather short:

 public static class LayoutFragment extends Fragment {
 private static final String ARG_LAYOUT="layout";

 static LayoutFragment newInstance(int layoutId) {
 LayoutFragment result=new LayoutFragment();
 Bundle args=new Bundle();

 args.putInt(ARG_LAYOUT, layoutId);
 result.setArguments(args);

 return(result);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 return(inflater.inflate(getArguments().getInt(ARG_LAYOUT),
 container, false));
 }

 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 View compassButton=view.findViewById(R.id.compassButton);

 if (compassButton!=null) {
 compassButton.setOnClickListener(v -> {
 View group=view.findViewById(R.id.directions);

 if (group.getVisibility()==View.VISIBLE) {
 group.setVisibility(View.GONE);
 }
 else {
 group.setVisibility(View.VISIBLE);
 }
 });
 }
 }
 }

(from Containers/Sampler/app/src/main/java/com/commonsware/android/containers/sampler/MainActivity.java)
When we create an instance of LayoutFragment through the newInstance()
factory method, we pass in a layout resource ID. Through the arguments
Bundle, that becomes available to our onCreateView() method, which
simply inflates that layout and returns it.
The onViewCreated() method, with its code for working with a compassButton
widget, is for a specific example in the chapter on advanced ConstraintLayout use.
The Activity
The MainActivity that contains LayoutFragment has only one method
of its own: onCreate(), which inflates the res/layout/main.xml resource
shown above, finds the ViewPager, and sets its adapter to be
a SampleAdapter:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ViewPager pager=findViewById(R.id.pager);

 pager.setAdapter(new SampleAdapter(getSupportFragmentManager()));
 }

(from Containers/Sampler/app/src/main/java/com/commonsware/android/containers/sampler/MainActivity.java)
In other words, this onCreate() is pretty much the same as the others
seen in this chapter. Where the fun lies is in this sample app’s edition
of SampleAdapter.
The PagerAdapter
SampleAdapter uses the contents of those two array resources to determine
how many pages there are, what to show in the tabs, and what layout resource
ID to pass to the LayoutFragment:

 private class SampleAdapter extends FragmentPagerAdapter {
 private int[] layouts;
 private String[] titles;

 SampleAdapter(FragmentManager mgr) {
 super(mgr);
 layouts=getLayoutsArray(R.array.layouts);
 titles=getResources().getStringArray(R.array.titles);
 }

 @Override
 public int getCount() {
 return(titles.length);
 }

 @Override
 public Fragment getItem(int position) {
 return(LayoutFragment.newInstance(layouts[position]));
 }

 @Override
 public CharSequence getPageTitle(int position) {
 return(titles[position]);
 }

 int[] getLayoutsArray(int arrayResourceId) {
 TypedArray typedArray=
 getResources().obtainTypedArray(arrayResourceId);
 int[] result=new int[typedArray.length()];

 for (int i=0;i<typedArray.length();i++) {
 result[i]=typedArray.getResourceId(i, -1);
 }

 return(result);
 }
 }

(from Containers/Sampler/app/src/main/java/com/commonsware/android/containers/sampler/MainActivity.java)
SampleAdapter holds onto a String array of the titles. This is
populated by getResources().getStringArray() in the SampleAdapter
constructor, which reads in the titles <string-array> resource.
Those strings are then used for the getPageTitle() method, and the
length of the strings array is used for getCount().
Getting the equivalent array of the int values for the layout resource
IDs is more cumbersome. We could try calling getIntArray() on
the Resources object returned by getResources(). However, that only
works for <int-array> resources. We cannot use one of those in
res/values/arrays.xml because Android considers @layout/... to be
a resource ID, not just a simple integer.
To work with a generic <array> resource, we need to call
obtainTypedArray() on the Resources object, which we do in the
getLayoutsArray() helper method. This returns a TypedArray,
which effectively is an array of arbitrary resource types. We know
that our array should be all layout resource IDs, so we allocate
an int array to be our result (based upon the length() of
the TypedArray), then iterate over all of the entries and
retrieve the resource ID for that array position (using getResourceId()).
In the end, result has an array of resource IDs, and those
get used by getItem() to supply LayoutFragment with the appropriate
layout resource ID for this page’s position.
Visit the Trails!
There is a chapter on advanced ViewPager techniques that may interest
you!
Tutorial #10 - Rigging Up a ViewPager
A ViewPager is a fairly slick way to present a digital book. You can have
individual portions of the book be accessed by horizontal swiping, with the prose within a
portion accessed by scrolling vertically. While not offering “page-at-a-time”
models used by some book reader software, it is much simpler to set up.
So, that’s the approach we will use with EmPubLite. Which means, among other
things, that we need to add a ViewPager to the app.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Add a ViewPager to the Layout
Right now, the main layout used by EmPubLiteActivity just has a TextView. We need
to change that to have our ViewPager.
Since ViewPager is not available for drag-and-drop through the IDE
graphical layout editors, even IDE users are going to have to dive into the layout XML this time.
Open up res/layout/main.xml and switch to the Text sub-tab to see the raw XML.
Replace its contents with:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <io.karim.MaterialTabs
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="48dp"
 app:mtIndicatorColor="@color/colorAccent"
 app:mtSameWeightTabs="true"/>

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </android.support.v4.view.ViewPager>
</LinearLayout>

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/res/layout/main.xml)
This adds our ViewPager, underneath a MaterialTabs, inside a vertical
LinearLayout. MaterialTabs is an implementation of tabs for a
ViewPager.
Step #2: Creating a ContentsAdapter
A ViewPager needs a PagerAdapter to populate its content, much like a
ListView needs a ListAdapter. We cannot completely construct a PagerAdapter
yet, as we still need to learn how to load up our book content from files.
But, we can get part-way towards having a useful PagerAdapter now.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in ContentsAdapter
as the name and click OK to create the empty class.
Then, replace the generated ContentsAdapter.java file
with the following content:

package com.commonsware.empublite;

import android.app.Activity;
import android.app.Fragment;
import android.support.v13.app.FragmentStatePagerAdapter;

public class ContentsAdapter extends FragmentStatePagerAdapter {
 public ContentsAdapter(Activity ctxt) {
 super(ctxt.getFragmentManager());
 }

 @Override
 public Fragment getItem(int arg0) {
// TODO Auto-generated method stub
 return null;
 }

 @Override
 public int getCount() {
// TODO Auto-generated method stub
 return 0;
 }
}

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Step #3: Setting Up the ViewPager
Now, we need to add some code to retrieve the ViewPager, populate it
with the ContentsAdapter, and do something useful with those tabs.
First, add two fields to EmPubLiteActivity:

 private ViewPager pager;
 private ContentsAdapter adapter;

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
This will require adding an import for android.support.v4.view.ViewPager.
Then, add a few more lines to the bottom of onCreate() of EmPubLiteActivity:

 pager=(ViewPager)findViewById(R.id.pager);
 adapter=new ContentsAdapter(this);
 pager.setAdapter(adapter);

 MaterialTabs tabs=(MaterialTabs)findViewById(R.id.tabs);
 tabs.setViewPager(pager);

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
This will require an import statement for io.karim.MaterialTabs.
What we are doing is:

	Retrieving our ViewPager, holding onto it in its field,

	Creating an instance of the do-nothing ContentsAdapter,

	Associating the ContentsAdapter with the ViewPager,

	Retrieving the MaterialTabs, and

	Attaching the tabs to the ViewPager

At this point, your EmPubLiteActivity should look something like:

package com.commonsware.empublite;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.support.v4.view.ViewPager;
import android.view.Menu;
import android.view.MenuItem;
import io.karim.MaterialTabs;

public class EmPubLiteActivity extends Activity {
 private ViewPager pager;
 private ContentsAdapter adapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 pager=(ViewPager)findViewById(R.id.pager);
 adapter=new ContentsAdapter(this);
 pager.setAdapter(adapter);

 MaterialTabs tabs=(MaterialTabs)findViewById(R.id.tabs);
 tabs.setViewPager(pager);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.options, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.about:
 Intent i=new Intent(this, SimpleContentActivity.class);
 startActivity(i);

 return(true);

 case R.id.help:
 i=new Intent(this, SimpleContentActivity.class);
 startActivity(i);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }
}

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
The net effect, if you run this modified version of the app, is that
we have a big blank area, taken up by our empty ViewPager:

[image: EmPubLite, With Empty ViewPager]

Figure 242: EmPubLite, With Empty ViewPager
The ViewPager is empty simply because our ContentsAdapter returned 0
from getCount(), indicating that there are no pages to be displayed.
In Our Next Episode…
… we will finish our “help” and “about” screens in our tutorial project.
Resource Sets and Configurations
Devices sometimes change while users are using them, in ways that our application
will care about:

	The user might rotate the screen from portrait to landscape, or vice versa

	The user might put the device in a car or desk dock, or remove it from such
a dock

	The user might put the device in a “netbook dock” that adds a full QWERTY
keyboard, or remove it from such a dock

	The user might switch to a different language via the Settings application,
returning to our running application afterwards

	And so on

In all of these cases, it is likely that we will want to change what resources
we use. For example, our layout for a portrait screen may be too tall to use in
landscape mode, so we would want to substitute in some other layout.
This chapter will explore how to provide alternative resources for these different
scenarios — called “configuration changes” — and will explain what happens
to our activities when the user changes the configuration while we are in the
foreground.
What’s a Configuration? And How Do They Change?
Different pieces of Android hardware can have different capabilities, such
as:

	Different screen sizes

	Different screen densities (dots per inch)

	Different number and capabilities of cameras

	Different mix of radios (GSM? CDMA? GPS? Bluetooth? WiFi? NFC? something else?)

	And so on

Some of these, in the eyes of the core Android team, might drive the selection
of resources, like layouts or drawables. Different screen sizes might drive
the choice of layout. Different screen densities might drive the choice of
drawable (using a higher-resolution image on a higher-density device). These
are considered part of the device’s “configuration”.
Other differences — ones that do not drive the selection of resources — are
not part of the device’s configuration but merely are “features” that some
devices have and other devices do not. For example, cameras and Bluetooth and
WiFi are features.
Some parts of a configuration will only vary based on different devices. A screen
will not change density on the fly, for example. But some parts of a configuration
can be changed during operation of the device, such as orientation (portrait vs.
landscape) or language. When a configuration switches to something else, that
is a “configuration change”, and Android provides special support for such
events to help developers adjust their applications to match the new configuration.
Configurations and Resource Sets
One set of resources may not fit all situations where your application may be
used. One obvious area comes with string resources and dealing with
internationalization (I18N) and localization (L10N). Putting strings all in one
language works fine — probably at least for the developer — but only
covers one language.
That is not the only scenario where resources might need to differ, though.
Here are others:

	
Screen orientation: is the screen in a portrait orientation? Landscape?

	
Screen size: is this something sized like a phone? A tablet? A television?

	
Screen density: how many dots per inch does the screen have? Will we need
a higher-resolution edition of our icon so it does not appear too small?

	
Keyboard: what keyboard does the user have (QWERTY, numeric, neither),
either now or as an option?

	
Other input: does the device have some other form of input, like a
directional pad or click-wheel?

The way Android currently handles this is by having multiple resource
directories, with the criteria for each embedded in their names.
Suppose, for example, you want to support strings in both English and Spanish.
Normally, for a single-language setup, you would put your strings in a file
named res/values/strings.xml. To support both English and Spanish, you could
create two folders, res/values-en/ and res/values-es/, where the value
after the hyphen is the ISO 639-1
two-letter code for the language you want. Your English-language strings would
go in res/values-en/strings.xml and the Spanish ones in
res/values-es/strings.xml. Android will choose the proper file based on the
user’s device settings. Note that Android 5.0 added support for
BCP 47 three-letter language and locale values.
However, the better approach is for you to consider some language to be your
default, and put those strings in res/values/strings.xml. Then, create other
resource directories for your translations (e.g., res/values-es/strings.xml
for Spanish). Android will try to match a specific language set of resources;
failing that, it will fall back to the default of res/values/strings.xml. This
way, if your app winds up on a device with a language that you do not expect,
you at least serve up strings in your chosen default language. Otherwise, if
there is no such default, you will wind up with a ResourceNotFoundException,
and your application will crash.
This, therefore, is the bedrock resource set strategy: have a complete set of
resources in the default directory (e.g., res/layout/), and override those
resources in other resource sets tied to specific configurations as needed
(e.g., res/layout-land/).
Note that Android Studio has a
translations editor to help you manage
your string resources for your default language and whatever
translations you are going to include in your app.
Screen Size and Orientation
Perhaps the most important resource set qualifiers that we have not yet seen
are the ones related to screen size and orientation. Here, “orientation”
refers to how the device is being held: portrait or landscape.
Orientation is fairly easy, as you can just use -port or -land as resource
set qualifiers to restrict resources in a directory to a specific orientation.
The convention is to put landscape resources in a -land directory (e.g.,
res/layout-land/) and to put portrait resource in the default directory (e.g.,
res/layout/). However, this is merely a convention, and you are welcome to
use -port if you prefer.
Screen size is a bit more complicated, simply because the available approaches
have changed over the years.
The Original: Android-Defined Buckets
Way back in the beginning, with Android 1.0, all screen sizes were created
equal… mostly because there was only one screen size, and that mostly
because there was only one device.
Android 1.5, however, introduced three screen sizes and associated resource
set qualifiers, with a fourth (-xlarge) added later:

	
-small for screens at or under 3” in diagonal size

	
-normal for screens between 3” and 5” in diagonal size

	
-large for screens between 5” and 10” in diagonal size

	
-xlarge for screens at or over 10” in diagonal size

As we will see, these resource set qualifiers establish lower bounds for when
a directory’s worth of resources will be used. So a res/layout-normal/ directory
will not be used for -small screens but would be used for -normal, -large,
and -xlarge screens.
The Modern: Developer-Defined Buckets
The problem with the classic size buckets is that they were fairly inflexible.
What if you think that so-called “phablets”, like the Samsung Galaxy Note
series, should have layouts more like phones, while larger tablets, such as the
8.9” Kindle Fire HD, should have layouts more like 10” tablets?
That was not possible given the fixed buckets.
Android 3.2 gave us more control. We can have our own buckets for screen size,
using the somewhat-confusing -swNNNdp resource set qualifier. Here, the NNN
is replaced by you with a value, measured in dp, for the smallest width
of the screen. “Smallest width” basically means the width of the screen when
the device is held in portrait mode. Hence, rather than measuring based on
diagonal screen size, as with the classic buckets, your custom buckets are based
on the linear screen size of the shortest screen side.
For example, suppose that you wish to consider a dividing line between resources
to be at the 7” point — 7” and smaller devices would get one set of layouts,
while larger devices would get a different set of layouts.
7” tablets
usually have a smallest width of around 3.5” to 3.75”, given common
aspect ratios. Since 1 dp
is 1/160th of an inch, those smallest widths equate to 560-600 dp. Hence,
you might set up a -sw600dp resource set for your larger layouts, and put the
smaller layouts in a default resource set.
Mashups: Width and Height Buckets
Using -swNNNdp does not address orientation, as the smallest width is the
same regardless of whether the device is held in portrait or landscape. Hence,
you would need to add -swNNNdp-land as a resource set for landscape resources
for your chosen dividing line.
An alternative is to use -wNNNdp or -hNNNdp. These resource set qualifiers
work much like -swNNNdp, particularly in terms of what NNN means. However,
whereas -swNNNdp refers to the smallest width, -wNNNdp refers the current
width, and -hNNNdp refers to the current height. Hence, these change with
orientation changes.
About That API Level
-swNNNdp, -wNNNdp, and -hNNNdp were added in API Level 13. Hence, older
devices will ignore any resource sets with those qualifiers.
In principle, this might seem like a big problem, for those developers still
supporting older devices.
In practice, it is less of an issue than you might expect, simply because
the vast majority of those older devices were phones, not tablets. The only
Android 2.x tablets that sold in any significant quantity were three 7”
models:

	the original Kindle Fire

	the original Barnes & Noble NOOK series

	the original Samsung Galaxy Tab

Of those, only the Galaxy Tab had the then-Android Market (now the Play Store).
Hence, if you are only distributing via the Play Store, you might be in position
to simply ignore pre-API Level 13 tablets. Use -swNNNdp to create your dividing
line for larger devices, and the Galaxy Tab will simply use the layouts for
your smaller devices.
If this concerns you, or you are also supporting the Kindle Fire and early
NOOKs, you can use layout aliases to minimize code duplication. For
example, suppose that you have a res/layout/main.xml that you wanted to
have different versions for phones and tablets, and you want to use -swNNNdp
for your dividing line as to where the tablet layouts get used, but you also
want to have the older tablets, like the Galaxy Tab, use the following
recipe:

	Put your tablet-sized layouts in res/layout/, but with different filenames
(e.g., res/layout/main_to_be_used_for_tablets.xml)

	In res/values-swNNNdp/layouts.xml, for your chosen value of NNN, put
aliases (via <item> elements) for the original names (via the name attribute)
pointing to the resources you want to use for -swNNNdp devices:

<resources>
 <item name="main" type="layout">@layout/main_to_be_used_for_tablets</item>
</resources>

	In res/values-large/layouts.xml, put those same aliases

Now, both older and newer devices, when referencing the same resource name,
will get routed to the right layouts for their screen size.
Coping with Complexity
Where things start to get complicated is when you need to use multiple
disparate criteria for your resources.
For example, suppose that you have drawable resources that are locale-dependent,
such as a stop sign. You might want to have resource sets of drawables tied
to language, so you can substitute in different images for different locales.
However, you might also want to have those images vary by density, using
higher-resolution images on higher-density devices, so the images all come out
around the same physical size.
To do that, you would wind up with directories with multiple resource set
qualifiers, such as:

	res/drawable-ldpi/

	res/drawable-mdpi/

	res/drawable-hdpi/

	res/drawable-xhdpi/

	res/drawable-en-rUK-ldpi/

	res/drawable-en-rUK-mdpi/

	res/drawable-en-rUK-hdpi/

	res/drawable-en-rUK-xhdpi/

	And so on

(with the default language being, say, US English, using a US stop sign)
Once you get into these sorts of situations, though, a few rules come
into play, such as:

	The configuration options (e.g., -en) have a particular order of
precedence, and they must appear in the directory name in that order. The
Android documentation
outlines the specific order in which these
options can appear. For the purposes of this example, screen size is more
important than screen orientation, which is more important than screen density,
which is more important than whether or not the device has a keyboard.

	There can only be one value of each configuration option category per
directory.

	Options are case sensitive

For example, you might want to have different layouts based upon screen size
and orientation. Since screen size is more important than orientation in the
resource system, the screen size would appear in the directory name ahead
of the orientation, such as:

	res/layout-sw600dp-land/

	res/layout-sw600dp/

	res/layout-land/

	res/layout/

Choosing The Right Resource
Given that you can have N different definitions of a resource, how does Android
choose the one to use?
First, Android tosses out ones that are specifically invalid. So, for example,
if the language of the device is -ru, Android will ignore resource sets that
specify other languages (e.g., -zh). The exceptions to this are density qualifiers
and screen size qualifiers — we will get to those exceptions later.
Then, Android chooses the resource set that has the desired resource and has
the most important distinct qualifier. Here, by “most important”, we
mean the one that appears left-most in the directory name, based upon the
directory naming rules discussed above.
And, by “distinct”, we mean where no other resource set has that qualifier.
If there is no specific resource set that matches, Android chooses the
default set — the one with no suffixes on the directory name (e.g., res/layout/).
With those rules in mind, let’s look at some scenarios, to cover the base case plus
the aforementioned exceptions.
Scenario #1: Something Simple
Let’s suppose that we have a main.xml file in:

	res/layout-land/

	res/layout/

When we call setContentView(R.layout.main), Android will choose the main.xml
in res/layout-land/ if the device is in landscape mode. That particular resource
set is valid in that case, and it has the most important distinct qualifier
(-land). If the device is in portrait mode, though, the res/layout-land/
resource set does not qualify, and so it is tossed out. That leaves us with
res/layout/, so Android uses that main.xml version.
Scenario #2: Disparate Resource Set Categories
It is possible, though bizarre, for you to have a project with main.xml in:

	res/layout-en/

	res/layout-land/

	res/layout/

In this case, if the device’s locale is set to be English, Android will choose
res/layout-en/, regardless of the orientation of the device. That is because
-en is a more important resource set qualifier — “Language and region”
appears higher in the “Table 2. Configuration qualifier names” from the
Android documentation than does “Screen orientation” (for -land). If the
device is not set for English, though, Android will toss out that resource
set, at which point the decision-making process is the same as in Scenario #1 above.
Scenario #3: Multiple Qualifiers
Now let’s envision a project with main.xml in:

	res/layout-en/

	res/layout-land-v11/

	res/layout/

You might think that res/layout-land-v11/ would be the choice, as it is
more specific, matching on two resource set qualifiers versus the one
or none from the other resource sets.
(in fact, the author of this book thought this was the choice for many
years)
In this case, though, language is more important than either screen orientation
or Android API level, so the decision-making process is similar to
Scenario #2 above: Android chooses res/layout-en/ for English-language
devices, res/layout-land-v11/ for landscape API Level 11+ devices, or
res/layout/ for everything else.
Scenario #4: Multiple Qualifiers, Revisited
Let’s change the resource mix, so now we have a project with main.xml in:

	res/layout-land-night/

	res/layout-land-v11/

	res/layout/

Here, while -land is the most important resource set qualifier, it
is not distinct — we have more than one resource set with -land.
Hence, we need to check which is the next-most-important resource set qualifier.
In this case, that is -night, as night mode is a more important category
than is Android API level, and so Android will choose res/layout-land-night/
if the device is in night mode. Otherwise, it will choose res/layout-land-v11/
if the device is running API Level 11 or higher. If the device is not in night
mode and is not running API Level 11 or higher, Android will go with res/layout/.
Scenario #5: Screen Density
Now, let’s look at the first exception to the rules: screen density.
Android will always accept a resource set that contains a screen density,
even if it does not match the density of the device. If there is an exact
density match, of course, Android uses it. Otherwise, it will use what
it feels is the next-best match, based upon how far off it is from the
device’s actual density and whether the other density is higher or lower
than the device’s actual density.
The reason for this is that for drawable resources, Android will downsample
or upsample the image automatically, so the drawable will appear to be
the right size, even though you did not provide an image in that specific
density.
The catch is two-fold:

	Android applies this logic to all resources, not just drawables,
so even if there is no exact density match on, say, a layout, Android will
still choose a resource from another density bucket for the layout

	As a side-effect of the previous bullet, if you include a density
resource set qualifier, Android will ignore any lower-priority resource
set qualifiers (unless there are multiple directories with the same density
resource set qualifier, in which case the lower-priority qualifiers serve
as the “tiebreaker”)

So, now let’s pretend that our project has main.xml in:

	res/layout-mdpi/

	res/layout-nonav/

	res/layout/

Android will choose res/layout-mdpi/, even for -hdpi devices that
do not have a “non-touch navigation method”. While -mdpi does not
match -hdpi, Android will still choose -mdpi. If we were dealing with
drawables resources, Android would upsample the -mdpi image.
Scenario #6: Screen Sizes
If you have resource sets tied to screen size, Android will choose the
one that is closest to the actual screen size yet smaller than the
actual screen size. Resource sets for screen sizes larger than the
actual screen size are ignored.
This works for -swNNNdp, -wNNNdp, and -hNNNdp for all devices.
On -large or -xlarge devices, Android applies the same logic
for the classic screen size qualifiers (-small, -normal, -large,
-xlarge). However, Android does not apply this logic for -small
or -normal devices — a -normal device will not load a -small
resource.
Now let’s pretend that our project has main.xml in:

	res/layout-normal/

	res/layout-land/

	res/layout/

Android will choose res/layout-normal/ if the device is not -small.
Otherwise, Android will choose res/layout-land/ if the device is
landscape. If all else fails, Android will choose res/layout/.
Similarly, if we have:

	res/layout-w320dp/

	res/layout-land/

	res/layout/

Android will choose res/layout-w320dp/ for devices whose current
screen width is 320dp or higher.
Otherwise, Android will choose res/layout-land/ if the device is
landscape. If all else fails, Android will choose res/layout/.
API-Versioned Resources
As noted previously in this chapter, the -vNNN set of suffixes
indicate that the resources in that directory are for the stated
API level or higher. So, for example, res/values-v21/ indicates
that the resources in that directory should only be used on API
Level 21 (Android 5.0) and higher. Devices running older versions
of Android will ignore those resources.
This is a particularly important set of suffixes for dealing with
major Android version changes. The look and feel of a stock Android
app changed significantly at API Level 11 (Android 3.0) and API
Level 21 (Android 5.0). You may find that you want to have different
resources starting at those API level split points, so that your
UI looks appropriate on all versions of Android that you are
supporting.
Use Case: Themes by API Level
One big use case for this feature is having different themes by
API level.
Even if your minSdkVersion is 11 or higher, you may want to have
two different themes for your app:

	One, used from API Level 11-20, based on Theme.Holo

	Another, used from API Level 21 onwards, based on Theme.Material

Your rough alternative is to use the appcompat-v7 backport
of the action bar and bits of the Material Design aesthetic. For
highly stylized apps, or in cases where you are sure that you want
Material Design on pre-Android 5.0 devices, appcompat-v7 is
worth considering. But if you want to blend in better on each
major native UI variant, you will want to support Theme.Holo
on Android 3.x and 4.x and Theme.Material after that.
The hard work here is setting up your themes themselves, such as
what was outlined back in
the chapter on the action bar. Having
them both be available, depending upon device version, is merely
a matter of putting the resources into the proper directories.
For example, take a look at the
ActionBar/VersionedColor
sample project. This is a “mashup” of the HoloColor and
MaterialColor sample projects, where the determination of
which theme to use is based on API level.
In the res/values/ directory, we have a styles.xml file
that is the same as the one in the HoloColor example, just
with the filename standardized to styles.xml. It uses a custom
theme (Theme.Apptheme) generated by the Action Bar Style
Generator.
There is also a res/values-v21/ directory, indicating values
resources to be used on API Level 21 and higher. It has the
theme originally seen in the MaterialColor example, where
the style resource is renamed to Theme.Apptheme, to match
the one defined in res/values/.
Then, with <application> referencing Theme.Apptheme, we
get the right action bar on the right device.
Here, having the style resources names be the same is important,
as we are referencing the name in the <application> element in
the manifest. To be able to pull in the right one, we need them
both to have the same name. However, resources that are referred
to by only one of those themes, such as color and drawable resources,
could go in a versioned directory or not, as you see fit. They
have to go in versioned directories and have to have the same
names if you want multiple editions where the API level chooses which
edition to use.
For example, the Theme.Material-based theme defined in
res/values-v21/styles.xml references three color resources.
The file for those resources happens to also be in res/values-v21/
(colors.xml). However, since we are not looking to replace those
colors based on API level, the colors.xml file could be placed
in res/values/ and work just as well. And, if we did want to
have different colors by API level, we would need those colors
defined in all relevant resource sets, such as both res/values/
and res/values-v21/.
Default Change Behavior
When you call methods in the Android SDK that load a resource (e.g., the
aforementioned setContentView(R.layout.main)), Android will walk through
those resource sets, find the right resource for the given request, and use it.
But what happens if the configuration changes after we asked for the resource?
For example, what if the user was holding their device in portrait mode, then
rotates the screen to landscape? We would want a -land version of our layouts,
if such versions exist. And, since we already requested the resources, Android
has no good way of handing us revised resources on the fly… except by forcing
us to re-request those resources.
So, this is what Android does, by default, to our foreground activity, when the
configuration changes on the fly.
Destroy and Recreate the Activity
The biggest thing that Android does is destroy and recreate our activity. In
other words:

	Android calls onPause(), onStop(), and onDestroy() on our original instance
of the activity

	Android creates a brand new instance of the same activity class, using the
same Intent that was used to create the original instance

	Android calls onCreate(), onStart(), and onResume() of the new activity
instance

	The new activity appears on the screen

This may seem… invasive. You might not expect that Android would wipe out a
perfectly good activity, just because the user flicked her wrist and rotated the
screen of her phone. However, this is the only way Android has that guarantees
that we will re-request all our resources.
Rebuild the Fragments
If your activity is using fragments, the new instance of the activity will
contain the same fragments that the old instance of the activity does. This
includes both static and dynamic fragments.
By default, Android destroys and recreates the fragments, just
as it destroys and recreates the activities. However, as we will see, we do have
an option to tell Android to retain certain dynamic fragment instances — for
those, it will have the new instance use the same fragment instances as were used
by the old activity, instead of creating new instances from scratch.
This is why you will sometimes see code like this:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new OtherFragment()).commit();
 }
 }

The if() test in this activity’s onCreate() is to see if we already have a fragment in the android.R.id.content
container. We only add() a fragment to that container if there is not one already there.
The first time we start this activity, there will be no fragment in that container,
so we create one. If the user triggers a configuration change — such as rotating the
screen — our activity will be destroyed and recreated, as will our fragments. So,
when the recreated activity’s onCreate() runs, it will find that there already is
a fragment in the container. Since we do not want or need two copies of the OtherFragment
that container, we skip the FragmentTransaction if we already have a fragment there.
Recreate the Views
Regardless of whether or not Android recreates all of the fragments, it will
call onCreateView() on all of the fragments (plus call onDestroyView() on
the original set of fragments). In other words, Android recreates all of the
widgets and containers, to pour them into the new activity instance.
Retain Some Widget State
Android will hold onto the “instance state” of some of the widgets we have in
our activity and fragments. Mostly, it holds onto obviously user mutable state,
such as:

	What has been typed into an EditText

	Whether a CompoundButton, like a CheckBox or RadioButton, is checked or not

	Etc.

Android will collect this information from the widgets of the old activity
instance, carry that data forward to the new activity instance, and update the
new set of widgets to have that same state.
However:

	Widgets need to have an ID to have their state saved. If you are inflating
the widgets from a layout resource, and the widgets have android:id
values, you meet this requirement. If, however, you are creating the
widgets directly in Java code, those widgets do not have an ID.
You would need to call setId() to give them an ID or manage the
state yourself (using the onSaveInstanceState() technique described
later in this chapter).

	The ID values need to be unique. If there are several widgets with
the same ID, you will run into problems. Usually, the only cases
where we have several widgets with the same ID is when those widgets
come from an adapter, such as an ArrayAdapter. And, usually, those
widgets are read-only and do not have any state to save. However, if
you attempt putting user-modifiable widgets in the layouts inflated
by the adapter, or you otherwise have multiple user-modifiable widgets
with the same ID, you will need to manage the
state yourself (again, using the onSaveInstanceState() technique described
later in this chapter).

State Saving Scenarios
When the user rotates the screen, or puts the device in a car dock, or changes
the language of the device, your process is not terminated. Your foreground
activity will be re-created by default — as will your widgets and fragments — but
the process sticks around.
However, there are plenty of cases when your process will be terminated once
you move into the background. That might be done automatically by Android or
manually by the user.
Depending on how your process is terminated, there may be ways that the user
can return to your app and expect that they will return to it just how they left
it. For example, suppose the user is in your app, then presses HOME to move
your app to the background. Hours pass, and Android terminates your process to
free up memory for other apps. Sometime after that, the user brings up the recent-tasks
list and taps on your app in that list. From the user’s perspective, they should
be returning to your app in the same state that they left it when they pressed HOME.
However, if your process was terminated, by default you lost all that state.
Some of the techniques for dealing with a configuration change — those involving
the “saved instance state Bundle” — will also help you handle the recent-tasks-list
scenario. Some of the other techniques — such as retaining a fragment — only help
with handling configuration changes and will do nothing for you in terms of
the recent-tasks-list scenario.
The general rule of thumb, therefore, is to use the Bundle where you can, and use
other techniques (e.g., retained fragments) where the Bundle is inappropriate or
inadequate. We will see those techniques in the next section.
However, bear in mind that all of this state is designed for transient data, data that
the user will not mind if they never see again. For example, suppose the user is in
your app, then presses HOME to move your app to the background. Hours pass, and due
to the user having busily used their device, you “fall off” the recent-tasks list,
as that list will not extend indefinitely. In this case, if the user starts up your
app again (e.g., via the home screen launcher icon), you will not get any state
information back for use. Data that the user filled into the old app instance, where
that data must be remembered and reused in any future run of your app, will need
to be persisted yourself, in a database or other type of file.
With all of that in mind, let’s examine our options for dealing with the
transient state, with an emphasis on configuration changes.
Your Options for Configuration Changes
As noted, a configuration change is fairly invasive on your activity, replacing
it outright with all new content (albeit with perhaps some information from the
old activity’s widgets carried forward into the new activity’s widgets).
Hence, you have several possible approaches for handling configuration changes
in any given activity.
Do Nothing
The easiest thing to do, of course, is to do nothing at all. If all your state
is bound up in stuff Android handles automatically, you do not need to do anything
more than the defaults.
For example, the ViewPager/Fragments demo from
the preceding chapter works correctly “out of the box”. All of
our “state” is tied up in EditText widgets, which Android handles automatically.
So, we can type in stuff in a bunch of those widgets, rotate the screen (e.g.,
via Ctrl-Right in the emulator on a Windows or Linux PC), and our entered
text is retained.
Alas, there are plenty of cases where the built-in behavior is either incomplete
or simply incorrect, and we will need to do more work to make sure that our
configuration changes are handled properly.
Retain Your Fragments
One approach for handling these sorts of configuration changes
is to have Android retain a dynamic fragment.
Here, “retain” means that Android will keep the same fragment instance across
the configuration change, detaching it from the original hosting activity and
attaching it to a new hosting activity. Since it is the same fragment instance,
anything contained inside that instance is itself retained and, therefore,
is not lost when the activity is destroyed and recreated.
To see this in action, take a look at the
ConfigChange/Fragments
sample project.
The business logic for this demo (and for all the other demos in this chapter)
is that we want to allow the user to pick a contact out of the roster of
contacts found on their device or emulator. We will do that by having the user
press a “Pick” button, at which time we will display an activity that will
let the user pick the contact and return the result to us. Then, we will enable
a “View” button, and let the user view the details of the selected contact. The
key is that our selected contact needs to be retained across configuration
changes — otherwise, the user will rotate the screen, and the activity will
appear to forget about the chosen contact.
The activity itself just loads the dynamic fragment, following the recipe
seen previously in this book:

package com.commonsware.android.rotation.frag;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class RotationFragmentDemo extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content)==null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new RotationFragment()).commit();
 }
 }
}

(from ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragmentDemo.java)
The reason for checking for the fragment’s existence should now be clearer. Since
Android will automatically recreate (or retain) our fragments across configuration
changes, we do not want to create a second copy of the same fragment when we
already have an existing copy.
The fragment is going to use an R.layout.main layout resource, with two
implementations. One, in res/layout-land/, will be used in landscape:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:text="@string/pick"
 android:enabled="true"
 />
 <Button android:id="@+id/view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:text="@string/view"
 android:enabled="false"
 />
</LinearLayout>

(from ConfigChange/Fragments/app/src/main/res/layout-land/main.xml)
The portrait edition, in res/layout/, is identical save for the orientation
of the LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:text="@string/pick"
 android:enabled="true"
 />
 <Button android:id="@+id/view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:text="@string/view"
 android:enabled="false"
 />
</LinearLayout>

(from ConfigChange/Fragments/app/src/main/res/layout/main.xml)
Here is the complete implementation of RotationFragment:

package com.commonsware.android.rotation.frag;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class RotationFragment extends Fragment implements
 View.OnClickListener {
 static final int PICK_REQUEST=1337;
 Uri contact=null;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 setRetainInstance(true);

 View result=inflater.inflate(R.layout.main, parent, false);

 result.findViewById(R.id.pick).setOnClickListener(this);

 View v=result.findViewById(R.id.view);

 v.setOnClickListener(this);
 v.setEnabled(contact != null);

 return(result);
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == PICK_REQUEST) {
 if (resultCode == Activity.RESULT_OK) {
 contact=data.getData();
 getView().findViewById(R.id.view).setEnabled(true);
 }
 }
 }

 @Override
 public void onClick(View v) {
 if (v.getId() == R.id.pick) {
 pickContact(v);
 }
 else {
 viewContact(v);
 }
 }

 public void pickContact(View v) {
 Intent i=
 new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }

 public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }
}

(from ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java)
In onClick(), we hook up the “Pick” button to a pickContact() method.
There, we call startActivityForResult() with an ACTION_PICK Intent,
indicating that we want to pick something from the
ContactsContract.Contacts.CONTENT_URI collection of contacts. We will discuss
ContactsContract in greater detail later in this book.
For the moment, take
it on faith that Android has such an ACTION_PICK activity, one that will display
to the user the list of available contacts:

[image: ACTION_PICK of a Contact]

Figure 243: ACTION_PICK of a Contact
In addition to the ACTION_PICK Intent, we also supply a unique int
to startActivityForResult(). This int should be a 16-bit value
(0 to 65535) that is unique for this particular startActivityForResult()
call from this activity. This value does not have to be unique compared
to such calls from other activities of yours, let alone across the entire
device.
If the user picks a contact, control returns to our activity, with a call to
onActivityResult(). onActivityResult() is passed:

	the unique ID we supplied to startActivityForResult(), to help identify this
result from any others we might be receiving

	
RESULT_OK if the user did pick a contact, or RESULT_CANCELED if the user
abandoned the pick activity

	an Intent containing the result from the pick activity, which, in this case,
will contain a Uri representing the selected contact, retrieved via getData()

We store that Uri in a data member, plus we enable the “View” button, which,
when clicked, will bring up an ACTION_VIEW activity on the selected contact
via its Uri:

[image: ACTION_VIEW of a Contact]

Figure 244: ACTION_VIEW of a Contact
Up in onCreateView(), we called setRetainInstance(true). This tells Android
to keep this fragment instance across configuration changes. Hence, we can pick
a contact in portrait mode, then rotate the screen (e.g., ^[Ctrl>-<Right>^ in the
emulator on Windows or Linux), and view the contact in landscape mode. Even
though the activity and the buttons were replaced as a result of the rotation,
the fragment was not, and the fragment held onto the Uri of the selected
contact.
Note that setRetainInstance() only works with dynamic fragments, not static
fragments. Static fragments are always recreated when the activity is itself
destroyed and recreated.
The benefit of this technique, over others, is that you can retain any sort of
data you want: any data type, any size, etc. However, this approach does not
save state that will be given back to you after your process had been terminated,
such as when the user goes back to your app via the recent-tasks list.
Model Fragment
A variation on this theme is the “model fragment”. While fragments normally
are focused on supplying portions of the UI to a user, that is not really a
requirement. A model fragment is one that simply uses setRetainInstance(true)
to ensure that it sticks around as configurations change. This fragment then
holds onto any model data that its host activity needs, so as that activity
gets destroyed and recreated, the model data sticks around in the model fragment.
This is particularly useful for data that might not otherwise have a fragment
home. For example, imagine an activity whose UI consists entirely of a ViewPager,
like the tutorial app. Even though that ViewPager might hold fragments, there
will be many pages in most pagers. It may be simpler to add a separate, UI-less
model fragment and have it hold the activity’s data model for the ViewPager.
This allows the activity to still be destroyed and recreated, and even allows
the ViewPager to be destroyed and recreated, while still retaining the
already-loaded data.
Google recommends using a model fragment instead of using setRetainInstance(true)
with a regular fragment. The less the retained fragment holds, the less likely
it is that you will hold something that you should not be holding, such as a
string that needs to be reloaded from a string resource due to a possible locale
change. That being said, if you are careful and make sure that all your data
members are accounted for properly, using setRetainInstance(true) from any
fragment can be made safe.
Add to the Bundle
If you want state to be maintained not only for configuration changes, but
also for process terminations, you will want to
use onSaveInstanceState() and onRestoreInstanceState().
You can override onSaveInstanceState() in your activity. It is passed a
Bundle, into which you can store data that should be maintained across the
configuration change. The catch is that while Bundle looks a bit like it
is a HashMap, it actually cannot hold arbitrary data types,
which limits the sort of information you can retain via onSaveInstanceState().
onSaveInstanceState() is called around the time of onPause() and onStop().
The widget state maintained automatically by Android is via the built-in
implementation of onSaveInstanceState(). If you override it yourself, typically
you will want to chain to the superclass to get this inherited behavior, in
addition to putting things into the Bundle yourself.
That Bundle is passed back to you in two places:

	onCreate()

	onRestoreInstanceState()

Since onCreate() is called in many cases other than due to a configuration
change, frequently the passed-in Bundle is null. onRestoreInstanceState(),
on the other hand, is only called when there is a Bundle to be used.
To see how this works, take a look at the
ConfigChange/Bundle
sample project.
Here, RotationBundleDemo is an activity with all the same core business logic as was in
our fragment in the preceding demo. Since the activity will be destroyed and
recreated on a configuration change, we override onSaveInstanceState()
and onRestoreInstanceState() to retain our contact, if one was selected prior
to the configuration change:

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 if (contact != null) {
 outState.putParcelable("contact", contact);
 }
 }

 @Override
 protected void onRestoreInstanceState(Bundle state) {
 super.onRestoreInstanceState(state);

 contact=state.getParcelable("contact");
 viewButton.setEnabled(contact != null);
 }

(from ConfigChange/Bundle/app/src/main/java/com/commonsware/android/rotation/bundle/RotationBundleDemo.java)
Here, we use putParcelable() to put the Uri into the Bundle. Parcelable
is an interface that you can implement on a Java class to allow an instance of it
to be put into a Bundle. Uri happens to implement Parcelable. The full
details of what Parcelable means and how you can make things implement
Parcelable are provided later in this book.
The downside of this approach is that not everything can go into a Bundle. A
Bundle cannot hold arbitrary data types, so you cannot put a Socket into a
Bundle, for example. Also, this Bundle needs to be fairly small, as it is
passed across process boundaries, so you cannot put large objects (e.g., bitmaps)
into the Bundle. For those cases, you will have to settle for the retained-fragment
approach.
Fragments and a Bundle
Fragments also have an onSaveInstanceState() method that they can override.
It works just like the Activity equivalent — you can store data in the
supplied Bundle that will be supplied back to you later on. The biggest
difference is that there is no onRestoreInstanceState() method — instead,
you are handed the Bundle in other lifecycle methods:

	onCreate()

	onCreateView()

	onViewCreated()

	onActivityCreated()

We can see this in the
ConfigChange/FragmentBundle
sample project. This is effectively a mashup of the previous two samples:
using fragments, but also using onSaveInstanceState() instead of setRetainInstance(true).
Our RotationFragment now has an onSaveInstanceState() method that looks
a lot like the one from the ConfigChange/Bundle sample’s activity:

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 if (contact != null) {
 outState.putParcelable("contact", contact);
 }
 }

(from ConfigChange/FragmentBundle/app/src/main/java/com/commonsware/android/rotation/fragbundle/RotationFragment.java)
Our onCreateView() method examines the passed-in Bundle, and if it is not
null tries to obtain our contact from it:

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle state) {
 View result=inflater.inflate(R.layout.main, parent, false);

 result.findViewById(R.id.pick).setOnClickListener(this);

 View v=result.findViewById(R.id.view);

 v.setOnClickListener(this);

 if (state != null) {
 contact=(Uri)state.getParcelable("contact");
 }

 v.setEnabled(contact != null);

 return(result);
 }

(from ConfigChange/FragmentBundle/app/src/main/java/com/commonsware/android/rotation/fragbundle/RotationFragment.java)
This does not allow our fragment to hold onto arbitrary data, the way
setRetainInstance(true) does. However, as with onSaveInstanceState() at the
activity level, there are scenarios that onSaveInstanceState() handles that
retained fragments will not, such as terminating your process due to low memory,
yet the user later uses BACK to return to what should have been your activity
(and its fragments).
onRetainNonConfigurationInstance()
If you were to go back to early versions of this book, one of the options
discussed in this chapter was onRetainNonConfigurationInstance().
That approach was deprecated in API Level 11, replaced with retained fragments.
However, in an unprecedented move, Google un-deprecated
onRetainNonConfigurationInstance() in API Level 24, making it safe for
use again.
Despite the really long method name, its use is simple:

	Implement onRetainNonConfigurationInstance() on your Activity,
returning (nearly) any object you want.

	In onCreate() of your Activity, call getLastNonConfigurationInstance().
If it is not null, then it is the same object that you returned from
onRetainNonConfigurationInstance() milliseconds ago, as part of
a configuration change. You can cast the getLastNonConfigurationInstance()
return value to the appropriate type, save it in a field (or whatever),
and use it however you were using it in the previous activity instance.

If you need more than one object to be retained this way, simply have
onRetainNonConfigurationInstance() wrap up the objects in some data
structure of your own design.
The
ConfigChange/Retain
sample project is nearly identical to the ConfigChange/Bundle example
shown earlier. In this case, the saved instance state Bundle was
replaced with a retained object. Since onRetainNonConfigurationInstance()
can return an object of any type, we can just return the Uri representing
our contact directly:

 @Override
 public Object onRetainNonConfigurationInstance() {
 return(contact);
 }

(from ConfigChange/Retain/app/src/main/java/com/commonsware/android/rotation/retain/RotationRetainDemo.java)
In onCreate(), we set contact to be the result of getLastNonConfigurationInstance()
(casting it to a Uri) and update the viewButton to reflect whether
or not contact is null:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 viewButton=(Button)findViewById(R.id.view);
 contact=(Uri)getLastNonConfigurationInstance();
 viewButton.setEnabled(contact != null);
 }

(from ConfigChange/Retain/app/src/main/java/com/commonsware/android/rotation/retain/RotationRetainDemo.java)
When the user rotates the screen, the Uri is passed from the old
activity instance to the new one, and so we remember our previously-selected
contact.
Under the covers, retained fragments uses onRetainNonConfigurationInstance()
and getLastNonConfigurationInstance().
As a result, the limitations on onRetainNonConfigurationInstance()
are reminiscent to the limitations on retained fragments:

	Do not return any Views from onRetainNonConfigurationInstance(),
as they will be tied to the old activity instance, not the new one

	Do not return any objects that might need to be replaced due to the
configuration change (e.g., strings generated from string resources)

	Do not use this to replace the saved instance state Bundle — which
also handles other scenarios, such as process termination — but instead
use it for things that cannot go into that Bundle due to size or
data type

NOTE: If you try using onRetainNonConfigurationInstance(), and it
shows up with the deprecation strikethrough formatting in your IDE,
your compileSdkVersion is somewhere between 11 and 23. Raise it
to 24 to clear up the deprecation warning.
DIY
In a few cases, even a retained fragment is insufficient,
because transferring and re-applying the state would be too complex or too
slow. Or, in some cases, the hardware will get in the way, such as when trying
to use the Camera for taking pictures — a concept we will cover later in this
book.
If you are completely desperate, you can tell Android to not destroy and
recreate the activity on a configuration change… though this has its own
set of consequences. To do this:

	Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus allowing
Android to handle for you

	Implement onConfigurationChanged() in your Activity, which will be called
when one of the configuration changes you listed in android:configChanges
occurs

Now, for any configuration change you want, you can bypass the whole
activity-destruction process and simply get a callback letting you know of the
change.
For example, take a look at the
ConfigChange/DIY
sample project.
In AndroidManifest.xml, we add the android:configChanges attribute to the
<activity> element, indicating that we want to handle several configuration
changes ourselves:

 <activity
 android:name="RotationDIYDemo"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

(from ConfigChange/DIY/app/src/main/AndroidManifest.xml)
Many recipes for this will have you handle orientation and keyboardHidden.
However, nowadays, you need to also handle screenSize
(and, in theory, smallestScreenSize),
if you have your android:targetSdkVersion set to 13 or higher. Note that this
will require your build target (e.g., compileSdkVersion in Android Studio)
to be set to 13 or higher.
Hence, for those particular configuration changes, Android will not destroy
and recreate the activity, but instead will call onConfigurationChanged().
In the RotationDIYDemo implementation, this simply toggles the orientation
of the LinearLayout to match the orientation of the device:

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 LinearLayout container=findViewById(R.id.container);

 if (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {
 container.setOrientation(LinearLayout.HORIZONTAL);
 }
 else {
 container.setOrientation(LinearLayout.VERTICAL);
 }
 }

(from ConfigChange/DIY/app/src/main/java/com/commonsware/android/rotation/diy/RotationDIYDemo.java)
Since the activity is not destroyed during a configuration change, we do not
need to worry at all about the Uri of the selected contact — it is not
going anywhere.
The problem with this implementation is twofold:

	We are not handling all possible configuration changes. If the user, say,
puts the device into a car dock, Android will destroy and recreate our activity,
and we will lose our selected contact.

	We might forget some resource that needs to be changed due to a configuration
change. For example, if we start translating the strings used by the layouts,
and we include locale in android:configChanges, we not only need to update
the LinearLayout but also the captions of the Button widgets, since Android
will not do that for us automatically.

It is these two problems that are why Google does not recommend the use of
this technique unless absolutely necessary.
Also, bear in mind that this approach does not help at all for retaining state
when your process is terminated and the user returns to your app via the
recent-tasks list.
Blocking Rotations
No doubt that you have seen some Android applications that simply ignore any
attempt to rotate the screen. Many games work this way, operating purely in
landscape mode, regardless of how the device is positioned.
To do this, add android:screenOrientation="sensorLandscape", or possibly
android:screenOrientation="sensorPortrait", to your manifest. The “sensor” portions
of those names indicate that your app can work in regular or “reverse” versions
of the orientation (e.g., “regular” landscape is the device rotated 90 degrees
counter-clockwise from portrait, while “reverse” landscape is the device rotated
90 degrees clockwise from portrait). On API Level 18+, you
could use userLandscape or userPortrait instead, as those will honor the user’s
system-level choice of whether to lock screen rotation or not, defaulting to the
behavior of sensorLandscape or sensorPortrait if the user has not locked screen
rotation.
Also, if you use this to lock one or more of your activities to a particular
orientation, also use the corresponding <uses-feature> element in your
manifest:

	
[uses-feature android:name="android.hardware.screen.portrait"/] if you
have an activity locked to portrait

	
[uses-feature android:name="android.hardware.screen.landscape"/] if you
have an activity locked to landscape

This element would go as a child of the root <manifest> element but
outside of the <application> element.
The role of this <uses-feature> element is to advertise to the Play Store
and similar app distribution channels that your app requires certain
hardware features. Such channels might block distribution of your app
to platforms where your required orientation is not supported (e.g., portrait
activities on a TV-centric device like Android TV).
And Now, a Word From the Android Project View
Earlier in the book, when introducing Android Studio, we saw
the Android project view.
One of the reasons why the Android project view was created was to help
you manage resources, particularly across various resource sets.
For example, here is a screenshot of the same Android project, but this
time with the values resources expanded in the tree:

[image: Android Project View, Showing Dimension Resources]

Figure 245: Android Project View, Showing Dimension Resources
The tree makes it appear as though there is just a res/values/dimens.xml
file… but that the file somehow has children. One child has just the
bare dimens.xml filename, while the other one has a “(w820dp)” appended.
This reflects the fact that there are two versions of dimens.xml: one
in res/values/ and one in res/values-w820dp/:

[image: Classic Project View, Showing Dimension Resources]

Figure 246: Classic Project View, Showing Dimension Resources
In the Android project view, resources are organized by resource, not
by resource set. This can be useful for finding all files that need to be
adjusted when you go to adjust one version of the resource, for example.
Configuration Challenges
Some newer Android versions have added new and exciting challenges when dealing
with resources and configuration changes.
Multi-Locale Support
Android 7.0+ users can indicate that they support more than one language:

[image: Android 7.0 Language Settings]

Figure 247: Android 7.0 Language Settings
The user can choose the relative priorities of these languages, by
grabbing the handle on the right side of the row and dragging the language
higher or lower in the list.
This has impacts on resource resolution for any locale-dependent
resources, such as strings. Now Android will check multiple languages
for resource matches, before falling back to the default language
(e.g., whatever you have in res/values/strings.xml). Hence, it is
important that you ensure that you have a complete set of strings for
every language that you support, lest the user perhaps wind up with
a mixed set of languages in the UI.
You can find out what languages the user has requested via a LocaleList
class and its getDefault() static method. This, as the name suggests,
has a list of Locale objects representing the user’s preferred languages.
If you had previously been using Locale alone for this (e.g., for
specialized in-app language assistance beyond resources), you will want
to switch to LocaleList for Android 7.0 and beyond.
Screen Zoom/Dynamic Density
Developers have had the ability to change the effective density of a
device, by using adb commands. Android 7.0+ users
can do this directly from Settings.
In Settings > Display > Display Size, the user can choose five different
“display sizes”:

[image: Display Size, Showing Default Setting]

Figure 248: Display Size, Showing Default Setting

[image: Display Size, Showing Larger Setting]

Figure 249: Display Size, Showing “Larger” Setting
While this is described to the user as a “size” or “zoom” setting, in
reality it is affecting the apparent screen density, with Android scaling
things based on a combination of actual density and the user’s stated
“display size” preference.
Anything that is already density-independent should work just fine, though
you certainly will want to run some tests to ensure that your app
is working properly. In fact, this feature makes for a way to easily test
your app on a variety of densities, without having to have dedicated
hardware for those densities.
If your app is running at the time of the density change, what happens varies:

	Normally, if your targetSdkVersion is 23 or below, Android will terminate your
process. Since you will be in the background at the time (Settings is in
the foreground), this will be little different than if Android terminated
your process due to low memory conditions, and your app should already
handle this. The documentation suggests that if you have a foreground service,
that Android will not terminate the process but instead treat this as a configuration
change.

	If your targetSdkVersion is 24 or higher, this will be treated
as a configuration change for all processes.

For the configuration-change scenarios, if your app is caching information
that depends on screen density, be sure to flush those caches and get fresh
information based on the new screen density.
Material Design Basics
We have already been exposed to Theme.Material as part of this book, such as
with the action bar.
Android 5.0+, combined with Theme.Material, gives you a lot of capabilities
tied to Google’s Material Design aesthetic. In this chapter, we will cover some
basic Material Design capabilities that will affect your Theme.Material app
on Android 5.0+, starting with color.
Your App, in Technicolor!
Some developers want to change the colors used by their app to match some
specific color or color palette. In some cases, the colors in question are
tied to the app’s branding. In other cases, the developer simply wants something
different than the stock colors you get from something like Theme.Holo
or Theme.Holo.Light.
Affecting color changes in your Theme.Material-based Android app is
vastly simplified — both for the action bar and the widgets — courtesy
of Theme.Material’s tinting options.
Basic Tinting Options
In the chapter on the action bar, we saw how to set up
a custom theme based on Theme.Material that
had custom color tinting rules that affected the action bar:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="AppTheme" parent="android:Theme.Material">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>
</resources>

(from ActionBar/MaterialColor/app/src/main/res/values/styles.xml)
At that time, we focused on the effects that these tints had on the
action bar itself. However, with Theme.Material, not only do the tints
affect the action bar, but they affect the widgets themselves.
The BasicMaterial
directory contains clones of some of the
basic widget samples
outlined earlier in this book, where each includes the custom theme
demonstrated for the action bar.
In some cases, the custom tints are not normally visible, such as with
a button:

[image: Custom Material Theme for a Button]

Figure 250: Custom Material Theme for a Button
In other cases, the accent color will show up,
such as in a checked CheckBox:

[image: Custom Material Theme for a CheckBox]

Figure 251: Custom Material Theme for a CheckBox
Similarly, your accent color shows up in things like:

	the “underbar” and drag-cursor in an EditText:

[image: Custom Material Theme for an EditText]

Figure 252: Custom Material Theme for an EditText

	the checked state (and ripple effect when toggling the state) of a RadioButton:

[image: Custom Material Theme for a RadioButton]

Figure 253: Custom Material Theme for a RadioButton

	and the “checked” state of a Switch:

[image: Custom Material Theme for a Switch]

Figure 254: Custom Material Theme for a Switch
Official Google-Approved Colors
Of course, you are welcome to pick whatever colors you like for your theme.
Google has its opinion of what it thinks are good ideas.
As part of the Material Design documentation,
you will find
a “Color palette” page
that outlines possible colors to use.
A Redditor
has also published
an Android color resource file
that contains all of the
colors outlined in the Material Design guide.
There is also the material palette site,
which generates a color resource file based upon colors that you select from
a large grid of color swatches.
Dealing with Threads
Users like snappy applications. Users do not like applications that feel
sluggish.
The way to help your application feel snappy is to use the standard threading
capabilities built into Android. This chapter will go through the issues
involved with thread management in Android and will walk you through some of
the options for keeping the user interface crisp and responsive.
The Main Application Thread
When you call setText() on a TextView, you probably think that the screen
is updated with the text you supply, right then and there.
You would be mistaken.
Rather, everything that modifies the widget-based UI goes through a message
queue. Calls to setText() do not update the screen — they just place a
message on a queue telling the operating system to update the screen. The
operating system pops these messages off of this queue and does what the
messages require.
The queue is processed by one thread, variously called the “main application
thread” and the “UI thread”. So long as that thread can keep processing
messages, the screen will update, user input will be handled, and so on.
However, the main application thread is also used for nearly all callbacks into
your activity. Your onCreate(), onClick(), onListItemClick(), and similar
methods are all called on the main application thread. While your code is
executing in these methods, Android is not processing messages on the queue,
and so the screen does not update, user input is not handled, and so on.
This, of course, is bad. So bad, that if you take more than a few seconds to do
work on the main application thread, Android may display the dreaded
“Application Not Responding” dialog (ANR for short), and your activity may be
killed off.
Nowadays, though, the bigger concern is jank.
“Jank”, as used in Android, refers to sluggish UI updates, particularly when
something is animating. For example, you may have encountered some apps that
when you scroll a ListView in the app, the ListView does not scroll smoothly.
Rather, it scrolls jerkily, interleaving periods of rapid movement with periods
where the animation is frozen. Most of the time, this is caused by the
app’s author doing too much work on the main application thread.
Android 4.1 introduced “Project Butter”, which, among other things, established
a baseline for “doing too much work on the main application thread”. We will
“drop frames” if we take more than ~16ms per frame (60 frames per second), and
dropped frames are the source of jank. Since we may be called many times during
a frame, each of our callbacks needs to be very cheap, ideally below 1ms.
We will get much more into the issue of jank later in the book,
but it is important to understand now that any significant delay in the execution
of our code on the main application thread can have visible effects to the user.
Hence, you want to make sure that all of your work on the main application
thread happens quickly. This means that anything slow should be done in a
background thread, so as not to tie up the main application thread. This
includes things like:

	Internet access, such as sending data to a Web service or downloading an
image

	Significant file operations, since flash storage can be remarkably slow at
times

	Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from
Java, plus all of the wrappers and control structures you would expect, such as
the java.util.concurrent class package.
However, there is one big limitation: you cannot modify the UI from a
background thread. You can only modify the UI from the main application thread.
If you call setText() on a TextView from a background thread, your application
will crash, with an exception indicating that you are trying to modify the UI
from a “non-UI thread” (i.e., a thread other than the main application thread).
This is a pain.
Getting to the Background
Hence, you need to get long-running work moved into background threads, but
those threads need to do something to arrange to update the UI using the main
application thread.
There are various facilities in Android for helping with this.
Some are high-level frameworks for addressing this issue for major functional
areas. One example of this is the Loader framework for retrieving
information from databases, and we will examine this in a later chapter.
Sometimes, there are asynchronous options built into other Android operations.
For example, when we discuss SharedPreferences in a later chapter, we will
see that we can persist changes to those preferences synchronously or
asynchronously.
And, there are a handful of low-level solutions for solving this problem, ones
that you can apply for your own custom business logic.
Asyncing Feeling
One popular approach for handling this threading problem is to use AsyncTask.
With AsyncTask, Android will handle all of
the chores of coordinating separate work done on a background thread versus on the UI thread.
Moreover, Android itself allocates and removes that background thread. And, it
maintains a small work queue, further accentuating the “fire and forget” feel
to AsyncTask.
The Theory
Theodore Levitt is quoted as saying, with respect to marketing:
“People don’t want to buy a quarter-inch drill, they want a quarter-inch hole”.
Hardware stores cannot sell holes, so they sell the next-best thing:
devices (drills and drill bits) that make creating holes easy.
Similarly, many Android developers who have struggled with background thread
management do not want background threads — they want work to be
done off the UI thread, to avoid jank. And while Android
cannot magically cause work to not consume UI thread time, Android can offer
things that make such background operations easier and more transparent.
AsyncTask is one such example.
To use AsyncTask, you must:

	Create a subclass of AsyncTask

	Override one or more AsyncTask methods to accomplish the background work,
plus whatever work associated with the task that needs to be done on the UI
thread (e.g., update progress)

	When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

What you do not have to do is:

	Create your own background thread

	Terminate that background thread at an appropriate time

	Call all sorts of methods to arrange for bits of processing to be done on
the UI thread

AsyncTask, Generics, and Varargs
Creating a subclass of AsyncTask is not quite as easy as, say, implementing
the Runnable interface. AsyncTask uses generics, and so you need to specify
three data types:

	The type of information that is needed to process the task (e.g., URLs to
download)

	The type of information that is passed within the task to indicate progress

	The type of information that is passed when the task is completed to the
post-task code

What makes this all the more confusing is that the first two data types are
actually used as varargs, meaning that an array of these types is used within
your AsyncTask subclass.
This should become clearer as we work our way towards an example.
The Stages of AsyncTask
There are four methods you can override in AsyncTask to accomplish your ends.
The one you must override, for the task class to be useful, is
doInBackground(). This will be called by AsyncTask on a background thread.
It can run as long as it needs to in order to accomplish whatever work needs to
be done for this specific task. Note, though, that tasks are meant to be finite
– using AsyncTask for an infinite loop is not recommended.
The doInBackground() method will receive, as parameters, a varargs array of
the first of the three data types listed above — the data needed to
process the task. So, if your task’s mission is to download a collection of
URLs, doInBackground() will receive those URLs to process.
The doInBackground() method must return a value of the third data type listed
above — the result of the background work.
You may wish to override onPreExecute(). This method is called, from the UI
thread, before the background thread executes doInBackground(). Here, you
might initialize a ProgressBar or otherwise indicate that background work is
commencing.
Also, you may wish to override onPostExecute(). This method is called, from
the UI thread, after doInBackground() completes. It receives, as a parameter,
the value returned by doInBackground() (e.g., success or failure flag). Here,
you might dismiss the ProgressBar and make use of the work done in the
background, such as updating the contents of a list.
In addition, you may wish to override onProgressUpdate(). If
doInBackground() calls the task’s publishProgress() method, the object(s)
passed to that method are provided to onProgressUpdate(), but in the UI
thread. That way, onProgressUpdate() can alert the user as to the progress
that has been made on the background work. The onProgressUpdate() method will receive a varargs
of the second data type from the above list — the data published by
doInBackground() via publishProgress().
A Sample Task
As mentioned earlier, implementing an AsyncTask is not quite as easy as
implementing a Runnable. However, once you get past the generics and varargs,
it is not too bad.
To see an AsyncTask in action, this section will examine the
Threads/AsyncRV
sample project.
The Fragment and its AsyncTask
We have a Fragment, named AsyncDemoFragment:

package com.commonsware.android.async;

import android.os.AsyncTask;
import android.os.Bundle;
import android.os.SystemClock;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.v4.app.Fragment;
import android.support.v7.widget.DividerItemDecoration;
import android.support.v7.widget.LinearLayoutManager;
import android.support.v7.widget.RecyclerView;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.TextView;
import android.widget.Toast;
import java.util.ArrayList;

public class AsyncDemoFragment extends Fragment {
 private static final String[] items= { "lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante", "porttitor", "sodales",
 "pellentesque", "augue", "purus" };
 private ArrayList<String> model=new ArrayList<>();
 private RVArrayAdapter adapter;
 private AddStringTask task;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 adapter=new RVArrayAdapter(model, getLayoutInflater());
 task=new AddStringTask();
 task.execute();
 }

 @Nullable
 @Override
 public View onCreateView(@NonNull LayoutInflater inflater,
 @Nullable ViewGroup container,
 @Nullable Bundle savedInstanceState) {
 return inflater.inflate(R.layout.main, container, false);
 }

 @Override
 public void onViewCreated(View v, Bundle savedInstanceState) {
 super.onViewCreated(v, savedInstanceState);

 RecyclerView rv=v.findViewById(android.R.id.list);

 rv.setLayoutManager(new LinearLayoutManager(getActivity()));
 rv.addItemDecoration(new DividerItemDecoration(getActivity(),
 DividerItemDecoration.VERTICAL));
 rv.setAdapter(adapter);
 }

 @Override
 public void onDestroy() {
 if (task != null) {
 task.cancel(false);
 }

 super.onDestroy();
 }

 class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 if (isCancelled())
 break;

 publishProgress(item);
 SystemClock.sleep(400);
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(String... item) {
 if (!isCancelled()) {
 adapter.add(item[0]);
 }
 }

 @Override
 protected void onPostExecute(Void unused) {
 Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
 .show();

 task=null;
 }
 }

 private static class RVArrayAdapter extends RecyclerView.Adapter<RowHolder> {
 private final ArrayList<String> words;
 private final LayoutInflater inflater;

 private RVArrayAdapter(ArrayList<String> words,
 LayoutInflater inflater) {
 this.words=words;
 this.inflater=inflater;
 }

 @NonNull
 @Override
 public RowHolder onCreateViewHolder(@NonNull ViewGroup parent,
 int viewType) {
 View row=inflater.inflate(android.R.layout.simple_list_item_1, parent, false);

 return new RowHolder(row);
 }

 @Override
 public void onBindViewHolder(@NonNull RowHolder holder,
 int position) {
 holder.bind(words.get(position));
 }

 @Override
 public int getItemCount() {
 return words.size();
 }

 private void add(String word) {
 words.add(word);
 notifyItemInserted(words.size()-1);
 }
 }

 private static class RowHolder extends RecyclerView.ViewHolder {
 private final TextView title;

 RowHolder(View itemView) {
 super(itemView);
 title=itemView.findViewById(android.R.id.text1);
 }

 public void bind(String text) {
 title.setText(text);
 }
 }
}

(from Threads/AsyncRV/app/src/main/java/com/commonsware/android/async/AsyncDemoFragment.java)
This is another variation on the lorem ipsum list of words, used frequently
throughout this book. This time, rather than simply hand the list of words to
a RecyclerView.Adapter, we simulate having to work to create these words in the
background using AddStringTask, our AsyncTask implementation.
In onCreate(), we call setRetainInstance(true), so Android
will retain this fragment across configuration changes, such as a screen
rotation. Since our fragment
is being newly created, we initialize
our model to be an ArrayList of String values, plus kick off our AsyncTask
(the AddStringTask inner class, described below), saving the
AddStringTask in a task data member. Then, in onViewCreated(), we set up
the adapter and attach it to the RecyclerView.
In the declaration of AddStringTask, we use the generics to set up the
specific types of data we are going to leverage. Specifically:

	We do not need any configuration information in this case, so our first type
is Void

	We want to pass each string “generated” by our background task to
onProgressUpdate(), so we can add it to our list, so our second type is
String

	We do not have any results, strictly speaking (beyond the updates), so our
third type is Void

The doInBackground() method is invoked in a background thread. Hence, we can
take as long as we like. In a production application, we would be, perhaps,
iterating over a list of URLs and downloading each. Here, we iterate over our
static list of lorem ipsum words, call publishProgress() for each, and then
sleep 400 milliseconds to simulate real work being done. We also call
isCancelled() on each pass, to see if our task has been cancelled, skipping
the work if it has so we can clean up this background thread.
Since we elected to have no configuration information, we should not need
parameters to doInBackground(). However, the contract with AsyncTask says
we need to accept a varargs of the first data type, which is why our method
parameter is Void....
Since we elected to have no results, we should not need to return anything.
Again, though, the contract with AsyncTask says we have to return an object
of the third data type. Since that data type is Void, our returned object is
null.
The onProgressUpdate() method is called on the UI thread, and we want to do
something to let the user know we are progressing on loading up these strings.
In this case, we simply add the string to the RVArrayAdapter (our
RecyclerView.Adapter subclass), so it gets
appended to the end of the list. However, we only do this if we have not
already been canceled.
The onProgressUpdate() method receives a String... varargs because that is
the second data type in our class declaration. Since we are only passing one
string per call to publishProgress(), we only need to examine the first entry
in the varargs array.
The onPostExecute() method is called on the UI thread, and we want to do
something to indicate that the background work is complete. In a real system,
there may be some ProgressBar to dismiss or some animation to stop. Here, we
simply raise a Toast and set task to null. We do not need to worry
about calling isCancelled(), because onPostExecute() will not be invoked
if our task has been cancelled.
Since we elected to have no results, we should not need any parameters. The
contract with AsyncTask says we have to accept a single value of the third
data type. Since that data type is Void, our method parameter is Void unused.
To use AddStringTask, we simply create an instance and call execute() on
it. That starts the chain of events eventually leading to the background thread
doing its work.
If AddStringTask required configuration parameters, we would have not used
Void as our first data type, and the constructor would accept zero or more
parameters of the defined type. Those values would eventually be passed to
doInBackground().
Our fragment also has an onDestroy() method that calls cancel() on the
AsyncTask if it is still outstanding (task is not null). This work of
cancelling the task and checking to see if the task is cancelled exists for two
reasons:

	Efficiency, as we should skip any serious work that is not needed if our task itself
is not needed

	To avoid a crash if we attempt to raise a Toast on a destroyed activity, such as the
user launching the activity, then pressing BACK before we complete the
background work and display the Toast

The Activity and the Results
AsyncDemo is an Activity with the standard
recipe for kicking off an instance of a dynamic fragment:

package com.commonsware.android.async;

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;

public class AsyncDemo extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new AsyncDemoFragment()).commit();
 }
 }
}

(from Threads/AsyncRV/app/src/main/java/com/commonsware/android/async/AsyncDemo.java)
If you build, install, and run this project, you will see the list being
populated in “real time” over a few seconds, followed by a Toast indicating
completion.
Threads and Configuration Changes
One problem with the default destroy-and-create cycle that activities go
through on a configuration change comes from background threads. If the activity
has started some background work — through an AsyncTask, for example
– and then the activity is destroyed and re-created, somehow the
AsyncTask needs to know about this. Otherwise, the AsyncTask might well
send updates and final results to the old activity, with the new activity
none the wiser. In fact, the new activity might start up the background work
again, wasting resources.
That is why, in the sample above, we are retaining the fragment instance.
The fragment instance holds onto its data model (in this case, the ArrayList
of Latin words) and knows not to kick off a new AsyncTask just because
the configuration changed. Moreover, we retain that data model, so the
new ListView created due to the configuration change can work with a new
adapter backed by the old data model, so we do not lose our existing set
of Latin words.
We also have to be very careful not to try referring to the activity (via
getActivity() on the fragment) from our background thread (doInBackground()).
Because, suppose that during the middle of the doInBackground() processing, the
user rotates the screen. The activity we work with will change on the fly,
on the main application thread, independently of the work being done in
the background. The activity returned by getActivity() may not be in a
useful state for us while this configuration change is going on.
However, it is safe for us to use getActivity() from onPostExecute(), and
even from onProgressUpdate(). For those callbacks, either the configuration
change has not yet happened, or it has been completed — we will not be in the
middle of the change.
Where Not to Use AsyncTask
AsyncTask, particularly in conjunction with a dynamic fragment, is a wonderful
solution for most needs for a background thread.
The key word in that sentence is “most”.
AsyncTask manages a thread pool, from which it pulls the threads to be used
by task instances. Thread pools assume that they will get their threads back
after a reasonable period of time. Hence, AsyncTask is a poor choice when
you do not know how long you need the thread (e.g., thread listening on a socket
for a chat client, where you need the thread until the user exits the client).
About the AsyncTask Thread Pool
Moreover, the thread pool that AsyncTask manages has varied in size.
In Android 1.5, it was a single thread.
In Android 1.6, it was expanded to support many parallel threads, probably more
than you will ever need.
In Android 3.2, it has shrunk back to a single thread, if your
android:targetSdkVersion is set to 13 or higher. This was to address concerns
about:

	Forking too many threads and starving the CPU

	Developers thinking that there is an ordering dependency between forked
tasks, when with the parallel execution there is none

If you wish, starting with API Level 11, you can supply your own Executor
(from the java.util.concurrent package) that has whatever thread pool you
wish, so you can manage this more yourself. In addition to the serialized,
one-at-a-time Executor, there is a built-in Executor that implements the
old thread pool, that you can use rather than rolling your own.
If your minSdkVersion is 11 or higher, use
executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR) if you specifically want
to opt into a multi-thread thread pool. If your minSdkVersion is below
11, you will still want to do that… but only on API Level 11+ devices, falling
back to execute() on the older devices. This static utility method handles this
for you:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
static public <T> void executeAsyncTask(AsyncTask<T, ?, ?> task,
 T... params) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);
 }
 else {
 task.execute(params);
 }
}

To use this, call executeAsyncTask(), passing in your AsyncTask
instance and the parameters you would ordinarily have passed to execute().
An explanation of what we are doing here, in terms of the @TargetApi annotation
and such, will come later in the book.
Also note that the number of threads in the multiple-thread thread pool has
also changed over the years. Originally, that pool could climb to as
many as 128 threads, which was far too many. As of Android 4.4,
the thread pool will only grow to “the number of CPU cores * 2 + 1”,
so on a dual-core device, the thread pool will cap at 5 threads. Further
tasks will be queued, up to a maximum of 128 queued tasks.
Alternatives to AsyncTask
There are other ways of handling background threads without using AsyncTask:

	You can employ a Handler, which has a handleMessage() method that
will process Message objects, dispatched from a background thread, on the
main application thread

	You can supply a Runnable to be executed on the main application thread
to post() on any View, or to runOnUiThread() on Activity

	You can supply a Runnable, plus a delay period in milliseconds, to
postDelayed() on any View, to run the Runnable on the main application
thread after at least that number of millisecond has elapsed

Of these, the Runnable options are the easiest to use.
These can also be used to allow the main application thread to postpone
work, to be done later on the main application thread. For example, you
can use postDelayed() to set up a lightweight polling “loop” within
an activity, without needing the overhead of an extra thread, such as the
one created by Timer and TimerTask. To see how this works, let’s
take a peek at the
Threads/PostDelayed
sample project.
This project contains a single activity, named PostDelayedDemo:

package com.commonsware.android.post;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PostDelayedDemo extends Activity implements Runnable {
 private static final int PERIOD=5000;
 private View root=null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 root=findViewById(android.R.id.content);
 }

 @Override
 public void onStart() {
 super.onStart();

 run();
 }

 @Override
 public void onStop() {
 root.removeCallbacks(this);

 super.onStop();
 }

 @Override
 public void run() {
 Toast.makeText(PostDelayedDemo.this, "Who-hoo!", Toast.LENGTH_SHORT)
 .show();
 root.postDelayed(this, PERIOD);
 }
}

(from Threads/PostDelayed/app/src/main/java/com/commonsware/android/post/PostDelayedDemo.java)
We want to display a Toast every five seconds. To do this, in onCreate(), we get
our hands on the container for an activity’s UI, known as android.R.id.content, via
findViewById(). Then, in onStart(), we call a run() method on our activity,
which displays the Toast and calls postDelayed() to schedule itself (as an implementation
of Runnable) to be run again in PERIOD milliseconds. While our activity is in the
foreground, the Toast will appear every PERIOD milliseconds as a result. Once something
else comes to the foreground — such as by the user pressing BACK — our onStop()
method is called, where we call removeCallbacks() to “undo” the postDelayed() call.
And Now, The Caveats
Background threads, while eminently possible using AsyncTask and kin,
are not all happiness and warm puppies. Background threads not only add
complexity, but they have real-world costs in terms of available memory, CPU,
and battery life.
To that end, there is a wide range of scenarios you need to account for with
your background thread, including:

	The possibility that users will interact with your activity’s UI while the
background thread is chugging along. If the work that the background thread is
doing is altered or invalidated by the user input, you will need to communicate
this to the background thread. Android includes many classes in the
java.util.concurrent package that will help you communicate safely with your
background thread.

	The possibility that the process will be terminated while your work is still
going on. This is why in many cases, rather than use an AsyncTask or a bare
Thread, you will wind up using a Service, such as an IntentService. This
will be explored in greater detail later in this book.

	The possibility that your user will get irritated if you chew up a lot of
CPU time and battery life without giving any payback. Tactically, this means
using ProgressBar or other means of letting the user know that something is
happening. Strategically, this means you still need to be efficient at what you
do — background threads are no panacea for sluggish or pointless code.

	The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the Internet, the
device might lose connectivity. Alerting the user of the problem via a
Notification and shutting down the background thread may be your best option.

Event Buses
Event-driven programming has been around for nearly a quarter-century. Much of
Android’s UI model is event-driven, where we find out about these events via
callbacks (e.g., onCreate() for the “start an activity” event) and registered
listeners (e.g., OnClickListener for when the user taps on a widget).
However, originally, Android did not have a very fine-grained event or message bus implementation
that we as developers could use. The Intent system works like a message bus, but
it is aimed at inter-process communication (IPC) as much as in-process communication,
and that comes with some costs.
However, over time, particularly starting in 2012, event buses started to pop up,
and these are very useful for organizing communication within your Android
application and across threads. Used properly, an event bus can eliminate the need
for AsyncTask and the other solutions for communicating back to the main
application thread, while simultaneously helping you logically decouple independent
pieces of your code.
What Is an Event Bus?
Whether you consider it an “event bus” (or “message bus”), the “publisher/subscriber” (or “pub/sub”)
pattern, or a subset of the “observer” pattern, the programming model where components produce
events that others consume is reasonably common in modern software development.
An event bus is designed to decouple the sources of events from the consumers
of those events. Or, as one event bus author put it:

I want an easy, centralized way to notify code that’s interested in specific types of events when those events occur without any direct coupling between the code the publishes <sic> an event and the code that receives it.

With the traditional Java listener or observer pattern implementation, the
component producing an event needs direct access to consumers of that event.
Sometimes, that list of consumers is limited to a single consumer, as with
many event handlers associated with Android widgets (e.g., just one OnClickListener).
But this source-holds-the-sinks coding pattern limits flexibility, as it
requires explicit registration by consumers with producers of events, and
it may not be that easy for the consumer to reach the producer. Furthermore, such
direct connections are considered to be a relatively strong coupling between
those components, and often times our objective is to have looser coupling.
An event bus provides a standard communications channel (or “bus”) that
event producers and event consumers can hook into. Event producers merely need
to hand the event to the bus; the bus will handle directing those events
to relevant consumers. This reduces the coupling between the producers
and consumers, sometimes even reducing the amount of code needed to source
and sink these events.
OK, But Why Are We Bothering With This?
Later on, we are going to have components other than our activities. In particular,
we will have services, which are designed to run briefly in the
background to perform some operation. Just as communications between activities
tends to be loosely coupled, so too are communications between activities and
services. An event bus is a great way for the service to let other pieces of the
app know that certain work was done (e.g., “the download is complete, so update
the UI”).
In the short term, we will use an event bus to have a
model fragment let the app know that some data was
loaded. In the tutorials, “some data” will be the book contents; in the sample
app illustrated in this chapter, “some data” will be some Latin words.
Introducing greenrobot’s EventBus
The event bus implementation that we will be using in the tutorials is
greenrobot’s EventBus,
an open source implementation based on the Guava project’s event bus.
With greenrobot’s EventBus, it is fairly easy to send a message from one
part of your app to another disparate part of your app.
To illustrate its use, take a look at
the
EventBus/AsyncDemo3
sample project. This is a reworking of a previous example that used an AsyncTask
to pretend to download our list of Latin words, populating a ListView with those
words as they arrive. This sample replaces the AsyncTask with a model fragment
that will keep track of the words and a background thread that will “download” the
words. We will use events raised by the model fragment to let the UI fragment
know words as they arrive.
Requesting the Artifact
greenrobot’s EventBus is distributed as an artifact that you can
integrate in your project via the dependencies in your module’s
build.gradle file:

apply plugin: 'com.android.application'

dependencies {
 implementation 'org.greenrobot:eventbus:3.0.0'
}

android {
 compileSdkVersion 19
 buildToolsVersion '27.0.3'

 defaultConfig {
 targetSdkVersion 17
 applicationId "com.commonsware.android.eventbus.greenrobot3"
 }
}

(from EventBus/AsyncDemo3/app/build.gradle)
Defining Events
With greenrobot’s EventBus, the “events” are objects of arbitrary classes
that you define. Each different class represents a different type of
event, and you can define as many different event classes as you wish.
Those classes do not need to inherit from any special base class, or
implement some special interface, or have any magic annotations. They are
just classes.
You may wish to put data members, constructors, and accessor methods on
the event classes, for any data you wish to pass around specific to the event
itself. A SearchEvent, for example, might include the search query string
as part of the event object.
In our case, we have a WordReadyEvent that contains the new word:

package com.commonsware.android.eventbus;

class WordReadyEvent {
 private String word;

 WordReadyEvent(String word) {
 this.word=word;
 }

 String getWord() {
 return(word);
 }
}

(from EventBus/AsyncDemo3/app/src/main/java/com/commonsware/android/eventbus/WordReadyEvent.java)
Posting Events
To post an event, all you need to do is obtain an instance of an EventBus –
typically via the getDefault() method on EventBus — and call post() on it,
passing in the event to be delivered to any interested party within your app.
With that in mind, let’s look at the ModelFragment that will be loading in our
words:

package com.commonsware.android.eventbus;

import android.app.Fragment;
import android.os.Bundle;
import android.os.SystemClock;
import org.greenrobot.eventbus.EventBus;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class ModelFragment extends Fragment {
 private static final String[] items= { "lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante", "porttitor", "sodales",
 "pellentesque", "augue", "purus" };
 private List<String> model=
 Collections.synchronizedList(new ArrayList<String>());
 private boolean isStarted=false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 if (!isStarted) {
 isStarted=true;
 new LoadWordsThread().start();
 }
 }

 public ArrayList<String> getModel() {
 return(new ArrayList<String>(model));
 }

 class LoadWordsThread extends Thread {
 @Override
 public void run() {
 for (String item : items) {
 if (!isInterrupted()) {
 model.add(item);
 EventBus.getDefault().post(new WordReadyEvent(item));
 SystemClock.sleep(400);
 }
 }
 }
 }
}

(from EventBus/AsyncDemo3/app/src/main/java/com/commonsware/android/eventbus/ModelFragment.java)
This fragment has no UI — it exists solely to manage a data model on behalf of the
rest of the hosting activity. Hence, there is no onCreateView() or any other
UI logic directly in this fragment.
In onCreate(), we call setRetainInstance(true), so that if the user rotates
the screen or otherwise triggers a configuration change, our model fragment will
survive the change and be attached to the new activity instance. Then, if we have
not already started the LoadWordsThread, we do so. LoadWordsThread iterates
over our list of words, sleeps for 400ms to simulate doing real work, adds each
word to an ArrayList of words that it manages… and calls post() to raise
a WordReadyEvent to let something else know that the model has changed.
Receiving Events
To receive posted events, you need to do three things:

	Call register() on the EventBus to tell it that you have an object that wants
to receive events

	Call unregister() on the EventBus to tell it to stop delivering events to
a previously-registered object

	Implement methods annotated with @Subscribe to indicate
the type of event you want to receive and to actually process those events

This sample app has an AsyncDemoFragment that performs those three steps:

package com.commonsware.android.eventbus;

import android.app.Activity;
import android.app.ListFragment;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import org.greenrobot.eventbus.EventBus;
import org.greenrobot.eventbus.Subscribe;
import org.greenrobot.eventbus.ThreadMode;
import java.util.ArrayList;

public class AsyncDemoFragment extends ListFragment {
 private ArrayAdapter<String> adapter=null;
 private ArrayList<String> model=null;

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 adapter=
 new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1,
 model);

 getListView().setScrollbarFadingEnabled(false);
 setListAdapter(adapter);
 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);

 EventBus.getDefault().register(this);
 }

 @Override
 public void onDetach() {
 EventBus.getDefault().unregister(this);

 super.onDetach();
 }

 @Subscribe(threadMode = ThreadMode.MAIN)
 public void onWordReady(WordReadyEvent event) {
 adapter.add(event.getWord());
 }

 public void setModel(ArrayList<String> model) {
 this.model=model;
 }
}

(from EventBus/AsyncDemo3/app/src/main/java/com/commonsware/android/eventbus/AsyncDemoFragment.java)
The fragment starts by overriding onViewCreated(), where we create an ArrayAdapter and use
that to populate the ListView.
The onAttach() and onDetach() methods are where we indicate to the EventBus
that this fragment object wants to receive relevant posted events. onAttach() calls
register(); onDetach() calls unregister().
The onWordReady() method, via its parameter and @Subscribe annotation,
indicates that we are interested
in WordReadyEvents as they are raised. Our onWordReady() method will be called
for each WordReadyEvent passed to post() on the EventBus. Since the
@Subscribe annotation has threadMode = ThreadMode.MAIN as part of its configuration,
onWordReady() will be called on the main application thread, so it is
safe for us to update our UI. greenrobot’s EventBus is responsible for getting this
event to the main application thread — note that we are posting the event from
the LoadWordsThread, which is a background thread.
In onWordReady(), we get the newly-added word, which we can add to our ArrayAdapter.
add() on ArrayAdapter appends the word to the end of the list and informs the
attached ListView that the data changed, so the ListView can redraw itself.
What is not obvious, though, from the code in this class is how we are getting the
model that we are using in onViewCreated().
AsyncDemoFragment has its own ArrayList of words, set via the setModel()
method. Our ArrayAdapter is wrapped around this model. But the master copy
of the words is being held by the ModelFragment.
If the ModelFragment has the model, and the AsyncDemoFragment needs the model,
how are the two being connected?
The Activity
That is handled by our hosting activity, as it sets up these two fragments:

package com.commonsware.android.eventbus;

import android.app.Activity;
import android.app.FragmentManager;
import android.app.FragmentTransaction;
import android.os.Bundle;

public class AsyncDemo extends Activity {
 private static final String MODEL_TAG="model";
 private ModelFragment mFrag=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 FragmentManager mgr=getFragmentManager();
 FragmentTransaction trans=mgr.beginTransaction();

 mFrag=(ModelFragment)mgr.findFragmentByTag(MODEL_TAG);

 if (mFrag == null) {
 mFrag=new ModelFragment();
 trans.add(mFrag, MODEL_TAG);
 }

 AsyncDemoFragment demo=
 (AsyncDemoFragment)mgr.findFragmentById(android.R.id.content);

 if (demo == null) {
 demo=new AsyncDemoFragment();
 trans.add(android.R.id.content, demo);
 }

 demo.setModel(mFrag.getModel());

 if (!trans.isEmpty()) {
 trans.commit();
 }
 }
}

(from EventBus/AsyncDemo3/app/src/main/java/com/commonsware/android/eventbus/AsyncDemo.java)
In onCreate(), we first see if we already have an instance of our model fragment,
held by the FragmentManager under a MODEL_TAG tag. If not, we create an instance
of the ModelFragment and add it to the FragmentManager, under that tag, via a
FragmentTransaction.
We then see if we already have an instance of our AsyncDemoFragment. If not, we create
one and add it to the FragmentManager, pouring its UI into android.R.id.content,
via another FragmentTransaction.
Then, we connect the two, calling getModel() on the ModelFragment and handing the
result to setModel() on the AsyncDemoFragment.
When our activity is newly launched, neither fragment exists. Both fragments are created,
and the AsyncDemoFragment gets its model array from the ModelFragment. That array
is initially empty. As the ModelFragment adds elements to the array, it posts
the WordReadyEvent, which triggers the AsyncDemoFragment to tell the ArrayAdapter
and ListView that the model data changed.
If we undergo a configuration change, the ModelFragment is retained, but the
AsyncDemoFragment is not. Hence, the activity will always be creating an
AsyncDemoFragment. But the model we give to the AsyncDemoFragment may already have
words in it, and those words will appear immediately when the ArrayAdapter is
wrapped around the model. If the LoadWordsThread is still running, the new
AsyncDemoFragment will pick up any new WordReadyEvents that are raised, triggering
it to update the ListView as before.
Visit the Trails!
We will cover much more about jank, and how to detect and diagnose it,
in a later chapter.
There are many more features in the greenrobot EventBus implementation. We will see
some of those, plus other event bus implementations, in a later chapter
on event bus alternatives.
Requesting Permissions
In the late 1990’s, a wave of viruses spread through the Internet, delivered
via email, using contact information culled from Microsoft Outlook. A virus
would simply email copies of itself to each of the Outlook contacts that had an
email address. This was possible because, at the time, Outlook did not take any
steps to protect data from programs using the Outlook API, since that API was
designed for ordinary developers, not virus authors.
Nowadays, many applications that hold onto contact data secure that data by
requiring that a user explicitly grant rights for other programs to access the
contact information. Those rights could be granted on a case-by-case basis or
all at once at install time.
Android is no different, in that it requires permissions for applications to
read or write contact data. Android’s permission system is useful well beyond
contact data, and for content providers and services beyond those supplied by
the Android framework.
You, as an Android developer, will frequently need to ensure your applications
have the appropriate permissions to do what you want to do with other
applications’ data. This chapter covers this topic, both the classic
approach used for all permissions prior to Android 6.0 and the new
runtime permission system used for certain permissions in Android 6.0+.
You may also elect to require permissions for other
applications to use your data or services, if you make those available to other
Android components. This will be discussed later in this book.
Frequently-Asked Questions About Permissions
Permissions are occasionally a confusing topic in Android app development,
more so now that Android 6.0 has arrived and has changed the permission
system a fair bit. Here are some common questions about permissions to help
get us started.
What Is a Permission?
A permission is a way for Android (or, sometimes, a third-party app)
to require an app developer to notify the user about something that the
app will do that might raise concerns with the user. Only if an app
holds a certain permission can the app do certain things that are defended
by that permission.
Mechanically, permissions take the form of elements in the manifest.
Right now, we are focusing on requesting and holding permissions, and
so we will be working with the <uses-permission> element.
When Will I Need a Permission?
Most permissions that you will deal with come from Android itself.
Usually, the documentation will tell you when you need to request and
hold one of these permissions.
However, occasionally the documentation has gaps.
If you are trying out some code and you crash with a SecurityException
the description of the exception may tell you that you need to hold
a certain permission — that means you need to add the corresponding
<uses-permission> element to your manifest.
Third-party code, including Google’s own Play Services SDK, may define
their own custom permissions. Once again, ideally, you find out that
you need to request a permission through documentation, and otherwise you
find out through crashing during testing.
What Are Some Common Permissions, and What Do They Defend?
There are dozens upon dozens of permissions in Android.
Here are some of the permissions we will see in this book:

	
INTERNET, if your application wishes to access the Internet through any
means from your own process, using anything from raw Java sockets through the WebView widget

	
WRITE_EXTERNAL_STORAGE, for writing data to external storage

	
ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining where
the device is

	
READ_CONTACTS, to get at personally-identifying information of arbitrary
contacts that the user has in their Contacts app

In this book and in casual conversation, we refer to the permissions using
the unique portion of their name (e.g., INTERNET). Really, the full
name of the permission will usually have android.permission. as a prefix
(e.g., android.permission.INTERNET), for Android-defined permissions.
Custom permissions from third-party apps should use a different prefix.
You will need the full permission name, including the prefix, in your
manifest entries.
How Do I Request a Permission?
Put a <uses-permission> element in your manifest, as a direct
child of the root <manifest> element (i.e., as a peer element
of <application>), with an android:name attribute identifying the
permission that you are interested in.
For example, here is a sample manifest, with a request to hold
the WRITE_EXTERNAL_STORAGE permission:

<?xml version="1.0"?>
<manifest package="com.commonsware.android.fileseditor"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Files/FilesEditor/app/src/main/AndroidManifest.xml)
This is sufficient for most permissions and most devices. Permissions
considered to be dangerous need special attention on Android 6.0+, and
we will cover that in grand detail
later in this chapter.
Note that you are welcome to have zero, one, or several such
<uses-permission> elements. Also note that some libraries that
you elect to use might add their own <uses-permission> elements
to your manifest, through a process called “manifest merger”.
When Is the User Informed About These Permissions?
Well, that gets complicated. It depends on the permission, the
version of Android the user is using, from where the user is installing
the app, and the phase of the moon.
(well, OK, not really that last one)
Installing Through SDK Tools
Anyone who installs an app using Android Studio will not be prompted
for permissions. The same holds true for anyone using anything else based
on the Android SDK tools — while the app may request permissions, the
user is not prompted for them, and the permissions are granted.
(Android 6.0+ and dangerous permissions change this up a bit –
more on that later in this chapter)
Installing from the Play Store, Android 5.1 and Older
If the user is running an Android 5.1 or older device, and the user
goes to install your app from the Play Store, the user will be presented
with a roster of permission groups that contain permissions that you
are requesting and that are considered to be dangerous:

[image: Permission Confirmation Screen, on Play Store Web Site]

Figure 255: Permission Confirmation Screen, on Play Store Web Site
We will discuss more about permission groups and this dangerous
concept later in this chapter.
Installing from the Play Store, Android 6.0+
On Android 6.0 and higher, when the user installs your app from the
Play Store, what happens depends upon the value of targetSdkVersion for
your app.
If your targetSdkVersion is 22 or lower, you get the same behavior
as is described above, where the user sees the list of permission groups
which contain permissions that you are requesting and that are considered
to be dangerous.
If your targetSdkVersion is 23 or higher, the user is not prompted about
permissions at install time. Instead these prompts will occur
when the user runs your app and when you ask the user for the permissions,
as we will see later in this chapter.
Installing by Other Means, Android 5.1 and Older
If you install an app on Android 5.1 or older, by any means (e.g., downloading
from a Web site), you will be prompted with a list of all requested
permissions:

[image: Permission Confirmation Screen, on Android 4.4]

Figure 256: Permission Confirmation Screen, on Android 4.4
Note that this prompt will not appear until you actually have downloaded
the app and have begun the installation process. Before then, the device
cannot examine the manifest inside the APK file to find the permissions.
Installing by Other Means, Android 6.0+
If your app’s targetSdkVersion is 23 or higher, and you install the
app on an Android 6.0+ device by other means than the Play Store, you will
not be prompted about any permissions at install time:

[image: Permission Confirmation Screen, on Android 6.0]

Figure 257: Permission Confirmation Screen, on Android 6.0
Characteristics of Permissions
Several bits of information make up a permission, and some of those
affect app developers or users.
Name
We have already seen that permissions have names, and you use them
in the android:name attribute of the <uses-permission> element to
identify a permission that you would like your app to hold.
Android framework-defined permissions will begin with android.permission.
Permissions from libraries or third-party apps will have some other
prefix. Make sure that when you create your <uses-permission>
element that you are using the fully-qualified permission name,
including android.permission or any other prefix.
Also note that Android is case-sensitive, so make sure you use the case
of the permission as documented (e.g., android.permission.INTERNET).
Some versions of Android Studio had a bug where if you let the IDE
auto-complete a <uses-permission> element for you, sometimes it would
have the android:name value appear IN ALL CAPS. This is a bug that
has since been fixed, so hopefully it will not affect you in the future.
Protection Level
The definition of a permission, in the framework or in third-party
code, will have a “protection level”. This describes how the permission
itself should be validated. The two protection levels that you
will encounter most often are normal and dangerous.
Normal
A normal permission is something that the user might care about, but
probably not. So, while we need to request the permission in the manifest
via <uses-permission>, the user will not be bothered about this
permission at install time.
The classic example is the INTERNET permission. Most Android apps wind
up requesting this permission, either for functionality written by the
developers or functionality pulled in from libraries (e.g., ad banners).
INTERNET is considered normal, so while we need to request the
INTERNET permission in the manifest, the user is not informed about
this permission anymore at install time.
(the “anymore” note is because in the early days of Android, users were
informed about all permissions, regardless of protection level)
Users can see normal permissions, though, in other places:

	the list of permissions shown on the Play Store when clicking on a
“Permissions” link

	the list of permissions shown in Settings for an app

	third-party tools that help the user understand what capabilities are
available to the apps that the user has installed

Dangerous
A dangerous permission is one that the definers of the permission
(e.g., Google) wants to ensure that the user is aware of and has agreed to.
Classically, this meant that the user would be prompted for this permission
at install time. On old versions of Android and the Play Store,
dangerous permissions would be listed before normal permissions.
With Android 6.0+, while dangerous permissions are not displayed at
install time (for apps with a targetSdkVersion of 23 or higher),
they will be displayed to the user while the app is running, before the
app tries doing something that requires one of those permissions.
This is a significant behavior change, so we will be covering it in depth
later in this chapter.
Permission Group
Permissions are collected into permission groups.
In the early days of Android, app developers were oblivious to this,
as permission groups had no effect on app development, runtime behavior,
or user experience.
In the past few years, the “permission” prompts at install time have
really been prompting about permission groups. The user is told that
the app is requesting permissions from certain groups. Moreover, the
blessing that the user gives — by virtue of continuing to install the
app — is by group, not by permission. If some future update to the
app would ask for a new permission, but one from a group that the user
agreed to previously, the user would not be informed about this new
permission request.
With Android 6.0, permission groups also extend to the runtime permission
UX, as while we developers will still request individual permissions,
the user will be asked to grant rights with respect to permission groups.
Maximum SDK Version
<uses-permission> can have an android:maxSdkVersion attribute.
This indicates the highest API level for which we need the permission.
If the app is running on newer versions of Android, skip the permission.
This is for cases where Android relaxes restrictions over time. We will
see an example of this, in the form of the WRITE_EXTERNAL_STORAGE
permission, in an upcoming chapter.
Minimum SDK Version
You might think that <uses-permission> would have an
android:minSdkVersion attribute to serve as the counterpart to
android:maxSdkVersion. The minSdkVersion would indicate the
lowest API level for which to request a permission; older devices
would skip the permission.
Alas, this is not available.
However, there is the awkwardly-named [uses-permission-sdk-23] element.
This element functions identically to <uses-permission> on Android 6.0+
devices. On older devices, it is ignored.
This element illustrates a problem with the permission system
in Android: you have to put all permissions that you want in the manifest.
Prior to the runtime permission system in Android 6.0, this would mean
that developers who need some controversial permission
(e.g., READ_CONTACTS) for some fringe feature would need to request
the permission from everyone, not just those who use the feature. As
we will see, the runtime permission system lets us not bother the user
until they try using the secured feature. [uses-permission-sdk-23]
would allow us to not bother with the permission at all on older
devices, where its presence might scare away potential users.
New Permissions in Old Applications
Sometimes, Android introduces new permissions that govern behavior that
formerly did not require permissions. WRITE_EXTERNAL_STORAGE is one example
– originally, applications could write to external storage without any
permission at all. Android 1.6 introduced WRITE_EXTERNAL_STORAGE, required
before you can write to external storage. However, applications that were
written before Android 1.6 could not possibly request that permission, since it
did not exist at the time. Breaking those applications would seem to be a harsh
price for progress.
What Android does is “grandfather” in certain permissions for applications
supporting earlier SDK versions.
For example, if your minSdkVersion is 3 or lower, saying that you
support Android 1.5, your application will
automatically request WRITE_EXTERNAL_STORAGE and READ_PHONE_STATE, even if
you do not explicitly request those permissions. People installing your
application on an Android 1.5 device will see these requests.
Eventually, when you drop support for the older version (e.g., switch to
minSdkVersion of 4 or higher), Android will no longer automatically
request those permissions. Hence, if your code really does need those
permissions, you will need to ask for them yourself.
Android 6.0+ Runtime Permission System
In Android 6.0 and higher devices, permissions that are considered
to be dangerous not only have to be requested via <uses-permission>
elements, but you also have to ask the user to grant you those permissions
at runtime. What you gain, though, is that users are not bothered with
these permissions at install time, and you can elect to delay asking
for certain permissions until such time as the user actually does
something that needs them.
This section will occasionally point out snippets of code from the
Permissions/PermissionMonger
sample project.
Let’s explore the runtime permissions system via a new series of questions.
What Permissions Are Affected By This?
There are nine permission groups that Android 6.0 manages as user-controllable
permissions:

 	Permission Group
 	Permission

 	CALENDAR
 	
READ_CALENDAR, WRITE_CALENDAR

 	CAMERA
 	CAMERA

 	CONTACTS
 	
GET_ACCOUNTS, READ_CONTACTS, WRITE_CONTACTS

 	LOCATION
 	
ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION

 	MICROPHONE
 	RECORD_AUDIO

 	PHONE
 	
ADD_VOICEMAIL, CALL_PHONE, PROCESS_OUTGOING_CALLS, READ_CALL_LOG, READ_PHONE_STATE, USE_SIP, WRITE_CALL_LOG

 	SENSORS
 	BODY_SENSORS

 	SMS
 	
READ_CELL_BROADCASTS, READ_SMS, RECEIVE_SMS, RECEIVE_MMS, RECEIVE_WAP_PUSH, SEND_SMS

 	STORAGE
 	
READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE

Users will be able to revoke permissions by group, through the Settings
app. They can go into the page for your app, click on Permissions,
and see a list of the permission groups for which you are requesting
permissions:

[image: Settings Screen for Permission Monger, Showing Permissions]

Figure 258: Settings Screen for Permission Monger, Showing Permissions
What Goes in the Manifest?
The same <uses-permission> elements as before. These declare the superset
of all possible permissions that you can have. If you do not have a
<uses-permission> element for a particular permission, you cannot
ask for it at runtime, and the user cannot grant it to you.
How Do I Know If I Have Permission?
On Android 6.0+, you can call a checkSelfPermission() method, available
on any Context (e.g., your Activity). This will return either
PERMISSION_GRANTED or PERMISSION_DENIED, depending on whether or
not the user granted you permission or you were automatically given
permission (e.g., for normal permissions).
For a simpler boolean check to see if you have the permission, you could
have your own hasPermission() method:

 private boolean hasPermission(String perm) {
 return(PackageManager.PERMISSION_GRANTED==checkSelfPermission(perm));
 }

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)
Then you can use that hasPermission() call where you need it.
For example, the
PermissionMonger app requests five permissions in the manifest:

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission android:name="android.permission.CAMERA"/>
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.READ_CONTACTS"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

(from Permissions/PermissionMonger/app/src/main/AndroidManifest.xml)
The UI is then a table showing the current status of those five permissions:

 private void updateTable() {
 location.setText(String.valueOf(canAccessLocation()));
 camera.setText(String.valueOf(canAccessCamera()));
 internet.setText(String.valueOf(hasPermission(Manifest.permission.INTERNET)));
 contacts.setText(String.valueOf(canAccessContacts()));
 storage.setText(String.valueOf(hasPermission(Manifest.permission.WRITE_EXTERNAL_STORAGE)));
 }

 private boolean canAccessLocation() {
 return(hasPermission(Manifest.permission.ACCESS_FINE_LOCATION));
 }

 private boolean canAccessCamera() {
 return(hasPermission(Manifest.permission.CAMERA));
 }

 private boolean canAccessContacts() {
 return(hasPermission(Manifest.permission.READ_CONTACTS));
 }

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)
At the outset, we only have the one “normal” permission: INTERNET:

[image: Permission Monger, Showing Initial Permissions]

Figure 259: Permission Monger, Showing Initial Permissions
The checkSelfPermission() method on Context is only available on
API Level 23. You can, if you wish, wrap your call to checkSelfPermission()
in a check of the API level of the device you are running on:

if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 if (checkSelfPermission(Manifest.permission.WRITE_EXTERNAL_STORAGE)==
 PackageManager.PERMISSION_GRANTED) {
 // do something cool
 }
}

A simpler approach is to use ContextCompat, from the support-v4
library. This has a static implementation of checkSelfPermission()
that takes a Context and your permission string as parameters. It
returns the same value (e.g., PackageManager.PERMISSION_GRANTED)
as does the checkSelfPermission() that ships with Android 6.0.
But, if you are running on an older device, it checks the version for
you and returns PackageManager.PERMISSION_GRANTED for older devices.
So, the above code snippet turns into:

if (ContextCompat.checkSelfPermission(this,
 Manifest.permission.WRITE_EXTERNAL_STORAGE)==
 PackageManager.PERMISSION_GRANTED) {
 // do something cool
}

(assuming that this is a subclass of Context, like Activity)
How Do I Know If the User Takes Permissions Away From Me?
If the user grants you access to some permission group, the only
way the user can revoke that is via the Settings app. If the user
does revoke access to a permission group, your process is terminated.
Hence, while your code is running, you will have all permissions that you
started with, plus any new ones that the user grants on the fly based
upon your request. There should be no circumstance where your process
is running yet you lose a permission.
That being said, your app is not specifically notified about losing
the permission. You should be calling checkSelfPermission() to determine
what you can and cannot do, at least for every process invocation. And,
since the call appears to be reasonably cheap, you should just call it
whenever you need to know whether you can perform a particular operation.
Note that usually your app will be in the background, if it is running at all,
at the time when a runtime permission is revoked. Particularly in an Android 7.0+
multi-window environment, though, it is possible that you will still be
visible when the user revokes a runtime permission. Your process is
terminated in any case, and if you were visible, your UI is removed from
the screen.
How Do I Ask the User For Permission?
To ask the user for one of the runtime permissions, call requestPermissions()
on your Activity. This takes a String array of the permissions that you are
requesting and a locally-unique integer to identify this request from any
other similar requests that you may be making. This int serves in
much the same role as does the int passed into startActivityForResult(),
though you should keep the value to 8 bits (0 to 255) for
maximum compatibility.
For example, PermissionMonger will check in onCreate() to see if
we can access locations or access contacts, and if not, it will request
access to those two permissions:

 if (!canAccessLocation() || !canAccessContacts()) {
 requestPermissions(INITIAL_PERMS, INITIAL_REQUEST);
 }

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)
INITIAL_PERMS and INITIAL_REQUEST are just static final data members:

 private static final String[] INITIAL_PERMS={
 Manifest.permission.ACCESS_FINE_LOCATION,
 Manifest.permission.READ_CONTACTS
 };

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)

 private static final int INITIAL_REQUEST=1337;

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)
When the app is first launched, dialogs will appear, one per permission
that you requested, asking the user if they would be so kind as to allow your
app to do the things that you requested:

[image: Permission Monger, Requesting READ_CONTACTS Permission]

Figure 260: Permission Monger, Requesting READ_CONTACTS Permission

[image: Permission Monger, Requesting ACCESS_FINE_LOCATION Permission]

Figure 261: Permission Monger, Requesting ACCESS_FINE_LOCATION Permission
When the user has proceeded through the dialogs, you will be called
with onRequestPermissionsResult(). You are passed three parameters:

	the locally-unique integer from your requestPermissions() call,
to identify which requestPermissions() call this is the result for

	a String array of the requested permissions

	an int array of the corresponding results (PERMISSION_GRANTED or
PERMISSION_DENIED)

Whether you use those latter two parameters or simply call checkSelfPermission()
again is up to you. Regardless, at this point, you should determine
what you got, so you know how to react, such as disabling things that the
user cannot use given the lack of permission.
Just as ContextCompat offers a backwards-compatible implementation
of checkSelfPermission(), ActivityCompat offers a backwards-compatible
implementation of requestPermissions() that you can use. Otherwise,
you will want to take other steps to ensure that you only call
requestPermissions() on API Level 23+ devices.
When Do I Ask the User For Permission?
That depends a bit on the nature of the permission.
In an ideal world, your app can function without any of the revocable
permissions granted to you, albeit perhaps in a limited fashion. In
that case, you might ask for permission only when the user tries to
do something (e.g., taps on an action bar item) for which you definitely
need the permission.
However, sometimes you will need permission to be at all useful to the
user. In that case, you will need to ask for permission when the
app opens.
In either case, though, bear in mind that while the user will see
the dialog asking for permission, the user may not understand why you
are asking for this permission. You need to make sure that the user
understands the cost/benefit trade-off in granting the permission — in
other words, what does the user get out of the deal?
For permissions that you are requesting based on user input, you might
pop your own dialog or other UI explaining what you want and why you want
it, before calling requestPermissions(). For permissions that you
would want to ask for when the app starts up, make sure that you
clearly explain the need for the permissions and what the user gets in
exchange as part of a one-time introductory tutorial,
one that might also be accessed via an overflow item or nav drawer
entry as part of your app’s help facility.
When Do I Not Ask the User For Permission?
One limitation with the requestPermissions() implementation is that
it is oblivious to configuration changes.
For example, suppose that in onCreate() of your activity, you check
to see if you have been granted a runtime permission (via
checkSelfPermission()), and if you have not, you call requestPermissions()
to request it from the user. This displays the dialog. Now the user rotates
the screen. If the user denies the permission, by default, the user will
immediately see the permission dialog again… because your activity
will have been destroyed and recreated, and your onCreate() will see
that you do not have the permission, and so you ask for it again.
In cases like this, you will need to track whether you are in the
permission-request flow (e.g., via a boolean saved in the instance
state Bundle) and skip requesting the permission if you have been
recreated in the middle of that flow.
What Do I Do If the User Says “No”?
If you were requesting permission as a direct response to some bit
of user input (e.g., user tapped on an action bar item), and the
user rejects the permission you need to do the work, obviously you cannot
do the work. Depending on overall flow, showing a dialog or
something to explain why you cannot do what the user asked for may
be needed. In some cases, you may deem it to be obvious, by virtue of the
fact that the user saw the permission-request dialog and said “deny”.
If you were requesting permission pre-emptively, such as when the
activity starts, you will need to decide whether that decision
needs to be reflected in the current UI (e.g., “no data available”
messages, disabled action bar items).
One thing you can do to help here is to detect when this has
occurred before you request permissions again. Before you call
requestPermissions(), you can call shouldShowRequestPermissionRationale(),
supplying the name of a permission. This will return true if the
user had previously declined to grant you permission, in cases
where Android thinks that the user might benefit from learning a bit
more about why you need the permission. You can use this to determine
whether you should show some explanatory UI of your own first, before
continuing with the permission request, or if you should just go
ahead and call requestPermissions().
Note that ActivityCompat also has a backwards-compatible
implementation of shouldShowRequestPermissionRationale(),
so you can avoid your own API level checks.
What Do I Do If the User Says “No, And Please Stop Asking”?
The second time you ask a user for a particular runtime permission,
the user will have a “Never ask again” checkbox:

[image: Permission Monger, Requesting ACCESS_FINE_LOCATION Permission (Again)]

Figure 262: Permission Monger, Requesting ACCESS_FINE_LOCATION Permission (Again)
If the user checks that and clicks the Deny button, not only will
you not get the runtime permission now, but all future requests will
immediately call onRequestPermissionsResult() indicating that
your request for permission was denied. The only way the user can now
grant you this permission is via the Settings app.
You need to handle this situation with grace and aplomb.
Choices include:

	Disabling UI input (e.g., action bar items) that cannot be performed
because you lack permission

	Display a dialog, explaining the situation, with a button that links
the user over to your app’s screen in Settings, so the user can grant
you this permission

	Displaying inline messages about why you cannot show data (e.g., a list
of contacts that you cannot show because the user did not grant you access),
perhaps with a hyperlink that displays a screen with additional information
about the situation

For permissions that, when denied, leave your app in a completely useless state, you may
wind up just displaying a screen on app startup that says “sorry, but this
app is useless to you”, with options for the user to uninstall the app or
grant you the desired permissions.
Note that shouldShowRequestPermissionRationale() returns false if
the user declined the permission and checked the checkbox to ask you
to stop pestering the user.
What Happens When I Ship This to an Older Device?
Older devices behave as they always have. Since you still list the
permissions in the manifest, those permissions will be granted to you
if the user installs the app, and the user will be notified about those
permissions as part of the installation process. If you are checking
the API level yourself, or you are using ContextCompat
and ActivityCompat as described above, your code should just work.
What Happens When My App Has a Lower Target SDK Version?
Apps with a targetSdkVersion below 23, on the surface, behave
on Android 6.0+ as they
would on an older device: the user is prompted for all permissions, and the
app is granted those permissions if the app is installed.
However, the user will still be able to go into Settings and revoke permissions
from these apps, for any permissions the app requests that are in one of
the runtime permission groups.
Generally, you will wind up ignoring the issue. All your calls to methods protected by
permissions that the user revoke will still “work”, insofar as they will
not throw a SecurityException. However, you just will not get any results
back or have the intended effects. So, for example, if you try to query()
the ContactsContract ContentProvider, and the user revoked your access
to contact-related permissions, the query() will return an empty
Cursor. This is a completely valid response, even ignoring the permission
issue, as it is entirely possible that the user has no contacts. Your app
should be handling these cases gracefully anyway. Hence, in theory, even
if you do nothing special regarding the lost permissions, your app should
survive, albeit with reduced functionality for the user. Dave Smith
outlines the expected results
for legacy apps calling methods sans permission.
However, all else being equal, you should set your targetSdkVersion
to at least 23 and opt into the runtime permission system. After all,
the Play Store requires a higher targetSdkVersion,
and other app distribution channels might follow suit.
What Happens if the User Clears My App’s Data?
If the user clears your app’s data through the Settings app, the runtime
permissions are cleared as well. Behavior at this point will be as if
your app had been just installed — checkSelfPermission() will return
PERMISSION_DENIED, and you will need to request the permissions.
How Can I Automate Permission Grants?
While the runtime permission system provides a reasonable user-facing
UI, having to deal with that UI constantly as a developer can be a significant
pain. For testing and debugging purposes, there are some
command-line options for granting and revoking permissions
that you can use.
Should I Be Using PermissionChecker?
checkSelfPermission() on ContextCompat always returns PERMISSION_GRANTED
if either:

	Your app has a targetSdkVersion below 23, or

	Your app is running on a device older than Android 6.0

PERMISSION_DENIED will be returned only if you have opted into
the new runtime permission system (targetSdkVersion of 23 or higher),
you are running on Android 6.0 or higher, and the user either never granted
the permission or revoked it through the Settings app.
The key is that even if you are running on Android 6.0, with an older
targetSdkVersion (so all permissions are requested at install time and
are granted to you automatically), checkSelfPermission() still returns
PERMISSION_GRANTED even if the user revoked the permission in
Settings.
The Android Support libraries — specifically support-v4 — added
a PermissionChecker class with a checkPermission() static method.
If you are running on Android 6.0+ with an older targetSdkVersion,
checkPermission() will return PERMISSION_DENIED_APP_OP if the
user revoked the permission in Settings.
Hence, PermissionChecker is useful in cases where you have a really
large code base, and you want to try to better handle cases where
users revoke permissions, but you are not in position to do a complete
implementation of the runtime permissions system. However, it is merely a
stopgap — your long-term plan should be to raise your targetSdkVersion
to 23 or higher and implement the runtime permissions properly.
A Simple Runtime Permission Abstraction
Occasionally, our need for runtime permissions is fairly straightforward: we need
them to do anything meaningful in the app, and so we need to request them
up front and exit the app if the user declines to grant one or more of them.
Some of the samples in this book fit this model, in part because many of the
samples in this book are fairly small apps.
Some of those apps will use a variation of an AbstractPermissionActivity to
hide all the runtime permission work, allowing the sample’s “real” activity to
focus on demonstrating the portion of the Android SDK that the sample is tied to.
One such AbstractPermissionActivity can be found in the
Files/FilesEditor
sample project. Later in the book, we will look at this sample to
see how to do file I/O on Android. Here, though, let’s take a look at
AbstractPermissionActivity.
Examining the Protocol
The idea is that AbstractPermissionActivity will handle the runtime permissions,
in its onCreate() implementation. Subclasses will need to implement three
methods to make this work:

	
getDesiredPermissions(), which returns the names of the permissions that the
app wants

	
onReady(), which will be called once permission is granted by the user, and
serves as an onCreate() substitute for the subclass

	
onPermissionDenied(), which will be called if the user declines granting
the permission, so the subclass can do something (e.g., show a Toast, then
finish() and go away)

Requesting the Permission
onCreate() will see if we have the desired permissions, and if not, it will
call requestPermissions() to ask for those that we do not already hold:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 this.state=savedInstanceState;

 if (state!=null) {
 isInPermission=state.getBoolean(STATE_IN_PERMISSION, false);
 }

 if (hasAllPermissions(getDesiredPermissions())) {
 onReady(state);
 }
 else if (!isInPermission) {
 isInPermission=true;

 ActivityCompat
 .requestPermissions(this,
 netPermissions(getDesiredPermissions()),
 REQUEST_PERMISSION);
 }
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/AbstractPermissionActivity.java)
hasAllPermissions() iterates over the permission array from getDesiredPermissions()
and returns true if we hold them all, false otherwise:

 private boolean hasAllPermissions(String[] perms) {
 for (String perm : perms) {
 if (!hasPermission(perm)) {
 return(false);
 }
 }

 return(true);
 }

 protected boolean hasPermission(String perm) {
 return(ContextCompat.checkSelfPermission(this, perm)==
 PackageManager.PERMISSION_GRANTED);
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/AbstractPermissionActivity.java)
If we hold all of the permissions, we go ahead and call onReady(), so the
activity can start its real work. Otherwise, we call requestPermissions()
on ActivityCompat, using a netPermissions() method to identify those
permissions that we do not already hold:

 private String[] netPermissions(String[] wanted) {
 ArrayList<String> result=new ArrayList<String>();

 for (String perm : wanted) {
 if (!hasPermission(perm)) {
 result.add(perm);
 }
 }

 return(result.toArray(new String[result.size()]));
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/AbstractPermissionActivity.java)
Handling the Result
In onRequestPermissionResult(), depending on whether we now hold all the
desired permissions, we call onReady() or onPermissionDenied():

 @Override
 public void onRequestPermissionsResult(int requestCode,
 String[] permissions,
 int[] grantResults) {
 isInPermission=false;

 if (requestCode==REQUEST_PERMISSION) {
 if (hasAllPermissions(getDesiredPermissions())) {
 onReady(state);
 }
 else {
 onPermissionDenied();
 }
 }
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/AbstractPermissionActivity.java)
Dealing with (Configuration) Change
It is possible that the user will rotate the device or otherwise trigger
a configuration change while our permission dialog is in the foreground. Since
our activity is still visible behind that dialog, we get destroyed and recreated…
but we do not want to re-raise the permission dialog again.
That is why we have a boolean, named isInPermission, that tracks whether or
not we are in the middle of requesting permissions. We hold onto that value
in onSaveInstanceState():

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/AbstractPermissionActivity.java)
We restore it in onCreate(). If we do not hold all of the desired permissions,
but isInPermission is true, we skip requesting the permissions, since we
are in the middle of doing so already.
As noted earlier, later in the book, we will look at how a subclass
of AbstractPermissionActivity works, and you will see AbstractPermissionActivity
used in other sample apps as well.
Assets, Files, and Data Parsing
Android offers a few structured ways to store data, notably
SharedPreferences and local SQLite databases. And,
of course, you are welcome to store your data “in the cloud” by using an
Internet-based service. We will get to all of those topics
shortly.
Beyond that, though, Android allows you to work with plain old ordinary
files, either ones baked into your app (“assets”) or ones on so-called
internal or external storage.
To make those files work — and to consume data off of the Internet — you
will likely need to employ a parser. Android ships with several choices for
XML and JSON parsing, in addition to third-party libraries
you can attempt to use.
This chapter focuses on assets, files, and parsers.
Packaging Files with Your App
Let’s suppose you have some static data you want to ship with the application,
such as a list of words for a spell-checker. Somehow, you need to bundle that
data with the application, in a way you can get at it from Java code later on,
or possibly in a way you can pass to another component (e.g., WebView for
bundled HTML files).
There are three main options here: raw resources, XML resources, and assets.
Raw Resources
One way to deploy a file like a spell-check catalog is
to put the file in the res/raw directory, so it gets put in the Android
application .apk file as part of the packaging process as a raw resource.
To access this file, you need to get yourself a Resources object. From an
activity, that is as simple as calling getResources(). A Resources object
offers openRawResource() to get an InputStream on the file you specify.
Rather than a path, openRawResource() expects an integer identifier for the
file as packaged. This works just like accessing widgets via findViewById()
– if you put a file named words.xml in res/raw, the identifier is
accessible in Java as R.raw.words.
Since you can only get an InputStream, you have no means of modifying this
file. Hence, it is really only useful for static reference data. Moreover,
since it is unchanging until the user installs an updated version of your
application package, either the reference data has to be valid for the
foreseeable future, or you will need to provide some means of updating the
data. The simplest way to handle that is to use the reference data to bootstrap
some other modifiable form of storage (e.g., a database), but this makes for
two copies of the data in storage. An alternative is to keep the reference data
as-is but keep modifications in a file or database, and merge them together
when you need a complete picture of the information. For example, if your
application ships a file of URLs, you could have a second file that tracks URLs
added by the user or reference URLs that were deleted by the user.
XML Resources
If, however, your file is in an XML format, you are better served not putting
it in res/raw/, but rather in res/xml/. This is a directory for XML resources
– resources known to be in XML format, but without any assumptions about what
that XML represents.
To access that XML, you once again get a Resources object by calling
getResources() on your Activity or other Context. Then, call getXml() on
the Resources object, supplying the ID value of your XML resource (e.g.,
R.xml.words). This will return an XmlResourceParser, which implements the
XmlPullParser interface. We will discuss how to use this parser, and the
performance advantage of using XML resources,
later in this chapter.
As with raw resources, XML resources are read-only at runtime.
Assets
Your third option is to package the data in the form of an asset. You can create
an assets/ directory in your source set (e.g., src/main/assets), then place whatever
files you want in there. Those are accessible at runtime by calling getAssets()
on your Activity or other Context, then calling open() with the path
to the file (e.g., assets/foo/index.html would be retrieved via
open("foo/index.html")). As with raw resources, this returns an InputStream
on the file’s contents. And, as with all types of resources, assets are read-only
at runtime.
One benefit of using assets over raw resources is the file:///android_asset/
Uri prefix. You can use this to load an asset into a WebView. For example,
for an asset located in assets/foo/index.html within your project,
calling loadUrl("file:///android_asset/foo/index.html") will load that
HTML into the WebView.
Note that assets are compressed when the APK is packaged. Unfortunately,
on Android 1.x/2.x,
this compression mechanism has a 1MB file size limit. If you wish to package
an asset that is bigger than 1MB, you either need to give it a file extension
that will not be compressed (e.g., .mp3) or actually store a ZIP file of
the asset (to avoid the automatic compression) and decompress it yourself
at runtime, using the standard java.util.zip classes. This restriction
was lifted with Android 3.0, and so if your minSdkVersion is 11 or higher,
this will not be an issue for you.
Files and Android
On the whole, Android just uses normal Java file I/O for local files. You
will use the same File and InputStream and OutputWriter and other
classes that you have used time and again in your prior Java development work.
What is distinctive in Android is where you read and write. Akin to writing
a Java Web app, you do not have read and write access to arbitrary locations.
Instead, there are only a handful of directories to which you have any access,
particularly when running on production hardware.
Internal vs. External
Internal storage refers to your application’s portion of the on-board,
always-available flash storage.
External storage refers to storage space that can be mounted by the user as a
drive in Windows (or, possibly with some difficulty, as a volume in macOS or Linux).
Typically, this too is part of the on-board flash, though in a separate area
than what is used for internal storage. Making things more complicated is
that the user will tend to see this labeled as “Internal Storage” (e.g., in
Settings); from the Android SDK’s standpoint, what the user thinks is
“Internal Storage” is what the SDK calls external storage.
Standard vs. Cache
On both internal and external storage, you have the option of saving files as
a cache, or on a more permanent basis. Files located in a cache directory may
be deleted by the OS or third-party apps to free up storage space for the user.
Files located outside of cache will remain unless manually deleted.
Yours vs. Somebody Else’s
Internal storage is on a per-application basis. Files you write to in your own
internal storage cannot be read or written to by other applications… normally.
Users who “root” their phones can run apps with superuser privileges and be able
to access your internal storage. Most users do not root their phones, and so only
your app will be able to access your internal storage files.
Files on external storage, though, are visible to all applications and the user.
Anyone can read anything stored there, and any application that requests
to can write or delete anything it wants.
Working with Internal Storage
You have a few options for manipulating the contents of your app’s portion
of internal storage.
One possibility is to use
openFileInput() and openFileOutput() on your Activity or other Context
to get an InputStream and OutputStream, respectively. However, these methods
do not accept file paths (e.g., path/to/file.txt), just simple filenames.
If you want to have a bit more flexibility, getFilesDir() and getCacheDir()
return a File object pointing to the roots of your files and cache locations
on internal storage, respectively. Given the File, you can create files
and subdirectories as you see fit.
To see how this works, take a peek at
the Files/FilesEditor
sample project.
This application implements a tabbed editor, using a ViewPager and
PagerTabStrip. Each tab
is an EditorFragment, implementing a large EditText widget, akin to
what we saw as examples back in the chapter on ViewPager.
However, those ViewPager samples had no persistence. Whatever you typed
stayed in the fragments but was lost when the process was terminated.
FileEditor instead will save what you enter into files, one file
per tab.
The layout for the activity is reminiscent of the ViewPager samples,
complete with a PagerTabStrip:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v4.view.PagerTabStrip
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"/>

</android.support.v4.view.ViewPager>

(from Files/FilesEditor/app/src/main/res/layout/main.xml)
The MainActivity loads up the layout and populates the ViewPager
and tabs:

 @Override
 protected void onReady(Bundle savedInstanceState) {
 setContentView(R.layout.main);

 ViewPager pager=findViewById(R.id.pager);

 pager.setAdapter(new SampleAdapter(this, getSupportFragmentManager()));
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/MainActivity.java)
However, with SampleAdapter, rather than 10 pages, we limit the number
of tabs to 2 or 3 in getCount(). Whether we support 2 or 3 pages
depends on what version of Android we are running on — we will explore this
issue more later in this chapter.
Rather than delegate the page titles to
the EditorFragment, getPageTitle() looks up a string resource value
from an array, based on the position, and uses that for the title.
And getItem()… becomes more complicated:

package com.commonsware.android.fileseditor;

import android.content.Context;
import android.os.Environment;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;
import java.io.File;

public class SampleAdapter extends FragmentPagerAdapter {
 private static final int[] TITLES={R.string.internal,
 R.string.external, R.string.pub};
 private static final int TAB_INTERNAL=0;
 private static final int TAB_EXTERNAL=1;
 private static final String FILENAME="test.txt";
 private final Context ctxt;

 public SampleAdapter(Context ctxt, FragmentManager mgr) {
 super(mgr);

 this.ctxt=ctxt;
 }

 @Override
 public int getCount() {
 return(3);
 }

 @Override
 public Fragment getItem(int position) {
 File fileToEdit;

 switch(position) {
 case TAB_INTERNAL:
 fileToEdit=new File(ctxt.getFilesDir(), FILENAME);
 break;

 case TAB_EXTERNAL:
 fileToEdit=new File(ctxt.getExternalFilesDir(null), FILENAME);
 break;

 default:
 fileToEdit=
 new File(Environment.
 getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS),
 FILENAME);
 break;
 }

 return(EditorFragment.newInstance(fileToEdit));
 }

 @Override
 public String getPageTitle(int position) {
 return(ctxt.getString(TITLES[position]));
 }
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java)
Based on the supplied position, we create a File object representing
where the data resides for our EditorFragment. Right now, let’s focus
on the TAB_INTERNAL case, where we use getFilesDir() to create a
File object pointing to a test.txt file on our internal storage.
The newInstance() factory method on EditorFragment now takes the File object
as input, instead of the position. A File is Serializable, and
so we can put a File into the arguments Bundle:

 static EditorFragment newInstance(File fileToEdit) {
 EditorFragment frag=new EditorFragment();
 Bundle args=new Bundle();

 args.putSerializable(KEY_FILE, fileToEdit);
 frag.setArguments(args);

 return(frag);
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
In onCreateView() of EditorFragment, we inflate a layout that contains
our large EditText widget and retrieve that EditText widget:

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.editor, container, false);

 editor=result.findViewById(R.id.editor);

 return(result);
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
In addition to an editor field for our EditText, EditorFragment has
two other fields. One is a LoadTextTask, an AsyncTask subclass that we
will use to load text from our file into our EditText. The other is
loaded, a simple boolean to see if we have loaded our text yet:

 private EditText editor;
 private LoadTextTask loadTask=null;
 private boolean loaded=false;

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
In onViewCreated(), if we have not yet loaded the text, we kick off
a LoadTextTask to do just that, passing in the File that we put
into the arguments Bundle:

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 if (!loaded) {
 loadTask=new LoadTextTask();
 loadTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR,
 (File)getArguments().getSerializable(KEY_FILE));
 }
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
LoadTextTask, in doInBackground(), goes through a typical Java file I/O
read-all-the-lines process to read in a text file, if it exists. The resulting
string is poured into the EditText. In onPostExecute(), it updates
the EditText with the read-in text, plus clears the loadTask field
and sets loaded to true:

 private class LoadTextTask extends AsyncTask<File, Void, String> {
 @Override
 protected String doInBackground(File... files) {
 String result=null;

 if (files[0].exists()) {
 BufferedReader br;

 try {
 br=new BufferedReader(new FileReader(files[0]));

 try {
 StringBuilder sb=new StringBuilder();
 String line=br.readLine();

 while (line!=null) {
 sb.append(line);
 sb.append("\n");
 line=br.readLine();
 }

 result=sb.toString();
 }
 finally {
 br.close();
 }
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception reading file", e);
 }
 }

 return(result);
 }

 @Override
 protected void onPostExecute(String s) {
 editor.setText(s);
 loadTask=null;
 loaded=true;
 }
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
However, since we are using an AsyncTask, we should retain this
fragment:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
…and in onDestroy(), we should cancel() this task if it is still
running, as we no longer need the results:

 @Override
 public void onDestroy() {
 if (loadTask!=null) {
 loadTask.cancel(false);
 }

 super.onDestroy();
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
Rather than have some dedicated “save” action bar item or similar UI
element, we can just arrange to save the data when our fragment gets
paused. This is a typical approach in Android apps, as users do not
necessarily get an opportunity to click some “save” UI element, if they
get interrupted by a phone call or something. So, in onPause(), we
kick off a SaveThread to write our EditText contents to the same
File, once again pulled from the arguments Bundle:

 @Override
 public void onPause() {
 if (loaded) {
 new SaveThread(editor.getText().toString(),
 (File)getArguments().getSerializable(KEY_FILE)).start();
 }

 super.onPause();
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
However, note that we do not fork the SaveThread if loaded is
still false. In that case, we know that we are still loading in the
text, which means the text cannot possibly have been modified by the user,
so there is nothing to save.
SaveThread ensures that the directory we want to write to exists
(as it may or may not exist, particularly on emulators), then
uses Java Writer objects to write out our text. Since there is nothing
that we want to do with the UI here, a plain Thread, rather than
an AsyncTask, is a better solution:

 private static class SaveThread extends Thread {
 private final String text;
 private final File fileToEdit;

 SaveThread(String text, File fileToEdit) {
 this.text=text;
 this.fileToEdit=fileToEdit;
 }

 @Override
 public void run() {
 try {
 fileToEdit.getParentFile().mkdirs();

 FileOutputStream fos=new FileOutputStream(fileToEdit);

 Writer w=new BufferedWriter(new OutputStreamWriter(fos));

 try {
 w.write(text);
 w.flush();
 fos.getFD().sync();
 }
 finally {
 w.close();
 }
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception writing file", e);
 }
 }
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
The reason for using a FileOutputStream, and that mysterious
getFD().sync() part, will be covered
later in this chapter.
The result is a set of tabbed editors, where the first one is our
one for internal storage:

[image: FilesEditor Sample, Showing Empty Tabs]

Figure 263: FilesEditor Sample, Showing Empty Tabs
If you type something into the “Internal” tab, press BACK to exit
the activity, and go back into the app again, whatever you typed
in will be re-loaded from disk and will show up in the editor.
The files stored in internal storage are accessible only to your application, by default.
Other applications on the device have no rights to read, let alone write, to
this space. However, bear in mind that some users “root” their Android phones,
gaining superuser access. These users will be able to read and write whatever
files they wish. As a result, please consider application-local files to be
secure against malware but not necessarily secure against interested users.
Working with External Storage
Like internal storage, external storage can be used with ordinary Java
file I/O (e.g., the File class). What differs is where you can read or write.
And, compared to internal storage, what differs is whether you are allowed
to read or write.
Where to Write
If you have files that are tied to your application that are simply too big to
risk putting in internal storage, or if the user should be able to download
the files off their device at will, you can use getExternalFilesDir(),
available on any activity or other Context. This
will give you a File object pointing to an automatically-created directory on
external storage, unique for your application. While not secure against other
applications, it does have one big advantage: when your application is
uninstalled, these files are automatically deleted, just like the ones in the
application-local file area. This method was added in API Level 8. This
method takes one parameter — typically null — that indicates a particular
type of file you are trying to save (or, later, load).
In SampleAdapter of the sample app, if the user chooses the “External” tab, we use
getExternalFilesDir() to create the File to be used by the
EditorFragment:

 case TAB_EXTERNAL:
 fileToEdit=new File(ctxt.getExternalFilesDir(null), FILENAME);
 break;

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java)
There is also getExternalCacheDir(), which returns a File pointing at a
directory that contains files that you would like to have, but if Android or
a third-party app clears the cache, your app will continue to function normally.
If you have files that belong more to the user than to your app — pictures
taken by the camera, downloaded MP3 files, etc. — a better solution is to
use getExternalStoragePublicDirectory(), available on the Environment
class. This will give you a File object pointing to a directory set aside for
a certain type of file, based on the type you pass into
getExternalStoragePublicDirectory(). For example, you can ask for
DIRECTORY_MOVIES, DIRECTORY_MUSIC, or DIRECTORY_PICTURES for storing MP4,
MP3, or JPEG files, respectively. These files will be left behind when your
application is uninstalled. This method was also added in API Level 8.
In SampleAdapter of the sample app, if the user chooses the “Public” tab, we use
getExternalStoragePublicDirectory() to create the File to be used by the
EditorFragment, putting our file in the DIRECTORY_DOCUMENTS location:

 default:
 fileToEdit=
 new File(Environment.
 getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS),
 FILENAME);
 break;

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java)
You will also find a getExternalStorageDirectory() method on Environment,
pointing to the root of the external storage. This is no longer the preferred
approach — the methods described above help keep the user’s files better
organized. However, if you are supporting older Android devices, you may need
to use getExternalStorageDirectory(), simply because the newer options may
not be available to you.
Relevant Permissions
On all relevant Android versions prior to Android 4.4 (API Level 19), if
you want to write to external storage, you need to hold the WRITE_EXTERNAL_STORAGE
permission. And, on those versions, you do not need a permission to read
from external storage.
On Android 4.4 and up, the rules are a bit different:

	To read or write in the directory trees rooted at getExternalFilesDir()
and getExternalCacheDir(), you do not need a permission

	To write to anywhere else on external storage, you need WRITE_EXTERNAL_STORAGE

	To read from anywhere else on external storage, you need either
WRITE_EXTERNAL_STORAGE (if you already have that) or READ_EXTERNAL_STORAGE
(if not)

Hence, so long as your android:minSdkVersion is less than 19, you
need to take the most conservative approach:

	If you are writing anywhere on external storage, request the
WRITE_EXTERNAL_STORAGE permission

	If you are only reading, but from anywhere on external storage,
request the READ_EXTERNAL_STORAGE permission

Note that you might get paths to external storage locations from third-party
apps, typically in the form of a Uri. If you are handling Uri values
from third-party apps, you should request READ_EXTERNAL_STORAGE or
WRITE_EXTERNAL_STORAGE, in case the third-party app hands you a Uri
pointing to external storage.
For example, here is the sample
app’s manifest, complete with the <uses-permission> element for
WRITE_EXTERNAL_STORAGE:

<?xml version="1.0"?>
<manifest package="com.commonsware.android.fileseditor"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Files/FilesEditor/app/src/main/AndroidManifest.xml)
However, on Android 6.0+, WRITE_EXTERNAL_STORAGE is one of those dangerous
permissions that we have to request at runtime. That is why this sample app
uses the AbstractPermissionActivity profiled in
the material on runtime permissions. Overall, our
MainActivity looks like this:

package com.commonsware.android.fileseditor;

import android.os.Bundle;
import android.support.v4.view.ViewPager;
import android.widget.Toast;
import static android.Manifest.permission.WRITE_EXTERNAL_STORAGE;

public class MainActivity extends AbstractPermissionActivity {
 @Override
 protected String[] getDesiredPermissions() {
 return(new String[]{WRITE_EXTERNAL_STORAGE});
 }

 @Override
 protected void onPermissionDenied() {
 Toast
 .makeText(this, R.string.msg_sorry, Toast.LENGTH_LONG)
 .show();
 finish();
 }

 @Override
 protected void onReady(Bundle savedInstanceState) {
 setContentView(R.layout.main);

 ViewPager pager=findViewById(R.id.pager);

 pager.setAdapter(new SampleAdapter(this, getSupportFragmentManager()));
 }
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/MainActivity.java)
getDesiredPermissions() indicates that we want WRITE_EXTERNAL_STORAGE,
and onPermissionDenied() exits the app after showing a Toast. onReady()
is where we set up the tabs, as we now have all the permissions that we
need to be able to work with external storage.
Note that we do not need WRITE_EXTERNAL_STORAGE for getExternalFilesDir() on
API Level 19+ devices. This leads to another possible permission strategy
for this app:

	We could add android:maxSdkVersion="18" to the <uses-permission>
element for WRITE_EXTERNAL_STORAGE. This would indicate that we only want
this permission on devices that are running API Level 18 or lower.

	We could then have SampleAdapter see what version of Android we are running
on. If we are running on API Level 19 or higher, we know that we did not
request WRITE_EXTERNAL_STORAGE, but that we do not need that permission
for getExternalFilesDir(). In that case, we could suppress the “Public” tab
(since we do not have permission to write there) and only show two tabs. But,
on older devices where we did ask for that permission, we could show all
three tabs (since we have rights for all of external storage).

When to Write
Also, external storage may be tied up by the user having mounted it as a USB
storage device. You can use getExternalStorageState() (a static method on
Environment) to determine if external storage is presently available or
not. On Android 3.0 and higher, this should be much less of an issue, as they
changed how the external storage is used by the host PC — originally, this
used USB Mass Storage Mode (think thumb drives) and now uses the USB Media
Transfer Protocol (think MP3 players). With MTP, both the Android device and
the PC it is connected to can have access to the files simultaneously; Mass
Storage Mode would only allow the host PC to have access to the files if external
storage is mounted.
Nowadays, you can use getStorageState() on the EnvironmentCompat
class from the support-v4 library
to find out the state of external storage, for the
particular File passed as a parameter.
Letting the User See Your Files
The switch to MTP has one side-effect for Android developers: files you write
to external storage may not be automatically visible to the user. At the
time of this writing, the only files that will show up on the user’s PC will
be ones that have been indexed by the MediaStore. While the MediaStore
is typically thought of as only indexing “media” (images, audio files, video
files, etc.), it was given the added role in Android 3.0 of maintaining an
index of all files for the purposes of MTP.
Your file that you place on external storage will not be indexed
automatically simply by creating it and writing to it. Eventually, it will
be indexed, though it may be quite some time for an automatic indexing pass
to take place.
To force Android to index your file, you can use scanFile() on
MediaScannerConnection:

String[] paths={pathToYourNewFileOnExternalStorage};
MediaScannerConnection.scanFile(this, paths, null, null);

The third parameter to scanFile() is an array of MIME types, to line
up with the array of paths in the second parameter. If your file is some
form of media, and you know the MIME type, supplying that will ensure that
your media will be visible as appropriate to the right apps (e.g., images
in the Gallery app). Otherwise, Android will try to infer a MIME type from
the file extension.
In the sample app, since the EditorFragment does not know whether the file is on
external storage and therefore is reachable, it does not know whether
or not this sort of indexing is appropriate. In a more conventional
scenario, where the EditorFragment would consistently be writing
to external storage, SaveThread could arrange to invoke MediaScannerConnection
as part of its work. However, scanFile() needs a Context, and so
the SaveThread would need one of those. You would wind up with
something a bit like:

 private static class SaveThread extends Thread {
 private final String text;
 private final File fileToEdit;
 private final Context ctxt;

 SaveThread(Context ctxt, String text, File fileToEdit) {
 this.ctxt=ctxt.getApplicationContext();
 this.text=text;
 this.fileToEdit=fileToEdit;
 }

 @Override
 public void run() {
 try {
 fileToEdit.getParentFile().mkdirs();

 FileOutputStream fos=new FileOutputStream(fileToEdit);

 Writer w=new BufferedWriter(new OutputStreamWriter(fos));

 try {
 w.write(text);
 w.flush();
 fos.getFD().sync();
 }
 finally {
 w.close();
 String[] paths={fileToEdit.getAbsolutePath()};
 MediaScannerConnection.scanFile(ctxt, paths, null, null);
 }
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception writing file", e);
 }
 }
 }

Here, we use getApplicationContext(), which returns to us a Context
that is a process-wide singleton. That way, if our activity is destroyed
while the thread is still running, we still have a valid Context
to use.
Limits on External Storage Open Files
Many Android devices will have a per-process limit of 1024 open files, on
any sort of storage. This is usually not a problem for developers.
On some devices — including probably all that are running Android 4.2 and
higher — there is a global limit of 1024 open files on external storage.
In other words, all running apps combined can only open 1024 files simultaneously
on external storage.
This means that it is important for you to minimize how many open files on
external storage you have at a time. Having a few open files is perfectly
reasonable; having a few hundred open files is not.
Removable Storage
Some Android devices support micro SD card slots, where cards inserted in there
are not part of internal or external storage. Some Android devices support USB
On-The-Go (OTG) drives. Some Android devices support other forms of removable
storage, such as full-size SD cards, full-size USB thumb drives, etc.
And, until Android 4.4, none of that was officially available to you as a developer.
What You Can Do
Android 4.4 (API Level 19) added two new methods, getExternalCacheDirs()
and getExternalFilesDirs(), the plural versions of the classic methods.
These return an array of File objects, representing one or more places
where your app can work with external storage. The first element in the
array will be the same File object returned by the singular versions
of the methods (e.g., getExternalFilesDir()). The other elements in the
array, if any, will represent app-specific directories
on removable storage location. The Android Support package has a ContextCompat class
containing static versions of getExternalCacheDirs() and
getExternalFilesDirs(), so you can use the same code on API Level 4 and above,
though the backport will only ever return one directory in the array.
What You Can’t Do
You cannot access arbitrary files on removable storage. You have full read/write
access to the specific locations referred to by the aforementioned methods, but
that is all that you are guaranteed access to. So, you cannot write code that
iterates over all the files on removable storage, for example.
The Workarounds
The Storage Access Framework allows you to work with content
on removable storage, and in cloud storage providers, though not using File.
The MediaStore contains an index of all files on external storage and
removable storage. You can query for content from certain MIME types (e.g., all
videos) and be able to read in that content. However, once again, you are not
using File.
Multiple User Accounts
On Android 4.1 and earlier, each Android device was assumed to be used by just
one person.
On Android 4.2+ tablets — and Android 5.0+ phones — it is
possible for a device’s owner to set up
multiple user accounts. Each user gets their own section of internal and
external storage for files, databases, SharedPreferences, and so forth. From
your standpoint, it is as if the users are really on different devices, even
though in reality it is all the same hardware.
However, this means that paths to internal and external storage now may vary
by user. Hence, it is very important for you to use the appropriate methods,
outlined in this chapter, for finding locations on internal storage
(e.g., getFilesDir()) and external storage (e.g., getExternalFilesDir()).
Some blog posts, Stack Overflow answers, and the like will show the use of
hard-coded paths for these locations (e.g., /sdcard or /mnt/sdcard for
the root of external storage). Hard-coding such paths was never a good idea.
And, as of Android 4.2, those paths are simply wrong and will not work.
On Android 4.2+, for the original user of the device,
internal storage will wind up in the
same location as before, but external storage will use a different path. For
the second and subsequent users defined on the device, both internal and
external storage will reside in different paths. The various methods, like
getFilesDir(), will handle this transparently for you.
Note that, at the time of this writing, multiple accounts are not available
on the emulators, only on actual tablets. Phones usually will not have
multiple-account support, under the premise that tablets are more likely to
be shared than are phones.
Linux Filesystems: You Sync, You Win
Android is built atop a Linux kernel and uses Linux filesystems for holding its
files. Classically, Android used YAFFS (Yet Another Flash File System),
optimized for use on low-power devices for storing data to flash memory.
YAFFS has one big problem: only one process can write to the filesystem at a
time. For those of you into filesystems, rather than offering file-level
locking, YAFFS has partition-level locking. This can become a bit of a
bottleneck, particularly as Android devices grow in power and start wanting to
do more things at the same time like their desktop and notebook brethren.
Android 3.0 switched to ext4, another Linux filesystem aimed more
at desktops/notebooks. Your applications will not directly perceive the
difference. However, ext4 does a fair bit of buffering, and it can cause
problems for applications that do not take this buffering into account. Linux
application developers ran headlong into this in 2008-2009, when ext4 started
to become popular. Android developers will need to think about it now… for
your own file storage.
If you are using SQLite or SharedPreferences, you do not need to worry about
this problem. Android (and SQLite, in the case of SQLite) handle all the
buffering issues for you. If, however, you write your own files, you may wish
to contemplate an extra step as you flush your data to disk. Specifically, you
need to trigger a Linux system call known as fsync(), which tells the
filesystem to ensure all buffers are written to disk.
If you are using java.io.RandomAccessFile in a synchronous mode, this step
is handled for you as well, so you will not need to worry about it. However,
Java developers tend to use FileOutputStream, which does not trigger an
fsync(), even when you call close() on the stream. Instead, you call
getFD().sync() on the FileOutputStream to trigger the fsync(). Note that
this may be time-consuming, and so disk writes should be done off the main
application thread wherever practical, such as via an AsyncTask.
This is why, in EditorFragment, our SaveThread implementation looks like this:

 private static class SaveThread extends Thread {
 private final String text;
 private final File fileToEdit;

 SaveThread(String text, File fileToEdit) {
 this.text=text;
 this.fileToEdit=fileToEdit;
 }

 @Override
 public void run() {
 try {
 fileToEdit.getParentFile().mkdirs();

 FileOutputStream fos=new FileOutputStream(fileToEdit);

 Writer w=new BufferedWriter(new OutputStreamWriter(fos));

 try {
 w.write(text);
 w.flush();
 fos.getFD().sync();
 }
 finally {
 w.close();
 }
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception writing file", e);
 }
 }
 }

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
While we use a Writer to do the writing, it is wrapped around
a FileOutputStream, so we can get access to the FileDescriptor
(via getFD()) and call sync() on it.
StrictMode: Avoiding Janky Code
Users are more likely to like your application if, to them, it feels
responsive. Here, by “responsive”, we mean that it reacts swiftly and
accurately to user operations, like taps and swipes.
Conversely, users are less likely to be happy with you if they perceive that
your UI is “janky” — sluggish to respond to their requests. For example,
maybe your lists do not scroll as smoothly as they would like, or tapping a
button does not yield the immediate results they seek.
While threads and AsyncTask and the like can help, it may not always be
obvious where you should be applying them. A full-scale performance analysis,
using Traceview or similar Android tools, is certainly possible. However, there
are a few standard sorts of things that developers do, sometimes quite by
accident, on the main application thread that will tend to cause sluggishness:

	Flash I/O, both for internal and external storage

	Network I/O

However, even here, it may not be obvious that you are performing these
operations on the main application thread. This is particularly true when the
operations are really being done by Android’s code that you are simply calling.
That is where StrictMode comes in. Its mission is to help you determine when
you are doing things on the main application thread that might cause a janky
user experience.
StrictMode works on a set of policies. There are presently two categories of
policies: VM policies and thread policies. The former represent bad coding
practices that pertain to your entire application, notably leaking SQLite
Cursor objects and kin. The latter represent things that are bad when
performed on the main application thread, notably flash I/O and network I/O.
Each policy dictates what StrictMode should watch for (e.g., flash reads are
OK but flash writes are not) and how StrictMode should react when you violate
the rules, such as:

	Log a message to Logcat

	Display a dialog

	Crash your application (seriously!)

The simplest thing to do is call the static enableDefaults() method on
StrictMode from onCreate() of your first activity. This will set up normal
operation, reporting all violations by simply logging to Logcat. However, you
can set your own custom policies via Builder objects if you so choose.
However, do not use StrictMode in production code. It is designed for use
when you are
building, testing, and debugging your application. It is not designed to be
used in the field.
So, for example, you might have something like this in your launcher
activity:

StrictMode.ThreadPolicy.Builder b=new StrictMode.ThreadPolicy.Builder();

if (BuildConfig.DEBUG) {
 b.detectAll().penaltyDeath();
}
else {
 b.detectAll().penaltyLog();
}

StrictMode.setThreadPolicy(b.build());

BuildConfig.DEBUG will be true for debuggable builds, false otherwise.
So, in the case of a debug build, we want to detect all mistakes and
crash the app immediately when we encounter them, but in production,
we want to just log information about the mistake to Logcat.
You will note that the sample app does not contain this code.
That is because calling methods like getFilesDir() and getExternalFilesDir()
really ought to be on background threads, as StrictMode will complain
about them. Hence, this code would cause SampleAdapter to crash when
it tries building the File object to use. This could be rectified by
having SampleAdapter simply pass in a flag indicating the storage location
and having LoadThreadTask and SaveThread deal with the File objects.
Note that StrictMode will also report leaked open files. For example, if you
create a FileOutputStream on a File and fail to close() it later, when
the FileOutputStream (and related objects) are garbage-collected, StrictMode
will report to you the fact that you failed to close the stream. This is very
useful to help you make sure that you are not leaking open files that may
contribute to
exhausting the 1,024 open file limit on external storage.
Files, and Your Development Machine
All this reading and writing of data is nice, but for debugging and
diagnostic purposes, it is often useful for you to be able to look
at the files, other than through your app.
This is somewhat challenging, due to the lack of tools and due to
security restrictions in production devices (as compared to emulators).
That being said, the following sections will outline some options
that you have to access your app’s files independently of your app.
Mounting as a Drive
If you have an actual Android device, when you plug it in via a USB
cable, usually you will get external storage available as a drive
letter (Windows) or a mounted volume (macOS and Linux). Depending upon
the device, manufacturer, and configuration, you might also have
access to removable storage this way as well.
In these cases, you can use your development machine’s OS to poke around
these file locations and look at your files (or anyone else’s).
However, there are some wrinkles:

	On Android 6.0+, by default, a USB connection is only used for charging.
You need to slide open the notification tray and tap on the Notification
for the USB connection, to toggle it to share files using MTP.

	Some versions of macOS and Linux will require you to install additional
software to view files over MTP.

	If you see a volume name labeled “Internal Storage”, that is really
external storage, because confusing people is fun, apparently.

	You cannot get to what the Android SDK refers to as internal storage
by this means.

Browsing Files Via Android Studio
Android Studio 3.0+ offers a Device File Explorer tool. As the name suggests,
it allows you to explore the filesystems on an Android device (or emulator).
This tool is docked by default in the lower-right screen edge. When opened,
it displays a fairly typical directory tree structure:

[image: Device File Explorer, As Initially Opened]

Figure 264: Device File Explorer, As Initially Opened
Key places to try browsing to are:

	
/data/data/.../, where ... is an application ID, to browse
the internal storage for a particular app for the primary device user

	
/sdcard/ or /mnt/sdcard/, which will be typical (though not universal) ways
of reaching external storage

[image: Device File Explorer, Showing External and Public FilesEditor Files]

Figure 265: Device File Explorer, Showing External and Public FilesEditor Files
However, for hardware and emulators with the Google proprietary apps (e.g.,
Play Store), you will only be able to browse into internal storage of
debuggable apps. The Explorer has no ability to browse into production
apps in these environments:

[image: Device File Explorer, Showing Blocked Access to Chromes Files]

Figure 266: Device File Explorer, Showing Blocked Access to Chrome’s Files
On an emulator that lacks the Google proprietary apps, though, you can browse
much more of the filesystem, including the internal storage of production
apps:

[image: Device File Explorer, Showing Access to Calendars Files on an Emulator]

Figure 267: Device File Explorer, Showing Access to Calendar’s Files on an Emulator
For any file that you can see, if it is of a recognized file type,
double-clicking the file will open it up in Android Studio. That is because,
at least on macOS and Linux, a virtual filesystem is added on your development
machine that maps to the device or emulator. You can find the location by looking
at the “breadcrumbs” above the editor that show the segments of its local
file path:

[image: Breadcrumbs Showing Local Map to Emulator Filesystem]

Figure 268: Breadcrumbs Showing Local Map to Emulator Filesystem
You can use that same path to work with the file using tools outside of
Android Studio. However, changes that you make to the file through Android
Studio will not be saved back to the device or emulator.
Right-clicking over a file will give you options to:

	Open it in Android Studio

	Save it to an arbitrary location on your development machine

	Delete it

	“Synchronize” it, which updates the UI from the filesystem

	Copy its on-device/on-emulator path to the clipboard, for pasting into
Android app development books like this one:

/data/data/com.android.calendar/shared_prefs/com.android.calendar_preferences.xml

Right-clicking over a directory will give you options to:

	Create a new file or subdirectory in this directory

	Save the contents of this directory — though not the directory name
itself — into a directory of your choice

	Upload a file or directory into this directory

	Delete the directory (recursively deleting all of its contents)

	“Synchronize” it, which updates the UI from the filesystem

	Copy its on-device/on-emulator path to the clipboard

Note that the Device File Explorer effectively shows a snapshot of what is
on the device or emulator filesystem. It will only reflect changes if you
use the Synchronize context menu option.
Push and Pull for External Storage
You can get at external storage of
devices and emulators via
the command-line adb tool. This program is in platform-tools/
of your Android SDK installation, and it is a good idea to add that
directory to your operating system’s PATH environment variable, so
you can run adb from anywhere.
adb push and adb pull allow you to upload and download
files, respectively. Both take the local path and the remote (device/emulator)
path as command-line arguments, although in varying order:

	
adb push localpath remotepath will upload the file represented
by localpath to the location represented by remotepath

	
adb pull remotepath localpath will download the file represented
by remotepath to the location represented by localpath

For external storage, the root directory name varies by Android OS version:

	Android 1.x/2.x: use /sdcard/

	Android 4.x/5.x: use /mnt/shell/emulated/0/

	Android 6.0+: use /storage/emulated/0/.

So, for example, the following command would push an index.html
file to the getExternalFilesDir() location for the primary device
account, for an app whose application is your.package.name.here:

adb push index.html /storage/emulated/0/Android/data/your.package.name.here/files

If you try to push a local directory, or pull a remote directory,
the contents of those directories will be uploaded and downloaded, respectively.
However, the directory itself is not, which can cause some confusion.
Suppose we have a directory on our development PC named foo/. It
contains four PNG files, named 1.png, 2.png, 3.png,
and parallelism-is-boring.png. We then execute the following command
on the command line:

adb push foo /storage/emulated/0/Android/data/your.package.name.here/files

You will wind up with:

	/storage/emulated/0/Android/data/your.package.name.here/files/1.png

	/storage/emulated/0/Android/data/your.package.name.here/files/2.png

	/storage/emulated/0/Android/data/your.package.name.here/files/3.png

	/storage/emulated/0/Android/data/your.package.name.here/files/parallelism-is-boring.png

Note, though, that the foo directory name is not included. In other
words, the contents of foo/ are transferred, but not foo/ itself.
Run-As for Internal Storage
adb push and adb pull work directly for internal storage as
well… on emulators.
On production hardware, though, you have some additional work to do.
Specifically, you need to use external storage as an intermediary and
use adb run-as to give yourself the temporary ability to work
with internal storage.
For example, on an emulator, you could push index.html to
the directory returned by getFilesDir(), for an app with an application
ID of your.package.name.here, for the primary device account, via:

adb push index.html /data/data/your.package.name.here/files

If you try that on production hardware, it will fail. While the
piece that adb communicates with on the emulator runs with
superuser privileges, the equivalent piece on production hardware
does not. The same security that prevents other apps from accessing
your app’s portion of internal storage prevents adb from doing
so as well.
However, adb on production hardware can use the run-as
command, to execute a Linux command as if it were being run by the
Linux user associated with your app, the user that owns all your
files and who has read/write access to those files.
So, the equivalent script to copy the file to internal storage
on a production Android 4.x/5.x device would be:

adb push index.html /mnt/shell/emulated/0
adb shell run-as your.package.name.here cp /mnt/shell/emulated/0/index.html /data/data/your.package.name.here/files
adb shell rm /mnt/shell/emulated/0/index.html

(note that the second command should appear all on one line,
even though it may show up as word-wrapped here due to the length
of the line and the available width of the book)
This will only work for debuggable apps, which is the normal state
of apps that you run from your IDE. This script:

	Pushes the file to the root of external storage

	Uses run-as to run the Linux cp command to copy the file from
external storage to the app’s internal storage

	Runs the Linux rm command to remove the file that we placed
on external storage

(if you are wondering why we do not use mv instead of cp and
rm, mv generates errors related to attempting to change the
ownership of the moved file)
XML Parsing Options
Android supports a fairly standard implementation of the Java DOM and SAX APIs.
If you have existing experience with these, or if you have code that already
leverages them, feel free to use them.
Android also bakes in the XmlPullParser from the xmlpull.org site.
Like SAX, the XmlPullParser is an event-driven interface, compared to the DOM
that builds up a complete data structure and hands you that result. Unlike SAX,
which relies on a listener and callback methods, the XmlPullParser has you
pull events off a queue, ignoring those you do not need and dispatching the
rest as you see fit to the rest of your code.
The primary reason the XmlPullParser was put into Android was for XML-encoded
resources. While you write plain-text XML during development, what is packaged
in your APK file is a so-called “binary XML” format, where angle brackets and
quotation marks and such are replaced by bitfields. This helps compression a
bit, but mostly this conversion is done to speed up parsing. Android’s
XML resource parser can parse this “binary XML” approximately ten times faster
than it can parse the equivalent plain-text XML. Hence, anything you put
in an XML resource (res/xml/) will be parsed similarly quickly.
For plain-text XML content, the XmlPullParser is roughly equivalent, speed-wise,
to SAX. All else being equal, lean towards SAX, simply because more developers
will be familiar with it from classic Java development. However, if you really
like the XmlPullParser interface, feel free to use it.
You are welcome to try a third-party XML parser JAR, but bear in mind
that there may be issues when trying to get it working in Android.
JSON Parsing Options
Android has bundled the org.json classes into the SDK since the beginning,
for use in parsing JSON. These classes have a DOM-style interface: you hand
JSONObject a hunk of JSON, and it gives you an in-memory representation
of the completely parsed result. This is handy but, like the DOM, a bit of a
performance hog.
API Level 11 added JSONReader, based on Google’s GSON parser, as a “streaming”
parser alternative. JSONReader is much more reminiscent of the XmlPullParser,
in that you pull events out of the “reader” and process them. This can have
significant performance advantages, particularly in terms of memory consumption,
if you do not need the entire JSON data structure. However, this is only
available on API Level 11 and higher.
Because JSONReader is a bit “late to the party”, there has been extensive work
on getting other JSON parsers working on Android.
Google’s GSON is popular, as
is Jackson. Jackson offers a few APIs,
and the streaming API reportedly works very nicely on Android with top-notch
performance.
Using Files with Implicit Intents
Earlier, we saw how to use an implicit Intent to, say, view
a Web page, given an https URL. You can do the same sort of thing with files…
though there are issues.
Technically, you can take any File, pass it to Uri.fromFile(), and get a Uri
pointing to that file. You can put that Uri into an implicit Intent, such
as one for ACTION_VIEW, and pass that Intent to startActivity():

startActivity(new Intent(Intent.ACTION_VIEW, Uri.fromFile(somethingCool)));

However, at best, this only works for files on external storage. Other apps — such
as whatever activity handles your ACTION_VIEW request — do not have rights
to your portion of internal storage or your portion of removable storage.
Plus, you have no guarantee that the other app has either the READ_EXTERNAL_STORAGE
or WRITE_EXTERNAL_STORAGE permission (though, if it responded to your Intent,
it should).
Hence, in Android 7.0, the file scheme on a Uri is banned, in effect.
If you attempt to pass a file: Uri in an Intent that is going
to another app, you will crash with a FileUriExposedException exception.
(you will face similar issues with putting file: Uri values on the
clipboard in ClipData — coverage of the clipboard is later in this book)
This is coming from an updated edition of StrictMode.
StrictMode.VmPolicy.Builder has a penaltyDeathOnFileUriExposure()
method that triggers the detection of file: Uri values and
the resulting FileUriExposedException exceptions. And, it appears
that this is pre-configured, much as how StrictMode is pre-configured
to apply penaltyDeathOnNetwork() (the source of your
NetworkOnMainThreadException crashes).
However, this only kicks in if your targetSdkVersion is set to 24 or higher.
At that point, you will need to find other ways of getting your content to
other apps, such as via a class called FileProvider, which is covered
later in this book.
Or, you can also disable the check by configuring your own
StrictMode.VmPolicy and skipping directFileUriExposure(), though this is
not a great solution.
Visit the Trails!
In addition to this chapter, you can learn more about accessing multimedia
files via the MediaStore and learn more about
the impacts of multiple user accounts on tablets.
Tutorial #11 - Adding Simple Content
Now that we have seen how to work with assets, we can start putting them to use,
by defining some “help” and “about” HTML files and displaying them in their
respective activities.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Adding Some Content
In Android Studio, right-click over the main source set directory,
choose New > Directory from the context menu, fill in the name assets in the dialog,
and click OK. This should give you an app/ module that looks like:

[image: EmPubLite Project, Showing assets/ in main/ of app/]

Figure 269: EmPubLite Project, Showing assets/ in main/ of app/
In assets/, create a misc/ sub-folder, by right-clicking over
the assets/ folder and choosing to add a new directory named misc
(e.g., New > Directory from the Android Studio context menu), giving
you something like:

[image: EmPubLite Project, Showing assets/misc/ in main/ of app/]

Figure 270: EmPubLite Project, Showing assets/misc/ in main/ of app/
In assets/misc/, create two files, about.html and help.html.
In Android Studio, right-click over the assets/misc/ folder in the project
explorer, choose New > File from the context menu, fill in the desired filename in the dialog,
and click OK.
The
actual HTML content of these two files does not matter, so long as you can
tell them apart when looking at them. If you prefer, you can download
sample about.html
and help.html
files from the application’s GitHub repository, via the links.
Step #2: Using SimpleContentFragment
Now, open up SimpleContentActivity and replace the stub implementation that
we have now with the following Java:

package com.commonsware.empublite;

import android.app.Activity;
import android.app.Fragment;
import android.os.Bundle;

public class SimpleContentActivity extends Activity {
 public static final String EXTRA_FILE = "file";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getFragmentManager().findFragmentById(android.R.id.content)==null) {
 String file=getIntent().getStringExtra(EXTRA_FILE);
 Fragment f=SimpleContentFragment.newInstance(file);

 getFragmentManager().beginTransaction()
 .add(android.R.id.content, f).commit();
 }
 }
}

(from EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentActivity.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
In onCreate(), we follow the standard recipe for defining our fragment if
(and only if) we were started new, rather than restarted after a configuration
change, by seeing if the fragment already exists. If
we do need to add the fragment, we retrieve a string extra from the Intent
used to launch us (identified as EXTRA_FILE), create an instance of
SimpleContentFragment using that value from the extra, and execute a
FragmentTransaction to add the SimpleContentFragment to our UI.
Step #3: Launching Our Activities, For Real This Time
Now, what remains is to actually supply that EXTRA_FILE value, which we are
not doing presently when we start up SimpleContentActivity from
EmPubLiteActivity.
Modify onOptionsItemSelected() of EmPubLiteActivity to look like this:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.about:
 Intent i = new Intent(this, SimpleContentActivity.class)
 .putExtra(SimpleContentActivity.EXTRA_FILE,
 "file:///android_asset/misc/about.html");
 startActivity(i);

 return(true);

 case R.id.help:
 i = new Intent(this, SimpleContentActivity.class)
 .putExtra(SimpleContentActivity.EXTRA_FILE,
 "file:///android_asset/misc/help.html");
 startActivity(i);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
You are adding the two putExtra() calls in the R.id.about and R.id.help
branches of the switch statement. In both cases, we are using a quasi-URL
with the prefix file:///android_asset/. This points to the root of our project’s
assets/ folder. WebView knows how to interpret these URLs, to load files
out of our assets directly.
Step #4: Getting a Bit More Material
Right now, our action bar on Android 5.0 devices is the one defined
by Theme.Holo.Light.DarkActionBar. This certainly works. However, it
looks a bit out of place, as most of the built-in apps will be using
a material theme. So, let’s make some minor adjustments to make our app
blend in a bit better.
First, we need to add a res/values-v21/ directory, representing resources
that will be used solely on API Level 21+ devices. In Android Studio,
right-click over the res/ directory in your main/ source set and choose
New > “Android resource directory” from the context menu. Choose “values”
as the “Resource type”. Then, in the list of available qualifiers on
the left, click on “Version”, then click the “>>” button to the right
of that list. This may give you a fairly messed-up dialog,
at least in the current version of Android Studio:

[image: Android Studio New Resource Directory Dialog]

Figure 271: Android Studio New Resource Directory Dialog
Fill in 21 in the “Platform API level” field, then click OK. This should
give you an empty res/values-v21/ directory, as desired.
Then, copy the styles.xml file from res/values/ into res/values-v21/.
Windows/Linux users can drag styles.xml from res/values/ while holding
down the Control key to make a copy. macOS users probably have a similar
convention.
Open res/values-v21/styles.xml and change the parent
attribute of our one style element to be
android:Theme.Material.Light.DarkActionBar.
Also, add three child elements
to the <style> element:

<resources>

 <!-- Base application theme. -->
 <style name="AppTheme" parent="android:Theme.Material.Light.DarkActionBar">
 <item name="android:colorPrimary">@color/colorPrimary</item>
 <item name="android:colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="android:colorAccent">@color/colorAccent</item>
 </style>

</resources>

(from EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/res/values-v21/styles.xml)
These tell Theme.Material (and its descendants) to apply our
existing color scheme to the theme.
Step #5: Seeing the Results
Now, if you run the application and choose “Help” from the action bar overflow,
you will see your help content on-screen:

[image: EmPubLite Help Screen]

Figure 272: EmPubLite Help Screen
Pressing BACK and choosing “About” from the action bar overflow will bring up
your about content:

[image: EmPubLite About Screen]

Figure 273: EmPubLite About Screen
However, on an Android 5.0 or higher device or emulator, our action bar
will now sport our designated color scheme:

[image: EmPubLite Help Screen on Android 5.1]

Figure 274: EmPubLite Help Screen on Android 5.1
In Our Next Episode…
… we will display the actual content of our book in our tutorial project.
Tutorial #12 - Displaying the Book
At this point, you are probably wondering when we are ever going to have our
digital book reader let us read a digital book.
Now, in this tutorial, your patience will be rewarded.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Note that starting in this tutorial, it is assumed that you know how to add
import statements as needed as we refer to new classes in existing code, and so
the required imports are not always going to be specified.
Step #1: Adding a Book
First, we need a book. Expecting you to write a book as part of this tutorial
would seem to be a bit excessive. So, instead, we will use an already-written
book: The War of the Worlds,
by H. G. Wells, as distributed by Project Gutenberg.
EDITOR’S NOTE: We realize that this choice of book may be seen as offensive
by Martians, as it depicts them as warlike invaders with limited immune systems.
Please understand that this book is a classic of Western literature and reflects
the attitude of the times. If you have any concerns about this material, please
contact us at martians-so-do-not-exist@commonsware.com.
Download http://misc.commonsware.com/WarOfTheWorlds.zip
and unpack its contents (a book/ directory of files)
into your assets/ folder of your project. Windows and Linux Android Studio
users can drag this book/
directory into the project and drop it in assets/ to copy the files
to the proper location. You should wind up with assets/book/ and files inside
of there:

[image: Android Studio Project Explorer, Showing assets/book/]

Figure 275: Android Studio Project Explorer, Showing assets/book/
In that directory, you will find some HTML and CSS files with the prose of the
book, plus a contents.json file with metadata. We will examine this metadata
in greater detail in the next section.
Step #2: Creating a ModelFragment
This sample project will use the “model fragment” pattern
to hold onto the
data about the book to be viewed. The “model fragment” pattern works well
for cases where:

	the data is only needed by one activity, not several components, and

	we want to hold onto the data during a configuration change (e.g., screen
rotation), so that we do not have to perform some work again to obtain
the data

Something has to load that BookContents, ideally in the background, since
reading an asset and parsing the JSON will take time. Also,
something has to hold onto that BookContents, so it can be used from
EmPubLiteActivity and the various chapter fragments in the ViewPager.
To that end, we will create a new class, cunningly named ModelFragment.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in ModelFragment
as the name, android.app.Fragment as the superclass,
and click OK to create the empty class.
Step #3: Defining Our Model
That contents.json file contains a bit of metadata about the contents of the
book: the book’s title and a roster of its “chapters”:

{
 "title": "The War of the Worlds",
 "chapters": [
 {
 "file": "0.htm",
 "title": "Book One: Chapters 1-9"
 },
 {
 "file": "1.htm",
 "title": "Book One: Chapters 10-14"
 },
 {
 "file": "2.htm",
 "title": "Book One: Chapters 14-17"
 },
 {
 "file": "3.htm",
 "title": "Book Two: Chapters 1-7"
 },
 {
 "file": "4.htm",
 "title": "Book Two: Chapters 7-10"
 },
 {
 "file": "5.htm",
 "title": "Project Gutenberg"
 }
]
}

In the case of this book
from Project Gutenberg, the assets/book/ directory contains six HTML files
which EmPubLite will consider as “chapters”, even though each of those HTML
files contains multiple chapters from the source material. You are welcome to
reorganize that HTML if you wish, updating contents.json to match.
We need to load contents.json into memory, so EmPubLite knows how many
chapters to display and where those chapters can be found. We will pour
contents.json into a BookContents model object, leveraging the GSON
library that we added to our project in an earlier tutorial.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookContents
as the name and click OK to create the empty class.
Then, replace the contents of that class with the following:

package com.commonsware.empublite;

import java.util.List;

public class BookContents {
 List<BookContents.Chapter> chapters;

 int getChapterCount() {
 return(chapters.size());
 }

 String getChapterFile(int position) {
 return(chapters.get(position).file);
 }

 String getChapterTitle(int position) {
 return(chapters.get(position).title);
 }

 static class Chapter {
 String file;
 String title;
 }
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Step #4: Examining Our Model
BookContents is a GSON interpretation of the JSON structure of contents.json.
BookContents holds onto the chapters, as
a List of BookContents.Chapter objects, each of which holds onto its
file.
BookContents also supplies three accessor methods:

	
getChapterCount(), to identify the number of chapters (i.e., the size
of the chapters array in the JSON)

	
getChapterFile(), to return the relative path within assets/book/ that
represents our “chapter” of HTML

	
getChapterTitle(), to return the title of this “chapter” of the book

Step #5: Defining Our Event
We will want to load the JSON and create the BookContents on a background
thread, as we will be performing enough I/O and parsing that we might make
our UI a bit sluggish if we do the work on the main application thread.
However, we need to let the UI layer (EmPubLiteActivity and its ViewPager)
know when the book is loaded, so it can be poured into the user interface.
We could use an AsyncTask for that, notifying the activity in onPostExecute().
However, we will need more flexible inter-component communication over time, things
that cannot be handled by a simple AsyncTask. Hence, we will start using
the event bus pattern here, employing greenrobot’s EventBus library that we
added to our project in a previous tutorial.
With EventBus, we create our own event classes. The one event that we have up
front is one to indicate that our book metadata has been loaded and is ready
for use, in the form of a BookContents object. Hence, in this step of the
tutorial, we will define a BookLoadedEvent that will be posted when the book
is loaded. And, we will have the event hold onto the BookContents, to lightly
simplify populating the UI later on.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookLoadedEvent
as the name and click OK to create the empty class.
Then, replace the contents of that class with the following:

package com.commonsware.empublite;

public class BookLoadedEvent {
 private BookContents contents=null;

 public BookLoadedEvent(BookContents contents) {
 this.contents=contents;
 }

 public BookContents getBook() {
 return(contents);
 }
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookLoadedEvent.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Step #6: Loading Our Model
Now, we need to actually arrange to load the book on a background thread
and post our newly-created BookLoadedEvent. This is one of the key jobs
of our ModelFragment: to manage the loading of our activity’s model, using
background threads.
With that in mind, replace our stub ModelFragment implementation with the
following:

package com.commonsware.empublite;

import android.app.Activity;
import android.app.Fragment;
import android.content.res.AssetManager;
import android.os.Bundle;
import android.os.Process;
import android.util.Log;
import com.google.gson.Gson;
import org.greenrobot.eventbus.EventBus;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.concurrent.atomic.AtomicReference;

public class ModelFragment extends Fragment {
 final private AtomicReference<BookContents> contents=
 new AtomicReference<>();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }

 @Override
 public void onAttach(Activity host) {
 super.onAttach(host);

 if (contents.get()==null) {
 new LoadThread(host.getAssets()).start();
 }
 }

 public BookContents getBook() {
 return(contents.get());
 }

 private class LoadThread extends Thread {
 private AssetManager assets=null;

 LoadThread(AssetManager assets) {
 super();

 this.assets=assets;
 }

 @Override
 public void run() {
 Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
 Gson gson=new Gson();

 try {
 InputStream is=assets.open("book/contents.json");
 BufferedReader reader=
 new BufferedReader(new InputStreamReader(is));

 contents.set(gson.fromJson(reader, BookContents.class));

 EventBus.getDefault().post(new BookLoadedEvent(getBook()));
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
 }
 }
 }
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
In onCreate(), we call setRetainInstance(true), to tell the framework
to keep this fragment despite a configuration change, just passing it to the
new activity created as a result of that configuration change.
In onAttach(), if we do not already have our BookContents object, we fork
a LoadThread to populate it, and we cannot readily get at an AssetManager
until we are attached to the hosting activity. This is why we are not forking
LoadThread in onCreate(). You may see this method name appear with
strikethrough formatting. onAttach() taking a Context as a parameter was
added in API Level 23, and onAttach() taking a Activity as a parameter
was deprecated. However, our minSdkVersion is lower than 23, so we need
to use the older callback method.
LoadThread takes the AssetManager as a parameter, stashing it in a field
in the LoadThread constructor.
Then, in the run() method that is called on the background thread,
we call setThreadPriority() to drop the thread’s priority to that of a background
thread. This reduces how much we compete with the main application thread
for CPU time. Then, we
read in the JSON using GSON to create the BookContents instance. GSON
automatically de-serializes our JSON into the BookContents and
BookContents.Chapter instances, given that we are telling the fromJson()
method that it is to be loading an instance of a BookContents object.
Finally, we post() a BookLoadedEvent to the default EventBus.
The BookContents is wrapped in an AtomicReference, in case the
main application thread tries to get the BookContents at the same
time our background thread tries to set that field’s value. Using
an AtomicReference handles our thread synchronization for us.
The open() method on AssetManager could throw an IOException. Normally,
this indicates a development-time bug (e.g., we failed to actually set up the
book/contents.json file), which is why we log the message to Logcat. A
production-grade book reader should also post() an EventBus event to
allow the UI layer to let the user know that we could not load the book. As it
stands, the book reader will remain stuck on the ProgressBar forever in case
of this sort of problem. Augmenting the tutorial in this way is left as an
exercise for the reader.
Note that the LoadThread implementation has a pair of references to Process.
In this case, this is android.os.Process, not java.lang.Process. Since
java.lang.Process is automatically imported, if you fail to import
android.os.Process, you will see errors about how THREAD_PRIORITY_BACKGROUND
and setThreadPriority() are not defined. Since we are not using
java.lang.Process in this class, having the import to android.os.Process
(as shown in the code listing above) resolves this conflict.
Step #7: Registering for Events
Right now, our BookLoadedEvent will be posted… and ignored, as nothing
in the application is set up to watch for such events. Our EmPubLiteActivity
needs to know about these events, and the first step to accomplishing that
is to have it register for events in general with the EventBus.
Add the following two methods to EmPubLiteActivity:

@Override
 public void onStart() {
 super.onStart();
 EventBus.getDefault().register(this);
 }

 @Override
 public void onStop() {
 EventBus.getDefault().unregister(this);
 super.onStop();
 }

These simply register the activity with the EventBus while it is in the foreground.
Step #8: Adapting the Content
Before we can use the BookContents, we need to update ContentsAdapter
to display the prose on the screen.
First, add a BookContents data member to ContentsAdapter:

 final BookContents contents;

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)
Then, add the BookContents parameter to the constructor, assigning it to the
new data member:

 public ContentsAdapter(Activity ctxt, BookContents contents) {
 super(ctxt.getFragmentManager());

 this.contents=contents;
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)
Next, update getCount() to use the getChapterCount() of our BookContents:

 @Override
 public int getCount() {
 return(contents.getChapterCount());
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)
Then, modify getItem() to retrieve the relative path for a given chapter
from the BookContents and create a SimpleContentFragment on the complete
file:///android_asset path to the file in question:

 @Override
 public Fragment getItem(int position) {
 String path=contents.getChapterFile(position);

 return(SimpleContentFragment.newInstance("file:///android_asset/book/"
 + path));
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)
Note that you may need to change the parameter name in the getItem() declaration
to be position, as it may be another value (e.g., arg0).
Finally, add getPageTitle(), pulling our tab title from the chapter
title:

 @Override
 public CharSequence getPageTitle(int position) {
 return(contents.getChapterTitle(position));
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)
Step #9: Showing the Content When Loaded
Now, we can actually add the logic to display the book once it is loaded.
Create a setupPager() method on EmPubLiteActivity as follows:

 private void setupPager(BookContents contents) {
 adapter=new ContentsAdapter(this, contents);
 pager.setAdapter(adapter);

 MaterialTabs tabs=(MaterialTabs)findViewById(R.id.tabs);
 tabs.setViewPager(pager);
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
The contents of this method are almost identical to some lines in onCreate() –
we have just moved them to a separate method. Remove those duplicate lines from
onCreate(), so you have:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 pager=(ViewPager)findViewById(R.id.pager);
 }

Then, add the following onBookLoaded() method to EmPubLiteActivity:

 @SuppressWarnings("unused")
 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onBookLoaded(BookLoadedEvent event) {
 setupPager(event.getBook());
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
This tells EventBus that if a BookLoadedEvent is posted, we are interested
in it, and it should be delivered to our onBookLoaded() method on the
main application thread. This method looks like it is unused, because it
will be called using reflection by the EventBus, and the IDE does not know
that. The @SuppressWarnings("unused") annotation indicates that this
method is used.
Step #10: Attaching our ModelFragment
We also need to add some code to set up the ModelFragment — it will not magically
appear on its own. So, the first time we create an EmPubLiteActivity, we want
to create our ModelFragment. To do that, define a static data member named
MODEL in EmPubLiteActivity:

 private static final String MODEL="model";

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Then, update the onStart() method in EmPubLiteActivity
to see if we already have the fragment before creating one:

@Override
public void onStart() {
 super.onStart();
 EventBus.getDefault().register(this);

 if (adapter==null) {
 ModelFragment mfrag=
 (ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

 if (mfrag == null) {
 getFragmentManager().beginTransaction()
 .add(new ModelFragment(), MODEL).commit();
 }
 }
}

If you run the result in a device or emulator, you will see the book content
appear:

[image: EmPubLite, With Content]

Figure 276: EmPubLite, With Content
Swiping left and right will take you to the other portions of the book.
Step #11: Showing the Content After a Configuration Change
While you can see the book contents now, if you try rotating the screen, the
book contents will not appear. That is because the ModelFragment has already
loaded the contents (so the BookLoadedEvent has passed), but we have no logic
in EmPubLiteActivity to populate the book by other means.
To do that, simply add an else if clause to the if in onStart(), to get
the book contents over to setupPager() if they are ready:

 @Override
 public void onStart() {
 super.onStart();
 EventBus.getDefault().register(this);

 if (adapter==null) {
 ModelFragment mfrag=
 (ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

 if (mfrag==null) {
 getFragmentManager().beginTransaction()
 .add(new ModelFragment(), MODEL).commit();
 }
 else if (mfrag.getBook()!=null) {
 setupPager(mfrag.getBook());
 }
 }
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Now, if you run the sample and rotate the screen (e.g., Ctrl-Right on the
Windows/Linux emulator), the book will appear in either case.
Step #12: Setting Up StrictMode
Since we are now starting to do disk I/O, particularly aiming to have it done on background
threads, it would be a good idea to configure StrictMode, so it will complain if we fail
in our quest and accidentally do this I/O on the main application thread.
Add the following method to EmPubLiteActivity:

 private void setupStrictMode() {
 StrictMode.ThreadPolicy.Builder builder=
 new StrictMode.ThreadPolicy.Builder()
 .detectAll()
 .penaltyLog();

 if (BuildConfig.DEBUG) {
 builder.penaltyFlashScreen();
 }

 StrictMode.setThreadPolicy(builder.build());
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Here, we create a StrictMode.ThreadPolicy.Builder, configured to detect
all violations on the main application thread, logging them to Logcat.
In addition, if we are in a DEBUG build and there is a StrictMode violation,
we will flash a red border around the screen.
Note, though, that this red border will appear even if we do not make
any mistakes. Unfortunately, Google engineers
do not check the framework code for these sorts of violations, leading to some
bugs that we as app developers cannot resolve. Those will be reported
as StrictMode violations, just as if we had made the mistakes ourselves.
At the present time, this tutorial does not trigger any StrictMode violations,
and so the red border flash should not appear. However, changes in newer
versions of Android, or newer versions of the support libraries, might change
that, at which time the red flashes will point out that the author of this book
has to fix the tutorials.
Then, just after super.onCreate() in the onCreate() method in EmPubLiteActivity, add
in a call to the new setupStrictMode() method. This will give you an onCreate() method that
looks like:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setupStrictMode();
 pager=(ViewPager)findViewById(R.id.pager);
 }

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
In Our Next Episode…
… we will allow the user to manipulate some preferences in our tutorial project.
Using Preferences
Android has many different ways for you to store data for long-term use by your
activity. The simplest ones to use are SharedPreferences and simple files.
Android allows activities and applications to keep preferences, in the form of
key/value pairs (akin to a Map), that will hang around between invocations of
an activity. As the name suggests, the primary purpose is for you to store
user-specified configuration details, such as the last feed the user looked at
in your feed reader, or what sort order to use by default on a list, or
whatever. Of course, you can store in the preferences whatever you like, so
long as it is keyed by a String and has a primitive value (boolean,
String, etc.)
Preferences can either be for a single activity or shared among all activities
in an application. Other components, such as services, also can work with
shared preferences.
Getting What You Want
To get access to the preferences, you have three APIs to choose from:

	
getPreferences() from within your Activity, to access activity-specific
preferences

	
getSharedPreferences() from within your Activity (or other application
Context), to access application-level preferences

	
getDefaultSharedPreferences(), on PreferenceManager, to get the shared
preferences that work in concert with Android’s overall preference framework

The first two take a security mode parameter. The right answer here is
MODE_PRIVATE, so no other applications can access the file. The
getSharedPreferences() method also takes a name of a set of preferences;
getPreferences() effectively calls getSharedPreferences() with the
activity’s class name as the preference set name. The
getDefaultSharedPreferences() method takes the Context for the preferences
(e.g., your Activity).
All of those methods return an instance of SharedPreferences, which offers a
series of getters to access named preferences, returning a suitably-typed
result (e.g., getBoolean() to return a boolean preference). The getters also
take a default value, which is returned if there is no preference set under the
specified key.
Unless you have a good reason to do otherwise, you are best served using the
third option above — getDefaultSharedPreferences() — as that will give
you the SharedPreferences object that works with a PreferenceActivity by
default, as will be described later in this chapter.
Stating Your Preference
Given the appropriate SharedPreferences object, you can use edit() to get
an “editor” for the preferences. This object has a set of setters that mirror
the getters on the parent SharedPreferences object. It also has:

	
remove() to get rid of a single named preference

	
clear() to get rid of all preferences

	
apply() or commit() to persist your changes made via the editor

The last one is important — if you modify preferences via the editor and
fail to save the changes, those changes will evaporate once the editor
goes out of scope. commit() is a blocking call, while apply() works
asynchronously. Ideally, use apply() where possible, though it was only
added in Android 2.3, so it may not be available to you if you are aiming to
support earlier versions of Android than that.
Conversely, since the preferences object supports live changes, if one part of
your application (say, an activity) modifies shared preferences, another part
of your application (say, a service) will have access to the changed value
immediately.
Collecting Preferences with PreferenceFragment
Some “preferences” will be collected as part of the natural use of your
user interface. For example, if you have a SeekBar to control a zoom
level, you might elect to record the SeekBar position in SharedPreferences,
so you can restore the user’s last zoom level later on.
However, in many cases, we have various settings that we would like
the user to be able to configure but are not something that the user would
configure elsewhere in our UI.
You could roll your own UI to collect preferences in bulk from the user. On the
whole, this is a bad idea. Instead, use preference XML resources and a
PreferenceFragment.
Why?
One of the common complaints about Android developers is that they lack
discipline, not following any standards or conventions inherent in the
platform. For other operating systems, the device manufacturer might prevent
you from distributing apps that violate their human interface guidelines. With
Android, that is not the case — but this is not a blanket permission to do
whatever you want. Where there is a standard or convention, please follow it
unless you have a clear reason not to,
so that users will feel more comfortable with your app and their device.
Using a PreferenceFragment for collecting preferences is one such convention.
The linchpin to the preferences framework and PreferenceFragment is yet
another set of XML data structures. You can describe your application’s preferences in
XML files stored in your project’s res/xml/ directory. Given that, Android
can present a UI for manipulating those preferences, one which matches
what you see in the Settings app. The user’s choices are then
stored in the SharedPreferences that you get back from
getDefaultSharedPreferences().
This can be seen in the
Prefs/Fragment
sample project.
Showing the Current Values
This project’s main activity hosts a TableLayout, into which we will load
the values of five preferences:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TableRow>

 <TextView
 style="@style/label"
 android:text="@string/checkbox"/>

 <TextView
 android:id="@+id/checkbox"
 style="@style/value"/>
 </TableRow>

 <TableRow>

 <TextView
 style="@style/label"
 android:text="@string/ringtone"/>

 <TextView
 android:id="@+id/ringtone"
 style="@style/value"/>
 </TableRow>

 <TableRow>

 <TextView
 style="@style/label"
 android:text="@string/text"/>

 <TextView
 android:id="@+id/text"
 style="@style/value"/>
 </TableRow>

 <TableRow>

 <TextView
 style="@style/label"
 android:text="@string/list"/>

 <TextView
 android:id="@+id/list"
 style="@style/value"/>
 </TableRow>

</TableLayout>

(from Prefs/Fragment/app/src/main/res/layout/content.xml)
The above layout is used by PreferenceContentsFragment, which populates
the right-hand column of TextView widgets at runtime in onResume(), pulling
the values from the default SharedPreferences for our application:

package com.commonsware.android.preffrag;

import android.app.Fragment;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;

public class PreferenceContentsFragment extends Fragment {
 private TextView checkbox=null;
 private TextView ringtone=null;
 private TextView text=null;
 private TextView list=null;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.content, parent, false);

 checkbox=(TextView)result.findViewById(R.id.checkbox);
 ringtone=(TextView)result.findViewById(R.id.ringtone);
 text=(TextView)result.findViewById(R.id.text);
 list=(TextView)result.findViewById(R.id.list);

 return(result);
 }

 @Override
 public void onResume() {
 super.onResume();

 SharedPreferences prefs=
 PreferenceManager.getDefaultSharedPreferences(getActivity());

 checkbox.setText(Boolean.valueOf(prefs.getBoolean("checkbox", false)).toString());
 ringtone.setText(prefs.getString("ringtone", "<unset>"));
 text.setText(prefs.getString("text", "<unset>"));
 list.setText(prefs.getString("list", "<unset>"));
 }
}

(from Prefs/Fragment/app/src/main/java/com/commonsware/android/preffrag/PreferenceContentsFragment.java)
The main activity, FragmentsDemo, simply loads res/layout/main.xml, which
contains a <fragment> element pointing at PreferenceContentsFragment. It
also defines an options menu, which we will examine later in this section.
The result is an activity showing the default values of the preferences when
it is first run, since we have not set any values yet:

[image: Activity Showing Preference Values]

Figure 277: Activity Showing Preference Values
Defining Your Preferences
First, you need to tell Android what preferences you are trying to collect
from the user.
To do this, you will need to add a res/xml/ directory to your project, if
one does not already exist. Then, for your PreferenceFragment, you will
define one of these XML resource files.
The root element of this XML file will be <PreferenceScreen>, and it
will contain child elements, one per preference.
In the sample project, we have one such file, res/xml/preferences.xml:

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

 <CheckBoxPreference
 android:key="checkbox"
 android:summary="@string/pref1summary"
 android:title="@string/pref1title"/>

 <RingtonePreference
 android:key="ringtone"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="@string/pref2summary"
 android:title="@string/pref2title"/>

 <EditTextPreference
 android:dialogTitle="@string/dialogtitle"
 android:key="text"
 android:summary="@string/pref3summary"
 android:title="@string/pref3title"/>

 <ListPreference
 android:dialogTitle="@string/listdialogtitle"
 android:entries="@array/cities"
 android:entryValues="@array/airport_codes"
 android:key="list"
 android:summary="@string/pref4summary"
 android:title="@string/pref4title"/>

</PreferenceScreen>

(from Prefs/Fragment/app/src/main/res/xml/preferences.xml)
Each preference element has two attributes at minimum:

	
android:key, which is the key you use to look up the value in the
SharedPreferences object via methods like getInt()

	
android:title, which is a few words identifying this preference to
the user

You may also wish to consider having android:summary, which is a
short sentence explaining what the user is to supply for this preference.
There are lots of other attributes that are common to all preference elements,
and there are more types of preference elements than the ones
that we used in the preference XML shown above.
We will examine more preference elements later in this chapter.
Creating Your PreferenceFragment
Preference XML, on API Level 11 and higher, is loaded by an implementation of
PreferenceFragment. The mission of PreferenceFragment is to call
addPreferencesFromResource() in onCreate(), supplying the resource ID
of the preference XML to load (e.g., R.xml.preference2). That fragment,
in turn, can be loaded up by a simple Activity.
In fact, the fragment is so short, you could even make it be a
static class inside the activity, as is done in the sample app. The
activity that collects the preferences, EditPreferences, has a
Prefs static subclass of PreferenceFragment:

package com.commonsware.android.preffrag;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceFragment;

public class EditPreferences extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getFragmentManager().findFragmentById(android.R.id.content)==null) {
 getFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new Prefs()).commit();
 }
 }

 public static class Prefs extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }
 }
}

(from Prefs/Fragment/app/src/main/java/com/commonsware/android/preffrag/EditPreferences.java)
The only thing that Prefs does is call the inherited
addPreferencesFromResource() in its onCreate() method, supplying
the ID of the preference XML. All EditPreferences does is
show the fragment, in this case using a FragmentTransaction.
The Results
An action bar item in MainActivity starts up the
EditPreferences activity. If you click that from the overflow, you
will see the UI created from your XML by means of the
PreferenceFragment:

[image: Activity Collecting Preference Values]

Figure 278: Activity Collecting Preference Values
If you make a change, such as tapping on the checkbox, and press
BACK to return to the original activity, you will see the resulting
change in the preference values themselves:

[image: Original Activity, Showing Revised Preference Value]

Figure 279: Original Activity, Showing Revised Preference Value
Android Studio’s Preferences Editor
If you open up a preference XML resource in Android Studio, you will
be given an editor that is reminiscent of the layout resource editor.
You will have two sub-tabs: “Text” with the XML and “Design” with a
drag-and-drop UI:

[image: Android Studio Preferences Editor]

Figure 280: Android Studio Preferences Editor
The drag-and-drop editor UI works akin to its layout resource editor
counterpart. You can drag a preference from the Palette into either
the preview area or into the Component Tree to add it to the resource.
For any selected preference, the Attributes pane allows you to modify
attributes, either from the default short list of popular properties
or the full list of properties that you get from clicking “View all
properties”.
Types of Preferences
There are a variety of subclasses of Preference in the Android SDK for use
with PreferenceActivity. This section will outline the major ones.
Later in the book we will examine how to create
your own custom Preference classes.
CheckBoxPreference and SwitchPreference
The sample application shown above a CheckBoxPreference.
A CheckBoxPreference is an “inline” preference,
in that the widget the user interacts with (in this case, a CheckBox) is
part of the preference screen itself, rather than contained in a separate dialog.
SwitchPreference is functionally equivalent to CheckBoxPreference, insofar
as both collect boolean values from the user. The difference is that
SwitchPreference uses a Switch widget that the user slides left and right
to toggle between “on” and “off” states. Also note that SwitchPreference was
added in API Level 14 and therefore will not be available to older Android
versions.
EditTextPreference
EditTextPreference, when tapped by the user, pops up a dialog that contains
an EditText widget. You can configure this widget via attributes on the
<EditTextPreference> element — in addition to standard preference attributes
like android:key, you can include any attribute understood by EditText,
such as android:inputType.
The value stored in the SharedPreferences is a string.
The sample app has an EditTextPreference:

 <EditTextPreference
 android:dialogTitle="@string/dialogtitle"
 android:key="text"
 android:summary="@string/pref3summary"
 android:title="@string/pref3title"/>

(from Prefs/Fragment/app/src/main/res/xml/preferences.xml)
When the user taps on it in the PreferenceFragment, the user will see
a dialog where they can fill in a value, or edit an existing value if they
provided one previously:

[image: EditTextPreference UI]

Figure 281: EditTextPreference UI
RingtonePreference
RingtonePreference pops up a dialog with a list of ringtones installed
on the device or emulator. However, bear in mind that older emulator images
may not have any pre-installed ringtones.
In addition to the standard preference attributes, you can include
android:showDefault, indicating that the list should contain a “Default ringtone”
option. If the user chooses this ringtone, they are effectively choosing
the same ringtone that they have set up for incoming phone calls.
You can also use android:showSilent, which allows the user to choose a “Silence”
pseudo-ringtone, to indicate not to play any ringtone.
The sample app has a RingtonePreference:

 <RingtonePreference
 android:key="ringtone"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="@string/pref2summary"
 android:title="@string/pref2title"/>

(from Prefs/Fragment/app/src/main/res/xml/preferences.xml)
When the user taps on it in the PreferenceFragment, the user will see
a roster of ringtones, along with “Default” and “None” options, since we
opted into those:

[image: RingtonePreference UI]

Figure 282: RingtonePreference UI
The value stored in the SharedPreferences is a string, specifically the
string representation of a Uri pointing to a ContentProvider that can
serve up the ringtone for playback. The use of ContentProvider will be
covered in a later chapter, and playing back media like ringtones will be
covered in another later chapter.
ListPreference and MultiSelectListPreference
Visually, a ListPreference looks just like RingtonePreference, except that
you control what goes into the list. You do this by specifying a pair
of string-array resources in your preference XML.
String resources hold individual strings; string array resources hold a collection
of strings. Typically, you will find string array resources in res/values/arrays.xml
and related resource sets for translation. The <string-array> element has
the name attribute to identify the resource, along with child <item> elements
for the individual strings in the array.
So, our sample app has a pair of <string-array> resources in
res/values/arrays.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">
 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>
 <item>MDT</item>
 </string-array>
</resources>

(from Prefs/Fragment/app/src/main/res/values/arrays.xml)
Here, the actual strings are written in-line. They could just as easily
be references to string resource (e.g., [item>@string/philly</item]). For
user-facing strings, like those in the cities array, having them as
string resources may make it easier for you to manage your translations.
The sample app then uses those arrays in a ListPreference:

 <ListPreference
 android:dialogTitle="@string/listdialogtitle"
 android:entries="@array/cities"
 android:entryValues="@array/airport_codes"
 android:key="list"
 android:summary="@string/pref4summary"
 android:title="@string/pref4title"/>

(from Prefs/Fragment/app/src/main/res/xml/preferences.xml)
This then allows the user to choose a city, when the user taps on this
preference in the PreferenceFragment:

[image: ListPreference UI]

Figure 283: ListPreference UI
However, when the user chooses a city by name (e.g., Philadelphia),
what is stored in the SharedPreferences is the corresponding
airport code (e.g., PHL).
MultiSelectListPreference works much the same way, except:

	The list contains checkboxes, not radio buttons

	The user can check multiple items

	The result is stored in a “string set” in the SharedPreferences, retrieved
via getStringSet()

	It is only available on API Level 11 and higher

We will see MultiSelectListPreference in action
later in the book.
Tutorial #13 - Using Some Preferences
Now that we have the core reading functionality working, we can start to add
other features for the user.
One common thing in Android applications is to collect preferences from the
user, tailoring the way the app behaves. In the case of EmPubLite, we will
initially track two preferences:

	Whether the user wants to return to the book on the same chapter (page in
the ViewPager) that they were on when they last were reading the book

	Whether the user wants us to keep the screen on, so they do not have to keep
tapping the screen to prevent Android’s automatic sleep mode from kicking in

In this tutorial, we will collect and use these two preferences.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Defining the Preference XML Files
We need an XML resource file to define what preferences we wish to collect.
First, add four new <string> elements to res/values/strings.xml:

<string name="lastposition_title">Save Last Position</string>
<string name="lastposition_summary">Save the last chapter you were viewing and open up on that chapter when re-opening the app</string>
<string name="keepscreenon_summary">Keep the screen powered on while the reader is in the foreground</string>
<string name="keepscreenon_title">Keep Screen On</string>

Next, right click over res/ in your project, and choose
New > “Android resource directory” from the context menu.
Change the “Resource type” drop-down to be “xml”, then click OK to create the
directory.
Then, right-click over your new res/xml/ directory and choose
New > “XML resource file” from the context menu. Fill in pref_display.xml in the
“New XML Resource File” dialog, then click OK to create the file.
This will open up in a preference screen editor, with “Design” and “Text”
sub-tabs:

[image: Android Studio Preference Screen Editor, As Initially Launched]

Figure 284: Android Studio Preference Screen Editor, As Initially Launched
Drag a CheckBoxPreference from the Palette into the preview area.
Then, in the Attributes pane, set the key to saveLastPosition,
set the title to @string/lastposition_title, and set the
summary to @string/lastposition_summary:

[image: Android Studio Preference Screen Editor, After First Preference]

Figure 285: Android Studio Preference Screen Editor, After First Preference
Next, drag another CheckBoxPreference from the Palette into the preview area.
Then, in the Attributes pane for this newly-added preference,
set the key to keepScreenOn,
set the title to @string/keepscreenon_title, and set the
summary to @string/keepscreenon_summary:

[image: Android Studio Preference Screen Editor, After Second Preference]

Figure 286: Android Studio Preference Screen Editor, After Second Preference
If you look at the XML in the “Text” sub-tab, you should see that it
resembles:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">

 <CheckBoxPreference
 android:defaultValue="false"
 android:title="@string/lastposition_title"
 android:key="saveLastPosition"
 android:summary="@string/lastposition_summary" />
 <CheckBoxPreference
 android:defaultValue="false"
 android:title="@string/keepscreenon_title"
 android:key="keepScreenOn"
 android:summary="@string/keepscreenon_summary" />
</PreferenceScreen>

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/res/xml/pref_display.xml)
Step #2: Creating Our Preference Activity
We will eventually load that preference XML into a PreferenceFragment.
We could use a PreferenceActivity for that, but we do not have enough
preferences to warrant a full master/detail setup. Instead, we can just
display the PreferenceFragment in a regular Activity, named
Preferences, using a static inner class implementation of a
PreferenceFragment, named Display.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Activity > Empty Activity from the context menu. Set
the activity name to be Preferences and uncheck all the checkboxes.
Then click Finish to add the activity to the project.
In the Preferences class that is created, replace the current
implementation with the following:

package com.commonsware.empublite;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceFragment;

public class Preferences extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getFragmentManager().findFragmentById(android.R.id.content)==null) {
 getFragmentManager()
 .beginTransaction()
 .add(android.R.id.content, new Display())
 .commit();
 }
 }

 public static class Display extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.pref_display);
 }
 }
}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/Preferences.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Step #3: Adding To Our Action Bar
Of course, having this activity does us no good if we cannot start it up, so
we need to add another hook to our action bar configuration for that.
First, add a settings string resource, with a value of Settings:

<string name="settings">Settings</string>

Then, right-click over the res/ directory of your app/ module, and choose
New > Vector Asset from the context menu. Click the Icon button, search for
settings, and choose the “settings” icon, creating an ic_settings_black_24dp icon.
Click Next, then Finish.
Finally, add the following XML element to res/menu/options.xml as the first child
of the <menu> root element:

 <item
 android:id="@+id/settings"
 android:icon="@drawable/ic_settings_black_24dp"
 android:showAsAction="never"
 android:title="@string/settings">
 </item>

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/res/menu/options.xml)
Step #4: Launching the Preference Activity
The only thing yet needed to allow the user to get to the preferences is to
add another case to the switch() statement in onOptionsItemSelected()
of EmPubLiteActivity:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.about:
 Intent i = new Intent(this, SimpleContentActivity.class)
 .putExtra(SimpleContentActivity.EXTRA_FILE,
 "file:///android_asset/misc/about.html");
 startActivity(i);

 return(true);

 case R.id.help:
 i = new Intent(this, SimpleContentActivity.class)
 .putExtra(SimpleContentActivity.EXTRA_FILE,
 "file:///android_asset/misc/help.html");
 startActivity(i);

 return(true);

 case R.id.settings:
 startActivity(new Intent(this, Preferences.class));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Now, if you run this in an emulator or device, you will see the new option
in the action bar overflow:

[image: EmPubLite, With Revised Action Bar]

Figure 287: EmPubLite, With Revised Action Bar
Choosing the “Settings” option brings up our two preferences:

[image: Our Preferences]

Figure 288: Our Preferences
Step #5: Loading the Preferences
Now, we need to actually arrange to load the preferences on a background thread.
As noted, this will be
handled by our ModelFragment, much as it handles the loading of the book
contents.
First, add a private data member named prefs, that is an AtomicReference
to a SharedPreferences, to ModelFragment:

 final private AtomicReference<SharedPreferences> prefs=
 new AtomicReference<>();

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
Then, add a getPrefs() method to ModelFragment that returns the prefs value:

 public SharedPreferences getPrefs() {
 return(prefs.get());
 }

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
Next, revise LoadThread to:

	Replace the assets data member with a ctxt data member of type Context

	Take in a Context in the constructor, instead of an AssetManager
(this way, even if for some strange reason our original activity is
destroyed and recreated while we are loading the preferences, we will not be
leaking the original activity)

	Save the application context (from getApplicationContext() on Context)
in a data member, instead of an AssetManager

	Call getAssets() on that Context in run(), instead of using the former
AssetManager

	Also retrieve the SharedPreferences in run()

 private class LoadThread extends Thread {
 final private Context ctxt;

 LoadThread(Context ctxt) {
 super();

 this.ctxt=ctxt.getApplicationContext();
 }

 @Override
 public void run() {
 prefs.set(PreferenceManager.getDefaultSharedPreferences(ctxt));

 Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
 Gson gson=new Gson();

 try {
 InputStream is=ctxt.getAssets().open("book/contents.json");
 BufferedReader reader=
 new BufferedReader(new InputStreamReader(is));

 contents.set(gson.fromJson(reader, BookContents.class));

 EventBus.getDefault().post(new BookLoadedEvent(getBook()));
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
 }
 }
 }

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
This has our LoadThread load both the SharedPreferences and the BookContents,
and do so in a known order (SharedPreferences first).
You will need to modify onAttach() to just pass in the Activity to the
LoadThread constructor:

 @Override
 public void onAttach(Activity host) {
 super.onAttach(host);

 if (contents.get()==null) {
 new LoadThread(host).start();
 }
 }

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
The resulting ModelFragment should look like:

package com.commonsware.empublite;

import android.app.Activity;
import android.app.Fragment;
import android.content.Context;
import android.content.SharedPreferences;
import android.content.res.AssetManager;
import android.os.Bundle;
import android.os.Process;
import android.preference.PreferenceManager;
import android.util.Log;
import com.google.gson.Gson;
import org.greenrobot.eventbus.EventBus;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.concurrent.atomic.AtomicReference;

public class ModelFragment extends Fragment {
 final private AtomicReference<BookContents> contents=
 new AtomicReference<>();
 final private AtomicReference<SharedPreferences> prefs=
 new AtomicReference<>();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }

 @Override
 public void onAttach(Activity host) {
 super.onAttach(host);

 if (contents.get()==null) {
 new LoadThread(host).start();
 }
 }

 public BookContents getBook() {
 return(contents.get());
 }

 public SharedPreferences getPrefs() {
 return(prefs.get());
 }

 private class LoadThread extends Thread {
 final private Context ctxt;

 LoadThread(Context ctxt) {
 super();

 this.ctxt=ctxt.getApplicationContext();
 }

 @Override
 public void run() {
 prefs.set(PreferenceManager.getDefaultSharedPreferences(ctxt));

 Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
 Gson gson=new Gson();

 try {
 InputStream is=ctxt.getAssets().open("book/contents.json");
 BufferedReader reader=
 new BufferedReader(new InputStreamReader(is));

 contents.set(gson.fromJson(reader, BookContents.class));

 EventBus.getDefault().post(new BookLoadedEvent(getBook()));
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
 }
 }
 }
}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
Step #6: Saving the Last-Read Position
One preference is to restore our current page in the ViewPager when the
user later re-opens the app. To make that work, we need to start saving the
current page as the user leaves the app. And, we may as well use our freshly-minted
SharedPreferences to store this value.
We need a key under which we will store this value in the SharedPreferences,
so add a new static data member to EmPubLiteActivity:

private static final String PREF_LAST_POSITION="lastPosition";

We are also going to need access to our ModelFragment from outside of
onPause() in EmPubLiteActivity. Add a ModelFragment data member named
mfrag:

 private ModelFragment mfrag=null;

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Then, modify onStart() to refer to the mfrag data member, replacing
the former mfrag local variable:

 @Override
 public void onStart() {
 super.onStart();
 EventBus.getDefault().register(this);

 if (adapter==null) {
 mfrag=(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

 if (mfrag==null) {
 mfrag=new ModelFragment();

 getFragmentManager().beginTransaction()
 .add(mfrag, MODEL).commit();
 }
 else if (mfrag.getBook()!=null) {
 setupPager(mfrag.getBook());
 }
 }
 }

Next, update onStop() on EmPubLiteActivity to track the page of the ViewPager
that the user is on at the point in time when onStop() is called:

 @Override
 public void onStop() {
 EventBus.getDefault().unregister(this);

 if (mfrag.getPrefs()!=null) {
 int position=pager.getCurrentItem();

 mfrag.getPrefs().edit().putInt(PREF_LAST_POSITION, position)
 .apply();
 }

 super.onStop();
 }

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Here, we check to see that we have the SharedPreferences loaded — odds are
that we do, but we cannot be certain. If we do have access to the SharedPreferences,
we find out the current position within the ViewPager via getCurrentItem()
(e.g., 0 for the first page). We then obtain a SharedPreferences.Editor and
use it to save this position value in the SharedPreferences, keyed as
PREF_LAST_POSITION, using apply() to persist the changes.
Step #7: Restoring the Last-Read Position
Now that we are saving this position data, we can start to use it.
Our preference XML has our key to the “Save Last Position” preference, but we
need it in Java code as well, so add another static data member to EmPubLiteActivity:

private static final String PREF_SAVE_LAST_POSITION="saveLastPosition";

Add the following lines to the end of setupPager() in EmPubLiteActivity:

 SharedPreferences prefs=mfrag.getPrefs();

 if (prefs != null) {
 if (prefs.getBoolean(PREF_SAVE_LAST_POSITION, false)) {
 pager.setCurrentItem(prefs.getInt(PREF_LAST_POSITION, 0));
 }
 }

Here, we check to see if the user has enabled having us restore the last-saved
position (defaulting to false). If the user has, we retrieve the last-saved
position (defaulting to 0, or the first page), and call setCurrentItem()
on the ViewPager to shift to that particular page.
If you run this in a device or emulator, check the “Save Last Position” preference
checkbox, flip ahead a couple of chapters, exit the app via the BACK button, and
go back into the app, you will see that you are taken back to the chapter you
were last reading.
Step #8: Keeping the Screen On
Our other preference is whether or not the screen should stay on, without
user input, while we are reading the book. The bare-bones implementation of this
requires just two lines of additional code.
First, we need to define another static data member on EmPubLiteActivity,
this time with the key for our keep-screen-on preference:

private static final String PREF_KEEP_SCREEN_ON="keepScreenOn";

Then, add one more line to setupPager() in EmPubLiteActivity, inside of
the if block:

pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, false));

This will give you:

 private void setupPager(BookContents contents) {
 adapter=new ContentsAdapter(this, contents);
 pager.setAdapter(adapter);

 MaterialTabs tabs=(MaterialTabs)findViewById(R.id.tabs);
 tabs.setViewPager(pager);

 SharedPreferences prefs=mfrag.getPrefs();

 if (prefs!=null) {
 if (prefs.getBoolean(PREF_SAVE_LAST_POSITION, false)) {
 pager.setCurrentItem(prefs.getInt(PREF_LAST_POSITION, 0));
 }

 pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, false));
 }
 }

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
setKeepScreenOn(), called on any View, will keep the screen lit and active
without continuous user input, so long as that View is on the screen.
This approach is somewhat limited, in that we are only setting this during
the call to setupPager(). If the user changes the preference value, that
change would only take effect when the activity was restarted (e.g., user
rotates the screen, user exits the app via BACK and returns later).
The simplest way for us to have this take more immediate effect is to realize
that EmPubLiteActivity will be paused and stopped when the Preferences
activity is on the screen, and will be started and resumed when the user is
done adjusting preferences. So, we can simply augment onStart() to
also update the screen-on setting:

 @Override
 public void onStart() {
 super.onStart();
 EventBus.getDefault().register(this);

 if (adapter==null) {
 mfrag=(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

 if (mfrag==null) {
 mfrag=new ModelFragment();

 getFragmentManager().beginTransaction()
 .add(mfrag, MODEL).commit();
 }
 else if (mfrag.getBook()!=null) {
 setupPager(mfrag.getBook());
 }
 }

 if (mfrag.getPrefs()!=null) {
 pager.setKeepScreenOn(mfrag.getPrefs()
 .getBoolean(PREF_KEEP_SCREEN_ON, false));
 }
 }

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Of course, we may not have the SharedPreferences yet, when the app is first
starting up, so we avoid making any changes in that case.
If you run this on a device (note: not an emulator), you can play with this
preference and see the changes in the screen’s behavior.
In Our Next Episode…
… we will allow the user to write, save, and delete notes
for the currently-viewed chapter, using a database.
SQLite Databases
Besides SharedPreferences and your own file structures, the third primary
means of persisting data locally on Android is via SQLite. For many applications,
SQLite is the app’s backbone, whether it is used directly or via some
third-party wrapper.
This chapter will focus on how you can directly work with SQLite to store
relational data.
Introducing SQLite
SQLite is a very popular embedded database, as it
combines a clean SQL interface with a very small memory footprint and decent
speed. Moreover, it is public domain, so everyone can use it. Lots of firms
(Adobe, Apple, Google, Symbian) and open source projects (Mozilla, PHP,
Python) all ship products with SQLite.
For Android, SQLite is “baked into” the Android runtime, so every Android
application can create SQLite databases. Since SQLite uses a SQL interface, it
is fairly straightforward to use for people with experience in other SQL-based
databases. However, its native API is not JDBC, and JDBC might be too much
overhead for a memory-limited device like a phone, anyway. Hence, Android
programmers have a different API to learn — the good news being is that it
is not that difficult.
This chapter will cover the basics of SQLite use in the context of working on
Android. It by no means is a thorough coverage of SQLite as a whole. If you
want to learn more about SQLite, the SQLite Web site
may help.
Thinking About Schemas
SQLite is a typical relational database, containing tables (themselves consisting
of rows and columns), indexes, and so on. Your application will need its own
set of tables and so forth for holding whatever data you wish to hold. This
structure is generally referred to as a “schema”.
It is likely that your schema will need to change over time. You might add
new tables or columns in support of new features. Or, you might significantly
reorganize your data structure and wind up dropping some tables while moving
the data into new ones.
As a result, when you ship an update to your application to your users, not
only will your Java code change, but the expectations of that Java code
will change as well, with respect to what your database schema will look like.
Version 1 of your app will use your original schema, but by the time you
ship, say, version 5 of the app, you might need an adjusted schema.
Android has facilities to assist you with handling changing database schemas,
mostly centered around the SQLiteOpenHelper class.
Start with a Helper
SQLiteOpenHelper is designed to consolidate your code related to two
very common problems:

	What happens the very first time when your app is run on a device after
it is installed? At this point, we do not yet have a database, and so you
will need to create your tables, indexes, starter data, and so on.

	What happens the very first time when an upgraded version of your app
is run on a device, where the upgraded version is expecting a newer database
schema? Your database will still be on the old schema from the older edition
of the app. You will need to have a chance to alter the database schema
to match the needs of the rest of your app.

SQLiteOpenHelper wraps up the logic to create and upgrade a
database, per your specifications, as needed by your application. You will need
to create a custom subclass of SQLiteOpenHelper, implementing three methods
at minimum:

	The constructor, chaining upward to the SQLiteOpenHelper constructor. This
takes the Context (e.g., an Activity), the name of the database, an
optional cursor factory (typically, just pass null), and an integer
representing the version of the database schema you are using (typically start
at 1 and increment from there).

	
onCreate(), called when there is no database and your app needs one,
which passes you a SQLiteDatabase object, pointing at a newly-created database,
that you use to populate with tables and initial data, as appropriate.

	
onUpgrade(), called when the schema version you are seeking does not
match the schema version of the database, which passes you a SQLiteDatabase
object and the old and
new version numbers, so you can figure out how best to convert the database
from the old schema to the new one.

To see how all this SQLite stuff works in practice, we will examine the
Database/ConstantsROWID
sample application. This application pulls a bunch of gravitational constants
from the SensorManager class, puts them in a database table, displays them
in a ListFragment, and allows the user to add new ones via the action
bar.
First, we need a SQLiteOpenHelper subclass, here named DatabaseHelper.
The DatabaseHelper constructor chains to the superclass and supplies the
name of the database (held in a DATABASE_NAME static data member) and the
version number of our database schema (held in SCHEMA):

public class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="constants.db";
 private static final int SCHEMA=1;
 static final String TITLE="title";
 static final String VALUE="value";
 static final String TABLE="constants";

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA);
 }

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)
We also need an onCreate() method, which will be called and passed a
SQLiteDatabase object when a database needs to be newly created. Below you
will see the DatabaseHelper implementation of onCreate(), though we will
get into how it is using the SQLiteDatabase object more later in this chapter:

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE constants (title TEXT, value REAL);");

 ContentValues cv=new ContentValues();

 cv.put(TITLE, "Gravity, Death Star I");
 cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Earth");
 cv.put(VALUE, SensorManager.GRAVITY_EARTH);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Jupiter");
 cv.put(VALUE, SensorManager.GRAVITY_JUPITER);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Mars");
 cv.put(VALUE, SensorManager.GRAVITY_MARS);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Mercury");
 cv.put(VALUE, SensorManager.GRAVITY_MERCURY);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Moon");
 cv.put(VALUE, SensorManager.GRAVITY_MOON);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Neptune");
 cv.put(VALUE, SensorManager.GRAVITY_NEPTUNE);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Pluto");
 cv.put(VALUE, SensorManager.GRAVITY_PLUTO);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Saturn");
 cv.put(VALUE, SensorManager.GRAVITY_SATURN);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Sun");
 cv.put(VALUE, SensorManager.GRAVITY_SUN);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, The Island");
 cv.put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Uranus");
 cv.put(VALUE, SensorManager.GRAVITY_URANUS);
 db.insert(TABLE, TITLE, cv);

 cv.put(TITLE, "Gravity, Venus");
 cv.put(VALUE, SensorManager.GRAVITY_VENUS);
 db.insert(TABLE, TITLE, cv);
 }

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)
Suffice it to say for the moment that it is creating a constants table and
inserting several rows into it, all wrapped in a transaction.
We also need onUpgrade()… even though it should never be called right now:

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 throw new RuntimeException("How did we get here?");
 }

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)
After all, right now, we only have one version of our schema (1) and therefore
will have no need to upgrade. If, in the future, we change SCHEMA to a higher
value (e.g., 2), and we upgrade our app on a device that had previously been
run with our earlier schema, then we will be called with onUpgrade(). We are
passed the old and new schema versions, so we know what needs to be upgraded.
Bear in mind that users do not necessarily have to take on each of your application
updates, and so you might find that a user skipped a schema version:

	You release an app on Monday, with schema version 1

	A user installs your app on Tuesday and runs it, creating a database via onCreate()

	You release an upgraded app on Wednesday, with schema version 2

	You release yet another upgrade on Thursday, with schema version 3

	The user installs your upgrade, now needing a schema version 3 database
instead of the version 1 presently on the device, triggering a call to
onUpgrade()

There are two other methods you can elect to override in your
SQLiteOpenHelper, if you feel the need:

	You can override onOpen(), to get control when somebody opens this
database. Usually, this is not required.

	Android 3.0 introduced onDowngrade(), which will be called if the code
requests an older schema than what is in the database presently. This is the
converse of onUpgrade() — if your version numbers differ, one of these
two methods will be invoked. Since normally you are moving forward with
updates, you can usually skip onDowngrade().

Employing Your Helper
To use your SQLiteOpenHelper subclass, create and hold onto an instance of
it. Then, when you need a SQLiteDatabase object to do queries or data
modifications, ask your SQLiteOpenHelper to getReadableDatabase() or
getWritableDatabase(), depending upon whether or not you will be changing
its contents.
For example, the ConstantsFragment from the sample app creates a DatabaseHelper
instance in onViewCreated() and holds onto it in a data member:

 db=new DatabaseHelper(getActivity());

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
When you are done with the database (e.g., your activity is being closed),
simply call close() on your SQLiteOpenHelper to release your connection, as
ConstantsFragment does (among other things) in onDestroy():

 @Override
 public void onDestroy() {
 if (task!=null) {
 task.cancel(false);
 }

 ((CursorAdapter)getListAdapter()).getCursor().close();
 db.close();

 super.onDestroy();
 }

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
(we will explore those “other things” in a bit)
Where to Hold a Helper
For trivial apps, like the one profiled in this chapter, holding a SQLiteOpenHelper
in a data member of your one-and-only activity is fine.
If, however, you have multiple components — such as multiple activities –
all needing to use the database, you are much better served having a
singleton instance of your SQLiteOpenHelper, compared to having each activity
have its own instance.
The reason is threading.
You really should do your database I/O on background threads. Opening a database
is cheap, but working with it (queries, inserts, etc.) is not. The SQLiteDatabase
object managed by SQLiteOpenHelper is thread-safe… so long as all threads
are using the same instance.
For singleton objects that depend upon a Context, like SQLiteOpenHelper,
rather than create the object using a garden-variety Context like an
Activity, you really should create it with an Application. There is a singleton
instance of a Context, in the form of the Application subclass, created
in your process moments after it is started. You can retrieve this singleton
by calling getApplicationContext() on any other Context. The advantage of
using Application is memory leaks: if you put a SQLiteOpenHelper in a singleton,
and use, say, an Activity to create it, then the Activity might not be
able to be garbage-collected, because the SQLiteOpenHelper keeps a strong
reference to it. Since Application is itself a singleton (and, hence, is
“pre-leaked”, so to speak), the risks of a memory leak diminish significantly.
So, instead of:

db=new DatabaseHelper(getActivity());

in a fragment, with db as a data member, you might have:

db=new DatabaseHelper(getActivity().getApplicationContext());

with db as a static data member, shared by multiple activities or other
components.
Getting Data Out
One popular thing to do with a database is to get data out of it. Android has
a few ways you can execute a query on a SQLiteDatabase (from your
SQLiteOpenHelper), along with some classes, like CursorAdapter, to help
you use the results you get back.
Your Query Options
In most cases, your simplest option for executing a query is to call rawQuery()
on the SQLiteDatabase. This takes two parameters:

	A SQL SELECT statement (or anything else that returns a result set), optionally
with ? characters in the WHERE clause (or ORDER BY or similar clauses)
representing parameters to be bound at runtime

	An optional String array of the parameters to be used to replace the ? characters
in the query

If you do not use the ? position parameter syntax in your query, you are welcome
to pass null as the second parameter to rawQuery().
The nice thing about rawQuery() is that any valid SQL syntax works, so long
as it returns a result set. You are welcome to use joins, sub-selects, and so
on without issue.
There are two other query options — query() and SQLiteQueryBuilder. These
both build up a SQL SELECT statement from its component parts (e.g., name
of the table to query, WHERE clause and positional parameters). These
are more cumbersome to use, particularly with complex SELECT statements.
Mostly, they would be used in cases where, for one reason or another, you do
not know the precise query at compile time and find it easier to use
these facilities to construct the query from parts at runtime. Some developers
will do this to avoid duplicating values, by defining constants for things
like table names and column names.
For example, ConstantsFragment has a private inner class named BaseTask
which has a doQuery() method that uses query():

 abstract private class BaseTask<T> extends AsyncTask<T, Void, Cursor> {
 @Override
 public void onPostExecute(Cursor result) {
 ((CursorAdapter)getListAdapter()).changeCursor(result);
 current=result;
 task=null;
 }

 Cursor doQuery() {
 Cursor result=
 db
 .getReadableDatabase()
 .query(DatabaseHelper.TABLE,
 new String[] {"ROWID AS _id",
 DatabaseHelper.TITLE,
 DatabaseHelper.VALUE},
 null, null, null, null, DatabaseHelper.TITLE);

 result.getCount();

 return(result);
 }
 }

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
Do not concatenate your own WHERE clause, though. Let the ? positional parameters
handle that for you, as the work they do to escape your apostrophes, quotation marks,
and the like also helps to defend against SQL injection attacks. In this particular
case, we do not have a WHERE clause.
If that ROWID AS _id piece looks a bit odd, we will see why that is in the query
a bit later in this chapter.
What Is a Cursor?
All three of these give you a Cursor when you are done. In Android, a Cursor
represents the entire result set of the query — all the rows and all the columns
that the query returned. In this respect, it is reminiscent of a “client-side
cursor” from toolkits like ODBC, JDBC, etc.
(if the Cursor result set is over 1MB, it actually only holds a “window” on the
data, and the story gets really really complicated…)
As such, a Cursor can be quite the memory hog. Please close() the Cursor
when you are done with it, to free up the heap space it consumes and make that
memory available to the rest of your application.
Using the Cursor Manually
With the Cursor, you can:

	Find out how many rows are in the result set via getCount()

	Iterate over the rows via moveToFirst(), moveToNext(), and
isAfterLast()

	Find out the names of the columns via getColumnNames(), convert those into
column numbers via getColumnIndex(), and get values for the current row for a
given column via methods like getString(), getInt(), etc.

For example, here we iterate over a fictitious widgets table’s rows:

Cursor result=
 db.rawQuery("SELECT _id, name, inventory FROM widgets", null);

while (result.moveToNext()) {
 int id=result.getInt(0);
 String name=result.getString(1);
 int inventory=result.getInt(2);

 // do something useful with these
}

result.close();

Introducing CursorAdapter
Another way to use a Cursor is to wrap it in a CursorAdapter. Just as
ArrayAdapter adapts arrays, CursorAdapter adapts Cursor objects, making
their data available to an AdapterView like a ListView.
The easiest way to set one of these up is to use SimpleCursorAdapter, which
extends CursorAdapter and provides some boilerplate logic for taking values
out of columns and putting them into row View objects for a ListView (or
other AdapterView). The sample app does just that:

 SimpleCursorAdapter adapter=
 new SimpleCursorAdapter(getActivity(), R.layout.row,
 current, new String[] {
 DatabaseHelper.TITLE,
 DatabaseHelper.VALUE },
 new int[] { R.id.title, R.id.value },
 0);

 setListAdapter(adapter);

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
Here, we are telling SimpleCursorAdapter to take rows out of a Cursor
named current, turning each into an inflated R.layout.row ViewGroup,
in this case, a RelativeLayout holding a pair of TextView widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:textSize="20sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:textSize="20sp"
 android:textStyle="bold"/>

</RelativeLayout>

(from Database/ConstantsROWID/app/src/main/res/layout/row.xml)
For each row in the Cursor, the columns named title and value (represented
by TITLE and VALUE constants on DatabaseHelper) are to be poured into
their respective TextView widgets (R.id.title and R.id.value).
Note, though, that if you are going to use CursorAdapter or
its subclasses (like SimpleCursorAdapter), your result set of your query
must contain an integer column named _id that is unique for the result set.
This “id” value is then supplied to methods like onListItemClick(), to
identify what item the user clicked upon in the AdapterView. Note that this
requirement is on the result set in the Cursor, so if you have a suitable
column in a table that is not named _id, you can rename it in your query
(e.g., SELECT key AS _id, ...).
However, if you want, you can use the built-in ROWID
Quoting the SQLite documentation:

In SQLite, every row of every table has a 64-bit signed integer ROWID. The ROWID for each row is unique among all rows in the same table. You can access the ROWID of an SQLite table using one the special column names ROWID, _ROWID_, or OID… If a table contains a column of type INTEGER PRIMARY KEY, then that column becomes an alias for the ROWID. You can then access the ROWID using any of four different names, the original three names described above or the name given to the INTEGER PRIMARY KEY column. All these names are aliases for one another and work equally well in any context.

With that in mind, if you want to query SQLite and use the results in a
CursorAdapter, but you do not have your own INTEGER PRIMARY KEY column,
you can just include ROWID in your query, renaming it to _id to satisfy
CursorAdapter.
That is why we have the ROWID AS _id in the doQuery() method: to
satisfy this _id requirement of CursorAdapter.
Also note that you cannot close() the Cursor used by a CursorAdapter
until you no longer need the CursorAdapter. That is why we do not close
the Cursor until onDestroy() of the fragment:

 @Override
 public void onDestroy() {
 if (task!=null) {
 task.cancel(false);
 }

 ((CursorAdapter)getListAdapter()).getCursor().close();
 db.close();

 super.onDestroy();
 }

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
We retrieve the Cursor from the CursorAdapter, which we get by calling
getListAdapter() on the fragment.
Getting Data Out, Asynchronously
Ideally, queries are done on a background thread, as they may take some time.
One approach for doing that is to use an AsyncTask. In the sample application,
ConstantsFragment kicks off a LoadCursorTask in onViewCreated() (shown
above). LoadCursorTask extends the BaseTask class mentioned previously,
where the doQuery() method resides.
LoadCursorTask is responsible for doing the query (via the doQuery()
method shown above) and putting the results in the ListView inside the fragment
(using the SimpleCursorAdapter shown above):

 abstract private class BaseTask<T> extends AsyncTask<T, Void, Cursor> {
 @Override
 public void onPostExecute(Cursor result) {
 ((CursorAdapter)getListAdapter()).changeCursor(result);
 current=result;
 task=null;
 }

 Cursor doQuery() {
 Cursor result=
 db
 .getReadableDatabase()
 .query(DatabaseHelper.TABLE,
 new String[] {"ROWID AS _id",
 DatabaseHelper.TITLE,
 DatabaseHelper.VALUE},
 null, null, null, null, DatabaseHelper.TITLE);

 result.getCount();

 return(result);
 }
 }

 private class LoadCursorTask extends BaseTask<Void> {
 @Override
 protected Cursor doInBackground(Void... params) {
 return(doQuery());
 }
 }

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
We execute the actual query in doInBackground() and call getCount() on the Cursor,
to force it to actually perform the query — query() returns the Cursor,
but the query is not actually executed until we do something that needs
the result set. This also holds true for rawQuery(), which is why we need
to make sure to “touch” the Cursor while we are on the background thread.
onPostExecute() then uses changeCursor() to replace the Cursor in
the SimpleCursorAdapter with the results. Since our SimpleCursorAdapter
was created with a null Cursor, changeCursor() just slides in the new
Cursor, telling the ListView that the data changed. This causes our
ListView to be populated.
This way, the UI will not be frozen while the query is being executed, yet we
only update the UI from the main application thread.
Note that the first time we try using the SQLiteOpenHelper is in our
background thread. SQLiteOpenHelper will not try creating our database
(e.g., for a new app install) until we call getReadableDatabase() or
getWritableDatabase(). Hence, onCreate() (or, later, onUpgrade()) of
our SQLiteOpenHelper will wind up being called on the background thread
as well, meaning that the time spent creating (or upgrading) the database
also does not freeze the UI.
Also note that in onDestroy(), as shown previously, we call cancel()
on the AsyncTask if it is not null. If the task is still running,
calling cancel() will prevent onPostExecute() from being invoked, and we
will not have to worry about updating our UI after the fragment has been
destroyed.
The Rest of the CRUD
To get data out of a database, it is generally useful to put data into it in the
first place. The sample app starts by loading in data when the database is
created (in onCreate() of DatabaseHelper), plus has an action bar item
to allow the user to add other constants as needed.
In this section, we will examine in further detail how we manipulate the
database, for both the write aspects of CRUD (create-read-update-delete) and
for data definition language (DDL) operations (creating tables, creating indexes, etc.).
The Primary Option: execSQL()
For creating your tables and indexes, you will need to call execSQL() on your
SQLiteDatabase, providing the DDL statement you wish
to apply against the
database. Barring a database error, this method returns nothing.
So, for example, you can call execSQL() to create the constants table, as
shown in the DatabaseHelper onCreate() method:

 db.execSQL("CREATE TABLE constants (title TEXT, value REAL);");

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)
This will create a table, named constants, with two data columns: title (text) and
value (a float, or “real” in SQLite terms).
Most likely, you will create tables and indexes when you first create the
database, or possibly when the database needs upgrading to accommodate a new
release of your application. If you do not change your table schemas, you might
never drop your tables or indexes, but if you do, just use execSQL() to
invoke DROP INDEX and DROP TABLE statements as needed.
Alternative Options
For inserts, updates, and deletes of data, you have two choices.
You can always use execSQL(), just like you did for creating the tables. The
execSQL() method works for any SQL that does not return results, so it can
handle INSERT, UPDATE, DELETE, etc. just fine.
Your alternative is to use the insert(), update(), and delete() methods
on the SQLiteDatabase object, which eliminate much of the SQL syntax required
to do basic operations.
For example, here we insert() a new row into our constants table, again
from onCreate() of DatabaseHelper:

 ContentValues cv=new ContentValues();

 cv.put(TITLE, "Gravity, Death Star I");
 cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
 db.insert(TABLE, TITLE, cv);

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)
These methods make use of ContentValues objects, which implement a
Map-esque interface, albeit one that has additional methods for working with
SQLite types. For example, in addition to get() to retrieve a value by its
key, you have getAsInteger(), getAsString(), and so forth.
The insert() method takes the name of the table, the name of one column as
the “null column hack”, and a ContentValues with the initial values you want
put into this row. The “null column hack” is for the case where the
ContentValues instance is empty — the column named as the “null column
hack” will be explicitly assigned the value NULL in the SQL INSERT
statement generated by insert(). This is required due to a quirk in SQLite’s
support for the SQL INSERT statement.
The update() method takes the name of the table, a ContentValues
representing the columns and replacement values to use, an optional WHERE
clause, and an optional list of parameters to fill into the WHERE clause, to
replace any embedded question marks (?). Since update() only replaces
columns with fixed values, versus ones computed based on other information, you
may need to use execSQL() to accomplish some ends. The WHERE clause and
parameter list works akin to the positional SQL parameters you may be used to
from other SQL APIs.
The delete() method works akin to update(), taking the name of the table,
the optional WHERE clause, and the corresponding parameters to fill into the
WHERE clause.
Asynchronous CRUD and UI Updates
Just as querying a database should be done on a background thread, so should
modifying a database. This is why it is important to make the first time you
request a SQLiteDatabase from a SQLiteOpenHelper be on a background thread,
in case onCreate() or onUpgrade() are needed.
The same thing holds true if you need to update the database during normal
operation of your app. For example, the sample application has an “add” action
bar item in the upper-right corner of the screen:

[image: The ConstantsBrowser Sample]

Figure 289: The ConstantsBrowser Sample
Clicking on that brings up a dialog — a technique we will discuss
later in this book:

[image: The ConstantsBrowser Sample, Add Constant Dialog]

Figure 290: The ConstantsBrowser Sample, Add Constant Dialog
If the user fills in a constant and clicks the “OK” button, we need to
insert a new record in the database. That is handled via an InsertTask:

 private class InsertTask extends BaseTask<ContentValues> {
 @Override
 protected Cursor doInBackground(ContentValues... values) {
 db.getWritableDatabase().insert(DatabaseHelper.TABLE,
 DatabaseHelper.TITLE, values[0]);

 return(doQuery());
 }
 }

(from Database/ConstantsROWID/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
The InsertTask is supplied a ContentValues object with our title
and value, just as we used in onCreate() of DatabaseHelper. In
doInBackground(), we get a writable database from DatabaseHelper and
perform the insert() call, so the database I/O does not tie up the main
application thread.
However, in doInBackground(), we also call doQuery() again. This
retrieves a fresh Cursor with the new roster of constants… including the
one we just inserted. As with LoadCursorTask, we execute doQuery() in
doInBackground() to keep the database I/O off the main application thread.
This triggers the same onPostExecute() as before, inherited from
BaseTask, which uses changeCursor() to replace any existing results
with the new results.
Setting Transaction Bounds
By default, each SQL statement executes in its own transaction — this is fairly
typical behavior for a SQL database, and SQLite is no exception.
There are two reasons why you might want to have your own transaction bounds,
larger than a single statement:

	The classic “we have a series of operations that need to succeed or fail as a
whole” rationale, for maintaining data integrity

	Performance, as each database transaction involves disk I/O, and one large transaction
will be much faster than lots of little transactions

The basic recipe for your own transactions is:

try {
 db.beginTransaction();

 // several SQL statements in here

 db.setTransactionSuccessful();
}
finally {
 db.endTransaction();
}

beginTransaction() marks the fact that you want a transaction.
setTransactionSuccessful() indicates that you want the transaction to commit.
However, the actual COMMIT or ROLLBACK does not occur until endTransaction().
In the normal case, setTransactionSuccessful() does get called, and
endTransaction() performs a COMMIT. If, however, one of your SQL statements
fails (e.g., violates a foreign key constraint), the setTransactionSuccessful()
call is skipped, so endTransaction() will do a ROLLBACK.
You might wonder why we did not bother with a transaction in onCreate() method
of DatabaseHelper, given the latter reason. That is because onCreate() is called
within a transaction set up by SQLiteOpenHelper itself, so you do not need your own.
Hey, What About Hibernate?
Those of you with significant Java backgrounds outside of Android are probably
pounding your head against your desk right about now. Outside of a few
conveniences like SQLiteOpenHelper and CursorAdapter, Android’s approach
to database I/O feels a bit like classic JDBC. Java developers, having
experienced the pain of raw JDBC, created various wrappers around it,
the most prominent of which is an ORM (object-relational mapper) called
Hibernate.
Alas, Hibernate is designed for servers, not mobile devices. It is a little
bit heavyweight, and it is designed for use with JDBC, not Android’s SQLite
classes.
Android did not include any sort of ORM in the beginning for two main reasons:

	To keep the firmware size as small as possible, as smaller firmware can
lead to less-expensive devices

	To eliminate the ORM overhead (e.g., reflection), which would have been
too much for early Android versions on early Android devices

The Android ecosystem has come up with alternatives, such as
ORMLite and
greenDAO. So, if you are used
to using an ORM, you may want to investigate these sorts of solutions — they
just are not built into Android itself.
But, What About Room?
In 2017, Google introduced the Architecture Components: a set of libraries
designed to offer higher-level abstractions around core architecture concerns.
One piece of the Architecture Components is Room, which is Google’s take on
object-relational mapping code.
Room is covered in the companion volume,
“Android’s Architecture Components”.
Visit the Trails!
If you are interested in exposing your database contents to a third-party
application, you may wish to read up on ContentProvider.
The trails also have chapters on encrypted databases using SQLCipher
and shipping pre-packaged databases with your app.
Tutorial #14 - Saving Notes
It would be nice if the user could add some personal notes to the chapter
that she is reading, whether that serves as commentary, points to be
researched, complaints about the author’s hair (or lack thereof),
or whatever.
So, in this chapter, we will add a new fragment and new activity to allow
the user to add notes per chapter, via a large EditText widget. Those
notes will be stored in a SQLite database.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Adding a DatabaseHelper
The first step for working with SQLite is to add an implementation of
SQLiteOpenHelper, which we will do here, named DatabaseHelper.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in DatabaseHelper
as the name and android.database.sqlite.SQLiteOpenHelper as the
superclass. Then, click OK to create the empty class.
Then, replace the contents of that class with the following:

package com.commonsware.empublite;

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;

public class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="empublite.db";
 private static final int SCHEMA_VERSION=1;
 private static DatabaseHelper singleton=null;

 synchronized static DatabaseHelper getInstance(Context ctxt) {
 if (singleton == null) {
 singleton=new DatabaseHelper(ctxt.getApplicationContext());
 }

 return(singleton);
 }

 private DatabaseHelper(Context ctxt) {
 super(ctxt, DATABASE_NAME, null, SCHEMA_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE notes (position INTEGER PRIMARY KEY, prose TEXT);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 throw new RuntimeException("This should not be called");
 }
}

Step #2: Examining DatabaseHelper
Our initial version of DatabaseHelper has a few things:

	It has the constructor, supplying to the superclass the name of the
database file (DATABASE_NAME) and the revision number of our
schema (SCHEMA_VERSION). Note that the constructor is private,
as we are using the singleton pattern, so only DatabaseHelper
should be able to create DatabaseHelper instances.

	It has the onCreate() method, invoked the first time we run the
app on a device or emulator, to let us populate the database. Here, we
use execSQL() to define a notes table with a position column (indicating
our chapter) and a prose column (what the user types in as the note).

	It has the onUpgrade() method, needed because SQLiteOpenHelper is
abstract, so our app will not compile without an implementation. Until
we revise our schema, though, this method should never be called, so
we raise a RuntimeException in the off chance that it is called
unexpectedly.

	It has a static DatabaseHelper singleton instance and a getInstance()
method to lazy-initialize it.

As noted in the chapter on databases, it is important
to ensure that all threads are accessing the same SQLiteDatabase object,
for thread safety. That usually means you hold onto a single SQLiteOpenHelper
object. And, in our case, we might want to get at this database from more
than one activity. Hence, we go with the singleton approach, so everyone
works with the same DatabaseHelper instance.
Step #3: Creating a NoteFragment
Having a database is nice and all, but we need to work on the UI to allow
users to enter notes. To do that, we will start with a NoteFragment.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in NoteFragment
as the name and android.app.Fragment as the superclass. Then,
click OK to create the empty class.
Next, replace the contents of that class with the following:

package com.commonsware.empublite;

import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;

public class NoteFragment extends Fragment {
 private static final String KEY_POSITION="position";
 private EditText editor=null;

 static NoteFragment newInstance(int position) {
 NoteFragment frag=new NoteFragment();
 Bundle args=new Bundle();

 args.putInt(KEY_POSITION, position);
 frag.setArguments(args);

 return(frag);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.editor, container, false);

 editor=(EditText)result.findViewById(R.id.editor);

 return(result);
 }

 private int getPosition() {
 return(getArguments().getInt(KEY_POSITION, -1));
 }
}

Note that this fragment uses the res/layout/editor.xml resource that
we created back in Tutorial #5.
Step #4: Examining NoteFragment
Our NoteFragment is fairly straightforward and is reminiscent of the
SimpleContentFragment we created in Tutorial #11.
NoteFragment has a newInstance() static
factory method. This method creates an instance of NoteFragment,
takes a passed-in int (identifying the chapter for which we are creating
a note), puts it in a
Bundle identified as KEY_POSITION, hands the Bundle to the fragment as its
arguments, and returns the newly-created NoteFragment.
In onCreateView(), we inflate the R.layout.editor resource that we defined
and get our hands on our EditText widget for later use.
Step #5: Creating the NoteActivity
Having a fragment without displaying it is fairly pointless, so we need
something to load a NoteFragment. Particularly for phones, the simplest
answer is to create a NoteActivity for that, paralleling the relationship
between SimpleContentFragment and SimpleContentActivity.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Activity > Empty Activity from the context menu.
Fill in NoteActivity as the name, uncheck all the checkboxes,
and click OK to create the empty class.
In the NoteActivity class that is created, replace the current
implementation with the following:

package com.commonsware.empublite;

import android.app.Activity;
import android.app.Fragment;
import android.os.Bundle;

public class NoteActivity extends Activity {
 public static final String EXTRA_POSITION="position";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getFragmentManager().findFragmentById(android.R.id.content) == null) {
 int position=getIntent().getIntExtra(EXTRA_POSITION, -1);

 if (position >= 0) {
 Fragment f=NoteFragment.newInstance(position);

 getFragmentManager().beginTransaction()
 .add(android.R.id.content, f).commit();
 }
 }
 }
}

Step #6: Examining NoteActivity
As you can see, this is a fairly trivial activity. In onCreate(), if
we are being created anew, we execute a FragmentTransaction to add a
NoteFragment to our activity, pouring it into the full screen
(android.R.id.content). Here, android.R.id.content identifies the container into which the
results of setContentView() would go — it is a container supplied by
Activity itself and serves as the top-most container for our content.
However, we expect that we will be passed an
Intent extra with the position (EXTRA_POSITION), which we pass along
to the NoteFragment factory method.
Step #7: Add Notes to the Action Bar
Of course, none of this is useful if we do not give the user
a way to get to the NoteActivity. Specifically, we can add a notes
entry to our res/menu/options.xml resource,
to have a new toolbar button appear on our main activity’s action bar.
Right-click over the res/ directory and choose New > Vector Asset
from the context menu. Click the Icon button and search for the “Create”
icon:

[image: Asset Studio Icon Picker, with Create Icon Selected]

Figure 291: Asset Studio Icon Picker, with Create Icon Selected
Click OK to close the icon picker. Then click Next and Finish to save
this drawable resource.
Unfortunately, this icon will render in black, when we need it to render
in white given our theme. Right click over res/drawable/ic_create_black_24dp.xml,
choose Refactor > Rename from the context menu, and change the name
to ic_create_white_24dp.xml.
Then, open res/drawable/ic_create_white_24dp.xml
and change the android:fillColor in the <path> element to be
#FFFFFFFF instead of #FF000000:

<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:width="24dp"
 android:height="24dp"
 android:viewportWidth="24.0"
 android:viewportHeight="24.0">
 <path
 android:fillColor="#FFFFFFFF"
 android:pathData="M3,17.25V21h3.75L17.81,9.94l-3.75,-3.75L3,17.25zM20.71,7.04c0.39,-0.39 0.39,-1.02 0,-1.41l-2.34,-2.34c-0.39,-0.39 -1.02,-0.39 -1.41,0l-1.83,1.83 3.75,3.75 1.83,-1.83z"/>
</vector>

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/res/drawable/ic_create_white_24dp.xml)
Next, add a new string resource, named notes,
with a value like Notes.
Then, modify res/menu/options.xml to look like:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/notes"
 android:icon="@drawable/ic_create_white_24dp"
 android:showAsAction="ifRoom|withText"
 android:title="@string/notes">
 </item>
 <item
 android:id="@+id/settings"
 android:icon="@drawable/ic_settings_black_24dp"
 android:showAsAction="never"
 android:title="@string/settings">
 </item>
 <item
 android:id="@+id/help"
 android:icon="@drawable/ic_help_outline_black_24dp"
 android:title="@string/help">
 </item>
 <item
 android:id="@+id/about"
 android:icon="@drawable/ic_info_outline_black_24dp"
 android:title="@string/about">
 </item>

</menu>

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/res/menu/options.xml)
Finally, in EmPubLiteActivity, add the following case to the switch
statement in onOptionsItemSelected():

 case R.id.notes:
 startActivity(new Intent(this, NoteActivity.class)
 .putExtra(NoteActivity.EXTRA_POSITION,
 pager.getCurrentItem()));

 return(true);

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Here, we get the currently-viewed position from the ViewPager and pass that
as the EXTRA_POSITION extra to NoteActivity.
Step #8: Defining a NoteLoadedEvent
We will want to load notes from the database on a background thread. Hence,
we can apply the same basic approach as we used with ModelFragment, posting
an event on the greenrobot EventBus when the load is completed, to deliver the
results to the NoteFragment. This step will create a NoteLoadedEvent to handle
this case.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in NoteLoadedEvent
as the name and click OK to create the empty class.
Then, replace the contents of that class with the following:

package com.commonsware.empublite;

class NoteLoadedEvent {
 int position;
 String prose;

 NoteLoadedEvent(int position, String prose) {
 this.position=position;
 this.prose=prose;
 }

 int getPosition() {
 return(position);
 }

 String getProse() {
 return(prose);
 }
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteLoadedEvent.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Step #9: Loading a Note from the Database
Next, we need to add code somewhere that will actually query the database
(on a background thread) to load the note for a given ViewPager position. One
common pattern is to put this sort of database-access logic on your
SQLiteOpenHelper subclass, so all of your database-specific code resides in
one place. That is the approach we will take here, adding a loadNote() method
that will fork a thread, query the database, and post a NoteLoadedEvent as a
result.
Edit your DatabaseHelper to add its own LoadThread inner class, reminiscent
of the one from ModelFragment:

 private class LoadThread extends Thread {
 private int position=-1;

 LoadThread(int position) {
 super();
 this.position=position;
 }

 @Override
 public void run() {
 Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

 String[] args={String.valueOf(position)};
 Cursor c=
 getReadableDatabase().rawQuery("SELECT prose FROM notes WHERE position = ? ", args);

 if (c.getCount() > 0) {
 c.moveToFirst();

 EventBus.getDefault().post(new NoteLoadedEvent(position,
 c.getString(0)));
 }

 c.close();
 }
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java)
Here, we use rawQuery() to retrieve the note based upon a supplied position. If
there is no such note, our Cursor will have no rows, and we are done. If,
however, we did get results back on the query, we then post a NoteLoadedEvent
with the position and the prose (the text from the database).
You will need to add an import manually to android.os.Process, to be able
to resolve the setThreadPriority() method and its parameter.
Also, add a loadNote() method to DatabaseHelper that forks this LoadThread:

 void loadNote(int position) {
 new LoadThread(position).start();
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java)
Step #10: Loading the Note Into the Fragment
Now that we can query the database and get back a note (if any), we can tie that
into the NoteFragment to load the note for the fragment’s position when
the fragment is opened. We will not only need to call loadNote() on the DatabaseHelper,
but also be able to respond to the NoteLoadedEvent when it arrives.
Add the following onStart() method to NoteFragment:

 @Override
 public void onStart() {
 super.onStart();

 EventBus.getDefault().register(this);

 if (TextUtils.isEmpty(editor.getText())) {
 DatabaseHelper db=DatabaseHelper.getInstance(getActivity());
 db.loadNote(getPosition());
 }
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
Here, we register for the EventBus. Then, if we do not have any text in the
EditText widget, we call loadNote() on our singleton instance of the
DatabaseHelper, passing in the position that our fragment is managing.
The reason for checking to see if the EditText is empty is to handle
configuration changes. This fragment is not a retained fragment, and so it will
be destroyed and re-created. The default onSaveInstanceState() logic of EditText
will retain our note, though, so we do not want to re-load it from the database.
This approach is not optimal, in that we will wind up calling loadNote() in cases
where we could know that there is no note. That optimization is complex enough
to not make it worthwhile for a set of book tutorials, though it is something you
might wish to explore in a commercial-grade application.
Next, add the corresponding onStop() to NoteFragment, to unregister from the EventBus:

 @Override
 public void onStop() {
 EventBus.getDefault().unregister(this);

 super.onStop();
 }

Finally, add an onNoteLoaded(NoteLoadedEvent) method to NoteFragment, so we receive
the NoteLoadedEvent on the main application thread:

 @SuppressWarnings("unused")
 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onNoteLoaded(NoteLoadedEvent event) {
 if (event.getPosition() == getPosition()) {
 editor.setText(event.getProse());
 }
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
Here, we confirm that the event is for our fragment’s position, as it is conceivable
that this event is for some other note, though that is rather unlikely given how
the user would view notes. That being said, if the note is for our position, we
populate the EditText with the note prose.
Step #11: Updating the Database
Of course, loading notes from a database is all fine and well… except that we do not
have any notes in the database. We really should fix that.
Add an UpdateThread inner class to DatabaseHelper:

 private class UpdateThread extends Thread {
 private int position=-1;
 private String prose=null;

 UpdateThread(int position, String prose) {
 super();
 this.position=position;
 this.prose=prose;
 }

 @Override
 public void run() {
 Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

 String[] args={String.valueOf(position), prose};
 getWritableDatabase().execSQL("INSERT OR REPLACE INTO notes (position, prose) VALUES (?, ?)",
 args);
 }
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java)
Here, we use execSQL() to execute an INSERT OR REPLACE SQL statement. As the
name suggests, this will insert a new row if there is no match on our primary
key (position). Otherwise, it will update the other columns if there is a match.
Note that we do not post an event here. We could, if there was something in the app
that needed to know when a note was updated.
Also, add an updateNote() method to DatabaseHelper that forks this UpdateThread:

 void updateNote(int position, String prose) {
 new UpdateThread(position, prose).start();
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java)
Step #12: Saving the Note
Somewhere, we need to call updateNote(). A classic “desktop” approach would be
to have a “save” action bar item in the NoteFragment, which the user would need to
click upon to save the note. However, this does not deal with the interrupt-driven
nature of phones all that well. For example, the user might start typing in a note, then
wind up taking a phone call. If our process is terminated, depending upon how the
user tries getting back into our app, we might not have the note from our saved instance
state.
A better approach, in many cases, is to save data in onStop(), when
the activity moves into the background. If there is a chance that the user might
not want the partially-entered information, you could save it in a “side” area, such
as a temporary file, and deal with it when the user returns to your app. Or, you could
just update the real data store… which is what we will do here.
Edit the onStop() method in NoteFragment to look like the following:

 @Override
 public void onStop() {
 DatabaseHelper.getInstance(getActivity())
 .updateNote(getPosition(),
 editor.getText().toString());

 EventBus.getDefault().unregister(this);

 super.onStop();
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
Here, we update the note. This is a bit inefficient,
as we update the database even if the user did not change the text of the note, or
even if the note is empty. That
represents another optimization that a production-grade app might wish to pursue but is
skipped here in the interests of simplicity.
If you build and run the app on a device or emulator, you will see the new
“notes” toolbar button in the action bar:

[image: The New Action Bar Item]

Figure 292: The New Action Bar Item
Tapping that will bring up the notes for whatever ViewPager position that you are on.
Entering in some notes and pressing BACK to exit the activity will save those
notes, which you will see again if you tap the action bar toolbar button
again. If you change the notes, pressing BACK will save the changed notes in
the database, to be viewed again later when you go back into the notes for
that ViewPager position.
Step #13: Adding a Delete Action Bar Item
The only problem with this solution is that the notes never leave. While the user
could manually delete everything in the EditText, it would be nice to make that
perhaps a bit simpler. In this step, we will add an action bar item that will
clear the EditText for the user.
Right-click over the res/ directory and choose New > Vector Asset
from the context menu. Click the Icon button and search for the “delete”
icon:

[image: Asset Studio Icon Picker, with Delete Icon Selected]

Figure 293: Asset Studio Icon Picker, with Delete Icon Selected
Click OK to close the icon picker. Change the name of the resource
to ic_delete_white_24dp. Then click Next and Finish to save
this drawable resource.
Then, open res/drawable/ic_delete_white_24dp.xml
and change the android:fillColor in the <path> element to be
#FFFFFFFF instead of #FF000000:

<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:width="24dp"
 android:height="24dp"
 android:viewportWidth="24.0"
 android:viewportHeight="24.0">
 <path
 android:fillColor="#FFFFFFFF"
 android:pathData="M6,19c0,1.1 0.9,2 2,2h8c1.1,0 2,-0.9 2,-2V7H6v12zM19,4h-3.5l-1,-1h-5l-1,1H5v2h14V4z"/>
</vector>

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/res/drawable/ic_delete_white_24dp.xml)
Next, add a new string resource, named delete,
with a value like Delete.
Then, create a new resource, res/menu/notes.xml, to configure the
action bar for the activity hosting our NoteFragment:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/delete"
 android:icon="@drawable/ic_delete_white_24dp"
 android:showAsAction="ifRoom|withText"
 android:title="@string/delete">
 </item>
</menu>

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/res/menu/notes.xml)
This simply defines a single action bar item, with an ID of delete.
To do this, Android Studio users can right-click over the res/menu/ directory and choose
New > “Menu resource file” from the context menu. Fill in notes.xml in the
“New Menu Resource File” dialog and click OK. Paste in the XML shown above
into that file.
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
To let Android know that our NoteFragment wishes to participate in the
action bar, we need to call setHasOptionsMenu(true) at some point. Add
an onCreate() method to NoteFragment to handle this when the
fragment is created:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setHasOptionsMenu(true);
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
That will trigger a call to onCreateOptionsMenu(), which we will need to
add to NoteFragment:

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.notes, menu);

 super.onCreateOptionsMenu(menu, inflater);
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
This just inflates our new resource for use in the options menu.
If the user taps on that toolbar button, onOptionsItemSelected() will be
called, so we will need to add that as well to NoteFragment:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == R.id.delete) {
 editor.setText(null);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

Here, if the user tapped on our delete action bar item, we clear the EditText widget.
Step #14: Closing the NoteFragment When Deleted
However, tapping on that action bar item keeps the NoteFragment on the screen.
It might be nice to automatically return to the book instead. However, the
NoteFragment itself does not know how to do that, as something else (in this
case, NoteActivity) put the NoteFragment on the screen. Hence, we need to
pass the request to close the NoteFragment along to the proper party.
We could use another event object and our EventBus. In this case, we will
demonstrate another approach: using the contract pattern to alert the hosting
activity that the notes should be closed.
Define an inner interface in the NoteFragment, named Contract, as follows:

 public interface Contract {
 void closeNotes();
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
You might put those lines immediately after the public class NoteFragment... line,
before the declaration of any of the data members or methods, for example.
Then, add a private getContract() method, that casts the hosting Activity
to the Contract interface:

 private Contract getContract() {
 return((Contract)getActivity());
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
What we are doing here is enforcing that the activity that hosts our NoteFragment
must implement the NoteFragment.Contract interface.
Then, add a call to closeNotes() on the Contract to our logic in onOptionsItemSelected():

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == R.id.delete) {
 editor.setText(null);
 getContract().closeNotes();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
Now, when the user clicks on the delete action bar item, we clear the EditText
and ask the hosting activity to get rid of us. Along the way, our onStop() will
be called, causing us to clear the content of the prose column in our database
row as well.
At this point, NoteFragment should resemble:

package com.commonsware.empublite;

import android.app.Fragment;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;
import org.greenrobot.eventbus.EventBus;
import org.greenrobot.eventbus.Subscribe;
import org.greenrobot.eventbus.ThreadMode;

public class NoteFragment extends Fragment {
 public interface Contract {
 void closeNotes();
 }

 private static final String KEY_POSITION="position";
 private EditText editor=null;

 static NoteFragment newInstance(int position) {
 NoteFragment frag=new NoteFragment();
 Bundle args=new Bundle();

 args.putInt(KEY_POSITION, position);
 frag.setArguments(args);

 return(frag);
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setHasOptionsMenu(true);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.editor, container, false);

 editor=(EditText)result.findViewById(R.id.editor);

 return(result);
 }

 @Override
 public void onStart() {
 super.onStart();

 EventBus.getDefault().register(this);

 if (TextUtils.isEmpty(editor.getText())) {
 DatabaseHelper db=DatabaseHelper.getInstance(getActivity());
 db.loadNote(getPosition());
 }
 }

 @Override
 public void onStop() {
 DatabaseHelper.getInstance(getActivity())
 .updateNote(getPosition(),
 editor.getText().toString());

 EventBus.getDefault().unregister(this);

 super.onStop();
 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.notes, menu);

 super.onCreateOptionsMenu(menu, inflater);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == R.id.delete) {
 editor.setText(null);
 getContract().closeNotes();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 @SuppressWarnings("unused")
 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onNoteLoaded(NoteLoadedEvent event) {
 if (event.getPosition() == getPosition()) {
 editor.setText(event.getProse());
 }
 }

 private int getPosition() {
 return(getArguments().getInt(KEY_POSITION, -1));
 }

 private Contract getContract() {
 return((Contract)getActivity());
 }
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
NoteActivity now must implement NoteFragment.Contract and implement closeNotes().
Modify NoteActivity to look like:

package com.commonsware.empublite;

import android.app.Activity;
import android.app.Fragment;
import android.os.Bundle;

public class NoteActivity extends Activity
 implements NoteFragment.Contract {
 public static final String EXTRA_POSITION="position";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getFragmentManager().findFragmentById(android.R.id.content) == null) {
 int position=getIntent().getIntExtra(EXTRA_POSITION, -1);

 if (position >= 0) {
 Fragment f=NoteFragment.newInstance(position);

 getFragmentManager().beginTransaction()
 .add(android.R.id.content, f).commit();
 }
 }
 }

 @Override
 public void closeNotes() {
 finish();
 }
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteActivity.java)
This adds the implements keyword and the closeNotes() implementation, which
just finishes the NoteActivity, returning control to the EmPubLiteActivity.
If you run this in a device or emulator, and you go into the notes, you will
see our delete toolbar button:

[image: The New Action Bar Item]

Figure 294: The New Action Bar Item
Tapping that toolbar button will clear the note and close
the activity, returning you to the book.
In Our Next Episode…
… we will allow the user to share a chapter’s notes
with somebody else.
Internet Access
The expectation is that most, if not all, Android devices will have built-in
Internet access. That could be WiFi, cellular data services (EDGE, 3G, etc.),
or possibly something else entirely. Regardless, most people — or at least
those with a data plan or WiFi access — will be able to get to the
Internet from their Android phone.
Not surprisingly, the Android platform gives developers a wide range of ways to
make use of this Internet access. Some offer high-level access, such as the
integrated WebKit browser component (WebView) we saw in an
earlier chapter. If you want, you can drop all the way down to using raw
sockets. Or, in between, you can leverage APIs — both on-device and from
3rd-party JARs — that give you access to specific protocols: HTTP, XMPP,
SMTP, and so on.
The emphasis of this book is on the higher-level forms of access: the
WebKit component and Internet-access APIs, as busy coders should be
trying to reuse existing components versus rolling one’s own on-the-wire
protocol wherever possible.
DIY HTTP
In many cases, your only viable option for accessing some Web service or other
HTTP-based resource is to do the request yourself. The Google-endorsed API for doing
this nowadays in Android is to use the classic java.net classes for HTTP
operation, centered around HttpUrlConnection. There is quite a bit of material
on this already published, as these classes have been in Java for a long time.
The focus here is in showing how this works in an Android context.
Note, however, that you may find it easier to use some HTTP client libraries
that handle various aspects of the Internet access for you, as will be described
later in this chapter.
A Sample Usage of HttpUrlConnection
This chapter walks through several implementations of a Stack Overflow client
application. The app has a single activity, with a single ListFragment. The
app will load the latest block of Stack Overflow questions tagged with android,
using the Stack Overflow public API. Those questions will be shown in the list,
and tapping on a question will bring up the Web page for that question in the
user’s default Web browser.
All implementations of the app have the same core UI logic. What differs is in
how each handles the Internet access.
In this section,
we will take a look at
the Internet/HURL
sample project, which uses HttpUrlConnection to retrieve the questions from
the Stack Overflow Web service API.
Asking Permission
To do anything with the Internet (or a local network) from your app, you need
to hold the INTERNET permission. This includes cases where you use things
like WebView — if your process needs network access, you need the INTERNET
permission.
Hence, the manifest for our sample project contains the requisite <uses-permission>
declaration:

<uses-permission android:name="android.permission.INTERNET"/>

Creating Your Data Model
The Stack Overflow Web service API returns JSON in response to various
queries. Hence, we
need to create Java classes that mirror that JSON structure. In particular,
many of the examples will be using Google’s Gson to populate those
data models automatically based upon its parsing of the JSON that we receive
from the Web service.
In our case, we are going to use a specific endpoint of the
Stack Overflow API, referred to as /questions after the
distinguishing portion of the path. The documentation for
this endpoint can be found in
the Stack Overflow API documentation.
We will examine the URL for the endpoint a bit later in this
section.
The results we get for issuing a GET request for the
URL is a JSON structure (here showing a single question,
to keep the listing short):

{
 "items": [
 {
 "question_id": 17196927,
 "creation_date": 1371660594,
 "last_activity_date": 1371660594,
 "score": 0,
 "answer_count": 0,
 "title": "ksoap2 failing when in 3G",
 "tags": [
 "android",
 "ksoap2",
 "3g"
],
 "view_count": 2,
 "owner": {
 "user_id": 773259,
 "display_name": "SparK",
 "reputation": 513,
 "user_type": "registered",
 "profile_image": "http://www.gravatar.com/avatar/511b37f7c313984e624dd76e8cb9faa6?d=identicon&r=PG",
 "link": "http://stackoverflow.com/users/773259/spark"
 },
 "link": "http://stackoverflow.com/questions/17196927/ksoap2-failing-when-in-3g",
 "is_answered": false
 }
],
 "quota_remaining": 9991,
 "quota_max": 10000,
 "has_more": true
}

NOTE: Some of the longer URLs will word-wrap in the book, but
they are on a single line in the actual JSON. Honest.
We get back a JSON object, where our questions are found under
the name of items. items is a JSON array of JSON objects,
where each JSON object represents a single question, with
fields like title and link. The question JSON object
has an embedded owner JSON object with additional information.
We do not necessarily need all of this information. In fact, for
this first version of the sample, all we really need are the
title and link of each entry in the items array.
The key is that, by default, the data members in our Java data model must
exactly match the JSON keys for the JSON objects.
So, we have an Item class, representing the information from
an individual entry in the items array:

package com.commonsware.android.hurl;

public class Item {
 String title;
 String link;

 @Override
 public String toString() {
 return(title);
 }
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/Item.java)
However, our Web service does not return the items array
directly. items is the key in a JSON object that is the actual
JSON returned by Stack Overflow. So, we need another Java class that
contains the data members we need from that outer JSON object, here
named SOQuestions (for lack of a better idea for a name…):

package com.commonsware.android.hurl;

import java.util.List;

public class SOQuestions {
 List<Item> items;
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/SOQuestions.java)
Having an items data member that is a List of Item tells GSON that
we are expecting the JSON object to be used for SOQuestions to
have a JSON array, named items, where each element in that array
should get mapped to Item objects.
A Thread for Loading
We need to do the network I/O on a background thread, so we do not tie
up the main application thread. To that end, the sample app has a
LoadThread that loads our questions:

package com.commonsware.android.hurl;

import android.util.Log;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import com.google.gson.Gson;
import org.greenrobot.eventbus.EventBus;

class LoadThread extends Thread {
 static final String SO_URL=
 "https://api.stackexchange.com/2.1/questions?"
 + "order=desc&sort=creation&site=stackoverflow&tagged=android";

 @Override
 public void run() {
 try {
 HttpURLConnection c=
 (HttpURLConnection)new URL(SO_URL).openConnection();

 try {
 InputStream in=c.getInputStream();
 BufferedReader reader=
 new BufferedReader(new InputStreamReader(in));
 SOQuestions questions=
 new Gson().fromJson(reader, SOQuestions.class);

 reader.close();

 EventBus.getDefault().post(new QuestionsLoadedEvent(questions));
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
 }
 finally {
 c.disconnect();
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
 }
 }
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/LoadThread.java)
LoadThread:

	Creates an HttpUrlConnection by creating a URL for our Stack Overflow
API endpoint and opening a connection

	Creates a BufferedReader wrapped around the InputStream from the
HTTP connection

	Parses the JSON we get back from that HTTP request via a Gson instance,
loading the data into an instance of our SOQuestions

	Close the BufferedReader (and the InputStream by extension)

	Post a QuestionsLoadedEvent to greenrobot’s EventBus, to let somebody
know that our questions exist

	Log messages to Logcat in case of errors

QuestionsLoadedEvent is a simple wrapper around an SOQuestions instance, serving
as an event class for use with EventBus:

package com.commonsware.android.hurl;

public class QuestionsLoadedEvent {
 final SOQuestions questions;

 QuestionsLoadedEvent(SOQuestions questions) {
 this.questions=questions;
 }
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/QuestionsLoadedEvent.java)
A Fragment for Questions
The sample app has a QuestionsFragment that should display these
loaded questions:

package com.commonsware.android.hurl;

import android.os.Bundle;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.v4.app.ListFragment;
import android.text.Html;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import org.greenrobot.eventbus.EventBus;
import org.greenrobot.eventbus.Subscribe;
import org.greenrobot.eventbus.ThreadMode;
import java.util.List;

public class QuestionsFragment extends ListFragment {
 private boolean loadRequested=false;

 public interface Contract {
 void onQuestion(Item question);
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);
 }

 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 if (!loadRequested) {
 loadRequested=true;
 new LoadThread().start();
 }
 }

 @Override
 public void onResume() {
 super.onResume();
 EventBus.getDefault().register(this);
 }

 @Override
 public void onPause() {
 EventBus.getDefault().unregister(this);
 super.onPause();
 }

 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
 Item item=((ItemsAdapter)getListAdapter()).getItem(position);

 ((Contract)getActivity()).onQuestion(item);
 }

 @Subscribe(threadMode = ThreadMode.MAIN)
 public void onQuestionsLoaded(QuestionsLoadedEvent event) {
 setListAdapter(new ItemsAdapter(event.questions.items));
 }

 class ItemsAdapter extends ArrayAdapter<Item> {
 ItemsAdapter(List<Item> items) {
 super(getActivity(), android.R.layout.simple_list_item_1, items);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 TextView title=row.findViewById(android.R.id.text1);

 title.setText(Html.fromHtml(getItem(position).title));

 return(row);
 }
 }
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/QuestionsFragment.java)
In onCreate(), we mark that this fragment should be retained, so if the activity
undergoes a configuration change, this fragment will stick around.
In onViewCreated(), we fork the LoadThread.
Hence, once we have our questions,
our retained fragment will hold onto that model data for us. To avoid duplicating the LoadThread
if a configuration change occurs sometime after our fragment was initially created, we
track whether or not we have already requested our data load via a loadRequested flag.
In onResume() and onPause(), we register and unregister from the EventBus. Our onQuestionsLoaded()
method will be called when the QuestionsLoadedEvent is raised by LoadThread, and there we hold
onto the loaded questions and populate the ListView. We use an ItemsAdapter, which knows how to render
an Item as a simple ListView row showing the question title.
The ItemsAdapter uses Html.fromHtml() to populate the ListView rows,
not because Stack Overflow hands back titles with HTML tags, but because
Stack Overflow hands back titles with HTML entity references, and
Html.fromHtml() should handle many of those.
And, in onListItemClick(), we find the Item associated with the row that the user clicked upon,
then call an onQuestion() method on our hosting activity. That activity needs to implement the
Contract interface, so we can call the onQuestion() method on whatever activity
happens to host this fragment.
An Activity for Orchestration
MainActivity sets up the fragment in onCreate()
and handles the click events in onQuestion():

package com.commonsware.android.hurl;

import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class MainActivity extends FragmentActivity
 implements QuestionsFragment.Contract {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new QuestionsFragment()).commit();
 }
 }

 @Override
 public void onQuestion(Item question) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(question.link)));
 }
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/MainActivity.java)
Hence, MainActivity is serving in an orchestration role. QuestionsFragment is a local
controller, handling direct events raised by its widgets (a ListView). MainActivity is
responsible for handling events that transcend an individual fragment — in this case, it starts
a browser to view the clicked-upon question.
The result is a simple ListView showing questions:

[image: HURLDemo, Showing Stack Overflow Questions]

Figure 295: HURLDemo, Showing Stack Overflow Questions
What Android Brings to the Table
Google has augmented HttpUrlConnection to do more stuff to help developers.
Notably:

	It automatically uses GZip compression on requests, adding the appropriate
HTTP header and automatically decompressing any compressed responses (added in
Android 2.3)

	It uses Server Name Indication
to help work with several HTTPS hosts sharing a single IP address

	API Level 13 (Android 4.0) added an HttpResponseCache implementation of
the java.net.ResponseCache base class, that can be installed to offer transparent
caching of your HTTP requests.

Also, courtesy of some third-party code (OkHttp) that we will discuss shortly,
HttpUrlConnection also supports the SPDY protocol
and HTTP/2 for accelerating Web content distribution over SSL as of Android 4.4.
Testing with StrictMode
StrictMode, mentioned in the chapter on files, can also
report on performing network I/O on the main application thread. More importantly,
by default, Android will crash your app
with a NetworkOnMainThreadException
if you try to perform network I/O on the main application thread.
What About HttpClient?
Android also contains — or used to contain –
a mostly-complete copy of version 4.0.2beta of
the Apache HttpClient library.
Many developers use this, as they prefer the richer API offered by this
library over the somewhat more clunky approach used by java.net. And, truth
be told, this was the more stable option prior to Android 2.3.
There are a few reasons why this is no longer recommended, for Android 2.3
and beyond:

	The core Android team is better able to add capabilities to the java.net
implementation while maintaining backwards compatibility, because its API is
more narrow.

	The problems previously experienced on Android with the java.net implementation
have largely been fixed.

	The Apache HttpClient project continuously evolves its API. This means that
Android will continue to fall further and further behind the latest-and-greatest
from Apache, as Android insists on maintaining the best possible backwards
compatibility and therefore cannot take on newer-but-different HttpClient
versions.

	Google officially deprecated this API in Android 5.1.

	Google officially removed this API in Android 6.0.

If you have legacy code that uses the HttpClient API, please
consider using Apache’s standalone edition of
HttpClient for Android.
And, if you cannot do any of that, and you are using Gradle
for your builds (e.g., you are using Android Studio’s default settings),
you can add useLibrary 'org.apache.http.legacy' to the android closure
to give you access to Android’s stock HttpClient API:

android {
 useLibrary 'org.apache.http.legacy'
 // other settings go here
}

However, usually, using a standalone edition should be reasonably practical.
HTTP via DownloadManager
If your objective is to download some large file, you may be better served
by using DownloadManager, as it handles a lot
of low-level complexities for you. For example, if you start a download on WiFi,
and the user leaves the building and the device fails over to some form of
mobile data, you need to reconnect to the server and either start the download
again or use some content negotiation to pick up from where you left off.
DownloadManager handles that.
However, DownloadManager is dependent upon some broadcast Intent objects,
a technique we have not discussed yet, so we will delay covering
DownloadManager until later in the book.
Using Third-Party Libraries
To some extent, the best answer is to not write the code yourself, but rather
use some existing library that handles both the Internet I/O and any required
threading and data parsing. This is commonplace when accessing public Web services — either
because the firm behind the Web service has released a library, or because somebody
in the community has released a library for that Web service.
Examples include:

	Using JTwitter to access
Twitter’s API

	Using Amazon’s library to access various
AWS APIs, including S3, SimpleDB, and SQS

	Using the Dropbox SDK
for accessing DropBox folders and files

However, beyond the classic potential library problems, you may
encounter another when it comes to using libraries for accessing Internet services:
versioning. For example:

	JTwitter bundles the org.json classes in its JAR, which will be superseded
by Android’s own copy, and if the JTwitter version of the classes have a different
API, JTwitter could crash.

	Libraries dependent upon HttpClient might be dependent upon a version with a
different API (e.g., 4.1.1) than is in Android (4.0.2 beta).

Try to find libraries that have been tested on Android and are clearly supported as
such by their author. Lacking that, try to find libraries that are open source, so
you can tweak their implementation if needed to add Android support.
Later in this chapter,
we will review another class of third-party libraries,
ones that are more general-purpose than things like JTwitter, but still
offer to simplify HTTP processing.
SSL
Of course, if you are thinking about HTTP, you really should be thinking about
HTTPS — SSL-encrypted HTTP operations.
Normally, SSL “just works”, by using an https:// URL. Hence, typically, there
is little that you need to do to enable simple encryption. In fact, on Android 9.0,
by default, you have to use SSL — attempts to use plain HTTP will fail.
However, there are other aspects of SSL to consider, including:

	What if the server is not using an SSL certificate that Android will honor,
such as a self-signed certificate?

	What about man-in-the-middle attacks, hacked certificate authorities, and
the like?

The trails contain a chapter dedicated to SSL that you are
encouraged to read, so that this chapter does not get crazy-long.
Using HTTP Client Libraries
Often times, writing Internet access code is a pain in various body parts.
Not surprisingly, there are a variety of third-party libraries designed to assist
with this. Some are designed to provide access to a specific API, such as
the ones mentioned earlier in this chapter.
However, others are more general-purpose, designed to make writing
HTTP operations a bit easier, by handling things like:

	Retries (e.g., device failed over from WiFi to mobile data mid-transaction)

	Threading (e.g., handling doing the Internet work on a background thread for you)

	Data parsing and marshaling, for well-known formats (e.g., JSON)

In this section, we will look at three libraries that
exemplify this approach: OkHttp, Retrofit, and Picasso. Later, we will see other
libraries that you might wish to investigate, including Google’s own Volley
HTTP client API.
OkHttp
OkHttp implements its own HTTP client code, one
that offers many improvements. Most notable is its
support for SPDY, a Google sponsored
enhanced version of HTTP, going beyond classic HTTP “keep-alive” support to
allow for many requests and responses to be delivered over the same socket
connection. This, in turn, evolved into HTTP/2.
Many Google APIs are served by SPDY- or HTTP/2-capable servers, and HTTP/2
is gaining popularity overall.
Beyond that, OkHttp wraps up common HTTP performance-improvement patterns,
such as GZIP compression, response caching, and connection pooling. It also
is more aware of “real world” connection issues, like mis-configured proxy
servers and the like.
Note that a version of OkHttp lies behind the standard implementation of
HttpUrlConnection in Android 4.4 and higher — this is where Android’s
SPDY support comes from.
The
Internet/OkHttp3
sample project is a clone of the Stack Overflow sample shown earlier
in this chapter. The original sample used HttpURLConnection to download
the Stack Overflow Web service data. This revised sample replaces that
with OkHttp.
First, we need to add a dependency on OkHttp to our app/ module’s
build.gradle file:

dependencies {
 implementation 'com.android.support:support-fragment:27.1.0'
 implementation 'com.google.code.gson:gson:2.8.2'
 implementation 'com.squareup.okhttp3:okhttp:3.9.1'
}

(from Internet/OkHttp3/app/build.gradle)
OkHttp offers two basic flavors of HTTP API: synchronous and asynchronous.
With a synchronous call, the call blocks until the HTTP I/O is completed
(or, at least, the headers are downloaded). With an asynchronous call,
that initial pulse of network I/O is handled on a background thread.
The general rule of thumb is:

	If you can work with the raw HTTP response, and it’s short, use
the asynchronous API, as it saves you from having to fuss with your own
thread

	If the response requires significant post-retrieval
work, use your own background thread and use the
synchronous API

In our case, while we need to parse the JSON using Gson, the Web service
response is fairly short, so we can get away with doing that parsing on
the main application thread.
So, in onViewCreated(), we ask OkHttp to get our data:

 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 OkHttpClient client=new OkHttpClient();
 Request request=new Request.Builder().url(SO_URL).build();

 client.newCall(request).enqueue(new Callback() {
 @Override
 public void onFailure(Call call, final IOException e) {
 if (getActivity()!=null && !getActivity().isDestroyed()) {
 getActivity().runOnUiThread(
 () -> Toast.makeText(getActivity(), e.getMessage(), Toast.LENGTH_LONG).show());
 }

 Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
 }

 @Override
 public void onResponse(Call call, Response response) throws IOException {
 Reader in=response.body().charStream();
 BufferedReader reader=new BufferedReader(in);
 SOQuestions questions=new Gson().fromJson(reader, SOQuestions.class);

 reader.close();

 if (getActivity()!=null && !getActivity().isDestroyed()) {
 getActivity().runOnUiThread(() -> setListAdapter(new ItemsAdapter(questions.items)));
 }
 }
 });
 }

(from Internet/OkHttp3/app/src/main/java/com/commonsware/android/okhttp/QuestionsFragment.java)
We create an OkHttpClient object, which is our gateway to using OkHttp.
In this case, we create one per request. That is not necessary — if we were
going to make lots of requests, we could create the OkHttpClient once.
You can also use an OkHttpClient.Builder to create the OkHttpClient,
with a variety of configuration options, such as rules for caching and SSL. In
our case, we just use a standard configuration, using OkHttp’s defaults.
We then create a Request object that represents our desired HTTPS request.
By default, this will perform an HTTP GET request, but we could configure
the Request.Builder to use a different HTTP method, etc.
Then, we get a Call object, by asking the OkHttpClient to create a call
via newCall(), passing in the Request that describes the call to make.
At this point, while the Call is configured, it has not begun to do any
network I/O. That waits until we call execute() or enqueue() on the Call.
execute() performs the Call synchronously, while enqueue() performs
it asynchronously. Since we are running on the main application thread, and we
do not want to do network I/O there, we use enqueue().
enqueue() takes a Callback object, describing what to do when we get
our result and what to do if there is some sort of connectivity error or
a bad HTTP response (e.g., 404 File Not Found). onResponse() handles
the positive case. Here, we can get a Reader on the Web service response
by asking the Response object for the response body(), and asking
that body for its charStream(). We can then pass that over to Gson, which
will parse the response into our SOQuestions object as before. However,
onResponse() is called on a background thread, so we cannot update the UI
and do not even know if our activity is still alive. So, we if we are still
attached to the activity and the activity is not destroyed, we then use
runOnUiThread() to update our ListView on the main application thread.
onFailure() handles the error case. Here, we log the exception to LogCat.
And, if our activity is still around and running, we show a Toast to let
the user know about the problem.
Beyond that, the rest of the sample is the same as before, in terms of the
rest of the fragment, the activity, and so on.
Retrofit
Many times, when working with HTTP requests, our needs are fairly
simple: just retrieve some JSON (or other structured data, such as XML)
from some Web service, or perhaps upload some JSON to that Web service.
Retrofit is designed to simplify
this, by handling the data parsing and marshaling for us, along with
the HTTP operations and (optionally) background threading. We are
left with a fairly natural-looking Java API to send/receive Java objects
to/from the Web service. Retrofit accomplishes this through the cunning
use of annotations, reflection, and OkHttp itself.
Specifically, we will examine Retrofit 2.x here — bear in mind that
older materials referring to Retrofit might be referring to Retrofit 1.x, and the
API changed a fair bit between 1.x and 2.x.
The
HTTP/Retrofit2
sample project is another clone of the Stack Overflow samples shown earlier
in this chapter, this time using Retrofit for the HTTP I/O.
Dependencies
Retrofit itself knows about Web services… and that’s about it. It will use
OkHttp for the HTTP I/O. However, it needs to know how to parse the Web service
responses. Retrofit offers a number of “converters” for this, bridging between
Retrofit and popular parsing libraries. In our case, we are getting JSON back,
and so we can use Gson for parsing.
As a result, we use the com.squareup.retrofit2:converter-gson artifact in our
project:

dependencies {
 implementation 'com.android.support:support-fragment:27.1.1'
 implementation 'com.squareup.retrofit2:converter-gson:2.4.0'
}

(from HTTP/Retrofit2/app/build.gradle)
This automatically pulls in compatible versions of Gson and OkHttp, courtesy
of transitive dependencies.
Creating the Interface
Since we are using Gson to parse our JSON, we can use the same Item and SOQuestions classes
as before, to model the response that we get from Stack Overflow. However,
we need to tell Retrofit more about where our
JSON is coming from. To do this, we need to create a Java interface
with some specific Retrofit-supplied annotations, documenting:

	the HTTP operations that we wish to perform

	the path (and, if needed, query parameters) to apply an HTTP operation to

	the per-request data to configure the HTTP operation, such as the
dynamic portions of the path for a REST-style API, or additional query
parameters to attach to the URL

	what object should be used for pouring the HTTP response into

For example, let’s take a look at StackOverflowInterface, our
interface for making a query of Stack Overflow’s API to get questions
from Stack Overflow:

package com.commonsware.android.retrofit;

import retrofit2.Call;
import retrofit2.http.GET;
import retrofit2.http.Query;

public interface StackOverflowInterface {
 @GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
 Call<SOQuestions> questions(@Query("tagged") String tags);
}

(from HTTP/Retrofit2/app/src/main/java/com/commonsware/android/retrofit/StackOverflowInterface.java)
Each method in the interface should have an annotation identifying
the HTTP operation to perform, such as @GET or @POST. The
parameter to the annotation is the path for the request and any
fixed query parameters. In our case, we are using the path
documented by Stack Exchange for retrieving questions
(/2.1/questions), plus some fixed query parameters:

	
order for whether the results should be ascending (asc)
or descending (desc)

	
sort to indicate how the questions should be sorted,
such as creation to sort by time when the question was
posted

	
site to indicate what Stack Exchange site we are
querying (e.g., stackoverflow)

The method name can be whatever you want.
If you have
additional query parameters that vary dynamically, you
can use the @Query annotation on String parameters
to have them be added to the end of the URL. In our
case, the tagged query parameter will be added with
whatever the tags parameter is to our questions()
method.
Similarly, you can use {name} placeholders for
path segments, and replace those at runtime via
@Path-annotated parameters to the method.
The return type is Call. This works akin to the Call from OkHttp,
in that it represents an HTTP call to be made.
Curiously, we will never create an implementation of the
StackOverflowInterface ourselves. Instead, Retrofit
generates one for us, with code that implements our
requested behaviors.
Making the Request
onViewCreated() still initiates our HTTPS request, as it did in previous
samples. This time, though, it uses Retrofit:

 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 Retrofit retrofit=
 new Retrofit.Builder()
 .baseUrl("https://api.stackexchange.com")
 .addConverterFactory(GsonConverterFactory.create())
 .build();
 StackOverflowInterface so=
 retrofit.create(StackOverflowInterface.class);

 so.questions("android").enqueue(this);
 }

(from HTTP/Retrofit2/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)
Similar to how we created an OkHttpClient instance when using OkHttp
directly, we create a Retrofit instance when using Retrofit, by means
of a Retrofit.Builder. Here, we provide two bits of configuration:

	The base URL to use to complete the URLs defined in StackOverflowInterface, and

	The converter to use to convert our Web service responses into our desired
model objects

The latter is using GsonConverterFactory, supplied by that
com.squareup.retrofit2:converter-gson dependency that we used. It, in turn,
will use Gson, as the class name suggests.
Then, we tell the Retrofit instance to create() an instance of StackOverflowInterface.
Under the covers, Retrofit generates a class that implements StackOverflowInterface,
creates an instance of that class, and returns that instance to us.
Since that object implements StackOveflowInterface, we can call our questions()
method to ask for the Android questions. questions() returns a Call, and we
can either execute() or enqueue() the work, just as we could with OkHttp.
In this case, we use enqueue(), which takes a Callback. In this case,
the fragment itself implements that interface:

public class QuestionsFragment extends ListFragment implements
 Callback<SOQuestions> {

(from HTTP/Retrofit2/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)
And, as with OkHttp, we need to implement onResponse() and onFailure() methods.
However, this time, we are called on the main application thread, not a background
thread, and so we do not have to fuss with arranging for our UI updates to be
done on the main application thread. Plus, onResponse() gets the parsed results
directly — we do not need to invoke Gson for that:

 @Override
 public void onResponse(Call<SOQuestions> call,
 Response<SOQuestions> response) {
 setListAdapter(new ItemsAdapter(response.body().items));
 }

 @Override
 public void onFailure(Call<SOQuestions> call, Throwable t) {
 Toast.makeText(getActivity(), t.getMessage(),
 Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(),
 "Exception from Retrofit request to StackOverflow", t);
 }

(from HTTP/Retrofit2/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)
Picasso
Sometimes, what you want to download is not JSON, or XML, or any
sort of structured data.
Sometimes, it is an image.
For example, Stack Overflow users have avatars. In our sample app,
it might be nice to display the avatar of the user who asked the question.
Picasso is a library from Square
that is designed to help with asynchronously loading images, whether
those images come from HTTP requests, local files, a ContentProvider,
etc. In addition to doing the loading asynchronously, Picasso
simplifies many operations on those images, such as:

	Caching the results in memory (or optionally on disk for HTTP
requests)

	Displaying placeholder images while the real images are being
loaded, and displaying error images if there was a problem in
loading the image (e.g., invalid URL)

	Transforming the image, such as resizing or cropping it to
fit a certain amount of space

	Loading the images directly into an ImageView of your
choice, even handling cases where that ImageView is recycled
(e.g., part of a row in a ListView, where the user scrolled
while an image for that ImageView was still loading, and now
another image is destined for that same ImageView when
the row was recycled)

The
HTTP/Picasso
sample application extends the Retrofit one to download the avatar
image of the person asking the question, displaying it in the ListView
along with the question title.
Downloading and Installing Picasso
Android Studio users can just add a dependency for com.squareup.picasso:picasso:...
for some version denoted by ..., and it will pull down all other
dependencies needed by Picasso:

dependencies {
 implementation 'com.android.support:support-fragment:27.1.0'
 implementation 'com.squareup.retrofit2:converter-gson:2.3.0'
 implementation 'com.squareup.picasso:picasso:2.5.2'
}

(from HTTP/Picasso/app/build.gradle)
Updating the Model
Our original data model did not include information about the owner.
Hence, we need to augment our data model, so Retrofit pulls that information
out of the Stack Overflow JSON and makes it available to us.
To that end, we now have an Owner class, holding onto the one piece
of information we need about the owner: the URL to the avatar (a.k.a.,
“profile image”):

package com.commonsware.android.picasso;

import com.google.gson.annotations.SerializedName;

public class Owner {
 @SerializedName("profile_image") String profileImage;
}

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/Owner.java)
The JSON key for this in the Stack Overflow API is profile_image, and
underscores are not the conventional way of separating words in a Java
data member. Java samples usually use “camelCase” instead. The default
behavior of Retrofit would require us to name our data member profile_image
to match the JSON.
However, under the covers, Retrofit is using Google’s Gson to do the mapping
from JSON to objects. Gson supports a @SerializedName annotation, to indicate
the JSON key to use for this data member. This allows us to give the data
member the more natural name of profileImage, by using
@SerializedName("profile_image") to teach Gson how to populate it properly.
(The author would like to thank Alec Holmes for his assistance with the
Gson support)
Our Item class now has an Owner, named owner, since the owner data
is in the owner key of an item’s JSON object:

package com.commonsware.android.picasso;

public class Item {
 String title;
 Owner owner;
 String link;

 @Override
 public String toString() {
 return(title);
 }
}

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/Item.java)
Those two changes are sufficient for Retrofit to give us our URL to be able
to download the image.
Requesting the Images
Using Picasso is extremely simple, as it offers a fluent interface that
allows us to set up a request in a single Java statement.
The statement begins with a call to the static with() method on the Picasso
class, where we supply a Context (such as our activity) for Picasso to use.
The statement ends with a call to into(), indicating the ImageView into
which Picasso should load an image. In between those calls, we can chain
other calls, as with() and most other methods on a Picasso object
return the Picasso object itself.
So, we can do something like:

 Picasso.with(getActivity()).load(item.owner.profileImage)
 .fit().centerCrop()
 .placeholder(R.drawable.owner_placeholder)
 .error(R.drawable.owner_error).into(icon);

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java)
Here, we:

	Indicate that we want to load() an image found at a certain URL,
identified by the profileImage data member of the Owner inside an Item
referred to as item

	Say that we want to fit() the image to our target ImageView

	Specify that the image should be resized using centerCrop() rules, to
center the image within the desired size (if it is smaller on one or both
axes) and to crop the image (if it is larger on one or both axes)

	Indicate that we want to put a certain drawable resource as the placeholder()
image to show in the ImageView while the loading is going on in the
background

	State that we want to show a certain drawable resource in the ImageView
in case of an error() when the image was being loaded

And that’s it. Picasso will go off, download the image, and pour it into
the ImageView when it is ready (and resized).
The Rest of the Story
That bit of Picasso code is in a new getView() method on our ItemsAdapter:

 class ItemsAdapter extends ArrayAdapter<Item> {
 ItemsAdapter(List<Item> items) {
 super(getActivity(), R.layout.row, R.id.title, items);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 Item item=getItem(position);
 ImageView icon=row.findViewById(R.id.icon);

 Picasso.with(getActivity()).load(item.owner.profileImage)
 .fit().centerCrop()
 .placeholder(R.drawable.owner_placeholder)
 .error(R.drawable.owner_error).into(icon);

 TextView title=row.findViewById(R.id.title);

 title.setText(Html.fromHtml(getItem(position).title));

 return(row);
 }
 }

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java)
We have created our own row layout (res/layout/row.xml), consisting of an ImageView
and a TextView. We have ArrayAdapter inflate or recycle our row, retrieve
the Item for this row, retrieve the ImageView out of the row, use Picasso
to start loading the real image, fill in the HTML-entity-aware text into
the TextView, and then return our updated row. By the time
we return the row, Picasso will have already loaded the placeholder image, which
is what the user will initially see, while we download the real image.
The result is that we now have icons next to each of our question titles:

[image: The Picasso Demo App]

Figure 296: The Picasso Demo App
Volley
At the Google I|O 2013 conference, there was
a session about Volley,
an HTTP client library created by Google and used by internal apps, such
as the Play Store. Volley can be thought of as a superset of
Retrofit plus Picasso, minus Picasso’s non-HTTP image loading facilities.
On the plus side, Volley is such a superset and therefore a single
code base can be used to replace multiple libraries. Also, given Volley’s
use by Google, one imagines that this code has been applied to the
widest range of possible devices. And, in early 2016, Volley finally
started being distributed as an artifact that we can add to our Android
Studio projects via a simple implementation statement.
However, there is no documentation
beyond that I|O video and a training module.
There is no support mechanism, except perhaps
via ad-hoc social media inquiries and general support sites (e.g.,
Stack Overflow).
All that being said, Volley is still rather popular, so let’s see how
one can use it in an Android project. Specifically, the
HTTP/Volley
sample application is based off of the Picasso sample, migrated over
to use Volley instead of the combination of Picasso and Retrofit.
Getting Volley
It used to be that half the battle was just getting Volley in the first place.
For years, Google only gave us a dump of source code in the Android
Open Source Project, rather than a proper artifact.
However, in early 2016, Google quietly released a Volley artifact,
so you can add it to your dependencies:

dependencies {
 implementation 'com.android.volley:volley:1.0.0'
}

Requests and Queues
Volley’s primary API is via a class called RequestQueue. As
the name suggests, it queues requests, whether those requests
are for images, strings, JSON structures, or whatever. A request –
in the form of a Request instance –
embodies the URL to be retrieved, any additional information (e.g.,
extra HTTP headers), and the rules for interpreting the response
received from the server.
Under the covers, RequestQueue maintains a thread pool for
processing those requests. You can optionally configure this
thread pool, indicating how many threads it should have and
so on. You can also optionally configure how responses should
be cached and the actual HTTP stack to be used for doing the
network I/O. By default, on modern versions of Android, Volley
delegates to HttpUrlConnection.
Making a Manager
Retrofit and Picasso manage application-level thread pools and caches
for you, via supplied singletons. Alas, Volley does not. While this
provides flexibility, it does mean that you need your own singleton
wrapper around a RequestQueue. In the sample project, we have
VolleyManager for that:

package com.commonsware.android.volley;

import android.content.Context;
import android.widget.ImageView;
import com.android.volley.Request;
import com.android.volley.RequestQueue;
import com.android.volley.toolbox.ImageLoader;
import com.android.volley.toolbox.Volley;

public class VolleyManager {
 private static volatile VolleyManager INSTANCE;
 private final RequestQueue queue;
 private final ImageLoader imageLoader;

 synchronized static VolleyManager get(Context ctxt) {
 if (INSTANCE==null) {
 INSTANCE=new VolleyManager(ctxt.getApplicationContext());
 }

 return(INSTANCE);
 }

 private VolleyManager(Context ctxt) {
 queue=Volley.newRequestQueue(ctxt);
 imageLoader=new ImageLoader(queue, new LruBitmapCache(ctxt));
 }

 void enqueue(Request<?> request) {
 queue.add(request);
 }

 void loadImage(String url, ImageView iv,
 int placeholderDrawable, int errorDrawable) {
 imageLoader.get(url,
 ImageLoader.getImageListener(iv, placeholderDrawable,
 errorDrawable));
 }
}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/VolleyManager.java)
VolleyManager holds the singleton instance in a static field named
INSTANCE. That is lazy-initialized via the get() method to retrieve
the instance, as we need a Context for a bit of our work.
The private constructor creates a new RequestQueue via the static
newRequestQueue() helper method on the Volley class. If you prefer
to have more control (e.g., supply your own response cache), you can
also create a RequestQueue via a constructor, then call start() on
the RequestQueue to kick off the thread pool.
We will discuss the rest of VolleyManager, including the mysterious
ImageLoader we are creating in the constructor, a bit later in our
examination of the sample app.
Requesting JSON
Volley has built-in support for retrieving strings and images from
a Web service. If the Web service serves JSON, Volley also has built-in
support for parsing that JSON. However, it uses the legacy org.json
classes from the Android SDK, which work, but are slow and clunky.
Retrofit has built-in support for retrieving a JSON payload from a
Web service via an HTTP request, using Gson to parse that payload
into your desired POJOs. Alas, Volley does not offer Gson support
out of the box.
The author of Volley, Ficus Kirkpatrick, wrote a GsonRequest
class that handles this and published it via
a GitHub gist. This has
since been replicated in the Android documentation. Since this more
closely matches what we had in Retrofit, the sample project uses
this GsonRequest:

// from https://gist.github.com/ficusk/5474673

package com.commonsware.android.volley;

import com.google.gson.Gson;
import com.google.gson.JsonSyntaxException;

import com.android.volley.AuthFailureError;
import com.android.volley.NetworkResponse;
import com.android.volley.ParseError;
import com.android.volley.Request;
import com.android.volley.Response;
import com.android.volley.Response.ErrorListener;
import com.android.volley.Response.Listener;
import com.android.volley.toolbox.HttpHeaderParser;

import java.io.UnsupportedEncodingException;
import java.util.Map;

/**
 * Volley adapter for JSON requests that will be parsed into Java objects by Gson.
 */
public class GsonRequest<T> extends Request<T> {
 private final Gson gson = new Gson();
 private final Class<T> clazz;
 private final Map<String, String> headers;
 private final Listener<T> listener;

 /**
 * Make a GET request and return a parsed object from JSON.
 *
 * @param url URL of the request to make
 * @param clazz Relevant class object, for Gson's reflection
 * @param headers Map of request headers
 */
 public GsonRequest(String url, Class<T> clazz, Map<String, String> headers,
 Listener<T> listener, ErrorListener errorListener) {
 super(Method.GET, url, errorListener);
 this.clazz = clazz;
 this.headers = headers;
 this.listener = listener;
 }

 @Override
 public Map<String, String> getHeaders() throws AuthFailureError {
 return headers != null ? headers : super.getHeaders();
 }

 @Override
 protected void deliverResponse(T response) {
 listener.onResponse(response);
 }

 @Override
 protected Response<T> parseNetworkResponse(NetworkResponse response) {
 try {
 String json = new String(
 response.data, HttpHeaderParser.parseCharset(response.headers));
 return Response.success(
 gson.fromJson(json, clazz), HttpHeaderParser.parseCacheHeaders(response));
 } catch (UnsupportedEncodingException e) {
 return Response.error(new ParseError(e));
 } catch (JsonSyntaxException e) {
 return Response.error(new ParseError(e));
 }
 }
}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/GsonRequest.java)
A custom Request implementation like this needs four things:

	To supply the HTTP method, URL, and a Response.ErrorListener to the
superclass constructor

	To override getHeaders(), returning a Map of HTTP headers
to inject into the request, or null if there are none

	To override parseNetworkResponse(), taking the raw data from the
server and turning into a Response wrapped around the actual data
to be returned to the app (in this case, the custom POJO parsed by
Gson)

	To override deliverResponse(), which may be just a matter of
calling onResponse() on a Response.Listener

However, many developers can get away with using just one of the
built-in Request implementations, or perhaps other pre-built
implementations, like this GsonRequest.
Our QuestionsFragment can now create a GsonRequest for retrieving
our Stack Overflow questions and turning them into an SOQuestions
object. In this version of the sample, the work to populate the
ListView has been moved from onCreateView() to onViewCreated():

 @Override
 public void onViewCreated(View view,
 Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 GsonRequest<SOQuestions> request=
 new GsonRequest<SOQuestions>(getString(R.string.url),
 SOQuestions.class, null, this, this);

 VolleyManager.get(getActivity()).enqueue(request);
 }

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java)
The R.string.url value points to a string resource containing the
full URL, as it is a bit long for a Java code listing, or even to reproduce
easily here in this book. However, note two things about it:

	In the Retrofit-powered examples, we added the tagged query parameter
via a @Query annotated parameter on our StackOverflowInterface.
That was mostly to demonstrate using such parameters, as we were always
requesting the android questions. Since we do not have Retrofit’s URL
construction anymore, the URL in the string resource contains the
tagged=android query parameter.

	Because values resource files are XML files, all the & characters
in the URL need to be escaped as &, to satisfy XML parsing rules.

The rest of the GsonRequest parameters are the class for the response
(SOQuestions.class), our extra HTTP headers (null), and our implementations
of Listener and ErrorListener (both the fragment itself).
We then retrieve our VolleyManager singleton and call enqueue() on it,
which in turn calls add() on the RequestQueue, to cause one of Volley’s
threads to go do the HTTP work and process the result.
ErrorListener requires an onErrorResponse() method, which works much
like its Retrofit counterpart:

 @Override
 public void onErrorResponse(VolleyError error) {
 Toast.makeText(getActivity(), error.getMessage(),
 Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(),
 "Exception from Volley request to StackOverflow", error);
 }

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java)
Listener requires an onResponse() method, which takes the type of
data we are trying to load as a parameter (SOQuestions). Once again, this
works like its Retrofit counterpart:

 @Override
 public void onResponse(SOQuestions questions) {
 setListAdapter(new ItemsAdapter(questions.items));
 }

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java)
Requesting Images
Volley has an ImageRequest, one that works like GsonRequest, except
that it gives you a Bitmap back. You are welcome to use this, particularly
for occasional one-off requests for images.
However, if you are going to be fetching a lot of images — particularly
in something like a ListView, as the sample app does — you need some
more smarts than that. Picasso supplies those smarts to you automatically.
With Volley, you use an ImageLoader. An ImageLoader coordinates loading
many images, dealing with things like:

	canceling requests when views get recycled

	having a memory cache for images, to supplement the disk cache that Volley uses for responses

	trying to minimize redraws of the UI when multiple images are decoded roughly simultaneously

	and so on

Now, for reasons that are not entirely clear, while ImageLoader needs
a memory cache to work properly, it does not have one. Nor does Volley itself.
Instead, you have to make your own implementation of ImageLoader.ImageCache.
The Android documentation supplies an LruBitmapCache that does this,
on the back of Android’s LruCache:

// from http://developer.android.com/training/volley/request.html

package com.commonsware.android.volley;

import android.content.Context;
import android.graphics.Bitmap;
import android.support.v4.util.LruCache;
import android.util.DisplayMetrics;
import com.android.volley.toolbox.ImageLoader.ImageCache;

public class LruBitmapCache extends LruCache<String, Bitmap>
 implements ImageCache {

 public LruBitmapCache(int maxSize) {
 super(maxSize);
 }

 public LruBitmapCache(Context ctx) {
 this(getCacheSize(ctx));
 }

 @Override
 protected int sizeOf(String key, Bitmap value) {
 return value.getRowBytes() * value.getHeight();
 }

 @Override
 public Bitmap getBitmap(String url) {
 return get(url);
 }

 @Override
 public void putBitmap(String url, Bitmap bitmap) {
 put(url, bitmap);
 }

 // Returns a cache size equal to approximately three screens worth of images.
 public static int getCacheSize(Context ctx) {
 final DisplayMetrics displayMetrics = ctx.getResources().
 getDisplayMetrics();
 final int screenWidth = displayMetrics.widthPixels;
 final int screenHeight = displayMetrics.heightPixels;
 // 4 bytes per pixel
 final int screenBytes = screenWidth * screenHeight * 4;

 return screenBytes * 3;
 }
}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/LruBitmapCache.java)
The key for any cache, particularly a memory cache, is its maximum
size. LruBitmapCache lets you specify that directly if you wish.
Alternatively, you can provide it with a Context, and it will size
the cache to be the size of three full-screen images. This is not
a great cache sizing algorithm — it is better to tie the size to the
maximum heap size of your app — but it is what Google used.
VolleyManager creates an ImageLoader in its constructor, providing
it with an LruBitmapCache. VolleyManager also has a loadImage()
method that works a bit like the builder methods on Picasso. It takes
four parameters:

	The URL of the image to load

	The ImageView into which to load the image

	A drawable resource ID for an image placeholder

	A drawable resource ID for an image to show if there is an error
retrieving the real image (e.g., 404 from the Web server when requesting
the URL)

loadImage() in turn passes those on to the ImageLoader, which will
handle retrieving the image, caching it, and putting it in the supplied
ImageView.
The getView() method on ItemsAdapter can then replace its Picasso
code with a call to loadImage():

 class ItemsAdapter extends ArrayAdapter<Item> {
 ItemsAdapter(List<Item> items) {
 super(getActivity(), R.layout.row, R.id.title, items);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 Item item=getItem(position);
 ImageView icon=row.findViewById(R.id.icon);

 VolleyManager
 .get(getActivity())
 .loadImage(item.owner.profileImage, icon,
 R.drawable.owner_placeholder,
 R.drawable.owner_error);

 TextView title=row.findViewById(R.id.title);

 title.setText(Html.fromHtml(getItem(position).title));

 return(row);
 }
 }

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java)
Comparison with Retrofit + Picasso
Volley’s big claim to fame is that it is used in the Play Store app
and elsewhere in Google’s proprietary apps, supposedly.
However, its lack of official packaging and support makes it a bit
more difficult for the average developer to use. It also lacks some
of the “creature comforts” of Retrofit and Picasso, requiring a few
extra classes to do what Square’s libraries provide directly.
Other Candidate Libraries
There are plenty of other libraries that similarly try to help
simplify Android HTTP operations, including:

	AndroidAsync

	android-json-rpc

	
Glide, an increasingly popular image
loader

The Android Arsenal has categories for
general HTTP clients/networking libraries
for REST client libraries, and
for image loading libraries.
Visit the Trails
As noted earlier, there is a chapter on SSL that you should read,
if you run into trouble using SSL in Android or want to improve your security
further than you get with just stock SSL handling.
There is also a chapter on miscellaneous network capabilities –
the coverage of DownloadManager can be found there.
Intents, Intent Filters
We have seen Intent objects briefly, in our discussion of
having multiple activities in our application. However, we
really did not dive into too much of the details about those Intent
objects, and they can be used in other ways besides starting up an activity.
In this chapter, we will examine Intent and their filters.
What’s Your Intent?
When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol — HTTP
– he set up a system of verbs plus addresses in the form of URLs. The
address indicated a resource, such as a Web page, graphic, or server-side
program. The verb indicated what should be done: GET to retrieve it, POST to
send form data to it for processing, etc.
An Intent is similar, in that it represents an action plus context. There are
more actions and more components to the context with Intent than there
are with HTTP verbs and resources, but the concept is still the same.
Just as a Web browser knows how to process a verb+URL pair, Android knows how
to find activities or other application logic that will handle a given Intent.
Pieces of Intents
The two most important pieces of an Intent are the action and what Android
refers to as the “data”. These are almost exactly analogous to HTTP verbs and
URLs — the action is the verb, and the “data” is a Uri, such as
https://commonsware.com representing an HTTP URL to some balding guy’s
Web site.
Actions are constants, such as ACTION_VIEW (to bring up a viewer for the
resource) or ACTION_EDIT (to edit the resource).
If you were to create an Intent combining ACTION_VIEW with a content Uri of
https://commonsware.com, and pass that Intent to Android via startActivity(),
Android would know to find and open an activity capable of viewing that resource.
There are other criteria you can place inside an Intent, besides the
action and “data” Uri, such as:

	Categories. Your “main” activity will be in the LAUNCHER category,
indicating it should show up on the launcher menu. Other activities will
probably be in the DEFAULT category, though other categories exist and
are used on occasion.

	A MIME type, indicating the type of resource you want to operate on.

	A component, which is to say, the class of the activity that is supposed to
receive this Intent.

	“Extras”, which is a Bundle of other information you want to pass along to
the receiver with the Intent, that the recipient might want to take advantage
of. What pieces of information a given recipient can use is up to the recipient
and (hopefully) is well-documented.

You will find rosters of the standard actions, categories, and extras
in the Android SDK documentation for the Intent class.
Intent Routing
As noted above, if you specify the target component in your Intent, Android has
no doubt where the Intent is supposed to be routed to — it will launch the
named activity. This might be OK if the target recipient (e.g., the activity
to be started) is in your application.
It definitely is not recommended for invoking functionality in other applications.
Component names, by and large, are considered private to the application and
are subject to change. Actions, Uri templates, and MIME types are the preferred
ways of identifying capabilities you wish third-party code to supply.
If you do not specify the target component, then Android has to figure out what
recipients are eligible to receive the Intent. For example, Android
will take the Intent you supply to startActivity() and find the
activities that might support it. Note the
use of the plural “activities”, as a broadly-written intent might well resolve
to several activities. That is the… ummm… intent (pardon the pun), as you
will see later in this chapter.
This routing approach is referred to as implicit routing.
Basically, there are three rules, all of which must be true for a given
activity to be eligible for a given Intent:

	The activity must support the specified action

	The activity must support the stated MIME type (if supplied)

	The activity must support all of the categories named in the Intent

The upshot is that you want to make your Intent specific enough to find the
right recipient, and no more specific than that.
This will become clearer as we work through some examples throughout this chapter.
Stating Your Intent(ions)
All Android components that wish to be started via an Intent must declare Intent
filters, so Android knows which intents should go to that component. A common
approach for this is to add one or more <intent-filter> elements to your
AndroidManifest.xml file, inside the element for the component that should
respond to the Intent.
For example, all of the sample projects in this book have an <intent-filter>
on an <activity> that looks like this:

<intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>

Here, we declare that this activity:

	Is the main activity for this application

	Is in the LAUNCHER category, meaning it gets an icon in anything
that thinks of itself as a “launcher”, such as the home screen

You are welcome to have more than one action or more than one category in your
Intent filters. That indicates that the associated component (e.g., activity)
handles multiple different sorts of Intent patterns.
Responding to Implicit Intents
We saw in the chapter on multiple activities how one activity can start another
via an explicit Intent, identifying the particular activity to be started:

startActivity(new Intent(this, OtherActivity.class));

In that case, OtherActivity does not need an <intent-filter> in the manifest.
It will automatically respond when somebody explicitly identifies it as the
desired activity.
However, what if you want to respond to an implicit Intent, one that focuses on
an action string and other values? Then you will need an <intent-filter>
in the manifest.
For example, take a look at the
Intents/FauxSender
sample project.
Here, we have an activity, FauxSender, set up to respond to an ACTION_SEND
Intent, specifically for content that has the MIME type of text/plain:

 <activity
 android:name="FauxSender"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter android:label="@string/app_name">
 <action android:name="android.intent.action.SEND"/>

 <data android:mimeType="text/plain"/>

 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>

(from Intents/FauxSender/app/src/main/AndroidManifest.xml)
The call to startActivity() will always add the DEFAULT category if no
other category is specified, which is why our <intent-filter> also filters
on that category.
Hence, if somebody on the system calls startActivity() on an ACTION_SEND
Intent with a MIME type of text/plain, our FauxSender activity might
get control. We will explain the use of the term “might” in the next section.
The documentation for ACTION_SEND
indicates that a standard extra on the Intent is EXTRA_TEXT, representing
the text to be sent. There might also be an EXTRA_SUBJECT, representing a
subject line, if the “send” operation might have such a concept, such as an
email client.
FauxSender can retrieve those extras and make use of them:

package com.commonsware.android.fsender;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;
import android.widget.Toast;

public class FauxSender extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 String msg=getIntent().getStringExtra(Intent.EXTRA_TEXT);

 if (TextUtils.isEmpty(msg)) {
 msg=getIntent().getStringExtra(Intent.EXTRA_SUBJECT);
 }

 if (TextUtils.isEmpty(msg)) {
 Toast.makeText(this, R.string.no_message_supplied,
 Toast.LENGTH_LONG).show();
 }
 else {
 Toast.makeText(this, msg, Toast.LENGTH_LONG).show();
 }

 finish();
 }
}

(from Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSender.java)
Here, we use TextUtils.isEmpty() to detect if an extra is either null or
has an empty string as its value. If EXTRA_TEXT is supplied, we show it in
a Toast. Otherwise, we use EXTRA_SUBJECT if it is supplied, and if that is
also missing, we show a stock message from a string resource.
The activity then immediately calls finish() from onCreate() to get rid of
itself. That, coupled with android:theme="@android:style/Theme.Translucent.NoTitleBar" in
the <activity> element, means that
the activity will have no user interface,
beyond the Toast. If run from the launcher, you will still see the launcher
behind the Toast:

[image: FauxSender, Showing EXTRA_TEXT]

Figure 297: FauxSender, Showing EXTRA_TEXT
Requesting Implicit Intents
To send something via ACTION_SEND, you first set up the Intent, containing
whatever information you want to send in EXTRA_TEXT, such as this code
from the FauxSenderTest activity:

 Intent i=new Intent(Intent.ACTION_SEND);

 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
 i.putExtra(Intent.EXTRA_TEXT, theMessage);

(from Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSenderTest.java)
(where theMessage is a passed-in parameter to the method containing this
code fragment)
If we call startActivity() on this Intent directly, there are three
possible outcomes, described in the following sections.
Zero Matches
It is possible, though unlikely, that there are no activities at all on the
device that will be able to handle this Intent. In that case, we crash with
an ActivityNotFoundException. This is a RuntimeException, which is why
we do not have to keep wrapping all our startActivity() calls in try/catch
blocks. However, if we might start something that does not exist, we really should
catch that exception… or avoid the call in the first place. Detecting
up front whether there will be any matches for our activity is a topic that will
be discussed later in this book.
Note that the odds of an ActivityNotFoundException climb substantially
on Android 4.3+ tablets, when a restricted profile is in use, as will be
discussed later in this book.
One Match
It is possible that there will be exactly one matching activity. In that case,
the activity in question starts up and takes over the foreground. This is what
we see with the explicit Intent.
Many Matches, Default Behavior
It is possible that there will be more than one matching activity. In that case,
by default, the user will be presented with a so-called “chooser” dialog box:

[image: Chooser Dialog]

Figure 298: Chooser Dialog
The user can tap on any item in the list to have that particular
activity be the one to process this event. And, if the user clicks on “Always”,
and we invoke the same basic Intent again
(same action, same MIME type, same categories, same Uri scheme), whatever
the user chooses now will be used again automatically, bypassing the chooser.
The “Always” button in the chooser dialog sets the default activity for handling
the particular Intent structure that triggered the chooser.
The Chooser Override
For many Intent patterns, the notion of the user choosing a default makes
perfect sense. For example, if the user installs another Web browser, until
they set a default activity, every time they go to view a Web page, they will
be presented with a chooser, to choose among the installed browsers. This can
get annoying quickly.
However, ACTION_SEND is one of those cases where a default activity is usually
inappropriate. Just because the user on Monday chose to send something via
Bluetooth and accidentally clicked “Always” does not mean that every day
thereafter, they always want every ACTION_SEND to go via Bluetooth,
instead of Gmail or Email or Facebook or Twitter or any other ACTION_SEND-capable
apps they may have installed.
You can elect to force a chooser to display, regardless of whether the
user has set a default activity or not.
To do this, instead of calling startActivity() on the Intent
directly, you wrap the Intent in another Intent returned by the createChooser()
static method on Intent itself:

 void sendIt(String theMessage) {
 Intent i=new Intent(Intent.ACTION_SEND);

 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
 i.putExtra(Intent.EXTRA_TEXT, theMessage);

 startActivity(Intent.createChooser(i,
 getString(R.string.share_title)));
 }

(from Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSenderTest.java)
The second parameter to createChooser() is a message to appear at the top
of the dialog box:

[image: Your Tailored Chooser Dialog]

Figure 299: Your Tailored Chooser Dialog
Notice the lack of the “Always” button — not only must the user make a choice
now, but also they cannot make a default choice for the future, either.
Direct Share Targets
On Android 6.0, it is possible for an app to not only have an
activity appear in the chooser, but also to provide “direct share targets”.
These items in the chooser are supplied by the app offering an ACTION_SEND
implementation, but rather than representing a simple activity, they
can also have additional data in the extras Bundle in the Intent
used to start that activity. The idea is that the app could offer
a few icons to allow sharing to some fine-grained destination, such as
a particular contact or a particular folder or something.
Direct share targets are covered later in this book.
ShareActionProvider
Above, we saw how you can bring up
a chooser when using startActivity() on an implicit Intent action,
such as ACTION_SEND.
There is another option, if you are using the action bar:
ShareActionProvider. Designed for use with
ACTION_SEND, ShareActionProvider supplies a drop-down menu in the action
bar to let the user invoke some implementation of an Intent that you configure
and supply.
To see how you can add a ShareActionProvider to your activity or fragment,
let us take a look at the
ActionBar/ShareNative
sample project.
Our activity — MainActivity — will utilize the action bar. Its action bar items
are contained in a res/menu/actions.xml
file:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/share"
 android:actionProviderClass="android.widget.ShareActionProvider"
 android:showAsAction="ifRoom"/>

</menu>

(from ActionBar/ShareNative/app/src/main/res/menu/actions.xml)
In addition to specifying an ID and indicating that the item should be
shown in the action bar if there is room, we also include the android:actionProviderClass attribute.
This points to a concrete implementation of the ActionProvider abstract
base class, which is responsible for rendering the action bar item. In our case,
we are using ShareActionProvider.
Our activity UI is simply a large EditText widget:

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/editor"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="left|top"
 android:inputType="textMultiLine"/>

(from ActionBar/ShareNative/app/src/main/res/layout/activity_main.xml)
We load that layout in onCreate() of MainActivity, along with initializing
an Intent to be used when we employ the ShareActionProvider:

package com.commonsware.android.sap;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.view.Menu;
import android.widget.EditText;
import android.widget.ShareActionProvider;
import android.widget.Toast;

public class MainActivity extends Activity implements
 ShareActionProvider.OnShareTargetSelectedListener, TextWatcher {
 private ShareActionProvider share=null;
 private Intent shareIntent=new Intent(Intent.ACTION_SEND);
 private EditText editor=null;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.activity_main);

 shareIntent.setType("text/plain");
 editor=(EditText)findViewById(R.id.editor);
 editor.addTextChangedListener(this);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);

 share=
 (ShareActionProvider)menu.findItem(R.id.share)
 .getActionProvider();
 share.setOnShareTargetSelectedListener(this);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onShareTargetSelected(ShareActionProvider source,
 Intent intent) {
 Toast.makeText(this, intent.getComponent().toString(),
 Toast.LENGTH_LONG).show();

 return(false);
 }

 @Override
 public void afterTextChanged(Editable s) {
 shareIntent.putExtra(Intent.EXTRA_TEXT, s.toString());
 share.setShareIntent(shareIntent);
 }

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count,
 int after) {
 // ignored
 }

 @Override
 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 // ignored
 }
}

(from ActionBar/ShareNative/app/src/main/java/com/commonsware/android/sap/MainActivity.java)
We also register the activity itself to be a TextWatcher, to find out when
the user types something into the EditText widget.
onCreateOptionsMenu() is where we configure the ShareActionProvider, which
we obtain by calling findItem() on our Menu to get the item associated with
the provider, then calling getActionProvider() on the supplied MenuItem.
Specifically:

	We supply an Intent — configured with the action, MIME type, etc. that we
wish to invoke — to setShareIntent()

	We supply MainActivity itself, as an implementation of
OnShareTargetSelectedListener, via setOnShareTargetSelectedListener()

In the afterTextChanged() method needed by the TextWatcher interface,
we update the EXTRA_TEXT extra in the Intent to be the current contents
of the EditText. This way, as the user types, we keep the Intent “fresh”
with respect to what should be shared. Many consumers of a ShareActionProvider
will have less dynamic contents, in which case you can just set up the Intent
up front before you register it with the ShareActionProvider.
If the user chooses an item from the ShareActionProvider, we are notified via
a call to our onShareTargetSelected() method. Registering as the
OnShareTargetSelectedListener is optional — Android will automatically start
the selected activity without our involvement. onShareTargetSelected() is there
if you wish to know the means of sharing that the user chose. In our case, we
just flash a Toast to indicate that the callback worked.
Practice Safe Content Resolution
NOTE: the following is based on
a blog post from the author.
Dominik Schürmann and Lars Wolf, in an excellent
blog post and
pre-pub paper,
point out a security flaw in many activities that have an ACTION_SEND
<intent-filter>.
Many ACTION_SEND implementations accept EXTRA_STREAM as input.
That is supposed to point to Uri representing a stream of stuff to be
sent somewhere. Email apps might send it as an attachment, for example.
So, you fire up a ContentResolver, call openInputStream() to get
at the content backed by that Uri (because
that’s how real developers do it),
and then do something with that content. You might not even really care
what the content is… until that content is something from your own app. Like, say, your
user account database.
The problem outlined in Mr. Schürmann’s post and paper is that a malicious
party could provide you with a file: Uri
to your own internal storage.
While the third-party app cannot access your internal storage, you can.
So, in the case of an email app, the attacker asks you to email one of
your app’s own files to the attacker’s email address. The user may be
involved in this (e.g., having to actually click something to send
the email), but with
a bit of phishing or social engineering,
that problem can
be handled, at least some of the time. After all, courtesy of the intent:
scheme, some Web browsers and the like will allow a simple link click to trigger
the evil ACTION_SEND request.
To help with this, cketti (of K-9 Mail fame) wrote
a SafeContentResolver
that has its own openInputStream() method. However, this one will
fail if the Uri points to a file that your app owns or to a ContentProvider
from your app. If you use this
instead of the openInputStream() on ContentResolver, your ACTION_SEND
implementation will be safer from this attack.
More generally, if you accept input from outside parties, validate it.
Have rules for what sorts of Uri values you will and will not accept
for things like EXTRA_STREAM,
and provide runtime checks to confirm that the values you receive follow
the rules.
Broadcasts and Broadcast Receivers
One channel of the Intent message bus is used to start activities. A second
channel of the Intent message bus is used to send broadcasts. As the name
suggests, a broadcast Intent is one that — by default –
is published to any and all applications
on the device that wish to tune in.
Sending a Simple Broadcast
The simplest way to send a broadcast Intent is to create the Intent you
want, then call sendBroadcast().
That’s it.
At that point, Android will scan through everything set up to tune into a
broadcast matching your Intent, typically filtering just on the action string.
Anyone set up to receive this broadcast will, indeed, receive it, using a
BroadcastReceiver.
Receiving a Broadcast: In an Activity
To receive such a broadcast in an activity (or a fragment), you will need to do four things.
First, you will need to create an instance of your own subclass of
BroadcastReceiver. The only method you need to (or should) implement is
onReceive(), which will be passed the Intent that was broadcast, along
with a Context object that, in this case, you will typically ignore.
Second, you will need to create an instance of an IntentFilter object,
describing the sorts of broadcasts you want to receive. Most of these filters
are set up to watch for a single broadcast Intent action, in which case the
simple constructor suffices:

new IntentFilter(Intent.ACTION_CAMERA_BUTTON)

Third, you will need to call registerReceiver(), typically from onStart()
of your activity or fragment, supplying your BroadcastReceiver and your
IntentFilter.
Fourth, you will need to call unregisterReceiver(), typically from onStop()
of your activity or fragment, supplying the same BroadcastReceiver instance
you provided to registerReceiver().
In between the calls to registerReceiver() and unregisterReceiver(), you will
receive any broadcasts matching the IntentFilter.
The biggest downside to this approach is that some activity has to register
the receiver. Sometimes, you want to receive broadcasts even when there is no
activity around. To do that, you will need to use a different technique:
registering the receiver in the manifest.
Receiving a Broadcast: Via the Manifest
You can also tell Android about broadcasts you wish to receive by adding
a <receiver> element to your manifest, identifying the class that implements
your BroadcastReceiver (via the android:name attribute), plus an <intent-filter>
that describes the broadcast(s) you wish to receive:

<receiver android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
</receiver>

The good news is that this BroadcastReceiver will be available for broadcasts
occurring at any time. There is no assumption that you have an activity already
running that called registerReceiver().
The bad news is that the instance of the BroadcastReceiver used by Android to
process a broadcast will live for only so long as it takes to execute the
onReceive() method. At that point, the BroadcastReceiver is discarded.
Hence, it is not safe for a manifest-registered BroadcastReceiver to do
anything that needs to run after onReceive() itself completes, such as forking
a thread. After all, Android may well terminate the process within milliseconds,
if there is no other running component in the process.
More bad news: onReceive() is called on the main application thread — the same
main application thread that handles the UI of all of your activities. And,
you are subject to the same limitations as are your activity lifecycle methods
and anything else called on the main application thread:

	Any time spent in onReceive() will freeze your UI, if you happen to have
a foreground activity

	If you spend too long in onReceive(), Android will terminate your
BroadcastReceiver without waiting for onReceive() to complete

This makes using a manifest-registered BroadcastReceiver a bit tricky. If the
work to be done is very quick, just implement it in onReceive(). Otherwise,
you will probably need to pair this BroadcastReceiver with a component known
as an IntentService, which we will examine in the next chapter.
The Stopped State
On Android 3.1 and higher, when your app is first installed on the device, it
is in a “stopped” state. This has nothing to do with onStop() of any activity.
While in the stopped state, your manifest-registered BroadcastReceivers will
not receive any broadcasts.
Getting Out of the Stopped State
To get out of the stopped state, something on the device, such as
another app (that itself is not
in the stopped state), must use an explicit Intent to invoke one of your
components.
The most common way this happens is for the user to tap on a launcher icon
associated with your launcher activity. Under the covers, the home screen’s
launcher will create an explicit Intent, identifying your activity, and use
that with startActivity(). This moves you out of the stopped state.
Getting Into the Stopped State
As noted above, you start off in the stopped state. Once you are moved out
of the stopped state, via the explicit Intent, you will remain out of the
stopped state until one of two things happens:

	The user uninstalls your app

	The user “force-stops” your app

The latter normally occurs when the user clicks the “Force Stop” button on
your app’s screen in the Settings app (Settings > Apps). There is some
evidence that some device manufacturers have tied their own device’s
task manager to do a “force stop” when the user removes a task — this was
not a particularly wise choice on the part of those manufacturers.
Note that a reboot does not move you back into the stopped state. You
remain in the normal state through a reboot.
Example System Broadcasts
There are many, many broadcasts sent out by Android itself, which you can
tune into if you see fit. Many, but not all, of these are documented on the
Intent class. The values in the “Constants” table that have “Broadcast Action”
leading off their description are action strings used for system broadcasts.
There are other such broadcast actions scattered around the SDK, though, so do
not assume that they are all documented on Intent.
The following sections will examine two of these broadcasts, to see how the
BroadcastReceiver works in action.
At Boot Time
A popular request is to have code get control when the device is
powered on. This is doable but somewhat dangerous, in that too many on-boot
requests slow down the device startup and may make things sluggish for the user.
In order to be notified when the device has completed its system boot
process, you will need to request the RECEIVE_BOOT_COMPLETED permission.
Without this, even if you arrange to receive the boot broadcast Intent, it
will not be dispatched to your receiver.
As the Android documentation describes it:

Though holding this permission does not have any security
implications, it can have a negative impact on the user experience by increasing the amount of time it takes the system
to start and allowing applications to have themselves running without the user being aware of them. As such, you
must explicitly declare your use of this facility to make that
visible to the user.

We also need to register our BroadcastReceiver in the manifest — by the
time an activity would call registerReceiver(), the boot will have long since
occurred.
For example, let us examine the
Intents/OnBoot
sample project.
In our manifest, we request the needed permission and register our
BroadcastReceiver, along with an activity:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.sysevents.boot"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk
 android:minSdkVersion="7"
 android:targetSdkVersion="11"/>

 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false"/>

 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <receiver android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>

 <activity
 android:name="BootstrapActivity"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Intents/OnBoot/app/src/main/AndroidManifest.xml)
OnBootReceiver simply logs a message to Logcat:

package com.commonsware.android.sysevents.boot;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class OnBootReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d(getClass().getSimpleName(), "Hi, Mom!");
 }
}

(from Intents/OnBoot/app/src/main/java/com/commonsware/android/sysevents/boot/OnBootReceiver.java)
To test this on Android 3.0 and earlier, simply install the application and
reboot the device — you will see the message appear in Logcat.
However, on Android 3.1 and higher, the user must first manually launch some
activity before any manifest-registered BroadcastReceiver objects will be
used, as noted above in the section covering the stopped state.
Hence, if you were to just install the application and reboot the
device, nothing would happen. The little BootstrapActivity is merely there
for the user to launch, so that the ACTION_BOOT_COMPLETED BroadcastReceiver
will start working.
On Battery State Changes
One theme with system events is to use them to help make your users
happier by reducing your impacts on the device while the device is not in a
great state. Most applications are impacted by battery life. Dead batteries run
no apps. Hence, knowing the battery level may be important for your app.
There is an ACTION_BATTERY_CHANGED Intent that gets broadcast as the battery
status changes, both in terms of charge (e.g., 80% charged) and charging
(e.g., the device is now plugged into AC power). You simply need to register
to receive this Intent when it is broadcast, then take appropriate steps.
One of the limitations of ACTION_BATTERY_CHANGED is that you have to use
registerReceiver() to set up a BroadcastReceiver to get this Intent when
broadcast. You cannot use a manifest-declared receiver. There are separate
ACTION_BATTERY_LOW and ACTION_BATTERY_OK broadcasts that you can
receive from a manifest-registered receiver, but they are broadcast
far less frequently, only when the battery level falls below or rises above
some undocumented “low” threshold.
To demonstrate ACTION_BATTERY_CHANGED, take a peek at the
Intents/OnBattery
sample project.
In there, you will find a res/layout/batt.xml resource containing a ProgressBar, a
TextView, and an ImageView, to serve as a battery monitor:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <ProgressBar
 android:id="@+id/bar"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <TextView
 android:id="@+id/level"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:textSize="36sp"/>

 <ImageView
 android:id="@+id/status"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_weight="1"/>
 </LinearLayout>

</LinearLayout>

(from Intents/OnBattery/app/src/main/res/layout/batt.xml)
This layout is used by a BatteryFragment, which registers to receive
the ACTION_BATTERY_CHANGED Intent in onStart() and unregisters in
onStop():

package com.commonsware.android.battmon;

import android.app.Fragment;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.BatteryManager;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.ProgressBar;
import android.widget.TextView;

public class BatteryFragment extends Fragment {
 private ProgressBar bar=null;
 private ImageView status=null;
 private TextView level=null;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.batt, parent, false);

 bar=(ProgressBar)result.findViewById(R.id.bar);
 status=(ImageView)result.findViewById(R.id.status);
 level=(TextView)result.findViewById(R.id.level);

 return(result);
 }

 @Override
 public void onStart() {
 super.onStart();

 IntentFilter f=new IntentFilter(Intent.ACTION_BATTERY_CHANGED);

 getActivity().registerReceiver(onBattery, f);
 }

 @Override
 public void onStop() {
 getActivity().unregisterReceiver(onBattery);

 super.onStop();
 }

 BroadcastReceiver onBattery=new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 int pct=
 100 * intent.getIntExtra(BatteryManager.EXTRA_LEVEL, 1)
 / intent.getIntExtra(BatteryManager.EXTRA_SCALE, 1);

 bar.setProgress(pct);
 level.setText(String.valueOf(pct));

 switch (intent.getIntExtra(BatteryManager.EXTRA_STATUS, -1)) {
 case BatteryManager.BATTERY_STATUS_CHARGING:
 status.setImageResource(R.drawable.charging);
 break;

 case BatteryManager.BATTERY_STATUS_FULL:
 int plugged=
 intent.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);

 if (plugged == BatteryManager.BATTERY_PLUGGED_AC
 || plugged == BatteryManager.BATTERY_PLUGGED_USB) {
 status.setImageResource(R.drawable.full);
 }
 else {
 status.setImageResource(R.drawable.unplugged);
 }
 break;

 default:
 status.setImageResource(R.drawable.unplugged);
 break;
 }
 }
 };
}

(from Intents/OnBattery/app/src/main/java/com/commonsware/android/battmon/BatteryFragment.java)
The key to ACTION_BATTERY_CHANGED is in the “extras”. Many extras are
packaged in the Intent, to describe the current state of the battery, such as
the following constants defined on the BatteryManager class:

	
EXTRA_HEALTH, which should generally be BATTERY_HEALTH_GOOD

	
EXTRA_LEVEL, which is the proportion of battery life remaining as an
integer, specified on the scale described by the EXTRA_SCALE value

	
EXTRA_PLUGGED, which will indicate if the device is plugged into AC
power (BATTERY_PLUGGED_AC) or USB power (BATTERY_PLUGGED_USB)

	
EXTRA_SCALE, which indicates the maximum possible value of level
(e.g., 100, indicating that level is a percentage of charge remaining)

	
EXTRA_STATUS, which will tell you if the battery is charging
(BATTERY_STATUS_CHARGING), full (BATTERY_STATUS_FULL), or discharging
(BATTERY_STATUS_DISCHARGING)

	
EXTRA_TECHNOLOGY, which indicates what sort of battery is installed
(e.g., "Li-Ion")

	
EXTRA_TEMPERATURE, which tells you how warm the battery is, in
tenths of a degree Celsius (e.g., 213 is 21.3 degrees Celsius)

	
EXTRA_VOLTAGE, indicating the current voltage being delivered by the
battery, in millivolts

In the case of BatteryFragment, when we receive an ACTION_BATTERY_CHANGED
Intent, we do three things:

	We compute the percentage of battery life remaining, by dividing
the level by the scale

	We update the ProgressBar and TextView to display the battery life as
a percentage

	We display an icon, with the icon selection depending on whether
we are charging (status is BATTERY_STATUS_CHARGING), full but on the
charger (status is BATTERY_STATUS_FULL and plugged is
BATTERY_PLUGGED_AC or BATTERY_PLUGGED_USB), or are not plugged in

If you plug this into a device, it will show you the device’s charge level:

[image: The Battery Monitor]

Figure 300: The Battery Monitor
Sticky Broadcasts and the Battery
NOTE: Sticky broadcasts are deprecated in Android 5.0, and the documentation
hints that they may be abandoned entirely in the future.
Android has a notion of “sticky broadcast Intents”. Normally, a broadcast
Intent will be delivered to interested parties and then discarded. A sticky
broadcast Intent is delivered to interested parties and retained until the
next matching Intent is broadcast. Applications can call registerReceiver()
with an IntentFilter that matches the sticky broadcast, but with a null
BroadcastReceiver, and get the sticky Intent back as a result of the
registerReceiver() call.
This may sound confusing. Let’s look at this in the context of the battery.
Earlier in this section, you saw how to register for ACTION_BATTERY_CHANGED to
get information about the battery delivered to you. You can also, though,
get the latest battery information without registering a receiver. Just create
an IntentFilter to match ACTION_BATTERY_CHANGED (as shown above) and call
registerReceiver() with that filter and a null BroadcastReceiver. The Intent
you get back from registerReceiver() is the last ACTION_BATTERY_CHANGED
Intent that was broadcast, with the same extras. Hence, you can use this to
get the current (or near-current) battery status, rather than having to
bother registering an actual BroadcastReceiver.
This is why the sample app shows its results immediately — it was given
the last-broadcast edition of the ACTION_BATTERY_CHANGED broadcast once
we called registerReceiver().
Battery and the Emulator
Your emulator does not really have a battery. If you run this sample
application on an emulator, you will see, by default, that your device has
50% fake charge remaining and that it is being charged. However, it is
charged infinitely slowly, as it will not climb past 50%… at least, not
without help.
NOTE: At the time of this writing, the Linux emulator does not properly
emulate the battery for AVDs created from certain device profiles (e.g., Nexus S),
showing 0% battery charge and not responding
to the telnet commands described below. If you encounter this, go into the config.ini file for your AVD
(found in ~/.android/avd/.../, where ~/ is your home directory
and ... is the name of the AVD) and add hw.battery=yes as a property.
If that property exists but is set to no, change it to yes.
While the emulator will only show fixed battery characteristics, you can
change what those values are, through the highly advanced user interface
known as telnet.
You may have noticed that your emulator title bar consists of the name of
your AVD plus a number, frequently 5554. That number is not merely some
engineer’s favorite number. It is also an open port, on your emulator, to
which you can telnet into, on localhost (127.0.0.1) on your development
machine.
There are many commands you can issue to the emulator by means of
telnet . To change the battery level, use power capacity NN, where NN is the
percentage of battery life remaining that you wish the emulator to return. If
you do that while you have an ACTION_BATTERY_CHANGED BroadcastReceiver
registered, the receiver will receive a broadcast Intent, informing you of the
change.
You can also experiment with some of the other power subcommands (e.g.,
power ac on or power ac off), or other commands (e.g., geo, to send
simulated GPS fixes, just as you can do from DDMS).
Battery Data on Android 5.0+
As noted earlier, Android 5.0 deprecates sticky broadcasts. The existing
broadcasts still work, though. And, even if someday Android gets rid of
sticky broadcasts entirely, broadcasts like ACTION_BATTERY_CHANGED most
likely will still work, albeit just as a regular broadcast.
To get current battery information on Android 5.0 and higher, BatteryManager
offers getIntProperty() and getLongProperty(), where the keys for
the “properties” are BATTERY_PROPERTY_* constants defined on
BatteryManager, such as BATTERY_PROPERTY_CAPACITY to determine
the percentage of remaining battery capacity.
The Order of Things
Another variation on the broadcast Intent is the ordered broadcast.
Normally, if you broadcast an Intent, and there are 10 registered BroadcastReceivers
that match that Intent, all 10 will receive the broadcast, in indeterminate order,
and possibly in parallel (particularly on multi-core devices).
With an ordered broadcast, the behavior shifts a bit:

	Only one BroadcastReceiver at a time will receive the broadcast

	The order in which the BroadcastReceivers receive the broadcast is (somewhat)
controlled by their developers

	A BroadcastReceiver can “abort” the broadcast, preventing other receivers in
the chain from receiving it

Sending an ordered broadcast is merely a matter of calling sendOrderedBroadcast().
Receiving an ordered broadcast, at its core, is identical to receiving a regular
broadcast: you write a BroadcastReceiver and register it via the manifest or
registerReceiver(). However, you have two additional options when registering
that BroadcastReceiver.
First, you can specify a priority, either via setPriority()
on the IntentFilter or android:priority on the <intent-filter> element. The
priority is an integer, with higher numbers indicating higher priority.
Higher-priority receivers will get the broadcast sooner than will lower-priority
receivers. The default priority is 0. In theory, the priority should be a value
between -1000 and 1000, but this does not seem to be checked by the system,
and many apps use a priority higher than 1000.
Second, your BroadcastReceiver can call abortBroadcast() to consume the event,
preventing any lower-priority receivers from even seeing the broadcast.
Keeping It Local
A broadcast Intent, by default and nearly by definition, is
broadcast. Anything on the device could have a receiver “tuned in” to
listen for such broadcasts. While you can use setPackage() on
Intent to restrict the distribution, the broadcast still goes
through the standard broadcast mechanism, which involves transferring
the Intent to an OS process, which then does the actual
broadcasting. Hence, a broadcast Intent has some overhead.
Yet, there are times when using broadcasts within an app is handy,
but it would be nice to avoid the overhead. To help with this the
core Android team added LocalBroadcastManager to the Android
Support package, to provide an in-process way of doing broadcasts
with the standard Intent, IntentFilter, and BroadcastReceiver
classes, yet with less overhead.
LocalBroadcastManager is supplied by both the android-support-v4.jar and
android-support-v13.jar libraries. Generally speaking, if your android:minSdkVersion
is less than 13, you probably should choose android-support-v4.jar.
The only real difference, from a coding standpoint, in using
LocalBroadcastManager is that you call registerReceiver(),
unregisterReceiver(), and sendBroadcast() on an instance of
LocalBroadcastManager, instead of on an instance of Context. You get
the LocalBroadcastManager singleton for your process via a static
getInstance() method on LocalBroadcastManager itself.
We will see LocalBroadcastManager in use in one of the samples
in the services chapter.
Visit the Trails!
We examine LocalBroadcastManager in more detail, along
with other event bus alternatives, later in the book.
Tutorial #15 - Sharing Your Notes
Perhaps you would like to get your notes off of our book reader app and
into someplace else, or perhaps you would like to share them with somebody
else. Either way, we can do that using an ACTION_SEND operation, to allow
the user to choose how to “send” the notes, such as sending them by email
or uploading them to some third-party note service.
To make this work, we will add a ShareActionProvider to our action bar
on the NoteFragment.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Adding a ShareActionProvider
First, we need to allow the user to indicate that they want to “share” the
note displayed in the current NoteFragment. By putting an action bar item
on the activity where the NoteFragment is displayed, we do not need to
worry about letting the user choose which note to send — we simply send
whichever note they happen to be viewing or editing.
By using a ShareActionProvider, the action item will handle most of the
work for allowing the user to choose where to send the note to. We only need
to provide an Intent that identifies what is to be shared.
Modify res/menu/notes.xml to add in the new share toolbar button:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/share"
 android:actionProviderClass="android.widget.ShareActionProvider"
 android:showAsAction="ifRoom"
 android:title="@string/share"/>
 <item
 android:id="@+id/delete"
 android:icon="@drawable/ic_delete_white_24dp"
 android:showAsAction="ifRoom|withText"
 android:title="@string/delete">
 </item>
</menu>

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/res/menu/notes.xml)
Note that this menu definition requires a new string resource, named share,
with a value like Share.
Step #2: Sharing the Note
Now, we need to configure the ShareActionProvider, in particular supplying it
with a continuously-updated Intent, based upon what the user has typed into
the EditText.
Add a ShareActionProvider data member to NoteFragment, named share,
along with an Intent data member named shareIntent configured to use
ACTION_SEND of a MIME type of text/plain:

 private ShareActionProvider share=null;
 private Intent shareIntent=
 new Intent(Intent.ACTION_SEND).setType("text/plain");

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
Then, in onCreateView(), tell the EditText to let us know when the user
changes the text, via addTextChangedListener():

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.editor, container, false);

 editor=(EditText)result.findViewById(R.id.editor);
 editor.addTextChangedListener(this);

 return(result);
 }

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
This will fail to compile, as our NoteFragment is not implementing the
TextWatcher interface. So, modify the NoteFragment class declaration
to include the TextWatcher interface:

public class NoteFragment extends Fragment implements TextWatcher {

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
That, in turn, will require us to implement three methods:

	afterTextChanged()

	beforeTextChanged()

	onTextChanged()

In our case, we care about afterTextChanged(). So, add the following three
methods to NoteFragment:

 @Override
 public void afterTextChanged(Editable s) {
 shareIntent.putExtra(Intent.EXTRA_TEXT, s.toString());
 }

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count,
 int after) {
 // ignored
 }

 @Override
 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 // ignored
 }

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
Here, we update the shareIntent with the latest text to be shared, storing
it in EXTRA_TEXT, per the instructions in the Android developer documentation
for working with ACTION_SEND.
However, we have not initialized share yet. We can do that in onCreateOptionsMenu(),
adding a call to findItem() to find our R.id.share menu item, then calling
getActionProvider() to get the ShareActionProvider out of the menu item:

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.notes, menu);

 share=
 (ShareActionProvider)menu.findItem(R.id.share)
 .getActionProvider();
 share.setShareIntent(shareIntent);

 super.onCreateOptionsMenu(menu, inflater);
 }

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)
Here, we also attach the shareIntent to the ShareActionProvider, so when it comes
time to share the text, the ShareActionProvider knows how to do that.
Step #3: Testing the Result
If you run this on a device and navigate to a filled-in note, you will see
the new action bar item:

[image: ShareActionProvider in NoteFragment]

Figure 301: ShareActionProvider in NoteFragment
If you tap on it, you will get a roster of possible ways to share the
text:

[image: ShareActionProvider in NoteFragment, Expanded]

Figure 302: ShareActionProvider in NoteFragment, Expanded

[image: ShareActionProvider in NoteFragment, Fully Expanded]

Figure 303: ShareActionProvider in NoteFragment, Fully Expanded
The exact options you see will vary based on your device or emulator, and what
apps are installed on it that know how to share plain text. If you only
have one choice (e.g., Messenger), it will appear next to the share
icon, and you will only be able to tap on that one choice.
Unfortunately, your emulator may have nothing that can handle this Intent.
If that is the case, you will crash with an ActivityNotFoundException.
To get past this, if you enter http://goo.gl/w113e in your emulator’s browser,
that should allow you to download and install a copy of the APK from the
Intents/FauxSender
sample project that we covered earlier in this book.
When the download is complete (which should be very quick), open up the
notification drawer and tap on the “download complete” notification. This
should begin the installation process. Depending on your Android version,
you may also need to “allow installation of non-Market apps” — after
fixing this, you can use the Downloads app on the emulator to try installing
the APK again. Once FauxSender
is installed, it will respond to your attempts to share a note.
In Our Next Episode…
… we will allow the user to update the book’s contents
over the Internet.
Services and the Command Pattern
As noted previously, Android services are for long-running processes that may
need to keep running even when decoupled from any activity. Examples include
playing music even if the “player” activity is destroyed, polling the
Internet for RSS/Atom feed updates, and maintaining an online chat connection
even if the chat client loses focus due to an incoming phone call.
Services are created when manually started (via an API call) or when some
activity tries connecting to the service via inter-process communication (IPC).
Services will live until specifically shut down, until Android is desperate
for RAM and terminates the process, or for a short period of time on Android 8.0+.
Running for a long time has its costs,
though, so services need to be careful not to use too much CPU or keep radios
active too much of the time, lest the service cause the device’s battery to get
used up too quickly.
This chapter outlines the basic theory behind creating and consuming services,
including a look at the “command pattern” for services.
Why Services?
Services are a “Swiss Army knife” for a wide range of functions that do not
require direct access to an activity’s user interface, such as:

	Performing operations that need to continue even if the user leaves the
application’s activities, like a long download (as seen with the Play Store)
or playing music (as seen with Android music apps)

	Performing operations that need to exist regardless of activities coming and
going, such as maintaining a chat connection in support of a chat application

	Providing a local API to remote APIs, such as might be provided by a Web
service

	Performing periodic work without user intervention, akin to cron jobs or
Windows scheduled tasks

Even things like home screen app widgets often involve a service to assist with
long-running work.
The primary role of a service is as a flag to the operating system, letting
it know that your process is still doing work, despite the fact that it is
in the background. This makes it somewhat less likely that Android will
terminate your process due to low memory conditions.
Many applications will not need any services. Very few applications will need
more than one. However, the service is a powerful tool for an Android
developer’s toolbox and is a subject with which any qualified Android developer
should be familiar.
Setting Up a Service
Creating a service implementation shares many characteristics with building an
activity. You inherit from an Android-supplied base class, override some
lifecycle methods, and hook the service into the system via the manifest.
The Service Class
There are many service classes that you might inherit from.
The root of all of them is Service, just as the root of the hierarchy of
activity classes is Activity. You may wish to subclass Service, particularly
if:

	You will be using the binding pattern for communicating
to that service from another app or process, or

	The service will need to run for an indeterminate period of time, such as
a media player that works via user control

Historically, the next-most-common base class was IntentService. This
was good for a “transactional” bit of work, where you need to have a service
do something in the background for a bit, then you no longer need the service.
The classic example here is a service to download a large file: once the file
is downloaded, you no longer need that service to be around. IntentService
supplies you with a background thread to use for the network I/O and disk I/O,
and it will shut down automatically once the work is complete.
However, IntentService has recently been supplanted by JobIntentService.
This has similar characteristics, but it works better on Android 8.0+ devices,
due to limitations on what you can do in the background.
We will examine all three of these solutions in this chapter.
Beyond those, there are many specialized service classes. Elsewhere in the book
you will find examples of:

	
JobService, for doing periodic or scheduled work

	
TileService, for adding a custom tile to the notification shade of the
device

	
ChooserTargetService, for helping provide more specific integration options
with other apps

And there are plenty of others. While they are all services, and they will all
be added to the manifest in the same fashion (more or less), the API that you
implement will be very specific to the service that you are extending. The API
for TileService looks little like the API for JobService, for example. As
such, those services, where we use them, are covered elsewhere in the book.
Lifecycle Methods
Just as activities have onCreate(), onResume(), onPause() and kin,
Service implementations have their own lifecycle methods, such as:

	
onCreate(), which, as with activities, is called when the service
is created, by any means

	
onStartCommand(), which is called each time the service is sent a command
via startService()

	
onBind(), which is called whenever a client binds to the service via
bindService()

	
onDestroy() which is called as the service is being shut down

As with activities, services initialize whatever they need in onCreate() and
clean up those items in onDestroy(). And, as with activities, the
onDestroy() method of a service might not be called, if Android terminates
the entire application process, such as for emergency RAM reclamation.
The onStartCommand() and onBind() lifecycle methods will be implemented
based on your choice of communicating to the client, as will be explained
later in this chapter.
Note that Service is an abstract class and onBind() is an abstract
method, so even if you are not using bindService(), you will need to implement
onBind() in order to successfully compile. A common approach here is to
have onBind() simply return null.
Note that these methods may be optional, depending upon your needs and the base
class that you extend. So, for example, overriding any of these in a JobIntentService
is unusual at best and a bad idea at worst.
Manifest Entry
Finally, you need to add the service to your AndroidManifest.xml file, for it
to be recognized as an available service for use. That is simply a matter of
adding a <service> element as a child of the application element, providing
android:name to reference your service class.
Since the service class is in the same Java namespace as everything else in
this application, we can use the shorthand (e.g., "PlayerService") to reference our class.
For example, here is a manifest showing the <service> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.fakeplayer"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-sdk
 android:minSdkVersion="14"
 android:targetSdkVersion="14"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Holo.Light.DarkActionBar">
 <activity
 android:name="FakePlayer"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <service android:name="PlayerService"/>
 </application>

</manifest>

(from Service/FakePlayer/app/src/main/AndroidManifest.xml)
Communicating To Services
Clients of services — frequently activities, though not necessarily —
have two main ways to send requests or information to a service. One approach
is to send a command, which creates no lasting connection to the service. The
other approach is to bind to the service, establishing a
communications channel that lasts as long as the client needs it.
Sending Commands with startService()
The simplest way to work with a service is to call startService(). The
startService() method takes an Intent parameter, much like startActivity()
does. In fact, the Intent supplied to startService() has the same two-part
role as it does with startActivity():

	Identify the service to communicate with

	Supply parameters, in the form of Intent extras, to tell the service what
it is supposed to do

For a local service — the focus of this chapter — the simplest form of
Intent is one that identifies the class that implements the Service (e.g.,
new Intent(this, MyService.class);).
The call to startService() is asynchronous, so the client will not block. The
service will be created if it is not already running, and it will receive the
Intent via a call to the onStartCommand() lifecycle method. The service can
do whatever it needs to in onStartCommand(), but since onStartCommand() is
called on the main application thread, it should do its work very quickly.
Anything that might take more than a handful of milliseconds should be delegated
to a background thread.
The onStartCommand() method can return one of several values, mostly to
indicate to Android what should happen if the service’s process should be
killed while it is running. The most likely return values are:

	
START_STICKY, meaning that the service should be moved back into the
started state (as if onStartCommand() had been called), but do not re-deliver
the Intent to onStartCommand()

	
START_REDELIVER_INTENT, meaning that the service should be restarted via a
call to onStartCommand(), supplying the same Intent as was delivered this
time

	
START_NOT_STICKY, meaning that the service should remain stopped until
explicitly started by application code

By default, calling startService() not only sends the command, but tells
Android to keep the service running until something tells it to stop. One way
to stop a service is to call stopService(), supplying the same Intent used
with startService(), or at least one that is equivalent (e.g., identifies the
same class). At that point, the service will stop and will be destroyed. Note
that stopService() does not employ any sort of reference counting, so three
calls to startService() will result in a single service running, which will
be stopped by a call to stopService().
Another possibility for stopping a service is to have the service call
stopSelf() on itself. You might do this if you use startService() to have a
service begin running and doing some work on a background thread, then having
the service stop itself when that background work is completed.
Note that JobIntentService has an API that feels like the command pattern,
though it uses a different set of methods, as will be explored
later in the chapter.
Binding to Services
Another approach to communicating with a service is to use the binding pattern.
Here, instead of packaging commands to be sent via an Intent, you can
obtain an actual API from the service, with whatever data types, return values,
and so on that you wish. You then invoke that API no different than you would
on some local object.
The benefit is the richer API. The cost is that binding is more complex to
set up and more complex to maintain, particularly across configuration changes.
We will discuss the binding pattern later in this book.
Scenario: The Music Player
Most audio player applications in Android — for music, audiobooks, or
whatever — do not require the user to remain in the player application
itself. Rather, the user can go on and do other things with their device, with
the audio playing in the background.
The sample project reviewed in this section
is Service/FakePlayer.
The Design
We will use startService(), since we want the service to run even
when the activity starting it has been destroyed. However, we will
use a regular Service, rather than an IntentService or JobIntentService. Those are
designed to do work and stop itself, whereas in this case, we want the user to
be able to stop the music playback when the user wants to.
Since music playback is outside the scope of this chapter, the service will simply
stub out those particular operations.
The Service Implementation
Here is the implementation of this Service, named PlayerService:

package com.commonsware.android.fakeplayer;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;

public class PlayerService extends Service {
 public static final String EXTRA_PLAYLIST="EXTRA_PLAYLIST";
 public static final String EXTRA_SHUFFLE="EXTRA_SHUFFLE";
 private boolean isPlaying=false;

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 String playlist=intent.getStringExtra(EXTRA_PLAYLIST);
 boolean useShuffle=intent.getBooleanExtra(EXTRA_SHUFFLE, false);

 play(playlist, useShuffle);

 return(START_NOT_STICKY);
 }

 @Override
 public void onDestroy() {
 stop();
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(null);
 }

 private void play(String playlist, boolean useShuffle) {
 if (!isPlaying) {
 Log.w(getClass().getName(), "Got to play()!");
 isPlaying=true;
 }
 }

 private void stop() {
 if (isPlaying) {
 Log.w(getClass().getName(), "Got to stop()!");
 isPlaying=false;
 }
 }
}

(from Service/FakePlayer/app/src/main/java/com/commonsware/android/fakeplayer/PlayerService.java)
In this case, we really do not need anything for onCreate(), so that
lifecycle method is skipped. On the other hand, we have to implement
onBind(), because that is an abstract method on Service.
When the client calls startService(), onStartCommand() is called in
PlayerService. Here, we get the Intent and pick out some extras to tell us
what to play back (EXTRA_PLAYLIST) and other configuration details (e.g.,
EXTRA_SHUFFLE). onStartCommand() calls play(), which simply flags that we
are playing and logs a message to Logcat — a real music player would use
MediaPlayer to start playing the first song in the playlist.
onStartCommand() returns START_NOT_STICKY, indicating that if Android
terminates the process (e.g., low memory), it should not restart it once
conditions improve.
onDestroy() stops the music from playing — theoretically, anyway —
by calling a stop() method. Once again, this just logs a message to Logcat,
plus updates our internal are-we-playing flag.
Using the Service
The PlayerFragment demonstrating the use of PlayerService has a very
elaborate UI, consisting of two large buttons:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <Button
 android:id="@+id/start"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:text="@string/start_the_player"/>

 <Button
 android:id="@+id/stop"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:text="@string/stop_the_player"/>

</LinearLayout>

(from Service/FakePlayer/app/src/main/res/layout/main.xml)
The fragment itself is not much more complex:

package com.commonsware.android.fakeplayer;

import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class PlayerFragment extends Fragment implements
 View.OnClickListener {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.main, parent, false);

 result.findViewById(R.id.start).setOnClickListener(this);
 result.findViewById(R.id.stop).setOnClickListener(this);

 return(result);
 }

 @Override
 public void onClick(View v) {
 Intent i=new Intent(getActivity(), PlayerService.class);

 if (v.getId() == R.id.start) {
 i.putExtra(PlayerService.EXTRA_PLAYLIST, "main");
 i.putExtra(PlayerService.EXTRA_SHUFFLE, true);

 getActivity().startService(i);
 }
 else {
 getActivity().stopService(i);
 }
 }
}

(from Service/FakePlayer/app/src/main/java/com/commonsware/android/fakeplayer/PlayerFragment.java)
The onCreateView() method merely loads the UI. The onClick() method
constructs an Intent with fake values for EXTRA_PLAYLIST and
EXTRA_SHUFFLE, then calls startService(). After you press the “Start” button,
you will see the corresponding message in Logcat. Similarly, stopPlayer()
calls stopService(), triggering the second Logcat message. Notably, you do
not need to keep the activity running in between those button clicks — you
can exit the activity via BACK and come back later to stop the service.
The Power of the PendingIntent
Right now, we are focused on services that work within a single process. However,
later, we will examine services that run in separate processes,
possibly even in separate apps. Communicating with such services becomes more
of a challenge, as we cannot just pass around arbitrary objects. One thing that
we can pass around is anything implementing the Parcelable interface.
One of the key Parcelable objects for inter-process communication is a
PendingIntent. And while PendingIntent is designed for use between processes, it can also
be used within your own app, if desired.
What Is a PendingIntent?
Principally, a PendingIntent is a wrapper around an Intent, identifying a specific
action to be performed on that Intent:

	start an activity

	start a service

	send a broadcast

How Do We Create One?
Mostly, you will use factory methods on the PendingIntent class, based
on the particular action that you want performed on the underlying Intent:

	
PendingIntent.getActivity() to create a PendingIntent that will start an activity

	
PendingIntent.getService() to create a PendingIntent that will start a service

	
PendingIntent.getForegroundService() to create a PendingIntent that will start a service
that, in turn, will use startForeground() to become a foreground service

	
PendingIntent.getBroadcast() to create a PendingIntent that will send a broadcast

These methods each take the same basic list of parameters, including:

	a Context

	the Intent to wrap

	an app-specific unique ID for this particular PendingIntent

	some optional flags

How Do We Execute the PendingIntent?
If you are the recipient of a PendingIntent, you can execute it by calling
send(). This will cause the PendingIntent to perform the requested action
on the requested Intent. Note that you do not have the ability to change the
action, nor do you have read access to the underlying Intent. You can
optionally provide an Intent as input to the send() method, in which case
data in your Intent gets blended into data already in the Intent inside
of the PendingIntent, with the merged result used to start the activity,
start the service, or send the broadcast.
Why Not Just Pass the Intent?
One could argue that a PendingIntent seems unnecessary. Suppose that we instead
passed an Intent, in a situation where the recipient of that Intent knew
intrinsically what to do with it (e.g., start an activity). What would be the
point of wrapping this Intent into a PendingIntent?
For cases where the recipient of the Intent has the rights to perform the
desired action, a PendingIntent would indeed be unnecessary. However, more often
than not, the recipient of a PendingIntent does not have the rights to
perform the desired action on the wrapped Intent directly. Most activities, services,
and receivers in Android apps are not “exported”, meaning that they are private
to the app. However, from a security standpoint, executing a PendingIntent
works as if the action were being performed by whatever app created the PendingIntent originally,
rather than the app that is executing the PendingIntent itself.
For example, suppose App A creates an activity PendingIntent, with an Intent
that points to one of its activities. That particular activity is a private one
for the app — it has no <intent-filter> in the manifest and is not otherwise
marked as being exported. App A then passes that PendingIntent to App B. App B,
on its own, has no ability to start this activity. However, App B can send()
the PendingIntent, and the PendingIntent can start the activity, because
that PendingIntent was created by App A, not App B.
In international diplomacy, the plot of land that an embassy sits upon is considered
to be the sovereign territory of the country of the embassy, not the country in which
the embassy resides. For example, the land around the French Embassy in Washington DC
is part of France, not the United States. Similarly, it is as if a PendingIntent
is part of the app that creates it, even if that PendingIntent is passed to
other apps or to system processes.
Where Will We Use PendingIntents?
You can put a PendingIntent in an Intent extra, since a PendingIntent is
Parcelable. Similarly, as we will see in a later chapter, there
are other ways of getting data to a bound service, and a PendingIntent will work
for those as well. So, one use of PendingIntent objects is to pass them to other
services, where those services can execute the PendingIntent objects as needed.
However, beyond that, there are many places in Android where PendingIntent
objects get used, including:

	AlarmManager

	app widgets

	location tracking, both with Android’s own LocationManager or Play Services’ fused location provider

	notifications

	slices

	sending SMS messages

Communicating From Services
Sending commands to a service, by default, is a one-way street. Frequently,
though, we need to get results from our service back to our activity. There
are a few approaches for how to accomplish this, above and beyond passing your
own custom PendingIntent as described above.
Broadcast Intents
One approach, first mentioned in the chapter on
Intent filters, is to have the service send a broadcast
Intent
that can be picked up by the activity… assuming the activity is still around
and is not paused. The service can call sendBroadcast(), supplying an Intent
that identifies the broadcast, designed to be picked up by a
BroadcastReceiver. This could be a component-specific broadcast (e.g.,
new Intent(this, MyReceiver.class)), if the BroadcastReceiver is registered in
the manifest. Or, it can be based on some action string, perhaps one even
documented and designed for third-party applications to listen for.
The activity, in turn, can register a BroadcastReceiver via
registerReceiver(), though this approach will only work for Intent objects
specifying some action, not ones identifying a particular component. But, when
the activity’s BroadcastReceiver receives the broadcast, it can do what it
wants to inform the user or otherwise update itself.
However, for local services, this is not a good choice. System broadcasts
like this are intrinsically system-wide; for a local service, you should
be using a communications channel that is private to your process.
Pending Results
Your activity can call createPendingResult(). This returns a PendingIntent.
In this case,
the PendingIntent will cause a result to be delivered to your activity’s
implementation of onActivityResult(), just as if another activity had been
called with startActivityForResult() and, in turn, called setResult() to
send back a result.
Event Buses
Event bus implementations — like LocalBroadcastManager or greenrobot’s
EventBus — are a great solution for having a service communicate with objects
elsewhere within your process. You can have the service raise events (e.g.,
NewEmailEvent, UploadCompletedEvent, MartiansHaveLandedEvent), which
activities or fragments can listen for and respond to.
Messenger
Yet another possibility is to use a Messenger object. A Messenger sends
messages to an activity’s Handler. Within a single activity, a Handler can
be used to send messages to itself, as was mentioned briefly in the
chapter on threads. However, between components — such as between an
activity and a service — you will need a Messenger to serve as the
bridge.
As with a PendingIntent, a Messenger is Parcelable, and so can be put
into an Intent extra. The activity calling startService() or
bindService() would attach a Messenger as an extra on the Intent. The
service would obtain that Messenger from the Intent. When it is time to
alert the activity of some event, the service would:

	Call Message.obtain() to get an empty Message object

	Populate that Message object as needed, with whatever data the service
wishes to pass to the activity

	Call send() on the Messenger, supplying the Message as a parameter

The Handler will then receive the message via handleMessage(), on the main
application thread, and so can update the UI or whatever is necessary.
Notifications
Another approach is for the service to let the user know directly about the
work that was completed. To do that, a service can raise a Notification —
putting an icon in the status bar and optionally shaking or beeping or
something. This technique is covered in
an upcoming chapter.
We can also combine these techniques, such as using an event bus event and
detecting when nothing in the UI layer receives the event, so we know that
we need to display a Notification. We will be examining this pattern later
in the book as well.
Scenario: The Downloader
If you elect to download something from the Play Store, you are welcome to
back out of the Play Store application entirely. This does not cancel the download
– the download and installation run to completion, despite no Play Store
activity being on-screen.
You may have similar circumstances in your application, from downloading a
purchased e-book to downloading a map for a game to downloading a file from
some sort of “drop box” file-sharing service. And, perhaps DownloadManager
is not going to be a great choice, for any number of reasons (e.g., you want
to download the file to internal storage).
The sample project reviewed in this section
is Service/Downloader,
which implements such a downloading service.
The Design
This sort of situation is a perfect use for the command pattern and either an
IntentService or a JobIntentService. Either of those have a background thread, so downloads can
take as long as needed. Either of those will automatically shut down when
the work is done, so the service will not linger and you do not need to worry
about shutting it down yourself. Your activity can simply send a command to tell it to go do the work.
In this sample, we will use an IntentService. A clone of this project that
uses a JobIntentService appears later in this chapter.
Admittedly, things get a bit trickier when you want to have the activity find
out when the download is complete. This example will show the use of
LocalBroadcastManager for this.
Things get even trickier when you want to download to a public location
on external storage, such as the Downloads directory. On Android 6.0+
devices, with a targetSdkVersion of 23 or higher, you need to request
runtime permissions before you can write to external storage. However,
requesting runtime permissions needs to be done by the UI layer — a
service cannot request permissions on its own (though it can check to
see if the app has permission). The simplest thing to do is to request
the permissions, if needed, before starting the service. This sample app
demonstrates this.
Using the Service
The DownloadFragment demonstrating the use of Downloader has a trivial UI, consisting
of one large button:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="@string/do_the_download"
/>

(from Service/Downloader/app/src/main/res/layout/main.xml)
That UI is initialized in onCreateView(), as usual:

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.main, parent, false);

 b=result.findViewById(R.id.button);
 b.setOnClickListener(this);

 return(result);
 }

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
When the user clicks the button, onClick() is called. What happens now
depends on whether we have permission to write to external storage or not:

 @Override
 public void onClick(View v) {
 if (hasPermission(WRITE_EXTERNAL_STORAGE)) {
 doTheDownload();
 }
 else {
 requestPermissions(
 new String[] { WRITE_EXTERNAL_STORAGE }, REQUEST_STORAGE);
 }
 }

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
The first time the user runs the app, the app will not have permission
yet. hasPermission(WRITE_EXTERNAL_STORAGE) will return false, where
hasPermission() is a utility method wrapping around
ContextCompat.checkSelfPermission():

 private boolean hasPermission(String perm) {
 return(ContextCompat.checkSelfPermission(getActivity(), perm)==
 PackageManager.PERMISSION_GRANTED);
 }

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
WRITE_EXTERNAL_STORAGE is a static import, just to cut down on verbosity:

import static android.Manifest.permission.WRITE_EXTERNAL_STORAGE;

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
If hasPermission() returns false, we call requestPermissions()
on FragmentCompat, as we are in a fragment, not an activity. That
eventually routes to onRequestPermissionsResult():

 @Override
 public void onRequestPermissionsResult(int requestCode, String[] permissions,
 int[] grantResults) {
 if (hasPermission(WRITE_EXTERNAL_STORAGE)) {
 doTheDownload();
 }
 }

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
Hence, if we either have permission when the user clicks the button,
or if we receive permission after asking for it, we call a doTheDownload()
method to kick off the download. Specifically, we disable the
button (to prevent accidental duplicate downloads) and call startService()
to send over a command:

 private void doTheDownload() {
 b.setEnabled(false);

 Intent i=new Intent(getActivity(), Downloader.class);

 i.setData(Uri.parse("https://commonsware.com/Android/Android-1_0-CC.pdf"));

 getActivity().startService(i);
 }

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
Here, the Intent we pass over has the URL of the file to download (in this
case, a URL pointing to a PDF).
The Service Implementation
Here is the implementation of this IntentService, named Downloader:

package com.commonsware.android.downloader;

import android.app.IntentService;
import android.content.Intent;
import android.os.Environment;
import android.support.v4.content.LocalBroadcastManager;
import android.util.Log;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class Downloader extends IntentService {
 public static final String ACTION_COMPLETE=
 "com.commonsware.android.downloader.action.COMPLETE";

 public Downloader() {
 super("Downloader");
 }

 @Override
 public void onHandleIntent(Intent i) {
 try {
 File root=
 Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

 root.mkdirs();

 File output=new File(root, i.getData().getLastPathSegment());

 if (output.exists()) {
 output.delete();
 }

 URL url=new URL(i.getData().toString());
 HttpURLConnection c=(HttpURLConnection)url.openConnection();

 FileOutputStream fos=new FileOutputStream(output.getPath());
 BufferedOutputStream out=new BufferedOutputStream(fos);

 try {
 InputStream in=c.getInputStream();
 byte[] buffer=new byte[8192];
 int len=0;

 while ((len=in.read(buffer)) >= 0) {
 out.write(buffer, 0, len);
 }

 out.flush();
 }
 finally {
 fos.getFD().sync();
 out.close();
 c.disconnect();
 }

 LocalBroadcastManager.getInstance(this)
 .sendBroadcast(new Intent(ACTION_COMPLETE));
 }
 catch (IOException e2) {
 Log.e(getClass().getName(), "Exception in download", e2);
 }
 }
}

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/Downloader.java)
Our business logic is in onHandleIntent(), which is called on an Android-supplied
background thread, so we can take whatever time we need. Also, when onHandleIntent()
ends, the IntentService will stop itself automatically… assuming no other
requests for downloads occurred while onHandleIntent() was running. In that
case, onHandleIntent() is called again for the next download, and so on.
In onHandleIntent(), we first set up a File object pointing to where we want
to download the file. We use getExternalStoragePublicDirectory() to find the public
folder for downloads. Since this directory may not exist, we need to create it
using mkdirs(). We then use the getLastPathSegment() convenience method
on Uri, which returns to us the filename portion of a path-style Uri.
The result is that our output File object points to a file, named the same
as the file we are downloading, in a public folder.
We then go through a typical HttpUrlConnection process to connect to the
URL supplied via the Uri in the Intent, streaming the results from the
connection (8KB at a time) out to our designated file. Then, we follow the
requested recipe to ensure our file is saved:

	
flush() the stream

	
sync() the FileDescriptor (from getFD())

	
close() the stream

This recipe was explained back in the chapter on file I/O.
Finally, it would be nice to let somebody know that the download has completed.
So, we send a local broadcast Intent, with our own custom action (ACTION_COMPLETE),
using LocalBroadcastManager.
Note that, in theory, we could start the service, but the user could revoke
our permission before we get a chance to start the download. In practice,
this is very unlikely to happen, as our download should start within
milliseconds. However, when working with runtime permissions from services,
you need to consider the length of time between confirming that you have
permission and when you perform the actions secured by that permission.
If there may be a significant time gap, double-check the permission before
trying the actions (e.g., writing to external storage). It is cleaner
to recover from checkSelfPermission() indicating that you do not have
permission than from some IOException or SecurityException because
you do not have permission and tried the action anyway.
If your service determines that it does not have permission, you
cannot call requestPermissions(), as a service is neither an activity
nor a fragment. Instead, raise a notification and gracefully
exit the service. The notification can direct the user somewhere in the
app where you can request the permission (again) and re-try the work to
be done by the service.
Receiving the Broadcast
Our DownloadFragment is set up to listen for that local broadcast Intent, by
registering a local BroadcastReceiver in onStart() and unregistering it in
onStop():

 @Override
 public void onStart() {
 super.onStart();

 IntentFilter f=new IntentFilter(Downloader.ACTION_COMPLETE);

 LocalBroadcastManager.getInstance(getActivity())
 .registerReceiver(onEvent, f);
 }

 @Override
 public void onStop() {
 LocalBroadcastManager.getInstance(getActivity())
 .unregisterReceiver(onEvent);

 super.onStop();
 }

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
The BroadcastReceiver itself re-enables our button, plus displays a Toast
indicating that the download is complete:

 private BroadcastReceiver onEvent=new BroadcastReceiver() {
 public void onReceive(Context ctxt, Intent i) {
 b.setEnabled(true);

 Toast.makeText(getActivity(), R.string.download_complete,
 Toast.LENGTH_LONG).show();
 }
 };

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
Note that if the user leaves the activity (e.g., BACK, HOME), the broadcast
will not be received by the activity. There are other ways of addressing this,
particularly combining an ordered broadcast with a Notification, which we will
examine later in this book.
Limitation: Time
On Android 7.1 and older, this sample app works fine.
On Android 8.0 and newer, this sample app works fine… because the PDF file that
it is trying to download is not that big.
However, on Android 8.0+, a started service like this can run for only one minute.
After that, Android will stop the service. That will not terminate our background
thread immediately, but it will make it far more likely that Android will terminate
our entire process, taking our thread and download with it.
As a result, nowadays, an IntentService is suitable only for scenarios where
you are quite certain that the work will get done in less than a minute.
One way to work around this is to make the service be a “foreground service”.
In the upcoming chapter on notifications, we will revisit this sample and
discuss the use of startForeground() to make a service be a foreground service.
Another workaround is to use JobIntentService, as we will see in the next section.
Limitation: Staying Awake
Even if our work is certain to take less than a minute, we may run into another
problem: the device might fall asleep. When the screen turns off, by default,
Android will power down the CPU, suspending all running processes. This, in turn,
will prevent us from downloading the file anymore.
JobIntentService works around this by way of a “wakelock”: a request to the OS
to keep the device awake, even though the screen turns off. You can use a wakelock
yourself to keep the device awake, for scenarios where you need that capability but
where JobIntentService is not a great option. We will explore wakelocks in greater
detail in the chapter on AlarmManager.
JobIntentService
IntentService still works on Android 8.0, but unless you make it be a foreground
service, you will be limited to ~1 minute of runtime before your service
is stopped abruptly. JobIntentService is a wrapper around a JobService
that offers IntentService-style semantics. On Android 8.0 and higher,
when you tell a JobIntentService to do some work, it enqueues that work
via JobScheduler. On Android 7.1 and earlier, the JobIntentService behaves
more like a regular IntentService, though one that supplies a WakeLock
for you (akin to the author’s WakefulIntentService).
The
Service/JobIntentService
sample project is a clone of the IntentService sample,
where we use the service to download a PDF file. The revised sample swaps
out the IntentService with a JobIntentService, which is a fairly easy conversion
to make.
First, we need to defend it with the android.permission.BIND_JOB_SERVICE
permission:

 <service
 android:name="Downloader"
 android:permission="android.permission.BIND_JOB_SERVICE" />

(from Service/JobIntentService/app/src/main/AndroidManifest.xml)
This is required because, under the covers, a JobIntentService is really a
JobService, and JobService requires this android:permission attribute. We will
explore this more in the chapter on JobScheduler.
What had been onHandleIntent() in an IntentService turns into onHandleWork()
in a JobIntentService:

package com.commonsware.android.downloader;

import android.content.Context;
import android.content.Intent;
import android.os.Environment;
import android.support.v4.app.JobIntentService;
import android.support.v4.content.LocalBroadcastManager;
import android.util.Log;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class Downloader extends JobIntentService {
 public static final String ACTION_COMPLETE=
 "com.commonsware.android.downloader.action.COMPLETE";
 private static final int UNIQUE_JOB_ID=1337;

 static void enqueueWork(Context ctxt, Intent i) {
 enqueueWork(ctxt, Downloader.class, UNIQUE_JOB_ID, i);
 }

 @Override
 public void onHandleWork(Intent i) {
 try {
 File root=
 Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

 root.mkdirs();

 File output=new File(root, i.getData().getLastPathSegment());

 if (output.exists()) {
 output.delete();
 }

 URL url=new URL(i.getData().toString());
 HttpURLConnection c=(HttpURLConnection)url.openConnection();

 FileOutputStream fos=new FileOutputStream(output.getPath());
 BufferedOutputStream out=new BufferedOutputStream(fos);

 try {
 InputStream in=c.getInputStream();
 byte[] buffer=new byte[8192];
 int len=0;

 while ((len=in.read(buffer)) >= 0) {
 out.write(buffer, 0, len);
 }

 out.flush();
 }
 finally {
 fos.getFD().sync();
 out.close();
 c.disconnect();
 }

 LocalBroadcastManager.getInstance(this)
 .sendBroadcast(new Intent(ACTION_COMPLETE));
 }
 catch (IOException e2) {
 Log.e(getClass().getName(), "Exception in download", e2);
 }
 }
}

(from Service/JobIntentService/app/src/main/java/com/commonsware/android/downloader/Downloader.java)
The semantics of onHandleWork() are the same as doWakefulWork() with a WakefulIntentService:

	The method is called on a background thread

	While there is work to be done, a wakelock is held

	Once there is no more work to be done and the method returns, the service stops
itself

Because our code is using a wakelock — by way of a support library — we need
to have the WAKE_LOCK permission in the manifest, along with other permissions
needed for our business logic:

 <uses-permission android:name="android.permission.WAKE_LOCK" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

(from Service/JobIntentService/app/src/main/AndroidManifest.xml)
To arrange to have the service perform some work, with IntentService, you
would use startService(), with an Intent identifying the service (and, optionally,
passing along details of the work to be done). With JobIntentService, you instead
call a static enqueueWork() method defined on JobIntentService. This takes
four parameters:

	a Context

	the Java Class object for your JobIntentService subclass (e.g., Downloader.class)

	a job ID, which will be used on Android 8.0 when using JobScheduler to perform
the work, where the job ID needs to be unique within your app compared to anything
else that is using JobScheduler

	an Intent akin to the one you would have used with startService() and IntentService

Since the second and third parameters are constants, you can create your own
enqueueWork() method that calls the JobService implementation, passing along
those constant values:

 private static final int UNIQUE_JOB_ID=1337;

 static void enqueueWork(Context ctxt, Intent i) {
 enqueueWork(ctxt, Downloader.class, UNIQUE_JOB_ID, i);
 }

(from Service/JobIntentService/app/src/main/java/com/commonsware/android/downloader/Downloader.java)
Then, your code that wishes to have the work performed calls your enqueueWork()
method to do so:

 private void doTheDownload() {
 b.setEnabled(false);

 Intent i=new Intent(getActivity(), Downloader.class);

 i.setData(Uri.parse("https://commonsware.com/Android/Android-1_0-CC.pdf"));

 Downloader.enqueueWork(getActivity(), i);
 }

(from Service/JobIntentService/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)
The JobIntentService can spend up to ~10 minutes in onHandleWork() on Android 8.0+,
which is a substantial improvement over the ~1 minute a background IntentService has.
If, however, there is a substantial chance that the work would exceed 10 minutes,
use a foreground IntentService.
However, there is one issue with JobIntentService: on Android 8.0+, it may not
do its work right away. On Android 8.0+, JobIntentService schedules its work
via JobScheduler, and JobScheduler may elect to postpone that work for a bit.
In cases where you really need the work to be started immediately, JobIntentService
is not a good choice.
IntentService or JobIntentService?
Use JobIntentService if:

	You can live with the possible slight delay in the work being started, and

	You think that the work might take more than a minute, but surely less than 10 minutes

Use a plain IntentService if you are sure that the work will take less than a minute.
Use a foreground IntentService if either:

	You think that the work might take more than a minute, but you want to avoid
the possible delayed-start of a JobIntentService, or

	You think that the work might take more than 10 minutes

Services and Configuration Changes
Services are not directly affected by configuration changes the way that
activities are. While activities will be destroyed and recreated by default,
services continue running if they were created.
Usually, services do not really care about configuration changes. However,
if you have a service that does care, you can override onConfigurationChanged()
in the service.
This means that you have two choices for dealing with configuration changes:
override onConfigurationChanged() or simply re-read in the configuration
information as needed. For example, suppose that you need to know the user’s
chosen locale, to include as information in a Web service call. If you
are checking the locale on each Web service call, your service does not need
to know about configuration changes. If, on the other hand, you prefer
to cache the locale data, reading it in from the Locale class when
the service is created, you will want to override onConfigurationChanged()
and update that cache, in case the configuration change was a locale change.
When Do Services End?
One common question with services is: when do services end? If we start them,
what causes them to ever stop?
While services are designed to run in the background for a while, they will not
run forever. Exactly how long they will run depends on what stops them, and
there are several scenarios for that.
Scenario #1: You Stop It
If you call stopSelf() from inside a started service, the service is stopped
and destroyed. Or, if you call stopService() from something outside of the
service — but supplying an Intent that identifies your service — the service
is stopped and destroyed. In both cases, the service is stopped and destroyed
asynchronously, so the service will be running for a bit even after the stopSelf()
or stopService() call. However, the service will be stopped and destroyed
fairly quickly, assuming that you are not tying up the main application thread
for some reason.
As we will see in the chapter on binding and remote services,
if you unbind from a bound service, and nothing else has bound to it or has
started it, Android will destroy the service.
So, you can cause a service to stop by taking some positive action to stop it, much
as we did with the stopService() call in the FakePlayer example earlier in
this chapter.
Scenario #2: Android Terminates Your Process
The real point behind a service is to elevate your process’ importance within
the operating system. Android terminates low-importance processes to free up
system RAM for other processes representing other apps.
However, while process importance is the primary criterion for Android to choose
processes to terminate, it is not the only criterion. Process age and memory consumption
are also taken into account. As a result, your process will not run forever, even
with a service running.
Needless to say, when your process is terminated, your service goes with it.
Scenario #3: The User Nukes You From Orbit
Not only can Android terminate your process, but so can the user, by any number
of ways:

	Using a third-party task manager

	Swiping your app off of the recent-tasks (“overview”) screen

	Clicking “Force Stop” on your page in the Settings app

In the first two scenarios, if you had a running service, and if your
onStartCommand() returns something like START_STICKY or START_REDELIVER_INTENT,
eventually Android will fork a fresh process for you and restart your service.
This also happens if Android terminates your process on its own due to old age.
If the user presses “Force Stop”, nothing of your app will run again, until the
user launches your app from the home screen or something else uses an explicit
Intent to start one of your components.
Scenario #4: Automatically, After a Minute
All of the previous options have been a possibility for a long time, frequently
since Android 1.0.
New to Android 8.0 is a time limit on background services: you can run for a minute,
and then you’re done. We will explore this more in the next section.
Background Service Limitations
For apps that have a targetSdkVersion of 26 or higher and are running on Android 8.0,
background services are limited. After a short period of time — as low as one
minute — any such services will be stopped and you will be unable to start
new ones.
Also, even if your targetSdkVersion is 25 or lower, you might still have
these limitations applied to your app. If your app appears on the Battery
screen in Settings — indicating that it is using above-average power — the user
will have the ability to apply these limitations to your app from there.
What Is a Background Service, Exactly?
Here, “background services” are ones that:

	Have not used something like startForeground() to raise themselves
to foreground importance (with a Notification),

	Are in a process that is not showing the foreground UI at the
moment, and

	Are not bound to by some other process that happens to have foreground
importance

That latter scenario covers cases where your service exposes an API that is
bound to by other apps or by core OS processes. This includes custom APIs
implemented via AIDL and framework-supplied APIs such as those used by
JobService, TileService, and so on.
Certain events, such as having your code triggered by a Notification PendingIntent,
or by receiving a broadcast,
will also give you a fresh window of time when background services behave
normally.
What Happens?
The documentation indicates that when your process moves from the foreground
to the background, or when one of the other triggers (e.g., receiving a broadcast)
occurs, you have “several minutes” of normal operation. Testing suggests that
by “several minutes”, Google actually means “a minute or so”.
At that point:

	Any outstanding services are stopped and destroyed, via stopService()-style
functionality, and

	Any calls to startService() will fail

Your process is still running at this point. However, its importance is the
same as if you had no service running, meaning that your process is at risk of
being terminated at any point to free up system RAM.
Note that while the documentation suggests that startService() will
throw an IllegalStateException when your app is ineligible to start a background
service, this behavior varies. If a service calls startService(), usually no
exception is thrown and the call seems to fail quietly (or perhaps with only a debug
LogCat message about the issue). If another Context
is used — such as the one handed to onReceive() of a BroadcastReceiver — you will get the exception:

Process: com.commonsware.android.service.ouroboros, PID: 27276
java.lang.RuntimeException: Unable to start receiver com.commonsware.android.service.ouroboros.HackReceiver: java.lang.IllegalStateException: Not allowed to start service Intent { cmp=com.commonsware.android.service.ouroboros/.SecondSillyService (has extras) }: app is in background
 at android.app.ActivityThread.handleReceiver(ActivityThread.java:3159)
 at android.app.ActivityThread.-wrap18(Unknown Source:0)
 at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1621)
 at android.os.Handler.dispatchMessage(Handler.java:102)
 at android.os.Looper.loop(Looper.java:154)
 at android.app.ActivityThread.main(ActivityThread.java:6408)
 at java.lang.reflect.Method.invoke(Native Method)
 at com.android.internal.os.Zygote$MethodAndArgsCaller.run(Zygote.java:232)
 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:751)
Caused by: java.lang.IllegalStateException: Not allowed to start service Intent { cmp=com.commonsware.android.service.ouroboros/.SecondSillyService (has extras) }: app is in background
 at android.app.ContextImpl.startServiceCommon(ContextImpl.java:1451)
 at android.app.ContextImpl.startService(ContextImpl.java:1405)
 at android.content.ContextWrapper.startService(ContextWrapper.java:630)
 at android.content.ContextWrapper.startService(ContextWrapper.java:630)
 at com.commonsware.android.service.ouroboros.HackReceiver.onReceive(HackReceiver.java:12)
 at android.app.ActivityThread.handleReceiver(ActivityThread.java:3152)
 at android.app.ActivityThread.-wrap18(Unknown Source:0)
 at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1621)
 at android.os.Handler.dispatchMessage(Handler.java:102)
 at android.os.Looper.loop(Looper.java:154)
 at android.app.ActivityThread.main(ActivityThread.java:6408)
 at java.lang.reflect.Method.invoke(Native Method)
 at com.android.internal.os.Zygote$MethodAndArgsCaller.run(Zygote.java:232)
 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:751)

What Are the Alternatives?
An obvious solution is to use a foreground service. You have three options for
doing this:

	The classic solution, which is to start the service via startService(),
then have the service call startForeground()

	The new getForegroundService() method on PendingIntent

	The new startForegroundService() method on Context

The latter two approaches work even when your process no longer has the ability to
call startService(). However, those methods are new to Android 8.0. Also,
despite their method names, they do not actually start your service as a foreground
service. Rather, they give you a short reprieve from the normal service-starting
limits — your service needs to call startForeground() shortly after being
created, or else your service will be destroyed.
A JobService can spend ~10 minutes processing a job, before Android will
consider the service to be broken and reduce the process’ priority to lower
levels. Hence, using JobScheduler may be an option for you, particularly
if the work you are trying to do is periodic in nature, where your JobService
does the work.
As this change only affects apps with a targetSdkVersion higher than 25,
keeping your targetSdkVersion at 25 or lower will avoid this behavior
change.
Tutorial #16 - Updating the Book
The app is designed to ship a copy of the book’s chapters as assets, so a user
can just download one thing and get everything they need: book and reader.
However, sometimes books get updated. This is a bit less likely with the
material being used in this tutorial, as it is rather unlikely that H. G. Wells
will rise from the grave to amend The War of the Worlds. However, other
books, such as Android developer guides written by balding guys, might be
updated more frequently.
Most likely, the way you would get those updates is by updating the entire
app, so you get improvements to the reader as well. However, another approach
would be to be able to download an update to the book as a separate ZIP file.
The reader would use the contents of that ZIP file if one has been downloaded,
otherwise it will “fall back” to the copy in assets. That is the approach that
we will take in this tutorial, to experiment a bit with Internet access
and services. Along the way, we will use Retrofit
to call a Web service (of sorts) to find out if an update is available.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Adding a Stub DownloadCheckService
There are a few pieces to our download-the-book-update puzzle:

	We need to determine if there is an update available and, if so, where we
can find the ZIP file that is the update

	We need to download the update’s ZIP file, which could be a fairly large
file

	We need to unpack that ZIP file into internal or external storage, so that
it is more easily used by the rest of our code and performs more quickly than
would dynamically reading the contents out of the ZIP on the fly

	All of that needs to happen in the background from a threading standpoint

	Ideally, all of that could happen either in the foreground or the background
from a UI standpoint (i.e., user manually requests an update check, or an
update check is performed automatically on a scheduled basis)

To address the first puzzle piece — determining if there is an update
available — we can use an IntentService. That makes it easy for us to do
the work not only in the background from a threading standpoint, but also
be able to use it either from the UI or from some sort of background-work
scheduler. So, let’s add a DownloadCheckService to our project.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Service > “Service (IntentService)” from the context menu.
Fill in DownloadCheckService as the class name and uncheck the “helper methods”
checkbox. Click Finish to generate the DownloadCheckService class and add an
entry for you to the manifest.
Then, replace the generated implementation of DownloadCheckService with:

package com.commonsware.empublite;

import android.app.IntentService;
import android.content.Intent;

public class DownloadCheckService extends IntentService {
 public DownloadCheckService() {
 super("DownloadCheckService");
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 }
}

Step #2: Tying the Service Into the Action Bar
To allow the user to manually request that we update the book (if an update
is available), we should add a new action bar item to EmPubLiteActivity.
Right-click over the res/ directory and choose New > Vector Asset
from the context menu. Click the Icon button and search for the “refresh”
icon:

[image: Asset Studio Icon Picker, with Refresh Icon Selected]

Figure 304: Asset Studio Icon Picker, with Refresh Icon Selected
Click OK to close the icon picker. Change the resource name to
ic_refresh_white_24dp. Then click Next and Finish to save
this drawable resource.
Once again, this icon will render in black, when we need it to render
in white given our theme. Open res/drawable/ic_refresh_white_24dp.xml
and change the android:fillColor in the <path> element to be
#FFFFFFFF instead of #FF000000:

<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:width="24dp"
 android:height="24dp"
 android:viewportWidth="24.0"
 android:viewportHeight="24.0">
 <path
 android:fillColor="#FFFFFFFF"
 android:pathData="M17.65,6.35C16.2,4.9 14.21,4 12,4c-4.42,0 -7.99,3.58 -7.99,8s3.57,8 7.99,8c3.73,0 6.84,-2.55 7.73,-6h-2.08c-0.82,2.33 -3.04,4 -5.65,4 -3.31,0 -6,-2.69 -6,-6s2.69,-6 6,-6c1.66,0 3.14,0.69 4.22,1.78L13,11h7V4l-2.35,2.35z"/>
</vector>

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/res/drawable/ic_refresh_white_24dp.xml)
Then, modify the res/menu/options.xml file to include the following <item>
element:

 <item
 android:id="@+id/update"
 android:icon="@drawable/ic_refresh_white_24dp"
 android:showAsAction="ifRoom|withText"
 android:title="@string/download_update">
 </item>

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/res/menu/options.xml)
Note that this menu definition requires a new string resource, named download_update,
with a value like Download Update.
That allows us to add a new case to the switch statement in
onOptionsItemSelected() in EmPubLiteActivity:

 case R.id.update:
 startService(new Intent(this, DownloadCheckService.class));

 return(true);

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
All we do here is send a command to our DownloadCheckService to see if a
download is available.
Step #3: Defining Our Event
Our IntentService will do the work of updating the book in the background.
However, we will want to let the rest of the app know when the book is updated.
In particular, the ModelFragment, if it exists, needs to know that there is
a new set of book contents to display. To accomplish this, we can use another
event on our EventBus, a BookUpdatedEvent in this case.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookUpdatedEvent
as the name and click OK to create the empty class.
Step #4: Defining Our JSON
Under the covers, Retrofit uses GSON for parsing the JSON it retrieves from
the Web service (or other URL). Hence, just as we needed to define a Java class
that models our JSON for the book contents, we need a Java class that models the
data we will get from our server as to whether or not a book update is available.
That JSON looks like:

{
 "updatedOn": "20120512",
 "updateUrl": "http://misc.commonsware.com/WarOfTheWorlds-Update.zip"
}

We can create a BookUpdateInfo class that mimics this structure.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookUpdateInfo
as the name and click OK to create the empty class.
Then, with BookUpdateInfo open in the editor, paste in the following class
definition:

package com.commonsware.empublite;

public class BookUpdateInfo {
 String updatedOn;
 String updateUrl;
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInfo.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Step #5: Defining Our Retrofit Interface
Retrofit then needs a Java interface that provides most of the details for how
to fetch our JSON and convert it into a Java object. In our case, we will be using
an HTTP GET operation to retrieve the JSON, and so we will use the Retrofit
@GET annotation to point to a path on a server pointing to that JSON.
Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookUpdateInterface
as the name, switch the “Kind” to be “Interface”, and click OK to create the empty
interface.
Then, with BookUpdateInterface open in the editor, paste in the following interface
definition:

package com.commonsware.empublite;

import retrofit2.Call;
import retrofit2.http.GET;

public interface BookUpdateInterface {
 @GET("/misc/empublite-update.json")
 Call<BookUpdateInfo> update();
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInterface.java)
If you prefer, you can view this file’s contents in your Web browser
via this GitHub link.
Here, we define our interface as having an update() method, returning an instance
of our BookUpdateInfo structure, with the @GET annotation pointing to a path where
the corresponding JSON can be found on a server to be designated later.
Step #6: Retrieving Our JSON Via Retrofit
Now, we can actually use Retrofit to retrieve our BookUpdateInfo and see if
we have a book update.
First, we need to add the INTERNET permission to our app, as we are going to be
downloading materials from the INTERNET.
Add the following <uses-permission> element as
a child of the root <manifest> element in AndroidManifest.xml:

 <uses-permission android:name="android.permission.INTERNET" />

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/AndroidManifest.xml)
Next, in DownloadCheckService, add an OUR_BOOK_DATE static data member,
representing the edit date of the book baked into our APK, in YYYYMMDD format:

 private static final String OUR_BOOK_DATE="20120418";

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java)
Then, add a getUpdateUrl() method to DownloadCheckService:

 private String getUpdateUrl() throws IOException {
 Retrofit retrofit=
 new Retrofit.Builder()
 .baseUrl("https://commonsware.com")
 .addConverterFactory(GsonConverterFactory.create())
 .build();
 BookUpdateInterface updateInterface=
 retrofit.create(BookUpdateInterface.class);
 BookUpdateInfo info=updateInterface.update().execute().body();

 if (info.updatedOn.compareTo(OUR_BOOK_DATE) > 0) {
 return(info.updateUrl);
 }

 return(null);
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java)
Here, we create a Retrofit instance, pointing to the server that is
our “Web service” (really a static JSON file, but that does not matter from
the standpoint of the client code). We then use the Retrofit instance to create
an instance of a BookUpdateInterface implementation, code-generated by
Retrofit. We then call update() on that object to get our BookUpdateInfo.
If the date in the updatedOn field of our BookUpdateInfo is newer than
OUR_BOOK_DATE, we return the updateUrl field of the BookUpdateInfo,
which will be a URL pointing to a ZIP archive containing the updated book.
If the updatedOn value is older than OUR_BOOK_DATE, we return null to
signify that no updates are available.
This is not a particularly well-optimized approach. In particular, we never
take into account that, once we have downloaded an update, we are only
interested in updates newer than the one we downloaded. As it stands, we always
compare the updatedOn value to OUR_BOOK_DATE, not the last updatedOn value
that we used. A production-grade app would aim to handle this, such as by saving
the last-used updatedOn value in a SharedPreferences and comparing against
it, where available.
Finally, update onHandleIntent() to call getUpdateUrl():

 @Override
 protected void onHandleIntent(Intent intent) {
 try {
 String url=getUpdateUrl();

 if (url != null) {
 // do something really cool here
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception downloading update", e);
 }
 }

Step #7: Downloading the Update
While the above code gets us the URL of the ZIP archive, it does not actually download
it. We need more code to accomplish that.
Add a private static final String data member named UPDATE_FILENAME
to DownloadCheckService, representing
the name of the file for the downloaded ZIP file:

 private static final String UPDATE_FILENAME="book.zip";

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java)
Then, in DownloadCheckService, add the following download() method:

 private File download(String url) throws IOException {
 File output=new File(getFilesDir(), UPDATE_FILENAME);

 if (output.exists()) {
 output.delete();
 }

 OkHttpClient client=new OkHttpClient();
 Request request=new Request.Builder().url(url).build();
 Response response=client.newCall(request).execute();
 BufferedSink sink=Okio.buffer(Okio.sink(output));

 sink.writeAll(response.body().source());
 sink.close();

 return(output);
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java)
This method deletes the existing output file if it exists, then
uses OkHttp (and its Okio transitive dependency) to download the book, writing
the results to the designated output file.
Then, update onHandleIntent() in DownloadCheckService to call download() when
we have something to download:

 @Override
 protected void onHandleIntent(Intent intent) {
 try {
 String url=getUpdateUrl();

 if (url != null) {
 File book=download(url);

 // do something almost as cool here

 book.delete();
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception downloading update", e);
 }
 }

Here, we delete the file after downloading it, so we do not clutter up our internal
storage with the downloaded ZIP. This would appear to defeat the purpose of downloading
the ZIP file in the first place, but we will add some code to use the ZIP file
in the next step of the tutorial.
Step #8: Unpacking the Update
The last step in the book-download process is to unpack the ZIP archive onto
internal storage, so we can start using the downloaded contents.
Add a static final String data member named UPDATE_BASEDIR to
DownloadCheckService:

 static final String UPDATE_BASEDIR="updates";

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java)
This will point to the directory on internal storage where the latest book update will
reside.
Then, update onHandleIntent() on DownloadCheckService once again,
this time to add in a call
to ZipUtils.unzip() and some other necessary changes:

 @Override
 protected void onHandleIntent(Intent intent) {
 try {
 String url=getUpdateUrl();

 if (url != null) {
 File book=download(url);
 File updateDir=new File(getFilesDir(), UPDATE_BASEDIR);

 updateDir.mkdirs();
 ZipUtils.unzip(book, updateDir);
 book.delete();
 EventBus.getDefault().post(new BookUpdatedEvent());
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception downloading update", e);
 }
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java)
Here, we:

	Create the UPDATE_BASEDIR directory if it does not already exist

	Call ZipUtils.unzip() to unZIP the ZIP file into that directory

	Post a BookUpdatedEvent to signify that a book update is ready

ZipUtils is a class from the CWAC-Security library that we added to
our project back in Tutorial #6. Its unzip() method handles a variety
of possible flaws in the ZIP archive that might be injected by an attacker
who is intercepting our communications with the book update server.
Despite that, this update logic is a bit sloppy.
It is possible that different book updates will have different
files, and our UPDATE_BASEDIR will have some extra files as a result. Ideally,
we should clean out UPDATE_BASEDIR before unpacking the ZIP archive. Adding in
some recursive delete-all-the-files-in-a-directory logic is left as an exercise for the
reader.
At this point, DownloadCheckService should resemble:

package com.commonsware.empublite;

import android.app.IntentService;
import android.content.Intent;
import android.util.Log;
import com.commonsware.cwac.security.ZipUtils;
import org.greenrobot.eventbus.EventBus;
import java.io.File;
import java.io.IOException;
import okhttp3.OkHttpClient;
import okhttp3.Request;
import okhttp3.Response;
import okio.BufferedSink;
import okio.Okio;
import retrofit2.Retrofit;
import retrofit2.converter.gson.GsonConverterFactory;

public class DownloadCheckService extends IntentService {
 private static final String OUR_BOOK_DATE="20120418";
 private static final String UPDATE_FILENAME="book.zip";
 static final String UPDATE_BASEDIR="updates";

 public DownloadCheckService() {
 super("DownloadCheckService");
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 try {
 String url=getUpdateUrl();

 if (url != null) {
 File book=download(url);
 File updateDir=new File(getFilesDir(), UPDATE_BASEDIR);

 updateDir.mkdirs();
 ZipUtils.unzip(book, updateDir);
 book.delete();
 EventBus.getDefault().post(new BookUpdatedEvent());
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception downloading update", e);
 }
 }

 private String getUpdateUrl() throws IOException {
 Retrofit retrofit=
 new Retrofit.Builder()
 .baseUrl("https://commonsware.com")
 .addConverterFactory(GsonConverterFactory.create())
 .build();
 BookUpdateInterface updateInterface=
 retrofit.create(BookUpdateInterface.class);
 BookUpdateInfo info=updateInterface.update().execute().body();

 if (info.updatedOn.compareTo(OUR_BOOK_DATE) > 0) {
 return(info.updateUrl);
 }

 return(null);
 }

 private File download(String url) throws IOException {
 File output=new File(getFilesDir(), UPDATE_FILENAME);

 if (output.exists()) {
 output.delete();
 }

 OkHttpClient client=new OkHttpClient();
 Request request=new Request.Builder().url(url).build();
 Response response=client.newCall(request).execute();
 BufferedSink sink=Okio.buffer(Okio.sink(output));

 sink.writeAll(response.body().source());
 sink.close();

 return(output);
 }
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java)
Step #9: Using the Update
All this work is nice. However, nothing else in the app knows about this
UPDATE_BASEDIR copy of the book to actually display it.
In fact, we have two scenarios to consider:

	The user taps the update action bar item, and we download the update and want
to show the updated book to the user right now

	Later on, when the user opens the book, we need to realize that we already have
an update and use it, rather than using the copy baked into the APK

That will require some changes to our data model, how we populate it from
ModelFragment, and how we use the results in our ContentsAdapter.
First, add a File baseDir data member to BookContents, along with an accompanying
setter method:

 File baseDir=null;

 void setBaseDir(File baseDir) {
 this.baseDir=baseDir;
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java)
Then, add a getChapterPath() method to BookContents that uses getChapterFile() for getting the
relative path from the book’s JSON, then uses that in conjunction with baseDir
or the android_asset path to come up with a full WebView-friendly path to the
file, whether it is in assets or a local file:

 String getChapterPath(int position) {
 String file=getChapterFile(position);

 if (baseDir==null) {
 return("file:///android_asset/book/" + file);
 }

 return(Uri.fromFile(new File(baseDir, file)).toString());
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java)
Next, change the getItem() method on ContentsAdapter to use this new
getChapterPath() method on BookContents:

 @Override
 public Fragment getItem(int position) {
 return(SimpleContentFragment.newInstance(contents.getChapterPath(position)));
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)
Then, modify the run() method of the LoadThread in ModelFragment to try
to use the update:

 @Override
 public void run() {
 prefs.set(PreferenceManager.getDefaultSharedPreferences(ctxt));

 Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
 Gson gson=new Gson();
 File baseDir=
 new File(ctxt.getFilesDir(),
 DownloadCheckService.UPDATE_BASEDIR);

 try {
 InputStream is;

 if (baseDir.exists()) {
 is=new FileInputStream(new File(baseDir, "contents.json"));
 }
 else {
 is=ctxt.getAssets().open("book/contents.json");
 }

 BufferedReader reader=
 new BufferedReader(new InputStreamReader(is));

 contents.set(gson.fromJson(reader, BookContents.class));

 if (baseDir.exists()) {
 contents.get().setBaseDir(baseDir);
 }

 EventBus.getDefault().post(new BookLoadedEvent(getBook()));
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
 }
 }
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
Here, we do the following, in addition to our original logic:

	See if the UPDATE_BASEDIR directory exists or not

	If it does, we use the contents.json in it; otherwise, we fall back to the one
in assets/ as before

	Update the BookContents with the update directory if we used that for loading
the contents

This will handle the case where an update exists when we fire up the app and
go to view the book. However, we still need some code that responds to the
BookUpdatedEvent and arranges to use the updated contents at that point.
With that in mind, augment onAttach() on ModelFragment to register with the
EventBus:

 @Override
 public void onAttach(Activity host) {
 super.onAttach(host);

 EventBus.getDefault().register(this);

 if (contents.get()==null) {
 new LoadThread(host).start();
 }
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
We also now need a corresponding onDetach() method on ModelFragment to unregister
from the EventBus:

 @Override
 public void onDetach() {
 EventBus.getDefault().unregister(this);

 super.onDetach();
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
Finally, we can respond to the BookUpdatedEvent, via a new onEventBackgroundThread()
method on ModelFragment:

 @SuppressWarnings("unused")
 @Subscribe(threadMode =ThreadMode.BACKGROUND)
 public void onBookUpdated(BookUpdatedEvent event) {
 if (getActivity()!=null) {
 new LoadThread(getActivity()).start();
 }
 }

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)
The name threadMode =ThreadMode.BACKGROUND signals to the EventBus that we want to receive
this event on a background thread. In our case, the event is posted on a background
thread (the one from the IntentService). Hence, our onBookUpdated() method
is called on that thread. If, however, we were to post a BookUpdatedEvent from the
main application thread, EventBus would deliver our BookUpdatedEvent to
onBookUpdated() on an EventBus-supplied background thread, to ensure
that we do not tie up the main application thread.
Here, we just kick off a fresh LoadThread to reload the BookContents, assuming
that the user has not just pressed BACK or otherwise destroyed our activity. The
new LoadThread will see that the update is available and use it, posting its own
event to have our UI layer apply the update to the screen.
At this point, if you build and run the app, you will see the update action
bar item:

[image: The New Action Bar Item]

Figure 305: The New Action Bar Item
Swiping back to the first page in the ViewPager, tapping that action bar
item, and waiting a few moments, should cause your book to be updated
with new contents downloaded from the Internet:

[image: The Updated Content]

Figure 306: The Updated Content
In Our Next Episode…
… we will move some fragments into a sidebar
on large-screen devices, like tablets.
Tutorial #17 - Supporting Large Screens
So far, we have created a variety of fragments that are being used one at a time
in a hosting activity: notes, help, and about. And, on smaller-screen devices,
like phones, that is probably the best solution. But on devices
like 10” tablets, it might be nice to be able to have some of those fragments take
over a part of the main activity’s space. For example, the user could be
reading the chapter and reading the online help.
Hence, in this tutorial, we will arrange for the help and about fragments to be loaded
into EmPubLiteActivity directly on tablets, while retaining our
existing functionality for other devices.
This is a continuation of the work we did in the previous tutorial.
You can find
the results of the
previous tutorial
and the results
of
this tutorial
in the book’s GitHub repository.
Step #1: Creating Our Layouts
The simplest way to both add a place for these other fragments and to determine
when we should be using these other fragments in the main activity is to
create new layout resource sets for larger-screen devices, with customized versions
of main.xml to be used by EmPubLiteActivity.
Right-click over the res/ directory in your app, then choose New > “Android Resource Directory”
from the context menu. As before, this brings up the new resource directory dialog:

[image: Android Studio New Resource Dialog, As Initially Opened]

Figure 307: Android Studio New Resource Dialog, As Initially Opened
Choose “layout” from the “Resource type” drop-down. Then, click on “Screen Width” in the
list of qualifiers on the left, and click the “>>” button to add that to the list on the
right:

[image: Android Studio New Resource Dialog, After Selecting Screen Width]

Figure 308: Android Studio New Resource Dialog, After Selecting “Screen Width”
In the “Screen width” field, fill in 880:

[image: Android Studio New Resource Dialog, After Setting Screen Width]

Figure 309: Android Studio New Resource Dialog, After Setting Screen Width
Click OK to create the directory. Repeat that process to create a res/layout-h880dp/
directory, this time choosing “Screen Height” rather than “Screen Width”.
Then, right-click over the res/layout/main.xml file and choose “Copy”
from the context menu. After that, right-click over the new
res/layout-w880dp/ directory and choose “Paste” from the context menu. This
brings up the copy dialog:

[image: Android Studio Copy Dialog]

Figure 310: Android Studio Copy Dialog
Check the “Open copy in editor” checkbox and click OK. This will bring up the
graphical layout editor on this copy of the main layout.
Unfortunately, what we want to do is not readily supported by Android Studio’s
edition of the drag-and-drop GUI builder. So, switch over to the XML for this
layout, and replace it with:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">

 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="7"
 android:orientation="vertical">

 <io.karim.MaterialTabs
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="48dp"
 app:mtIndicatorColor="@color/colorAccent"
 app:mtSameWeightTabs="true" />

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent"></android.support.v4.view.ViewPager>
 </LinearLayout>

 <View
 android:id="@+id/divider"
 android:layout_width="2dp"
 android:layout_height="match_parent"
 android:background="#AA000000"
 android:visibility="gone" />

 <FrameLayout
 android:id="@+id/sidebar"
 android:layout_width="0dp"
 android:layout_height="match_parent" />
</LinearLayout>

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/res/layout-w880dp/main.xml)
Repeat the same process, copying res/layout/main.xml into the
res/layout-h880dp/ directory, and replacing the copy’s contents with:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="7"
 android:orientation="vertical">

 <io.karim.MaterialTabs
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="48dp"
 app:mtIndicatorColor="@color/colorAccent"
 app:mtSameWeightTabs="true" />

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent"></android.support.v4.view.ViewPager>
 </LinearLayout>

 <View
 android:id="@+id/divider"
 android:layout_width="match_parent"
 android:layout_height="2dp"
 android:background="#AA000000"
 android:visibility="gone" />

 <FrameLayout
 android:id="@+id/sidebar"
 android:layout_width="match_parent"
 android:layout_height="0dp"></FrameLayout>
</LinearLayout>

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/res/layout-h880dp/main.xml)
Step #2: Loading Our Sidebar Widgets
Now that we added the divider widget and sidebar container to (some of) our
layouts, we need to access those widgets at runtime.
So, in EmPubLiteActivity, add data members for them:

 private View sidebar=null;
 private View divider=null;

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Then, in onCreate() of EmPubLiteActivity, initialize those data members,
sometime after the call to setContentView():

 sidebar=findViewById(R.id.sidebar);
 divider=findViewById(R.id.divider);

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Step #3: Opening the Sidebar
A real production-grade app would use animated effects to hide and show our
sidebar. However, we have not yet covered animations in this book, so we
will simply:

	Cause the divider to become visible

	Adjust the android:layout_weight of our sidebar to be 3 instead of 0,
giving it ~30% of the screen (with the original LinearLayout getting
70%, courtesy of its android:layout_weight="7")

With that in mind, add the following implementation of an openSidebar()
method to EmPubLiteActivity:

 private void openSidebar() {
 LinearLayout.LayoutParams p=
 (LinearLayout.LayoutParams)sidebar.getLayoutParams();
 if (p.weight == 0) {
 p.weight=3;
 sidebar.setLayoutParams(p);
 }

 divider.setVisibility(View.VISIBLE);
 }

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Here, we:

	Get the existing LinearLayout.LayoutParams from the sidebar

	If it is still 0 (meaning the sidebar has not been opened), assign it
a weight of 3, update the layout via setLayoutParams(), and toggle the
visibility of the divider

Step #4: Loading Content Into the Sidebar
Now that we can get our sidebar to appear, we need to load content into it…
but only if we have the sidebar. If EmPubLiteActivity loads a layout that
does not have the sidebar, we need to stick with our existing logic that
starts up an activity to display the content.
With that in mind, add data members to EmPubLiteActivity to hold onto our help and about
fragments:

 private SimpleContentFragment help=null;
 private SimpleContentFragment about=null;

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Also add a pair of static data members that will be used as tags for identifying
these fragments in our FragmentManager:

 private static final String HELP="help";
 private static final String ABOUT="about";

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Also add a pair of static data members that will hold the paths to our help and
about assets, since we will be referring to them from more than one place when we are done:

 private static final String FILE_HELP=
 "file:///android_asset/misc/help.html";
 private static final String FILE_ABOUT=
 "file:///android_asset/misc/about.html";

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
In onCreate() of EmPubLiteActivity, initialize the fragments from the FragmentManager:

 help=(SimpleContentFragment)getFragmentManager().findFragmentByTag(HELP);
 about=
 (SimpleContentFragment)getFragmentManager().findFragmentByTag(ABOUT);

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
The net result is that if we are returning from a configuration change, we will
have our fragments, otherwise we will not at this point.
Next, add the following methods to EmPubLiteActivity:

 private void showAbout() {
 if (sidebar!=null) {
 openSidebar();

 if (about==null) {
 about=SimpleContentFragment.newInstance(FILE_ABOUT);
 }

 getFragmentManager().beginTransaction().addToBackStack(null)
 .replace(R.id.sidebar, about, ABOUT).commit();
 }
 else {
 Intent i=new Intent(this, SimpleContentActivity.class);

 i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_ABOUT);
 startActivity(i);
 }
 }

 private void showHelp() {
 if (sidebar!=null) {
 openSidebar();

 if (help==null) {
 help=SimpleContentFragment.newInstance(FILE_HELP);
 }

 getFragmentManager().beginTransaction().addToBackStack(null)
 .replace(R.id.sidebar, help, HELP).commit();
 }
 else {
 Intent i=new Intent(this, SimpleContentActivity.class);

 i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_HELP);
 startActivity(i);
 }
 }

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Both of these methods follow the same basic recipe:

	Check to see if sidebar is null, to see if we have a sidebar or not

	If we have a sidebar, call openSidebar() to ensure the user can see
the sidebar, create our Fragment if we do not already have it,
and use a FragmentTransaction to replace
whatever was in the sidebar with the new Fragment

	If we do not have the sidebar, launch an activity with
an appropriately-configured Intent

Note a couple of things with our FragmentTransaction objects:

	We use addToBackStack(null), so if the user presses BACK, Android will
reverse this transaction

	We use replace() instead of add(), as there may already be a fragment
in the sidebar (replace() will behave the same as add() for an empty
sidebar)

Then, in the onOptionsItemSelected() of EmPubLiteActivity, replace
the about, and help case blocks to use the newly-added
methods, replacing their existing implementations:

 case R.id.about:
 showAbout();

 return(true);

 case R.id.help:
 showHelp();

 return(true);

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Step #5: Removing Content From the Sidebar
While addToBackStack(null) will allow Android to automatically remove
fragments as the user presses BACK, that will not cause our sidebar to
magically close. Rather, we need to do that ourselves.
The easiest way to track this is to track the state of the “back stack”.
So, add implements FragmentManager.OnBackStackChangedListener to the
declaration of EmPubLiteActivity, and in onCreate() of EmPubLiteActivity,
add the following line, sometime after you initialized the sidebar
and divider data members:

 getFragmentManager().addOnBackStackChangedListener(this);

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
This statement registers our activity as receiving events related
to changes in the state of the back stack.
To make this compile, we need to implement onBackStackChanged() in
EmPubLiteActivity:

 @Override
 public void onBackStackChanged() {
 if (getFragmentManager().getBackStackEntryCount() == 0) {
 LinearLayout.LayoutParams p=
 (LinearLayout.LayoutParams)sidebar.getLayoutParams();
 if (p.weight > 0) {
 p.weight=0;
 sidebar.setLayoutParams(p);
 divider.setVisibility(View.GONE);
 }
 }
 }

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
Here, if our back stack is empty, we reverse the steps from openSidebar()
and close it back up again, hiding the divider and setting the sidebar’s
weight to 0.
The complete revised EmPubLiteActivity should now look something like:

package com.commonsware.empublite;

import android.app.Activity;
import android.app.FragmentManager;
import android.content.Intent;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.os.StrictMode;
import android.support.v4.view.ViewPager;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.LinearLayout;
import org.greenrobot.eventbus.EventBus;
import org.greenrobot.eventbus.Subscribe;
import org.greenrobot.eventbus.ThreadMode;
import io.karim.MaterialTabs;

public class EmPubLiteActivity extends Activity
 implements FragmentManager.OnBackStackChangedListener {
 private static final String MODEL="model";
 private static final String PREF_LAST_POSITION="lastPosition";
 private static final String PREF_SAVE_LAST_POSITION="saveLastPosition";
 private static final String PREF_KEEP_SCREEN_ON="keepScreenOn";
 private static final String HELP="help";
 private static final String ABOUT="about";
 private static final String FILE_HELP=
 "file:///android_asset/misc/help.html";
 private static final String FILE_ABOUT=
 "file:///android_asset/misc/about.html";
 private ViewPager pager;
 private ContentsAdapter adapter;
 private ModelFragment mfrag=null;
 private View sidebar=null;
 private View divider=null;
 private SimpleContentFragment help=null;
 private SimpleContentFragment about=null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setupStrictMode();
 pager=(ViewPager)findViewById(R.id.pager);
 sidebar=findViewById(R.id.sidebar);
 divider=findViewById(R.id.divider);
 help=(SimpleContentFragment)getFragmentManager().findFragmentByTag(HELP);
 about=
 (SimpleContentFragment)getFragmentManager().findFragmentByTag(ABOUT);
 getFragmentManager().addOnBackStackChangedListener(this);
 }

 @Override
 public void onStart() {
 super.onStart();
 EventBus.getDefault().register(this);

 if (adapter==null) {
 mfrag=(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

 if (mfrag==null) {
 mfrag=new ModelFragment();

 getFragmentManager().beginTransaction()
 .add(mfrag, MODEL).commit();
 }
 else if (mfrag.getBook()!=null) {
 setupPager(mfrag.getBook());
 }
 }

 if (mfrag.getPrefs()!=null) {
 pager.setKeepScreenOn(mfrag.getPrefs()
 .getBoolean(PREF_KEEP_SCREEN_ON, false));
 }
 }

 @Override
 public void onStop() {
 EventBus.getDefault().unregister(this);

 if (mfrag.getPrefs()!=null) {
 int position=pager.getCurrentItem();

 mfrag.getPrefs().edit().putInt(PREF_LAST_POSITION, position)
 .apply();
 }

 super.onStop();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.options, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.about:
 showAbout();

 return(true);

 case R.id.help:
 showHelp();

 return(true);

 case R.id.settings:
 startActivity(new Intent(this, Preferences.class));

 return(true);

 case R.id.notes:
 startActivity(new Intent(this, NoteActivity.class)
 .putExtra(NoteActivity.EXTRA_POSITION,
 pager.getCurrentItem()));

 return(true);

 case R.id.update:
 startService(new Intent(this, DownloadCheckService.class));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 @Override
 public void onBackStackChanged() {
 if (getFragmentManager().getBackStackEntryCount() == 0) {
 LinearLayout.LayoutParams p=
 (LinearLayout.LayoutParams)sidebar.getLayoutParams();
 if (p.weight > 0) {
 p.weight=0;
 sidebar.setLayoutParams(p);
 divider.setVisibility(View.GONE);
 }
 }
 }

 @SuppressWarnings("unused")
 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onBookLoaded(BookLoadedEvent event) {
 setupPager(event.getBook());
 }

 private void setupPager(BookContents contents) {
 adapter=new ContentsAdapter(this, contents);
 pager.setAdapter(adapter);

 MaterialTabs tabs=(MaterialTabs)findViewById(R.id.tabs);
 tabs.setViewPager(pager);

 SharedPreferences prefs=mfrag.getPrefs();

 if (prefs!=null) {
 if (prefs.getBoolean(PREF_SAVE_LAST_POSITION, false)) {
 pager.setCurrentItem(prefs.getInt(PREF_LAST_POSITION, 0));
 }

 pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, false));
 }
 }

 private void setupStrictMode() {
 StrictMode.ThreadPolicy.Builder builder=
 new StrictMode.ThreadPolicy.Builder()
 .detectAll()
 .penaltyLog();

 if (BuildConfig.DEBUG) {
 builder.penaltyFlashScreen();
 }

 StrictMode.setThreadPolicy(builder.build());
 }

 private void openSidebar() {
 LinearLayout.LayoutParams p=
 (LinearLayout.LayoutParams)sidebar.getLayoutParams();
 if (p.weight == 0) {
 p.weight=3;
 sidebar.setLayoutParams(p);
 }

 divider.setVisibility(View.VISIBLE);
 }

 private void showAbout() {
 if (sidebar!=null) {
 openSidebar();

 if (about==null) {
 about=SimpleContentFragment.newInstance(FILE_ABOUT);
 }

 getFragmentManager().beginTransaction().addToBackStack(null)
 .replace(R.id.sidebar, about, ABOUT).commit();
 }
 else {
 Intent i=new Intent(this, SimpleContentActivity.class);

 i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_ABOUT);
 startActivity(i);
 }
 }

 private void showHelp() {
 if (sidebar!=null) {
 openSidebar();

 if (help==null) {
 help=SimpleContentFragment.newInstance(FILE_HELP);
 }

 getFragmentManager().beginTransaction().addToBackStack(null)
 .replace(R.id.sidebar, help, HELP).commit();
 }
 else {
 Intent i=new Intent(this, SimpleContentActivity.class);

 i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_HELP);
 startActivity(i);
 }
 }
}

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)
At this point, if you build the project and run it on a sufficiently-large device
or emulator, and you
choose to view the help or about pages, you will see the sidebar appear,
whether in portrait or landscape.

[image: EmPubLite, on a Tablet-Sized Emulator, With Help]

Figure 311: EmPubLite, on a Tablet-Sized Emulator, With Help
Note that a tablet emulator usually will only run acceptably fast if you are
using the x86 emulator images.
Backwards Compatibility Strategies and Tactics
Android is an ever-moving target, averaging about 2.5 API level
increments per year.
The Android Developer site maintains a chart and table showing the most recent
breakdown of OS versions
making requests of the Play Store.
Most devices tend to be clustered around 1-3 minor releases.
However, these are never the most
recent release, which takes time to percolate through the device manufacturers
and carriers and onto devices, whether those are new sales or upgrades to
existing devices.
Some developers panic when they realize this.
Panic is understandable, if not necessary. This is a well-understood problem,
that occurs frequently within software development — ask any Windows developer
who had to simultaneously support everything from Windows 98 to Windows XP,
or Windows XP through Windows 8.1.
Moreover, there are many things in Android designed to make this problem as
small as possible. What you need are the strategies and tactics to make it
all work out.
Think Forwards, Not Backwards
Android itself tries very hard to maintain backwards compatibility.
While each new Android release adds many classes and methods, relatively few
are marked as deprecated, and almost none are outright eliminated. And, in
Android, “deprecated” means “there’s probably a better solution for what you
are trying to accomplish, though we will maintain this option for you as long
as we can”.
Despite this, many developers aim purely for the lowest common denominator.
Aiming to support older releases is noble. Ignoring what has
happened since those releases is stupid, if you are trying to distribute your
app to the public via the Play Store or similar mass-distribution means.
Why? You want your app to be distinctive, not decomposing.
For example, as we saw in the chapter on the action bar, adding one line to
the manifest (android:targetSdkVersion="11") gives you the action bar, the
holographic widget set (e.g., Theme.Holo), the new style of options menu,
and so on. Those dead-set on avoiding things newer than Android 2.1 would not
use this attribute. As a result, on Android 3.0+ devices, their apps will
tend to look old. Some will not, due to other techniques they are employing
(e.g., running games in a full-screen mode), but many will.
You might think that this would not matter. After all, how many people in 2011
were even using Android 3.x? 5%?
However, those in position to trumpet your application — Android enthusiast
bloggers chief among them — will tend to run newer equipment. Their opinion
matters, if you are trying to have their opinion sway others relative to your
app. Hence, if you look out-of-touch to them, they may be less inclined to
provide glowing recommendations of your app to their readers.
Besides, not everything added to newer versions of Android is pure “eye candy”.
It is entirely possible that features in the newer Android releases might
help make your app stand out from the competition, whether it is making greater
use of NFC or offering tighter integration to the stock Calendar application
or whatever. By taking an “old features only” approach, you leave off these
areas for improvement.
And, to top it off, the world moves faster than you think. It takes about a
year for a release to go from release to majority status (or be already on
the downslope towards oblivion, passed over by something newer still). You
need to be careful that the decisions you make today do not doom you tomorrow.
If you focus on “old features only”, how much rework will it take you to
catch up in six months, or a year?
Hence, this book advocates an approach that differs from that taken by many:
aim high. Decide what features you want to use, whether those features are
from older releases or the latest-and-greatest release. Then, write your
app using those features, and take steps to ensure that everything still works
reasonably well (if not as full-featured) on older devices. This too is a
well-trodden path, used by Web developers for ages (e.g., support sexy stuff in
Firefox and Safari, while still gracefully degrading for IE6). And the
techniques that those Web developers use have their analogous techniques
within the Android world.
Aim Where You Are Going
One thing to bear in mind is that the OS distribution chart and table
shown above is based on devices contacting the Play Store. Hence, this
is only directly relevant if you are actually distributing through the
Play Store.
If you are distributing through the Amazon AppStore, or to device-specific
outlets (e.g., BlackBerry World), you will need to take into
account what sorts of devices are using those means of distribution.
If you are specifically targeting certain non-Play Store devices, like
the Kindle Fire, you will need to take into account what versions of Android
they run.
If you are building an app to be distributed by a device manufacturer on
a specific device, you need to know what Android version will (initially)
be on that device and focus on it.
If you are distributing your app to employees of a firm, members of an
organization, or the like, you need to determine if there is some specific
subset of devices that they use, and aim accordingly. For example, some
enterprises might distribute Android devices to their employees, in which
case apps for that enterprise should run on those devices, not necessarily
others.
A Target-Rich Environment
There are a few places in your application where you will need to specify
Android API levels of relevance to your code.
The most important one is the android:minSdkVersion attribute, as discussed
early in this book. You need to set this to the oldest version of Android
you are willing to support, so you will not be installed on devices older
than that.
There is also android:targetSdkVersion, mentioned in passing earlier in
this chapter. In the abstract, this attribute tells Android “this is the
version of Android I was thinking of when I wrote the code”. Android can
use this information to help both backwards and forwards compatibility.
Historically, this was under-utilized. However, with API Level 11 and API
Level 14, android:targetSdkVersion took on greater importance. Specifying
11 or higher gives you the action bar and all the rest of the look-and-feel
introduced in the Honeycomb release. Specifying 14 or higher will give you
some new features added in Ice Cream Sandwich, such as automatic whitespace
between your app widgets and other things on the user’s
home screen. In general, use a particular android:targetSdkVersion when
instructions tell you to.
The third place — and perhaps the one that confuses developers the most
– is the build target. This shows up as compileSdkVersion in build.gradle
for Android Studio and Gradle users.
Part of the confusion is the multiple uses of the term “target”. The build
target has nothing to do with android:targetSdkVersion. Nor is it strictly
tied to what devices you are targeting.
Rather, it is a very literal term: it is the target of the build. It
indicates:

	What version of the Android class library you wish to compile against,
dictating what classes and methods you will be able to refer to directly

	What rules to apply when interpreting resources and the manifest, to
complain about things that are not recognized

The net is that you set your build target to be the lowest API level that
has everything you are using directly.
Lint: It’s Not Just For Belly Buttons
In the old days, the only way to find out that you were using a newer class
or method than what was in your minSdkVersion would be to set your build
target to be the same as your minSdkVersion. That way, any attempt to use
something newer than your minimum would be greeted with compile errors. This
works, but at a high cost: it makes intentionally using newer capabilities
very painful, forcing you to use reflection to access them.
Nowadays, this is no longer needed, thanks to Lint.
Lint is part of the standard build process, adding new errors and warnings
for things that are syntactically valid but probably not the right answer.
In particular, Lint will tell you if you are using classes or methods that
are newer than your minSdkVersion, even if they are valid for your build target.
Hence, the targeting strategy nowadays is:

	Set your minSdkVersion to be the oldest version that you are willing
to support

	Set your build target to be the version of Android that has all of the
classes and methods you intend to use, allowing Lint to point out places
where you need to pay attention to what sort of device you are running on
(more on this later)

	Set your targetSdkVersion to be something relatively recent, unless
you have specific reasons to use some specific version

A Little Help From Your Friends
The simplest way to use a feature yet support devices that lack the feature
is to use a compatibility library that enables the feature for more devices.
The Android Support package is one such compatibility library, though it also
offers other classes as well.
With a compatibility library, the API for using the library is nearly identical
to using the native Android capability, mostly involving slightly different
package names (e.g., android.support.v4.app.Fragment instead of
android.app.Fragment).
So, if there is something new that you want to use on older devices, and the
new feature is not obviously tied to hardware, see if there is a “backport”
of the feature available to you. Examples include backports of:

	
CalendarView (https://github.com/SimonVT/android-calendarview)

	
Switch (https://github.com/BoD/android-switch-backport)

	
DatePicker (https://github.com/SimonVT/android-datepicker)

	
NumberPicker (https://github.com/SimonVT/android-numberpicker)

	
TimePicker (https://github.com/SimonVT/android-timepicker)

Avoid the New on the Old
If the goal is to support new capabilities on new devices, while not losing
support for older devices, that implies we have the ability to determine
what devices are newer and what devices are older. There are a few techniques
for doing this, involving Java and resources.
Java
If you wish to conditionally execute some lines of code based on what version
of Android the device is running, you can check the value of Build.VERSION,
referring to the android.os.Build class. For example:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
 // do something only on API Level 9 and higher
}

Any device running an older version of Android will skip the statements
inside this version guard and therefore will not execute.
That technique is sufficient for Android 2.0 and higher devices. If you
are still supporting Android 1.x devices, the story gets a bit more
complicated, and that will be discussed later in the book.
If you decide that you want your build target to match your minSdkVersion
level — as some developers elect to do — your approach will differ.
Rather than blocking some statements from being executed on old devices,
you will enable some statements to be executed on new devices, where
those statements use Java reflection (e.g., Class.forName()) to reference
things that are newer than what your build target supports. Since using
reflection is extremely tedious in Java, it is usually simpler to have your
build target reflect the classes and methods you are actually using.
@TargetAPI
One problem with this technique is that your IDE will grumble at you, saying
that you are using classes and methods not available on the API level you
set for your minSdkVersion. To quiet down these Lint messages,
you can use the @TargetAPI annotation.
For example, earlier in the book, we saw code like this:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
static public <T> void executeAsyncTask(AsyncTask<T, ?, ?> task, T... params) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);
 }
 else {
 task.execute(params);
 }
}

This utility method executes an AsyncTask using a multi-threaded thread pool.
That is the default behavior of execute() on API Level 10 and below. On higher
versions of Android, we can explicitly opt into the multi-threaded thread pool
by using executeOnExecutor(), but that method does not exist prior to API
Level 11. Hence, we check our API level at runtime via Build.VERSION.SDK_INT,
see if we are on HONEYCOMB or higher, and branch accordingly. However, for
a project with a minSdkVersion of 10 or below, Lint will still complain — Lint
is just not sophisticated enough to realize that we are correctly handling
newer API levels. The @TargetApi(Build.VERSION_CODES.HONEYCOMB) annotation
tells Lint that we have indeed confirmed that we are “doing the right thing”,
at least through API Level 11.
However, by using @TargetApi(Build.VERSION_CODES.HONEYCOMB), we are implicitly
saying that we have not checked to see if we are doing things properly for
higher versions of Android. So long as all the classes, methods, and such that we
reference in this executeAsyncTask() method are available in API Level 11, we
are fine. If we change the implementation to reference something from, say,
API Level 14, now Lint will start complaining again. This is what we want, so
we are alerted to the problem and can fix it. Hence, only set the @TargetApi()
annotation to the API level that are you explicitly handling. Do not just set it
to some arbitrarily high level (or, worse, use @SuppressWarning to try to get
Lint to shut up entirely).
Resources
The aforementioned version guards only work for Java code. Sometimes, you will want
to have different resources for different versions of Android. For example,
you might want to make a custom style that inherits from Theme.Holo for
Android 3.0 and higher. Since Theme.Holo does not exist on earlier versions
of Android, trying to use a style that inherits from it will fail miserably
on, say, an Android 2.2 device.
To handle this scenario, use the -vNN suffix to have two resource sets.
One (e.g., res/values-v11/) would be restricted to certain Android versions
and higher (e.g., API Level 11 and higher). The default resource set
(e.g., res/values/) would be valid for any device. However, since Android
chooses more specific matches first, an Ice Cream Sandwich phone would go with
the resources containing the -v11 suffix. So, in the -v11 resource
directories, you put the resources you want used on API Level 11 and higher,
and put the backwards-compatible ones in the set without the suffix. This
works for Android 2.0 and higher. You can also use -v3 for resources that
only will be used on Android 1.5 (and no higher) or -v4 for resources
that only will be used on Android 1.6.
Components
One variation on the above trick allows you to conditionally enable or
disable components, based on API level.
Every <activity>, <receiver>, or <service> in the manifest can support
an android:enabled attribute. A disabled component (android:enabled="false")
cannot be started by anyone, including you.
We have already seen string resources be used in the manifest, for things
like android:label attributes. Boolean values can also be created as resources.
By convention, they are stored in a bools.xml file in res/values/ or
related resource sets. Just as <string> elements provide the definition of
a string resource, <bool> elements provide the definition of a boolean resource.
Just give the boolean resource a name and a value:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <bool name="on_honeycomb">false</bool>
</resources>

The above example has a boolean resource, named on_honeycomb, with a value
of false. That would typically reside in res/values/bools.xml. However,
you might also have a res/values-v11/bools.xml file, where you set
on_honeycomb to true.
Now, you can use @bool/on_honeycomb in android:enabled to conditionally
enable a component for API Level 11 or higher, leaving it disabled for older
devices.
This can be a useful trick in cases where you might need multiple separate
implementations of a component, based on API level. For example, later in the
book we will examine app widgets — those interactive elements users can add to
their home screens. App widgets have limited user interfaces, but API Level 11
added a few new capabilities that previously were unavailable, such as the
ability to use ListView. However, the code for a ListView-backed app widget
may be substantially different than for a replacement app widget that works
on older devices. And, if you leave the ListView app widget enabled in the
manifest, the user might try choosing it and crashing. So, you would only
enable the ListView app widget on API Level 11 or higher, using the boolean
resource trick.
Testing
Of course, you will want to make sure your app really does work on older
devices as well as newer ones.
At build time, one trick to use periodically is to change your build target
to match your minSdkVersion, then see where the compiler complains.
If everything is known
(e.g., resource attributes that will be ignored on older versions) or
protected (e.g., Java statements inside a version guard if statement),
then you are OK. If, however, you see complaints about something you forgot
was only in newer Android releases, you can take steps to fix things.
You will also want to think about Android versions when it comes to testing,
a topic that will be covered later in this book.
Keeping Track of Changes
Each Android SDK release is accompanied by API release notes, such as
this set for Android 4.4/API Level 19.
Similarly, each Android SDK release is accompanied by its “API Differences Report”,
a roster of each added, removed, or modified class or method. For example,
this API Differences Report
points out the changes between API Level 18 and API Level 19.
Other changes are called out in
the JavaDocs for Build.VERSION_CODES,
with particular emphasis on what happens when you set a specific API level
as your android:targetSdkVersion. Note that this roster is not complete, but
may mention some things not mentioned in the other locations.
Each class, method, and field in the JavaDocs has a notation as to what API
level that particular item was added. Class API levels appear towards the
top of the page; method and field API levels appear on the right side of the
gray bar containing the method signature or field declaration. Also, in the
JavaDocs “Android APIs” column on the left, there is a drop-down that allows
you to filter the contents based upon API level.
System Services
One of the problems that we have in Android app development is the overloading
of terms. We have already seen how “layouts” sometimes refer to
layout resources and sometimes refer to container classes like
LinearLayout.
Another example comes in the name “service”. This was already used in
a few places in Java (e.g., ExecutorService). Android then used it
for one of our four app components. Android also
uses “service” as part of the term “system service”… where system
services have little to do with Java services or Android services.
What is a System Service?
System services are “manager”-type classes that you get by calling
getSystemService() on some Context, such as an Activity or Service.
Usually, system services are tied to lower-level device functionality,
like telephony. However, not all low-level device functionality is exposed
by means of system services; some have separate APIs implemented by
other sorts of “manager” classes.
There are two flavors of getSystemService(). The one that you are
likely to use is the one that takes a String parameter that is the
name of the system service that you want. You get back a generic Object,
which you then have to downcast to the specific type of system
service that you are trying to use:

AlarmManager mgr=(AlarmManager)someContext.getSystemService(Context.ALARM_SERVICE);

API Level 23 finally added a type-safe version of getSystemService().
You pass in the Java class object for the system service and get an instance
of that class back:

AlarmManager mgr=someContext.getSystemService(AlarmManager.class);

However, until your minSdkVersion rises to 23 or higher, you will
not be able to use that version of getSystemService() on Context
on older devices.
Alas, there is no backport
of getSystemService() on ContextCompat from the Android Support
library.
What System Services Are There?
There are many system services, with new ones coming every Android
version release or two. Here are the major ones as of Android 6.0,
with links to chapters that focus on them (where available):

	
AccessibilityManager, for being notified of key system events
(e.g., activities starting) that might be relayed to users via haptic
feedback, audio prompts, or other non-visual cues

	
AccountManager, for working with Android’s system of user
accounts and synchronization

	
ActivityManager, for getting more information about what
processes and components are presently running on the device

	
AlarmManager, for scheduled tasks (a.k.a., “cron jobs”), covered
elsewhere in this book

	
AppOpsManager, for “tracking application operations on the device”

	
AppWidgetManager, for creating or hosting app widgets

	
AudioManager, for managing audio stream volumes,
audio ducking, and other system-wide audio affordances

	
BatteryManager, for finding out about the state of the battery

	
BluetoothManager, for exposing or connecting to Bluetooth services

	
ClipboardManager, for working with the device clipboard, covered
elsewhere in this book

	
ConnectivityManager, for a high-level look as to what sort of
network the device is connected to for data (e.g., WiFi, 3G)

	
ConsumerIrManager, for creating “IR blaster” or other IR-sending
apps, on hardware that has an IR transmitter

	
DevicePolicyManager, for accessing device administration
capabilities, such as wiping the device

	
DisplayManager, for working with external displays, covered
elsewhere in this book

	
DownloadManager, for downloading large files on behalf of the
user, covered in elsewhere in the book

	
DropBoxManager, for maintaining your own ring buffers of logging
information akin to Logcat

	
FingerprintManager, for working with fingerprint readers on
Android 6.0+ devices

	
InputMethodManager, for working with input method editors

	
InputManager, for identifying external sources of input, such
as keyboards and trackpads

	
JobScheduler, for scheduling periodic background work, covered
elsewhere in the book

	
KeyguardManager, for locking and unlocking the keyguard, where
possible

	
LauncherApps, for identifying launchable apps on the device (e.g.,
for home screen launchers), taking into account device policies

	
LayoutInflater, for inflating layout XML files into Views,
as you saw earlier in the book

	
LocationManager, for determining the device’s location (e.g.,
GPS), covered in the chapter on location tracking

	
MediaProjectionManager, for capturing screenshots and screencasts

	
MediaRouter, for
working with external speakers and displays

	
MediaSessionManager, for teaching Android about media that you are
playing back

	
MidiManager, for playing MIDI audio

	
NetworkStatsManager, “for querying network usage stats”

	
NfcManager, for reading NFC tags or pushing NFC content

	
NotificationManager, for putting icons in the status bar and
otherwise alerting users to things that have occurred asynchronously,
covered in the chapter on Notification

	
NsdManager, for network service discovery operations

	
PowerManager, for obtaining WakeLock objects and such, covered
elsewhere in this book

	
PrintManager, for printing from Android

	
RestrictionsManager, for identifying and working with
restricted operations

	
SearchManager, for interacting with the global search system

	
SensorManager, for accessing data about sensors, such as the
accelerometer, covered elsewhere in this book

	
StorageManager, for working with expanded payloads (OBBs)
delivered as part of your app’s installation from the Play Store

	
SubscriptionManager, for dealing with data roaming and other
telephony subscription rules

	
TelecomManager, for dealing with incoming and outgoing phone calls

	
TelephonyManager, for finding out about the state of the phone
and related data (e.g., SIM card details)

	
TextServicesManager, for working with spelling checkers and other
“text services”

	
TvInputManager, for Android-powered televisions, to find out
about TV inputs

	
UiModeManager, for dealing with different “UI modes”, such as
being docked in a car or desk dock

	
UsageStatsManager, “for querying device usage stats”

	
UsbManager, for working directly with accessories and hosts
over USB

	
UserManager, for working with multiple user accounts on a
compatible device (Android 4.2+ tablets, Android 5.0+ phones)

	
Vibrator, for shaking the phone (e.g., haptic feedback)

	
WallpaperService, for working with the device wallpaper

	
WifiManager, for getting more details about the active or
available WiFi networks

	
WifiP2pManager, for setting up and communicating over
WiFi peer-to-peer (P2P) networks

	
WindowManager, mostly for accessing details about the default
display for the device

Google Play Services
A term that you will encounter a fair bit as an Android developer
is “Google Play Services”, or “Play Services” for short. This is
your gateway into a series of proprietary capabilities that Google
has layered on top of Android. Many of these capabilities are tied
to Google’s servers and services, such as ads and Google Drive.
However, these capabilities, while usually free from monetary cost
to the developer, are not free from problems or controversy.
What Is Google Play Services?
Google Play Services is a “kitchen sink” term, encompassing a wide
range of things from the standpoint of developers and users alike.
…From the Standpoint of Developers?
The Play Services SDK allows you to integrate your Android app with
a number of Google proprietary services, from leaderboard management
for games to interacting with Chromecast devices. Many, but not all,
of these services are tied to Google servers. Many, but not all, of
these services will require some sort of API key as a result.
The SDK comes in the form of an Android library project that you
link into your app, giving you access to classes and methods that
let you add maps, or payment options, or push message receipt into
your Android apps.
Note that while the name “Play Services” contains the word “services”,
Play Services is merely an API, one that does not directly
have anything to do with services or
system services.
…From the Standpoint of Users of Google Play Devices?
In Western countries, the common perception is that all Android devices
are part of the Google Play world. These devices will have the Play
Services Framework pre-installed from the device manufacturer and
silently updated over the air by Google. Apps that use the Play Services
SDK in theory can use all of the SDK’s available APIs on all devices
equipped with the Play Services Framework.
In practice, older devices (particularly Android 2.x) will have some
number of limitations related to Play Services, not the least of which
being the lack of automatic over-the-air updates. As many developers
are now setting their minSdkVersion to be something newer (e.g., 15),
this particular class of problems will tend to fall by the wayside.
…From the Standpoint of the Android Ecosystem?
Google’s continued expansion of the Play Services SDK, sometimes at the
expense of Android itself, has not proven to be universally popular:

	Developers who depend on the Play Services SDK will not be able to
run on devices that lack the Play Services Framework. And while many
people think that the only devices that matter have the Play Services
Framework, some estimates indicate that over half of Android devices
in use today are from manufacturers that are not part of the Google Play
ecosystem.

	The Play Services SDK is closed-source, and as such it makes debugging
certain classes of problem more difficult.

	The terms and conditions for using different aspects of the Play
Services SDK may cause problems for some developers, ranging from
interfering with their planned business model to interfering with their
planned software license (e.g., GPL).

What Is In the Play Services SDK?
As mentioned earlier, the Play Services SDK is vast. The following
sub-sections outline some of the major pieces of the Play Services SDK,
what Gradle dependency pulls them in, and what independent alternatives
exist (if any).
Android Pay / Google Wallet
Google has tried a couple of times to get into the mobile payments
market, starting with Google Wallet, which has now morphed into
Android Pay. If you want to allow users to purchase goods and services
through your app, and you want to allow those users to pay via
Android Pay, you can use this portion of the Play Services SDK.
Wear OS
To communicate from a device running an open source operating
system (Android, on a phone or tablet) to a device running an open
source operating system (Android, on an Wear OS device),
you have to use a proprietary, closed-source library.
It is possible to show a Notification on a Wear device
straight from the Android SDK. It is also possible to create
a Wear app that exists standalone straight from the Android SDK.
But if you want to send data to the Wear device from the phone or
tablet, or vice versa, that requires the Wear portion of the
Play Services SDK.
This library provides a few discrete APIs for communication:

	A shared data API, where both sides can read and write from a
key-value store that is synchronized between the two environments

	A message API, for a classic point-to-point communications pattern

	An asset transfer API, designed for larger data sets
(e.g., large images)

Google+
The documentation and business proposition for the Google+
API is a bit limited at this time. However, it appears that you
can:

	add a +1 button to your app, if that sounds interesting

	have richer options for sharing content to a user’s Google+
account, beyond simple ACTION_SEND

	examine the user’s Google+ profile and some of the user’s friends on
Google+

Google Account Login / Sign In with Google
Rather than maintain your own account system, your app could
ask the users to sign into their Google account as part of using
your app.
Google Analytics
“Analytics” refers to tracking usage. Web analytics uses a mix
of Web server logs, tracking cookies, and the like to determine popular
Web pages, navigation flows, time spent in certain areas of a site,
and so forth. Mobile analytics tracks usage within an app: certain
activities, certain operations, etc.
Google Analytics is very popular for Web sites, and Google extended
this to a mobile API designed for tracking app usage.
There are countless analytics services with Android APIs
(e.g., Flurry) beyond Google’s. While there appear to be few
self-hosted or open source solutions, analytics data collection
is not especially difficult to implement on your own,
if you would prefer to keep this information more private.
Data analysis is where the challenges with home-grown solutions
arise. Or, you could simply not collect this sort of information.
Google App Indexing
Google App Indexing, among other things, allows for “deep links”
into an Android app, surfaced from Google search results. That, on
its own, does not require any particular proprietary APIs. However,
to allow Google to discover these “deep links”, it appears that you
need to use a custom app-indexing API.
Google App Invites
Google’s App Invites service allows your users to annoy their contacts,
bugging them to install your app.
A simpler, albeit less slick, solution is to allow the user to send
messages from your app with a link back to your app from its distribution
channel (e.g., Play Store), such as via an ACTION_SEND Intent.
Google Cast
Google Cast can be thought of as a control protocol for Google Cast-enabled
receivers. Through a Google-supplied SDK (or other means), Google Cast client
apps (“senders”) can direct a Google Cast-enabled receiver to play, pause, rewind,
fast-forward, etc. a stream. Android TV devices and Chromecast devices are
the primary Cast-enabled receivers.
Google Cast does assume that, in general, the media receiver runs its own OS and
is capable of playing streaming media without ongoing assistance from the Google
Cast client. Hence, the client is not “locked into” having to keep feeding content
to the Google Cast client, allowing the user to go off and do other things with
that client while playback is going on.
Chromecast offers up remote playback media routes and works with RemotePlaybackClient,
as is discussed in the chapter on MediaRouter. The sample app
for RemotePlaybackClient was tested on a Chromecast.
If you want greater control than is offered via RemotePlaybackClient, though,
you can use the Cast SDK. However,
using the Cast SDK will tie you to Google Cast — and some of its restrictions,
both technical and legal — but will give you greater developer control over the
behavior of both the Google Cast device and your app.
As noted above, RemotePlaybackClient, along with
the Presentation API, offer a significant subset of
what the Cast SDK offers.
Google Cloud Messaging
Google Cloud Messaging –
GCM for short — asynchronously delivers notifications from the Internet (“cloud”)
to Android devices. Rather than the device waking up and polling on a
regular basis at the behest of your app, your app can register for
notifications and then wait for them to arrive. GCM is engineered
with efficiency in mind:

	Apps do not have to be constantly running, maintaining their own
socket connections to some XMPP or MQTT server (let alone several such
apps)

	Apps can share a single managed connection to a Google server,
one that is carefully tuned to minimize power draw while also keeping
the connection alive

	Apps can avoid frequent wakeup events for polling, letting some server
do the “heavy lifting” and just tap the app on the virtual shoulder to
inform it of some data of interest

The proper use of GCM means better battery life for your users. It
can also reduce the amount of time your code runs, which helps you
stay out of sight of users looking to pounce on background tasks and
eradicate them with task killers.
GCM has gone through four revisions of its API, including the 2016
rebranding of it as Firebase Cloud Messaging (FCM).
Be sure to use up-to-date references and examples when
adding GCM/FCM to your apps.
You may also encounter references to “C2DM”, GCM’s precursor.
C2DM debuted in 2010 and quickly became
popular, for everything from triggering near-real-time data synchronization
(e.g., Remember the Milk to-do list updates) to lightweight coordination between
multiple players in a game.
However, C2DM was a Google Labs product and in perpetual beta form. When
Google Labs was shut down, C2DM was in limbo: not canceled, but not converted
into an actual product. In 2012, GCM formally replaced C2DM, and in 2015,
C2DM was shut down entirely. Hence, while high-level concepts about push
messaging from the C2DM era might still be relevant to you, any actual
C2DM-related code will be useless.
Other devices from outside the Google Play ecosystem may offer their
own counterparts to GCM. Independent push implementations can range
from XMPP and MQTT to simple WebSockets, though these have limitations
when compared to GCM.
Google Drive
Google Drive is Google’s hosted file-storage service. Via Drive APIs
in the Play Services SDK, you can work indirectly with the user’s
Google Drive-hosted content, including creating and deleting files,
plus searching through files for ones that meet particular search
criteria.
Note that some of this functionality is available via the
Storage Access Framework in Android 4.4+, with the
advantage that it works across multiple content sources, not just
Google Drive.
Other services (e.g., Dropbox) have their own APIs as well.
Google Fit
Google Fit is Google’s wearable sensor initiative, for “smartbands”
and related gadgets. Through the Fit APIs, you can detect Fit
gadgets associated with a user’s device, read data from those
gadgets’ sensors (e.g., heart rate), and so forth.
Other manufacturers in this space (e.g., Fitbit) have their
own SDKs as well.
Google Location Services
This portion of the Play Services SDK offers the “fused location
provider”. This combines GPS and network sources of location data,
plus sensor information, to try to offer better location information
with less power draw. For example, if the sensors suggest that the
device is not moving, the fused location provider can scale back
how aggressively it uses the location sources, since the location
probably is not changing.
This library also offers a “geofencing” implementation, where you
ask the Play Services SDK to keep track of certain locations and
let you know if the device gets within a certain distance of those
locations.
This book has a chapter on the fused location provider.
Google Maps
Android has offered integrated Google Maps to developers since the
outset. With the introduction of Maps V2 in 2012, this capability was
folded into the Play Services SDK. Through Maps V2, you can embed
a map powered by Google Maps into your application, complete with
markers and popups, lines and shaded areas, and so on.
This book has a chapter on Maps V2.
Due to the popularity of embedded maps, other manufacturers
(e.g., Amazon, Blackberry) have offered their own map engines, often
with APIs that attempt to mimic that of Maps V2 (or perhaps its
predecessor, now known as Maps V1). Beyond that, there is
the OpenStreetMap project,
for which Android libraries are available.
Google Mobile Ads / AdMob
Google is an advertising company. They offer the
Google Mobile Ads SDK (a.k.a., AdMob for Android)
as part of the Play Services SDK,
for you to be able to add banners, interstitials, and other forms
of advertising to your app.
There are other competing mobile ad networks that you could consider,
though you may be better served focusing on coming up with a better
business model.
Google Mobile Vision
Google has a variety of APIs, grouped under the “Mobile Vision”
banner, designed for detecting specific sorts of objects or other
information in still photos and videos. These include:

	detection of faces, and the state of those faces (e.g., expressions)

	detection and decoding of barcodes

Android’s native camera API has some amount of face recognition,
though not to the level of the Face API in the Mobile Vision SDK.
There are a variety of barcode scanning apps (e.g., the legendary
ZXing Barcode Scanner) and libraries (e.g., ZBar) that one can use
independently of the Play Services SDK.
Google Nearby
Google Nearby offers a pair of APIs for communication between
nearby devices.
The Nearby Messages API offers a publish-and-subscribe messaging
framework, designed for sending small blocks of data between
Internet-connected Android and iOS devices. This is largely
frictionless for the user (beyond the network connection), as
the Messages API uses a mix of radios (Bluetooth, Bluetooth LE,
WiFi) and ultrasonic signaling to handle the pairing
and interaction.
The Nearby Connections API offers connection-based group
messaging between devices on the same WiFi network. While
you can pass more data this way, since everybody has to be
on WiFi, it reduces the number of potential communications
partners.
While some aspects of Google Nearby (e.g., ultrasound) are unusual,
there have been many projects offering server-less group communications,
from ZeroMQ to AllJoyn.
SafetyNet
The SafetyNet APIs lets your app know “whether the device where it is
running matches the profile of a device that has passed Android
compatibility testing”. Presumably, this is designed to help you detect
custom ROMs or copies of your app installed from pirate sites onto
incompatible hardware.
Adding Play Services to Your Project
On the surface, using Play Services should be simple: add the
aforementioned implementation statement(s), then start calling some
methods from the supplied Play Services SDK libraries.
Unfortunately, it is not that simple. There are a number of other
things that you will need to deal with in order to integrate
Play Services into your app.
The Metadata
You will see plenty of examples that show having a <meta-data> element,
inside your <application> element, with an android:name of
com.google.android.gms.version and a value pulling in an integer
resource (@integer/google_play_services_version) from the Play Services
SDK:

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">
 <activity android:name=".WeatherDemo">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name=".LegalNoticesActivity"/>

 <meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version"/>
 </application>

(from Location/FusedNew/app/src/main/AndroidManifest.xml)
This is no longer required, if you are using version 8.1.0 or higher
of the Play Services SDK. This element will be added to your manifest
automatically via the manifest merger process.
Dealing with Runtime Permissions
Android 6.0’s runtime permission system affects some of the Play Services
APIs. For example, if you are trying to get the location via the
fused location provider, you will need ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION. Both of those are dangerous permissions,
so apps with a targetSdkVersion of 23 or higher will need to request
those permissions at runtime.
The
Location/FusedNew
sample application contains an AbstractGoogleApiClientActivity that, among
other things, helps us deal with runtime permissions in our Play Services
SDK-using apps.
Detecting If We Have Permission
The idea behind AbstractGoogleApiClientActivity is that apps using
the Play Services SDK will have activities that inherit from
AbstractGoogleApiClientActivity, overriding a few methods to configure
how AbstractGoogleApiClientActivity handles things like runtime permissions.
For example, AbstractGoogleApiClientActivity has an abstract method named getDesiredPermissions()
that subclasses must override, providing a String array of permissions
that the activity needs. AbstractGoogleApiClientActivity then uses
hasAllPermissions() and hasPermission() private methods to determine
whether all of the requested permissions are currently held:

 private boolean hasAllPermissions(String[] perms) {
 for (String perm : perms) {
 if (!hasPermission(perm)) {
 return(false);
 }
 }

 return(true);
 }

 private boolean hasPermission(String perm) {
 return(ContextCompat.checkSelfPermission(this, perm)==
 PackageManager.PERMISSION_GRANTED);
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
In onCreate() of AbstractGoogleApiClientActivity, among other things,
we call hasAllPermissions() to see if we have all of our required
permissions — if yes, we can go ahead and call an initPlayServices()
method to start the process of initializing our access to the Play Services
SDK:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (savedInstanceState!=null) {
 isInPermission=
 savedInstanceState.getBoolean(STATE_IN_PERMISSION, false);
 isResolvingPlayServicesError=
 savedInstanceState.getBoolean(STATE_IN_RESOLUTION, false);
 }

 if (hasAllPermissions(getDesiredPermissions())) {
 initPlayServices();
 }
 else if (!isInPermission) {
 isInPermission=true;

 ActivityCompat
 .requestPermissions(this,
 netPermissions(getDesiredPermissions()),
 REQUEST_PERMISSION);
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
Requesting Permissions
If we do not have all of the permissions, onCreate() will call
requestPermissions() on ActivityCompat to ask the user for them.
However, it also leverages netPermissions() to filter out the permissions
that the user previously granted, so we only bother the user with
permissions that either the user has not seen before or has previously
denied:

 private String[] netPermissions(String[] wanted) {
 ArrayList<String> result=new ArrayList<String>();

 for (String perm : wanted) {
 if (!hasPermission(perm)) {
 result.add(perm);
 }
 }

 return(result.toArray(new String[result.size()]));
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
Note that this code is not making use of shouldShowRequestPermissionRationale(),
to detect previous permission denials and perhaps show some UI to educate
the user on what the impacts are of this rejection.
Handling the Result
The call to requestPermissions() will eventually trigger a callback
to onRequestPermissionsResult(). Here, if we now have all of the
permissions, we call initPlayServices() (more on this in a bit)
and then connect() to the Play Services SDK (also, more on this in
a bit):

 @Override
 public void onRequestPermissionsResult(int requestCode,
 String[] permissions,
 int[] grantResults) {
 isInPermission=false;

 if (requestCode==REQUEST_PERMISSION) {
 if (hasAllPermissions(getDesiredPermissions())) {
 initPlayServices();
 playServices.connect();
 }
 else {
 handlePermissionDenied();
 }
 }
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
If, however, we do not have all of the requested permissions,
another abstract method on this class is handlePermissionDenied(),
where the subclass can do what it wants to. That could range from
explaining to the user what can and cannot be done to simply calling
finish() and going away.
Dealing with Configuration Changes
There is a possibility that the user will rotate the screen or otherwise
trigger a configuration change while we are in the request-permission
process. Even though our activity is not in the foreground from an
input standpoint, it is visible, and so it will undergo the configuration
change while the request-permission dialog is still in the foreground.
We do not want to pop up the dialog again (and confuse the user).
So, the isInPermission field is tracking whether the request-permission
dialog is outstanding, so we do not attempt to show the dialog again
in onCreate().
Since the activity could be destroyed and recreated as part of the
configuration change, we hang onto the isInPermission value in the
saved instance state Bundle:

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
 outState.putBoolean(STATE_IN_RESOLUTION,
 isResolvingPlayServicesError);
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
(the STATE_IN_RESOLUTION bit will be explained shortly)
And, in onCreate(), we re-initialize isInPermission if we got
the saved instance state Bundle passed in.
Checking for Play Services
While you typically think of Android devices as having Play Services,
that is not always the case. Sometimes, they do not, yet wind up
having a copy of your app anyway, perhaps through less-than-legal
measures. Or, the device has Play Services, but it is not the latest
version — perhaps the user missed a recent Play Services update due
to international travel, taking up temporary residence in a Faraday
cage, or other technical issues.
Hence, another thing that AbstractGoogleApiClientActivity does is
confirm that the device has Play Services and can connect to the Play
Services process for whatever particular API(s) we wish to use.
Initializing the GoogleApiClient
For many, though not all, Play Services APIs, you use a GoogleApiClient
as your entry point for talking to Play Services. Some APIs, like
Maps V2, do not use GoogleApiClient for some reason. But,
more often than not, you will find yourself needing GoogleApiClient.
To create a GoogleApiClient instance, use a GoogleApiClient.Builder. As the
class name suggests, GoogleApiClient is used as a client connection to many
(but not all) Google Play Services APIs, and GoogleApiClient.Builder is a
builder for building such a connection. In particular:

	We pass our Activity as our Context

	We call addConnectionCallbacks() to indicate what should
be notified when our connection to the Play Services process
is ready

	We call addOnConnectionFailedListener() to indicate what should
be notified if we have a problem connecting to the
Play Services process

	We call build() on the Builder to actually build the GoogleApiClient

This is handled by initPlayServices() on AbstractGoogleApiClientActivity,
which we call once we have our permissions set up:

 protected void initPlayServices() {
 playServices=
 configureApiClientBuilder(new GoogleApiClient.Builder(this))
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
This includes calling out to the subclass’ implementation of
configureApiClientBuilder(), where the subclass can use methods like
addApi() to indicate specifically what parts of the Play Services
family of APIs the activity wants to use.
Given that we have a GoogleApiClient, we need to connect() to it to be able to start
requesting location data, then disconnect() from it when we no longer need that
location data.
Disconnecting is easy: we do that in onStop() of AbstractGoogleApiClientActivity:

 @Override
 protected void onStop() {
 if (playServices!=null) {
 playServices.disconnect();
 }

 super.onStop();
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
There are two places where we possibly call connect(). One is if
we needed to ask for permissions, and the user granted them.
In onRequestPermissionsResult(), after confirming that we do indeed
have all necessary permissions, we call initPlayServices() and then
immediately call connect() on the GoogleApiClient:

 @Override
 public void onRequestPermissionsResult(int requestCode,
 String[] permissions,
 int[] grantResults) {
 isInPermission=false;

 if (requestCode==REQUEST_PERMISSION) {
 if (hasAllPermissions(getDesiredPermissions())) {
 initPlayServices();
 playServices.connect();
 }
 else {
 handlePermissionDenied();
 }
 }
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
If we did not need to request permissions, we call connect() in
onStart(), mirroring the onStop() where we are disconnecting:

 @Override
 protected void onStart() {
 super.onStart();

 if (!isResolvingPlayServicesError && playServices!=null) {
 playServices.connect();
 }
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
The isResolvingPlayServicesError boolean value will be discussed a
bit later in this chapter.
Connecting and Disconnecting
The call to connect(), in turn, will trigger calls to our onConnected() and onDisconnected() methods
of the GoogleApiClient.ConnectionCallbacks interface, assuming all goes well.
AbstractGoogleApiClientActivity does not provide those implementations;
they are considered part of the abstract API and therefore need to be
implemented by subclasses.
However, apparently it is possible for this connection attempt to fail. Exactly how and
why it might fail is not well documented. If it fails, the onConnectionFailed()
method from our GoogleApiClient.OnConnectionFailedListener implementation will
be called. onConnectionFailed() is passed a ConnectionResult indicating what
specifically went wrong.
It turns out that this ConnectionResult may contain a PendingIntent that can be
used to try to help the user recover from whatever the problem was. The recipe
that we have been given
to try to use this is to call hasResolution() (to see if the PendingIntent exists)
and to use startResolutionForResult() (to invoke the activity pointed to by the
PendingIntent). Of course, hasResolution() may return false, and apparently
the PendingIntent might be broken, so we have to handle those scenarios as well:

 @Override
 public void onConnectionFailed(ConnectionResult result) {
 if (!isResolvingPlayServicesError) {
 if (result.hasResolution()) {
 try {
 isResolvingPlayServicesError=true;
 result.startResolutionForResult(this, REQUEST_RESOLUTION);
 }
 catch (IntentSender.SendIntentException e) {
 playServices.connect();
 }
 }
 else {
 ErrorDialogFragment.newInstance(result.getErrorCode())
 .show(getFragmentManager(),
 TAG_ERROR_DIALOG_FRAGMENT);
 isResolvingPlayServicesError=true;
 }
 }
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
If we have a resolution and successfully start up the resolution activity, our
activity will be stopped and later started, at which point we will wind up trying
to connect() again naturally.
If there is no PendingIntent to try to resolve the problem, we can still
attempt to display a dialog with information about what is going wrong.
The Play Services SDK provides this dialog, though we are responsible
for wrapping it in a DialogFragment ourselves. That comes in the form
of ErrorDialogFragment:

 public static class ErrorDialogFragment extends
 DialogFragment {
 static final String ARG_ERROR_CODE="errorCode";

 static ErrorDialogFragment newInstance(int errorCode) {
 Bundle args=new Bundle();
 ErrorDialogFragment result=new ErrorDialogFragment();

 args.putInt(ARG_ERROR_CODE, errorCode);
 result.setArguments(args);

 return(result);
 }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 return(GoogleApiAvailability
 .getInstance()
 .getErrorDialog(
 getActivity(),
 getArguments().getInt(ARG_ERROR_CODE),
 REQUEST_RESOLUTION));
 }

 @Override
 public void onCancel(DialogInterface dlg) {
 if (getActivity()!=null) {
 getActivity().finish();
 }

 super.onCancel(dlg);
 }

 @Override
 public void onDismiss(DialogInterface dlg) {
 if (getActivity()!=null) {
 ((AbstractGoogleApiClientActivity)getActivity())
 .isResolvingPlayServicesError=false;
 }

 super.onDismiss(dlg);
 }
 }

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)
onCreateDialog() uses the GoogleApiAvailability singleton to
show the error dialog, given the error code that came from our
previous attempt to connect. We pass that error code over to the
ErrorDialogFragment via the arguments Bundle, so that it can
survive a configuration change.
However, we also have to take into account that the device might
undergo a configuration change while either the resolution activity started
by startActivityForResult() or the ErrorFragmentDialog is in
the foreground. What we do not want to do is immediately try
connecting to Play Services again in onStart(), while we are in
the process of trying to fix whatever problem prevented us from connecting
to it previously.
So, we have to track a boolean state, isResolvingPlayServicesError,
as a field in our activity. That is initially set to false, but
we flip it to true if we show the resolution activity or the
ErrorFragmentDialog. We flip it back to false when either the
started activity returns control to us in onActivityResult() or
when the ErrorDialogFragment is dismissed. While that flag is
true, we skip attempting to connect to Play Services in onStart().
And this flag is part of our saved instance state, so we can handle
configuration changes.
Getting Help
Obviously, this book does not cover everything. And while your #1 resource
(besides the book) is going to be the Android SDK documentation, you are likely
to need information beyond what’s covered in either of those places.
Searching online for “android” and a class name is a good way to turn up
tutorials that reference a given Android class. However, be sure to check
the age of the blog post or whatever that you are reading. The older it is,
the more likely that it is out of date, based upon changes in Android or
just better solutions that have evolved over time.
Beyond randomly hunting around for tutorials, though, this chapter outlines
some other resources to keep in mind.
Questions. Sometimes, With Answers.
Stack Overflow’s android
tag is the world’s #1 place to get Android help. However, there are a variety
of other sites offering help in a variety of languages.
It is important, particularly for Stack Overflow, to write
well-written questions:

	Include relevant portions of the source code (e.g., the method in which you
are getting an exception) and the stack trace from Logcat, if the problem is an unhandled exception.

	On Stack Overflow, make sure your source code and stack trace are formatted
as source code; on Google Groups, consider posting long listings on
gist.github.com or a similar sort of code-paste site.

	Explain thoroughly what you are trying to do, how you are trying to do it,
and why you are doing it this way (if you think your goal or approach may be a
little offbeat).

	On Stack Overflow, respond to answers and comments with your own comments,
addressing the person using the @ syntax (e.g., @CommonsWare), to maximize the
odds you will get a reply. However, only use that for people who are already
involved in your question.

	On the Google Groups, do not “ping” or reply to your own message to try to
elicit a response until a reasonable amount of time has gone by (e.g., 24 hours).

Heading to the Source
The source code to Android is now available. Mostly this is for people looking
to enhance, improve, or otherwise fuss with the insides of the Android
operating system. But, it is possible that you will find the answers you seek
in that code, particularly if you want to see how some built-in Android
component “does its thing”.
The source code and related resources can be found at
http://source.android.com. Here, you can:

	
Download the source code

	File bug reports against the
operating system itself

	
Submit patches and learn about
the process for how such patches get evaluated and approved

	Join a separate set of Google Groups
for Android platform development

Working with Library Modules
Android library modules are the primary unit of Android source reuse, particularly
where that source involves more than just Java source code, such as Android
resources.
In this chapter, we will explore the basics of setting up and using an
Android library module.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Creating a Library Module
An Android library module, in many respects, looks like a regular Android
project. It has source code and resources. It has a manifest.
What it does not do, though, is build an APK file. Instead, it represents a
basket of programming assets that the Android build tools know how to
blend in with regular Android projects.
Making a project be an Android library module is simply a matter of choosing
the right Android Gradle Plugin.
Rather than have:

apply plugin: 'com.android.application'

use:

apply plugin: 'com.android.library'

That’s it — the com.android.library plugin now knows that it is creating
a library, not an app.
The real question is, where are you making this library? In many cases,
you will do so as a module in a project, where there is another module that
is an app. This covers both:

	A library designed to be standalone, but with a sample app demonstrating
its use

	A library designed to be used by the app, and perhaps other app modules
in this project

Adding new modules to an Android Studio project is handled most simply via
the new-module wizard, which you can bring up via File > New > New Module… from
the main menu. This brings up the first page of the new-module wizard:

[image: Android Studio New-Module Wizard, First Page]

Figure 312: Android Studio New-Module Wizard, First Page
To add a library module as a module to an existing project, choose
“Android Library” in the list of module types, then click Next to proceed
to the second page of the wizard:

[image: Android Studio New-Module Wizard, Second Page]

Figure 313: Android Studio New-Module Wizard, Second Page
This collects some bits of information, including:

	the “application name”, whose use in this case is unclear

	the “module name”, which will be the directory in this project into
which this library will be created

	the “package name”, which will go into the manifest of the generated
library

	your module’s minSdkVersion

At this point, clicking Next will take you to the same new-activity flow
that you saw when creating a new project. If you want an activity to be
generated for you in this library, proceed by selecting the activity template
and providing the activity template configuration data. If you do not want
an activity, choose “Add No Activity” in the grid of templates, then click
“Finish” to create the module.
In the end, the new-module wizard will set up the new module for you, in
your designated subdirectory of the project, including modifying settings.gradle
to list this subdirectory as being a module within the project. At this
point, you will be able to start using the library within the project itself.
Using a Library Module
Once you have a library module, you can attach it to another Android
module, so the other Android module has access to everything in the
library. This works similarly to adding other sorts of dependencies,
with a slight syntax change. Rather than use an artifact identifier
or fileTree(), we use project():

implementation project(':libname')

where libname is the name of the module. This will be the directory
name, and it will also show up as the module’s name in settings.gradle
in the project root directory:

include ':app', ':libname'

The leading colon means that this module is directly off of the project
root directory.
If you wish to use this library module in separate projects, other than
the one that hosts the module, you will need to distribute it to those
other projects. A typical way to do that is to compile the library module
into an AAR file and have that be hosted in an artifact repository.
Library Modules and the Manifest
Library projects can publish their own AndroidManifest.xml file, which
contributes to the overall manifest used by apps that incorporate the library.
Hence, a library can:

	request permissions that perhaps are not in the app’s own manifest

	publish activities or other components, without the app developer having
to add entries to the app’s own manifest

	stipulate a minimum SDK version required by the library code, which might
be higher than the minimum SDK version required by the app itself

However, merging these manifests is a rather complex topic, and as such
will be covered much later in the book.
Library Modules and Transitive Dependencies
Just as an application module can have dependencies, so can a library module.
For other modules that depend upon the library module, the library module’s
dependencies become transitive dependencies. In other words, if App A depends
upon Library B, and Library B depends upon Library C and Library D, App A
has transitive dependencies on Library C and Library D.
When a module depends directly upon a library module (e.g., implementation project(':libname')),
all of that library module’s dependencies get added to the requesting module’s
dependencies list. The same holds true when a module depends upon a library
from an artifact repository. It does not hold true for bare libraries,
such as adding plain JARs to a project via implementation fileTree(...).
There are three key ways that a library module can declare a dependency:
implementation, api, and compileOnly. While an app module typically would
only use implementation, all three of these options are possible for a library
module, with subtly different behavior:

 	Configuration Name
 	Is Dependency’s API Available to Hosts?
 	Is Dependency’s Code Added to Hosts?

 	implementation
 	no
 	yes

 	api
 	yes
 	yes

 	compileOnly
 	no
 	no

Let’s examine a concrete example: CWAC-NetSecurity.
This library — which will be profiled later in the book — has
its own code, plus it has helper code for integrating the library’s code
with OkHttp. There are three ways that CWAC-NetSecurity could declare its
dependency upon OkHttp, and those choices change what happens in an app that
itself depends upon CWAC-NetSecurity:

	If CWAC-NetSecurity uses implementation to depend upon OkHttp, then
an app that depends upon CWAC-NetSecurity gets both CWAC-NetSecurity and
OkHttp code added to the app (“Is Dependency’s Code Added to Hosts?”). However,
the OkHttp code itself is not deemed to be part of the API of CWAC-NetSecurity,
and so the app that depends upon CWAC-NetSecurity cannot use the OkHttp classes,
unless it has its own separate implementation dependency upon OkHttp.

	If CWAC-NetSecurity uses api to depend upon OkHttp, then as with implementation,
both the code from OkHttp and the code from CWAC-NetSecurity get added to apps
that depend upon CWAC-NetSecurity. However, in this case, the app can directly
refer to classes from either CWAC-NetSecurity or OkHttp, without an additional
dependency declaration. In effect, CWAC-NetSecurity is stating that OkHttp
is part of CWAC-NetSecurity’s public API.

	What really happens is that CWAC-NetSecurity uses compileOnly. This says
that OkHttp is used only to be able to compile CWAC-NetSecurity’s own code.
The OkHttp code is not added to apps that depend upon CWAC-NetSecurity, unless
those apps have their own implementation dependency upon OkHttp.

implementation and api are the two most common. compileOnly is mostly
for cases where the library module would like to offer integration for some
third-party library, but where that library is not essential. For apps that
want to use the integration, they simply need to have an additional dependency.
For apps that do not want the integration, though, they avoid having all the
extra code added from the third-party library.
Limitations of Library Modules
While library modules are useful for code organization and reuse, they do
have their limits.
As noted above, if more than one project (main plus libraries)
defines the same resource, the higher-priority project’s copy gets
used. Generally, that is a good thing, as it means that the main
project can replace resources defined by a library (e.g., change
icons). However, it does mean that two libraries might collide. It is
important to keep your resource names distinct to minimize the odds
of this occurrence.
Gradle and Tasks
A build.gradle file teaches Gradle how to execute tasks, such as how
to compile an Android project. Outside of a Gradle-aware IDE like Android
Studio, you use Gradle itself to run these tasks. If you have installed your
own copy of Gradle, you would use the gradle command; if you are relying
upon a trusted copy of the Gradle Wrapper, you would use the ./gradlew
script in your project root.
For the purposes of this book, the gradle command will be shown –
just substitute ./gradlew where you see gradle if you are using
the Gradle Wrapper script.
Key Build-Related Tasks
To find out what tasks are available to you, you can run gradle tasks from
the project directory. That will result in output akin to:

> Task :tasks

--
All tasks runnable from root project
--

Android tasks

androidDependencies - Displays the Android dependencies of the project.
signingReport - Displays the signing info for each variant.
sourceSets - Prints out all the source sets defined in this project.

Build tasks

assemble - Assembles all variants of all applications and secondary packages.
assembleAndroidTest - Assembles all the Test applications.
assembleDebug - Assembles all Debug builds.
assembleRelease - Assembles all Release builds.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
clean - Deletes the build directory.
cleanBuildCache - Deletes the build cache directory.
compileDebugAndroidTestSources
compileDebugSources
compileDebugUnitTestSources
compileReleaseSources
compileReleaseUnitTestSources
mockableAndroidJar - Creates a version of android.jar that's suitable for unit tests.

Build Setup tasks

init - Initializes a new Gradle build.
wrapper - Generates Gradle wrapper files.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project 'MyApplication'.
components - Displays the components produced by root project 'MyApplication'. <incubating>
dependencies - Displays all dependencies declared in root project 'MyApplication'.
dependencyInsight - Displays the insight into a specific dependency in root project 'MyApplication'.
dependentComponents - Displays the dependent components of components in root project 'MyApplication'. <incubating>
help - Displays a help message.
model - Displays the configuration model of root project 'MyApplication'. <incubating>
projects - Displays the sub-projects of root project 'MyApplication'.
properties - Displays the properties of root project 'MyApplication'.
tasks - Displays the tasks runnable from root project 'MyApplication' (some of the displayed tasks may belong to subprojects).

Install tasks

installDebug - Installs the Debug build.
installDebugAndroidTest - Installs the android (on device) tests for the Debug build.
uninstallAll - Uninstall all applications.
uninstallDebug - Uninstalls the Debug build.
uninstallDebugAndroidTest - Uninstalls the android (on device) tests for the Debug build.
uninstallRelease - Uninstalls the Release build.

Verification tasks

check - Runs all checks.
connectedAndroidTest - Installs and runs instrumentation tests for all flavors on connected devices.
connectedCheck - Runs all device checks on currently connected devices.
connectedDebugAndroidTest - Installs and runs the tests for debug on connected devices.
deviceAndroidTest - Installs and runs instrumentation tests using all Device Providers.
deviceCheck - Runs all device checks using Device Providers and Test Servers.
lint - Runs lint on all variants.
lintDebug - Runs lint on the Debug build.
lintRelease - Runs lint on the Release build.
lintVitalRelease - Runs lint on just the fatal issues in the release build.
test - Run unit tests for all variants.
testDebugUnitTest - Run unit tests for the debug build.
testReleaseUnitTest - Run unit tests for the release build.

This list is dynamically generated based on the contents of build.gradle,
notably including tasks defined by the com.android.application plugin.
In principle, you are supposed to specify the entire task name when running that
task. However, you can use shorthand, so long as it uniquely identifies the task.
Probably the most common task that a developer will use, at least in the short
term, is installDebug (or iD for short). This will build a debug version
of the app and install it on an available device or emulator. This roughly
corresponds to ant install debug for those familiar with legacy
Ant-based command-line builds.
Just as there is installDebug, there can also be installRelease. The Debug
and Release portions of the task are not hard-coded, but rather are derived
from the “build types” defined in the build.gradle file. The concept, role,
and usage of build types will be covered in the next chapter.
However, installRelease is not available by default, because installing an app requires
that the APK be signed, and the Android Gradle Plugin does not know how to sign it.
We will address this in the next chapter as well.
If you just want to build the app, without installing it, assembleDebug (aD)
or assembleRelease (aR) will accomplish that aim. If you want to uninstall
the app from a device or emulator, uninstallDebug (uD) and uninstallRelease
(uR) should work.
Discussion of other tasks, such as the “check” tasks, will be covered in
later chapters.
Results
All build output goes into a build/ directory.
Specifically, your APKs will go into build/outputs/apk, with different APK editions
based upon whether you did a debug or release build.
Note that Gradle has a clean task that wipes out the build/ directory.
Gradle Build Variants
You may think that the directory structure and files involved in an Android
Studio project is a bit complicated. In truth, what you have seen so far
is actually fairly simple, when you start to consider the real world of
product development. Simple apps can get by with simple structures like we have
seen so far, but:

	Many development teams want different behavior for debug builds instead
of production builds, such as hitting a test server rather than the real
app server

	Some development teams have different variations on the same app, tailored
to different audiences, such as for distribution through different channels

In this chapter, we will explore the concept of “build variants” in Gradle
and Android Studio and how you can take advantage of them for your projects.
Prerequisites
Understanding this chapter requires that you have read the chapters the core
chapters of the book.
Objectives of the Project Structure
In the beginning, Android apps tended to be pretty simple, as we only had
a handful of devices, a smattering of users, one primary distribution channel
(the then-Android Market) and few major investors in the
Android ecosystem.
Times have changed.
Now, Android apps for public consumption can be terribly complex, let alone
apps for internal enterprise use (which seem to be complex as a side effect
of being developed by an enterprise). We have multiple distribution channels,
such as the Amazon AppStore for Android and Yandex.Store. We have a billion devices
and nearly a billion users. Brands large and small are flocking to Android,
bringing with them their own challenges.
The new build system is designed to simplify creating complex Android applications,
while, ideally, not making simple Android applications a lot harder. It is
designed for scenarios like:

	Supporting multiple distribution channels, which may require multiple
in-app purchasing engines

	Supporting one app that is customized for individual clients, such as for
use by different enterprises

	Supporting an app that really needs to have different APKs for different types
of devices, despite all efforts to support all devices from a single APK

	Supporting an app that is part of a much larger integrated system and needing
to be built as part and parcel of that larger system

	Supporting a fleet of apps that depend upon common code, resources, third-party
libraries, and the like

	And so on

The new project structure, coupled with the Android Gradle Plugin and Gradle
itself, makes all of this possible… albeit with a bit of a learning curve.
Terminology
To understand what the new project structure entails, we need to define a few
terms, from Gradle and the Android Gradle Plugin.
Source Sets
To quote the Gradle documentation:
“A source set is simply a group of source files which are compiled and executed together.”
Here, “source” means all the inputs that you are creating for the app, such
as Java source code, Android resources and manifest files, and the like. This is
in contrast to dependencies, which are inputs that you are (usually) obtaining from
other developers, such as reusable libraries.
source sets, on their own, have no particular semantic meaning. You can elect to
have your project use a single source set, or several source sets, for organizing
your code. You might have different source sets for:

	Production code versus test code, replacing the separate test project that we
historically used in Android development

	Interface code versus implementation code

	Different major functional areas within the app, particularly if they are maintained
by separate teams or developer pairs

	And so on

As we will see, the new project structure assumes the existence of at least
one source set, typically named main, but other features of the new build system
will involve additional source sets.
Build Types
A build type is one axis of possible alternative outcomes from the build process.
By default, the Android Gradle Plugin assumes that you want two build types:
release and debug. These may go through somewhat different build steps, such as
applying ProGuard to the release build but skipping it for the debug build.
The Android Gradle Plugin though allows build types to have slightly
different configurations, such as adding a .debug suffix to the APK’s package
name, so that you can have a release build and a debug build of your app on the
same device at the same time. You also can create new build types for handling
different scenarios. The new build system documentation, for example, suggests a
separate “jnidebug” build type, where you can indicate that the Linux .so files for
a project should be compiled in debug mode.
As we will see, creating a new build type involves modifications to the
build.gradle file and adding a matching source set.
Product Flavors
A build type is one axis for varying your output. A product flavor is another,
independent axis for varying your output.
Product flavors are designed for scenarios where you want different release output
for different cases. For example, you may want to have
one version of your app built to use Google’s in-app purchasing APIs
(for distribution through the Play Store) and another version of your app
built to use Amazon’s in-app purchasing APIs (for distribution through the
Amazon AppStore for Android). In this case, both versions of the app will be
available in release form, and you may wish to have separate debug builds as well.
And most of the code for the two versions of the app will be the same. However,
you will have different code for the different distribution channels — not only
does the right code have to run for the right channel, but there is no particular
value in distributing the code for one channel through the other channel.
Another example would be an app that is branded and configured for different
enterprise customers. You see this a lot with Web apps — the vendor sells a
branded-and-configured version of the Web app to the customer, whether that app
runs on vendor-supplied hardware or customer-supplied hardware. Similarly, the
maker of an Android app for collecting employee timesheets might want to offer
to its customers for their version of the timesheet app to sport the customer’s
logo, tie into the customer’s specific accounting server, enable or disable
features based upon how the customer uses timesheets, and so on. However,
most of the code is shared between all customers, and so when the app is updated
to add features or fix bugs, new builds are needed for all of the customers.
In this case, each customer can be set up as an independent product flavor, sharing
much of the code, but with slightly different code, resources (e.g., logo), and
configuration based upon that customer’s needs.
Product flavors are optional. If you do not describe any product flavors
in your build.gradle file, it is assumed that you have a single product flavor,
referred to internally as default. Many apps will not need product flavors;
this is a feature that you will opt into as needed.
As we will see, creating a new product flavor involves modifications to the
build.gradle file and (usually) adding a matching source set.
Build Variants
The term “build variant” is used for the cross product of the build types and
the product flavors. So, a project with debug and release build types
and google and amazon product flavors will result in a total of four
build variants by default:

	
debug + google

	
debug + amazon

	
release + google

	
release + amazon

Flavor Dimensions
Sometimes, even this is insufficient flexibility, such as the
google and amazon scenario described earlier in this section. Or, you
might need separate free versus paid editions, if you want to have an
up-front fee for accessing a premium version of your app.
Product flavors are considered to be part of a
“flavor dimension”. All flavors have to be a part of a flavor dimension,
starting with Android Studio 3.0 — previously, they could be part of a default
flavor dimension. You can have as many flavor dimensions as you need
(e.g., one for free versus paid, one for distribution
channel).
These then add another factor into the cross-product that determines your
build variants. Suppose we have a dist flavor dimension, consisting of free
and paid product flavors, and we have a channel flavor dimension, consisting
of google and amazon flavors. Now, we have a total of 8 possible
build variants, when we factor in the build types:

	
debug + google + free

	
debug + amazon + free

	
release + google + free

	
release + amazon + free

	
debug + google + paid

	
debug + amazon + paid

	
release + google + paid

	
release + amazon + paid

Configuring the Stock Build Types
The debug and release build types are ready “out of the box” for your use, with a
reasonable set of defaults. However, you can change those defaults and make other
adjustments to how those build types work, in addition to
defining your own build types. Here, we will look
at the options for changing the behavior of any build type, focusing on the stock
debug and release build types.
Source Sets
Each build type can have its own associated source set. If you skip the directory for
it, that means that the build type is not contributing changes to the main source set.
For example, later in the book, we will take a look at Stetho,
a diagnostic library that you can add to your Android app to help understand
what is going on inside of it. This code is handy during development, but it is
not the sort of thing that you want to be shipping in production. Instead,
you want to use it only for debug builds.
So, in the
Diagnostics/Stetho
sample project, we have not only a main source set, but also a debug source set
alongside main. In debug, we have an AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 package="com.commonsware.android.stetho"
 android:versionCode="1"
 android:versionName="1.0">

 <application
 android:name="com.commonsware.android.stetho.StethoApp"
 tools:replace="android:name">
 </application>

</manifest>

(from Diagnostics/Stetho/app/src/debug/AndroidManifest.xml)
The com.commonsware.android.stetho.StethoApp Java class referenced in
the <application> element also resides in the debug source set.
We will see how these blend in with the contents of our main source set later
in this chapter.
build.gradle Settings
We can also use the buildTypes closure in build.gradle to configure the behavior
of the debug and/or release build types.
For example, a very popular thing to use is applicationIdSuffix, to append a
value onto the application ID for builds of a particular build type. This
allows the application ID for that build type to be different than the application
ID of other build types of the same app. In other words, you can have
debug and release builds installed on the same device at the same time.
As was noted earlier in the book,
the defaultConfig closure allows us to change aspects of what is found in the
AndroidManifest.xml file, replacing anything found in the actual file from the
main source set.
Similarly, the buildTypes closure is where we configure the behavior of the build types. Each
build type to be configured gets its own closure inside of buildTypes, and in there
we can override various properties.
Notable properties that we can specify for a build type include:

	
debuggable (to override android:debuggable from the <application> element in the
manifest, to indicate that the app should be considered debuggable)

	
applicationIdSuffix (to append to the package name specified by the manifest or the
defaultConfig applicationId property)

	
versionNameSuffix (to append to the version name specified by the manifest or the
defaultConfig versionName property)

So, we can have:

buildTypes {
 debug {
 applicationIdSuffix ".d"
 }
}

Our debug build type adds suffixes to the application ID
role for the package name.
Note that altering the application ID only affects the package name as seen by
Android when the app is installed and when the app is run. It does not affect
the directory in which the R class is built, which uses the package name
from the AndroidManifest.xml file. It also does not affect any of the Java
packages for our own classes, which are whatever we used when we wrote them.
Hence, much of our code will be oblivious to the package name change. However,
if you want to reference the real package name, such as for looking things up
in PackageManager or for use with constructing a ComponentName, use
getPackageName() on any Context (like an Activity), rather than some hard-coded
string, as getPackageName() returns what the runtime environment thinks the package
is, which will include any suffixes added during the build process. Or,
use BuildConfig.APPLICATION_ID, in cases where you do not have a Context
handy on which to call getPackageName().
We can also have a signingConfig property, for configuring how our
APK files are digitally signed. This will be covered
in a later chapter.
Order of Precedence
Properties defined for a build type, and the properties defined for the defaultConfig
will override their equivalents in the AndroidManifest.xml file. However, a build
type’s source set can also have its own AndroidManifest.xml file. The overall
order of precedence is:

	What is in build.gradle takes precedence over…

	…what is in a build type’s AndroidManifest.xml file, which takes precedence over…

	…what is in the main AndroidManifest.xml file

However, merging manifests in general is a complex topic, with
a separate chapter later in this book.
Resources from the build type’s source set are merged into the resources from
the main source set, and if there are collisions, the build type’s resource
takes precedence. The same is true for assets.
However, the behavior of Java source is slightly different. The build type’s source
set is still merged with the main source set, but if there is a collision, the
result is a build error. Either the build type or the main source set can define
any given source file, not both. So, while debug could have one version of
your/package/name/Foo.java and release could have a different version of
your/package/name/Foo.java, main could not also have your/package/name/Foo.java.
Hence, if you define a class in a build type, you may need to define
that class in all build types, so that any references from main to that class
are satisfied for all build types.
One case where this would not be required would be for debug-only activities.
Suppose that you wanted an activity in your app to provide diagnostic
information to developers of that app regarding the state of caches and other
in-memory constructs. While you could get at that stuff via a debugger, that
is sometimes annoying, and just tapping on a launcher icon can be easier.
But you do not want, let alone need, this diagnostic activity in your release
builds. To make this work, you would put the activity’s Java class only in
the debug source set, along with its resources and manifest entry
(complete with MAIN/LAUNCHER <intent-filter>). Since the main
source set does not refer to your diagnostic activity, there is no requirement
for the release build type to have an implementation of that Java class.
Adding Build Types
Many developers will fare just fine with the debug and release build types,
perhaps with some adjustments as shown above. A few developers, though, will have
other scenarios that warrant new build types. Fortunately, adding a new build
type is rather easy.
First, pick whether you want to have the new build type start with the settings
from debug or release. Then, use initWith to create a new build type
initialized from that existing build type:

 buildTypes {
 debug {
 applicationIdSuffix ".d"
 versionNameSuffix "-debug"
 }

 dogfood.initWith(buildTypes.debug)

 dogfood {
 applicationIdSuffix ".dawg"
 }
 }

Here, we define a new dogfood build type, with its own application ID suffix.
As with the built-in build types, your new build types can have their own
source sets, by adding the appropriately-named directories underneath src/.
Now, we gain Gradle tasks with Dogfood in the name, like installDogfood, to
go along with their Debug and Release counterparts.
Adding Product Flavors and Getting Build Variants
Many apps will not need product flavors, but some will. Adding a product flavor
is similar, in many respects, to adding a build type.
This involves two steps:

	Having a flavorDimensions statement in the android closure, to define
the flavor dimension(s) that you wish to use

	Having a productFlavors closure where you define the flavors and their
properties, including what dimension they belong to

flavorDimensions "channel"

productFlavors {
 goog {
 dimension "channel"
 applicationId "com.commonsware.android.awesomeapp.goog"
 }

 amzn {
 dimension "channel"
 applicationId "com.commonsware.android.awesomeapp.amzn"
 }
}

Here, we define one flavor dimension (channel) and two product
flavors (goog and amzn), assigning a distinct applicationId
to each of those flavors.
The defaultConfig is implemented using the same object type as is used for
product flavors. Hence, we can configure the same things on a product flavor that
we can on the defaultConfig, such as applicationId, as is done in this build.gradle
file.
We could have source sets for each of these as well. For example, the goog
source set might contain code that is used only for Google Play ecosystem
devices (e.g., Play Services), while amzn might contain code used for devices
distributed by other channels.
In terms of order of precedence:

	Product flavors override the main source set and the defaultConfig

	Build types override the product flavors

Our task names get more numerous and more complicated, to reflect the cross product
of the product flavors and build types. Now, rather than installDebug,
and installRelease, we have:

	installAmznDebug

	installAmznRelease

	installGoogDebug

	installGoogRelease

Doing the Splits
The Android Gradle Plugin offers splits as a lightweight canned
replacement for product flavors for two scenarios:

	Having different APK files with different NDK binaries for
ARM vs. x86 (vs. anything else)

	Having different APK files with resources for a specific
screen density, important for those apps that have so many
graphics that they are bumping up against distribution channel
limits (e.g., 100MB on the Play Store, up from an earlier
50MB limit)

All you as a developer do is request that a particular split
be enabled, with limited configuration. Notably, you do not
have separate Gradle configuration (e.g., applicationId) nor
source sets for splits. That allows splits to be processed more
quickly at build time, as the build tools can make some simplifying
assumptions and avoid a lot of recompiling.
Scoping Your Splits
A split, by default, will generate one APK per possible type
of output. For example, splitting on density will give you one
APK for ldpi, mdpi, tvdpi, hdpi, xhdpi, xxhdpi, and
xxxhdpi. Plus, in the case of density, you also get one
“universal” APK containing support for all densities by default.
That’s nice… but what if you do not need separate APKs for
all of those densities? For example, if you do not ship tvdpi
resources, there is little reason to set up an APK for it
separate from, say, the hdpi APK.
There are two basic patterns to controlling the scope of what
gets built:

	Use an exclude statement to start with the defaults and
remove some options

	Use a reset() method to wipe out the defaults, then use
an include statement to list what you want

In other words, exclude implements a blacklist, and the
reset()/include combination implements a whitelist. All else
being equal, a whitelist is probably a better choice, so you
can explicitly line it up with what you have written in your app.
Requesting NDK Splits
In your android closure, you can add a splits closure, containing
an abi closure, which in turn sets up the APK splits by CPU
architecture:

splits {
 abi {
 enable true
 reset()
 include 'armeabi-v7a', 'x86'
 universalApk true
 }
}

Here, we:

	Enable the split (enable true)

	Remove the default ABIs to be included (reset())

	List the ABIs that we want to be included (include 'armeabi-v7a', 'x86')

	Request that a “universal APK” also be created, containing all ABIs
(universalApk true)

The latter would be useful for distribution channels that do not allow
you to upload multiple APK files for different CPU architectures. This way,
you can at least distribute your app there, even if it takes up more disk
space than you like. By default, for the CPU architectures, you do not
get a “universal APK”.
Requesting Density Splits
The same basic pattern can be implemented for densities:

splits {
 density {
 enable true
 reset()
 include 'hdpi', 'xhdpi', 'xxhdpi'
 }
}

Once again, we enable the split, reset the defaults, then opt into
the densities that we want.
Note, though, that a “universal APK” is always generated for densities.
We do not need to have universalApk true, and it would appear that
universalApk false is not an option at the present time.
Gradle and Android Studio
While most of the work involving build variants revolves around the module’s
build.gradle file, there are some things to consider when working with
build variants within Android Studio.
The Build Variants View
When we run our project, Android Studio does not prompt us for a build type
or a product flavor. It just runs the project. This begs the question of how
Android Studio is determining which build variant is the one to run.
This is handled by the Build Variants view, usually docked on the left
side of the Android Studio IDE window:

[image: Build Variants View, for a Simple Project]

Figure 314: Build Variants View, for a Simple Project
Each of your app’s modules is shown, along with the current build variant
that will be used if you run that module. Tapping on the build variant will
allow you to choose an alternative build variant:

[image: Build Variants View, for a Project with Custom Build Types and Product Flavors]

Figure 315: Build Variants View, for a Project with Custom Build Types and Product Flavors
The Android Project View
Earlier in the book, when introducing Android Studio, we saw
the Android project view. Elsewhere, we saw how the
Android project view can help you manage resources across multiple
resource sets.
Just as the Android project view “collapses” resource set, it also
collapses source sets:

[image: Android Project View, Showing Java Source]

Figure 316: Android Project View, Showing Java Source
Here, we have two editions of the com.commonsware.myapplication
package. One is just the package name, while the other has “(androidTest)”
appended to it. That, as you might imagine, reflects the main
and androidTest source set, respectively:

[image: Classic Project View, Showing Java Source]

Figure 317: Classic Project View, Showing Java Source
This may be a bit useful between main and androidTest. It is likely
to be far more useful if you employ product flavors, as your classes
for the flavors will appear side-by-side… at least for the currently-selected
flavor in the Build Variants view.
Flavors, Build Types, and the Project Structure Dialog
You are welcome to use the Build Types and Product Flavors tabs in
the project structure dialog to
maintain these portions of your build.gradle file,
at least for simpler scenarios.
Manifest Merger Rules
When Android library projects were added as an option for app development,
one problem became apparent: while libraries could contribute code and
resources, they could not contribute manifest entries. Developers using
libraries would sometimes have to add elements to their app manifest at
the request of library authors, to add permissions, define components, and
the like.
The Android Gradle Plugin has a robust
set of rules for “manifest merger”. While the term “manifest merger” is
still used, in reality, the Android Gradle Plugin synthesizes a manifest for your
app from a variety of sources, including apps, libraries, and build.gradle
files, also varying based upon build types and product flavors.
This chapter will help to explain a bit more about what is possible what the
rules are for the manifest merger process.
Prerequisites
Understanding this chapter requires that you have read the chapters that
introduce Gradle and cover
basic Gradle/Android integration, including
build variants.
Manifest Scenarios
You might be wondering “why do we need all of this?” That is a fair question.
Certainly, we were able to get by for quite a while without this sort
of flexibility and accompanying confusion.
Here are some scenarios which help explain what you will get out of the
manifest merger capabilities.
Library Manifest and App Manifest
A library — whether one of yours or one obtained via an AAR artifact from
some repository — may need to augment the app’s manifest. For example:

	a library for an ad network might require the INTERNET permission,
so that apps that do not directly use the Internet still wind up requesting
that permission

	a library providing a canned “about” activity might want to inject
the <activity> element that you can use without requiring the developer
to add it manually

	a library needs to be able to specify the minSdkVersion that it
requires, which might supersede the value specified by the app, so the
combined whole uses the most conservative value

App Manifest and Build Types
You may have particular needs for your main application that vary based upon
build type that affect the manifest versus other things (e.g., ProGuard
configuration).
For example, it may be that in debug builds, you want to have an activity
that you can bring up, perhaps through adb shell am, that will give
you diagnostic information about the app itself, or starts some diagnostic
service that you can then access through your development machine’s Web
browser. In this case, that activity and that service would only be desired
in debug builds, not release builds. And while the activity and the
service code would simply be in the debug source set, you also need to merge
in the manifest <activity> and <service> elements, plus perhaps
other things (e.g., extra <uses-permission> elements that those
diagnostic components need but the rest of the app does not).
App Manifest and Product Flavors
Product flavors can override values from the defaultConfig, such as
defining distinct applicationId values, and that needs to be taken into
account in the combined app.
Also, product flavors might need their own manifest entries to
accommodate distribution channel-specific APIs, such as swapping between
Play Services and Amazon equivalents for in-app purchasing or maps.
Combo Platters
And, of course, you may have some mix of all of the above.
Pieces of Manifest Generation
When you build your app, the build tools will combine information from all
of the aforementioned sources to synthesize “one true manifest” that is used
for the build.
However, there may be overlaps in what the sources provide, such as
both a library and the app specifying a minSdkVersion. Hence, there are some
basic rules and control structures that you have to manage the generation
process, at least somewhat.
Merger Rules
Generally speaking:

	the manifests and Gradle configurations for product flavors and build types
will override…

	the app’s main/ manifest, which will override…

	the manifest of any libraries

Libraries will be considered in the order of declaration — in other words,
the order that they appear in the dependencies closure. This includes
transitive dependencies, where one dependency requires another dependency, though
the exact rules here are presently unclear.
For any given element or attribute, there are specific rules for how conflicts
are resolved. We will explore those later in this chapter.
Note that values in build.gradle, such as the defaultConfig closure
and its minSdkVersion and such, trump everything that result from the merger
of disparate manifests from different sources.
Markers and Selectors
Through tools: attributes in the manifests that you control
(i.e., not manifests from third-party libraries), you will be able to override
the default rules for conflict resolution.
For example, a library might declare a particular theme to use for an activity
that it publishes. That might be a reasonable default theme, but you may wish
to override that theme in your app. A tools:replace attribute, in your
<activity> element, will be able to teach the build tools that your
android:theme value should replace the one from the library, whereas normally
a conflict on an attribute like this would result in a build error.
You can also use “selectors” to help control in which scenarios a particular
marker is applied, such as applying a marker only for a conflict arising
from a specific library.
These markers and selectors will be explored in greater detail later in this
chapter.
Placeholders
Sometimes, the “merger” we want to do involves something more involved.
For example, the applicationId and applicationIdSuffix properties that
we set in various places in build.gradle can be used to allow for different
variants of our builds to be installed at the same time on the same device.
However, that is only true some of the time. If an app publishes a
ContentProvider, not only does the application ID have to be unique, but
so does the authority (or authorities) supported by that ContentProvider.
This is not handled automatically, and so even though you might have the
application ID distinct for different build variants, they still would conflict
at install time because their provider authorities were the same.
The manifest generation process supports the notion of placeholders, where
for string values in the manifest — like the android:authorities
attribute on a <provider> — you can “splice in” dynamic values. One
dynamic value that you can use “out of the box” is your build
variant’s applicationId, so you can have something like:

android:authorities="${applicationId}.provider"

to have the authority for the provider match the build variant’s
application, but with a .provider suffix.
We will explore the rules around these placeholders later in this chapter.
Examining the Merger Results
The generated manifest, combining the contents of all the manifests from the
app, build types, product flavors, and libraries, will wind up in the
build/intermediates/manifests/ directory of your module (e.g., app/).
Inside that directory will be subdirectories associated with each build variant,
and in those subdirectories reside the generated manifest for that build variant.
The
Manifest/Merger
sample application is designed to illustrate how these merger rules work.
Note that the application does not run — it exists merely to show the results
of building the APK and, along the way, generating the manifests.
This project contains an app module (app/) and a library module (lib/),
with the app depending upon the library. The app module has source sets for
both main/ and debug/, the latter for debug builds. The app module also
defines two product flavors, chocolate and vanilla, with a source set
for vanilla/. All three source sets (main/, debug/, vanilla/) have
their own AndroidManifest.xml files. Adding in the manifest from the
library, and you have four manifests in total that may be used to create
the manifest for the app. In particular, for a vanilla debug build, all
four manifests will be relevant and merged together.
If you build the project, particularly via the gradle command, you will
get manifests based on what builds you create. For example,
gradle assembleVanillaDebug will create a generated manifest in
build/intermediates/manifests/vanilla/debug/.
As you are trying to determine how manifest merging is working in your project,
you may find it useful to peek at these generated manifests from time to time…
as we will here in this chapter.
Viewing Merged Manifests in Android Studio
Far and away the easiest way to see the effects of manifest merger
on your app is to use Android Studio 2.2 (or higher) and its manifest
merger viewer.
When you open a manifest in Android Studio, there are two sub-tabs.
One, named “Text”, has the XML editor where you define the manifest
contents. The other, named “Merged Manifest”, shows the results of
the manifest merger process, using whatever build variant you have
chosen for the module in the Build Variants tool.
The “Merged Manifest” tab has two panes: a tree of XML on the left,
and a legend on the right:

[image: Merged Manifest Tab]

Figure 318: Merged Manifest Tab
The contributors to the merged manifest are color-coded, to help make it easy
for you to see where a particular element or attribute came from.
You can get additional details by clicking on attributes or
elements, as we will see when we work through some examples throughout
this chapter.
Merging Elements and Attributes
Different sources of manifest data can contribute elements to the generated
combined manifest. In many cases, these elements do not conflict, such as
a library contributing a <uses-permission> element to an app. However,
sometimes, what one source of manifest data wants is different than what
another source of manifest data wants, and for that, we need to settle out
what the generated manifest will contain.
Basic Merger Rules
Many element names can appear several times in a manifest, such as
multiple <uses-permission> elements. Many of those have an identifier,
usually android:name, that distinguishes one from the next. In general,
if two manifest sources both contribute the same element (i.e., same
element name, same android:name value), those two elements are themselves
merged, which means:

	Any attributes that are in one, but not the other, are added to the
combined element

	Any attributes that are in both, and are not identical in value, result
in a merge conflict compile error, unless the resolution is specified
via a marker

	All child elements (e.g., <intent-filter> inside of an <activity>)
are merged, applying the same rules

Of course, if one manifest supplies a specific element instance, and others
do not, then the specific element instance is simply included without
worrying about any other merge logic.
Singleton elements — ones that could only ever appear once in the
manifest — are treated as matching if they exist in more than one manifest.
So, for example, the android:versionCode and android:versionName
attributes of the <manifest> element are merged, as are attributes of
<support-screens>, each of which can only exist once.
Example #1: Manifest Attributes
The main/ version of the manifest defines an android:versionName
attribute:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.merger"
 android:versionName="1.0 Main">

 // other stuff here

</manifest>

None of the other manifest versions do. Hence, the main/ version
of the manifest “wins”, and its android:versionName is used (only to perhaps
be overridden by build.gradle values):

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.merger.vanilla"
 android:versionCode="1"
 android:versionName="1.0 Main" >

 // other stuff here

</manifest>

Here, we are showing the results of building the vanilla debug version of the
app, so the package name reflects the applicationId defined in build.gradle
for the vanilla product flavor:

productFlavors {
 vanilla {
 applicationId "com.commonsware.android.merger.vanilla"
 }

 chocolate {
 applicationId "com.commonsware.android.merger.chocolate"
 }
}

Similarly, the versionCode shows up because it is defined in build.gradle:

 defaultConfig {
 applicationId "com.commonsware.android.merger"
 minSdkVersion 15
 targetSdkVersion 19
 versionCode 1
 }

However, since build.gradle did not specify versionName, the version name
comes from the manifests.
If another manifest also defined android:versionName, its value would
need to match that of the one in main/, or you will get a build error from
the Android Gradle Plugin… unless you use a marker, described later in this chapter.
The “Merged Manifest” view shows android:versionName as coming
from the main manifest. However, as of Android Studio 2.2,
contributions from Gradle are not color-coded separately,
so we cannot distinguish that the android:versionCode really came
from Gradle, not from a manifest… unless you click on the attribute:

[image: Merged Manifest View, Showing Merged Values from Gradle]

Figure 319: Merged Manifest View, Showing Merged Values from Gradle
Example #2: Additional Permissions
The debug/ version of the manifest has a <uses-permission> element:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

So does the vanilla/ version, though its has android:maxSdkVersion set to
18:

<uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"
 android:maxSdkVersion="18"/>

The manifest you get from a vanilla debug build has the
android:maxSdkVersion attribute:

<uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"
 android:maxSdkVersion="18" />

[image: Merged Manifest View, Showing Merged Element]

Figure 320: Merged Manifest View, Showing Merged Element
Example #3: Additional Components
The lib/ version of the manifest has an <activity>:

<activity android:name="ThisActivityDoesNotExist">
 <intent-filter>
 <action android:name="com.commonsware.android.merger.lib.SOMETHING_COOL" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

This is contributed by the library (or would be, if there actually was source
code for the activity…). Neither the main/ nor the debug/
source set defines it, and so it is included
verbatim in the result for chocolate builds:

<activity android:name="com.commonsware.android.merger.lib.ThisActivityDoesNotExist" >
 <intent-filter>
 <action android:name="com.commonsware.android.merger.lib.SOMETHING_COOL" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

Note that since the android:name attribute had a bare class name, the generated
manifest expands that to include the library’s package name
(com.commonsware.android.merger.lib). Note that this is the package name
defined in AndroidManifest.xml — you cannot have an applicationId
in build.gradle for a library project.

[image: Merged Manifest View, Showing Merged Element]

Figure 321: Merged Manifest View, Showing Merged Element
Example #4: Intent Filter
However, the vanilla/ manifest also defines the same activity, this
time with another <intent-filter>:

<activity android:name="com.commonsware.android.merger.lib.ThisActivityDoesNotExist">
 <intent-filter>
 <action android:name="com.commonsware.android.merger.SOMETHING_VANILLA" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

Note that here, we need to have the fully-qualified class name, as we are
trying to affect the library-supplied activity.
In a vanilla build, both <intent-filter> elements will be included
by default:

<activity android:name="com.commonsware.android.merger.lib.ThisActivityDoesNotExist" >
 <intent-filter>
 <action android:name="com.commonsware.android.merger.SOMETHING_VANILLA" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 <intent-filter>
 <action android:name="com.commonsware.android.merger.lib.SOMETHING_COOL" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

This allows an app developer to add new ways of accessing an activity (or
other component) exposed by a library.
However, the merged manifest view
may not necessarily indicate where the elements came from properly:

[image: Merged Manifest View, Showing Merged Element]

Figure 322: Merged Manifest View, Showing Merged Element
Some Unusual Scenarios
Not everything fits the neat-and-tidy rules from the above sections and
require special explanation.
uses-sdk
The android:minSdkVersion and android:targetSdkVersion from the highest-priority
manifest will be used. If, however, a library’s manifest specifies higher values
for minSdkVersion, you will get a build error.
Hence, it is incumbent upon library authors to correctly assess how old a version of
Android they are able to support, setting android:minSdkVersion as low as
possible.
Conversely, library authors should aim to support either old or new behavior
that is controlled by android:targetSdkVersion. For example, a library that
uses AsyncTask should not assume that the android:targetSdkVersion is below
13 and therefore execute() will result in multi-threaded behavior on Android
3.2+. Instead, the library should use executeOnExecutor() on API Level 11+
devices, to specifically opt into the multi-thread thread pool, as this avoids
any behavior changes based upon android:targetSdkVersion.
uses-feature and uses-library
The android:required attribute is logically OR’d among all contributors
of a <uses-feature> element for a specific android:name value. In other
words, if any contributor says that the feature is required, it is required.
Otherwise, if one or more contributors ask for the <uses-feature> element
but say that it is not required, it is put in the combined manifest with
android:required="false".
The under-utilized <uses-library> uses the same rule for handling the merger
of its android:required attribute.
Markers and Selectors
Sometimes, the default merger rules will not work to your satisfaction. In particular,
when there are conflicts, the build will fail, and probably that is not a desired
outcome.
To declare who wins in the case of conflicts, you can use tools:*
attributes in the manifest elements. Specifically:

	
tools:node indicates how to resolve a conflict between two editions of this
particular XML element (e.g., an <activity> for the same android:name)

	
tools:replace indicates that certain attributes from a lower-priority edition
of the manifest should be overwritten by their replacement values from a higher-priority
edition of the manifest

	
tools:remove indicates that certain attributes from a lower-priority edition
of the manifest should be removed entirely

Each of these, being in the tools namespace, will require you to have
xmlns:tools="http://schemas.android.com/tools" on the root <manifest> element, if
it is not there already. These attributes only affect the build tools and have
no runtime implications, other than in terms of how the build tools build your app
based on the tools attributes.
For example, the main manifest has android:supportsRtl="true"
on the <application> element:

<application android:allowBackup="true"
 android:label="@string/app_name"
 android:icon="@drawable/ic_launcher"
 android:theme="@style/AppTheme"
 android:supportsRtl="true">

 // other stuff here

</application>

For a project with a targetSdkVersion of 17 or higher, android:supportsRtl="true"
enables automatic mirroring support for your layouts for right-to-left (RTL)
languages.
The vanilla manifest wants to override this, replacing the value with false,
as perhaps the code in that flavor is not yet ready for automatic mirroring.
However, if the
vanilla manifest just had android:supportsRtl="false" in its <application>
element, the build would fail, as that value conflicts with the one in the main
manifest. Hence, the vanilla manifest also needs to indicate that its android:supportsRtl
value should replace the original one, via a tools:replace attribute:

<application android:allowBackup="true"
 android:label="@string/app_name"
 android:icon="@drawable/ic_launcher"
 android:theme="@style/AppTheme"
 android:supportsRtl="false"
 tools:replace="android:supportsRtl">

 // other stuff here

</application>

In the output, android:supportsRtl="false" wins:

<application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme"
 android:supportsRtl="false" >

 // other stuff here

</application>

Both tools:replace and tools:remove take a comma-delimited list of attributes
that should be affected by that rule.
Once again,
the merged manifest view may not indicate the source of the attribute properly:

[image: Merged Manifest View, Showing Merged Attribute]

Figure 323: Merged Manifest View, Showing Merged Attribute
The tools:node attribute affects the entire XML element in which it resides. There
are five primary values for tools:node:

	
merge, which is the default behavior described by the merger rules earlier
in this chapter

	
replace says that the lower-priority manifest’s version of this element should
be replaced in its entirety with the higher-priority manifest’s version of
this element

	
merge-only-attributes says that the lower-priority manifest’s version of
this element should have its attributes replaced by the ones from the higher-priority
manifest’s version of this element, but child elements (e.g., an <intent-filter>
underneath the annotated <activity> element) are left alone

	
remove says that the lower-priority manifest’s version of this element
should be removed without any replacement

	
removeAll says that all elements of this name (e.g., <uses-permission>)
from lower-priority manifests should be removed, regardless of scopes like
android:name

There is also a strict value that indicates that any duplication, even if it could
be successfully merged, should result in a build failure. Most likely, this would be
used sparingly.
By default, these tools attributes affect all manifests. However, it could be that
you only want to affect a specific manifest, such as one coming from a certain library.
In that case, tools:selector, in the same XML element as the other tools:*
attributes, provides the package name of the library that the other tools:* attributes
affect.
Employing Placeholders
The Google Cloud Messaging (GCM) system has some unusual requirements for the
manifest of apps that use GCM:

	The app needs to define a custom permission, based on the application ID, via a
<permission>

	The app needs to hold that custom permission, via a <uses-permission> element

	The app needs to have a BroadcastReceiver whose <intent-filter> has a <category>
whose name is the application ID

Hence, in a GCM client app’s manifest, there are three places where the application ID
needs to appear. This needs to be the app’s actual application ID, as may be defined
either via manifests or via applicationId or applicationIdSuffix statements in
a build.gradle file. Since the application ID can be overridden by those Gradle
statements, we cannot just hard-code the application ID into the spots in the manifest.
Fortunately, part of what we get with manifest generation are placeholders.
Placeholders allow us to inject values from build.gradle into the manifest, particularly
in XML attribute values. An applicationId placeholder is available automatically, and we
can define custom ones via a manifestPlaceholders map.
For example, the main manifest for the sample project uses the applicationId placeholder
in the requisite locations:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.merger"
 android:versionName="1.0 Main">

 <permission android:name="${applicationId}.C2D_MESSAGE"
 android:protectionLevel="signature" />
 <uses-permission android:name="${applicationId}.C2D_MESSAGE" />

 <application android:allowBackup="true"
 android:label="@string/app_name"
 android:icon="@drawable/ic_launcher"
 android:theme="@style/AppTheme"
 android:supportsRtl="true">
 <receiver
 android:name=".GcmBroadcastReceiver"
 android:permission="com.google.android.c2dm.permission.SEND" >
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />
 <category android:name="${applicationId}" />
 </intent-filter>
 </receiver>
 </application>

</manifest>

The vanilla debug version of the generated manifest replaces those ${applicationId}
placeholders with the actual applicationId, such as the following for a vanilla build:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.merger.vanilla"
 android:versionCode="1"
 android:versionName="1.0 Main" >

 <uses-sdk
 android:minSdkVersion="15"
 android:targetSdkVersion="19" />

 <uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"
 android:maxSdkVersion="18" />

 <permission
 android:name="com.commonsware.android.merger.vanilla.C2D_MESSAGE"
 android:protectionLevel="signature" />

 <uses-permission android:name="com.commonsware.android.merger.vanilla.C2D_MESSAGE" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme"
 android:supportsRtl="false" >
 <activity android:name="com.commonsware.android.merger.lib.ThisActivityDoesNotExist" >
 <intent-filter>
 <action android:name="com.commonsware.android.merger.SOMETHING_VANILLA" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 <intent-filter>
 <action android:name="com.commonsware.android.merger.lib.SOMETHING_COOL" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

 <receiver
 android:name="com.commonsware.android.merger.GcmBroadcastReceiver"
 android:permission="com.google.android.c2dm.permission.SEND" >
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />

 <category android:name="com.commonsware.android.merger.vanilla" />
 </intent-filter>
 </receiver>
 </application>

</manifest>

Note that the entire XML attribute value does not have to be a placeholder. For example,
the android:name values for the <permission> and <uses-permission] elements
blend the applicationId in with a fixed string: android:name="${applicationId}.C2D_MESSAGE".
If you want additional placeholders, you can define a manifestPlaceholders map in
defaultConfig or in a product flavor:

android {
 defaultConfig {
 manifestPlaceholders = [foo: "bar"]
 }

 productFlavors {
 vanilla {
 }

 chocolate {
 manifestPlaceholders = [foo: "baz"]
 }
 }
}

Then, you can refer to any of your custom placeholders via the same ${} syntax (e.g.,
${foo}, with the proper value being applied during manifest generation.
Signing Your App
Perhaps the most important step in preparing your application for
production distribution is signing it with a production signing key.
While mistakes here may not be immediately apparent, they can have
significant long-term impacts, particularly when it comes time for
you to distribute an update.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Role of Code Signing
There are many reasons why Android wants you to sign your application
with a production key. Here are perhaps the top three:

	It will help distinguish your production applications from debug
versions of the same applications

	Multiple applications signed with the same key can access each
other’s private files, if they are set up to use a shared user ID in
their manifests

	You can only update an application if it has a signature from the
same digital certificate

The latter one is the most important for you, if you plan on offering
updates of your application. If you sign version 1.0 of your
application with one key, and you sign version 2.0 of your
application with another key, version 2.0 will not install over the top of
version 1.0 — it will fail with a certificate-match error.
What Happens In Debug Mode
Of course, you may be wondering how you got this far in life without
worrying about keys and certificates and signatures (unless you are
using Google Maps, in which case you experienced a bit of this when
you got your API key).
The Android build process creates a
debug key for you automatically. That key is automatically applied
when you create a debug version of your application (e.g.,
running the app in your IDE). This all happens behind the scenes,
so it is very possible for you to go through weeks and months of
development and not encounter this problem.
In fact, the most likely place where you might encounter this problem
is in a distributed development environment, such as an open source
project. There, you might have encountered the third bullet above,
where a debug application compiled by one team
member cannot install over the debug application from another team
member, since they do not share a common debug key. You may have run
into similar problems just on your own if you use multiple
development machines (e.g., a desktop in the home office and a
notebook for when you are on the road delivering Android developer
training).
Finding Your Debug Keystore
The debug keystore is a debug.keystore file in your Android
SDK data directory. This directory is not where your SDK is installed,
but rather is where the tools store data unique to your account on
your developer machine, such as your emulator AVDs.
This directory can be found at:

	
~/.android/ on macOS and Linux

	
C:\Documents and Settings\...\.android\ on Windows XP

	
C:\Users\...\.android\ on Windows environments newer than XP

(where ... is your Windows username)
Synchronizing Your Debug Signing Key
If you have a development team that, for better coordination, should all
use the same debug.keystore, just pick one and copy it to all team
members’ development machines, replacing their generated ones. The
debug.keystore file is a binary file and should be transferable
between operating systems (e.g., from Linux to Windows).
Production Signing Keys
Beyond the debug keystore, though, you will need one for production
use. Distribution channels like the Play Store do not accept apps signed
with the debug signing key. So, you will need to create a key that
is acceptable to those channels, plus arrange to use that key when
creating your production apps.
How long your production signing key is valid for is important.
Once your key expires, you
can no longer use it for signing new applications, which means once
the key expires, you cannot update existing Android applications.
Also, the Play Store requires your key to be
valid beyond October 22, 2033. When you create your key, you will
indicate how long it should be valid for.
Note that both the debug signing key and its production counterpart
are self-signed certificates — you do
not have to purchase a certificate from Verisign or anyone. These
keys are for creating immutable identity, but are not for creating
confirmed identity. In other words, these certificates do not prove
you are such-and-so person, but can prove that the same key signed
two different APKs.
Creating a Production Signing Key
The mechanics of creating a production signing key depend on whether
you will use an IDE (and, if so, which one) or will create one outside
of any IDE.
Android Studio
Android Studio has support to create a production signing key as part of
its overall process for creating a production-signed APK, which is
covered later in this chapter.
Manually
To manually create a production signing key, you will need to use
keytool. This comes with the Java SDK, and so it should be
available to you already.
The keytool utility manages the contents of a “keystore”, which
can contain one or more keys. Each “keystore” has a password for the
store itself, and keys can also have their own individual passwords.
You will need to supply these passwords later on when signing an
application with the key.
Here is an example of running keytool:

keytool -genkey -v -keystore cw-release.keystore -alias cw-release -keyalg RSA -validity 10000 -keysize 2048

The parameters used here are:

	
-genkey, to indicate we want to create a new key

	
-v, to be verbose about the key creation process

	
-keystore, to indicate what keystore we are manipulating
(cw-release.keystore), which will be created if it does not already
exist

	
-alias, to indicate what human-readable name we want to give the
key (cw-release)

	
-keyalg, to indicate what public-key encryption algorithm to be
using for this key (RSA)

	
-validity, to indicate how long this key should be valid, where
10,000 days or more is recommended

	
-keysize, for indicating the length of the signing key (2,048 bits
recommended, or go higher if you prefer)

If you run the above command, you will be prompted for a number of
pieces of information. If you have ever created an SSL certificate,
the prompts will be familiar:

$ keytool -genkey -v -keystore cw-release.keystore -alias cw-release -keyalg RSA -validity 10000 -keysize 2048
Enter keystore password:
Re-enter new password:
What is your first and last name?
 <Unknown>: Mark Murphy
What is the name of your organizational unit?
 <Unknown>:
What is the name of your organization?
 <Unknown>: CommonsWare, LLC
What is the name of your City or Locality?
 <Unknown>:
What is the name of your State or Province?
 <Unknown>: PA
What is the two-letter country code for this unit?
 <Unknown>: US
Is CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US correct?
 <no>: yes

Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA) with a validity of 10,000 days
 for: CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
Enter key password for <cw-release>
 (RETURN if same as keystore password):
[Storing cw-release.keystore]

Signing with the Production Key
How you will apply this production signing key to sign your production
app again varies by your tool chain.
Android Studio
Start by opening up your project and going to Build > Generate Signed APK
from the main menu. This brings up the first page of a signing wizard:

[image: Android Studio Generate Signed APK Wizard, First Page]

Figure 324: Android Studio Generate Signed APK Wizard, First Page
If this is the first time you are going to sign a production app,
you will need to create your production signing key, which you can do
by clicking the “Create new…” button in the wizard. This brings up
a separate dialog for describing the new signing key:

[image: Android Studio New Key Store Dialog]

Figure 325: Android Studio New Key Store Dialog
You will need to provide a path to the keystore, manually or via the
“…” button to pick a location via a dialog. You will also need to
provide a password (twice) for the keystore.
You can then supply information for the signing key within the keystore,
including:

	“Alias” to indicate what human-readable name we want to give the
key

	“Password” and “Confirm”, to specify a password for this specific
key in the keystore (independent of the keystore’s own password)

	“Validity”, to indicate how long this key should be valid, where
25 years or more is recommended

	Details about you and your organization, asking for the standard
information used in generating SSL-style keys

Clicking “OK” will generate the keystore and save it where you specified.
Be sure to back up this keystore and record the passwords that
you used.
If you already have a keystore, though, back on the first page of the
“Generate Signed APK” wizard, you can click “Choose existing” to bring
up a file-open dialog where you can choose your keystore. Then, fill in
the keystore password, the key alias, and the key password in the dialog.
Clicking Next in the wizard brings up a page allowing you to determine
what will be generated:

[image: Android Studio Generate Signed APK Wizard, Second Page]

Figure 326: Android Studio Generate Signed APK Wizard, Second Page
You can indicate where the APK file should be written, what build
type to use (release being the default), and which product flavors
to use (where you can select one or several).
You can also choose which signature versions that you want to use. You have
two options:

	V1, which is the way APKs have been signed since Android 1.0

	V2, which is an improved signature format, offering stronger protection
and faster app installs, but only works on Android 7.0+

Ideally, check both signature versions. If for some reason the V2 signature
format causes build problems, uncheck that version and only use V1.
Clicking “Finish” will have Android Studio begin generating the APK
files. This may take some time. When it is done, a dialog will appear
indicating that the work is completed. In the directory that you
specified, you will get one APK file per product flavor you chose, plus
manifest merger reports for those APK files. And, of course, the APK
files will be signed with your chosen keystore and signing key.
Gradle
The Android Gradle Plugin can also be used to sign a production app. Curiously,
this is completely independent of the mechanism that Android Studio
uses to sign a production app. Filling in the dialogs in Android Studio
does not affect your build.gradle file, and Android Studio’s
“Generate Signed APK” completely ignores any manual signing configuration
that you may set up in build.gradle (and is discussed in this section).
What is covered in this section focuses on automating the signing
process, to be done via a build server or just running a Gradle task
from the command line.
To be able to use the Android Gradle Plugin to sign your production app, you
need to provide a signing configuration to the release build type:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.android.support:support-fragment:27.1.0'
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.squareup.retrofit2:converter-gson:2.3.0'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 versionCode 1
 versionName "1.0"
 minSdkVersion 15
 targetSdkVersion 27
 }

 signingConfigs {
 release {
 storeFile file('DebugActivity.keystore')
 keyAlias 'HelloConfig'
 storePassword 'laser.yams.heady.testy'
 keyPassword 'fw.stabs.steady.wool'
 }
 }

 buildTypes {
 debug {
 applicationIdSuffix ".d"
 }

 release {
 signingConfig signingConfigs.release
 }
 }
}

(from Diagnostics/Activity/app/build.gradle)
Here, our release build type has a signingConfig property,
referencing the name of a signing configuration
specified in the signingConfigs closure. This is used to provide rules for how
to sign the APK that is assembled by Gradle. In this project’s build.gradle file,
we have a release closure in signingConfigs, supplying the requisite information
about the keystore:

	The storeFile path, specified as a file() pointing to a keystore in the
project’s root directory

	The keyAlias given to the signing key inside the keystore

	The storePassword and keyPassword used to access the keystore

The signingConfig property in the release closure in buildTypes references
the signing configuration we want as signingConfigs.release. All of these Groovy
closures of properties in the build.gradle file are effectively building up a data
structure, which we can access. So, signingConfigs.release says to find the release
definition in the signingConfigs closure.
This sample bakes in the keystore data into the build.gradle file, including the
passwords, and has the keystore in the root of the project. That is for demonstration
simplicity and will not be suitable for all projects. In particular, keystores and
their credentials should not be stored in a publicly accessible repository, as
that would allow others to sign their apps with your signing key, which is not good.
There are a variety of strategies for handling this, from using environment variables
to requesting the data be entered on the command line, as are discussed
in the chapter on advanced Gradle techniques.
Adding a signingConfig property in our release build type enables the
installRelease task. Running gradle tasks will show installRelease as an
available option, because now the Android Gradle Plugin knows how to sign the APK. Of course,
there could be flaws in the signing configuration (e.g., mis-entered key alias),
and that will result in build errors when you try to installRelease the project.
Two Types of Key Security
There are two facets to securing your production key that you need to
think about:

	You need to make sure nobody steals your production keystore and
its password. If somebody does, they could publish replacement
versions of your applications — since they are signed with the
same key, Android will assume the replacements are legitimate.

	You need to make sure you do not lose your production keystore and
its password. Otherwise, even you will be unable to publish
replacement versions of your applications.

For solo developers, the latter scenario is more probable. There
already have been many cases where developers had to rebuild their
development machine and wound up with new keys, locking themselves
out from updating their own applications. As with everything
involving computers, having a solid backup regimen is highly
recommended. In particular, consider a secure off-site backup,
such as having your production keystore on a thumb drive in a bank
safe deposit box.
For teams, the former scenario may be more likely. If more than one
person needs to be able to sign the application, the production
keystore will need to be shared, possibly even stored in the revision
control system for the project. The more people who have access to
the keystore, the more likely it is somebody will wind up doing
something evil with it. This is particularly true for projects with
public revision control systems, such as open source projects —
developers might not think of the implications of putting the
production keystore out for people to access.
Distribution
It is entirely possible that the user base for your app consists
solely of yourself.
However, in most cases, you are going to be giving your app
to others, free or for some sort of fee.
This chapter outlines things you will need to think about when
distributing your app.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, particularly the chapter on
signing your app.
Get Ready To Go To Market
While being able to sign your application reliably with a production
key is necessary for publishing a production application, it is not
sufficient. Particularly for the Play Store, there are other
things you must do, or should do, as part of getting ready to release
your application.
Versioning
You need to supply versionCode and versionName
values in your build.gradle file. The value of versionName is what users and
prospective users will see in terms of the label associated with your
application version (e.g., “1.0.1”, “System V”, “Loquacious Llama”).
More important, though, is the value of versionCode, which
needs to be an integer increasing with each release — that is
how Android tells whether some edition of your APK is an upgrade over
what the user currently has.
Application ID
You also need to make sure that your application ID
is going to be unique. If somebody tries downloading your application
onto their device, and some other application is already installed
with that same package name, your application will fail to install.
Your application ID defaults to be the value of your package
attribute in your <manifest> element in the manifest. You can
override the application ID using applicationId properties
in defaultConfig or a product flavor in build.gradle. You can
also append an applicationIdSuffix tied to a build type or
product flavor in
Gradle as well.
Since the manifest’s package also provides the base Java package
for your project, and since you hopefully named your Java packages
with something based on a domain name you own or something else
demonstrably unique, this should not cause a huge problem.
Also, bear in mind that your application ID must be unique across all
applications on the Play Store, should you choose to distribute
that way.
Icon and Label
Your <application> element needs to specify android:icon and
android:label attributes, to supply the display name and icon that will be
associated with the application in the My Applications list on the
device and related screens. Your activities will inherit the icon if
they do not specify icons of their own.
If you have graphic design skills, the Android developer site has
guidelines
for creating icons that will match other icons in
the system.
Logging
In production, try to minimize unnecessary logging, particularly at
low logging levels (e.g., debug). Remember that even if Android does
not actually log the information, whatever processing is involved in
making the Log.d() call will still be done, unless you arrange to
skip the processing somehow. You could outright delete the extraneous
logging calls, or wrap them in an if() test:

if (BuildConfig.DEBUG) {
 Log.d(TAG, "This is what happened");
}

Here, BuildConfig.DEBUG is a public static final boolean value,
supplied by Android, that indicates whether you are building for
debug or production. Whether you adjust the definition by hand or by
automating the build process is up to you. But, when BuildConfig.DEBUG
is false, any work that would have been done to build up the actual
Log invocation will be skipped, saving CPU cycles and battery life.
Conversely, error logs become even more important in production.
Sometimes, you have difficulty reproducing bugs “in the lab” and only
encounter them on customer devices. Being able to get stack traces
from those devices could make a major difference in your ability to
get the bug fixed rapidly.
First, in addition to your regular exception handlers, consider
catching everything those handlers miss, notably runtime exceptions:

Thread.setDefaultUncaughtExceptionHandler(onBlooey);

This will route all uncaught exceptions to an onBlooey handler:

private Thread.UncaughtExceptionHandler onBlooey=
 new Thread.UncaughtExceptionHandler() {
 public void uncaughtException(Thread thread, Throwable ex) {
 Log.e(TAG, "Uncaught exception", ex);
 }
};

There, you can log it, raise a dialog if appropriate, etc.
Then, offer some means to get your logs off the device and to you,
via email or a Web service. Some Android analytics firms, like
Flurry, offer exception stack trace collection
as part of their service. There are also open source projects that
support this feature, such as
ACRA.
Testing
As always, testing, particularly acceptance testing, is important.
Bear in mind that the act of creating the production signed version
of your application could introduce errors, such as having the wrong
Google Maps V2 API key. Hence, it is important to do user-level testing
of your application after you sign, not just before you sign, in case
the act of signing messed things up. After all, what you are shipping
to those users is the production signed edition — you do not
want your users tripping over obvious flaws.
As you head towards production, also consider testing in as many
distinct environments as possible, such as:

	Trying more than one device, particularly if you can get devices
with different display sizes

	If you rely on the Internet, try your application with WiFi, with
3G, with EDGE/2G, and with the Internet unavailable

	If you rely on GPS, try your application with GPS disabled, GPS
enabled and working, and GPS enabled but not available (e.g.,
underground)

EULA
End-user license agreements — EULAs — are those long bits
of legal prose you are supposed to read and accept before using an
application, Web site, or other protected item. Whether EULAs are
enforceable in your jurisdiction is between you and your qualified
legal counsel to determine.
In fact, many developers, particularly of free or open source
applications, specifically elect not to put a EULA in their
applications, considering them annoying, pointless, or otherwise bad.
However, the Play Store developer distribution agreement has one
particular clause that might steer you towards having a EULA:

You agree that if you use the Store to distribute Products, you will protect the privacy and legal rights of users. If the users provide you with, or your Product accesses or uses, user names, passwords, or other login information or personal information, you must make the users aware that the information will be available to your Product, and you must provide legally adequate privacy notice and protection for those users. Further, your Product may only use that information for the limited purposes for which the user has given you permission to do so. If your Product stores personal or sensitive information provided by users, it must do so securely and only for as long as it is needed. But if the user has opted into a separate agreement with you that allows you or your Product to store or use personal or sensitive information directly related to your Product (not including other products or applications) then the terms of that separate agreement will govern your use of such information. If the user provides your Product with Google Account information, your Product may only use that information to access the user’s Google Account when, and for the limited purposes for which, the user has given you permission to do so.

Hence, if you are concerned about being bound by what Google thinks
appropriate privacy is, you may wish to consider a EULA just to
replace their terms with your own.
Unfortunately, having a EULA on a mobile device is particularly
annoying to users, because EULAs tend to be long and screens tend to
be short.
Again, please seek professional legal assistance on issues regarding
EULAs.
Writing a Gradle Plugin
Gradle is very extensible, from Groovy scripting code in your build.gradle
file all the way up to dedicated Gradle plugins. The more you want
to reuse a particular piece of functionality, or the more sophistication
you want in your custom builds, the more likely it is that a Gradle plugin
will be the right solution.
Sometimes, a Gradle plugin will be focused mostly on tailoring the build
process itself. However, a Gradle plugin could be simply an integration
point for a tool that could be used in other ways (e.g., command-line API)
that would not otherwise require Gradle. This is particularly true for
tools that work across IDEs, where you put most of the core logic into
a core set of tool code and have thin build system plugins that bridge
between the build system or IDE and the tool itself.
In this chapter, we will look at the basics of setting up a Gradle plugin.
The plugin that we develop in this chapter will not do much of anything.
The next chapter, however, creates a Gradle plugin that
generates Java code, building on what we explore here.
Prerequisites
This chapter will make the most sense if you have read the preceding
chapters on Gradle, particularly
the chapter on Gradle tasks.
Customizing a Gradle Build
Gradle is Groovy — in other words, Gradle is a domain specific language
(DSL) implemented in the Groovy scripting language. Hence, you are welcome
to blend in Groovy code into your build.gradle file, for everything
from simple string concatenation to loops, branches, and everything else
that you would expect from a modern OO-flavored scripting language.
You are not limited to putting that Groovy code directly in build.gradle
either. You can use apply from: to indicate the path to some other
Gradle script, reminiscent of a #include from C/C++, <include> elements
in an Android layout resource, and so forth:

apply from: 'relative/path/to/some.gradle'

Or, you can create a buildSrc/ directory in your project root. In
there, you can have Java code (e.g., in src/main/java/) or Groovy code
(e.g., in src/main/groovy/), all of which will be compiled and added
to the classpath for your main build.gradle file. As a result, your
build.gradle file can refer to whatever classes and such are created
in this buildSrc/ quasi-module. This is powerful, but it is inconvenient
to distribute, except for other people working on the same overall project
(e.g., via version control systems). As such, this approach is mostly
for project-specific build system extensions.
A Gradle plugin is a separate module, akin to the buildSrc/ directory,
that creates a JAR that incorporates compiled Java and Groovy code.
That plugin JAR can then be used by other modules or other projects. The
plugin can be distributed through Maven Central, JCenter, or other
artifact repositories. And, people can use it just like you use the
Android Gradle Plugin: requesting it in a buildscript closure
and applying the plugin. This is somewhat more complicated to set up
than is a buildSrc/ directory, but it offers the easiest path for
distributing substantial build customizations.
Some Use Cases for a Custom Plugin
For lightweight tweaking of how a build is done, adding some Groovy
code to your build.gradle file is the simplest solution. But sometimes
what you want to do might get a bit involved for a smattering of lines
in a build.gradle file, and it is these sorts of situations where
a Gradle plugin becomes a useful approach.
Code Generation
Sometimes, we want to generate Java code based upon other sorts of files
within our project.
The Android Gradle Plugin offers this sort of thing in a few of places:

	Our R class is code-generated by the aapt build tool, invoked
through Gradle, based upon the contents of our resource directories

	The build tools similarly look for AIDL files — used in
bound services — to code-generate our binding classes
for us

	The data binding framework looks for layout files with
a particular structure and code-generates some Java classes that implement
data binding for the widgets in those layouts

Other developers do the same sort of thing. For example, Square has published
the SQLDelight plugin, which
code-generates a SQLiteOpenHelper subclass based
upon a SQL script that you include in your module.
And, in the next chapter, we will see how to do this
same sort of code generation.
Resource Generation
Sometimes, you want to generate other files, instead of Java. For
example, Trello released the Victor Gradle plugin,
which allows you to add SVG files to your module. Victor will convert
those into PNGs or vector drawables for you automatically,
rather than you having to do that yourself using various tools.
Code Analysis
Sometimes, we are not trying to create things, but instead are trying
to analyze what is there and fail the build if the analysis turns up
problems.
For example, a standard plugin distributed with Gradle integrates with
the Checkstyle library
to confirm that the source code adheres to coding standards.
Writing a Plugin
Creating a Gradle plugin is not especially difficult. It is somewhat
esoteric and not especially well-documented, but this chapter hopefully
will address those particular issues for you.
Create a Java Module
One major difference in creating a Gradle plugin versus creating an
Android app is where the code runs. Android apps run on Android. Gradle
plugins run on your development machine. As such, our code cannot
use Android-specific APIs, so we need a module that knows about
ordinary Java, not Android.
Android Studio’s new-module wizard (New > New Module from the File menu)
offers an option for “Java Library”:

[image: Android Studio New-Module Wizard, with Java Library Option]

Figure 327: Android Studio New-Module Wizard, with Java Library Option
This will add a new module to the project, but one that uses the standard
java Gradle plugin for building the code, rather than the
com.android.application or com.android.library plugins used to create
Android apps and libraries.
The second page of the new-module wizard asks some questions about the
module to be created:

[image: Android Studio New-Module Wizard, with Java Library Configuration]

Figure 328: Android Studio New-Module Wizard, with Java Library Configuration
The big item is the “Library name”, which will be the name of the
module added to your project. If you are adding this to a large existing
project — for example, adding a Gradle plugin to an existing tool –
you might use gradle-plugin or something as the module name. If
the project is creating a dedicated Gradle plugin, you might name
the module after the plugin itself (e.g., the staticizer plugin
that we will create in the next chapter). Or, you could
take the approach used by the
Gradle/PluginStub
sample project, and call it plugin.
Creating a new Java library module forces you to create a Java class
for use by the library. As you will see shortly, this is not a requirement
for creating a Gradle plugin, though often you will wind up using Java
classes along the way. You can choose the Java package name and class
that makes the most sense for your code. There are no particular naming
rules for Gradle plugins that you have to follow.
Apply the Groovy Plugin
The typical recipe for writing a Gradle plugin involves both Java code
and Groovy code. That is not strictly required, as you could write the
entire plugin in Java. For illustration purposes, the PluginStub
sample project follows convention and uses Groovy along with
Java.
However, an Android Studio-created Java module knows nothing about
Groovy. It knows about Java, as the module’s build.gradle file will
have apply plugin: 'java' to teach Gradle that this module will
contain Java code and create a Java JAR as output.
If you want to also use Groovy code, simply add apply plugin: 'groovy'
to the module’s build.gradle file:

apply plugin: 'groovy'
apply plugin: 'java'

(from Gradle/PluginStub/plugin/build.gradle)
Update the Dependencies
The plugin’s module will also need some new dependencies:

dependencies {
 implementation gradleApi()
 implementation localGroovy()
}

(from Gradle/PluginStub/plugin/build.gradle)
The gradleApi() dependency pulls in Gradle’s own internal API, for
use by plugins. The localGroovy() dependency says that we can
add a src/main/groovy/ directory and put Groovy-defined Java classes
in there, and they too will be added to the project.
Add a Groovy Source Directory and Package
Java classes defined in Groovy go into the same sort of Java package
directory structure that regular Java classes do. It just so happens
that they will reside under a groovy/ directory, rather than a
java/ directory.
The plugin/ module of the sample project has a
src/main/groovy/com/commonsware/android/gradle/plugin/ directory:

[image: Android Studio, Showing Groovy Directory Structure]

Figure 329: Android Studio, Showing Groovy Directory Structure
In there is a StubPlugin.groovy file containing some Groovy code.
Implement a Plugin
That code comes in the form of a StubPlugin class:

package com.commonsware.android.gradle.plugin

import org.gradle.api.Plugin
import org.gradle.api.Project

public class StubPlugin implements Plugin<Project> {
 @Override
 public void apply(Project target) {
 def myTask = target.tasks.create("stubTask") << {
 def helper = new StubHelper();
 println helper.getMessage();
 }

 myTask.group = "commonsware"
 myTask.description = "Do something useful"
 }
}

(from Gradle/PluginStub/plugin/src/main/groovy/com/commonsware/android/gradle/plugin/StubPlugin.groovy)
Again, this class could have been written in Java — there is nothing
specific about plugin classes that requires Groovy. Groovy syntax for
class definitions closely resembles that of Java.
Here, StubPlugin implements a Plugin, one creating a Project.
Gradle plugins could be applied to other sorts of Gradle artifacts,
at least in principle, though most samples you will see involve
a Project. Here, Project refers to what Android Studio calls a module,
and what Gradle itself refers to as a sub-project. In other words,
the Project is a model object describing the actual app code that
is being built, where our plugin can now interact with the build process.
The entry point into a Plugin is apply(), where you are given the
build artifact (e.g., the Project), and your job is to tinker with
the build process.
Gradle scripts are recipes for building an object model that, in turn,
describes how to build a project. Similarly, what our plugin needs to
do is modify that recipe, adding in hooks that will eventually get
run during actual builds, where we can do special stuff.
A typical way of implementing this is to create one or more additional
tasks, just like the tasks that Gradle itself has, or that the Android
Plugin for Gradle adds. Here, we have Groovy code that defines a new
task, named stubTask, being added to the roster of tasks for this
Project. The Groovy code between the braces represents the work to
be done by this Gradle task, and we will return to that code shortly.
The rest of apply() configures the rest of the task, putting it into
a specific group (for use by Android Studio or other IDEs) and
adding a description (for use with tooltips, generated documentation, and
the like).
Using Both Groovy and Java
If you elect to use some amount of Groovy code with your plugin, the
question then becomes: do you need Java at all, and if so, when?
In principle, Groovy can do everything that Java can. In practice, how
much Groovy you want to write will depend largely on your comfort
level with Groovy and with multi-language programming. You might elect
to designate some in-app boundary as also serving as the boundary between
programming languages. For example, you might say that plugin-specific
code is written in Groovy, but code that is usable via other interfaces
gets written in Java.
StubPlugin demonstrates integrating with ordinary Java code by means
of the StubHelper instance that it creates and uses to retrieve
a message (getMessage()), which apply() then dumps to the console
via println. StubHelper is an ordinary Java class, in the java/
peer set of directories to the groovy/ directories. In particular,
StubHelper happens to be in the same Java package as is StubPlugin, so we
do not need an import statement for StubHelper. StubHelper itself
is trivial, returning a static String as the result of getMessage():

package com.commonsware.android.gradle.plugin;

public class StubHelper {
 String getMessage() {
 return("Hello, world!");
 }
}

(from Gradle/PluginStub/plugin/src/main/java/com/commonsware/android/gradle/plugin/StubHelper.java)
Adding Plugin Metadata
In an Android app, merely having Java classes inheriting from “magic”
base classes like Activity or Service is insufficient. We also
need to have some metadata to teach Android about our activities, services,
and so on. In the case of an Android app, that metadata comes in the form
of the manifest.
Similarly, we need to teach Gradle that:

	Our library contains one or more Gradle plugins

	What those Gradle plugins are called

	What Java/Groovy class is the entry point for the plugin

That is handled by its own form of metadata.
This metadata is held in a resources/ directory inside of the main/
source set. Here, resources/ refers to classic Java resources, otherwise
known as “semi-random files that wind up being stuffed into the JAR”.
It has little to do with Android resources that you might put in a res/
directory in an Android project.
A typical convention for JARs is to have a META-INF/ folder containing
metadata. That is set up in a Java module by having a resources/META-INF/
directory.
Gradle, in turn, wants to see a gradle-plugins/ directory inside
of META-INF/, with one or more .properties files. The base name of
the .properties file (i.e., the name without the file extension)
is the full name of the plugin. Convention nowadays is for third-party
plugins to use Java-style reverse-domain-name names, like com.android.application
and com.android.library. So, inside of resources/META-INF/gradle-plugins/,
our Java module has com.commonsware.android.gradle.plugin.properties,
to define a com.commonsware.android.gradle.plugin plugin.
The properties file needs only one line, defining the value for an
implementation-class property. The value is the fully-qualified
class name of the Plugin subclass that is the entry point for the
plugin:

implementation-class=com.commonsware.android.gradle.plugin.StubPlugin

(from Gradle/PluginStub/plugin/src/main/resources/META-INF/gradle-plugins/com.commonsware.android.gradle.plugin.properties)
Distributing the Plugin
When you build the plugin/ module, the result is a plugin JAR file
located in build/libs/ of the module. That JAR is what modules and
projects that want to use the plugin need to access.
You could pass around the bare JAR file. Nowadays, the preferred approach
for distributing JARs is to do so via artifacts in repositories, the way
that we use such artifacts for libraries that we want to add to our Android
apps. In fact, we have already seen one such plugin distributed via an
artifact: the com.android.tools.build:gradle artifact that we reference
in the buildscript dependencies closure in our top-level build.gradle
file.
There are formal ways to publish artifacts to places like JCenter or
Maven Central. For lightweight testing purposes, you can easily set up
a Maven-style repository on your own development machine, as this sample
app does. And there are “middle-ground” options, such as having a repository
on an internal server somewhere for use by development team within an
organization.
The build.gradle file for the plugin/ module sets up tasks, via
the maven plugin, to deploy the plugin JAR as an artifact to a
repository located in a repository/ directory off of the project root.
This would be reasonable for a plugin that is being used by other
modules in that project but not other projects, as is the case here.

apply plugin: 'groovy'
apply plugin: 'java'

dependencies {
 implementation gradleApi()
 implementation localGroovy()
}

sourceCompatibility = "1.7"
targetCompatibility = "1.7"

group 'com.commonsware.android.gradle'
version '0.0.1'

apply plugin: 'maven'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url: uri('../repository'))
 }
 }
}

(from Gradle/PluginStub/plugin/build.gradle)
The group provides the artifact group ID for this plugin — the name
that appears left-most in the group-id:artifact-id:version triple
that we use when referencing these sorts of dependencies. The
artifact ID is the name of the module itself by default.
The uploadArchives configuration teaches the maven plugin where
we want to push the artifact to. In this case, it is to a ../repository/
directory relative to the module root, which places the repository/
directory off of the project root.
You can run the uploadArchives task, directly from Gradle if you wish,
by opening the Gradle tool (typically docked on the right) and finding
the uploadArchives task within an upload task group in the :plugin
module:

[image: Gradle Task Tree, Showing uploadArchives Task]

Figure 330: Gradle Task Tree, Showing uploadArchives Task
Once you run that task, you will find a repository/ directory
off of the project root, with our JAR file as an artifact:

[image: Gradle Task Tree, Showing Local Repository]

Figure 331: Gradle Task Tree, Showing Local Repository
Using the Plugin
Now, other modules in this project can use the plugin, such as the
app/ module, containing an Android app created through the Android
Studio new-project wizard, without any changes to the generated Java
code, resources, or manifest.
In a typical Android Studio project, you see plugins added via
the buildscript closure in the build.gradle file in the project’s root
directory. Technically, this is only required for plugins that either
all modules will use, or enough modules will use that it makes sense to
define it in one place.
A module’s own build.gradle file can also load third-party plugins,
using the same buildscript closure. This will be added to the plugins
loaded from the project’s build.gradle file to create the complete list
of possible plugins for the module.
So, the app/ module takes this approach in its build.gradle file:

buildscript {
 repositories {
 maven {
 url uri('../repository')
 }
 }
 dependencies {
 classpath 'com.commonsware.android.gradle:plugin:0.0.1'
 }
}

apply plugin: 'com.android.application'
apply plugin: 'com.commonsware.android.gradle.plugin'

(from Gradle/PluginStub/app/build.gradle)
Here, we indicate that the plugin search path should include
our custom repository/, and that we are looking for a plugin artifact
identified as com.commonsware.android.gradle:plugin:0.0.1. That lines
up with the group ID, artifact ID, and version number that our plugin
used, and this JAR can be found in our local repository, assuming that
we have run the uploadArchives tasks from the plugin/ module.
We also use apply plugin: 'com.commonsware.android.gradle.plugin'
to actually use the plugin. Here, the name of the plugin comes from the
name of the .properties file that we put in the resources/META-INF/gradle-plugins/
directory of the plugin/ module.
The rest of the app/ module’s build.gradle file (not shown) is the
standard stuff that you get in a build.gradle file for an application
module out of the new-project wizard.
With that in place, we now have a new stubTask task, inside of a
commonsware group (per our plugin’s task configuration in the Groovy
code) that we can run:

[image: Gradle Task Tree, Showing stubTask Task]

Figure 332: Gradle Task Tree, Showing stubTask Task
If you run that task — and if Android Studio is behaving today –
you will see our static message show up in the build output:

Executing tasks: <stubTask>

Configuration on demand is an incubating feature.
Observed package id 'system-images;android-14;default;armeabi-v7a' in inconsistent location '/opt/android-sdk-linux/system-images/android-14/armeabi-v7a' (Expected '/opt/android-sdk-linux/system-images/android-14/default/armeabi-v7a')
Observed package id 'system-images;android-14;default;armeabi-v7a' in inconsistent location '/opt/android-sdk-linux/system-images/android-14/armeabi-v7a' (Expected '/opt/android-sdk-linux/system-images/android-14/default/armeabi-v7a')
Incremental java compilation is an incubating feature.
:app:stubTask
Hello, world!

BUILD SUCCESSFUL

Total time: 13.707 secs

Dealing with Bugs and Changes
If you develop your own Gradle plugin, you may find the development
process to be a bit of a pain. This is particularly true in cases like
the sample project, where the plugin and a module using the plugin exist
in the same project.
For example, what happens when you run uploadArchives and the plugin
has a bug?
In this particular case, usually there is not much of a problem, insofar as
nothing depends upon stubTask. However, if your bug affects the
plugin as a whole — for example, you screw up the .properties file –
now your entire build process is broken, even for the plugin module.
In the case of a plugin configuration bug, you cannot successfully sync
your project with the Gradle build files.
When you get into more sophisticated plugins, where
you chain new tasks onto the existing build process (e.g., for code
generation), you will run into cases where bugs in the plugin allow
you to still sync your project with the Gradle build files, but attempts
to build anything trip over the plugin bug. This can even affect builds
of the plugin, depending on the nature of the plugin bugs.
As a result, you will find yourself commenting out the use of the plugin
in the other module(s) from time to time, cleaning the project, fixing
the plugin bug, running uploadArchives with the repaired plugin, then
uncommenting those commented-out lines, and trying it again. Depending
on how good you are with bug-fixing, this may take some time.
Also, even though the plugin is being used by one module and the implementation
is in a separate module, Android Studio may
erroneously flag your Groovy-defined classes as having errors,
indicating that these classes already exist. Just clean the project, and those
spurious errors should go away.
Trying the Sample App
The sample app is set up to apply the custom plugin. Unfortunately,
when you first check out this project, that custom plugin does not
yet exist. And, due to the way Android Studio and Gradle work,
you cannot build the plugin, because the app/ module fails the
build due to the missing plugin… even if you are not trying to build
the app/ module.
So, to try out this sample app, you will need to:

	Comment out the buildscript closure and the apply plugin: statement
in app/build.gradle that refer to our custom plugin

	Import the project into Android Studio

	Run the uploadArchives tasks in the plugin/ module, to build
and “upload” the plugin to our local repository

	Uncomment what you commented in the first bullet above

Then, everything should be set.
Creating a Real Plugin
The stub plugin shown in this chapter is extremely rudimentary. It
is enough to demonstrate the scaffolding necessary to create a plugin,
and little else.
The Staticizer plugin demonstrated in the next chapter
is a more sophisticated sample, generating Java code to be blended into
a project build, just like the data binding framework, SQLDelight, and
other Gradle plugins do.
But, Staticizer needs a few more features in its plugin than
PluginStub needed.
Integrating with the Android Plugin
If you want to add tasks that tie into the build process of an Android
app or library, you will wind up needing to reference portions of the
public API exposed by the Android Gradle Plugin. That, in turn,
will require you to have the plugin depend upon the Android Plugin for
Gradle, so you can reference the appropriate symbols:
So, you might have a dependencies closure in the plugin’s build.gradle
file like this:

dependencies {
 compile gradleApi()
 compile localGroovy()
 implementation 'com.android.tools.build:gradle:2.2.2'
}

Here, we are saying that we are dependent upon the Android Plugin for
Gradle (specifically version 2.2.2).
You can use similar implementation statements to pull in other libraries
that your plugin might need, such as Gson.
Validating the Environment
If you are planning on integrating into the Android build process,
you may want to validate that your plugin is being used in a module
that has also applied the com.android.application or
com.android.library plugin. Otherwise, your plugin would have nothing
to do.
Chiu-ki Chan demonstrated an approach for doing this in her
gce2retrofit Gradle plugin example.
In her case, her plugin can work with either of the two Android plugins
or the plain java plugin. She takes advantage of the fact that
a Project knows its plugins, and we can use hasPlugin to see
if the Project is configured with certain plugins or not:

package com.sqisland.gce2retrofit;

import com.android.build.gradle.AppPlugin;
import com.android.build.gradle.LibraryPlugin;

import org.gradle.api.Project;
import org.gradle.api.Plugin;
import org.gradle.api.plugins.JavaPlugin;

public class GradlePlugin implements Plugin<Project> {
 @Override
 public void apply(Project project) {
 def hasAndroidApp = project.plugins.hasPlugin AppPlugin
 def hasAndroidLib = project.plugins.hasPlugin LibraryPlugin
 def hasJava = project.plugins.hasPlugin JavaPlugin
 if (!hasAndroidApp && !hasAndroidLib && !hasJava) {
 throw new IllegalStateException("'android' or 'android-library' or 'java' plugin required.")
 }

 // more code here

(from her plugin’s GradlePlugin.groovy script)
Here, she checks for all three possible plugins and throws an exception
if they are all missing.
Writing a Task Class
In the PluginStub sample, our task was implemented as the Groovy
equivalent of a Java anonymous inner class. For trivial tasks, that
is a reasonable approach. The bigger your task, the more likely it is
that you will want to create a formal dedicated class for the task.
In that case, rather than using syntax like this to add a task:

def myTask = target.tasks.create("stubTask") << {
 def helper = new StubHelper();
 println helper.getMessage();
}

myTask.group = "commonsware"

you use syntax like this:

def myTask = project.tasks.create("commonsware", SomeTask)

Here, SomeTask is a dedicated class, extending Gradle’s DefaultTask
base class. That class can be written in Java or Groovy, much as
the plugin class itself can be written in Java or Groovy.
Splicing Your Task Into the Build
In the PluginStub sample, stubTask is a standalone task. Running
other tasks, such as building an app, would never invoke stubTask.
Occasionally, this is what you want. Other times, you want your custom
task to be invoked as part of the overall build process. For example,
with code generation, you want to get a chance to generate Java code
at the same points in time when other Java code gets generated (e.g.,
R class), before the Java code gets compiled.
That gets to be a bit complicated. While Gradle has a fairly simple
approach for declaring that one task depends upon another, in an
Android build, we have many build variants to deal with, based on
build type and, possibly, product flavor.
The recipe is to create a custom task for each build variant:

variants.all { variant ->
 def task=
 target.tasks.create("doSomething${variant.name.capitalize()}",
 DoSomethingTask)
 variant.javaCompile.dependsOn task
}

Here, we create a custom task, for a Project named target. The
task is named doSomething..., where the ... is replaced by the
name of the build variant with the first letter capitalized. So, we wind
up with custom tasks like doSomethingDebug or doSomethingAmazonRelease
or whatever.
We also indicate that the existing task that performs the Java compilation
(variant.javaCompile)
depends upon our new task. Hence, our task will be executed before
the Java code gets compiled.
And, we do this in a loop over all possible build variants (variants.all)
for whatever module our code is in. The catch is that getting that list
of variants varies, depending upon whether we are building an Android
application or an Android library:

def isApp=target.plugins.hasPlugin AppPlugin
def isLib=target.plugins.hasPlugin LibraryPlugin

if (!isApp && !isLib) {
 throw new
 IllegalStateException("This plugin depends upon the com.android.application or com.android.library plugins")
}

def variants

if (isApp) {
 variants=target.android.applicationVariants
}
else {
 variants=target.android.libraryVariants
}

We set variants to be the applicationVariants or the libraryVariants
depending upon whether we are in an Android app module or an Android library
module.
Configuring the Plugin
When we write our Android apps and libraries, we almost always have
an android closure that we use to configure the behavior of the
Android build process and results (e.g., minSdkVersion).
This is what Gradle refers to as an “extension object”, and your
plugin can register one of these.
Simply create a Java or Groovy class that defines what properties you
want to be configurable:

class StaticizerConfig {
 def String packageName
}

Then, create a new extension object, by calling create() on the
extensions collection inside of the Project (here named target):

target.extensions.create('staticizer', StaticizerConfig)

This will allow users of this plugin to create a staticizer and supply
a value for a packageName property:

apply plugin: 'com.commonsware.android.staticizer'

staticizer {
 packageName 'com.commonsware.android.staticizer.demo'
}

We will see more about this staticizer extension object
in the next chapter.
Code Generation
One common thing to do in a Gradle plugin is to generate Java code.
Code that writes other code based upon supplied inputs
is referred to as a “code generator”.
At its core, Java code is just text. Developers generate text on the
fly quite a bit, particularly in Web development. There are two main
approaches to such text generation:

	Use templates, when the text is largely fixed but has some values
that need to be replaced at runtime

	Use regular code to generate the text, perhaps using APIs that
facilitate writing out text formats with as little coding overhead
as possible

In this chapter, we will examine what it takes to generate Java code
from a Gradle plugin. In particular, we will look at the second
approach, where we will have Java code that generates other Java code,
using a library that makes this a lot easier than writing a lot
of append() calls to a StringBuilder.
Prerequisites
Understanding this chapter requires that you have read
the preceding chapter and all of its prerequisites.
What Drives the Custom Code?
You could generate code based off of random numbers. More likely, there
is some sort of input that you are using to determine the code to be
generated. This input can be divided roughly into three areas: other
Java code, other project files, and everything else.
Other Java Code
Modern Android code gets littered with annotations. Some are from
standard Java (e.g., @Override). Some are from Android libraries
(e.g., @NotNull). Some are from third-party libraries, like
greenrobot’s EventBus (e.g., @Subscribe).
Sometimes, these annotations are for validation at compile time.
@Override tells Java compilers that we think that we are overriding
a method from a superclass or are implementing an interface method, and
so the compile should fail if our method signature does not match
anything that we could be overriding. @NotNull indicates that a
parameter should not be null, allowing static code analysis to help
point out places where we might accidentally pass null in as a value.
Sometimes, these annotations are used by third-party libraries
at runtime. greenrobot’s EventBus, for example, will look for @Subscribe
annotations to determine how to deliver events to registered event-handling
objects.
Sometimes, these runtime annotations generate something resembling code
at runtime. Retrofit, for example, creates an
instance of our service interface at runtime, with an implementation that
will make the Web service requests that we desire. However, this Java
bytecode is generated on devices, not as ordinary Java source files that
are included in the build.
But, sometimes, these annotations get used by compile-time annotation
processors. These add-ons to the build process read in Java code, analyze
it (annotations in particular), and code generate Java code in support
of our existing Java code. Google’s AutoValue
processor, for example, looks for @AutoValue-annotated abstract
classes and code-generates a concrete implementation of a “value class”
(one with immutable members), complete with hashCode(), equals(),
and related methods.
Other Project Files
A code generator might generate Java code from other types of input
that are in the project:

	The data binding framework looks for layout resources
with a specific structure (root <layout> element) and code-generates
Java binding classes for them

	
SQLDelight code-generates
a SQLiteOpenHelper subclass based
upon a SQL script that you include in your module

Here, the inputs are resources or other files, not annotated Java code.
Other Data Sources
There is nothing stopping you from generating code based on inputs
that come from outside of the project. For example, whereas SQLDelight
works off of SQL scripts in your project tree, you can imagine a similar
code generator that retrieved schemas from a live database using database I/O.
The big advantage of limiting code generation to files in the project
is having reproducible builds based on version control. Ideally, years
from now, you should be able to check out a branch or tag from a version
control system and be able to build the project the same way then as you
do on the day you committed that code to version control. That works
best when the entire project specification is included in version control.
A server is not, and the server response in a few years might differ
from what the server response is today.
One workaround for this is to have two tools. One retrieves the data
from the server and writes that data out into files that go into your
project (e.g., JSON files). You would run this code from time to
time, when you specifically need to get the latest configuration from the
server. However, the second tool performs the code generation, working
off of the project files, not from the live server data. That way,
you can perform that code generation again in the future in a reproducible
fashion.
Java as Poetry
In principle, all you need is StringBuilder to build up a Java source
file to eventually write to disk. Similarly, in principle, all you need
is StringBuilder to construct a Web page for your Web app to serve
to the browser. In both cases, there are better solutions that can simplify
the work and make it less prone to bugs.
In the case of Java code generation, the leading solution is
JavaPoet, yet another library from Square.
JavaPoet offers a fluent, builder-style API for defining the pieces
of a Java source file, such as fields and methods wrapped in classes.
Then, JavaPoet can write out a formatted Java source file based upon
your supplied specification.
JavaPoet is based on Square’s earlier JavaWriter library, which has been
discontinued.
The code-generating sample app described in this chapter takes advantage
of JavaPoet for generating its Java code.
Writing a Code Generation Plugin
Sometimes, your app has some pure data that it needs. For example,
the APK edition of this book needs to know what chapters there are,
where the chapter HTML files are, what the chapter titles are,
and so forth.
A typical approach for handling this is to have some data file
that you package in your app. Perhaps it is an XML resource (res/xml/),
a raw resource (res/raw/), or an asset (assets/). You then
have code that reads in the data at runtime and uses it.
This has a couple of downsides:

	Your code gets littered with checked exceptions, for I/O errors or
parsing errors that, in principle, should never occur with pre-packaged
validated data files

	This sort of disk I/O should be done on a background thread, making
it more painful to get this data into your app

The
Gradle/Staticizer
sample project implements a Gradle plugin that takes some static
JSON and code generates a Java class exposing that data. Rather than
having to read in and parse the JSON at runtime, you just refer to the
generated Java class. This eliminates the extraneous exceptions and
reduces the effective cost for loading the data off of disk (as we do not
worry about somehow loading Java code in the background).
This particular sample is not very sophisticated. It is limited to JSON
files describing objects made up of primitives (numbers and strings), such as:

{
 "foo": "foobar",
 "versionCode": 1
}

(from Gradle/Staticizer/app/src/main/staticizer/TestData.json)
A production-grade implementation would handle nested Java objects,
arrays, and the like. But, this demonstrates the basic concept of code
generation, in a not-unrealistic scenario, just with a limited implementation
to keep the sample simple.
Designing the Output
We want a Java class that offers up the same data that is in the JSON,
just without the runtime JSON loading and parsing. For example, the
TestData.json file shown above, represented in Java, might look like:

package com.commonsware.android.staticizer.demo;

import java.lang.String;

public final class TestData {
 public static final String FOO = "foobar";

 public static final double VERSION_CODE = 1.0;
}

(from Gradle/Staticizer/app/build/generated/source/staticizer/debug/com/commonsware/android/staticizer/demo/TestData.java)
Early on, you might hand-craft such a Java class, to test out how it
works and ensure that you have the right fields, data types, and so
on for your needs. Then, once you have the class designed the way you
want, you can determine how to map the data from your input into the
desired output.
In the case of this sample app, we take a fairly literal approach to
converting the JSON to Java:

	The class name is based on the JSON file name (TestData.json turns
into TestData.java)

	The package should be configurable, as part of setting up the plugin

	The field names are based on the object keys from the JSON, but
converted into ALL_CAPS_WITH_UNDERSCORES (a typical Java convention
for static field names) instead of camelCase (a typical JSON convention
for object attribute names)

	The fields are public static final, akin to the fields on the code-generated
R class that you get from the Android build tools

	The data types should roughly match the JSON input, so if the JSON
has a number, we emit an appropriate numeric data type (e.g., double),
otherwise we emit a String

Crafting the Plugin
The plugin itself is based upon the PluginStub sample project from
the preceding chapter. In this case, the plugin
is in the staticizer/ module, which once again is a plain Java
module, not an Android application or library module.
The build.gradle file for the staticizer/ module is similar to the
one from the PluginStub sample:

apply plugin: 'groovy'
apply plugin: 'java'

dependencies {
 compile gradleApi()
 compile localGroovy()
 compile 'com.android.tools.build:gradle:2.2.2'
 compile 'com.squareup:javapoet:1.7.0'
 compile 'com.google.code.gson:gson:2.7'
 compile 'com.google.guava:guava:19.0'
}

sourceCompatibility = "1.7"
targetCompatibility = "1.7"

group 'com.commonsware.android'
version '0.0.1'

apply plugin: 'maven'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url: uri('../repository'))
 }
 }
}

(from Gradle/Staticizer/staticizer/build.gradle)
It has four new dependencies:

	the Android Gradle Plugin, as we will be hooking into Android-specific
build tasks

	JavaPoet, for our Java code generation

	Gson, for parsing the JSON

	Google’s Guava library, for some utility classes, specifically for
handling the case conversion of our field names

(Guava has a bit of a bad reputation in Android circles owing to the
large size of the library, but bear in mind that this is a Java module
creating a Gradle plugin, so the Guava code is not running on an Android
device)
We have a com.commonsware.android.staticizer.properties file in
main/resources/META-INF/gradle-plugins/, pointing to a
com.commonsware.android.staticizer.StaticizerPlugin class:

implementation-class=com.commonsware.android.staticizer.StaticizerPlugin

(from Gradle/Staticizer/staticizer/src/main/resources/META-INF/gradle-plugins/com.commonsware.android.staticizer.properties)
The StaticizerPlugin class is implemented in Groovy:

package com.commonsware.android.staticizer

import org.gradle.api.Plugin
import org.gradle.api.Project
import com.android.build.gradle.AppPlugin
import com.android.build.gradle.LibraryPlugin

public class StaticizerPlugin implements Plugin<Project> {
 @Override
 public void apply(Project target) {
 def isApp=target.plugins.hasPlugin AppPlugin
 def isLib=target.plugins.hasPlugin LibraryPlugin

 if (!isApp && !isLib) {
 throw new
 IllegalStateException("This plugin depends upon the com.android.application or com.android.library plugins")
 }

 target.extensions.create('staticizer', StaticizerConfig)

 def variants

 if (isApp) {
 variants=target.android.applicationVariants
 }
 else {
 variants=target.android.libraryVariants
 }

 variants.all { variant ->
 def task=
 target.tasks.create("staticize${variant.name.capitalize()}",
 StaticizerTask)

 task.outputDir=
 new File("${target.buildDir}/generated/source/staticizer/${variant.name}")
 task.group="commonsware"
 task.description="Generate ${variant.name} Java code from JSON"

 variant.javaCompile.dependsOn task
 variant.registerJavaGeneratingTask task, task.outputDir
 }
 }
}

class StaticizerConfig {
 def String packageName
}

(from Gradle/Staticizer/staticizer/src/main/groovy/com/commonsware/android/staticizer/StaticizerPlugin.groovy)
Here, we:

	Validate that the module also has the com.android.application or
com.android.library plugins

	Create a staticizer extension object, using the StaticizerConfig
class, to allow a module using this plugin to give us a packageName
to use for generating the Java class files

	Get the build variants for the library or application

	Iterate over those variants and create a custom task for each, using
a StaticizerTask class that we will see shortly

Each task is given a name based on the build variant name
(e.g., staticizerDebug), courtesy of Groovy’s string interpolation
(${} syntax), the name property of the build variant, and
the capitalize() method to capitalize the first letter.
We need to tell the task where it should write the Java code to. If you
look in build/generated/source/ for a typical Android module, you will
see a bunch of directories of generated source files. The top
directory will be an indication of what the source pertains to
(e.g., r for the R class, buildConfig for the BuildConfig class).
In there, you will see subdirectories by build variant (e.g., buildConfig/debug/),
and in there will be a typical Java package directory tree leading to
source code. So, we follow the same basic pattern:

	Get the build/ directory via target.buildDir

	Append generated/source/ to get to the standard location for
generated source code

	Append staticizer/ to give us a hopefully-unique directory of source

	Append the variant name so that each variant’s edition of this task
has its own output directory

We also:

	Associate the task with a commonsware group

	Give the task a description, blending in the build variant name for fun

	Say that the standard Java compilation task depends upon this new task,
so our task will run before the Java code gets compiled

	Indicate that our task is generating Java source code
(registerJavaGeneratingTask)

Writing the Task
StaticizerTask is a separate Groovy-defined class, extending DefaultTask,
that serves as the task implementation:

package com.commonsware.android.staticizer

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.InputDirectory
import org.gradle.api.tasks.OutputDirectory
import org.gradle.api.tasks.TaskAction
import org.gradle.api.tasks.incremental.IncrementalTaskInputs

public class StaticizerTask extends DefaultTask {
 @InputDirectory
 File inputDir=new File(project.getProjectDir(), "src/main/staticizer")

 @OutputDirectory
 File outputDir

 @TaskAction
 public void execute(IncrementalTaskInputs inputs) {
 if (!project.staticizer.packageName) {
 throw new IllegalStateException('staticizer.packageName is undefined!')
 }

 def staticizer=new Staticizer();

 for (File input : inputDir.listFiles()) {
 if (!input.name.startsWith(".")) {
 staticizer.generate(input, outputDir,
 project.staticizer.packageName);
 }
 }
 }
}

(from Gradle/Staticizer/staticizer/src/main/groovy/com/commonsware/android/staticizer/StaticizerTask.groovy)
This class has two fields. One, outputDir, is populated by StaticizerPlugin
based on our build variant. The other, inputDir, is populated by:

	Getting the module’s root directory via getProjectDir() on the
project (where project is an inherited field pointing to the Project)

	Appending src/main/staticizer as being the directory where we expect
to find the JSON files to convert into Java code

This does not take into account build variants, so we cannot have separate
JSON in a debug/ source set, for example. A fully production-grade
version of this plugin would handle that.
The @InputDirectory and @OutputDirectory annotations tell Gradle
the roles of these directories. In particular, Gradle uses this to determine
whether our outputs are up to date with respect to our inputs, and therefore
whether this task is needed or can be skipped.
The execute() method is annotated with @TaskAction and represents
the entry point into the task. There, we:

	Confirm that we have a packageName in the staticizer extension
object, though production-grade code would validate that this is
a valid Java package name

	Create a Java Staticizer object that will do the actual code
generation

	Iterate over all files in the inputDir, throw out those
beginning with . (to filter out . and .., along with any
leading-dot “hidden files”), and call generate() on the Staticizer
for each

Production-grade code would confirm that the files are files and do
something useful with subdirectories (e.g., recurse into them).
Between the StaticizerPlugin and StaticizerTask, we have implemented
the Gradle plugin code. Staticizer itself knows nothing about Gradle.
Its generate() method just knows that it is to take an input file,
generate a Java output file, and use a certain Java package while doing
so. Hence, Staticizer could be used in other ways (e.g., command-line
interface), tested separately, etc.
Generating Java Code
After all of that setup, the actual work of generating Java code
is almost anti-climactic. Partly, that is due to the power of JavaPoet.
Partly, that is due to the limited nature of the sample.
Staticizer is a plain Java class. Its execute() method is responsible
for parsing the JSON and writing the corresponding Java code out to the
designated location:

 void generate(File input, File outputDir,
 String packageName) throws IOException {
 Type type=
 new TypeToken<LinkedHashMap<String,Object>>() {}.getType();
 LinkedHashMap<String, Object> data=
 new Gson().fromJson(new FileReader(input), type);
 String basename=removeExtension(input.getAbsolutePath());
 TypeSpec.Builder builder=TypeSpec.classBuilder(basename)
 .addModifiers(Modifier.PUBLIC, Modifier.FINAL);

 for (Map.Entry<String, Object> entry : data.entrySet()) {
 String fieldName=
 CaseFormat.LOWER_CAMEL
 .to(CaseFormat.UPPER_UNDERSCORE, entry.getKey());
 FieldSpec.Builder field;

 if (entry.getValue() instanceof Float) {
 field=FieldSpec.builder(TypeName.FLOAT, fieldName)
 .initializer("$L", entry.getValue());
 }
 else if (entry.getValue() instanceof Double) {
 field=FieldSpec.builder(TypeName.DOUBLE, fieldName)
 .initializer("$L", entry.getValue());
 }
 else if (entry.getValue() instanceof Integer) {
 field=FieldSpec.builder(TypeName.INT, fieldName)
 .initializer("$L", entry.getValue());
 }
 else if (entry.getValue() instanceof Long) {
 field=FieldSpec.builder(TypeName.LONG, fieldName)
 .initializer("$L", entry.getValue());
 }
 else if (entry.getValue() instanceof Boolean) {
 field=FieldSpec.builder(TypeName.BOOLEAN, fieldName)
 .initializer("$L", entry.getValue());
 }
 else {
 field=FieldSpec.builder(String.class, fieldName)
 .initializer("$S", entry.getValue().toString());
 }

 field.addModifiers(Modifier.PUBLIC, Modifier.STATIC, Modifier.FINAL)
 .build();

 builder.addField(field.build());
 }

 JavaFile.builder(packageName, builder.build())
 .build()
 .writeTo(outputDir);
 }

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
Let’s take this a piece at a time.
We have no idea what the JSON will look like, other than it should be
a JSON object (versus being an array). The first few lines go through
a typical Gson recipe to convert the JSON into a Map representing
that object:

 Type type=
 new TypeToken<LinkedHashMap<String,Object>>() {}.getType();
 LinkedHashMap<String, Object> data=
 new Gson().fromJson(new FileReader(input), type);

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
The Java class name should match the JSON file name, just without the
extension. The removeExtension() method is a simple algorithm for
giving us the base name of the JSON file:

 // inspired by http://stackoverflow.com/a/990492/115145

 private static String removeExtension(String s) {
 String result;

 int sepIndex=
 s.lastIndexOf(System.getProperty("file.separator"));

 if (sepIndex==-1) {
 result=s;
 }
 else {
 result=s.substring(sepIndex+1);
 }

 int extIndex=result.lastIndexOf(".");

 if (extIndex!=-1) {
 result=result.substring(0, extIndex);
 }

 return(result);
 }

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
We are looking to create a Java class. For that, JavaPoet offers
TypeSpec.classBuilder(), which gives us a TypeSpec.Builder set up
to build a class with the supplied name. We call addModifiers()
to indicate that the class should be public and final (meaning
that the class cannot be subclassed):

 TypeSpec.Builder builder=TypeSpec.classBuilder(basename)
 .addModifiers(Modifier.PUBLIC, Modifier.FINAL);

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
We then iterate over all the entries in the Map loaded by Gson. For
each, we want to define a field in our Java class. For that, we will
need the field name, which should be the name of the attribute in the
JSON object, but with the camelCase name replaced by
ITS_ALL_CAPS_EQUIVALENT. Guava has a CaseFormat class that encapsulates
this sort of conversion, so we indicate that we want to convert from
“lower camel” formatting to “upper underscore” formatting:

 String fieldName=
 CaseFormat.LOWER_CAMEL
 .to(CaseFormat.UPPER_UNDERSCORE, entry.getKey());

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
We then need to set up a FieldSpec.Builder for the field that we want
to add. Just as JavaPoet’s TypeSpec generates a Java type (class, interface,
etc.), FieldSpec generates a field within a type.
However, one of the parameters of the FieldSpec.builder() method is
the data type of the resulting field. Gson has its own algorithm for
determining what data type to use for the values it parses. So, we
use instanceof to determine the type of the attribute value, and we
use that to determine how to set up the FieldSpec.Builder. For example,
we use this code if the value is a Double:

 else if (entry.getValue() instanceof Double) {
 field=FieldSpec.builder(TypeName.DOUBLE, fieldName)
 .initializer("$L", entry.getValue());
 }

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
We tell FieldSpec.builder() to give us a FieldSpec.Builder set up
to define a double field whose name is the fieldName that we got
from the CaseFormat conversion of the attribute name. We specifically
want that field to be initialized with the value itself, and for numeric
or boolean fields, the JavaPoet syntax for that is to pass $L to initializer(),
along with the value to be initialized.
If the value we got from Gson does not appear to be a number or a boolean,
we treat it as a String:

 else {
 field=FieldSpec.builder(String.class, fieldName)
 .initializer("$S", entry.getValue().toString());
 }

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
Here, $S teaches JavaPoet to examine the String that we supply
and add in any escape sequences that might be needed (e.g., for embedded
quotation marks).
No matter what the type of the field is, we indicate that it should
be public static final via an addModifiers() call, before
adding the field to the class:

 field.addModifiers(Modifier.PUBLIC, Modifier.STATIC, Modifier.FINAL)
 .build();

 builder.addField(field.build());

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
After processing the entire JSON object, we create a JavaFile.Builder,
teaching it the Java package name plus the type that goes into the file,
and we write the resulting JavaFile out to outputDir:

 JavaFile.builder(packageName, builder.build())
 .build()
 .writeTo(outputDir);

(from Gradle/Staticizer/staticizer/src/main/java/com/commonsware/android/staticizer/Staticizer.java)
JavaFile will handle all the details of creating the appropriate set of
subdirectories underneath outputDir based upon the Java package name.
Note that while developing this sort of logic, if you change your
code-generation algorithm, you will need to clean your project as part
of trying out the revised code. Gradle compares input and output to see
if changes are needed, but it does not take the age of the plugin into
account, and so it will not realize that your output would differ not
because of changes to the input, but due to changes in the algorithm used
to generate the output.
Using the Generated Code
The app/ module in this project then uses the plugin, assuming that
we have run uploadArchives in the plugin’s module to publish
the plugin to the local repository:

buildscript {
 repositories {
 jcenter()
 maven {
 url uri('../repository')
 }
 }
 dependencies {
 classpath 'com.commonsware.android:staticizer:0.0.1'
 }
}

apply plugin: 'com.android.application'
apply plugin: 'com.commonsware.android.staticizer'

staticizer {
 packageName 'com.commonsware.android.staticizer.demo'
}

android {
 compileSdkVersion 25
 buildToolsVersion '26.0.2'
 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"
 }
}

(from Gradle/Staticizer/app/build.gradle)
We configure packageName on staticizer to be the same Java package
that our activity source code happens to reside in, though that
is not required.
We need to add the staticizer/ directory to the main/ source set
and add in whatever JSON files we want, with appropriate filenames
for the Java classes that we want to generate.
Then, our application code can refer to our custom-generated Java
class (TestData in this case), the same way that it can refer to R, BuildConfig, or
other Java classes generated by the standard Android build tools:

package com.commonsware.android.staticizer.demo;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 TextView tv=(TextView)findViewById(R.id.some_string);

 tv.setText(TestData.FOO);
 tv=(TextView)findViewById(R.id.version_code);
 tv.setText(Double.toString(TestData.VERSION_CODE));
 }
}

(from Gradle/Staticizer/app/src/main/java/com/commonsware/android/staticizer/demo/MainActivity.java)
Advanced Gradle for Android Tips
There are lots of things you can do given a full scripting language
as the basis for your build system. This chapter represents a collection
of tips for things that you can do that go beyond stock capabilities
provided by the Android Gradle Plugin.
Prerequisites
Understanding this chapter requires that you have read the chapters that
introduce Gradle and cover
basic Gradle/Android integration, including
the project structure.
Gradle, DRY
Ideally, your build scripts do not repeat themselves any more than is
logically necessary. For example, a project and sub-projects probably
should use the same version of the build tools, yet by default, we
define them in each build.gradle file. This section outlines some
ways to consolidate this sort of configuration.
It’s build.gradle All The Way Down
If you have sub-projects, you can have build.gradle files at
each level of your project hierarchy. Your top-level build.gradle
file is also applied to the sub-projects when they are built.
In particular, you can “pass data” from the top-level build.gradle
file to sub-projects
by configuring the ext object via a closure.
In the top-level build.gradle file, you
would put common values to be used:

ext {
 compileSdkVersion=26
}

(note the use of the = sign here)
Sub-projects can then reference rootProject.ext to retrieve
those values:

android {
 compileSdkVersion rootProject.ext.compileSdkVersion
}

By this means, you can ensure that whatever needs to be synchronized
at build time is synchronized, by defining it once.
Another way that a top-level build.gradle file can configure
subprojects is via the subprojects closure. This contains
bits of configuration that will be applied to each of the
subprojects as a part of their builds.
Note that subprojects applies to all sub-projects (a.k.a., modules), which limits its
utility. For example, a top-level project with one sub-project for an app
and another sub-project for a library used by that app cannot readily use
subprojects. That is because the library sub-project needs to configure
the com.android.library plugin, while the application sub-project needs to
configure the com.android.application plugin. The subprojects closure is only good for
common configuration to apply to all sub-projects regardless of project type.
gradle.properties
Another approach would be to add a gradle.properties file
to your project root directory. Those properties are automatically read
in and would be available up and down your project hierarchy.
Per-developer properties can go in a gradle.properties file in the
user’s Gradle home directory (e.g., ~/.gradle on Linux), where they
will not be accidentally checked into version control.
So, to achieve the synchronized compileSdkVersion value, you could
have a gradle.properties file with:

COMPILE_SDK_VERSION=26

Then, your projects’ build.gradle files could use:

android {
 compileSdkVersion COMPILE_SDK_VERSION
}

Custom Properties Files
You are also welcome to use your own custom properties files. For example,
perhaps you want to use gradle.properties for properties that you are willing
to put in version control (e.g., BUILD_TOOLS_VERSION), but you would also
like to use a properties file to keep your code-signing details outside of
your build.gradle file and out of version control.
Loading in custom properties files is slightly clunky, as it does not appear
to be built into Gradle itself. However, you can take advantage of the fact
that Gradle is backed by Groovy and use some ordinary Groovy code to load
the properties.

def keystorePropertiesFile = file('keystore.properties')
def keystoreProperties = new Properties()
keystoreProperties.load(new FileInputStream(keystorePropertiesFile))

These three lines create a java.util.Properties object from a keystore.properties
file located in the module’s directory. Individual properties can be read
using <> syntax, the same as Groovy uses for a Map:

signingConfigs {
 release {
 keyAlias keystoreProperties['keyAlias']
 keyPassword keystoreProperties['keyPassword']
 storeFile file(keystoreProperties['storeFile'])
 storePassword keystoreProperties['storePassword']
 }
}

This fills in the signing configuration from the keystore.properties values,
assuming that the keystore.properties file itself has the appropriate
properties:

storePassword=81016168
keyPassword=9f353470
keyAlias=foo
storeFile=release.jks

Now, your signing information is not in build.gradle, and you can keep
a fake keystore.properties in version control (where the properties have
invalid values), enough to allow Gradle to process the build.gradle file
but not allow for app signing. The machine designated for doing official
builds would have the real keystore.properties file and associated keystore.
Environment Variables
Any environment variables with a prefix of ORG_GRADLE_PROJECT_ will show up
as global variables in your Gradle script. So, for example, you can access
an environment variable named ORG_GRADLE_PROJECT_foo by accessing a foo
variable in build.gradle.
If you would prefer to use environment variables without that prefix,
you can call System.getenv(), passing in the name of the environment variable,
to retrieve its value.
Note, however, that you may or may not have access to the environment variables
that you think you should. Android Studio, for example, does not expose
environment variables to Gradle for its builds, and so an environment variable
that you can access perfectly well from the command line may not be available
in the same build.gradle script when run from Android Studio.
Automating APK Version Information
Once the Android Gradle Plugin started catching on, one of the first things
many developers raced to do was automate the android:versionCode
and android:versionName properties from the manifest. Since those
can be defined in a Gradle file (overriding values from any
AndroidManifest.xml files), and since Gradle is backed by Groovy, it
is possible to programmatically assign values to those properties.
This section outlines a few approaches to that problem.
Auto-Incrementing the versionCode
Since the android:versionCode is a monotonically increasing integer,
one approach for automating it is to simply increment it on each build.
While this may seem wasteful, two billion builds is a lot of builds,
so a solo developer is unlikely to run out. Synchronizing such versionCode
values across a team will get a bit more complex, but for an individual
case (developer, build server, etc.), it is eminently doable using Groovy.
The
Gradle/Versioning
sample project uses a version.properties file as the backing store for the
version information:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 26
 buildToolsVersion '26.0.2'

 def versionPropsFile = file('version.properties')
 def Properties versionProps = new Properties()

 if (versionPropsFile.canRead()) {
 versionProps.load(new FileInputStream(versionPropsFile))
 }
 else {
 versionProps['VERSION_CODE']='0'
 }

 def code = versionProps['VERSION_CODE'].toInteger() + 1

 versionProps['VERSION_CODE']=code.toString()
 versionProps.store(versionPropsFile.newWriter(), null)

 defaultConfig {
 minSdkVersion 21
 targetSdkVersion 26
 versionCode code
 versionName "1.1"
 }
}

(from Gradle/Versioning/app/build.gradle)
First, we try to open a version.properties file. If we find it, we read it
in. Otherwise, we initialize our java.util.Properties object with a VERSION_CODE
of 0, simulating a starting point.
The script then increments the old value by 1 to get the new code to use.
The revised code is then written back to the properties file before it
is applied in the defaultConfig closure.
The result is that our versionCode is automatically incremented, and you
can see the value change in the version.properties file that is generated
into the app/ module directory:

#Sat Nov 04 12:44:54 EDT 2017
VERSION_CODE=3

(from Gradle/Versioning/app/version.properties)
Adding to BuildConfig
The Android development tools have been code-generating the
BuildConfig class for some time now. Historically, the sole element of
that class was the DEBUG flag, which is true for a debug
build and false otherwise. This is useful for doing runtime
changes based upon build type, such as only configuring
StrictMode in debug builds.
Nowadays, the Android Gradle Plugin also defines things like:

	
BUILD_TYPE, which is the build type used to build this APK.

	
FLAVOR, which is the product flavor used to build this APK.

	
APPLICATION_ID, which is the name that serves as the application ID
(i.e., it includes build type suffixes and product flavor overrides). This
is useful for cases where you cannot just call getPackageName() on a
Context because you do not have a handy Context.

	
VERSION_CODE, which is the version code derived from your manifest in
conjunction with any overrides coming from your build.gradle file.

	
VERSION_NAME, which is the version name derived from your manifest in
conjunction with any overrides coming from your build.gradle file.

However, you can add your own data members to BuildConfig, by
including a buildConfigField statement in the defaultConfig closure
of your android closure:

android {
 defaultConfig {
 buildConfigField "int", "FOO", '5'
 }
}

You can use this to embed any sort of information you want
into BuildConfig, so long as it is knowable at compile time.
Moreover, you can also have buildConfigField statements in build
types. This would be useful if you have custom build types,
beyond just debug and release, and you need runtime configuration
for those. For example, you could put server URLs in buildConfigField,
so your debug server is different from your integration test server,
which in turn is different than your production server.
For example, in the chapter on SSL, we will see a sample
app for demonstrating network security configuration, a way that apps
can restrict their Internet access (e.g., require SSL for everything)
and support custom SSL certificates (e.g., self-signed certificates for
an internal test server). The
Internet/CA
sample project that we will see there has a long list of product flavors,
and each of them defines a particular server URL to test against:

apply plugin: 'com.android.application'

def WARES='"https://wares.commonsware.com/excerpt-7p0.pdf"'
def SELFSIGNED='"https://scrap.commonsware.com:3001/excerpt-7p0.pdf"'

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 17
 targetSdkVersion 27
 }

 flavorDimensions "default"

 productFlavors {
 comodo {
 dimension "default"
 resValue "string", "app_name", "CA Validation Demo"
 applicationId "com.commonsware.android.downloader.ca.comodo"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_comodo']
 buildConfigField "String", "URL", WARES
 }
 verisign {
 dimension "default"
 resValue "string", "app_name", "Invalid CA Validation Demo"
 applicationId "com.commonsware.android.downloader.ca.verisign"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_verisign']
 buildConfigField "String", "URL", WARES
 }
 system {
 dimension "default"
 resValue "string", "app_name", "System CA Validation Demo"
 applicationId "com.commonsware.android.downloader.ca.system"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_verisign_system']
 buildConfigField "String", "URL", WARES
 }
 pin {
 dimension "default"
 resValue "string", "app_name", "Cert Pin Demo"
 applicationId "com.commonsware.android.downloader.ca.pin"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_pin']
 buildConfigField "String", "URL", WARES
 }
 invalidPin {
 dimension "default"
 resValue "string", "app_name", "Cert Pin Demo"
 applicationId "com.commonsware.android.downloader.ca.invalidpin"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_invalid_pin']
 buildConfigField "String", "URL", WARES
 }
 selfSigned {
 dimension "default"
 resValue "string", "app_name", "Self-Signed Demo"
 applicationId "com.commonsware.android.downloader.ca.ss"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_selfsigned']
 buildConfigField "String", "URL", SELFSIGNED
 }
 override {
 dimension "default"
 resValue "string", "app_name", "Debug Override Demo"
 applicationId "com.commonsware.android.downloader.ca.debug"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_override']
 buildConfigField "String", "URL", SELFSIGNED
 }
 }
}

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.android.support:support-v13:27.0.2'
 implementation 'com.commonsware.cwac:provider:0.5.3'
 implementation 'com.commonsware.cwac:netsecurity:0.4.4'
}

(from Internet/CA/app/build.gradle)
In this case, to reduce repetition, the two possible values are defined as
globals and are poured into BuildConfig.URL via the buildConfigField
statements.
Testing with JUnit4
Presumably, you will want to test your code, beyond just playing
around with it yourself by hand. Android offers several means of
testing your app, covered in this next series of chapters.
The first Android SDK testing solution we will examine is the JUnit test framework.
This is a standard Java unit testing framework. Originally, Android
itself “baked in” a copy of JUnit3. This has since been deprecated,
and modern Android testing is done with a separate copy of JUnit4,
in the form of a AndroidJUnitRunner class.
In this chapter, we will review how to apply the AndroidJUnitRunner
to run JUnit4 tests for our Android apps.
Prerequisites
Understanding this chapter requires that you have read
the core chapters of the book.
This chapter also assumes you have some familiarity with JUnit, though you
certainly do not need to be an expert. You can learn more about JUnit
at the JUnit site.
Instrumentation Tests and Unit Tests
There are two places in Android app development where we use JUnit4:
instrumentation tests and unit tests. Both serve the same objective:
confirm that our code runs as expected. What differs in where the
code lives (androidTest versus test source sets) and where the
code runs (inside of Android or on your development machine directly).
The following sections outline the differences between the two, though
there is a separate chapter dedicated to unit testing,
with the bulk of this chapter focused on instrumentation testing.
Where Your Test Code Lives
One common problem with testing is determining where the test code should
reside, relative to the production code being tested. Ideally, these are
not intermingled, as that would increase the odds that you might accidentally
ship the testing code as part of your production app — at best, this increases
your APK size; at worst, it could open up security flaws.
With Gradle-based projects, including those created for Android Studio,
we have a dedicated source set for our instrumentation tests, named
androidTest, where
the code for those tests would reside.
As with any source set, androidTest can have Java code, resources,
etc. It does not
need an AndroidManifest.xml file, though, as that will be auto-generated.
Unit tests, by contrast, will go in a test source set.
Where Your Test Code Runs
Ordinarily, each code base (e.g., project) is packaged in its own APK and is
executed in its own process.
In the case of instrumentation tests,
your test code and your production code
are combined into a single process in a single copy of the virtual machine.
This will allow your JUnit test methods to access objects from your production
code, such as your activities and their widgets.
However, this does limit instrumentation testing to be run from a developer’s
computer. You cannot package JUnit tests to be initiated from the device itself,
except perhaps on rooted devices.
Unit tests, on the other hand, bypass Android and run straight on your
development machine. As a result, they cannot use much of the Android SDK,
and so these tests are limited in terms of what they can test. However,
they will run much more quickly, and so it may be worthwhile to set up
a subset of your tests as unit tests.
Writing JUnit4 Test Cases
As noted in the intro to the chapter, modern Android testing — both
instrumentation testing and unit testing — is done through JUnit4.
This book does not attempt to cover all aspects of JUnit4. For that,
you are encouraged to read the JUnit documentation
or other books on Java testing. This chapter will cover some of
the basics of using JUnit4 tests, plus some of the issues with using
JUnit4 tests in Android.
The Class
In JUnit terminology, “test case” is a Java class
that represents a set of tests to run.
Any Java class can serve as a test case, so long as it has a zero-argument
public constructor and is known to the test runner that it contains tests
to be run. In the case of JUnit4 on Android, that comes via a
@RunWith(AndroidJUnit4.class) annotation on the class, to signal that
this class contains tests:

@RunWith(AndroidJUnit4.class)
public class ICanHazTests {
 // test code goes here
}

The Test Methods
In JUnit, a “test method” is a method, in a test case,
that tests something in some production code base.
In JUnit4, a test method is any public method that is annotated
with the @Test annotation:

@RunWith(AndroidJUnit4.class)
public class ICanHazTests {
 @Test
 public void kThxBye() {
 // do some testing
 }
}

A test method can then execute code to see if it works, and “assert”
some conditions (“the response from the foo() method should be 1”).
JUnit4 supplies an Assert class with static assertion
methods that we can employ:

@RunWith(AndroidJUnit4.class)
public class SillyTest {
 @Test
 public void thisIsReallySilly() {
 Assert.assertEquals("bit got flipped by cosmic rays", 1, 1);
 }
}

assertEquals() takes either two parameters of the same type
for comparison (e.g., two int values), or three parameters,
where the first is a custom assertion failure message.
There are countless other methods on Assert (e.g., assertNotNull())
for testing objects, collections, etc.
Setup and Teardown
A JUnit test case can also have methods that represent “setup” and
“teardown” work. A “setup” method is one that executes before test
methods and helps establish a common environment to be used by all
of the test methods. A “teardown” method is one that is run after
test methods and is used to clean up things created by the “setup”
method. The objective is to ensure that each test method has a consistent
and expected environment (e.g., contents of databases).
In JUnit4, you can annotate methods with @Before and @After
for per-test-method setup and teardown work. The @Before method will
be invoked before each test method is called; the @After method will
be invoked after each test method is called.
JUnit4 also offers static @BeforeClass
and @AfterClass methods, which are invoked once for the entire test
case, designed for setting up immutable starter data for test methods
and avoiding the overhead of doing that work on each test method
invocation.
The Testing/JUnit4
sample project illustrates the basics of setting up JUnit4 instrumentation
tests.
We start off with a test case that is, well, silly:

package com.commonsware.android.abf.test;

import android.support.test.runner.AndroidJUnit4;
import junit.framework.Assert;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
public class SillyTest {
 @BeforeClass
 static public void doThisFirstOnlyOnce() {
 // do initialization here, run once for all SillyTest tests
 }

 @Before
 public void doThisFirst() {
 // do initialization here, run on every test method
 }

 @After
 public void doThisLast() {
 // do termination here, run on every test method
 }

 @AfterClass
 static public void doThisLastOnlyOnce() {
 // do termination here, run once for all SillyTest tests
 }

 @Test
 public void thisIsReallySilly() {
 Assert.assertEquals("bit got flipped by cosmic rays", 1, 1);
 }
}

(from Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/SillyTest.java)
All we have is a single test method — thisIsReallySilly() — that validates that 1 really
does equal 1. Fortunately, this test usually succeeds. Our SillyTest
also implements @Before, @After, @BeforeClass, and @AfterClass
methods for illustration purposes,
as there is little preparation needed for our rigorous and demanding test method.
Testing Activities
JUnit4 offers “test rules”, which are packaged bits of reusable code for
testing certain scenarios. For example, the Android rules artifact
has an ActivityTestRule to help you test your activities.
For example, DemoActivityRuleTest tests an activity from the main
app, where the activity has a ListView with 25 Latin words in it:

package com.commonsware.android.abf.test;

import android.support.test.rule.ActivityTestRule;
import android.support.test.runner.AndroidJUnit4;
import android.widget.ListView;
import com.commonsware.android.abf.ActionBarFragmentActivity;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
public class DemoActivityRuleTest {
 private ListView list=null;
 @Rule public final ActivityTestRule<ActionBarFragmentActivity> main
 =new ActivityTestRule(ActionBarFragmentActivity.class, true);

 @Before
 public void init() {
 list=main.getActivity().findViewById(android.R.id.list);
 }

 @Test
 public void listCount() {
 Assert.assertEquals(25, list.getAdapter().getCount());
 }
}

(from Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
The @Rule annotation tells JUnit4 that this data member represents
a JUnit4 rule that should be applied to the tests in this test case.
ActivityRuleTest takes over the work of creating and destroying
an instance of our ActionBarFragmentActivity as part of standard
@Before and @After processing. The true in the ActivityTestRule
constructor simply indicates that we want the activity to start off in
touch mode.
We then use a @Before method to retrieve the ListView itself.
We retrieve the activity created by the rule by calling getActivity()
on the rule itself (here called main). Anything that is public
on our activity — including most of the methods that we inherit from
Activity — is usable here, such as findViewById().
Our test method — listCount() — just confirms that our ListAdapter
has 25 items in it.
Testing Context-Dependent Code
Sometimes, you do not need an activity, just some Context, for testing
code that takes one as input (e.g., file I/O, database I/O, resources,
assets).
In those cases, you can just create a plain JUnit4 test case, but
use the InstrumentationRegistry to get at a suitable Context for
your test methods.
Specifically, wherever you need a Context tied to your app that
you are testing, call
InstrumentationRegistry.getTargetContext().
The InstrumentationRegistry also has getInstrumentation()
(which returns the Instrumentation object that
we are using for testing) and
getContext() (which returns the Context for our test code’s package).
DemoContextTest demonstrates this:

package com.commonsware.android.abf.test;

import android.support.test.InstrumentationRegistry;
import android.support.test.runner.AndroidJUnit4;
import android.test.AndroidTestCase;
import android.test.UiThreadTest;
import android.view.LayoutInflater;
import android.view.View;
import com.commonsware.android.abf.R;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
public class DemoContextTest {
 private View field=null;
 private View root=null;

 @Before
 public void init() {
 InstrumentationRegistry.getInstrumentation().runOnMainSync(new Runnable() {
 @Override
 public void run() {
 LayoutInflater inflater=LayoutInflater
 .from(InstrumentationRegistry.getTargetContext());

 root=inflater.inflate(R.layout.add, null);
 }
 });

 root.measure(800, 480);
 root.layout(0, 0, 800, 480);

 field=root.findViewById(R.id.title);
 }

 @Test
 public void exists() {
 Assert.assertNotNull(field);
 }

 @Test
 public void position() {
 Assert.assertEquals(0, field.getTop());
 Assert.assertEquals(0, field.getLeft());
 }
}

(from Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoContextTest.java)
Here, we manually inflate the contents of the res/layout/add.xml resource, and lay them
out as if they were really in an activity, via calls to measure() and layout() to
simulate a WVGA800 display. At that point, we can start testing the widgets inside
of that layout, from simple assertions to confirm that they exist, to testing their
size and position.
Note that the act of inflating the layout is performed inside a
Runnable, which itself is passed to runOnMainSync() on an Instrumentation.
runOnMainSync() says “run this code on the main application thread,
then block the current thread until that code has completed”. On some versions
of Android, layout inflation needs to happen on the main application thread,
and therefore the test is more reliable if we do that inflation via
runOnMainSync(). Test methods themselves run on a background thread,
not the main application thread.
Configuring Gradle
Beyond having test code, we also need to provide some configuration
information to Gradle to allow us to run these tests, eventually.
The Test Dependency
First, you need to add a test dependency — a dependency that will
only be used as part of instrumentation testing. That can be accomplished
via an androidTestImplementation statement in the dependencies closure,
instead of a implementation statement, to limit the scope of the dependency to
the case where the androidTest source set is in use.
Specifically, we need the
com.android.support.test:rules artifact from the Android
Support Repository:

dependencies {
 implementation "com.android.support:support-fragment:27.0.2"
 androidTestImplementation 'com.android.support.test:rules:1.0.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1'
}

(from Testing/JUnit4/app/build.gradle)
However, the rules artifact also depends upon some other artifacts available
in public repositories, like Maven Central or Bintray’s JCenter. If
you have one of those set up already — and a typical Android Studio
project will via the top-level build.gradle file — then Gradle will
be able to search those repositories for the dependencies.
The Test Runner
A “test runner”, in JUnit terms, is a piece of code that knows how
to plug into JUnit, execute tests, and collect any exceptions or assertion
failures that result from those tests.
JUnit4 uses a test runner named AndroidJUnitRunner, which we gain access
to through the aforementioned test dependency.
In the defaultConfig closure, we can teach Gradle to use that test runner,
via the testInstrumentationRunner value:

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 testApplicationId "com.commonsware.android.gradle.hello.test"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }
}

(from Testing/JUnit4/app/build.gradle)
The Test Application ID
That defaultConfig closure also specifies a testApplicationId. This
is a replacement value for our applicationId when we are running our
tests. This allows our test build to run without disturbing any other
builds (e.g., standard debug builds) on our test device or emulator.
The convention is to have the testApplicationId be your regular
applicationId (or package from your <manifest>) with .test on
the end, but that is merely a convention.
Running Your Instrumentation Tests
Writing tests is nice. Running tests is nicer. Hence, it would be useful if we could
run our JUnit4 tests.
Android Studio Ad-Hoc Test Runs
You have few options for quickly running one of your instrumentation
tests.
In the Android Studio editor for your test case, each test method
will have a green “run” icon in the gutter. Clicking that will run that
test method on your chosen device or emulator:

[image: Android Studio Per-Method Test Option]

Figure 333: Android Studio Per-Method Test Option
You can also right-click over a test case class, or a Java package containing
test cases, and choose to run the tests cases from the context menu:

[image: Android Studio Per-Class or Per-Package Test Option]

Figure 334: Android Studio Per-Class or Per-Package Test Option
Android Studio Run Configuration
You will see your ad-hoc runs appear in the drop-down list to the left
of the run button in the Android Studio toolbar. That drop-down list
represents your “run configurations”, and you can set one of those
up yourself directly if you wish.
To do that, choose Run >
“Edit Configurations” from the main menu. That will bring up a dialog showing
your current run configurations:

[image: Android Studio Run Configurations Dialog]

Figure 335: Android Studio Run Configurations Dialog
Towards the upper-left corner of the dialog, you will see a green plus sign.
Tapping that will drop down a list of configuration types to choose from:

[image: Android Studio, Adding a New Run Configuration]

Figure 336: Android Studio, Adding a New Run Configuration
Choose “Android Instrumented Tests”, and a new empty configuration will be set up for you.
You can name it whatever you want via the “Name” field (e.g., “Instr Tests”).
Choose your project’s module that you wish to test in the “Module” drop-down
(e.g., app). You can also choose the scope of the testing (e.g., “All in Module”),
where to run the tests (e.g., “Show chooser dialog”), plus other settings.

[image: Android Studio, Showing New Tests Run Configuration]

Figure 337: Android Studio, Showing New “Tests” Run Configuration
At that point, you can choose your run configuration from the drop-down to
the left of the “play” button in the toolbar:

[image: Android Studio Toolbar, Showing Tests Run Configuration]

Figure 338: Android Studio Toolbar, Showing “Tests” Run Configuration
Note that the context menu for a class or package containing test
cases has a “Create …” option for creating a test run configuration
specific for that class or package.
Examining the Test Results
Regardless of how you run the tests, the output will be shown in the
Run view, normally docked in the bottom of your IDE window:

[image: Android Studio, Showing Run Unit Tests Results]

Figure 339: Android Studio, Showing Run Unit Tests Results
If a test fails an assertion or crashes, the test results will show the test
case and test method that failed, along with the associated stack trace:

[image: Android Studio, Showing Run Unit Tests Results With a Failure]

Figure 340: Android Studio, Showing Run Unit Tests Results With a Failure
Gradle for Android
The primary Gradle task that you will use related to testing is connectedCheck.
This task will build the main app, then, build the test app
(using a generated manifest to go along with the code from your
androidTest source set).
At that point, the task will iterate over all compatible connected devices and
running emulator instances. For each such Android environment, the task
will install both apps, run the tests, and uninstall both apps.
Raw test results, in XML format, will be written to
build/outputs/androidTest-results/connected. These will primarily be of interest
to toolsmiths, such as those adding support for Android Gradle-based builds
to continuous integration (CI) servers.
For others, the HTML reports will be of greater use. These will be
written to build/outputs/reports/androidTests/connected, with an index.html
file serving as your entry point. These will show the results of all
of your tests, with hyperlinked pages to be able to “drill down” into the
details, such as to investigate failed tests.
Testing Android Library Projects
The above procedures are aimed at testing Android application projects.
If you are creating an Android library project, you can also use JUnit
for testing.
A Gradle-built Android library project can have an androidTest source set,
just like a regular app. And, a Gradle-built Android library project can
be tested via the connectedCheck task. However, that task will create and
install a single APK, consisting of the code from the androidTest
source set combined with the library project’s own code.
From the standpoint of what you do as a developer, though, it works just
like testing an app: add your test cases to the androidTest source
set and use connectedCheck to run the tests.
Testing and Runtime Permissions
Android 6.0 added the concept of runtime permissions, where permissions with
a protectionLevel of dangerous are not granted automatically, but instead
need to be requested at runtime. Those requests result in a system-supplied
dialog appearing, one that the user is supposed to tap on to grant or deny
your request.
Our instrumentation tests cannot interact with this dialog. Moreover, our
test code is its own separate app, and the first time it is installed, it will
not have the runtime permissions yet. Hence, if we try testing code that
needs those permissions, our tests fail.
There are two major approaches for dealing with this. If you wish to test the
actual UI flow of your runtime permission request logic, you will need to use
UiAutomator to simulate user clicks on the permission dialog.
If, however, your instrumentation tests are focused on logic beneath the UI
layer, you can grant the permissions yourself in your test code, bypassing
any need for the dialog.
This is merely a matter of having the following code snippet in your test
classes:

if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 InstrumentationRegistry
 .getInstrumentation()
 .getUiAutomation()
 .executeShellCommand(String.format("pm grant %s android.permission.READ_EXTERNAL_STORAGE",
 target.getPackageName()));
}

Here, you would replace READ_EXTERNAL_STORAGE with whatever runtime permission you need,
and execute multiple commands if you need to grant multiple permissions.
If you put this in @BeforeClass-annotated methods on your test case classes
that need runtime permissions, you will minimize the amount of time spent
executing this command, while ensuring that the runtime permissions are granted
by the time your test methods exercise code that needs those permissions.
Note that there is a GrantPermissionsRule in the Android Support Library (and AndroidX)
that handles this shell command for you, but as of January 2019, it was described as
“currently in beta”.
The Android Test Orchestrator
By default, when we run our instrumentation tests, Android forks a single
process and runs all the tests in that process. This has two problems:

	Results from previous tests might affect later tests. For example, perhaps
a later test would have caught a bug, but only if some static field were not
initialized… and it was initialized in some earlier test.

	If we crash with an unhandled exception, particularly in a background thread,
our test suite may terminate.

Quietly released in 2017, the
Android Test Orchestrator
addresses this by running
each test method in its own separate process. This clears up these two problems,
though it adds quite a bit of overhead. In particular, anything that you do in
a custom Application subclass, such as in its onCreate() method, now happens
for every test method, rather than just once for each run of your tests.
For Android Studio and Gradle-based tests, setting up the Android Test
Orchestrator is fairly straightforward:

	Make sure that you are using 1.0.1 or higher of the
com.android.support.test:runner library

	Add androidTestUtil 'com.android.support.test:orchestrator:1.0.1' to your
dependencies, where the version number should match that of the
com.android.support.test:runner dependency:

dependencies {
 implementation "com.android.support:support-fragment:27.1.1"
 androidTestImplementation 'com.android.support.test:runner:1.0.1'
 androidTestUtil 'com.android.support.test:orchestrator:1.0.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1'
}

(from Testing/Orchestrator/app/build.gradle)

	Add a testOptions closure to the android closure of your module’s
build.gradle file, requesting the execution of
ANDROID_TEST_ORCHESTRATOR:

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 testApplicationId "com.commonsware.android.gradle.hello.test"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }

 testOptions {
 execution 'ANDROID_TEST_ORCHESTRATOR'
 }
}

(from Testing/Orchestrator/app/build.gradle)
And that’s it. There are no Java code changes required — you write your tests
normally.
The Testing/Orchestrator
sample project is cloned from the JUnit4 sample, with the aforementioned changes,
plus a custom Application class:

package com.commonsware.android.abf;

import android.app.Application;
import android.util.Log;

public class ScrapApp extends Application {
 @Override
 public void onCreate() {
 super.onCreate();

 Log.e("Frosty the Snowman", "Happy Birthday!");
 }
}

(from Testing/Orchestrator/app/src/main/java/com/commonsware/android/abf/ScrapApp.java)
Without the Android Test Orchestrator, the “Happy Birthday!” message would appear
once in LogCat for the entire test suite. With the Android Test Orchestrator,
the message appears once for each test method… and, inexplicably, an eighth
time as well:

12-18 07:38:11.356 11131-11131/com.commonsware.android.abf E/Frosty the Snowman: Happy Birthday!
12-18 07:38:12.438 11159-11159/com.commonsware.android.abf E/Frosty the Snowman: Happy Birthday!
12-18 07:38:14.023 11213-11213/com.commonsware.android.abf E/Frosty the Snowman: Happy Birthday!
12-18 07:38:15.358 11260-11260/com.commonsware.android.abf E/Frosty the Snowman: Happy Birthday!
12-18 07:38:18.454 11316-11316/com.commonsware.android.abf E/Frosty the Snowman: Happy Birthday!
12-18 07:38:19.809 11366-11366/com.commonsware.android.abf E/Frosty the Snowman: Happy Birthday!
12-18 07:38:20.711 11392-11392/com.commonsware.android.abf E/Frosty the Snowman: Happy Birthday!
12-18 07:38:21.635 11418-11418/com.commonsware.android.abf E/Frosty the Snowman: Happy Birthday!

The downside comes in the speed of the tests. Running this short suite under
the Android Test Orchestrator is noticeably slower than running the suite without
the Orchestrator. A test suite measuring in the thousands of test methods will
result in a fair bit of additional overhead, forking thousands of processes instead
of just one.
Testing with Espresso
Basic JUnit4 instrumentation tests are fine for
testing non-UI logic. They even work
acceptably for some basic UI testing. The more complex your UI testing
gets, though, the more likely it is that you will find plain JUnit4
instrumentation tests to be limiting and tedious.
In particular, running tests across activities can be tricky with
ordinary JUnit4. ActivityTestRule is designed for testing a single
activity in isolation, and crafting your own rule that transcends
a single activity may be difficult.
Espresso is designed to simplify otherwise-complex UI testing scenarios,
such as:

	Testing across activities, such as confirming that tapping a ListView
row in one activity correctly launches a detail activity associated
with the model object for that row

	Testing over time, such as waiting for a list to be populated from
a database before actually testing it

In this chapter, we will explore how to set up basic Espresso tests
and how to employ them as part of your overall testing implementation.
Prerequisites
This chapter assumes that you have read
the chapter on JUnit4.
Adding a Shot of Espresso
The
Testing/Espresso
sample project is the home of several test cases that employ Espresso,
so we can see how it works in practice.
The app/ module’s build.gradle file is fairly conventional, reminiscent
of our JUnit4 equivalent, except that we have several
dependencies:

apply plugin: 'com.android.application'

dependencies {
 implementation "com.android.support:support-fragment:27.1.1"
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-contrib:3.0.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 applicationId "com.commonsware.android.espresso"
 testApplicationId "com.commonsware.android.espresso.test"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 testInstrumentationRunnerArguments disableAnalytics: 'true'
 }

 packagingOptions {
 exclude 'LICENSE.txt'
 }
}

(from Testing/Espresso/app/build.gradle)
The sample app has activities for a ListView and a RecyclerView, and
so we implementation in the recyclerview-v7 dependency for that reason.
However, beyond that, there are two androidTest dependencies, to
pull in things needed for instrumentation testing.
The big one is espresso-core, which contains the bulk of the Espresso
test engine. Through Gradle’s transitive dependencies, pulling in espresso-core
also pulls in other key testing artifacts, such as:

	com.android.support.test:runner

	com.android.support.test:rules

	com.android.support:support-annotations

	
junit:junit (indirectly, via com.android.support.test:runner)

Hence, just by asking for espresso-core, we pull in everything
that we need not only for basic Espresso testing but also for
general JUnit4-style instrumentation testing.
The espresso-contrib androidTest dependency is
for testing RecyclerView. That artifact will be discussed
later in this chapter.
The test cases themselves still reside in the androidTest/ source set
and still use @RunWith(AndroidJUnit4.class). Those aspects of
instrumentation testing have not changed, just because we are using
Espresso. And we are able to write classic Espresso-free instrumentation
tests as well — we are not forced to use Espresso for everything,
just because Espresso is part of our environment. So, for example,
SillyTest in this sample project is the same as before:

package com.commonsware.android.abf.test;

import android.support.test.runner.AndroidJUnit4;
import junit.framework.Assert;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
public class SillyTest {
 @BeforeClass
 static public void doThisFirstOnlyOnce() {
 // do initialization here, run once for all SillyTest tests
 }

 @Before
 public void doThisFirst() {
 // do initialization here, run on every test method
 }

 @After
 public void doThisLast() {
 // do termination here, run on every test method
 }

 @AfterClass
 static public void doThisLastOnlyOnce() {
 // do termination here, run once for all SillyTest tests
 }

 @Test
 public void thisIsReallySilly() {
 Assert.assertEquals("bit got flipped by cosmic rays", 1, 1);
 }
}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/SillyTest.java)
Writing Tests in Espresso
Writing Espresso tests is often described as having three main steps:

	Find the widgets you want to examine or manipulate

	Perform actions on those widgets where needed (and where possible)

	Check to see if widgets have a certain state

Finding Widgets via Hamcrest Matchers
Technically speaking, with Espresso, we do not “find widgets”, though
it is often simplest to phrase it that way. A more accurate description
would be “obtain a ViewInteraction object that pertains to a particular
widget”. The ViewInteraction object in turn allows us to perform
actions on the underlying widget and check the widget to see if it
has a certain state.
For simple widgets — basically, ones that do not involve any sort of
collection adapter, like a ListView — you can try to get the
ViewInteraction object via the static onView() method on the
Espresso class. However, the convention is to use a static import
for onView():

import static android.support.test.espresso.Espresso.onView;

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
This allows you to simply call onView() as if it were some global
function, rather than having to put Espresso. on the front of
each occurrence.
The parameter to onView() is a Matcher. Matcher does not come
from the Android SDK. Rather, it comes from
the Hamcrest project. Another
transitive dependency that we get automatically when we pull in
Espresso is Hamcrest’s matcher library.
There are three main sources of matchers that you can use:

	
ViewMatcher contains a number of static methods that return
matchers that find a View with some specific characteristic, such
as withId() to find a View with a particular ID

	Hamcrest’s Matchers class has a series of static methods
that return matchers that help
you combine other matchers (e.g., allOf() to find a View that
matches more than one criteria) or work with plain Java collections
(e.g., empty() to match a collection that is empty)

	Your own custom matchers

For ViewMatcher and Matchers, the pattern is to use static imports
for their methods as well, such as this import of withId():

import static android.support.test.espresso.matcher.ViewMatchers.withId;

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
Here is an Espresso version of the listCount() test from the JUnit4
chapter, where we want to validate that a ListView contains 25
entries:

 @Test
 public void listCount() {
 onView(withId(android.R.id.list))
 .check(new AdapterCountAssertion(25));
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
Ignoring the check() part for now, the onView(withId(android.R.id.list))
part returns a ViewInteraction that is for a View whose ID
is android.R.id.list.
Performing Actions
Given a ViewInteraction, one thing that you can do is ask it to perform()
one or more actions, represented by ViewAction objects. The ViewActions
(note the plural) class contains a series of static methods that create
ViewAction objects. And, once again, the pattern is to use static imports
for those methods.
Here is an Espresso version of the keyEvents() test from the JUnit4
chapter, where we want to validate that pressing the down arrow key
four times selects the proper row:

 @Test
 public void keyEvents() {
 onView(withId(android.R.id.list))
 .perform(pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN))
 .check(new ListSelectionAssertion(3));
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
Ignoring the check() part for now, we retrieve the ListView
using the same onView() code as before. Then, we perform()
four actions generated by the pressKey() method on ViewActions:

import static android.support.test.espresso.action.ViewActions.pressKey;

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
pressKey(), as you might expect, simulates a keypress, given the
KeyEvent. Other popular actions include:

	
click() to simulate a click event

	
typeText() to simulate text entry into an EditText

	
scrollTo() to scroll a ScrollView to the point where some view is visible

	
pressImeActionButton(), to press the action button on the soft
keyboard, to trigger whatever action is tied to that button

perform() will take care of all synchronization with the main application
thread and will ensure that the activity is idle before and after
these actions. perform() returns the ViewInteraction, so you can
chain on other operations, such as check() calls.
Validating via Assertions… And Possibly More Matchers
Of course, the point behind writing tests is to see if something works
or not. That is handled by calling check() on a ViewInteraction,
passing in a ViewAssertion that… well… asserts something. A
ViewAssertion basically wraps the assertion calls that you might
make directly in JUnit4, working with the ViewInteraction to
confirm that the underlying View has some particular state.
Stock Assertions
Compared with the other two phases of writing an Espresso test,
there is very little in the way of useful stock assertions.
The ViewAssertions class contains a few static methods that
create ViewAssertion objects. The one that you will see most
commonly is matches(), which asserts that there is now a View
that matches some supplied matcher, using the same matchers that you
might use for onView(). This is useful for trivial cases (“is there
now a widget whose text is ‘Foo Bar’?”).
To work with matches(), Espresso comes with a number of other
matcher implementations that do not match views, but rather
match something else, such as:

	
CursorMatchers returns matchers that match rows in a Cursor

	
PreferenceMatchers returns matchers that match Preference
objects from a PreferenceScreen

	
BoundedMatcher, from which you can create
your own custom matchers

In addition to ViewAssertions, Espresso has a few additional
classes offering assertions, such as:

	
LayoutAssertions, for asserting things about how widgets
lay out (e.g., confirm these widgets do not overlap)

	
PositionAssertions… also for asserting things about how
widgets lay out (e.g., confirm this widget is to the left of this
other widget)

Custom Assertions
Since Espresso itself does not provide much in the way of assertions,
and since there are few Espresso libraries to help, often you will
have to write your own assertions to complete your tests.
This is a matter of writing a class that implements ViewAssertion and
implements the check() method. check() receives two parameters:

	the View for which you are asserting some state

	a NoMatchingViewException, explaining why the first parameter is
null, if the view could not be found to use with this assertion

Your job in check() is to perform ordinary JUnit4-style assertion
checks on the View, without modifying the View. This latter
part could be tricky, in that you do not necessarily know what does
and does not modify the View. In general, the “do not modify the
View” rule is a best-efforts attempt.
With that in mind, let’s look at some ViewAssertion implementations.
The listCount() test method shown above references an AdapterCountAssertion:

 @Test
 public void listCount() {
 onView(withId(android.R.id.list))
 .check(new AdapterCountAssertion(25));
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
AdapterCountAssertion assumes that it will be given an AdapterView and
should assert that the underlying count matches a particular value:

 static class AdapterCountAssertion implements ViewAssertion {
 private final int count;

 AdapterCountAssertion(int count) {
 this.count=count;
 }

 @Override
 public void check(View view,
 NoMatchingViewException noViewFoundException) {
 Assert.assertTrue(view instanceof AdapterView);
 Assert.assertEquals(count,
 ((AdapterView)view).getAdapter().getCount());
 }
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
The first thing that check() should do is assert whether the passed-in
View is of the appropriate type. Then, it can safely down-cast the
View as needed and perform the “real” assertion. In this case,
AdapterCountAssertion holds onto a count from its constructor and
compares that to getCount() of the adapter in the AdapterView.
The keyEvents() test method referenced a ListSelectionAssertion:

 @Test
 public void keyEvents() {
 onView(withId(android.R.id.list))
 .perform(pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN))
 .check(new ListSelectionAssertion(3));
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
ListSelectionAssertion does the same basic thing as does AdapterCountAssertion,
except it that it validates that the View is a ListView and
compares a known value to getSelectedItemPosition():

 static class ListSelectionAssertion implements ViewAssertion {
 private final int position;

 ListSelectionAssertion(int position) {
 this.position=position;
 }

 @Override
 public void check(View view,
 NoMatchingViewException noViewFoundException) {
 Assert.assertTrue(view instanceof ListView);
 Assert.assertEquals(position,
 ((ListView)view).getSelectedItemPosition());
 }
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
The combination of the test methods themselves and these custom assertions
is significantly more verbose than the equivalent code using ordinary
JUnit4 instrumentation testing:

 @Test
 public void listCount() {
 Assert.assertEquals(25, list.getAdapter().getCount());
 }

 @Test
 public void keyEvents() {
 sendKeys("4*DPAD_DOWN");
 Assert.assertEquals(4, list.getSelectedItemPosition());
 }

(from Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityTest.java)
However, custom assertions can be reused, so while Espresso adds
a fair bit of overhead to small projects, the savings may add up over
larger ones.
The Espresso Test Recorder
The Espresso Test Recorder in Android Studio lets you interact with your app
on a device or emulator, while the Recorder makes notes of what you click on
and writes skeleton Espresso tests for you. The level of GUI testing that you
get is very shallow, but it is exceptionally easy to use.
Starting and Recording
The Run > Record Espresso Test option from the Android Studio main menu will
kick off the Recorder, after asking you to choose a device or emulator on which
to run the app. Your app is run inside the debugger, and an initially-empty
“Record Your Test” window appears:

[image: Espresso Test Recorder Events Window, As Initially Launched]

Figure 341: Espresso Test Recorder Events Window, As Initially Launched
As you tap on widgets in your UI, in addition to those taps doing whatever they
normally do, events are recorded in that window:

[image: Espresso Test Recorder Events Window, With Some Events]

Figure 342: Espresso Test Recorder Events Window, With Some Events
Once you have the app in a state that you want to validate, click the “Add Assertion”
button. This captures a screenshot, albeit
one that is rotated, if your device or emulator is in landscape mode:

[image: Espresso Test Recorder Events Window, After Add Assertion Clicked]

Figure 343: Espresso Test Recorder Events Window, After “Add Assertion” Clicked
A rotated screenshot is unusable; at the present time, the Recorder only really works
if your device is in portrait mode.
To add an assertion, you must first click on a widget in the screenshot that
you want to validate. Alternatively, you can choose the widget from the
“Select an element from screenshot” drop-down list.
Then, the second drop-down will allow you to choose what specific assertion you
want to apply:

	“text is”, to match the text of some TextView (or subclass) with its current value

	“exists”

	“does not exist” (which seems odd, considering that it must exist for you to
be able to use this dialog)

Clicking “Save and Add Another” adds the assertion and lets you define another
one right away:

[image: Espresso Test Recorder Events Window, With One Assertion]

Figure 344: Espresso Test Recorder Events Window, With One Assertion
Clicking “Save Assertion” adds the assertion and returns you to the original
screenshot-less rendition of the dialog.
Click OK in the “Record Your Test” dialog to save and apply the recording.
You will be prompted for a name to give the JUnit4 test class. Also, if your
project is not already set up for Espresso, you will be prompted as to whether
or not the Recorder should add Espresso to your Gradle build files.
What You Get
The resulting class will contain:

	An ActivityTestRule for the activity that you tested

	A test method, named after the activity (e.g., mainActivityTest()) that
contains the Espresso code to validate the activity

	Utility methods as needed by the test method

Is This Worthwhile?
Probably not, at least with the edition of the Recorder in Android Studio 2.3.
The Recorder:

	Does not handle ListView well

	Supports few types of assertions, as noted above

	Does not support landscape mode while recording, as noted above

	Does not do a very good job of uniquely identifying widgets, resulting in
lots of AmbiguousViewMatcherException crashes when you run the tests

	And so on

However, this tool may be fine for trivial user interfaces, and the tool may
improve in future versions of Android Studio.
Stronger Espresso
You can craft some basic tests using the above techniques, even some
not-so-basic tests. However, Espresso offers a fair bit more depth, to
tackle more complex testing scenarios.
This chapter does not offer complete coverage of Espresso, skipping
many topics like testing WebView using the WebDriver Atom system.
That being said, here are some more advanced uses of Espresso that you
may need in your testing.
Testing AdapterView
AdapterView gets complicated because the views that you want to test
may or may not exist in the state that you are expecting. Your targeted
ListView row, for example, may require scrolling and some row recycling
before it exists.
Espresso has a slightly different syntax for testing AdapterView, to
take this into account. Instead of onView(), you use onData().
Whereas onView() takes a Matcher that identifies the view to be
tested, onData() takes a Matcher that identifies the specific view
state in some item of an AdapterView to be tested. However, there are
other approaches that one can take to use onData().
In the sample app, scrollToBottom() in DemoActivityRuleTest tries
to confirm that the last position has the proper last word:

 @Test
 public void scrollToBottom() {
 onData(anything())
 .inAdapterView(withId(android.R.id.list))
 .atPosition(24)
 .check(matches(withText("purus")));
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
The Matcher that we provide into onData() is anything(), which,
as the name suggests, matches anything. However, we constrain which
item to test via atPosition(24), specifying a particular row in the
list based on its position.
onData() will work on the first AdapterView that it finds, since many
activities only have one at most. inAdapterView() allows you to identify
the specific AdapterView that onData() should work with.
The DataInteraction that onData() creates — and is modified by
inAdapterView() and atPosition() — supports the same sort
of check() semantics as does the ViewInteraction returned by onView().
Here, we use matches() to create our assertion, to confirm that the
view identified by the DataInteraction has the word that should appear
at the end of our list.
Testing RecyclerView
RecyclerView is similar enough to AdapterView that you might think
that you would use onData() to work with its contents.
In a word, no.
Instead, you use the same onView() that you use for regular widgets.
In fact, at the time of this writing, the only thing that Espresso offers
specific to RecyclerView is RecyclerViewActions, which knows how
to scroll to a particular item or position, perform actions on items or
positions, and so forth.
The RecyclerViewTest class tests a RecyclerView, from the MainActivity
in the rv sub-package of the sample app. That MainActivity, in turn,
is cloned from the ManualDividerList sample covered in the chapter
on RecyclerView. It is similar to the ListView that we tested
earlier in this chapter, showing a vertical-scrolling list of 25 Latin
words.
One wrinkle with MainActivity, and its RecyclerViewActivity
base class, is that the RecyclerView has no ID. Espresso is much
easier to use when you have widgets with IDs. There are a couple of
ways to get a view with no ID, illustrated in RecyclerViewTest.
The RecyclerView variant of the listCount() test, to confirm that
the list has 25 entries, uses one approach to find the RecyclerView:
the instanceOf() method from the standard Hamcrest matchers:

 @Test
 public void listCount() {
 onView(Matchers.<View>instanceOf(RecyclerView.class))
 .check(new AdapterCountAssertion(25));
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java)
instanceOf() takes the Java class you are seeking as a parameter,
and it tries to find an Object that matches that class. However,
instanceOf() returns a Matcher for Object, and we need a Matcher
for View to satisfy onView(). That is what triggers our need for
the complex type-specific call to instanceOf(), where we tell
Matchers that we want the View-typed version of instanceOf().
onView() with instanceOf() gives us a ViewInteraction on
the RecyclerView. Our revised AdapterCountAssertion checks
the RecyclerView.Adapter in the RecyclerView to validate the
number of items:

 static class AdapterCountAssertion implements ViewAssertion {
 private final int count;

 AdapterCountAssertion(int count) {
 this.count=count;
 }

 @Override
 public void check(View view,
 NoMatchingViewException noViewFoundException) {
 Assert.assertTrue(view instanceof RecyclerView);
 Assert.assertEquals(count,
 ((RecyclerView)view).getAdapter().getItemCount());
 }
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java)
The RecyclerView variant of scrollToBottom() is going to simply confirm
that we can successfully scroll to position 24 — if the list is shorter
than this, we will fail to scroll to that position and have an exception:

 @Test
 public void scrollToBottom() {
 onView(withClassName(is(RecyclerView.class.getCanonicalName())))
 .perform(scrollToPosition(24))
 .check(matches(anything()));
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java)
This time, to find the RecyclerView, we use withClassName(). This
is a method on ViewMatchers, and so it gives us the appropriately-typed
Matcher for use with onView(). However, instead of taking a Java
class, it takes a Matcher of String as a parameter.
The is() method from the standard Hamcrest matchers returns a Matcher
that uses equals() to compare a supplied value (in this case, the fully-qualified
class name for RecyclerView). So, withClassName(is(...)) will find
the view of the designated class given the supplied class name.
Once again, onView() is returning a ViewInteraction on the RecyclerView.
In perform(), we use scrollToPosition(), from RecyclerViewActions, to scroll
the RecyclerView to position 24. RecyclerViewActions itself is not
part of the core Espresso dependency, though. We need to add a dependency
on espresso-contrib instead, as is shown in the module’s build.gradle
file:

apply plugin: 'com.android.application'

dependencies {
 implementation "com.android.support:support-fragment:27.1.1"
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-contrib:3.0.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 applicationId "com.commonsware.android.espresso"
 testApplicationId "com.commonsware.android.espresso.test"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 testInstrumentationRunnerArguments disableAnalytics: 'true'
 }

 packagingOptions {
 exclude 'LICENSE.txt'
 }
}

(from Testing/Espresso/app/build.gradle)
Back in scrollToBottom(), the ViewInteraction created with onView()
and modified via perform() is for the RecyclerView itself, not
the 25th item. Hence, with this structure, we cannot readily check to
see if the 25th item has the proper text. Instead, we settle for ensuring
that it matches anything(), relying on an exception if for some reason
we cannot get to position 24.
Intent Testing
Another optional dependency, espresso-intents, allows you to create what
amount to mocks and stubs for activities to be started from your code
under test. Rather than actually starting those activities, you can
intercept the Intent that would have been used for startActivity()
or startActivityForResult(), to see if it contains what it should.
And, you can provide mock responses to be delivered to onActivityResult()
for testing startActivityForResult() behaviors.
The
Testing/EspressoIntents
sample project is a clone of the ConfigChange/Bundle sample app
from earlier in the book. It has two buttons, Pick and View. Tapping
the Pick button will allow the user to pick a contact out of the
list of contacts. Picking a contact then enables the View button,
which allows the user to view the selected contact. In instrumentation
testing, we want to confirm that the Pick button works as expected.
NOTE: Some of these tests will work on devices and some on emulators –
it depends a bit on what all is installed on that device or emulator.
This app’s build.gradle file pulls in espresso-intents as well
as espresso-core:

apply plugin: 'com.android.application'

dependencies {
 androidTestImplementation 'com.android.support:support-annotations:27.1.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.1'
 androidTestImplementation 'com.android.support.test.espresso:espresso-intents:3.0.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 14
 targetSdkVersion 27
 testApplicationId "com.commonsware.android.rotation.bundle.test"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 testInstrumentationRunnerArguments disableAnalytics: 'true'
 }

 packagingOptions {
 exclude 'LICENSE.txt'
 }
}

(from Testing/EspressoIntents/app/build.gradle)
The IntentTests class in the androidTest source set contains four
test methods, two of which are focused on the pick button and its
results. This requires the IntentTests class to use a different
@Rule: IntentsTestRule:

 @Rule
 public final IntentsTestRule<RotationBundleDemo> main
 =new IntentsTestRule(RotationBundleDemo.class, true);

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
IntentsTestRule extends ActivityTestRule, so on the whole it
behaves the same. However, it has additional hooks for testing
startActivity() and startActivityForResult() with mocks and stubs.
One of the test methods is canceledPick(), designed to test
what happens if the user presses BACK and exits the contact-picker
activity:

 @Test
 public void canceledPick() {
 Instrumentation.ActivityResult result=
 new Instrumentation.ActivityResult(Activity.RESULT_CANCELED,
 null);

 intending(hasAction(Intent.ACTION_PICK)).respondWith(result);

 onView(withId(R.id.pick)).perform(click());

 intended(allOf(
 hasAction(Intent.ACTION_PICK),
 hasData(ContactsContract.Contacts.CONTENT_URI)));

 onView(withId(R.id.view)).check(matches(not(isEnabled())));
 }

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
intending() is a method that we get from Espresso’s Intents class.
It works with the IntentsTestRule to set up a stub with a mock response for
our ACTION_PICK request that the Pick button will invoke via
startActivityForResult(). intending() takes a Matcher of Intent
objects, identifying which request you are interesting in stubbing.
Espresso’s IntentMatchers class has a series of methods to help you
construct an appropriate Matcher. In this case, we use hasAction()
to find our ACTION_PICK request. intending() returns an oddly-named
OngoingStubbing class, which represents the stub. On there, we call
respondWith() to provide the result to feed to onActivityResult().
In this case, our response has RESULT_CANCELED, simulating the user
pressing BACK to exit the contact picker.
We then click the Pick button, by finding it via onView(withId(R.id.pick)),
then calling perform() to click() the button. This triggers our
“production” code to call startActivityForResult(), where our stub
delivers the mock response to onActivityResult().
Then, we validate two things:

	First, did we actually send that Intent? intended() allows us
to inspect what startActivity() and startActivityForResult()
calls were made, to validate that it has the appropriate information.

	Second, is the View button still disabled? It starts off disabled,
but if the user picks a contact, we enable it. In our case, we did
not pick a contact, and so we want to ensure that the button stays
disabled, using matches(not(isEnabled())).

The stubPick() test method tests the opposite scenario, where
the user picks a contact. This time, our result has to have RESULT_OK
and a sufficiently-valid result Intent. In theory, we could have
code here that looks up some random contact in ContactsContract and
uses the Uri for it. In this case, all we need is for the result
Intent to have a Uri, so we just use the ContactsContract.Contacts.CONTENT_URI:

 @Test
 public void stubPick() {
 Instrumentation.ActivityResult result=
 new Instrumentation.ActivityResult(Activity.RESULT_OK,
 new Intent(null, ContactsContract.Contacts.CONTENT_URI));

 intending(hasAction(Intent.ACTION_PICK)).respondWith(result);

 onView(withId(R.id.pick)).perform(click());

 intended(allOf(
 hasAction(Intent.ACTION_PICK),
 hasData(ContactsContract.Contacts.CONTENT_URI)));

 onView(withId(R.id.view)).check(matches(isEnabled()));
 }

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
This time, though, the View button should be enabled, so we confirm
that as part of our test result validation.
If you are looking to stub a startActivity() call, use respondWith()
and any result. The result will wind up being ignored, but failing
to use respondWith() does not result in the stub being created, and
trying a null result crashes Espresso.
Testing Activity Re-Creation and Configuration Changes
Activities get destroyed and re-created by default as a result of a
configuration change. You may want to test that process, to ensure
that you are retaining the right state information, such as via the
onSavedInstanceState() Bundle. You might even want to test
specific configuration changes, such as to confirm that your layouts are
set up properly after the user rotates the screen.
While the techniques outlined here can work with plain JUnit4 testing,
Espresso simplifies the process a bit. A key challenge with testing
this sort of scenario is knowing when the work for the configuration
change is done, so you know it is time to go ahead and test the result.
Espresso automatically monitors the work queue of the main application
thread and only proceeds when the queue indicates that the device is idle,
so you know that the configuration change is completed.
Testing the activity destroy-and-create cycle is mostly a matter of
calling recreate() on the Activity. Strictly speaking, recreate()
is not tied to testing — it is a regular method on Activity that you
could call whenever. It has limited uses outside of testing, though, which
is why you will not run across it very much.
The recreate() test method tests recreate() to confirm that our
View button remains enabled after a destroy-and-recreate cycle:

 public void recreate() {
 stubPick();

 InstrumentationRegistry.getInstrumentation().runOnMainSync(new Runnable() {
 @Override
 public void run() {
 main.getActivity().recreate();
 }
 });

 onView(withId(R.id.view)).check(matches(isEnabled()));
 }

 @Test
 public void orientation() {

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
We first call stubPick(), to run through all the code that we tested
separately for picking a contact. Then, on the main application thread
(via runOnMainSync()), we call recreate() on the activity, which we
get by calling getActivity() on our IntentsTestRule. Then, we can
re-validate the enabled state of the R.id.view widget, to confirm that
it is still enabled.
Testing a simulated screen rotation is decidedly more complex.
Thanks to Chiu-ki Chan,
we have a recipe to start with.
First, we need to know what our current orientation is:

 .getResources()
 .getConfiguration()
 .orientation);
 }

 private void rotate() {
 int target=

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
This gets the orientation field from the Configuration associated
with our app under test (InstrumentationRegistry.getTargetContext()).
That will be one of the Configuration values for orientation, such
as Configuration.ORIENTATION_LANDSCAPE.
To simulate a screen rotation, we can call setRequestedOrientation()
on the activity. This tells the activity to ignore the actual orientation
based on sensors and to use this other orientation instead. Our
rotate() utility method will flip the orientation from whatever it
actually is (via getOrientation()) to the opposite:

 ActivityInfo.SCREEN_ORIENTATION_PORTRAIT :
 ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 main.getActivity().setRequestedOrientation(target);
 }

 static class OrientationAssertion implements ViewAssertion {
 private final int orientation;

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
We also have a testOrientation() helper method:

 if (orientation==Configuration.ORIENTATION_LANDSCAPE) {
 onView(withId(R.id.content))
 .check(new OrientationAssertion(LinearLayout.HORIZONTAL));
 }
 else {
 onView(withId(R.id.content))
 .check(new OrientationAssertion(LinearLayout.VERTICAL));
 }

 return(orientation);
 }

 // following methods inspired by
 // http://blog.sqisland.com/2015/10/espresso-save-and-restore-state.html

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
This finds our current orientation (via getOrientation()). Based upon
that, it validates whether our LinearLayout has the correct orientation.
To aid with this, the layouts now have an ID for the LinearLayout
(R.id.content), so we do not have to go through messy code to try to
find the right object. There is no built-in assertion for testing
the orientation of a LinearLayout, but it is easy enough for us to
write our own OrientationAssertion:

 OrientationAssertion(int orientation) {
 this.orientation=orientation;
 }

 @Override
 public void check(View view,
 NoMatchingViewException noViewFoundException) {
 Assert.assertTrue(view instanceof LinearLayout);
 Assert.assertEquals(orientation,
 ((LinearLayout)view).getOrientation());
 }
 }
}

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
All that gets used by the orientation() @Test method:

 rotate();

 int postRotate=testOrientation();

 Assert.assertFalse("orientation changed", original==postRotate);
 }

 private int testOrientation() {
 int orientation=getOrientation();

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)
Here we:

	Test our current orientation, noting what orientation that is

	Simulate rotating the screen

	Test our new orientation, noting what orientation that is

	Validate that the orientation did actually change, using an ordinary
JUnit4 assertion

Opting Out of Analytics
All of the build.gradle files shown in this chapter have the following
line in defaultConfig:

testInstrumentationRunnerArguments disableAnalytics: 'true'

By default, your Espresso tests
send data about your tests to Google.
This line passes arguments to the test runner that disable these
analytics.
Waiting for the World to Change
Our activities often trigger asynchronous work: loading data from a database,
loading content from a ContentProvider, executing a Web service call,
etc. Sometimes, that work is triggered by the start of the activity.
Sometimes, that work is triggered by UI events.
Usually, our tests need to wait for that work to complete before we
can proceed with confirming the results. For example, if tapping an
action bar item refreshes the RecyclerView contents via some asynchronous
work, we cannot determine whether or not the refresh worked until that
asynchronous operation ends.
Even simpler things would seem to need more synchronization than we are
writing in our tests. Let’s go back to the keyEvents() test from earlier
in this chapter:

 @Test
 public void keyEvents() {
 onView(withId(android.R.id.list))
 .perform(pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
 pressKey(KeyEvent.KEYCODE_DPAD_DOWN))
 .check(new ListSelectionAssertion(3));
 }

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)
We simulate four down-arrow presses, then check to see if the proper
list row is selected.
However, keyEvents() runs on a background thread, not the main
application thread. In theory, there is a race condition here: will the
work associated with those four down-arrow events be completed by the
time we go to check the selection state of the ListView?
It turns out that Espresso handles this automatically. It waits until
the work queue for the main application thread shows that there is no
more work ready to process. Then, and only then, will the check()
logic be applied.
Espresso also waits on select other things, notably AsyncTasks. And,
through an IdlingResource, we can teach it to wait for other
asynchronous work: arbitrary threads, an IntentService, and so on.
What’s an IdlingResource?
An IdlingResource is an interface. Implementations of it know how
to monitor some background work for completion. You can register an
IdlingResource with Espresso via IdlingRegistry.getInstance().register(),
later removing it via IdlingRegistry.getInstance().unregister().
An IdlingResource needs to do two main things:

	Return whether the resource being monitored is idle at the moment, via an
isIdleNow() method

	Track a ResourceCallback instance and call an onTransitionToIdle()
method on it when the resource becomes idle

Using an IdlingResource
In some cases, you will be able to use a pre-built IdlingResource.
Espresso itself comes with a CountingIdlingResource that you can use
a bit like a CountDownLatch, calling increment() when work is
added and decrement() when work is completed. When the counter falls
to zero from a non-zero value, the CountingIdlingResource will call
onTransitionToIdle() on its ResourceCallback. And, isIdleNow()
is simply based on the counter.
Sometimes, you will find existing implementations from third parties.
For example, Jake Wharton has written
an OkHttp3IdlingResource for use with OkHttp3.
The
Testing/EspressoIdle
sample project demonstrates its use.
The activity under test is a variation on the OkHttp3 “show the latest
Stack Overflow questions” sample from
the chapter on Internet access. That activity (MainActivity)
holds an OkHttpClient instance to be used by its fragment, returned via
a getOkHttpClient() method:

package com.commonsware.android.okhttp;

import android.support.v4.app.FragmentActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import okhttp3.OkHttpClient;

public class MainActivity extends FragmentActivity
 implements QuestionsFragment.Contract {
 private final OkHttpClient client=
 new OkHttpClient.Builder().build();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new QuestionsFragment()).commit();
 }
 }

 @Override
 public void onQuestion(Item question) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(question.link)));
 }

 OkHttpClient getOkHttpClient() {
 return(client);
 }
}

(from Testing/EspressoIdle/app/src/main/java/com/commonsware/android/okhttp/MainActivity.java)
QuestionsFragment then uses OkHttp3 to request the latest 100
Stack Overflow questions, parsing the JSON response with Gson, and
loading them into the fragment’s ListView. This is handled in the
onViewCreated() method:

 @Override
 public void onViewCreated(final View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 OkHttpClient client=((MainActivity)getActivity()).getOkHttpClient();
 Request request=new Request.Builder().url(SO_URL).build();

 client.newCall(request).enqueue(new Callback() {
 @Override
 public void onFailure(Call call, IOException e) {
 Log.e(getClass().getSimpleName(), "Exception loading JSON", e);
 }

 @Override
 public void onResponse(Call call, Response response)
 throws IOException {
 if (response.isSuccessful()) {
 Reader in=response.body().charStream();
 BufferedReader reader=new BufferedReader(in);
 final SOQuestions questions=
 new Gson().fromJson(reader, SOQuestions.class);

 reader.close();

 view.post(new Runnable() {
 @Override
 public void run() {
 setListAdapter(new ItemsAdapter(questions.items));
 }
 });
 }
 else {
 Log.e(getClass().getSimpleName(), response.toString());
 }
 }
 });
 }

(from Testing/EspressoIdle/app/src/main/java/com/commonsware/android/okhttp/QuestionsFragment.java)
Note that onViewCreated() uses enqueue(), rather than execute(),
so the HTTP request is performed on an OkHttp3-supplied background thread.
We do not know if this is an AsyncTask or some other type of thread,
and so we do not know for certain if Espresso will know to wait until
this request is complete. Hence, in our tests, we really should use an
IdlingResource to confirm that the asynchronous work is completed
before seeing if the results match our expectations.
The OkHttpTests instrumentation test class uses an ActivityRule,
named main, to set up our activity under test. The moreReliableAsyncTest()
method then uses OkHttp3IdlingResource to help out our test code:

 @Test
 public void moreReliableAsyncTest() {
 IdlingResource idleWild=
 OkHttp3IdlingResource.create("okhttp3",
 main.getActivity().getOkHttpClient());

 IdlingRegistry.getInstance().register(idleWild);

 try {
 onView(withId(android.R.id.list))
 .check(new AdapterCountAssertion(100));
 }
 finally {
 IdlingRegistry.getInstance().unregister(idleWild);
 }
 }

(from Testing/EspressoIdle/app/src/androidTest/java/com/commonsware/android/okhttp/OkHttpTests.java)
An IdlingResource has a name, which needs to be unique among registered
IdlingResource instances. So, we use okhttp3. OkHttp3IdlingResource
also needs our OkHttpClient, which we can get by retrieving it from
the MainActivity, which is available to us courtesy of the main
ActivityRule.
We then:

	Call register() to register our OkHttp3IdlingResource

	Perform our tests, to confirm that we got 100 items in the list

	Call unregister(), as we can no longer use our
OkHttp3IdlingResource once the activity is destroyed; any new activity
instances will have their own OkHttpClient in our implementation

Implementing a Custom IdlingResource
A custom IdlingResource can be simple or complex, depending on how
difficult it is to determine whether a resource is idling and when it
starts idling.
In the case of OkHttp3IdlingResource,
OkHttp3 itself exposes a API, in
the form of a Dispatcher object, that provides an API ideal for an
IdlingResource:

	A Dispatcher has runningCallsCount() for use by isIdleNow()

	A Dispatcher has setIdleCallback(), to be called when the
running calls count drops to zero

In this case, the reason for the clean integration may be tied to the
fact that Jake Wharton works on OkHttp3.
Sometimes, you have to use a less elegant approach, because the resource
you wish to monitor does not offer an appropriate monitoring API.
Chiu-ki Chan wrote
an IntentServiceIdlingResource
that uses ActivityManager to watch for when a specific IntentService
implementation is no longer listed as a running service. There is no
way to register a callback with Android to find out when an arbitrary
service is destroyed, so she only invokes the ResourceCallback
onTransitionToIdle() method as part of isIdleNow() processing.
Testing with UI Automator
Yet another approach for testing Android applications is
UI Automator. This is designed for integration testing, both how
your app components integrate with one another (e.g., activities
starting activities) and how your app components integrate with the
rest of a device, including other applications.
This is tied into the same instrumentation testing
engine that is used for JUnit4 testing, so your plain JUnit4 tests, your
Espresso-based tests, and your UI Automator tests can all work in tandem.
Prerequisites
This chapter assumes that you have read
the chapter on JUnit4.
What Is UI Automator?
UI Automator, as the name suggests, automates UIs. It simulates
user input, in the form of tapping on items and the like. It does so
without modifying your process’ contents. Tests run by UI Automator are
implemented in JUnit, and those tests have limited access to the
widgets inside of a UI. Such access not only allows for directing
simulated user input (e.g., “click the OK button”), but also for asserting
that various test conditions are true (e.g., “does the list have five
rows?”). In this respect, UI Automator behaves like traditional
Android JUnit testing.
Why Choose UI Automator Over Alternatives?
In some respects, UI Automator represents the worst of both worlds.
You have to use JUnit, making test authoring a challenge for those not
skilled with Java. Yet you only have fairly generic access to an activity’s
widgets, versus the complete white-box capability of normal instrumentation-based
JUnit testing.
Hence, why would anyone bother?
The big thing that UI Automator offers over classic JUnit testing
is greater ability to test an application versus testing
individual components. The classic JUnit test cases are organized around
testing some specific component, such as using ActivityTestRule
to exercise some specific activity. Espresso adds the ability
to detect the starting of activities and mock responses to onActivityResult(),
but not much more. UI Automator makes integration testing easier,
as you
can exercise and analyze applications other than your own, such as to confirm
that you are starting a third-party app correctly.
The Rx/Retrofit
sample app, from the chapter on RxJava, is one of many sample
apps in this book that show a list of recently-asked Android questions on Stack
Overflow. This particular sample happens to use RxJava and Retrofit for making
the Stack Overflow API Web service request. And, this particular sample happens
to use UI Automator to confirm that when the user clicks on a row in the list
representing a question, that we open up a Web browser on the question itself.
UI Automator itself is limited to API Level 18 (Android 4.3) and higher. In
theory, the tests will work on any Android device or emulator that has a Web
browser that displays the URL somewhere, such as in an address bar. It definitely
works with the Chrome edition that ships with the Google Play editions of
the Android SDK emulator.
Gradle and Android Studio Settings
Your project needs to be set up to use the AndroidJUnitRunner
as is outlined in the chapter on JUnit4.
For UI Automator, you additionally need to have an androidTestImplementation
dependency on the uiautomator-v18 artifact:

 androidTestImplementation 'com.android.support.test.uiautomator:uiautomator-v18:2.1.3'

(from Rx/Retrofit/app/build.gradle)
Creating a Test Case
Your test case classes do not need to inherit from any particular
base class, just like regular JUnit4 tests. They do need to be annotated
with the @RunWith(AndroidJUnit4.class) annotation:

@RunWith(AndroidJUnit4.class)
public class UiAutoTest {

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
Your test case is welcome to have @Before, @After, and other
setup/teardown methods, in addition to @Test methods, just like a
regular JUnit4 test case. In fact, from Android’s standpoint, UI Automator
tests are just regular JUnit4 test cases — you are welcome to have
UI Automator test cases and regular instrumentation testing JUnit4 test
cases in the same androidTest source set.
Performing Device-Level Actions
The root of most of our work with UI Automator is a UiDevice object.
This allows us to perform device-level actions, such as pressing BACK
or HOME.
To get a UiDevice, call the static getInstance() method on
UiDevice, passing in the Instrumentation that you get from
InstrumentationRegistry.getInstrumentation():

 @Before
 public void setUp() {
 device=UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());
 }

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
/books/Omnibus/samples/Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.javaHere, we get the UiDevice and stash it in a field for the life
of this UiAutoTest instance.
UiDevice has many methods that allow you to
perform device-level actions, such as calling pressHome() to press the HOME button
(and thereby bring up the home screen). Similarly, you can call:

	
pressBack() and pressMenu() for the BACK and MENU buttons

	
pressDPadUp(), pressDPadLeft(), etc. for D-pad events

	
pressRecentApps() to bring up the recent tasks list

	
pressKeyCode() to press an arbitrary key based on the keycode from KeyEvent

So, for example, in our @After-annotated tearDown() method, we call
pressHome(), to return the device or emulator to a “natural” state:

 @After
 public void tearDown() {
 device.pressHome();
 }

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
Starting Your Activity
For testing how your activity interacts with other activities, you can start
your activity using an ActivityRule, no different than you might use with
ordinary JUnit or Espresso tests:

 @Rule
 public final ActivityTestRule<MainActivity> main
 =new ActivityTestRule(MainActivity.class, true);

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
It is possible, though, that you want to test how one of your activities
is started by something else, such as the home screen. For that, in principle,
you can use pressHome() on UiDevice to bring up the home screen, then
use the techniques outlined in the next few sections to automate navigating
through the home screen, finding your app, and clicking on it to launch it.
In practice, while getting this to work for a home screen implementation is
not too bad, getting this to work for all home screen implementations is
impractical. This sort of testing is much more reasonable in cases where
you control the entire test environment, including the home screen implementation.
Getting Proxies for Widgets and Containers
With Espresso, or even ordinary JUnit testing, you can get the actual Activity
object for your activity and get the actual View objects for your widgets
and containers. That is because those objects are all part of your process.
This is not the case for third-party applications.
The UI Automator approach is to use UiDevice to find widgets and containers
in whatever is on the screen, then obtain proxy objects for those. The proxies
are in your process, but the widgets and containers that they manipulate
reside in the third-party app’s process. As such, you do not have the full
View API that you are used to. Instead, you are limited to a small subset,
based on what is available through the accessibility APIs.
UiSelector
Web developers are used to finding DOM nodes by CSS queries. Developers
using XML are used to using XPath queries to find particular elements.
Along the same lines, UI Automator gives us a flexible system to
find widgets in the foreground activity, by means of a UiSelector
object, typically created using the public zero-argument constructor
(i.e., new UiSelector()).
In CSS, a “selector” can identify DOM nodes by class, id, or ones
with particular properties. A UiSelector can do much the same thing.
So, for example, a UiSelector can:

	Identify a widget based upon its Java class (className())

	Identify a widget based on text that is displayed in its android:text
or android:contentDescription attributes (text(), description())

	Identify a widget based on whether it is checked (checked())

	And so on

These methods on UiSelector return the UiSelector itself, so you can chain
more constraints on, builder-style.
You can then pass a UiSelector to methods like findObject() on UiDevice
to retrieve the proxy for the widget matching the selector. If there is more
than one match, you get the first match; if there are no matches, you get
null.
UiObject, UiCollection, and UiScrollable
The UI Automator proxies all stem from a UiObject class, and you use
UiObject itself for simple widgets: buttons, fields, labels, etc.
UiCollection represents a ViewGroup, and it is a subclass of UiObject, as
you might expect.
UiScrollable is a subclass of UiCollection and it represents a ViewGroup
that can be scrolled: RecyclerView, ListView, ViewPager, etc.
To get instances of UiCollection or UiScrollable, you pass the UiSelector
to the constructor, and it works with the UiDevice to find the particular container
of interest.
So, for example, testContents() starts out by finding a ListView in our
activity:

 UiScrollable items=
 new UiScrollable(new UiSelector().className(ListView.class.getCanonicalName()));

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
There is only one ListView, so this will return a unique result.
UiScrollable can model a widget that can be scrolled horizontally or
vertically. You call setAsVerticalList() or setAsHorizontalList() to indicate
the desired direction of scrolling. In our case, our UiScrollable is a ListView, so we
want vertical scrolling:

 items.setAsVerticalList();

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
To find children within a UiCollection, you can call methods like
getChildByInstance(), to retrieve a child based on a UiSelector and
a position:

 UiObject firstRow=items
 .getChildByInstance(new UiSelector().className(LinearLayout.class.getCanonicalName()),
 0);

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
Here, we want the 0th LinearLayout that is a child of the ListView, which will
return a UiObject pointing at the first row.
In this case, the 0th child should not require any scrolling. If you asked
for the 20th, though, you might need to scroll, and UiScrollable handles
that automatically.
Interacting with Widgets
Mostly what you can do with a UiObject is touch it (virtually speaking).
You can click, double-click, pinch-zoom, drag, swipe, or perform complex gestures
on it.
In the case of clicks, you have a few options, including clickAndWaitForNewWindow().
This is what you want if the widget will start another activity (or dialog)
when clicked, as the method will block until that new window is displayed and
ready for you to continue testing.
That’s what we want here: we want to click on that 0th row in the list and
see that something happened:

 firstRow.clickAndWaitForNewWindow();

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
Asserting Conditions
You can retrieve basic information about a UiObject, such as whether it
is checked, what text it has (if it is a TextView or subclass), and so on.
In some cases, just finding the UiObject is enough. For example, if we start
a Web browser to view the Stack Overflow question, probably the URL is rendered
somewhere on the screen, such as in an address bar. Here, we just confirm that
there is some widget on the screen showing some Stack Overflow URL:

 UiObject urlBar=device.findObject(new UiSelector().textContains("https://stackoverflow.com/"));

 assertNotNull(urlBar);

(from Rx/Retrofit/app/src/androidTest/java/com/commonsware/android/databind/basic/UiAutoTest.java)
A pure UI Automator test, like this one, may not know what the specific URL
is to check for. In our case, the URL is not rendered in our own activity,
so we cannot get it from a UiObject.
If we wanted, though, we could find our Question object by means of getting
the ListAdapter, casting it to be an ArrayAdapter of Question, and getting
the URL from the 0th question.
Running Your Tests
You run your UI Automator tests as you would any other instrumentation test:

	By running the run configuration that you set up for your tests in
Android Studio

	By running commands like gradle connectedCheck at the command line

	Through integrations into your continuous integration server or similar
build infrastructure

Finding Your Widgets
The key to finding your desired widgets stems in large part from the
text() or description() methods on UiSelector. Of those two, the latter
is more flexible, as it will use the android:contentDescription from any widget,
while text() is limited to TextView and its subclasses.
However, this implies that your widgets have android:contentDescription
defined. This is also important for accessibility,
and therefore is a good
idea regardless of its use with UI Automator.
For testing your own code, you can also find widgets via their resource
IDs. UiSelector has resourceId() and resourceIdMatches() methods
to configure the resource ID you want. As the resourceIdMatches()
method name suggests, the resource ID here is a string representation
of the resource name. It will be of the form your.app.package:id/resource
(e.g., com.commonsware.android.hotkey:id/editor). However:
However, bear in mind that third party apps are welcome to rename their widgets
when they wish. Using widget ID references to other apps will be fragile and
may cause your tests to break because those apps were updated.
Using the UI Automator Viewer
Identifying widgets can be a bit tricky with UI Automator. Identifying
widgets in other apps, for your integration tests, would in theory
be next to impossible. After all, while the Android Studio layout inspector
and the older Hierarchy View tools can give you
widget IDs, that only works with debuggable apps. Your app may be
debuggable, but the app you are trying to integrate with probably is not.
Fortunately, we have
the UI Automator Viewer. This tool basically walks the view hierarchy of
whatever activity is in the foreground of a device (or emulator) and gives
us access to whatever information is exposed by the accessibility APIs.
Nowadays, this includes widget IDs, in addition to more traditional
accessibility data like the text in a TextView, the contentDescription
of an ImageView, and so on.
At the present time, the UI Automator Viewer is not integrated into
Android Studio. Instead,
you will have to launch it the old-fashioned way, by running the
uiautomatorviewer command from the command line. This will map
to a batch file or shell script in the tools/ directory of your
Android SDK installation.
When initially launched, the UI Automator Viewer does not look like much:

[image: UI Automator Viewer, As Initially Launched]

Figure 345: UI Automator Viewer, As Initially Launched
Given that you have a device or emulator ready, you can click the second
icon from the left in the toolbar, to capture the view hierarchy of the
foreground activity. This will give you:

	A screenshot of the foreground activity in the main area of the UI
Automator Viewer screen

	The view hierarchy of that activity, in the upper-right corner of the
UI Automator Viewer screen

	Properties of a node from the selected view, in the lower-right corner of the
UI Automator Viewer screen

[image: UI Automator Viewer, Showing View Hierarchy of This Books Reader App]

Figure 346: UI Automator Viewer, Showing View Hierarchy of This Book’s Reader App
Clicking either on the preview or on the view hierarchy will change the
selected view, which shows up with a red dashed outline on the preview.
The properties (“Node Detail”) pane will then update to show the properties
of whatever is newly selected.
This is not only useful for identifying widgets for testing with UI
Automator, but it can also be used to determine how some other developer
pulled off some interesting UI approach. While simply examining a widget
hierarchy is not going to uncover all the other developer’s secrets, simply
knowing what widgets were used, and some basic properties of those widgets,
may give you some ideas for avenues of research.
Measuring Test Coverage
Test coverage is our way of determining whether or not we have
adequately tested our code. Part of the work that has gone into
the Android Gradle Plugin has been to make obtaining test coverage
reports fairly easy, so ideally it is something that you can incorporate
into your regular testing regimen.
In this chapter, we will explore the concept of test coverage in general,
along with how to generate coverage reports for your Android instrumentation
tests.
Prerequisites
Understanding this chapter requires that you have read
the chapter on instrumentation testing with JUnit.
Who Tests the Testers?
We use tests to determine if our code works. More generally, we use
tests as a way of quantifying the quality of our code. Code that fails
the tests is of lower quality than is code that does not fail the tests.
Right?
Suppose we have some Java code that will result in a divide-by-zero exception.
We have two developers test that code. One developer writes tests and
uncovers the exception. The other developer writes tests that bypass
the flawed code, and therefore does not uncover the exception. Here,
the code quality is the same, but the test quality differs.
If the way we measure code quality is “does it pass the tests”,
measuring test coverage asks “do the tests adequately test the code?”.
In the preceding example, either:

	The second developer would have worse test coverage than the first
developer, as the second developer clearly is not testing everything, or

	
Both developers would have poor test coverage, and it just so happens
that one stumbled upon the bug
(“Even a blind squirrel finds a nut once in a while”)

What you want is to have a test suite that has 100% practical coverage.
The “practical” qualifier is because there are certain portions of our
code that may be impractical to test, because they depend upon certain
environmental factors that are difficult to arrange to happen
on demand (e.g., OutOfMemoryError). There, the objective is to have as
little code specifically dependent upon those factors, moving more of it
into code that we can test without requiring those conditions.
Some Types of Test Coverage
Some developers that start in on test coverage think that test coverage
is fairly simple to measure: did we run everything? The problem is that
“run” has different meanings in different circumstances, and as a result
measuring coverage can be done in different ways.
Statement Coverage
The basic approach to measuring test coverage is: did we execute every
line of Java code? Clearly, if we never executed a line of code, we did
not test that line and have no idea if that line works or not.
Branch Coverage
However, just because we execute a line does not mean that we have
executed it under all conditions. Imagine a Java method like this:

void doSomething(boolean flag) {
 if (flag) {
 // do one thing
 }
 else {
 // do something else
 }
}

If this method were in our own Java code, we could determine whether
we have tested both true and false cases by means of statement coverage.
Either we executed the statements in both branches, or we did not.
However, suppose the method instead looked like this:

void doSomething(boolean flag) {
 if (flag) {
 // do one thing
 }

 // do something regardless of the flag value
}

Now, 100% statement coverage tells us that we executed the contents
of the if block. However, it does not tell us if we have tested
the case where flag is false, since no additional statements are
executed for that case.
Branch coverage, therefore, measures whether our if and switch
statements have covered all scenarios. We might have 100% statement
coverage but below 100% branch coverage.
Loop Coverage
The coverage capability integrated into Android Studio offers
statement and branch coverage. This does not mean that it includes
all forms of coverage measurement.
Another common one is loop coverage. Imagine your typical Java for loop:

void doSomething(int count) {
 for (int i=0;i<count;i++) {
 // do something
 }
}

Statement coverage helps here, but only a little. 100% statement coverage
would tell us that we executed the code inside the for loop. However,
like branch coverage, it does not tell us if we are correctly handling
the case where count is 0, because we are not executing additional
statements in that case.
Also, there are certain types of bugs that only show up if you execute
the code inside the loop multiple times. Statement coverage cannot
tell us if we tried count of 1 and a count greater than 1, and so
there may be some missed bugs.
Loop coverage is usually interpreted as testing three cases:

	Zero passes through the loop

	One pass through the loop

	More than one pass through the loop

Usually, the coverage tool does not know what the logical bounds are
for the loop. In theory, there could be a bug that is only found if
you execute the loop 349,320 times. However, finding that would
require us to try testing every possible count value, and executing
a couple of billion tests might take a while.
Coverage and Your Instrumentation Tests
The Android Gradle Plugin integrates support for
Jacoco, a popular test coverage analyzer
tool. Enabling it and measuring your test coverage is very simple.
First, make sure that you are using 0.5 or higher of the
com.android.support.test:rules artifact, as coverage support was
unavailable in some earlier versions.
Then, for the debug build type (and others if desired), enable test
coverage via the testCoverageEnabled = true statement.
The Testing/Coverage
sample project is a clone of the Testing/JUnit4 project, with test
coverage enabled in the app module’s build.gradle file:

apply plugin: 'com.android.application'

dependencies {
 implementation "com.android.support:support-fragment:27.0.2"
 androidTestImplementation 'com.android.support.test:rules:1.0.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 testApplicationId "com.commonsware.android.gradle.hello.test"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 debug {
 testCoverageEnabled = true
 }
 }
}

(from Testing/Coverage/app/build.gradle)
At least through Android Studio 2.1, you cannot generate a test
coverage report through some simple toolbar button. You need to
execute the createDebugCoverageReport Gradle task. You can do
that from the command line, or you can do that from the Gradle
tool, docked by default on the right side of Android Studio:

[image: Android Studio Gradle Tool, Showing createDebugCoverageReport Task]

Figure 347: Android Studio Gradle Tool, Showing createDebugCoverageReport Task
Double-clicking a task in the Gradle tool executes that task, just as
if you had run it from the command line. The createDebugCoverageReport
runs your tests and builds a report based on the coverage logging
that the build tools add when you have testCoverageEnabled = true.
Then, you can browse to the build/reports/coverage/debug/ directory
in your module (replacing debug with your build type, if you are using
a different build type). That directory holds the HTML report generated
by Jacoco of how your test coverage is:

[image: Android Studio, Showing Coverage Report Directory]

Figure 348: Android Studio, Showing Coverage Report Directory
By default, if you double-click on index.html, Android Studio
will want to show you the HTML source code in an editor, which is less
than useful here. Instead, right-click on it and choose “Open in Browser”
to open it in your preferred Web browser:

[image: Jacoco Coverage Report, Top Level]

Figure 349: Jacoco Coverage Report, Top Level
Here, we see that we tested one Java package (com.commonsware.android.abf)
and achieved 94% statement (“instruction”) coverage and 50% branch
coverage.
You can drill down into the report by clicking on a package to see how
individual classes fared:

[image: Jacoco Coverage Report, Package Level]

Figure 350: Jacoco Coverage Report, Package Level
Similarly, clicking on a class gives you details of individual
methods and constructors:

[image: Jacoco Coverage Report, Class Level]

Figure 351: Jacoco Coverage Report, Class Level
Clicking on individual methods will show you highlighted source
code of what was covered and what was missed:

[image: Jacoco Coverage Report, Source Highlights]

Figure 352: Jacoco Coverage Report, Source Highlights
Here, the yellow line with the diamond marker indicates that we
did not achieve full branch coverage. In this case, we have not handled
a configuration change in the tests, so our fragment always needs to
be created.
Unit Testing
Instrumentation testing — basically, all the approaches
on testing covered so far in this book — is wonderful, but
it has one key problem: it is slow.
The problem stems largely from the fact that we are running
our Android tests in Android. Android emulators are not speedy,
and neither are devices, compared with developer machines,
continuous integration servers, and the like.
Unit testing, in Android terms, is taking a subset of our tests
out of Android and onto our development machine OS itself, running
them just as we would plain Java tests in non-Android Java
development. On the plus side, we now have much more machine
power to run our tests, including the possibility of running
tests in parallel across multiple CPU cores. However, whatever
we are running for our development OS probably is not Android,
and so attempts to use Android from our tests are doomed to
failure… unless we mock Android.
In this chapter, we will explore more of why we might want
to set up unit tests, the basics of setting up unit testing
for plain old Java objects (POJOs), and how to use Mockito and
Robolectric to mock certain things, notably Android itself.
Prerequisites
This chapter assumes that you have read the preceding chapters
on testing, particularly the one covering JUnit4.
Also, the examples in this chapter are based on the Retrofit
example from the chapter on Internet access,
so if you skipped the Retrofit material, you may wish to go back
and review that section.
I Thought We Were Already Unit Testing?
If you used the testing techniques outlined previously in this
chapter, you used JUnit, probably JUnit4. Given that JUnit has
“unit” in the name, you might have thought that you were doing
unit testing.
From the standpoint of standard testing terminology, you may
very well have been doing unit testing.
However, in Android development, the phrase “unit testing”
is reserved for outside-of-Android tests, running on a JVM on
your development machine. Tests using JUnit that are run on Android
itself are either “instrumentation tests” (if you are working
with activities and related components directly) or
“integration tests” (if you are using UIAutomator to exercise
your app and other apps to see if they interoperate correctly).
Scenario: Clean Architecture
Robert Martin (a.k.a., “Uncle Bob”), in 2012, wrote
a seminal blog post
outlining what he refers to as “Clean Architecture”. Others
have posted their own variations on his original theme.
Usually, Clean Architecture is depicted as a set of concentric
circles:

[image: Clean Architecture]

Figure 353: Clean Architecture
The basic rules are:

	The further in from the outside edge you go, the higher level
the software becomes

	Nothing from an inner circle can depend upon something in an
outer circle

The net of this, from an Android-and-testing standpoint, is
that Clean Architecture results in a core set of Java objects
that know nothing about Android. Typically, these are model
objects and business rules (implemented as some mix of model
object methods and separate rule objects). These core objects
should know nothing about:

	Activity lifecycles

	Fragments or other UI implementation patterns

	Views or other forms of UI (e.g., Web content in a WebView)

	SQLite or any other particular storage engine

	Threads, including idiosyncrasies around the main application thread

	and so on

Even developers who do not adhere religiously to Clean
Architecture often strive to have some core objects be
“clean enough” and independent from anything specific to
Android.
Since these objects have nothing specifically to do with Android,
they should be testable outside of Android, even if in production
you only intend to use them in Android apps. After all, if they
do not need Android, why do you need the testing overhead of
Android?
This is where unit testing comes into play, allowing you to set
up a set of tests that do not require Android, because the objects
being tested to not require Android.
Of course, this is not the only scenario where unit testing
can be used. Many apps have some amount of utility code that
is not tied too closely to Android. And, as we will see, even
some code that has light ties to Android might be able to be
tested through unit testing, courtesy of mocking frameworks.
Setting Up Unit Testing
There are three main steps for setting up unit testing: adding JUnit,
toggling Android Studio to unit test mode, and creating the test/
source set for holding your unit tests themselves.
The files shown in this section come from the
UnitTest/POJO
sample application. This is a clone of the HTTP/Retrofit example
from the chapter on Internet access, where we retrieve
the latest android-tagged Stack Overflow questions and display them
in a ListView.
Adding the Test JUnit Dependency
Gradle, along with the Android Gradle Plugin, are set up to handle
unit tests “out of the box”. However, they still require you to provide
a dependency on JUnit. Partially, that is because you may care about
the specific version of JUnit that you use. Partially, that opens the
door for possibly using other test engines beyond JUnit.
In previous chapters, we saw that instrumentation tests were handled
using an androidTest/ source set and androidTestImplementation
dependency statements. Similarly, unit testing is handled via a
test/ source set and testImplementation dependency statements. So, to set
up JUnit for unit testing, you need the testImplementation statement
in dependencies to pul in junit:junit:4.12:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 testApplicationId "com.commonsware.android.unittest.tests"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }
}

dependencies {
 implementation "com.android.support:support-fragment:27.1.1"
 implementation 'com.squareup.retrofit:retrofit:1.9.0'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:rules:1.0.1'
}

(from UnitTest/POJO/app/build.gradle)
The version of JUnit will change over time, so the latest-and-greatest
one may be newer than what you see above. Also, you may wind up with
other testImplementation dependencies — we will see examples of this
coming up later in this chapter.
Also note that new Android Studio projects, created through the new-project
wizard, may already have this dependency.
You will also notice that this build.gradle file is set up to use
instrumentation testing as well, with androidTestImplementation,
testApplicationId, and so forth. That is not required for unit testing,
but this project uses both testing approaches, to help compare and
contrast the results.
Creating the Test Sourceset
New Android Studio projects, created through the new-project wizard,
automatically get a test/ source set added alongside main/ and
androidTest/. That test/ source set will already have an
ExampleUnitTest class added to the Java package associated with the
app.
If you have an existing Android Studio project, though, you will
need to set up the test/ directory, the test/java/ directory,
and add a Java package to that test/java/ directory yourself.
Either way, in the end, you should have a test/ source set as a peer
of your main/ and androidTest/ source sets:

[image: Project View, Showing main/, androidTest/, and test/ Sourcesets]

Figure 354: Project View, Showing main/, androidTest/, and test/ Sourcesets
Writing POJO Unit Tests
That setup is all that you need in order to start writing unit tests
for your plain old Java objects (POJOs), utility code, or other things
that do not depend on Android.
Adding the Test Package
If you had to create the test/ source set, you will also need to create
the test/java/ directory, and in there create a Java package for your
test code.
As with other JUnit testing, your choice of package dictates what
you can and cannot access of classes and objects being tested:

 	Test Package
 	Public
 	Package-Private
 	Private

 	same as class being tested
 	yes
 	yes
 	no

 	different than class being tested
 	yes
 	no
 	no

In the sample project, the test code is in the same Java package as
is the main application code, so tests can access public and
package-private fields, methods, and the like.
Writing a Test Case
We can have a SillyTest test case, just as in
the chapter on JUnit4. However, we do not need the
@RunWith annotation on the class:

package com.commonsware.android.unittest;

import junit.framework.Assert;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

public class SillyTest {
 @BeforeClass
 static public void doThisFirstOnlyOnce() {
 // do initialization here, run once for all SillyTest tests
 }

 @Before
 public void doThisFirst() {
 // do initialization here, run on every test method
 }

 @After
 public void doThisLast() {
 // do termination here, run on every test method
 }

 @AfterClass
 static public void doThisLastOnlyOnce() {
 // do termination here, run once for all SillyTest tests
 }

 @Test
 public void thisIsReallySilly() {
 Assert.assertEquals("bit got flipped by cosmic rays", 1, 1);
 }
}

(from UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/SillyTest.java)
If you created your project through the Android Studio new-project
wizard, and it already had a test/ source set for you, it would have
created a similarly-silly ExampleUnitTest test case for you:

public class ExampleUnitTest {
 @Test
 public void addition_isCorrect() throws Exception {
 assertEquals(4, 2+2);
 }
}

Of course, you can start writing your own test cases that are somewhat
less silly. Here, we have a test case that confirms the toString()
behavior of the Item class:

package com.commonsware.android.unittest;

import junit.framework.Assert;
import org.junit.Test;

public class ItemTests {
 private static final String TITLE="this is a title";
 private static final String URL="https://commonsware.com";

 @Test
 public void iCanHazString() {
 Item item=new Item();

 item.title=TITLE;
 item.link=URL;

 Assert.assertEquals(TITLE, item.toString());
 }
}

(from UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/ItemTests.java)
Testing loading the questions gets a bit tricky, as our
StackOverflowInterface is set up for asynchronous operation. When
we call questions() to get the questions, we get control back immediately,
and we need to wait for the background thread to deliver our results.
There are a few patterns for handling this. This particular test case
uses a CountDownLatch:

package com.commonsware.android.unittest;

import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import java.util.concurrent.CountDownLatch;
import retrofit.Callback;
import retrofit.RestAdapter;
import retrofit.RetrofitError;
import retrofit.client.Response;

public class SOUnitTest {
 private CountDownLatch responseLatch;
 private SOQuestions questions;

 @Before
 public void setUp() {
 responseLatch=new CountDownLatch(1);
 }

 @Test(timeout=30000)
 public void fetchQuestions() throws InterruptedException {
 RestAdapter restAdapter=
 new RestAdapter.Builder()
 .setEndpoint("https://api.stackexchange.com")
 .build();
 StackOverflowInterface so=
 restAdapter.create(StackOverflowInterface.class);

 so.questions("android", new Callback<SOQuestions>() {
 @Override
 public void success(SOQuestions soQuestions,
 Response response) {
 questions=soQuestions;
 responseLatch.countDown();
 }

 @Override
 public void failure(RetrofitError error) {
 error.printStackTrace();
 System.err.println(error.getResponse().getUrl());
 responseLatch.countDown();
 }
 });

 responseLatch.await();

 Assert.assertNotNull(questions);
 Assert.assertEquals(30, questions.items.size());

 for (Item item : questions.items) {
 Assert.assertNotNull(item.title);
 Assert.assertNotNull(item.link);
 }
 }
}

(from UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/SOUnitTest.java)
When the test is setUp(), we initialize the CountDownLatch, to require
one countDown() call before the latch is considered to be released.
In our fetchQuestions() test method, we go through the same sort of
code that QuestionsFragment does, creating our RestAdapter and
StackOverflowInterface. When we call questions(), we supply an
anonymous inner class instance of the Callback. In both success()
and failure(), we countDown() our CountDownLatch. If the call
succeeded, we also hold onto the SOQuestions model object.
Immediately after calling fetchQuestions(), we await() on the
CountDownLatch. The Callback will be called on a background thread,
so the await() call means that we are blocking until such time as
we are called with success() or failure(). Also, as a fail-safe
measure, the @Test annotation for this test method is configured as
@Test(timeout=30000), meaning that if we do not get a response in
30 seconds, we fail the test.
Once we get control after the success() or failure() call, we confirm
and see if we got our 30 questions and that each Item seems to be
filled out.
Running Unit Tests
Once you have one or more unit tests, you can start thinking about running
them and seeing if they work. Running unit tests does not require
a device or emulator, as these tests are running on your development
machine’s OS directly (in a standard Java VM), not on Android.
From Android Studio
From the project tree, right-clicking over a class or a package
will give you a context menu option to run the tests in that class
or package:

[image: Run Tests Context Menu Item for Test Package]

Figure 355: Run Tests Context Menu Item for Test Package
You can even right-click over the name of a method in your test class
and have an option for running just that method:

[image: Run Test Context Menu Item for Test Method]

Figure 356: Run Test Context Menu Item for Test Method
While convenient, this will clutter up your run configurations
drop-down:

[image: Run Configurations, After Running Unit Tests]

Figure 357: Run Configurations, After Running Unit Tests
The entries with the faded-out icons represent run configurations
that were added dynamically based on your right-click test runs. The
most recent of those becomes the current run configuration (shown here
as “SOUnitTest”), and you have an option to “save” that and make it a
regular run configuration.
If you try running the various unit tests for the sample app, SillyTest
and ItemTests work, but SOUnitTest does not. Apparently, Retrofit depends
too much on Android, since the same test code succeeds when run as an
instrumentation test. We will discuss how to deal with that problem later
in this chapter.
From the Command Line
The test task in Gradle runs all of your unit tests for the module
in which you run that task. The command line output will show you a
summary of the results, in this case demonstrating the failure of
SOUnitTest:

$ gradle test
:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE
:app:checkDebugManifest
:app:prepareDebugDependencies
:app:compileDebugAidl
:app:compileDebugRenderscript
:app:generateDebugBuildConfig
:app:generateDebugAssets UP-TO-DATE
:app:mergeDebugAssets
:app:generateDebugResValues
:app:generateDebugResources
:app:mergeDebugResources
:app:processDebugManifest
:app:processDebugResources
:app:generateDebugSources
:app:compileDebugJavaWithJavac
:app:preDebugUnitTestBuild UP-TO-DATE
:app:prepareDebugUnitTestDependencies
:app:compileDebugUnitTestJavaWithJavac
:app:processDebugJavaRes UP-TO-DATE
:app:processDebugUnitTestJavaRes UP-TO-DATE
:app:compileDebugUnitTestSources
:app:mockableAndroidJar
:app:assembleDebugUnitTest
:app:testDebugUnitTest

com.commonsware.android.unittest.SOUnitTest > fetchQuestions FAILED
 junit.framework.AssertionFailedError at SOUnitTest.java:60

3 tests completed, 1 failed
:app:testDebugUnitTest FAILED

FAILURE: Build failed with an exception.

* What went wrong:
Execution failed for task ':app:testDebugUnitTest'.
> There were failing tests. See the report at: file:///home/mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/POJO/app/build/reports/tests/debug/index.html

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or --debug option to get more log output.

BUILD FAILED

Total time: 14.188 secs

We see that three tests completed, but one (SOUnitTest) failed.
In build/output/reports/tests/ will be HTML reports showing the results
of the tests.
There are XML files in build/output/test-results/ that contain the
same basic information. These are mostly designed for use by tools, such
as perhaps a CI server.
Mocking Android
Unit tests that go beyond stuff in common between the JVM and Android
are going to have problems, such as the Retrofit example described above.
For pure POJOs, this will not be a major limitation. But you might have
other code that has little real connection to Android that you would like
to test using unit testing, for the faster speed. However, unit testing
is fairly unforgiving: “little real connection” is not “no connection”,
and so your tests will fail.
Hence, to fix unit testing, we need to mock Android.
Why Are We Being Mean to Android?
In this case, “mock” is not a synonym for “taunt”.
Instead, “mock” refers to creating mock objects.
Wikipedia describes this
as:

In object-oriented programming, mock objects are simulated objects that mimic the behavior of real objects in controlled ways. A programmer typically creates a mock object to test the behavior of some other object, in much the same way that a car designer uses a crash test dummy to simulate the dynamic behavior of a human in vehicle impacts.

(from a February 2016 edition of the page)
For example, in many places in Android, we need a Context. Sometimes,
we do not really use the Context at all ourselves — it is input to
some lower layer of code, and therefore we accept it as input to our layer
and pass it along. In those cases, perhaps a mock Context will suffice
to allow our tests to run. Or, perhaps endowing the mock Context with
some limited amount of test-defined functionality will suffice to allow
our tests to run.
There are many mock frameworks for programming environments, including
a few for Java, and some of those Java ones are Android-friendly. This
section will look at one of those, Mockito. This section will also look
at Robolectric, a framework specifically for mocking the Android SDK.
Mockito
Mockito is a general-purpose mocking library for
Java that is officially supported by the Android tools team for use
with Android unit testing. While there are other mocking libraries for
Java (e.g., jMock, EasyMock), you may wish to start with Mockito given
its official support status.
Why Mockito?
The idea behind any Java mocking library is to be able to create
objects that, from a compilation standpoint, behave as do the real
objects, but have test-controlled responses to methods (a.k.a.,
“stubs”).
The quintessential Java example is mocking a List:

List fakeList=mock(List.class);

when(fakeList.get(0)).thenReturn(1337);

Here, we use an imported static mock() method to create a mock implementation
of the List interface. when() captures a particular invocation that
we wish to stub out (in this case, getting the 0th item in the list),
and thenReturn() indicates what the return value should be for that
invocation (in this case, 1337). Later on, we can test our behavior:

Assert.assertEquals(1337, fakeList.get(0)); // succeeds
Assert.assertEquals(1337, fakeList.get(1)); // fails, as get(1) returns null

Since we taught the mock how to respond to get(0), it returns
1337. Anything else we try doing with the mock will result in some
default behavior; in this case, calling get() for any other index
will return null, since we have not defined values for any other
indexes.
For limited tests like this, we are not really testing much in the way
of actual app functionality. If anything, we are testing that Mockito is
capable of mocking things. However, suppose instead that we did
this:

OurClass sumthin=new OurClass();

Assert.assertEquals(1787569, sumthin.squareTheFirst(fakeList));

Here, we have a squareTheFirst() method implemented on some class of
ours OurClass. As it turns out, the implementation of squareTheFirst()
is to grab the 0th element out of the supplied List and return the
square of that integer value. Now we are testing actual application logic,
confirming that our square is being computed properly.
Of course, in this case, it would be just as easy to create an ArrayList,
rather than mess with a mock. However, there are plenty of cases where
it would be too much work to create an instance of the class, including
cases where it is nearly impossible. For example, we cannot create our own
instances of system services, like AlarmManager or NotificationManager.
If we want to test code that works with those, we are far better served
using a mocking library like Mockito.
Setting Up Mockito
The
UnitTest/Mockito
sample application is based on the POJO one from earlier in the
chapter. However, this version adds Mockito, specifically to help us
play around with a mock version of Retrofit.
Adding Mockito is a matter of adding a testImplementation statement to pull
in an appropriate version of mockito-core:

dependencies {
 implementation 'com.android.support:support-fragment:27.1.1'
 implementation 'com.squareup.retrofit:retrofit:1.9.0'
 testImplementation 'junit:junit:4.12'
 testImplementation 'org.mockito:mockito-core:2.10.0'
 androidTestImplementation 'com.android.support.test:rules:1.0.1'
}

(from UnitTest/Mockito/app/build.gradle)
Using Mockito in Unit Tests
Let’s now use Mockito to create an SOUnitTest that works, albeit using
a fake Retrofit.
To use Mockito in a JUnit4 test class, you need to add the
@RunWith(MockitoJUnitRunner.class) annotation to the class, to have
the class run using a dedicated JUnit4 test runner that is Mockito-enabled.
So, SOUnitTest needs that annotation:

@RunWith(MockitoJUnitRunner.class)
public class SOUnitTest {

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOUnitTest.java)
We want a mock StackOverflowInterface object that we can use to call
our questions() method and retrieve mock questions. There are two main ways
in Mockito to create mock objects:

	the mock() method cited earlier

	the @Mock annotation

SOUnitTest applies the latter, so one of the fields in the test class
is a @Mock of StackOverflowInterface:

@RunWith(MockitoJUnitRunner.class)
public class SOUnitTest {
 private CountDownLatch responseLatch;
 private SOQuestions questions;
 @Mock StackOverflowInterface mockSO;

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOUnitTest.java)
We then need to teach our mock StackOverflowInterface how to return
questions as needed.
If we were using Retrofit’s synchronous API, the questions() method
on StackOverflowInterface would return the SOQuestions object representing
the results of our REST API call. In that case, mocking StackOverflowInterface
could be (comparatively) simple, something like:

SOQuestions fakeQuestions=new SOQuestions();

fakeQuestions.items=new ArrayList<Item>();

Item fakeItem=new Item();

fakeItem.link="https://commonsware.com";
fakeItem.title="How Do I Fake It to Make It?";
fakeQuestions.items.add(fakeItem);

when(mockSO.questions()).thenReturn(fakeQuestions);

Here, we build up an SOQuestions instance containing a single Item,
and we teach the mockSO object to return that in response to a call
to questions().
However, we are using Retrofit’s asynchronous API, where we supply
a Callback as a parameter. The questions() method
is declared as void, so it does not return a response, and we will
eventually be called with success() on our Callback.
We can mock that with Mockito, but it is more complicated:

 doAnswer(invocation -> {
 SOQuestions fakeQuestions=new SOQuestions();

 fakeQuestions.items=new ArrayList<>();

 Item fakeItem=new Item();

 fakeItem.link="https://commonsware.com";
 fakeItem.title="How Do I Fake It to Make It?";
 fakeQuestions.items.add(fakeItem);

 Callback<SOQuestions> realCB=
 (Callback<SOQuestions>)invocation.getArguments()[1];

 realCB.success(fakeQuestions, null);

 return(null);
 }).when(mockSO).questions(eq("android"), any(Callback.class));

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOUnitTest.java)
Let’s trim this back to the essence of what we are doing:

doAnswer(...).when(mockSO).questions(...)

The doAnswer() flow is a way of handling void methods, as thenReturn()
does not work, since a void method does not return anything. doAnswer()
is where we do the “work” that the mock needs to do, in this case to call
our Callback, as we will see shortly.
Chaining questions() onto the result of when() is another way of indicating
a call that we are stubbing. However, in this case, our parameters are not
simple primitives, like the 0 in get(0) from the List example depicted
earlier in this section. We can provide information to questions() to
indicate which questions() calls will get the answer provided by doAnswer().

doAnswer(...).when(mockSO).questions(eq("android"), any(Callback.class))

The real questions() method takes a String representing the Stack Overflow
tag of interest, plus the Callback. The particular invocation of questions()
that we are stubbing will be used when questions() is called on our mock
StackOverflowInterface, where the first parameter equals (eq())
"android", and where the second parameter is any() instance of
Callback.class. In principle, we could provide other stubs for other
tags (e.g., questions(eq("ios"), any(Callback.class)))), but that is
beyond the scope of what we are doing here.
The value passed into doAnswer() is a lambda, serving as an implementation
of Answer. That lambda will be invoked when our mock
is called with a matching questions() call. It is our job, in the lambda,
to do whatever the mock needs to do to satisfy our tests.
Most of what is here builds up the same fake SOQuestions object as illustrated
earlier. To actually pass that to the Callback, though, we need to:

	Get the Callback object in question, by calling getArguments() on the
supplied InvocationOnMock object (which collects all the parameters passed
into questions()) and gets the second entry from that array of objects

	Casts that to the correct type

	Calls success(), passing in the fake SOQuestions, plus a null value
for the Retrofit Response object, as we are not using that

At that point, we can run our test, adjusting it to expect one Item
instead of 30 as we were originally expecting:

 mockSO.questions("android", new Callback<SOQuestions>() {
 @Override
 public void success(SOQuestions soQuestions,
 Response response) {
 questions=soQuestions;
 responseLatch.countDown();
 }

 @Override
 public void failure(RetrofitError error) {
 responseLatch.countDown();
 }
 });

 responseLatch.await();

 Assert.assertNotNull(questions);
 Assert.assertEquals(1, questions.items.size());

 for (Item item : questions.items) {
 Assert.assertNotNull(item.title);
 Assert.assertNotNull(item.link);
 }

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOUnitTest.java)
In this case, everything should be happening on the same thread, and so
it is likely that the CountDownLatch is superfluous. However, it does not
cause us any particular harm here, and it keeps the code more closely
aligned with the implementation in the instrumentation tests.
The whole test class, therefore, looks like this:

package com.commonsware.android.unittest;

import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.mockito.Mock;
import org.mockito.junit.MockitoJUnitRunner;
import java.util.ArrayList;
import java.util.concurrent.CountDownLatch;
import retrofit.Callback;
import retrofit.RetrofitError;
import retrofit.client.Response;
import static org.mockito.Matchers.any;
import static org.mockito.Matchers.eq;
import static org.mockito.Mockito.doAnswer;

@RunWith(MockitoJUnitRunner.class)
public class SOUnitTest {
 private CountDownLatch responseLatch;
 private SOQuestions questions;
 @Mock StackOverflowInterface mockSO;

 @Before
 public void setUp() {
 responseLatch=new CountDownLatch(1);
 }

 @Test(timeout=30000)
 public void fetchQuestions() throws InterruptedException {
 doAnswer(invocation -> {
 SOQuestions fakeQuestions=new SOQuestions();

 fakeQuestions.items=new ArrayList<>();

 Item fakeItem=new Item();

 fakeItem.link="https://commonsware.com";
 fakeItem.title="How Do I Fake It to Make It?";
 fakeQuestions.items.add(fakeItem);

 Callback<SOQuestions> realCB=
 (Callback<SOQuestions>)invocation.getArguments()[1];

 realCB.success(fakeQuestions, null);

 return(null);
 }).when(mockSO).questions(eq("android"), any(Callback.class));

 mockSO.questions("android", new Callback<SOQuestions>() {
 @Override
 public void success(SOQuestions soQuestions,
 Response response) {
 questions=soQuestions;
 responseLatch.countDown();
 }

 @Override
 public void failure(RetrofitError error) {
 responseLatch.countDown();
 }
 });

 responseLatch.await();

 Assert.assertNotNull(questions);
 Assert.assertEquals(1, questions.items.size());

 for (Item item : questions.items) {
 Assert.assertNotNull(item.title);
 Assert.assertNotNull(item.link);
 }
 }
}

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOUnitTest.java)
If you run the fetchQuestions() test, it works. Of course, it is not
really testing anything other than Mockito itself. In this particular
app, the only thing we are using Retrofit for is to obtain a list of
model objects to put in an ArrayAdapter to display in a ListView.
Mockito cannot readily help us test whether our ArrayAdapter is
inflating layouts properly, or whether ListView is using the ArrayAdapter
properly. At best, we would wind up creating massive mocks that, once again,
mostly just have us testing whether our mocks work, not our actual
business logic.
This is not to say that Mockito is useless, but rather that its utility
is for lightly extending the scope of what we can test of our POJOs in
unit testing.
Mockito is a fairly large and complex library. There are multiple books
available covering Mockito, should you need more than the project
documentation and similar online sources. Just remember that Mockito is
for general Java development and is not Android-specific.
Robolectric
Mockito mocks anything you want, so long as you are the one doing
the mocking.
Robolectric mocks a part of the Android SDK
for you. In particular, it mocks the setup and teardown of activities
and services, so you can confirm that they are initialized properly
through unit tests, instead of instrumentation tests. Robolectric
also supports a limited amount of user input testing — mostly limited
to click events — so you can determine whether or not your activity
is reacting as expected.
On the one hand, Robolectric lets you set up some Android-specific
unit tests “out of the box”. On the other hand, the depth and breadth
of its mocking is fairly limited, which will steer more of your tests
back to instrumentation testing, where you have a full Android SDK
at your disposal.
The
UnitTest/Robolectric
sample application is based on the one shown in
the chapter on JUnit4, where we have 25 Latin words that
we are showing in a list, and we want to test that the activity is
coming up as expected.
Setting up Robolectric
You will need to add a testImplementation directive to your build.gradle
file to pull in Robolectric, plus a testOptions closure in the android closure,
advertising that you want resources to be available to you while testing:

apply plugin: 'com.android.application'

dependencies {
 implementation "com.android.support:support-fragment:27.1.1"
 testImplementation 'junit:junit:4.12'
 testImplementation "org.robolectric:robolectric:3.5.1"
 androidTestImplementation 'com.android.support.test:rules:1.0.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 testApplicationId "com.commonsware.android.gradle.hello.robolectric"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }

 testOptions {
 unitTests {
 includeAndroidResources = true
 }
 }
}

(from UnitTest/Robolectric/app/build.gradle)
Choosing an API Level
A key decision that you will need to make, before writing any tests,
is what API level you want Robolectric to mock. Robolectric does not
have mocks for all API levels, as creating their roster of mocks takes
work.
Unfortunately, the roster of supported API levels does not appear to
be documented.
The Roboletric
SdkConfig class
class is the closest that we have to documentation, as it has a static
block that sets up the supported SDKs. The following is from Robolectric
3.7.1:

private static final Map<Integer, SdkVersion> SUPPORTED_APIS = Collections.unmodifiableMap(new HashMap<Integer, SdkVersion>() {
 {
 addSdk(Build.VERSION_CODES.JELLY_BEAN, "4.1.2_r1", "r1", "REL");
 addSdk(Build.VERSION_CODES.JELLY_BEAN_MR1, "4.2.2_r1.2", "r1", "REL");
 addSdk(Build.VERSION_CODES.JELLY_BEAN_MR2, "4.3_r2", "r1", "REL");
 addSdk(Build.VERSION_CODES.KITKAT, "4.4_r1", "r2", "REL");
 addSdk(Build.VERSION_CODES.LOLLIPOP, "5.0.2_r3", "r0", "REL");
 addSdk(Build.VERSION_CODES.LOLLIPOP_MR1, "5.1.1_r9", "r2", "REL");
 addSdk(Build.VERSION_CODES.M, "6.0.1_r3", "r1", "REL");
 addSdk(Build.VERSION_CODES.N, "7.0.0_r1", "r1", "REL");
 addSdk(Build.VERSION_CODES.N_MR1, "7.1.0_r7", "r1", "REL");
 addSdk(Build.VERSION_CODES.O, "8.0.0_r4", "r1", "REL");
 addSdk(Build.VERSION_CODES.O_MR1, "8.1.0", "r4402310", "OMR1");
 }

 private void addSdk(int sdkVersion, String androidVersion, String frameworkSdkBuildVersion,
 String codeName) {
 put(sdkVersion, new SdkVersion(androidVersion, frameworkSdkBuildVersion, codeName));
 }
});

This translates to support for API Level 16-19 and 21-27.
You will need to choose a suitable API level for your use. By default,
Robolectric will use your targetSdkVersion, which may or may not be
one of the supported API levels. You will need to know what Robolectric
API level to use when you start setting up your tests.
Writing Robolectric Tests
At this point, you can start writing tests that use Robolectric. As with
the Mockito tests and other unit tests, these will go in your test/
source set.
The sample project has a DemoActivityTest that, in theory, would mimic
the DemoActivityTest from the instrumentation tests in the androidTest/
source set:

package com.commonsware.android.abf.test;

import android.widget.ListView;
import com.commonsware.android.abf.ActionBarFragmentActivity;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.robolectric.Robolectric;
import org.robolectric.RobolectricTestRunner;
import org.robolectric.annotation.Config;
import static android.os.Build.VERSION_CODES.LOLLIPOP;

@RunWith(RobolectricTestRunner.class)
@Config(sdk=LOLLIPOP)
public class DemoActivityTest {
 private ListView list=null;

 @Before
 public void setUp() {
 ActionBarFragmentActivity activity=
 Robolectric.setupActivity(ActionBarFragmentActivity.class);

 list=activity.findViewById(android.R.id.list);
 }

 @Test
 public void listCount() {
 Assert.assertEquals(25, list.getAdapter().getCount());
 }
}

(from UnitTest/Robolectric/app/src/test/java/com/commonsware/android/abf/test/DemoActivityTest.java)
Your test case classes need two annotations. One is
@RunWith(RobolectricTestRunner.class), to tell the unit test
system to use Robolectric’s test runner rather than the stock JUnit one.
If you also plan on using Mockito, since you cannot use two test runners,
use the Robolectric one and add MockitoAnnotations.initMocks(this);
to a @Before method of your test case, to initialize Mockito.
You can optionally include a @Config annotation, to configure
Robolectric behavior. The one shown here specifies that we want to test
as if we are running on API Level 21 (sdk=LOLLIPOP), instead of our
targetSdkVersion.
The sdk property is not required, if your targetSdkVersion
is a supported value. However, you may wish to still specify it on the
tests, so your tests are isolated from changes that you might make to the
targetSdkVersion.
To get a fully-initialized mock activity, call Robolectric.setupActivity(),
providing the Java class object for the activity in question
(e.g., ActionBarFragmentActivity.class). This works similarly to calling
getActivity() on an ActivityTestRule in a JUnit4 instrumentation test:
you get an activity, with the appropriate data type, ready for testing.
In this case, we retrieve the ListView and, in a @Test method, ensure
that the adapter in the ListView has 25 entries.
The instrumentation test edition of DemoActivityTest also tests
key and touch events. While Robolectric supports performClick() calls
on views to simulate click events, simulating key and touch events does
not appear to be well-supported, which is why the Robolectric test case
skips them.
Running Robolectric Tests
You run the Robolectric tests the same way as any other unit tests, such
as by right-clicking over the test case class and choosing the
run option.
The first time that you run the tests for your module, Robolectric
will download a bunch of stuff:

Downloading: org/robolectric/android-all/5.0.2_r3-robolectric-r0/android-all-5.0.2_r3-robolectric-r0.pom from repository sonatype at https://oss.sonatype.org/content/groups/public/
Transferring 2K from sonatype
Downloading: org/robolectric/android-all/5.0.2_r3-robolectric-r0/android-all-5.0.2_r3-robolectric-r0.jar from repository sonatype at https://oss.sonatype.org/content/groups/public/
Transferring 55446K from sonatype

This material is cached, so future runs will skip it.
If you get a crash akin to this:

java.lang.UnsupportedOperationException: Robolectric does not support API level 14.
 at org.robolectric.internal.SdkConfig.<init>(SdkConfig.java:42)
 at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:187)
 at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:54)
 at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
 at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
 at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
 at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
 at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
 at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:152)
 at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
 at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
 at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
 at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
 at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
 at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)

…then you failed to set the sdk property to a valid API level
in your @Config annotation, as is described
earlier in this chapter.
OK, So, Why Bother?
If input is limited and mocks are incomplete, why are we using Robolectric?
Robolectric can be useful in cases where you wish to run a quick subset
of tests frequently to determine whether there are egregious problems.
So-called “smoke tests” might be run on every commit to a version
control system by a build server, for example. In this case, while
Roboletric may not help you with test breadth or depth, it can help
you with test frequency, since unit tests run so much faster. Running
your full test suite on every commit might be too much; running the subset
that you can implement as unit tests may be far more practical.
MonkeyRunner and the Test Monkey
Many GUI environments have some means or another of “fuzz” or
“bash” testing, where some test driver executes a bunch of random
input, in hopes of catching errors (e.g., missing validation logic).
Android offers the Test Monkey for this.
Many GUI environments have some means or another of scripting GUI
events from outside the application itself, to simulate button clicks
or touch events. Android offers MonkeyRunner for this.
As the names suggest, there is a bit of commonality in their
implementation. And, as you might expect, there is a bit of commonality
in their coverage in this book — we will examine both MonkeyRunner
and the Test Monkey in this chapter.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
MonkeyRunner
MonkeyRunner is a means of creating test suites for Android applications
based on scripted UI input. Rather than write a series of JUnit
test cases or the like, you create Jython (JVM implementation of Python)
scripts that run commands to install apps, execute GUI events, and
take screenshots of results.
Writing a MonkeyRunner Script
The primary object you will work with in a MonkeyRunner script is a MonkeyDevice,
which represents your connection to the device or emulator that you are testing.
You obtain a MonkeyDevice by calling waitForConnection() on MonkeyRunner; this will
return once it has established a connection.
From there, MonkeyDevice lets you send events to the device or emulator:

	
installPackage() allows you to install an APK from your development machine, and
removePackage() allows you to get rid of it

	
startActivity() and broadcastIntent() allow you to start up components of your
app

	
press() to simulate key events, including QWERTY keys, standard device keys
like BACK, D-pad/trackball events, and anything else represented by a standard
Android KeyEvent

	
type() to simulate entering a whole string, as a simplification over calling
press() once per letter

	
touch() and drag() let you simulate touch events

	and so on

The biggest limitation is in getting data out of the device, to determine if your
test worked successfully. Your options are:

	
takeSnapshot(), which will capture a screenshot that you can save to disk, compare
with other screenshots, etc.

	
shell() executes adb shell commands, returning any results

	…and that’s about it

Unlike JUnit-based testing, you have no visibility into the activity
beyond what appears on the screen — you cannot inspect widgets, call methods, or
the like.
For example, here is a script that installs an app, runs an activity from it,
and presses the down button on the D-pad three times:

from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice

device = MonkeyRunner.waitForConnection()
device.installPackage('bin/JUnitDemo.apk')
device.startActivity(component='com.commonsware.android.abf/com.commonsware.android.abf.ActionBarFragmentActivity')
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
result = device.takeSnapshot()
result.writeToFile('tests/monkey_sample_shots/test1.png', 'png')

(from Testing/monkey_sample.py)
Executing MonkeyRunner
To execute your MonkeyRunner script, have your device or emulator set up at a likely
starting point (e.g., home screen), then execute the monkeyrunner command,
passing it the path to your script (e.g., monkeyrunner monkey_sample.py). You will
see the script executing on the screen of your device or emulator, and your console
will contain whatever output you might emit from your test script itself. For example,
you might take screenshots, compare them against a master copy (using methods
on MonkeyImage to help with this), and emit warnings if they differ unexpectedly.
Monkeying Around
Independent from the JUnit system and MonkeyRunner
is the Test Monkey (referred to here as “the Monkey” for short).
The Monkey is a test program that simulates random user input. It is
designed for “bash testing”, confirming that no matter what the user
does, the application will not crash. The application may have odd
results — random input entered into a Twitter client may, indeed,
post that random input to Twitter. The Monkey does not test to make
sure that results of random input make sense; it only tests to make
sure random input does not blow up the program.
You can run the Monkey by setting up your initial starting point
(e.g., the main activity in your application) on your device or
emulator, then running a command like this:

adb shell monkey -p your.package.here -v --throttle 100 600

(substituting the application ID of a project on your device or
emulator for your.package.here)
Working from right to left, we are asking for 600 simulated events,
throttled to add 100 millisecond delays. We want to see a list of the
invoked events (-v) and we want to throw out any event that might
cause the Monkey to leave our application, as determined by the
application ID (-p your.package.here).
Note that this truly is the application ID, not the package name.
In simple apps — such as most of this book’s samples — the package
name is the application ID. But if you have modified the application
ID in your build.gradle file (e.g., replaced the application ID
for a product flavor), you will need to use the actual application ID
here, not the package name. In general, despite any legacy documentation
to the contrary, “package name” only affects code-generated classes
like R and BuildConfig. Any other use of the term “package name”
really is referring to the application ID.
The Monkey will simulate keypresses (both QWERTY and specialized
hardware keys, like the volume controls), D-pad/trackball moves, and
sliding the keyboard open or closed. Note that the latter may cause
your emulator some confusion, as the emulator itself does not itself
actually rotate, so you may end up with your screen appearing in
landscape while the emulator is still, itself, portrait. Just rotate
the emulator a couple of times (e.g., [Ctrl>-<F12>) to clear up the
problem.
Also note that the throttle time is only used in between batches of
related events. So, a batch of several touch events, or a pair
of up/down events for a hardware key, will not be throttled. You can
see this if you pass -v -v -v for “ultimate verbose mode” and look
at the output, such as this snippet:

:Sending Key (ACTION_DOWN): 134 // KEYCODE_F4
:Sending Key (ACTION_UP): 134 // KEYCODE_F4
Sleeping for 100 milliseconds
:Sending Touch (ACTION_DOWN): 0:(1302.0,842.0)
:Sending Touch (ACTION_MOVE): 0:(1295.3395,838.0863)
:Sending Touch (ACTION_MOVE): 0:(1290.1539,827.0493)
:Sending Touch (ACTION_MOVE): 0:(1280.0454,826.9068)
:Sending Touch (ACTION_MOVE): 0:(1272.0161,816.8062)
:Sending Touch (ACTION_MOVE): 0:(1260.7244,810.8302)
:Sending Touch (ACTION_UP): 0:(1250.5455,801.67444)
Sleeping for 100 milliseconds
:Sending Key (ACTION_DOWN): 19 // KEYCODE_DPAD_UP
:Sending Key (ACTION_UP): 19 // KEYCODE_DPAD_UP
Sleeping for 100 milliseconds
:Sending Key (ACTION_DOWN): 68 // KEYCODE_GRAVE
:Sending Key (ACTION_UP): 68 // KEYCODE_GRAVE
Sleeping for 100 milliseconds

Here, we see actual messages where the throttling is applied (“Sleeping
for 100 milliseconds”). Hence, the time it takes the Test Monkey to run
a test will be at most the number of events times the throttle time,
but due to event batching, it is usually substantially less than that.
25-30% of the maximum time seems typical.
For playing with a Monkey, the above command works fine. However, if
you want to regularly test your application this way, you may need
some measure of repeatability. After all, the particular set of input
events that trigger your crash may not come up all that often, and
without that repeatable scenario, it will be difficult to repair the
bug, let alone test that the repair worked.
To deal with this, the Monkey offers the -s switch, where you
provide a seed for the random number generator. By default, the
Monkey creates its own seed, giving totally random results. If you
supply the seed, while the sequence of events is random, it is random
for that seed — repeatedly using the same seed will give you
the same events. If you can arrange to detect a crash and know what
seed was used to create that crash, you may well be able to reproduce
the crash.
Java 8 Lambda Expressions
In 2016, Android app development gained some ability to use Java 8
programming constructs.
One of those changes was the release of Android 7.0, which introduced
some Java 8-compatible classes, such as those in the java.util.stream
package. These are new to API Level 24. Most likely, you will only start
to use them once you raise your minSdkVersion to 24 or higher.
However, some features can be used on older devices. Notable among these
are lambda expressions, the Java 8 equivalent of blocks or closures that
you find in other programming languages. Lambda expressions can make
your code a bit less verbose, particularly in places where you are
making heavy use of listener interfaces or other forms of callback objects.
Getting all this to work requires some Gradle changes (to request Java 8
support in the build process), plus using the new lambda expression syntax.
This chapter will show you all of this.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of the book. It does not require that you have prior experience with
Java 8 lambda expressions.
However, having read the chapter on RecyclerView is a good
idea, as the sample app in this chapter was originally shown there.
Also, you should now be using Android Studio 3.0, and its related build tools.
The Basic Idea
In Java programming prior to Java 8, we needed to create a lot of
classes for minor roles, whether those classes were traditional Java
classes, nested classes, or anonymous inner classes.
For example, suppose that you have an ArrayList of Video objects:

package com.commonsware.android.recyclerview.videolist;

import android.content.ContentUris;
import android.database.Cursor;
import android.net.Uri;
import android.provider.MediaStore;

class Video implements Comparable<Video> {
 final String title;
 final Uri videoUri;
 final String mimeType;

 Video(Cursor row) {
 this.title=
 row.getString(row.getColumnIndex(MediaStore.Video.Media.TITLE));
 this.videoUri=ContentUris.withAppendedId(
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));
 this.mimeType=
 row.getString(row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE));
 }

 @Override
 public boolean equals(Object obj) {
 if (!(obj instanceof Video)) {
 return(false);
 }

 return(videoUri.equals(((Video)obj).videoUri));
 }

 @Override
 public int hashCode() {
 return(videoUri.hashCode());
 }

 @Override
 public int compareTo(Video video) {
 return(title.compareTo(video.title));
 }
}

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/Video.java)
You want to sort those videos by a custom algorithm: ascending by title,
descending by title, etc.
That is easy enough with Collections.sort():

Collections.sort(temp, new Comparator<Video>() {
 @Override
 public int compare(Video one, Video two) {
 return(one.compareTo(two));
 }
});

However, that is fairly verbose. Many languages offer a simpler syntax,
where you can provide a “block” or “closure” that, in this case, would
handle the comparison without having to create a subclass and implement
a method.
Java 8 offers such a syntax, via lambda expressions:

 Collections.sort(newVideos,
 (one, two) -> one.compareTo(two));

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
Here, we have replaced the Comparator anonymous inner class implementation
with a single line of Java code, but having the same result. The compiler,
under the covers, wraps your lambda expression in a suitable Comparator
for use by the sort() method.
Using Lambda Expressions
With all that as prologue, let’s look at how we can enable and employ
lambda expressions in an Android application.
The code listings for this
section come mostly from the
Java8/VideoLambda
sample project. This is a version of a sample app
from the chapter on RecyclerView, where we query the
MediaStore for available videos and show them in a list. There are a
couple of editions of that sample in the RecyclerView chapter, one
of which shows the use of DiffUtil, and that sample
also demonstrates lambda expressions.
Enabling Lambda Expressions
Prior to Android Studio 3.0 (and its associated build tools), lambda expression
support was offered by Google through a different Java compiler, called Jack.
Jack had issues, possibly due to a broken crown.
Android Studio 3.0 eliminated Jack, offering lambda expression support by means
of the classic javac compiler combined with an updated version of the dx
tool for creating Dalvik bytecode from Java bytecode.
So, nowadays, to use lambda expressions, so long as you are using current build
tools, the only project change that you need is to indicate that your source and
target are both Java 1.8:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 implementation 'com.android.support:support-fragment:27.1.1'
 implementation 'com.squareup.picasso:picasso:2.5.2'
}

android {
 compileSdkVersion 27

 defaultConfig {
 minSdkVersion 16
 targetSdkVersion 27
 applicationId 'com.commonsware.android.lambda.video'
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
}

(from Java8/VideoLambda/app/build.gradle)
Replacing Listeners with Lambdas
Now, you can replace single-method anonymous inner class implementations
with lambdas with relative ease.
The example lambda expression from earlier in this chapter comes from
the sortAndApply() method of the VideoAdapter inside the
MainActivity of the sample app. Given an ArrayList of Video
objects, we need to sort them based on the user’s requested sort
order (ascending by default). We use lambda expressions, rather than
custom Comparator anonymous inner classes, to do that sorting:

 private void sortAndApply(ArrayList<Video> newVideos) {
 if (sortAscending) {
 Collections.sort(newVideos,
 (one, two) -> one.compareTo(two));
 }
 else {
 Collections.sort(newVideos,
 (one, two) -> two.compareTo(one));
 }

 DiffUtil.Callback cb=new SimpleCallback<>(videos, newVideos);
 DiffUtil.DiffResult result=DiffUtil.calculateDiff(cb, true);

 videos=newVideos;
 result.dispatchUpdatesTo(this);
 }

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
Here, each of our two lambda expressions:

	Has two parameters (the two objects passed into compare() of a Comparator),
so they get wrapped in parentheses

	Has a single Java statement to be executed, so it stands alone after
the arrow (->)

Other editions of this sample app have RowController implement
the OnClickListener interface and implement onClick() to be able
to respond to click events on our rows. This sample app uses a lambda
expression instead:

package com.commonsware.android.recyclerview.videolist;

import android.content.ContentUris;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.provider.MediaStore;
import android.support.v7.widget.RecyclerView;
import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;
import com.squareup.picasso.Picasso;

class RowController extends RecyclerView.ViewHolder {
 private TextView title=null;
 private ImageView thumbnail=null;
 private Uri videoUri=null;
 private String videoMimeType=null;

 RowController(View row) {
 super(row);

 title=row.findViewById(android.R.id.text1);
 thumbnail=row.findViewById(R.id.thumbnail);

 row.setOnClickListener(view -> {
 Intent i=new Intent(Intent.ACTION_VIEW);

 i.setDataAndType(videoUri, videoMimeType);
 title.getContext().startActivity(i);
 });
 }

 void bindModel(Video video) {
 title.setText(video.title);

 videoUri=video.videoUri;
 videoMimeType=video.mimeType;

 Picasso.with(thumbnail.getContext())
 .load(videoUri.toString())
 .fit().centerCrop()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(thumbnail);
 }
}

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)
Here, our lambda expression:

	Has one parameter, so we can skip the parentheses around it

	Has multiple Java statements to be executed, so they get wrapped in
a standard Java block ({ and })

When Android Studio detects a place where you could use a lambda
expression, it will mark the anonymous inner class as gray:

[image: Potential Lambda Expression, in Android Studio]

Figure 358: Potential Lambda Expression, in Android Studio
A quick-fix (e.g., Alt-Enter on Windows and Linux) will offer to convert
it into a lambda expression for you.
Alternative: Method References
Our Video model class has a compareTo() implementation that our sorting
lambda expressions rely upon:

package com.commonsware.android.recyclerview.videolist;

import android.content.ContentUris;
import android.database.Cursor;
import android.net.Uri;
import android.provider.MediaStore;

class Video implements Comparable<Video> {
 final String title;
 final Uri videoUri;
 final String mimeType;

 Video(Cursor row) {
 this.title=
 row.getString(row.getColumnIndex(MediaStore.Video.Media.TITLE));
 this.videoUri=ContentUris.withAppendedId(
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));
 this.mimeType=
 row.getString(row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE));
 }

 @Override
 public boolean equals(Object obj) {
 if (!(obj instanceof Video)) {
 return(false);
 }

 return(videoUri.equals(((Video)obj).videoUri));
 }

 @Override
 public int hashCode() {
 return(videoUri.hashCode());
 }

 @Override
 public int compareTo(Video video) {
 return(title.compareTo(video.title));
 }
}

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/Video.java)
We can further simplify the sorting code by replacing the lambda expressions
with a method reference…
for the first such expression:

if (sortAscending) {
 Collections.sort(temp, Video::compareTo);
}
else {
 Collections.sort(temp,
 (one, two) -> two.compareTo(one));
}

Here, we are saying that we want to pass the parameters normally passed
into compare() of a Comparator into the compareTo() method of the
first parameter. You can similarly use method references to refer to
static methods or a method on some separate object.
However, we cannot replace the second lambda expression with a method
reference. The Video::compareTo method reference always calls the method on the first
parameter. In our case, that is fine for the ascending sort, but for the
descending sort, we would need to call compareTo() on the second
parameter, as our lambda expression does. Alternatively, Video could
implement another method (e.g., compareDescendingTo()) that we could
use as a method reference.
Rx Basics
A programming model that has been gaining substantial ground in
recent years is reactive programming. In Android,
much of the attention has been on RxJava,
the “reactive extensions for Java”. Many libraries offer the ability to
be consumed using RxJava, and many Android experts have latched onto
RxJava as a way to reduce certain types of complexity in Android app
development.
In this chapter, we will review what reactive programming is,
what RxJava is, and how you
can apply RxJava in your Android app.
However, please understand that reactive programming
is a very large topic. Just a complete
explanation of RxJava would entail its own book. This chapter should
be seen as a launching pad for further explorations of your own, more so
than a definitive reference on the subject.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Life is But a Stream
In order to understand reactive programming, we first need to
think about streams.
When a Java programmer hears the term “stream”, what often pops into
mind is InputStream and OutputStream. Those offer access to a stream
of bytes, for input and output, respectively. Here, “stream” means that
the bytes are available one at a time (though are often retrieved in
a clump, such as an 8192-byte buffer), and that once removed from the
stream the bytes are considered to be “consumed” and are no longer available
from the stream itself.
When Java programmers think of InputStream and OutputStream, what
often pops into mind is FileInputStream and FileOutputStream. With
FileInputStream, the source of the bytes is fixed: the contents of a
designated file. With FileOutputStream, the destination of the bytes
is fixed: once again, a designated file.
However, there are many other sources of InputStream and OutputStream.
Some that you encounter in the book are:

	Streams on sockets, such as the InputStream that you get from
HttpUrlConnection

	Streams on content from a ContentProvider, such as the InputStream
that you get from calling openInputStream() on a ContentProvider

Particularly in the HTTP case, the source of the bytes is “live”, insofar
as there does not have to be some specific file that is the source of
those bytes. Those bytes could represent a generated Web page, or a live
audio stream, or anything else.
Hence, more generally, a stream represents a flow of data, where we can
pull data off of the stream and do something with it. That “flow of
data” could be bytes from a file, as we see with InputStream. But lots
of other things could be modeled as flows of data. Pretty much anything
where the data would come to us asynchronously could be modeled this way,
such as:

	Sensor readings off of an accelerometer

	GPS fixes

	Touch events

	Audio signals from a microphone

	Preview or live video frames from a camera

	And so on

You could even model some things that might not feel like a “stream” as
a stream if you wanted to. For example, querying a database or ContentProvider
gives you a Cursor back, and you could model that as being a stream
of rows.
Action and Reaction
Reactive programming works with streams. Rather than “iterate over the
rows in the Cursor and do X to each”, you say “as a row comes in from
the stream of rows, do X to each”. Here, you are “reacting” to the availability
of a row.
But part of reactive programming is that what processes a stream might
itself turn around and be a stream of events to something else.
For example, given a stream of audio signals, you might implement a filter
that clamps high-volume signals to a lower volume. That filter takes in
a stream (raw signals) and emits another stream (clamped signals). Other
code could react to the filtered stream (e.g., to record bytes to disk).
You may have already done reactive programming, without even realizing
it. The world’s most popular reactive programming environment is not
some functional programming language or UI framework.
It’s a spreadsheet.
Spreadsheet cells — particularly for simpler sheets — can be thought
of as either having data (particularly numbers) or formulas. A formula
references cells and performs a calculation upon them. This includes
performing calculations upon other cells that contain formulas.
For example, you might have a spreadsheet like this:

[image: Simple Spreadsheet]

Figure 359: Simple Spreadsheet
Here, the two formulas are shown in bold, while the data cells are in
the default font.
The average formula cell has =AVERAGE(B1:B5), to compute the average
of the five number cells above it. The result formula cell has =B6*B7,
to multiply the average by the “factor” number.
If you change that factor, not only does that cell change, but so does
the result formula cell. The B6 and B7 values referenced in the result
formula do not just identify cells, but represent
streams of changes to those cells’ values.
When B7 (the factor value) changes, the result
formula reacts to the changed-value event and recalculates its formula,
showing the result:

[image: Simple Spreadsheet with New Factor Value]

Figure 360: Simple Spreadsheet with New Factor Value
Similarly, if you change one of the five initial values (1, 1, 2, 3, 5),
the average formula cell responds to the changed-value event and recalculates
its value. That, in turn, triggers a changed-value event that causes
the result formula cell to react and recalculate its value:

[image: Simple Spreadsheet with New Initial and New Factor Value]

Figure 361: Simple Spreadsheet with New Initial and New Factor Value
A Rx For What Ails You
At this point, you may be wondering what this has to do with Android,
or even Java.
The pre-eminent framework for reactive programming in Java is RxJava.
RxJava is a library that helps you model data
as streams and apply a chain of operations to those streams.
RxJava is part of the ReactiveX series of
libraries, offering reactive programming for a wide range of
programming languages and platforms.
In late 2016, RxJava 2 was released. This includes some refactoring
of the original RxJava classes to comply with
the Reactive Streams
specification. This chapter focuses on RxJava 2. Some material that
you read on RxJava might be using the original RxJava API. While
pretty much everything done with classic RxJava can be done with
RxJava2, some conversion may be required.
(BTW, for those of you wondering about the title of this section,
Rx is an abbreviation for the word “prescription”)
Rx and Lambdas
RxJava relies heavily on functions. Java is not a functional programming
language, and so it does not have “functions” as standalone first-class
units of programming.
Java 8 offers lambda expressions, which are akin to
anonymous functions. RxJava supports Java 8 lambda expressions,
and by using Android Studio 3.0+ (and its related build tools),
Android developers can use lambda expressions in
projects with a minSdkVersion of 9 or higher.
The examples in this chapter use lambda expressions, as that will be the typical
way that you see RxJava be used.
A Simple Stream
Back in the chapter on threads, we had
the Threads/AsyncRV
sample app, which
demonstrated using an AsyncTask. There, our data source was a static
Java array of strings, and we would not need an AsyncTask to “load”
those into a list. However, to keep things simple, we pretended that
it took real work to obtain those strings, and we used an AsyncTask
to do that work in the background.
Let’s explore reactive programming and RxJava by revamping that example,
starting with the
Rx/Simple
sample project.
Adding the Dependency
RxJava is a library, available from Maven Central and JCenter. So,
a typical Android Studio project could add RxJava as a dependency
in a module’s build.gradle file:

apply plugin: 'com.android.application'

dependencies {
 implementation "com.android.support:recyclerview-v7:27.1.1"
 implementation "com.android.support:support-fragment:27.1.1"
 implementation 'io.reactivex.rxjava2:rxjava:2.1.7'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
}

(from Rx/Simple/app/build.gradle)
Replacing the Loop
The original AsyncTask sample app has a doInBackground() method that
looks a bit like this:

@Override
protected Void doInBackground(Void... unused) {
 for (String item : ITEMS) {
 if (isCancelled())
 break;

 publishProgress(item);
 SystemClock.sleep(400);
 }

 return(null);
}

Here, ITEMS is our static String array. We iterate over that array,
and if our task has not been canceled, we call publishProgress() to add
a string to our ListView, and sleep for 400 milliseconds as our way
of pretending to do real work.
The first step towards switching to a reactive model is to replace that
loop with a stream:

 @Override
 protected Void doInBackground(Void... unused) {
 Observable.fromArray(ITEMS)
 .subscribe(s -> {
 if (!isCancelled()) {
 publishProgress(s);
 SystemClock.sleep(400);
 }
 });

 return(null);
 }

(from Rx/Simple/app/src/main/java/com/commonsware/android/rx/RxDemoFragment.java)
io.reactivex.Observable is the root class for most of what you will
do with RxJava. It helps you set up a stream and then react to that
stream.
There are several ways to set up a stream — we will see a few of them
in this chapter. In this case, we are using fromArray(), which sets
up a stream based on the items in that array. In reality, this is a
factory method; the returned object is an Observable.
We then call subscribe() on the Observable. This basically represents
the sink for the stream of data coming from the Observable. In this
case, we use lambda expression implementation of the Consumer
interface. Our lambda expression body implements the accept() method
from that Consumer interface, and it will be invoked for each piece of data
from the stream. In this case, ITEMS is an array of String, and
so we are setting up a Consumer of String and therefore we accept()
a String. Our lambda expression has our isCancelled() check,
our publishProgress() call, and our sleep() call,
as with the iterative loop from the original sample.
Be Your Own Stream
Our 400 milliseconds of sleep() is a way of simulating doing work.
However, as RxJava is showing us, we are not actually simulating doing
work to get the data. Instead, we are simulating doing work to consume
the data. Our sleep() call is in our Consumer (or the equivalent
lambda expression), not in our data source.
However, we can model this better, by creating our own data source that
is a bit more sophisticated than a simple static Java array.
The
Rx/Observable
sample project replaces fromArray() with a call to create(), which
creates an Observable upon a supplied source of data:

 @Override
 protected Void doInBackground(Void... unused) {
 Observable.create(source())
 .subscribe(s -> {
 if (!isCancelled()) {
 publishProgress(s);
 }
 });

 return(null);
 }

 private ObservableOnSubscribe<String> source() {
 return(emitter -> {
 for (String item : ITEMS) {
 if (!isCancelled()) {
 emitter.onNext(item);
 SystemClock.sleep(400);
 }
 }

 emitter.onComplete();
 });
 }

(from Rx/Observable/app/src/main/java/com/commonsware/android/rx/RxDemoFragment.java)
Here, source() is returning a lambda expression that Java maps to
an instance of an oddly-named ObservableOnSubscribe
interface. An ObservableOnSubscribe is for cases where we are only
actually starting to obtain data for our stream when something subscribes
to the Observable, not before. In our case, that is fine, as we are still
just using our String array.
An ObservableOnSubscribe implements a subscribe() method. This is
called when a subscriber subscribes to the Observable. The job of
subscribe() is to work with the underlying data and call three
methods on the supplied ObservableEmitter:

	Call onNext()for each piece of data in the stream

	Call onComplete() when we are done with all possible data

	Call onError() if something fails (e.g., an IOException when reading
from a socket)

In our case, we are iterating over our Java array, calling onNext()
for each String, and sleeping the 400 milliseconds to simulate doing
actual work.
Removing the AsyncTask
At this point, you may be wondering why we are bothering with any
of this, as our code gets more and more complex without any particular
added value. This reaction is understandable. All we have done is make
an AsyncTask more complicated.
So, let’s get rid of the AsyncTask.
Part of the power of RxJava is thread management. You can tell it
the threads to use for working with streams, such as doing I/O on a
background thread. However, RxJava is a pure Java library. It knows
nothing about Android and Android-specific constructs like the
main application thread.
Fortunately, there is RxAndroid.
This a small library adding some Android-specific smarts to RxJava, such
as the notion of the main application thread. This, like RxJava, is
available as an artifact:

apply plugin: 'com.android.application'

dependencies {
 implementation "com.android.support:recyclerview-v7:27.1.1"
 implementation "com.android.support:support-fragment:27.1.1"
 implementation 'io.reactivex.rxjava2:rxjava:2.1.7'
 implementation 'io.reactivex.rxjava2:rxandroid:2.0.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 applicationId "com.commonsware.android.rx.rxandroid"
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
}

(from Rx/RxAndroid/app/build.gradle)
With that in mind, let’s look at
the
Rx/RxAndroid
sample project and our substantially-revised ListFragment, here
named RxDemoFragment:

package com.commonsware.android.rx;

import android.os.Bundle;
import android.os.SystemClock;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.v4.app.Fragment;
import android.support.v7.widget.DividerItemDecoration;
import android.support.v7.widget.LinearLayoutManager;
import android.support.v7.widget.RecyclerView;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;
import android.widget.Toast;
import java.util.ArrayList;
import io.reactivex.Observable;
import io.reactivex.ObservableOnSubscribe;
import io.reactivex.android.schedulers.AndroidSchedulers;
import io.reactivex.disposables.Disposable;
import io.reactivex.schedulers.Schedulers;

public class RxDemoFragment extends Fragment {
 private static final String[] ITEMS= { "lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante", "porttitor", "sodales",
 "pellentesque", "augue", "purus" };
 private ArrayList<String> model=new ArrayList<>();
 private RVArrayAdapter adapter;
 private Disposable sub=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 adapter=new RVArrayAdapter(model, getLayoutInflater());

 Observable<String> observable=Observable
 .create(source())
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnComplete(() -> {
 Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
 .show();
 });

 sub=observable.subscribe(s -> {
 adapter.add(s);
 });
 }

 private ObservableOnSubscribe<String> source() {
 return(emitter -> {
 for (String item : ITEMS) {
 emitter.onNext(item);
 SystemClock.sleep(400);
 }

 emitter.onComplete();
 });
 }

 @Nullable
 @Override
 public View onCreateView(@NonNull LayoutInflater inflater,
 @Nullable ViewGroup container,
 @Nullable Bundle savedInstanceState) {
 return inflater.inflate(R.layout.main, container, false);
 }

 @Override
 public void onViewCreated(View v, Bundle savedInstanceState) {
 super.onViewCreated(v, savedInstanceState);

 RecyclerView rv=v.findViewById(android.R.id.list);

 rv.setLayoutManager(new LinearLayoutManager(getActivity()));
 rv.addItemDecoration(new DividerItemDecoration(getActivity(),
 DividerItemDecoration.VERTICAL));
 rv.setAdapter(adapter);
 }

 @Override
 public void onDestroy() {
 if (sub!=null && !sub.isDisposed()) {
 sub.dispose();
 }

 super.onDestroy();
 }

 private static class RVArrayAdapter extends RecyclerView.Adapter<RowHolder> {
 private final ArrayList<String> words;
 private final LayoutInflater inflater;

 private RVArrayAdapter(ArrayList<String> words,
 LayoutInflater inflater) {
 this.words=words;
 this.inflater=inflater;
 }

 @NonNull
 @Override
 public RowHolder onCreateViewHolder(@NonNull ViewGroup parent,
 int viewType) {
 View row=inflater.inflate(android.R.layout.simple_list_item_1, parent, false);

 return new RowHolder(row);
 }

 @Override
 public void onBindViewHolder(@NonNull RowHolder holder,
 int position) {
 holder.bind(words.get(position));
 }

 @Override
 public int getItemCount() {
 return words.size();
 }

 private void add(String word) {
 words.add(word);
 notifyItemInserted(words.size()-1);
 }
 }

 private static class RowHolder extends RecyclerView.ViewHolder {
 private final TextView title;

 RowHolder(View itemView) {
 super(itemView);
 title=itemView.findViewById(android.R.id.text1);
 }

 public void bind(String text) {
 title.setText(text);
 }
 }
}

(from Rx/RxAndroid/app/src/main/java/com/commonsware/android/rx/RxDemoFragment.java)
Some things are the same as in the original sample app: the static
array, the ArrayList model, the ArrayAdapter, the retained fragment, etc.
However, our AsyncTask is gone, replaced by a chunk of RxJava code:

 Observable<String> observable=Observable
 .create(source())
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnComplete(() -> {
 Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
 .show();
 });

 sub=observable.subscribe(s -> {
 adapter.add(s);
 });

(from Rx/RxAndroid/app/src/main/java/com/commonsware/android/rx/RxDemoFragment.java)
This code adds a number of items to our Observerable call chain, so
let’s take them one at a time.
subscribeOn()
This teaches RxJava the thread to use for invoking our ObservableOnSubscribe
code, specifically its subscribe() method (or the equivalent with a
lambda expression). Since subscribe() could take some time — in our
case, 400 milliseconds per string — we really want to run that on a
background thread.
The Schedulers utility class in RxJava provides a handful of options
for indicating the thread to use. Here, we are using newThread(), which
does pretty much what the name suggests: create a new thread and use that
for our subscribe() work.
Typically, if we are using RxJava and RxAndroid, we want to subscribe to
events on a background thread. That is not always the case, though. There
are techniques for using RxJava/RxAndroid to manage things like user input
(e.g., text being entered live in an EditText). In those cases, we may have
specific threading requirements, such as subscribing on Android’s main application
thread.
observeOn()
By default, if you use subscribeOn(), everything involved with this
stream will be done on that thread. This would include the work we
want to do to update our UI, via our subscribe() call. And, on Android,
we cannot update the UI from a background thread.
observeOn() basically says “everything in this Observable configuration
from this point forward should switch to using this other thread”. With
our subscribe() call coming after observeOn(), we wind up processing
our subscribe() work in the thread indicated by observeOn().
Here, we use RxAndroid and its AndroidSchedulers class, which has a
mainThread() method to indicate that we want the work to be done
on the main application thread.
Note that you can call observeOn() several times. Typically, this is not
necessary. But, for example, you might use subscribeOn() to receive some
UI event on the main application thread, then call observeOn() to direct
initial processing of that event onto a background thread (e.g., database I/O
for updating a live filter based on what has been typed in so far), then
call observeOn() again to direct further processing to the main application
thread (e.g., update a RecyclerView with the now-filtered results).
doOnComplete()
In our samples so far, in the onPostExecute() method of our AsyncTask,
we showed a Toast to signal that the work was completed.
The equivalent step in RxJava is doOnComplete(). This takes an Action
object or, in this case, a lambda expression. This will be called when
our source() triggers onCompleted() on its supplied emitter.
Here, we show the Toast.
subscribe()
We then subscribe() to the Observable, feeding the strings into our
ArrayAdapter. subscribe() returns a Disposable instance, which we hold
onto in a field.
On a configuration change, we retain the Disposable, which in turn holds onto
our Observable. We also retain the ArrayAdapter. So, the new activity and
new fragment connect back up to the ArrayAdapter, and they get all existing
words plus any new ones fed in by our ongoing Rx work, if that has not completed
already.
If the user presses BACK to exit the activity, or the activity otherwise is
being finally destroyed, onDestroy() is called on our retained fragment,
and there we dispose() of that Disposable:

 @Override
 public void onDestroy() {
 if (sub!=null && !sub.isDisposed()) {
 sub.dispose();
 }

 super.onDestroy();
 }

(from Rx/RxAndroid/app/src/main/java/com/commonsware/android/rx/RxDemoFragment.java)
This way, if the Rx background work is still going on, and the fragment is
being destroyed, we disconnect and do not try to continue updating the
ArrayAdapter or display the Toast, as neither of those things are safe with
a destroyed activity.
Lambdas and Lifetimes
Be careful about what you reference from lambda expressions tied into RxJava,
or their anonymous inner class counterparts. You need to ensure that the lambdas
only reference objects with the same intended lifespan as the lambda itself.
In particular, be careful about referencing widgets directly. Suppose that we
had some RxJava work that was delivering a String to be filled into an EditText.
From a retained fragment, you might try doing something like this:

Observable<String> observable=Observable
 .create(source())
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread());

sub=observable.subscribe(s -> {
 myAwesomeEditText.setText(s);
});

The problem here is that myAwesomeEditText is a specific EditText instance,
the one known about at the time when the lambda expression is created. If we
undergo a configuration change, our fragment winds up retaining the lambda expression
but creating a new EditText. However, our lambda expression does not know
about that new EditText, so it happily sets the text of the old EditText,
with unfortunate results.
A safer approach is to call a method:

Observable<String> observable=Observable
 .create(source())
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread());

sub=observable.subscribe(s -> {
 updateMyAwesomeEditText(s);
});

where the method on the fragment can refer to the proper EditText instance,
whichever one is current at the time that the lambda expression is evaluated.
Streaming from a Resource
Of course, this still uses a 400-millisecond sleep() call to simulate
real work. The next step would be to do some actual I/O here, taking
advantage of RxJava’s ability to pull data from the stream on a background
thread.
The
Rx/XML
sample project places our 25 Latin words in an XML resource:

<words>
 <word value="lorem" />
 <word value="ipsum" />
 <word value="dolor" />
 <word value="sit" />
 <word value="amet" />
 <word value="consectetuer" />
 <word value="adipiscing" />
 <word value="elit" />
 <word value="morbi" />
 <word value="vel" />
 <word value="ligula" />
 <word value="vitae" />
 <word value="arcu" />
 <word value="aliquet" />
 <word value="mollis" />
 <word value="etiam" />
 <word value="vel" />
 <word value="erat" />
 <word value="placerat" />
 <word value="ante" />
 <word value="porttitor" />
 <word value="sodales" />
 <word value="pellentesque" />
 <word value="augue" />
 <word value="purus" />
</words>

(from Rx/XML/app/src/main/res/xml/words.xml)
We can then create an ObservableOnSubscribe implementation that
reads in those words, using an XmlPullParser obtained from a Resources
object, and use those words for our onNext() calls:

 private static class WordSource implements ObservableOnSubscribe<String> {
 private final Resources resources;

 WordSource(Context ctxt) {
 resources=ctxt.getResources();
 }

 @Override
 public void subscribe(ObservableEmitter<String> emitter) {
 try {
 XmlPullParser xpp=resources.getXml(R.xml.words);

 while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
 if (xpp.getEventType()==XmlPullParser.START_TAG) {
 if (xpp.getName().equals("word")) {
 emitter.onNext(xpp.getAttributeValue(0));
 }
 }

 xpp.next();
 }

 emitter.onComplete();
 }
 catch (Exception e) {
 emitter.onError(e);
 }
 }
 }

(from Rx/XML/app/src/main/java/com/commonsware/android/rx/RxDemoFragment.java)
Error Handling
If you look closely at that code snippet, you will see that we are using
a third method on the ObservableEmitter: onError(). We call this when
something goes wrong in reading in the XML, passing the exception along
to the emitter.
That, in turn, can make it to the code in our subscribe() call:

 Observable<String> observable=Observable
 .create(new WordSource(getActivity()))
 .subscribeOn(Schedulers.io())
 .map(s -> (s.toUpperCase()))
 .observeOn(AndroidSchedulers.mainThread())
 .doOnComplete(() ->
 Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT).show());

 sub=observable.subscribe(s -> adapter.add(s),
 error ->
 Toast
 .makeText(getActivity(), error.getMessage(), Toast.LENGTH_LONG)
 .show());

(from Rx/XML/app/src/main/java/com/commonsware/android/rx/RxDemoFragment.java)
Now, we are using a two-parameter implementation of subscribe() and are
passing in two lambda expressions. The first provides us our data,
which we pass to the ArrayAdapter as before. The second lambda will
be called if an exception is encountered and supplied to our emitter
and its onError() method. Here, we get the error, and use its message
to show a Toast.
Transmogrification
If you look closely at that code snippet, we have two other changes,
compared to the earlier RxAndroid sample.
One is that we are using Schedulers.io(), instead of Schedulers.newThread().
RxJava has a thread dedicated for I/O concerns, which we are using here.
That is not a requirement, and for more sophisticated scenarios you might
need something else (e.g., a thread from a thread pool that you configure
and manage). Here, we are just illustrating more than one way to move
our I/O code off the main application thread.
The second change, while small here, is more profound in general. We
are calling map(), passing in a lambda expression that takes a
String and converts it to uppercase. If you run this sample app,
you will see that all of the words show up in uppercase (and quickly,
since reading words out of an XML resource happens much faster than
one word every 400 milliseconds).
map() is known as an operator. Its job is to take a stream as input
and emit another stream as output, executing some code on each item
in the stream to change it, somehow.
There are lots of operators built into RxJava, handling all sorts
of scenarios, such as filtering:

	
skip() ignores a specified number of items, not passing them
downstream

	
take() accepts a specified number of items, ignoring the rest

	
distinct() skips any items that appeared before, using equals()
by default

The takeUntil() method that we have been calling is another operator,
saying “take all items from the main Observable until this other
Observable says otherwise”.
Other operators aggregate or convert the stream, such as:

	
concat() takes two Observables and emits the items from the first,
followed by the items from the second

	
count() counts the items and emits a single-item stream containing
the count of the original stream’s items

	
reduce() applies some supplied lambda expression (or the equivalent)
to calculate some result (e.g., an average), emitting a single-item stream
containing that result

RxJava alone has perhaps a hundred operators, and you can create others
if none of the built-in ones meet your needs.
Rx-Enabled Libraries
Many libraries either offer an Rx-compatible API as part of their
base functionality or offer an Rx-compatible bridge between your code
and some existing, non-Rx-compatible API.
For example, Retrofit offers
an RxJava 2-compatible adapter for Retrofit 2.x.
The
Rx/Retrofit
sample project is a clone of the original Retrofit 2.x sample from
the chapter on Internet access, revised to use
RxJava bindings instead of Retrofit’s built-in asynchronous options, and revised
to use a RecyclerView.
The dependencies now include the RxJava 2 adapter for Retrofit, plus
RxAndroid — these, in turn, will pull in RxJava:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.squareup.retrofit2:converter-gson:2.3.0'
 implementation 'com.squareup.retrofit2:adapter-rxjava2:2.3.0'
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 implementation "com.android.support:support-fragment:27.1.1"
 implementation 'io.reactivex.rxjava2:rxjava:2.1.7'
 implementation 'io.reactivex.rxjava2:rxandroid:2.0.1'
 androidTestImplementation 'com.android.support.test:rules:1.0.1'
 androidTestImplementation 'com.android.support.test.uiautomator:uiautomator-v18:2.1.3'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 18
 targetSdkVersion 27
 versionCode 1
 versionName "1.0"
 applicationId "com.commonsware.android.rx.retrofit"
 testApplicationId "com.commonsware.android.rx.retrofit.test"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }

 dataBinding {
 enabled = true
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
}

(from Rx/Retrofit/app/build.gradle)
Now, though, StackOverflowInterface can return an Observable,
rather than a Call:

package com.commonsware.android.databind.basic;

import io.reactivex.Observable;
import retrofit2.Call;
import retrofit2.Callback;
import retrofit2.http.GET;
import retrofit2.http.Path;
import retrofit2.http.Query;

public interface StackOverflowInterface {
 @GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
 Observable<SOQuestions> questions(@Query("tagged") String tags);

 @GET("/2.1/questions/{ids}?site=stackoverflow")
 Observable<SOQuestions> update(@Path("ids") String questionIds);
}

(from Rx/Retrofit/app/src/main/java/com/commonsware/android/databind/basic/StackOverflowInterface.java)
This gives us an Observable on a stream, just as if we had called Observable.fromArray()
or Observable.create(). In this case, the “stream” is a single-item
stream, containing an SOQuestions payload, which is our parsed response
from the Stack Exchange API.
That, in turn, allows our QuestionsFragment to use RxJava to arrange
to perform the I/O on the io() thread, process the response on
the Android main application thread, plus process our questions or any
errors that may crop up:

 sub=so.questions("android")
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(soQuestions -> {
 for (Item item : soQuestions.items) {
 Question question=new Question(item);

 questions.add(question);
 questionMap.put(question.id, question);
 }

 adapter.setQuestions(questions);
 }, t -> {
 Toast.makeText(getActivity(), t.getMessage(),
 Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(),
 "Exception from Retrofit request to StackOverflow", t);
 }
);

(from Rx/Retrofit/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
Further Reading
The primary source of documentation on RxJava comes in the form
of the GitHub repo’s wiki.
JavaDocs of the RxJava 2 API
are also available.
What About LiveData?
In 2017, Google introduced the Architecture Components: a set of libraries
designed to offer higher-level abstractions around core architecture concerns.
One piece of the Architecture Components is LiveData, which aims to offer
a simpler approach to the same reactive pattern that is espoused in RxJava/RxAndroid.
LiveData is covered in the companion volume,
“Android’s Architecture Components”.
Notifications
Pop-up messages. Tray icons and their associated “bubble” messages.
Bouncing dock icons. You are no doubt used to programs trying to get your
attention, sometimes for good reason.
Your phone also probably chirps at you for more than just incoming calls:
low battery, alarm clocks, appointment notifications, incoming text
message or email, etc.
Not surprisingly, Android has a whole framework for dealing with these
sorts of things, collectively called “notifications”.
Prerequisites
Understanding this chapter requires you to have read the core chapters
of the book.
What’s a Notification?
A service, running in the background, needs a way to let users know
something of interest has occurred, such as when email has been received.
Moreover, the service may need some way to steer the user to an activity
where they can act upon the event — reading a received message, for
example. For this, Android supplies status bar icons, flashing lights, and
other indicators collectively known as “notifications”.
Your current phone may well have such icons, to indicate battery life, signal
strength, whether Bluetooth is enabled, and the like. With Android,
applications can add their own status bar icons, with an eye towards having
them appear only when needed (e.g., a message has arrived).
Notifications will appear in one of two places. On most devices, they will
appear in the status bar, on the top of the screen, left-aligned:

[image: Notifications, on a Nexus 5X]

Figure 362: Notifications, on a Nexus 5X
On a pre-Android 4.2 tablet (and occasionally on other tablets newer than that),
they will appear in the system bar, on the bottom of the
screen, towards the lower-right corner:

[image: Notifications, on a Galaxy Tab 2]

Figure 363: Notifications, on a Galaxy Tab 2
In either case, you can expand the “notification shade” to get more details
about the active notifications, either by sliding down the status bar:

[image: Notification Shade, on a Galaxy Nexus]

Figure 364: Notification Shade, on a Galaxy Nexus
or by tapping on the clock on the system bar on some tablets:

[image: Notification Shade, on a Galaxy Tab 2]

Figure 365: Notification Shade, on a Galaxy Tab 2
Some notifications will be complex, showing real-time information, such as
the progress of a long download. More often, notifications are fairly simple,
providing just a couple of lines of information, plus an identifying icon.
Tapping on the notification shade entry will typically trigger some action,
such as starting an activity — an email app letting the user know that
“you’ve got mail” can have its notification bring up the inbox activity when
tapped.
Notifications and Channels
Through Android 7.1, all notifications were created equal. In other words, the
user could apply a single set of rules for configuring how those notifications
were delivered from your app. How much configuration was even available varied
by Android OS version, but on newer devices users could control whether to block
those notifications, show them without any sound or vibration, what amount of
information should be shown on the lockscreen, and so on.
In Android 8.0, all notifications go into channels that you define. The
user then has the ability to control the behavior of notifications
on a per-channel basis. This offers finer granularity of control over the breadth
of notifications that your app might deliver. Android 8.0 also extends the depth
of control, with more options for the user to decide how a channel’s notifications
should work.
Channels are not an optional feature, once your targetSdkVersion rises to 26
or higher. As a result, you will wind up with code that configures channels
on API Level 26+ devices and code that configures notifications directly on
older devices. This is aggravating, but is simply part of what is required.
In this chapter, we will show basic notification channel setup. In
a later chapter, we will explore channels in greater detail.
Showing a Simple Notification
Suppose we want to download a file. That may take some time, depending
on the size of the file. It would be nice to let the user know when
the download has been completed. Ideally, we would let the user know
by some means other than popping up a Toast. If we are having a service
download the file — which is a good idea for longer downloads — there
is the possibility that our UI is no longer in the foreground at the time
the download is done, so we cannot necessarily update the UI to let the
user know the file is ready for use.
An alternative would be for the background service doing the download to
raise a Notification when the download is complete. That would work even
if the activity was no longer around (e.g., user pressed BACK to exit it).
This can be seen in the
Notifications/DownloadNotify
sample project. This is a slightly modified clone
of the download-a-PDF-file sample from the chapter on services.
Our DownloadFragment for triggering the download dispenses with the
BroadcastReceiver and logic related to it, including
disabling and enabling the Button. Otherwise, it is the same as before.
The download logic in the onHandleIntent() method of Downloader is nearly
identical as well, with two changes.
One change is that we pull out the MIME type of the response from
its response header:

 URL url=new URL(i.getData().toString());
 HttpURLConnection c=(HttpURLConnection)url.openConnection();
 FileOutputStream fos=new FileOutputStream(output.getPath());
 BufferedOutputStream out=new BufferedOutputStream(fos);
 String mimeType=c.getHeaderField("Content-type");

(from Notifications/DownloadNotify/app/src/main/java/com/commonsware/android/downloader/Downloader.java)
The other difference is that at the end, rather than sending a broadcast
Intent, we call a private raiseNotification() method. We also call this
method if there is an exception during the download. The raiseNotification()
method takes the MIME type that we collected earlier,
the File object representing the downloaded results (if we succeeded), and
the Exception that was raised (if we crashed). As one might guess given
the method’s name, raiseNotification() will raise a Notification:

 private void raiseNotification(String mimeType, File output,
 Exception e) {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true);

 if (e == null) {
 b.setContentTitle(getString(R.string.download_complete))
 .setContentText(getString(R.string.fun))
 .setSmallIcon(android.R.drawable.stat_sys_download_done);

 Intent outbound=new Intent(Intent.ACTION_VIEW);
 Uri outputUri=
 FileProvider.getUriForFile(this, AUTHORITY, output);

 outbound.setDataAndType(outputUri, mimeType);
 outbound.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 PendingIntent pi=PendingIntent.getActivity(this, 0,
 outbound, PendingIntent.FLAG_UPDATE_CURRENT);

 b.setContentIntent(pi);
 }
 else {
 b.setContentTitle(getString(R.string.exception))
 .setContentText(e.getMessage())
 .setSmallIcon(android.R.drawable.stat_notify_error);
 }

 mgr.notify(NOTIFY_ID, b.build());
 }

(from Notifications/DownloadNotify/app/src/main/java/com/commonsware/android/downloader/Downloader.java)
The first thing we do in raiseNotification() is
get a NotificationManager, which is a system service. Calling getSystemService() and asking
for the NOTIFICATION_SERVICE will give us our NotificationManager, albeit
after a cast.
Next, we need to consider setting up a notification channel. This is required on
API Level 26+ devices, because our project’s targetSdkVersion is 26.
We need to give the channel some unique identifier, here labeled
CHANNEL_WHATEVER:

 private static final String CHANNEL_WHATEVER="channel_whatever";

(from Notifications/DownloadNotify/app/src/main/java/com/commonsware/android/downloader/Downloader.java)
getNotificationChannel(), on API Level 26+ devices, will return null
if the channel is not defined. So, if we are on an API Level 26+ device
and the channel is not defined, we call createNotificationChannel()
to define our channel, passing in a NotificationChannel.
The NotificationChannel takes three
parameters:

	the channel identifier (CHANNEL_WHATEVER)

	a label to show the user that describes this channel ("Whatever")

	the “importance” of this channel (NotificationManager.IMPORTANCE_DEFAULT)

We will cover the concept of “importance” in a later chapter.
For now, take it on faith that IMPORTANCE_DEFAULT is a reasonable choice for
most channels.
Then, we create a NotificationCompat.Builder object
to help construct the Notification. On API Level 11 and higher, there
is a Notification.Builder class that you can use.
However, the notification system in Android has been changing frequently
over the past few OS updates, and there are signs that this will continue.
Hence, you may prefer to use NotificationCompat.Builder. First, this will
work back to API Level 4, in case you are supporting notifications on older
devices. More importantly, NotificationCompat.Builder is updated to reflect
the latest Notification.Builder API, offering a backwards-compatible implementation
of that API. Some newer features are not supported on older devices, but
the NotificationCompat.Builder API lets you code to the new API, and it
quietly ignores things that cannot be done on older devices.
The NotificationCompat.Builder constructor takes a Context plus the
identifier of the channel that will be used. That channel identifier will
be used on API Level 26+ devices and ignored otherwise. Here, we provide
the CHANNEL_WHATEVER identifier that we just set up.
We can call methods on the Builder to configure the Notification that
we want to display. Whether our download succeeded or failed, we call setAutoCancel(true)
on the Builder, which means that when the user slides open the notification
shade and taps on our entry, the Notification is automatically canceled
and goes away.
If we succeeded (the passed-in Exception is null), we further configure
our Notification via more calls to the Builder:

	
setContentTitle() and setContentText() supply the prose to display in
the two lines of the notification shade entry for our Notification

	
setSmallIcon() indicates the icon to display in the status bar or system
bar when the Notification is active (in this case, specifying one supplied
by Android itself)

	
setTicker() supplies some text to be displayed in the status bar or
system bar for a few seconds right when the Notification is displayed, so
users who happen to be looking at their device at that time will get more
information at a glance about what just happened that is demanding their
attention (though only on Android 4.4 and older devices, as the ticker
was discontinued with Android 5.0)

In addition, setContentIntent() supplies a PendingIntent to be invoked
when the notification shade entry for our Notification is tapped. In our
case, we create an ACTION_VIEW Intent for our file. To do this,
we use FileProvider.getUriForFile(), as we are serving this PDF via
a FileProvider.
Hence, if the user taps on our notification shade
entry, we will attempt to bring up a PDF viewer on the downloaded PDF file
– whether this will succeed or not will depend upon whether there is a
PDF viewer installed on the device.
If, instead, we did have an Exception, we use the same methods on Builder
(minus setContentIntent()) to configure the Notification, but using different
text and icons.
Then, we can call notify() on the NotificationManager,
supplying our Notification (from build() on the Builder) and
a locally-unique integer (NOTIFY_ID, defined as a static data member
on the service).
That integer can later be used with a cancel()
method to remove the Notification from the screen, even if the user has not
canceled it themselves (e.g., via tapping on it with setAutoCancel(true)).
Running this in a device or emulator will display the Notification upon
completion of the download, with the download icon:

[image: Sample Notification, on a Nexus 5X]

Figure 366: Sample Notification, on a Nexus 5X
Opening the notification shade displays our Notification details:

[image: Sample Notification in Shade, on a Nexus 5X]

Figure 367: Sample Notification in Shade, on a Nexus 5X
Tapping on the shade entry will try to start a PDF viewer, perhaps bringing
up a chooser if there are multiple such viewers on the device. Also, tapping
on the shade entry will cancel the Notification and remove it from the
screen.
The Activity-Or-Notification Scenario
Let us suppose that you are writing an email app. In addition to an
“inbox” activity, you have an IntentService, scheduled via
AlarmManager, to go check for new email messages every so often.
This means, when your service discovers and downloads new messages,
there are two possibilities:

	The user has your inbox activity in the foreground, and that
activity should update to reflect the fact that there are new messages

	The user does not have your inbox activity in the foreground, so
you want to display a Notification to alert the user of the new
messages and lead them back to the inbox

However, ideally, the service neither knows nor cares whether the
inbox activity is in the foreground, exists in the process but is not
in the foreground, or does not exist in the process (e.g., Android
started a new process to handle this middle-of-the-night check for
new email messages).
One way to handle this is via an event bus.
The recipe for the Activity-or-Notification pattern is:

	Define an event (e.g., event class for greenrobot’s EventBus,
custom action string for LocalBroadcastManager)

	Have your activity or fragment register to respond to these events
while in the foreground (e.g., in onResume()) and unregister when
leaving the foreground (e.g., onPause()). The activity or fragment
can then update the UI in response to the event.

	The service raises the event bus event at appropriate times.

	By some means appropriate to the event bus implementation, the service
needs to know whether an activity or fragment responded to the event,
so it can raise a Notification if the event has not already been handled.

We will see some implementations of this pattern
in the chapter on event bus alternatives.
Big (and Rich) Notifications
Android 4.1 introduced new Notification styles that
automatically expand into a “big” area when they are the top Notification
in the shade. These expanded Notifications can display more text (or a larger
thumbnail of an image), plus add some action buttons to allow the user to
directly perform more actions straight from the Notification itself.
And while these new Notification styles are only available on API Level 16
and higher, a familiar face has created a compatibility layer so our code can
request the larger styles and still work on older devices.
The Styles
There are three main styles supplied for expanded Notifications. There is the
BigText style:

[image: BigText Notification]

Figure 368: BigText Notification
We also have the Inbox style, which is the same basic concept but designed for
several discrete lines of text:

[image: Inbox Notification]

Figure 369: Inbox Notification
And, we have the BigPicture style, ideal for a photo, album cover, or the like:

[image: BigPicture Notification]

Figure 370: BigPicture Notification
(as noted in the screenshot, the photo is courtesy of Romain Guy, a former
engineer on the core Android team and photography buff)
The Builders
Notification.Builder and NotificationCompat.Builder have
been enhanced to support these new styles.
Specifically:

	There is an addAction() method on the Builder class to define the action
buttons, in terms of icon, caption, and PendingIntent that should be executed when
the button is clicked

	There are style-specific builders, such as Notification.InboxStyle, that take
a Notification.Builder and define the alternative expanded definition to be used
when the Notification is at the top

The Sample
To see expanded notifications, take a peek at the
Notifications/BigNotify
sample application. This application consists of a single activity (MainActivity) that
will raise a Notification and finish(), using @style/Theme.Translucent.NoTitleBar to suppress
the activity’s own UI. Hence, the result of running the app is to display the
Notification and do nothing else. While silly, it minimizes the amount of ancillary
code involved in the project.
The process of displaying an expanded Notification is to first create the basic
Notification, containing what you want to display for any non-expanded circumstance:

	Older devices that cannot display expanded Notifications, or

	Newer devices where the Notification is not the top-most entry in the notification
shade, and therefore appears in the classic non-expanded form

Hence, in onCreate(), after getting our hands on a NotificationManager, we create a
notification channel (if needed), then use
NotificationCompat.Builder to create a regular Notification, wrapped in a private
buildNormal() method:

 private NotificationCompat.Builder buildNormal() {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setContentTitle(getString(R.string.download_complete))
 .setContentText(getString(R.string.fun))
 .setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .setPriority(Notification.PRIORITY_HIGH)
 .addAction(android.R.drawable.ic_media_play,
 getString(R.string.play),
 buildPendingIntent(Settings.ACTION_SETTINGS));

 return(b);
 }

(from Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java)
Most of what buildNormal() does is the same sort of stuff we saw with
NotificationCompat.Builder earlier in this chapter. There are two things, though, that
are new:

	We call setPriority() to set the priority of the Notification to PRIORITY_HIGH.
This means that this Notification may be displayed higher in the notification shade
than it might ordinarily appear.

	We call addAction() to add an action button to the Notification, to be shown
in the expanded form. We are able to supply an icon, caption, and PendingIntent, the
latter created by a buildPendingIntent() method that wraps our desired Intent
action string (here, Settings.ACTION_SETTINGS) in an Intent:

 private PendingIntent buildPendingIntent(String action) {
 Intent i=new Intent(action);

 return(PendingIntent.getActivity(this, 0, i, 0));
 }

(from Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java)
Ordinarily, we might use this Builder directly, to raise the Notification we
described. And, if we just wanted the action button to appear and nothing else new
in the expanded form, we could do just that. But in our case, we also want to change
the look of the expanded widget to a new style, InboxStyle. To do that, we need
to wrap our Builder in a NotificationCompat.InboxStyle builder:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder normal=buildNormal();
 NotificationCompat.InboxStyle big=
 new NotificationCompat.InboxStyle(normal);

 mgr.notify(NOTIFY_ID,
 big.setSummaryText(getString(R.string.summary))
 .addLine(getString(R.string.entry))
 .addLine(getString(R.string.another_entry))
 .addLine(getString(R.string.third_entry))
 .addLine(getString(R.string.yet_another_entry))
 .addLine(getString(R.string.low)).build());

 finish();
 }

(from Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java)
Each of these “big” builders has a set of methods that are unique to that type of
builder to configure the look beyond what a standard Notification might have.
Specifically, in this case, we call:

	
setSummaryText(), to provide “the first line of text after the detail section
in the big form of the template”, in the words of the JavaDocs, though this does not
necessarily mean what you think it does

	
addLine(), to append several lines of text to appear in the Notification

It is the Notification created by our NotificationCompat.InboxStyle builder that
we use with the call to notify() on NotificationManager.
The Results
If we run our app, we get this:

[image: Expanded Notification in Shade, on Android 8.1]

Figure 371: Expanded Notification in Shade, on Android 8.1
From top to bottom, we have:

	Our content text

	Our appended lines of text

	Our action button

	Our summary text

Note that this is the appearance when we are in expanded mode, at the top of the
notification shade. If our Notification is not at the top, or if it is displayed
on a pre-4.1 device, the appearance is the normal style, as defined by our
buildNormal() method, though on Android 4.1+ devices the user can use a two-finger
downward swipe gesture to expand the un-expanded Notification.
Foreground Services
If you have a service that will run for a substantial period of time, there is
a risk that your process will still be terminated. That could be triggered by the
user, or it could be the OS’s own decision, based on the age of your process.
Generally speaking, this is a good thing for the user, because too many
developers “leak” services, causing them to run unnecessarily, without adding
value to the user, and tying up system RAM as a result.
But, what about services that are delivering value to the user for a long
period? For example, what about a music player, where, in theory, the service
is delivering value until the user presses some sort of “stop” button somewhere to
turn off the music?
For those sorts of situations, you can flag a service as being a “foreground
service”.
Isn’t “Foreground Service” an Oxymoron?
You might be forgiven for thinking that “foreground” and “service” are
not designed to go together.
Partly, that is because we have overloaded the term “foreground”.
A foreground service is not one that somehow takes over the screen. A
foreground service is one that runs with foreground priority. That means:

	It will be treated similarly to the app that is in the UI foreground,
from the standpoint of determining processes eligible for termination

	It will be classified as foreground from a CPU standpoint, rather than
being relegated to the standard background process group

The former is what many developers want: a service (and process) that will
not go away.
The latter is what many users fear: a service (and process) that is capable
of stealing chunks of CPU time away from the game, video, or whatever else
is truly in the foreground from a UI standpoint.
Services themselves, while useful, are best when used sparingly, only running
when they are actively delivering value to the user. “This goes double”
for foreground services.
Putting Your Service in the Foreground
Putting a service into the foreground is a matter of calling startForeground().
This method takes two parameters, the same two parameters that you would
pass to notify() of NotificationManager:

	A prepared Notification

	A unique ID for that Notification

Android will then display the Notification. So long as the Notification
is visible, your app’s process will be given foreground priority.
You undo this by calling stopForeground(). stopForeground() takes a boolean
parameter, indicating if the Notification should be removed (true) or not
(false). Typically, you will pass true, so the Notification only clutters
up the screen while you need it.
The
Notifications/Foreground
sample project is a clone of the Notifications/DownloadNotify sample that
opened this chapter, adding in the use of startForeground() and
stopForeground().
Towards the top of onHandleIntent(), we call startForeground(), to really
ensure that our process will remain intact long enough to complete the requested
download:

 startForeground(FOREGROUND_ID,
 buildForegroundNotification(filename));

(from Notifications/Foreground/app/src/main/java/com/commonsware/android/foredown/Downloader.java)
This, in turn, uses a buildForegroundNotification() method to build the
Notification that will be displayed while the service is categorized as being
in the foreground:

 private Notification buildForegroundNotification(String filename) {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setOngoing(true)
 .setContentTitle(getString(R.string.downloading))
 .setContentText(filename)
 .setSmallIcon(android.R.drawable.stat_sys_download);

 return(b.build());
 }

(from Notifications/Foreground/app/src/main/java/com/commonsware/android/foredown/Downloader.java)
Note that we use setOngoing(true), to indicate that this is an “ongoing”
operation. This precludes the user from removing the Notification manually,
as doing that would drop our process out of foreground priority.
At the end of onHandleIntent(), we call stopForeground() in a finally
block, to ensure that it gets called:

 try {
 // rest of code omitted for brevity

 raiseNotification(i, output, null);
 }
 catch (IOException e2) {
 raiseNotification(i, null, e2);
 }
 finally {
 stopForeground(true);
 }

We pass true to stopForeground() to remove the Notification.
From the user’s perspective, we could just as easily have passed false, as
the Notification used with startForeground() will also be removed once
our service is destroyed, which will happen shortly after onHandleIntent()
ends.
If you want to update the foreground Notification, you can either:

	Call notify() again with the same notification ID and a fresh
Notification, as you would use to update any Notification, or

	Simply call startForeground() again, with the same notification
ID and a fresh Notification

We will see this particular practice in use later in the book, where
we use a foreground service’s Notification to
control recording a screencast of an Android device.
The Malformed Notification
Of course, some developers do not play nicely with the other kids.
A technique that had been around for a while was for an app to pass an
intentionally-flawed Notification to startForeground(). While Android
would blow up silently somewhere internally actually trying to display
the Notification, the foreground status was still granted. This resulted
in behavior reminiscent of the long-since-deprecated setForeground() method.
setForeground() allowed a service to get foreground priority with no
repercussions. Not surprisingly, lots of developers used it, as they decided
that their app was more important than any other apps on the device.
setForeground() was replaced by startForeground(), adding in the Notification
requirement, to put a “cost” on foreground status. The malformed-Notification
trick allowed developers to avoid that cost.
In Android 4.3, if you pass a malformed Notification to startForeground(),
Android will create one for you, featuring your app’s launcher icon, and use
it instead. Hence, on Android 4.3 and higher, you cannot hide your foreground
status from the user.
Disabled Notifications
Because apps have the ability to display larger-than-normal Notifications, plus
force them towards the top of the list via priority levels, Android has given users
the ability to disable Notifications on a per-app basis. The degree of control,
and the way the user sets up that control, depends upon Android version.
Android 4.x
Users visiting an app’s
page in Settings will see a “Show notifications” checkbox:

[image: Show Notifications Checkbox, on Android 4.4]

Figure 372: Show Notifications Checkbox, on Android 4.4
If the user unchecks the checkbox and agrees on the resulting confirmation dialog,
your requests to raise a Notification will be largely ignored. An error message
will appear in Logcat (“Suppressing notification from package … by user request”), but
no exception will be raised. Further, there does not appear to be an API for you to
determine if the notification will actually be displayed.
Also note that, on Android 4.2+, if the user blocks notifications,
it also blocks Toast requests from your app.
And, also note that this setting survives an uninstall of your app. If the user
unchecks this checkbox, uninstalls your app, then reinstalls your app, the
checkbox is still unchecked, meaning that notifications will still be blocked.
The one notable exception to this blocking, as of Android 4.3, is that
the Notification associated with a foreground service will not be blocked. It
will always appear, even if the user unchecked “Show notifications” for your
app in Settings.
Android 5.0+
In the “Sound & notification” area of Settings, the user can tap on an
“App notifications” option, and from there choose an app. This brings
up a screen where the user can “block” (i.e., disable) notifications:

[image: App notifications in Settings, on Android 5.0]

Figure 373: “App notifications” in Settings, on Android 5.0
The top “Block” SwitchPreference, if toggled on, will prevent app
notifications from being displayed.
The bottom “Priority” SwitchPreference, if toggled on, marks this
app’s notifications as being “priority”. Then, in the main
“Sound & notification” area of Settings, the user can tap on an
“Interruptions” option:

[image: Interruptions in Settings, on Android 5.0]

Figure 374: “Interruptions” in Settings, on Android 5.0
If the user toggles the “When notifications arrive” option to
“Allow only priority interruptions”, then those apps that the user
configures as “Priority” in “App notifications” will behave
normally. Other apps’ notifications will appear, but will not
play a ringtone or vibrate the device.
If the user toggles the “When notifications arrive” option to
“Don’t interrupt”, all notifications — even those marked as
“Priority” — will have their ringtones and vibrations suppressed.
Android 8.0+
Users have similar control capability on Android 8.0 and higher as they
did on Android 5.0 through 7.1. Now, however, they are divided into
channels, as will be explained in the chapter on advanced notifications.
Advanced Notifications
Notifications are those icons that appear in the status bar (or
system bar on tablets), typically to alert the user of something that
is going on in the background or has completed in the background.
Many apps use them, to let the user know of new email messages,
calendar reminders, and so on. Foreground services, such as music
players, also use notifications, to tell the OS that they are part of
the foreground user experience and to let the user rapidly return to
the apps to turn the music off.
There are other tricks available with the Notification object
beyond those originally discussed
in an earlier chapter.
Prerequisites
Understanding this chapter requires that you have read
the chapter on basic notifications and
the section on RemoteViews in
the chapter on basic app widgets.
Being a Good Citizen
Users have a love/hate relationship with apps that use
notifications:

	They love apps that raise notifications for events that the
user cares about…

	…but they hate apps that raise notifications for events
that the user does not care about (e.g., Evernote’s “please
confirm your email” notifications)

	They love apps that provide control over when and how
notifications appear…

	…but they hate apps that display notifications solely because
the developer wanted them (e.g., ads in notifications)

	They love apps that use notifications to let the user control
some background operation, like media playback…

	…but they hate apps that have ongoing notifications for
no obvious reason (e.g., developers trying to use a foreground
service to keep their process around, rather than using
AlarmManager, JobScheduler, or other means of doing work
periodically)

	They love apps that set up notifications for use in different
scenarios, such as supporting Android Wear/Wear OS devices…

	…but they hate apps that wind up flooding their wrist (or
eyes, or other wearable locations) with notifications that have
to be individually dismissed

And so on.
Users’ discomfort with how apps handle notifications is why
Android allows users to disable notifications.
Some of the items in this chapter, particularly those surrounding
Wear OS, can help you improve user satisfaction with your
notification strategy and tactics. Yet, at the same time, misuse
of notifications is magnified by Wear, as Wear takes extra steps
to get the user to pay attention to the notifications, with
possibly disastrous results for your Play Store reviews.
In short, your objective with notifications is to be a good citizen:

	Have a reasonable default mode for your notifications

	Allow users to tailor that mode to better suit their needs,
where practical

More About Channels
Android 8.0 moved a lot of notification configuration out of NotificationCompat.Builder
and into a new NotificationChannel class, and moving their effects from being
per-notification to per-channel. When you configure a channel, all notifications
in that channel will exhibit the behavior defined for the channel.
What You Do with Channels
Many configuration options formerly set on a Notification are now set on a
NotificationChannel:

 	You Used to Call This on Notification

 	You Now Call This on NotificationChannel

 	setDefaults()
 	no real analogue

 	setLights()
 	
enableLights() and setLightColor()

 	setPriority()
 	setImportance()

 	setSound()
 	setSound()

 	setVibration()
 	
enableVibration() and setVibrationPattern()

 	setVisibility()
 	setLockscreenVisibility()

The “enable” methods (enableLights(), enableVibration()) opt you into whatever
the device default behaviors are for those features.
As a result of these things moving to NotificationChannel, the user can control
the behavior. You might request to enable vibration, but the user will be able
to override your choice, for example.
In addition to these options, a NotificationChannel also configures:

	Whether this channel’s notifications should bypass do-not-disturb settings
(setBypassDnd())

	Whether a launcher icon badge should be used with this
channel’s notifications (setShowBadge())

Channels can also be associated into channel groups. This is purely for organizational
purposes; groups show up on the screen that the user sees
to help cluster related channels together. Beyond that, channels in groups behave
identically to channels not in groups.
Creating Channel Groups
A NotificationChannelGroup is the Java class embodiment of a channel group.
A NotificationChannelGroup consists purely of a String unique identifier
and a CharSequence (e.g., String) display name to show the user. In most cases,
you will want the display name to come from a string resource, for translation
purposes.
You need to register your channel groups with Android. To do this, you will need
to call one of the following methods on NotificationManager:

	
createNotificationChannelGroup(), to create a single channel group

	
createNotificationChannelGroups(), to create a List of channel groups

The
Notifications/Channels
sample project demonstrates the use of notification channels and channel
groups. The MainActivity has an initGroups() method that defines two channel groups:

 private void initGroups() {
 ArrayList<NotificationChannelGroup> groups=new ArrayList<>();

 groups.add(new NotificationChannelGroup(GROUP_UPDATES,
 getString(R.string.group_name_updates)));
 groups.add(new NotificationChannelGroup(GROUP_PROMO,
 getString(R.string.group_name_promo)));

 mgr.createNotificationChannelGroups(groups);
 }

(from Notifications/Channels/app/src/main/java/com/commonsware/android/notify/channel/MainActivity.java)
Here, the display names come from string resources, and the channel group IDs are
string constants defined on MainActivity itself.
Creating Channels
Creating channels, in turn, involves configuring NotificationChannel objects and
calling createNotificationChannel() on NotificationManager for each channel.
MainActivity has three methods for defining three separate channels, in those
two channel groups:

 private void initContentChannel() {
 NotificationChannel channel=
 new NotificationChannel(CHANNEL_CONTENT,
 getString(R.string.channel_name_content),
 NotificationManager.IMPORTANCE_LOW);

 channel.setGroup(GROUP_UPDATES);
 mgr.createNotificationChannel(channel);
 }

 private void initBattleChannel() {
 NotificationChannel channel=
 new NotificationChannel(CHANNEL_BATTLE,
 getString(R.string.channel_name_battle),
 NotificationManager.IMPORTANCE_HIGH);

 channel.setGroup(GROUP_UPDATES);
 channel.setShowBadge(true);
 mgr.createNotificationChannel(channel);
 }

 private void initCoinsChannel() {
 NotificationChannel channel=
 new NotificationChannel(CHANNEL_COINS,
 getString(R.string.channel_name_coins),
 NotificationManager.IMPORTANCE_DEFAULT);

 channel.setGroup(GROUP_PROMO);
 mgr.createNotificationChannel(channel);
 }

(from Notifications/Channels/app/src/main/java/com/commonsware/android/notify/channel/MainActivity.java)
The constructor takes a unique String identifier for the channel, a user-facing
display name for the channel, and the importance of the notifications in that channel.
Again, typically you will want to use a string resource for the display name, as
the sample code demonstrates.
Between creating the NotificationChannel and registering it with
createNotificationChannel() on NotificationManager, you can call various
setter methods to configure the way that this channel behaves, beyond
the importance. For example,
if you are using channel groups, you will need to call setGroup()
on the NotificationChannel, passing in the channel group ID.
All of these methods are invoked from onCreate() of MainActivity:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mgr=getSystemService(NotificationManager.class);

 if (mgr.getNotificationChannel(CHANNEL_CONTENT)==null) {
 initGroups();
 initContentChannel();
 initBattleChannel();
 initCoinsChannel();
 }

 setContentView(R.layout.activity_main);
 }

(from Notifications/Channels/app/src/main/java/com/commonsware/android/notify/channel/MainActivity.java)
In particular, we only call those methods if we do not already have
the CHANNEL_CONTENT channel defined, as determined via a call to
getNotificationChannel() on NotificationManager. This if check serves
two purposes:

	We avoid running through a bunch of initialization code for things that we
have already initialized

	We cannot change notification channels or channel groups once we create
them, as we will examine more later in this chapter

What the User Sees
When the user visits the notification settings for this app, all three
channels appear, clustered into the two groups:

[image: Notification Settings, Showing Three Channels in Two Groups]

Figure 375: Notification Settings, Showing Three Channels in Two Groups
The groups appear to be sorted alphabetically, not in the order that they are
defined.
Tapping on the channel itself
brings up a screen for configuring the details of that channel:

[image: Notification Settings, Showing Channel Configuration]

Figure 376: Notification Settings, Showing Channel Configuration
Of note, if the importance calls for a sound, and you did not supply a Uri
to some ringtone via setSound() on the NotificationChannel, the user
will see that the “Default notification sound” is “Unknown”, though this really
means that the default notification sound will be used.
You can bring up the activity for configuring channel settings yourself, via
an ACTION_CHANNEL_NOTIFICATION_SETTINGS Intent and a call to startActivity():

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.settings) {
 Intent i=new Intent(Settings.ACTION_CHANNEL_NOTIFICATION_SETTINGS);

 i.putExtra(Settings.EXTRA_CHANNEL_ID, CHANNEL_BATTLE);
 i.putExtra(Settings.EXTRA_APP_PACKAGE, getPackageName());
 startActivity(i);
 }

 return super.onOptionsItemSelected(item);
 }

(from Notifications/Channels/app/src/main/java/com/commonsware/android/notify/channel/MainActivity.java)
This requires two extras:

	
EXTRA_APP_PACKAGE is your application ID, returned via getPackageName()
or BuildConfig.APPLICATION_ID

	
EXTRA_CHANNEL_ID is the channel ID of the channel whose settings you wish
to display

Once and Done
Once you create a notification channel, control over the channel settings resides
with the user. You cannot modify the settings of that channel. Consider your
settings to be defaults; the user is welcome to modify the channel from those
defaults as the user sees fit.
To help prevent developers from deleting and re-creating channels, while you can
call deleteNotificationChannel() on NotificationManager, that channel will
still be visible to the user (“Deleted channels remain visible in notification settings, as a spam prevention mechanism.”)
Backwards Compatibility
There is no backport of notification channels.
NotificationCompat.Builder takes a channel ID, but you will need to use the
native NotificationChannel class to define the channel. And since that class
only exists on Android 8.0+, unless your minSdkVersion is 26 or higher,
you will need to make sure that you use NotificationChannel only on
suitable devices, using the recipe that we saw in the original chapter on notifications:

if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
}

Wear? There!
The humble Notification has been steadily advancing over the past
few years, with “big” styles and the like adding new capabilities
for newer devices.
Wear OS takes notifications to a new level, by having the
notification not only appear on the user’s device, but also
on wearables connected to that device.
The good news is that this works “out of the box”. There is nothing
you absolutely need to do in your app to get your notifications
to appear on a Wear device.
The bad news is that the “out of the box” experience may be poor,
as a Notification approach that is fine for devices that reside
in pockets and backpacks might be inappropriate for wrists and eyes.
With that in mind, let’s see what some notification samples from earlier in the
book behave like when they are run on a phone connected to a Wear
device.
NOTE: For this section, and the rest of this chapter, “primary device”
will refer to the user’s phone or tablet that the “Wear device” will be
connected to.
Simple Notification
The
Notifications/DownloadNotify
sample project allows the user to download a PDF file, raising a Notification
when that download is complete.
With a Wear device paired with the phone, the Notification also appears on the
device, first as a “mini card”:

[image: Simple Notification on Wear, As Originally Displayed, On Samsung Galaxy Gear]

Figure 377: Simple Notification on Wear, As Originally Displayed, On Samsung Galaxy Gear
Swiping up on that will bring up the full card:

[image: Simple Notification on Wear, Full, On Samsung Galaxy Gear]

Figure 378: Simple Notification on Wear, Full, On Samsung Galaxy Gear
Swiping to the right will bring up the action associated with setContentIntent()
on the NotificationCompat.Builder:

[image: Simple Notification on Wear, Default Action, On Samsung Galaxy Gear]

Figure 379: Simple Notification on Wear, Default Action, On Samsung Galaxy Gear
Tapping on that dismisses the Notification on the Wear device and the primary device,
plus it invokes the PendingIntent on the phone itself (in this case, opening up
the PDF file).
This is a fine example of a Notification that perhaps should not appear on
the Wear device. The fact that the download completed is interesting but not all
that important. Furthermore, the user cannot do anything about this download
other than to pull out the primary device to see the PDF. Low-priority
primary-device-centric
notifications generally should be shown on the primary device alone,
not on the Wear device. We will see how to do that
later in this chapter.
“Big” Style and Action Button
The
Notifications/BigNotify
sample application wrapped a regular Notification in a NotificationCompat.InboxStyle
“big” Notification, one with both a regular action and a separate “Play” action button.
As before, with a Wear device paired with the phone,
the Notification also appears on the
device, first as a “mini card”:

[image: Big Notification on Wear, As Originally Displayed, On Samsung Galaxy Gear]

Figure 380: Big Notification on Wear, As Originally Displayed, On Samsung Galaxy Gear
However, this time, when the user swipes up to show the full card, it is the
InboxStyle version that appears, albeit without the summary text:

[image: Big Notification on Wear, Full, On Samsung Galaxy Gear]

Figure 381: Big Notification on Wear, Full, On Samsung Galaxy Gear
Swiping to the right shows our actions, starting with the custom “Play” action:

[image: Big Notification on Wear, Play Action, On Samsung Galaxy Gear]

Figure 382: Big Notification on Wear, Play Action, On Samsung Galaxy Gear
…followed by the default action:

[image: Big Notification on Wear, Default Action, On Samsung Galaxy Gear]

Figure 383: Big Notification on Wear, Default Action, On Samsung Galaxy Gear
Tapping on either action will cause the primary device to invoke its
PendingIntent, but only the default action dismisses the Notification from
both devices. The custom “Play” action does not.
Foreground Service
The
Notifications/Foreground
sample project is another version of the download-the-file sample, but this time
uses a Notification and startForeground() to mark the service as a foreground
service while it is downloading things.
This particular sample does not spend much time in the foreground state, so for
testing purposes, you may want to add a SystemClock.sleep() call to the
service, between the startForeground() and stopForeground() calls, to better
examine the behavior while the foreground service Notification is around.
However, in truth, that modification is probably not necessary… as the foreground
service Notification is not displayed on the Wear device, only on the primary device.
This is by design. The expectation is that you would use a Wear app to control
your service from the Wear device, not some un-dismissable card.
Stacking Notifications
If you are writing an email client, and you want to use a Notification to
let the user know about new email messages, you do not want to raise a
separate Notification for each email. Users will come to your home with
pitchforks and torches… and not to help you with farming.
Instead, the vision is that you update an existing Notification with
new content. For example, you might start with a regular Notification for
the first received email. Then, when the second one comes in, you replace
that Notification with one that has a simple summary (“2 messages are in
your inbox!”), plus perhaps an InboxStyle “big” Notification variant
that could show the subject lines for both of those messages.
Wear OS devices, however, add an interesting wrinkle: you want the
Notification to be informative about the event itself. You want the user
to be able to make an informed decision about whether they should pull out
their primary device to read the new messages, and that decision is only
partly based on how many messages there are. Users will want to know more
about the outstanding messages (sender and/or subject line) to help them
make that decision… at least to a point. If there are 57 unread messages,
users may get frustrated dealing with all of those as individual items
on the wearable itself.
The pattern here, then, takes advantage of some “group” capabilities added
to NotificationCompat:

	Raise one “summary” Notification, that will only be shown on the primary device,
with the same sort of “2 messages are in your inbox!” information that you
would have used without considering Wear

	Raise individual notifications for individual messages that will appear
on the Wear device

	Collect all of those in a “group”, so the primary device shows only the
summary and the Wear device shows only the individual ones

This can be seen in action in the
Notifications/Stacked
sample project.
The setup is reminiscent of the “big” style one from
the original chapter on Notification. However, this time,
there are a total of three Notification objects created: two for individual
events for the Wear device, and one summary one for the primary device.
However, to make this work, we need a new version of the support-v13 library
from the Android Support package: 20.0.0 (or higher), as it is where the
extra compatibility smarts were added to support this whole group-and-summary construct.
Hence, in build.gradle, we have implementation 'com.android.support:support-v13:20.0.0'.
Similarly, while we will still use NotificationCompat for creating the
Notification objects, we will not use NotificationManager for displaying
them. Instead, we need to use NotificationManagerCompat from the Android
Support package. While the NotificationManager API has not changed to support
the group-and-summary pattern, the implementation has, and NotificationManagerCompat
gives us a version of that implementation that can work on compatible devices
and gracefully degrade on older ones. However, since the API did not change, it
is easy to miss this requirement, use NotificationManager, and not quite get
the desired results. Notably, the primary device will wind up showing all three
notifications, not just the summary as we want.
Hence, our MainActivity will hold onto a NotificationManagerCompat as a data
member, initialized in onCreate():

 private NotificationManagerCompat mgrCompat=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 mgrCompat=NotificationManagerCompat.from(this);

 showWearOne();
 showWearTwo();
 showSummary();

 finish();
 }

(from Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java)
The three show...() methods are each responsible for raising one Notification:
showWearOne() and showWearTwo() are ones that will wind up on the Wear device,
and showSummary() will show the summary Notification for use on the primary
device.
Beyond using NotificationManagerCompat instead of NotificationManager, the only
substantial difference is the use of setGroup() and setGroupSummary()
methods on the NotificationCompat.Builder.
setGroup() associates the Notification with a group, identified by a String
key. On a Wear device, notifications that are part of a group will be shown stacked
as part of a single card by default. So, the two showWear...() methods call
setGroup() as part of building the Notification:

 private void showWearOne() {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle(getString(R.string.entry))
 .setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .setGroup(GROUP_SAMPLE);

 mgrCompat.notify(NOTIFY_ID2, b.build());
 }

 private void showWearTwo() {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle(getString(R.string.another_entry))
 .setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .setGroup(GROUP_SAMPLE);

 mgrCompat.notify(NOTIFY_ID3, b.build());
 }

(from Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java)
setGroupSummary() indicates a particular Notification that should serve as
the summary for its group. This Notification will not be passed to the Wear
device, and it replaces all other notifications for this group on the primary device.
Hence, showSummary() (or, more accurately, the buildNormal() method that creates
the base Notification for the summary) uses setGroupSummary():

 private void showSummary() {
 NotificationCompat.Builder normal=buildNormal();
 NotificationCompat.InboxStyle big=
 new NotificationCompat.InboxStyle();

 big.setSummaryText(getString(R.string.summary))
 .addLine(getString(R.string.entry))
 .addLine(getString(R.string.another_entry));

 mgrCompat.notify(NOTIFY_ID, normal.setStyle(big).build());
 }

 private NotificationCompat.Builder buildNormal() {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle(getString(R.string.download_complete))
 .setContentText(getString(R.string.fun))
 .setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .setGroup(GROUP_SAMPLE)
 .setGroupSummary(true);

 return(b);
 }

(from Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java)
Note that you need to use setGroupSummary() on a NotificationCompat.Builder
on which you have also called setGroup(), to identify the group for which this
Notification is a summary.
When you run this, the primary device shows the summary Notification:

[image: Stacked Notifications, Summary on Primary Device]

Figure 384: Stacked Notifications, Summary on Primary Device
On the Wear device, you will see the two original notifications as part of a single
card at the outset:

[image: Stacked Notifications, Stacked on Wear Device]

Figure 385: Stacked Notifications, Stacked on Wear Device
Tapping on the stack brings up separate mini cards for each individual Notification:

[image: Stacked Notifications, Expanded Stack on Wear Device]

Figure 386: Stacked Notifications, Expanded Stack on Wear Device
…And the Passage of Time
Of course, this sample is artificially simple, like most of the samples in this
book.
In the sample, we are raising all three notifications all at once. That is
certainly conceivable, but it is not especially likely. A more likely scenario
is that the mix of notifications needs to change over time, based upon
continuing events, such as a trickle of new unread email messages for an email
client.
This adds a few complexities to what you need to implement all of this properly.
The big thing is that your persistent data model (e.g., database) needs to have
enough information for you to know how to notify the user about the next event,
when that event occurs. Using the email client as an example:

	We start off in the “steady state” of no unread email messages and, therefore,
no notifications from our app.

	A new email message arrives. At this point, we want to show a regular Notification
on both the Wear device and the primary device, with the sender and subject line
of the unread message.

	A second new email message arrives later. At this point, we want to show another
regular Notification (requiring a separate notification ID) for the Wear device,
but also show a summary Notification for the primary device. For all that to work,
we need to know this is a second unread message, and that the user has not read
the first message in between the two incoming messages. And, we need to know enough
details about the unread messages to format the summary properly.

This gets even more complex when events “stack themselves” (e.g., one poll of the
mail server results in two unread messages), in addition to having to deal with
user input (e.g., user clears the notification stack from either device, yet does
not read the messages).
Among other things, you cannot rely upon static data members as being the sole
source of your Notification-related data, as your process may be terminated
in between events. You are welcome to use it as a cache, in case your process
does happen to survive long enough to process more than one event, but you will
need to also save this data to a persistent store, so that you can properly
handle new events requiring Notification changes with your process having been
terminated since the last Notification-related event.
Avoiding Wear
Sometimes, you will want to raise a Notification that does not make
sense to show on a Wear device, only on the primary device. In the
case of the group summary for the stacked notifications, this primary-only
behavior happens automatically. In other cases, though, you will
need to call setLocalOnly() on the NotificationCompat.Builder to
tell the framework that this Notification should only be displayed
on the current device.
The
Notifications/BigLocal
sample project demonstrates this, through a clone of the Notifications/BigNotify
sample that calls setLocalOnly(true) as part of configuring the Notification:

 private NotificationCompat.Builder buildNormal() {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle(getString(R.string.download_complete))
 .setContentText(getString(R.string.fun))
 .setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .setTicker(getString(R.string.download_complete))
 .setPriority(NotificationCompat.PRIORITY_DEFAULT)
 .setLocalOnly(true)
 .addAction(android.R.drawable.ic_media_play,
 getString(R.string.play),
 buildPendingIntent(Settings.ACTION_SETTINGS));

 return(b);
 }

(from Notifications/BigLocal/app/src/main/java/com/commonsware/android/biglocal/MainActivity.java)
Note that we do not need to use NotificationManagerCompat for local-only
behavior — simply calling setLocalOnly(true) on an up-to-date
NotificationCompat.Builder will suffice.
Running this sample provides the same behavior as Notifications/BigNotify,
except that the Notification only appears on the primary device, not
the Wear device.
Other Wear-Specific Notification Options
Configuring stacked notifications, and opting into local-only behavior when
needed, should give you Wear behavior that is acceptable. Right now, Android
Wear is fairly nascent, and therefore it may not behoove you to do much
more than this, as you decide how to prioritize your engineering time.
However, there
are other things that you can do to further tailor your notifications on
Wear that can improve user satisfaction, if you wish for Wear to be a key
part of your marketing message.
Pages
On the primary device, the amount of information you can provide in a
Notification is intentionally capped. This prevents a Notification
from drowning out its peers. The cap is not a big problem, simply because
the whole UI for the app raising the Notification is usually just a
tap away.
With a Wear device, though, the whole UI for the app raising the Notification
involves pulling out the primary device.
Hence, it might be nice to provide some additional information to the
Wear user, so that perhaps they can make a more informed decision as to
whether it is worthwhile to open up their primary device. In Wear terms,
this involves adding more “pages” to a Notification.
To do this, you must:

	Create the second (and additional) pages as their own separate
Notification objects, probably via a NotificationCompat.Builder

	Use a NotificationCompat.WearableExtender to teach the primary
Notification about the additional pages

	Raise the primary Notification using a NotificationManagerCompat
variant of the system service

We can see this in action in the
Notifications/Pages
sample project. This is a clone of Notifications/BigNotify, where we make
the “big” content be on a second page.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationManagerCompat mgrCompat=
 NotificationManagerCompat.from(this);
 NotificationCompat.Builder normal=buildNormal();
 NotificationCompat.InboxStyle big=
 new NotificationCompat.InboxStyle();

 big.setSummaryText(getString(R.string.summary))
 .addLine(getString(R.string.entry))
 .addLine(getString(R.string.another_entry))
 .addLine(getString(R.string.third_entry))
 .addLine(getString(R.string.yet_another_entry))
 .addLine(getString(R.string.low));

 NotificationCompat.Builder bigPage=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER)
 .setStyle(big);
 NotificationCompat.Builder twoPages=
 new NotificationCompat.WearableExtender()
 .addPage(bigPage.build())
 .extend(normal);

 mgrCompat.notify(NOTIFY_ID, twoPages.build());

 finish();
 }

(from Notifications/Pages/app/src/main/java/com/commonsware/android/pages/MainActivity.java)
Here, we:

	Create a NotificationManagerCompat instance

	Create the primary (“normal”) Notification, using the same process
as before

	Create the InboxStyle structure with our expanded content

	Wrap that “big” style in another Notification via a NotificationCompat.Builder,
using the setStyle() method to associate the “big” style with the
Notification

	Create a NotificationCompat.WearableExtender, tell it to add the second
page using addPage(), and tell it to apply that second page to the
primary Notification via the extend() method

	Use notify() as normal to raise the Notification, using the already-created
NotificationManagerCompat instance

On the primary device, we just see the primary Notification content:

[image: Pages Demo, on a Galaxy Nexus]

Figure 387: Pages Demo, on a Galaxy Nexus
On the Wear device, we see the main Notification and the second page
as separate pages on the wearable:

[image: Pages Demo, on a Samsung Galaxy Wear, Showing Initial Notification]

Figure 388: Pages Demo, on a Samsung Galaxy Wear, Showing Initial Notification

[image: Pages Demo, on a Samsung Galaxy Wear, Showing Second Page]

Figure 389: Pages Demo, on a Samsung Galaxy Wear, Showing Second Page
Note that you cannot use addAction() to define a custom action on the
extra pages added to the primary Notification. Instead, use
addAction() and setContentAction() on the WearableExtender to define
actions associated with those extra pages. We will see this in use in
the next section.
Wear-Only Actions
Sometimes, you may want certain actions to only be available on the Wear
device, and not on the primary device. We will see a specific example
of this coming up in the next section, when we cover
voice input actions.
Sometimes, you may want a different mix of actions on the primary device
versus the Wear device — some in common, some only on the primary device,
some only on the Wear device.
To set up Wear-only actions, use addAction() on WearableExtender,
as opposed to (or in addition to) addAction() on NotificationCompat.Builder.
This takes an action as a parameter, which you create using
NotificationCompat.Action.Builder, a custom builder for building Notification
actions.
This is illustrated in the
Notifications/WearActions
sample project, yet another variation on the “launch an activity, show a
Notification” samples that we have been using. This time, though,
we will apply an action to the Wear device:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder normal=buildNormal();
 NotificationCompat.Action.Builder wearActionBuilder=
 new NotificationCompat.Action.Builder(android.R.drawable.ic_media_pause,
 getString(R.string.pause),
 buildPendingIntent(Settings.ACTION_DATE_SETTINGS));

 NotificationCompat.Builder extended=
 new NotificationCompat.WearableExtender()
 .addAction(wearActionBuilder.build())
 .extend(normal);

 NotificationManagerCompat.from(this).notify(NOTIFY_ID, extended.build());

 finish();
 }

(from Notifications/WearActions/app/src/main/java/com/commonsware/android/wearactions/MainActivity.java)
Here, we:

	Create a NotificationManagerCompat instance

	Create the primary (“normal”) Notification, using the same process
as before

	Create an instance of NotificationCompat.Action.Builder, providing it
the icon, label, and PendingIntent to be invoked for this action

	Create an instance of NotificationCompat.WearableExtender, adding the
newly-defined action to it, and using the WearableExtender to extend()
the primary Notification

	Show that extended Notification using the NotificationManagerCompat instance

However, note that we have also defined an action on the primary Notification:

 private NotificationCompat.Builder buildNormal() {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle(getString(R.string.download_complete))
 .setContentText(getString(R.string.fun))
 .setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .addAction(android.R.drawable.ic_media_play,
 getString(R.string.play),
 buildPendingIntent(Settings.ACTION_SETTINGS));

 return(b);
 }

(from Notifications/WearActions/app/src/main/java/com/commonsware/android/wearactions/MainActivity.java)
addAction() on WearableExtender replaces, for the Wear device, any
actions defined on the Notification itself using addAction(), but
not the action defined via setContentIntent().
On the primary device, we do not see the wear-only action:

[image: WearActions Demo, on a Galaxy Nexus]

Figure 390: WearActions Demo, on a Galaxy Nexus
On a Wear device, though, we see both the wear-only and the main content
action, but not the device-only action added via addAction() on
the NotificationCompat.Builder:

[image: WearActions Demo, on a Samsung Galaxy Wear, Showing Notification]

Figure 391: WearActions Demo, on a Samsung Galaxy Wear, Showing Notification

[image: WearActions Demo, on a Samsung Galaxy Wear, Showing Wear-Only Action]

Figure 392: WearActions Demo, on a Samsung Galaxy Wear, Showing Wear-Only Action

[image: WearActions Demo, on a Samsung Galaxy Wear, Showing Main Content Action]

Figure 393: WearActions Demo, on a Samsung Galaxy Wear, Showing Main Content Action
Hence:

	If you want actions only on the primary device, define those before
applying a WearableExtender and its addAction()

	If you want actions only on the Wear device, define those using
a WearableExtender and its addAction()

	If you want the same actions on both devices, define those using both
flavors of addAction() (on NotificationCompat.Builder for the primary
device and on WearableExtender for the Wear device)

Voice Input
In the spirit of Dick Tracy’s
two-way wrist radio, Wear OS allows you to talk to your wrist and
not seem like you are completely insane.
In particular, your Notification, when presented on the Wear, can request
that the user provide you with a response, via voice input or via canned
responses. This can be very handy:

	Responding to a text message without pulling out one’s phone

	Directing your app to file an incoming email message into a particular
folder or label

	Responding to a police alert, requesting your assistance, by indicating
that you will be on your way as soon as you can find your bright yellow
trenchcoat

	And so on

In many cases, with a regular Notification, the result of the user
choosing an action is for us to display an activity. Sometimes, though,
that’s not what we want, such as a music player’s Notification handling
“pause” and similar events via its background service. Similarly,
actions from a Notification seen on a Wear device will sometimes need
to perform operations in the background, as the user may not be in position
to look at your UI. This is especially true with voice input — usually,
if we are bothering to dictate words to our wrist, that should happen
instead of opening up the primary device. As a result, our flow for
responding to the action is a little bit different, as is illustrated
in the
Notifications/VoiceInput
sample project.
The Activity and Notification
Let’s walk through the MainActivity that sets up our Notification:

package com.commonsware.android.wearvoice;

import android.app.Activity;
import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Build;
import android.os.Bundle;
import android.support.v4.app.NotificationCompat;
import android.support.v4.app.NotificationManagerCompat;
import android.support.v4.app.RemoteInput;

public class MainActivity extends Activity {
 private static final String CHANNEL_WHATEVER="channel_whatever";
 private static final int NOTIFY_ID=1337;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 Intent i=new Intent(this, VoiceReceiver.class);
 PendingIntent pi=
 PendingIntent.getBroadcast(this, 0, i,
 PendingIntent.FLAG_UPDATE_CURRENT);

 RemoteInput remoteInput=
 new RemoteInput.Builder(VoiceReceiver.EXTRA_SPEECH)
 .setLabel(getString(R.string.talk))
 .setChoices(getResources().getStringArray(R.array.replies))
 .build();

 NotificationCompat.Action wearAction=
 new NotificationCompat.Action.Builder(
 android.R.drawable.ic_btn_speak_now,
 getString(R.string.talk),
 pi).addRemoteInput(remoteInput).build();

 NotificationCompat.WearableExtender wearExtender=
 new NotificationCompat.WearableExtender()
 .addAction(wearAction);

 NotificationCompat.Builder builder=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER)
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .setContentTitle(getString(R.string.title))
 .setContentText(getString(R.string.talk))
 .extend(wearExtender);

 NotificationManagerCompat
 .from(this)
 .notify(NOTIFY_ID, builder.build());

 finish();
 }
}

(from Notifications/VoiceInput/app/src/main/java/com/commonsware/android/wearvoice/MainActivity.java)
We start by creating a broadcast PendingIntent, pointing to a
VoiceReceiver that will respond to the voice input. We will examine this
VoiceReceiver later in this example.
We then set up a RemoteInput.Builder. This is a builder-style API
for defining a RemoteInput configuration to attach to a Wear-only
action. Here, we configure it with:

	the key for retrieving the response in our VoiceReceiver
(VoiceReceiver.EXTRA_SPEECH)

	the label to prompt the user for what we are looking for them
to provide (an R.string.talk string resource)

	a String array of canned responses that the user can choose from
rather than dictate their own answer and go through speech-to-text
conversion (pulled from an R.array.replies <string-array> resource)

That RemoteInput is then applied to a NotificationCompat.Action, via
its NotificationCompat.Action.Builder and the addRemoteInput()
method. That Action, in turn, is wrapped in a
NotificationCompat.WearableExtender, which is used to extend()
a NotificationCompat.Builder.
Finally, the resulting Notification is raised using a
NotificationManagerCompat instance.
The Receiver
Our VoiceReceiver, registered in the manifest, is set up to respond
to the voice action:

package com.commonsware.android.wearvoice;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.RemoteInput;
import android.util.Log;
import android.widget.TextView;

public class VoiceReceiver extends BroadcastReceiver {
 static final String EXTRA_SPEECH="speech";

 @Override
 public void onReceive(Context ctxt, Intent i) {
 Bundle input=RemoteInput.getResultsFromIntent(i);

 if (input!=null) {
 CharSequence speech=input.getCharSequence(EXTRA_SPEECH);

 if (speech!=null) {
 Log.d(getClass().getSimpleName(), speech.toString());
 }
 else {
 Log.e(getClass().getSimpleName(), "No voice response speech");
 }
 }
 else {
 Log.e(getClass().getSimpleName(), "No voice response Bundle");
 }
 }
}

(from Notifications/VoiceInput/app/src/main/java/com/commonsware/android/wearvoice/VoiceReceiver.java)
It uses RemoteInput.getResultsFromIntent(i) to pick out the response
we got from the user for this action. There are three major possibilities:

	We did not get any response (should not happen)

	We got a response, but for whatever reason, the decoded Bundle is
missing our VoiceReceiver.EXTRA_SPEECH key (also should not happen)

	The CharSequence from the VoiceReceiver.EXTRA_SPEECH key in the
decoded Bundle is the user’s response, whether from speech recognition
or from choosing one of our canned responses

In this case, we just log the message to Logcat, but in principle you
could do whatever you wanted. Just bear in mind that your UI may not be
in the foreground, and that the device screen may be off entirely. It
is also possible that your process will have been terminated between
the time you raised the Notification and the user got around to responding
to it from the Wear device. Hence, you should be making few assumptions
about the environment at the point when you get the voice response.
The Results
The Wear device starts off with a typical action:

[image: VoiceInput Demo, on a Samsung Galaxy Wear, Showing Voice Action]

Figure 394: VoiceInput Demo, on a Samsung Galaxy Wear, Showing Voice Action
Tapping it brings up a voice input screen, where the user can dictate
some text:

[image: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input]

Figure 395: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input
If the user delays too long without saying anything recognizable, or if
the user swipes up the screen, they are taken to our list of canned
responses:

[image: WearActions Demo, on a Samsung Galaxy Wear, Showing Canned Responses]

Figure 396: WearActions Demo, on a Samsung Galaxy Wear, Showing Canned Responses
If the user instead does dictate some text, initially they are shown
just the interpreted text:

[image: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input Results]

Figure 397: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input Results
Then a cancel button with a progress indicator around the edge appears:

[image: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input Progress]

Figure 398: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input Progress
If the user taps the cancel button before the progress indicator elapses,
they are prompted to confirm or reject the input:

[image: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input Confirmation]

Figure 399: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input Confirmation
Remote Input, On-Device
As is noted above, Wear OS uses RemoteInput to get input from
the user. However, historically, that capability was limited to
notifications appearing on Wear.
Starting with Android 7.0, RemoteInput is also available for standard device
notifications. Rather than using voice input, you get a small EditText
into which the user can type something and submit it. You get what
the user typed in, and can use that as needed.
The
Notifications/RemoteInput
sample project is a near-clone of the Notifications/VoiceInput
sample project profiled in the advanced Notifications chapter.
Instead of putting the RemoteInput in an action on the WearExtender,
it puts the RemoteInput on the main Notification itself:

package com.commonsware.android.remoteinput;

import android.app.Activity;
import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Build;
import android.os.Bundle;
import android.support.v4.app.NotificationCompat;
import android.support.v4.app.NotificationManagerCompat;
import android.support.v4.app.RemoteInput;

public class MainActivity extends Activity {
 static final String CHANNEL_WHATEVER="channel_whatever";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 Intent i=new Intent(this, RemoteInputReceiver.class);
 PendingIntent pi=
 PendingIntent.getBroadcast(this, 0, i,
 PendingIntent.FLAG_UPDATE_CURRENT);

 RemoteInput remoteInput=
 new RemoteInput.Builder(RemoteInputReceiver.EXTRA_INPUT)
 .setLabel(getString(R.string.talk))
 .build();

 NotificationCompat.Action remoteAction=
 new NotificationCompat.Action.Builder(
 android.R.drawable.ic_btn_speak_now,
 getString(R.string.talk),
 pi).addRemoteInput(remoteInput).build();

 NotificationCompat.Builder builder=
 RemoteInputReceiver.buildNotificationBase(this)
 .addAction(remoteAction);

 NotificationManagerCompat
 .from(this)
 .notify(RemoteInputReceiver.NOTIFY_ID, builder.build());

 finish();
 }
}

(from Notifications/RemoteInput/app/src/main/java/com/commonsware/android/remoteinput/MainActivity.java)
The activity, when launched, will raise the Notification with a
“Talk to Me” action:

[image: Notification with Action]

Figure 400: Notification with Action
Tapping on the action converts it into an EditText, with your action
prompt as the hint, plus an arrow-shaped “send” button:

[image: Notification with Remote Input]

Figure 401: Notification with Remote Input
Typing something in and tapping that button converts the button into
a progress spinner:

[image: Notification with Remote Input and Progress Spinner]

Figure 402: Notification with Remote Input and Progress Spinner
Also, the PendingIntent that you associated with the action is invoked.
In this case, that triggers a broadcast to RemoteInputReceiver:

package com.commonsware.android.remoteinput;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.NotificationCompat;
import android.support.v4.app.NotificationManagerCompat;
import android.support.v4.app.RemoteInput;
import android.util.Log;

public class RemoteInputReceiver extends BroadcastReceiver {
 static final int NOTIFY_ID=1337;
 static final String EXTRA_INPUT="input";

 static NotificationCompat.Builder buildNotificationBase(Context ctxt) {
 NotificationCompat.Builder builder=
 new NotificationCompat.Builder(ctxt, MainActivity.CHANNEL_WHATEVER)
 .setSmallIcon(
 android.R.drawable.stat_sys_download_done)
 .setContentTitle(ctxt.getString(R.string.title));

 return(builder);
 }

 @Override
 public void onReceive(Context ctxt, Intent i) {
 Bundle input=RemoteInput.getResultsFromIntent(i);

 if (input!=null) {
 CharSequence speech=input.getCharSequence(EXTRA_INPUT);

 if (speech!=null) {
 Log.d(getClass().getSimpleName(), speech.toString());
 }
 else {
 Log.e(getClass().getSimpleName(), "No voice response speech");
 }
 }
 else {
 Log.e(getClass().getSimpleName(), "No voice response Bundle");
 }

 NotificationCompat.Builder builder=
 buildNotificationBase(ctxt);

 NotificationManagerCompat
 .from(ctxt)
 .notify(RemoteInputReceiver.NOTIFY_ID, builder.build());
 }
}

(from Notifications/RemoteInput/app/src/main/java/com/commonsware/android/remoteinput/RemoteInputReceiver.java)
Here, we get what the user typed in via our designated extra
(EXTRA_INPUT, as requested via the RemoteInput.Builder), which we can
use as we see fit, such as logging it to Logcat.
However, we also have to update or cancel the Notification. Otherwise, that
progress spinner will spin indefinitely. If the Notification still
has value to the user after the RemoteInput, just update it, with or
without another RemoteInput (depending on whether one would now be
needed). You might also show the user’s input in the updated Notification.
Or, if the Notification is no longer needed, just cancel()
it. In this case, we raise a fresh Notification for this ID, just without
the RemoteInput that the activity added.
Note that setChoices() on RemoteInput is ignored for regular
device notifications. You can use this for Wear notifications to give
the user a list of strings to choose from, as an alternative to voice
recognition.
You can call setRemoteInputHistory()
on your Builder as well. This takes a CharSequence array, though
many developers will elect to use a simple String array. This represents
the inputs supplied by the user and accepted by your app, in reverse
chronological order (first element in the array is the most recent input).
Some of this history may be added automatically to the Notification
when you raise the updated Notification containing this input history.
Notification Groups
Another concept introduced with Wear in mind was the notification group.
With this, you create a summary Notification, along with detail
Notifications for individual events. The quintessential example is
an email app, with a summary Notification indicating the unread message
count, and with detail Notifications for individual messages.
The idea for Wear was to allow the user to individually respond to
the detail Notifications without having to pull out the associated
phone or tablet. That phone or tablet would show the summary Notification,
since the user could just tap on it and bring up the activity to see
the detail.
For some reason, Google back-pedaled on that last part, as with Android
7.0, phones and tablets will also show the summary-and-detail
Notification hierarchy.
The
Notifications/Stacked
sample project, presented in
the chapter on advanced Notifications, demonstrates
this without any modifications. Initially, the user just sees the summary:

[image: Stacked Notification, Showing Summary]

Figure 403: Stacked Notification, Showing Summary
A two-finger swipe gesture will expose the full hierarchy:

[image: Stacked Notification, Showing Hierarchy]

Figure 404: Stacked Notification, Showing Hierarchy
Lockscreen Notifications
Historically, notification icons would be visible on the user’s
lockscreen, but that was it. This would give the user an indication
of what apps need attention, but no additional context.
Android 5.0 added notifications to the lockscreen, to help
provide that missing context. Now users can have more details about
the notifications, to determine whether it is necessary to unlock
the device right now to deal with them.
Also note that on Android 7.0+, RemoteInput works
on the lockscreen. You can see this in action with the sample app — just
leave the Notification up, then lock the device. When you power on the
screen again,
you will get the lockscreen, and the Notification tile will appear.
It will not visibly show any sign of remote input, but if you swipe
down on the Notification, the remote input field will appear, and you can type in a message.
However, this also raises privacy concerns, as now notification
text can be seen by anyone with access to the phone. As such, Android
5.0 introduced the concept of visibility to notifications, so
developers can help control what is shown on the lockscreen versus what
is shown only past the lockscreen.
However, these visibility options are only useful if:

	The device has a pattern, PIN, or password set, so it is not merely
some swipe-to-unlock approach

	The user has indicated that the system should “hide sensitive
notification content”, either when they set up the pattern/PIN/password:

[image: Choosing Notification Control, When Securing the Lockscreen]

Figure 405: Choosing Notification Control, When Securing the Lockscreen
or in the “Sound & notification” portion of the Settings app:

[image: Sound & notification Settings]

Figure 406: “Sound & notification” Settings

[image: Notification Control Options in Sound & notification in Settings]

Figure 407: Notification Control Options in “Sound & notification” in Settings
Given that the user has enabled “hide sensitive notification content”
mode, you as a developer can choose a visibility to apply to your
notifications. There are three such visibility
options — private, public, and secret — covered in the following
sections.
Private Notifications
The default behavior is a “private” Notification. Basic information
appears on the lockscreen, but not the whole Notification. However,
you as a developer can also provide a separate Notification that
will be shown on the lockscreen, so you can choose what information
appears publicly and what information does not.
The sample app for this section has a “public” edition of the Notification
that shows up on the lockscreen:

[image: Public Edition of Private Lockscreen Notification, on a Nexus 7]

Figure 408: Public Edition of Private Lockscreen Notification, on a Nexus 7
Public Notifications
Instead of creating a separate Notification for public visibility
on the lockscreen, you could flag your main Notification as having
public visibility. This is suitable for notifications where there is
little to no privacy implications for having the information appear
on the lockscreen.
Secret Notifications
A Notification with visibility set to “secret” will not show up on
the lockscreen at all. The ringtone, etc. will occur, as requested
(and based on device settings, like it being muted), but otherwise
there is no visible indication on the lockscreen that your
Notification exists. Only when the user gets past the lockscreen
will your Notification appear, in the status bar.
A Visibility Sample
The
Notifications/Lollipop
sample project demonstrates the use of these visibility values.
It also demonstrates heads-up notifications, covered
later in this chapter.
The user interface consists of a Spinner of possible
Notification variants, a SeekBar to allow the user
to specify a delay period in seconds before showing the
Notification, and a Button to trigger showing the
Notification:

<?xml version="1.0" encoding="utf-8"?>

<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="8dp"
 android:stretchColumns="1">

 <TableRow>
 <TextView
 android:text="@string/type_label"/>

 <Spinner
 android:id="@+id/type"/>
 </TableRow>

 <TableRow>
 <TextView
 android:text="@string/delay_label"/>

 <SeekBar
 android:id="@+id/delay"
 android:progress="5"
 android:max="30"/>
 </TableRow>

 <Button
 android:text="@string/notify_button"
 android:id="@+id/download"
 android:onClick="notifyMe"/>
</TableLayout>

(from Notifications/Lollipop/app/src/main/res/layout/main.xml)

[image: Lollipop Notifications Demo, on a Nexus 7]

Figure 409: Lollipop Notifications Demo, on a Nexus 7
The onCreate() method of our launcher activity (MainActivity)
initializes the UI:

package com.commonsware.android.lollipopnotify;

import android.app.Activity;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.os.SystemClock;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.SeekBar;
import android.widget.Spinner;

public class MainActivity extends Activity {
 private Spinner type=null;
 private SeekBar delay=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 type=findViewById(R.id.type);

 ArrayAdapter<String> types=
 new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 getResources().getStringArray(R.array.types));

 types.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 type.setAdapter(types);

 delay=findViewById(R.id.delay);
 }

 public void notifyMe(View v) {
 Intent i=new Intent(this, AlarmReceiver.class)
 .putExtra(AlarmReceiver.EXTRA_TYPE, type.getSelectedItemPosition());
 PendingIntent pi=PendingIntent.getBroadcast(this, 0, i,
 PendingIntent.FLAG_UPDATE_CURRENT);
 AlarmManager mgr=(AlarmManager)getSystemService(ALARM_SERVICE);

 mgr.set(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime()+(1000*delay.getProgress()),
 pi);
 }
}

(from Notifications/Lollipop/app/src/main/java/com/commonsware/android/lollipopnotify/MainActivity.java)
In particular, onCreate() populates the Spinner based on a
<string-array> resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="types">
 <item>Private</item>
 <item>Public</item>
 <item>Secret</item>
 <item>Heads-Up</item>
 </string-array>
</resources>

(from Notifications/Lollipop/app/src/main/res/values/arrays.xml)
When the button is clicked, the notifyMe() method on MainActivity
is called. Here, we:

	Create an Intent pointing at an AlarmReceiver

	Package an extra on the Intent that contains the selected
position of the Spinner

	Wrap the Intent in a getBroadcast() PendingIntent

	Use set() on AlarmManager to invoke the PendingIntent
after the delay period specified via the SeekBar

Since the targetSdkVersion of this project is below 19,
the set() method will behave in an exact fashion, triggering
our AlarmReceiver at the designated time.
AlarmReceiver, in turn, uses a switch statement to call
out to different private methods based upon which Spinner
item was selected:

package com.commonsware.android.lollipopnotify;

import android.app.Notification;
import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Build;
import android.provider.Settings;
import android.support.v4.app.NotificationCompat;
import android.support.v4.app.NotificationManagerCompat;

public class AlarmReceiver extends BroadcastReceiver {
 private static final String CHANNEL_WHATEVER="channel_whatever";
 private static final String CHANNEL_HEADS_UP="channel_heads_up";
 private static final int NOTIFY_ID=1337;
 static final String EXTRA_TYPE="type";

 @Override
 public void onReceive(Context ctxt, Intent i) {
 NotificationManager mgr=
 (NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_HEADS_UP,
 "Heads Up!", NotificationManager.IMPORTANCE_HIGH));
 }

 NotificationManagerCompat mgrCompat=NotificationManagerCompat.from(ctxt);

 switch (i.getIntExtra(EXTRA_TYPE, -1)) {
 case 0:
 notifyPrivate(ctxt, mgrCompat);
 break;

 case 1:
 notifyPublic(ctxt, mgrCompat);
 break;

 case 2:
 notifySecret(ctxt, mgrCompat);
 break;

 case 3:
 notifyHeadsUp(ctxt, mgrCompat);
 break;
 }
 }

 private void notifyPrivate(Context ctxt, NotificationManagerCompat mgr) {
 Notification pub=
 buildBase(ctxt, CHANNEL_WHATEVER, R.string.public_title).build();

 mgr.notify(NOTIFY_ID,
 buildBase(ctxt, CHANNEL_WHATEVER, R.string.private_title).setPublicVersion(pub).build());
 }

 private void notifyPublic(Context ctxt, NotificationManagerCompat mgr) {
 mgr.notify(NOTIFY_ID,
 buildBase(ctxt, CHANNEL_WHATEVER, R.string.public_title)
 .setVisibility(NotificationCompat.VISIBILITY_PUBLIC)
 .build());
 }

 private void notifySecret(Context ctxt, NotificationManagerCompat mgr) {
 mgr.notify(NOTIFY_ID,
 buildBase(ctxt, CHANNEL_WHATEVER, R.string.secret_title)
 .setVisibility(NotificationCompat.VISIBILITY_SECRET)
 .build());
 }

 private void notifyHeadsUp(Context ctxt, NotificationManagerCompat mgr) {
 mgr.notify(NOTIFY_ID,
 buildBase(ctxt, CHANNEL_HEADS_UP, R.string.headsup_title)
 .setPriority(NotificationCompat.PRIORITY_HIGH)
 .build());
 }

 private NotificationCompat.Builder buildBase(Context ctxt, String channel,
 int titleId) {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(ctxt, channel);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle(ctxt.getString(titleId))
 .setContentIntent(buildPendingIntent(ctxt, Settings.ACTION_SECURITY_SETTINGS))
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .addAction(android.R.drawable.ic_media_play,
 ctxt.getString(R.string.play),
 buildPendingIntent(ctxt, Settings.ACTION_SETTINGS));

 return(b);
 }

 private PendingIntent buildPendingIntent(Context ctxt, String action) {
 Intent i=new Intent(action);

 return(PendingIntent.getActivity(ctxt, 0, i, 0));
 }
}

(from Notifications/Lollipop/app/src/main/java/com/commonsware/android/lollipopnotify/AlarmReceiver.java)
If the user chooses the “Private” option in the Spinner, we
call notifyPrivate(). That method builds two Notification
objects: the regular one and a separate public edition. We
attach the public edition to the regular Notification
via a call to setPublicVersion() on the NotificationCompat.Builder.
Then, we raise the regular Notification. This will show the
public edition if the lockscreen is locked; otherwise, it will
show the regular edition.
If the user chooses the “Public” option, we call notifyPublic().
That, in turn, calls setVisibility(NotificationCompat.VISIBILITY_PUBLIC)
on the NotificationCompat.Builder, causing our Notification to
appear normally both on the lockscreen and past the lockscreen.
If the user chooses the “Secret” option, we call notifySecret().
That uses setVisibility(NotificationCompat.VISIBILITY_SECRET)
to configure the Notification to only appear once the user has
gotten past the lockscreen.
The “Heads-Up” option — fourth in the Spinner — is covered
in the next section.
Priority, Importance, and Heads-Up Notifications
Notifications can have a priority associated with them. Normally,
notifications with higher priority will appear higher in the list
of notifications in the notification tray than will notifications
with lower priority.
Android 5.0 took this a step further, showing high-priority
notifications in a “heads-up” style, popping up a small dialog-like
window over the main screen, with the same basic content as would
appear for the Notification in its tile in the notification tray:

[image: Lollipop Demo, on a Nexus 7, Showing Heads-Up Notification]

Figure 410: Lollipop Demo, on a Nexus 7, Showing Heads-Up Notification
Users can interact with the heads-up Notification or ignore it;
in the latter case, the Notification will move into the status
bar and the “heads-up” display will disappear from the screen.
Note that the “priority” concept being described here seems to be
independent of the notion of “priority notifications” in the user’s
interruption configuration in Settings. There, “priority notifications”
is tied to the app, not tied to any sort of configuration of the
Notification itself.
Android 8.0’s notification channels introduced a separate concept, called
importance, set on the channel. Roughly speaking, importance on a channel
is the same as priority on a notification. Priorities are marked as
deprecated on API Level 26+, though they still work.
Specifying the Priority
NotificationCompat.Builder has a setPriority() method that allows
you to specify your requested priority. There are
five priority values accepted as a parameter, all defined as
constants out on the NotificationCompat class:

	PRIORITY_MAX

	PRIORITY_HIGH

	PRIORITY_DEFAULT

	PRIORITY_LOW

	PRIORITY_MIN

The actual priority applied to the Notification will depend upon
other factors, and so you should not assume that your requested
value will be accepted and applied as-is.
Results on Android 5.x Devices
The heads-up Notification appears as shown in the above screenshot.
The pop-up itself is centered across the top of the screen, as
shown below:

[image: Lollipop Demo, Showing Heads-Up Notification]

Figure 411: Lollipop Demo, Showing Heads-Up Notification
After a few seconds of inactivity, the pop-up vanishes, and the
Notification goes into the status bar.
Results on Older Devices
The concept of priority was introduced in API Level 16 (Android 4.1).
On Android 4.1 through 4.4, the only effect of priority was to help
influence the sort order of notifications in the notification tray,
with higher-priority items drifting towards the top.
While NotificationCompat.Builder will allow you to specify a priority
even on devices running older versions of Android than 4.1, the
requested priority will be ignored, simply because priority did not
exist back then. Hence, while your code will still work, it will have
no effect on such old devices.
Full-Screen Notifications
Before Android 5.0 added heads-up notifications, while priority would
influence things like sort order, it would have no real impact on
how the user would be informed about whatever event triggered the
Notification. The user would still just get an icon in the status
bar, and perhaps a ringtone and other hardware output.
However, sometimes we need to be somewhat more “in the user’s face”,
such as for a calendar event reminder, or for an incoming phone call
from our VOIP app.
It is tempting to launch an activity in these cases. In fact, that
is what the user tends to perceive as happening, on Android 4.4 and
older devices. And some apps no doubt actually do launch an activity.
A “middle ground” between showing a Notification and launching an
activity is to use a full-screen Notification. Here, we provide a
PendingIntent that should be invoked if the user is actively using
the device at the time of the Notification. Typically, that
PendingIntent will display an activity. However, on Android 5.0+,
the behavior has changed, where a full-screen Notification actually
just triggers a heads-up notification, as would a high-priority
Notification.
Requesting Full-Screen Output
Prior to Android 8.0, all that you need to do to set up a Notification to be full-screen is
to call setFullScreenIntent() on your NotificationCompat.Builder,
supplying two values:

	A PendingIntent to be invoked when the notification is added
to the screen

	A boolean, where true indicates that even if the user has
blocked notifications, you want this one to appear

For example, in the
Notifications/FullScreen
sample project, MainActivity shows a Notification
constructed via the buildNormal() method:

 private NotificationCompat.Builder buildNormal() {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle(getString(R.string.download_complete))
 .setContentText(getString(R.string.fun))
 .setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
 .setSmallIcon(android.R.drawable.stat_sys_download_done)
 .setNumber(5)
 .setFullScreenIntent(buildPendingIntent(Settings.ACTION_DATE_SETTINGS), true)
 .addAction(android.R.drawable.ic_media_play,
 getString(R.string.play),
 buildPendingIntent(Settings.ACTION_SETTINGS));

 return(b);

(from Notifications/FullScreen/app/src/main/java/com/commonsware/android/fullscreen/MainActivity.java)
Here, the PendingIntent is created using the same
buildPendingIntent() method as before, this time opening up a distinct
screen from the Settings app.
Results on Android 5.0-7.1 Devices
On Android 5.0 through 7.1, the “full screen” Notification appears as a heads-up
Notification:

[image: FullScreen Demo, on a Nexus 7, Showing Full Screen Notification]

Figure 412: FullScreen Demo, on a Nexus 7, Showing “Full Screen” Notification
Note that there is no obvious way to actually invoke the PendingIntent
associated with the setFullScreenIntent() method. Hence, you need to make
sure that the Notification has some other means of getting the user to the
right place in your UI, such as via setContentIntent() or an action.
Results on Android 3.0-4.4 Devices
On API Levels 11 through 19 (Android 3.0 through 4.4), the effect
of a full-screen PendingIntent is to invoke the PendingIntent
when the Notification is added to the screen. This will happen
regardless of whether the user is using the device or not, though
if the device is asleep, the activity triggered by the PendingIntent
will only be visible once
the user gets past their lockscreen.
Note that the Notification is also shown, along with whatever
the PendingIntent does. That Notification is not automatically
cleared when the user exits out of that activity via BACK, HOME, etc.
Hence, it is up to you to clear that Notification if and when it
is no longer relevant. The primary value of the Notification is
to have the icon appear in the status bar on the lockscreen — even
though the user cannot interact with your Notification then, the user
may recognize your icon and therefore elect to unlock their device
to see what all the fuss is about.
Results on Older Devices
Full-screen notifications were not supported prior to Android 3.0.
While NotificationCompat.Builder will allow you to call
setFullScreenIntent(), the value will be ignored prior to API Level
11.
In theory, there is nothing stopping NotificationCompat from
launching an activity itself, in addition to displaying the
Notification. However, at least at this time, it is not doing so,
and it is fairly likely that Google will not add this in at this
point.
Hence, the only way to do a “full-screen notification” is for your
app to launch the desired activity, in addition to (or instead of)
showing the Notification.
Hey, What About Android 8.0+?
On these devices, setFullScreenIntent() has no effect.
Progress Notifications
Often, you will see a Notification with a ProgressBar in it, showing
progress of some long-running background work, such as a large download.
There are two approaches towards building this sort of thing:

	Create a custom Notification, as we will cover
later in this chapter

	Use setProgress() on the NotificationCompat.Builder, periodically
updating the Notification to reflect the now-current amount of progress

Needless to say, the second option is simpler.
The
HTTP/OkHttpProgress
sample project demonstrates how this works in a fairly realistic
situation: tracking progress of a long download. In this case, we will
use OkHttp3, showing how you can integrate its somewhat convoluted
“interceptor” API to find out about download progress, then use that
information to update a Notification.
The UI
This sample app is a variation on other download samples shown elsewhere
in the book. We have a fragment with a large “Do the Download” button.
When the button is clicked, we want to start a Downloader service to
do the actual downloading on a background thread.
The two primary differences in this fragment’s onClick() method are:

	We are downloading a much bigger file than before — Version 1.1 of
this book, from 2008. This is so we can actually see the progress
move; with a short download, the download might complete before we
get a chance to look at the Notification.

	We finish() the activity, to emphasize the fact that our ongoing
UI is being handled by the Notification:

 @Override
 public void onClick(View v) {
 Intent i=new Intent(getActivity(), Downloader.class);

 i.setDataAndType(Uri.parse("http://commonsware.com/Android/Android-1_1-CC.pdf"),
 "application/pdf");

 getActivity().startService(i);
 getActivity().finish();
 }

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/DownloadFragment.java)
Also, we are not bothering to offer the user the ability to view the PDF
immediately after downloading, to simplify the example a bit.
The Downloader Service
The significant changes come in the Downloader service. Previous
editions of this sample use HttpURLConnection, but here we switch to
OkHttp3, which offers a cleaner way to find out our download progress.
Plus, our foreground service Notification will employ the ProgressBar
to show how far along we are in downloading the file.
Everything but the Icky Parts
A large chunk of our Downloader IntentService does the same stuff as you
see in the
Notifications/Foreground
sample project.
Of particular note here, we call startForeground(), to elevate our
process priority while the download is happening and show a Notification
along the way:

 String filename=i.getData().getLastPathSegment();
 final NotificationCompat.Builder builder=
 buildForeground(filename);

 startForeground(FOREGROUND_ID, builder.build());

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)
The Notification itself comes from buildForeground(), which takes the
name of the file as a parameter and builds a Notification with that
information:

 private NotificationCompat.Builder buildForeground(
 String filename) {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setContentTitle(getString(R.string.downloading))
 .setContentText(filename)
 .setSmallIcon(android.R.drawable.stat_sys_download)
 .setOnlyAlertOnce(true)
 .setOngoing(true);

 return(b);
 }

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)
Note that we use setOnlyAlertOnce(true) here. This tells Android to only do the
“alert” portion of the Notification once. Here, “alert” means things like
ringtones and vibration patterns. We will see why this flag is important shortly.
Eventually, we start using OkHttpClient to download the file:

 OkHttpClient client=new OkHttpClient.Builder()
 .addNetworkInterceptor(nightTrain)
 .build();
 Request request=
 new Request.Builder().url(i.getData().toString()).build();
 Response response=client.newCall(request).execute();
 BufferedSink sink=Okio.buffer(Okio.sink(new File(output.getPath())));

 sink.writeAll(response.body().source());
 sink.close();

 stopForeground(true);
 raiseNotification(null);

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)
We start off by building an instance of OkHttpClient using an
OkHttpClient.Builder. We will take a closer look at the
addNetworkInterceptor() call shortly, as that is where we are hooking
in our code to find out about the progress of the HTTP request.
We then:

	Create a Request to GET our file, using the path supplied to use
via getData() on the Intent passed into onHandleIntent()

	Start executing the HTTP operation

	Capture the Content-type header, for use when constructing an ACTION_VIEW
Intent to view the downloaded file

	Use Okio (the generic I/O subsystem underlying OkHttp3) to create a
BufferedSink on our desired output location

	Use Okio to copy all the data from the HTTP response to that output
file

	
close() the output file

	Mark the service as no longer being foreground (via stopForeground())

	Show a download-complete Notification

Other than using OkHttp3, little of that is different from the original
foreground service sample. Where things start to get interesting is
in that addNetworkInterceptor() call.
The Interceptor
Interceptors are a way for you to hook into the flow of OkHttp3
processing, such that your code gets invoked for any request
made of this OkHttpClient. In particular, a network interceptor
allows you to get control during the actual network I/O of processing
the request.
The OkHttp Git repository contains
some sample code
that uses a network interceptor to track download progress, and that
code forms the foundation of what is shown in this sample.
The addNetworkInterceptor() call in Downloader is using a local Interceptor
object, named nightTrain:

 Interceptor nightTrain=new Interceptor() {
 @Override
 public Response intercept(Chain chain)
 throws IOException {
 Response original=chain.proceed(chain.request());
 Response.Builder b=original
 .newBuilder()
 .body(
 new ProgressResponseBody(original.body(),
 progressListener));

 return(b.build());
 }
 };

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)
An Interceptor will be called with a Chain, representing the HTTP
request and response. The job of the Interceptor is three-fold:

	Call chain.proceed() at some point, to kick off the actual
HTTP processing

	Return a Response object that will be used as the “real” response
of this request

	Do whatever work the Interceptor was designed to do, such as
request logging

The chain.proceed() call returns the Response that would be what
OkHttp3 would use in the absence of this Interceptor. The Interceptor
can either return that Response or some other Response. If you want
to monitor the actual network I/O — such as we want to do here, to see
how many bytes we have downloaded — the recipe is to use the wrapper
pattern and wrap something from the original Response in a wrapper that
has your business logic.
That is what this sample does. original.newBuilder() gives us a
Response.Builder that is based on the original Response. The
body() of a Response is a ResponseBody that manages an Okio
Source object, which handles the actual streaming. We wrap
the original ResponseBody in a ProgressResponseBody that will track
our download progress, put that ProgressResponseBody into the Response.Builder,
then return the Response that is built by that Builder. The net
effect is that all calls to the ResponseBody will go to our
ProgressResponseBody.
The ProgressResponseBody
What we really want to wrap is the Source, an Okio object that
is responsible for the real streaming. However, to get there, we have
to wrap that original ResponseBody in a ProgressResponseBody.
ProgressResponseBody itself extends from a ResponseBodyWrapper,
which is a ResponseBody that forwards everything onto a wrapped
ResponseBody… except for a hook to allow us to wrap the Source:

package com.commonsware.android.okhttp3.progress;

import okhttp3.MediaType;
import okhttp3.ResponseBody;
import okio.BufferedSource;
import okio.Okio;
import okio.Source;

// inspired by https://github.com/square/okhttp/blob/master/samples/guide/src/main/java/okhttp3/recipes/Progress.java

abstract class ResponseBodyWrapper extends ResponseBody {
 abstract Source wrapSource(Source original);

 private final ResponseBody wrapped;
 private BufferedSource buffer;

 ResponseBodyWrapper(ResponseBody wrapped) {
 this.wrapped=wrapped;
 }

 @Override
 public MediaType contentType() {
 return(wrapped.contentType());
 }

 @Override
 public long contentLength() {
 return(wrapped.contentLength());
 }

 @Override
 public BufferedSource source() {
 if (buffer==null) {
 buffer=Okio.buffer(wrapSource(wrapped.source()));
 }

 return(buffer);
 }
}

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/ResponseBodyWrapper.java)
Subclasses of ResponseBodyWrapper need to implement wrapSource()
to wrap the Source of the Response.
ProgressResponseBody does just that, wrapping the Source in a
subclass of ForwardingSource named ProgressSource:

package com.commonsware.android.okhttp3.progress;

import java.io.IOException;
import okhttp3.ResponseBody;
import okio.Buffer;
import okio.ForwardingSource;
import okio.Source;

// inspired by https://github.com/square/okhttp/blob/master/samples/guide/src/main/java/okhttp3/recipes/Progress.java

class ProgressResponseBody extends ResponseBodyWrapper {
 private final Listener listener;

 ProgressResponseBody(ResponseBody wrapped, Listener listener) {
 super(wrapped);

 this.listener=listener;
 }

 @Override
 Source wrapSource(Source original) {
 return(new ProgressSource(original, listener));
 }

 class ProgressSource extends ForwardingSource {
 private final Listener listener;
 private long totalRead=0L;

 public ProgressSource(Source delegate, Listener listener) {
 super(delegate);

 this.listener=listener;
 }

 @Override
 public long read(Buffer sink, long byteCount)
 throws IOException {
 long bytesRead=super.read(sink, byteCount);
 boolean done=(bytesRead==-1);

 if (!done) {
 totalRead+=bytesRead;
 }

 listener.onProgressChange(totalRead,
 ProgressResponseBody.this.contentLength(), done);

 return(bytesRead);
 }
 }

 interface Listener {
 void onProgressChange(long bytesRead, long contentLength,
 boolean done);
 }
}

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/ProgressResponseBody.java)
Our ProgressSource does two things:

	It tracks the total number of bytes that have been read so far

	Every time that we read more data, we call a ProgressResponseBody.Listener
with the number of bytes that have been read so far, the known content
length of the stream, and whether we are now done reading from the stream

Updating the Notification
Back in Downloader, the nightTrain passed in a progressListener to
the ProgressResponseBody constructor. That progressListener is an
implementation of ProgressResponseBody.Listener, where we can actually
update our Notification:

 final ProgressResponseBody.Listener progressListener=
 new ProgressResponseBody.Listener() {
 long lastUpdateTime=0L;

 @Override
 public void onProgressChange(long bytesRead,
 long contentLength,
 boolean done) {
 long now=SystemClock.uptimeMillis();

 if (now-lastUpdateTime>1000) {
 builder.setProgress((int)contentLength,
 (int)bytesRead, false);
 mgr.notify(FOREGROUND_ID, builder.build());
 lastUpdateTime=now;
 }
 }
 };

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)
Mostly, what we do is call setProgress() on the NotificationCompat.Builder.
This takes:

	the maximum value of the ProgressBar, for which we use the length of
the content

	the current progress that we have made, for which we use the number of
bytes already downloaded

	whether the ProgressBar should be indeterminate, for which we pass
false to get a ProgressBar that shows actual progress

Then, we build() a fresh Notification from the Builder and
pass that to notify() with the same ID. This will update our existing
Notification, showing the updated progress. This is where setOnlyAlertOnce(true)
comes into play — the additional times we raise this same Notification
with the updated progress will not trigger the alert, so the device ringtone
does not play with each update.
However, our listener is going to be invoked fairly frequently, so much
that we might swamp the system just constantly updating the Notification.
To help with that, we track when we update the Notification and only
update it again if a second has passed.
What If We Had an Activity in the Foreground?
You may want to be presenting the progress of the download in two places:
the Notification and the UI of your application, if a relevant bit
of that UI happens to be in the foreground. For example, you might
have a fragment that contained the button or action bar item that kicked
off the download. So long as that fragment is visible, you might want
to have a ProgressBar on it and update the progress there.
If you use an event bus, you can have your
ProgressResponseBody.Listener post an event with the progress of
the download. However, that event should include some sort of unique
identifier for the download itself, in addition to the progress. That
way, only the fragment related to this specific download will show
the progress, not similar fragments elsewhere.
The APK edition of this book takes this approach in the
Community Theater area, where you can download and watch
presentations on Android app development topics (“appinars”). An appinar
is a ZIP archive up on a CommonsWare server. When you browse the catalog
of appinars and choose one, the screen will either let you download the
appinar or play the appinar (if it is already downloaded). The download
will use code reminiscent of what you see in the sample app, with
the added feature of event bus messages publishing the progress to
the rest of the app. However, we only show the download progress on the
fragment for the particular appinar that is being downloaded. If, while
the download is progressing, you visit other appinar descriptions, we do
not want to show the download progress there, as you will think that you
are downloading those appinars too. The Notification shows the name
of the appinar that you are downloading, so it provides built-in context
for what appinar the progress pertains to.
Custom Views
When you specify a title and a description for a Notification, you
are implicitly telling Android to use a stock layout for the
structure of the Notification object’s entry in the notification
drawer. However, instead, you can provide Android with the layout to
use and its contents, by means of a RemoteViews.
In other words, by using the same techniques that you use to create
app widgets, you can create tailored notification
drawer content. Just create the RemoteViews and supply it to your
NotificationCompat.Builder via setContent().
To update the notification tile content, you update your
RemoteViews in your Notification and re-raise the Notification
via a call to notify(). Android will apply your revised
RemoteViews to the notification drawer content, and the user will
see the changed widgets.
The
Notifications/CustomView
sample project is a clone of the
HTTP/OkHttpProgress shown in the previous section.
The difference is that we will use our own custom layout and a RemoteViews
rather than use the standard Notification UI.
The Notification Layout
This sample app has its minSdkVersion set to 21, so we only need
to worry about providing a layout that looks OK on Android 5.0+ devices.
Google dramatically changed the look of notifications with Android 5.0, so
a layout that looks good on older devices may not blend in well with
newer devices. If you have a need to support a wider range of Android
versions, you will want to consider using versioned layout resources
(e.g., res/layout/ for older devices, res/layout-v21/ for API Level 21+
devices).
But, since this app’s scope is limited, we can directly refer to
Theme.Material-based themes, to get a layout that has elements that
resembles the actual notification tile content:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:id="@android:id/title"
 style="@android:style/TextAppearance.Material.Notification.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:ellipsize="marquee"
 android:singleLine="true" />

 <ProgressBar
 android:id="@android:id/progress"
 style="@android:style/Widget.Material.ProgressBar.Horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:indeterminate="false" />
</LinearLayout>

(from Notifications/CustomView/app/src/main/res/layout/notif_content.xml)
Here, we are just showing a title and a ProgressBar. The TextView
uses @android:style/TextAppearance.Material.Notification.Title, which
is the same style as is used by the official Notification layout.
The ProgressBar uses @android:style/Widget.Material.ProgressBar.Horizontal,
also mirroring what you will see in real notifications.
Using the Layout
The new sample’s buildForeground() method now creates a RemoteViews
for this layout, fills in the title, and uses that with NotificationCompat.Builder
and setContent():

 private NotificationCompat.Builder buildForeground(
 String filename) {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);
 RemoteViews content=new RemoteViews(getPackageName(),
 R.layout.notif_content);

 content.setTextViewText(android.R.id.title, "Downloading: "+filename);

 b.setOngoing(true)
 .setContent(content)
 .setSmallIcon(android.R.drawable.stat_sys_download);

 return(b);
 }

(from Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)
However, NotificationCompat.Builder has a write-only API. We cannot
get our RemoteViews back from that. But, we need the RemoteViews
to be able to update our progress. So, to that end, we hold onto
the actual Notification built by the Builder in onHandleIntent():

 NotificationCompat.Builder builder=
 buildForeground(filename);
 final Notification notif=builder.build();

(from Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)
Then, in our ProgressResponseBody.Listener, we get at the RemoteViews
via the contentView public field on the Notification. We can call
a setProgressBar() method on the RemoteViews, much as we called
setProgress() on the NotificationCompat.Builder in the preceding example:

 final ProgressResponseBody.Listener progressListener=
 new ProgressResponseBody.Listener() {
 long lastUpdateTime=0L;

 @Override
 public void onProgressChange(long bytesRead,
 long contentLength,
 boolean done) {
 long now=SystemClock.uptimeMillis();

 if (now-lastUpdateTime>1000) {
 notif
 .contentView
 .setProgressBar(android.R.id.progress,
 (int)contentLength, (int)bytesRead, false);
 mgr.notify(FOREGROUND_ID, notif);
 lastUpdateTime=now;
 }
 }
 };

(from Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)
Then, we can notify() the NotificationManager with the updated
Notification, causing the ProgressBar to advance based on the
actual progress made.
The resulting Notification shows our RemoteViews in action:

[image: Custom Notification]

Figure 413: Custom Notification
Styling Custom Views
A custom view for a Notification takes over the entire tile in the
notification shade. Sometimes, this may be necessary to achieve the
developer’s objective. Other times, though, while the main content
area of the Notification might need to be custom, the rest of the
“frame” around that content area could be left intact. This would
include things like the app’s icon, the time the Notification was
raised, any action buttons below the content, and so forth.
Android 7.0+ offers this via the
Notification.DecoratedCustomViewStyle and
Notification.DecoratedMediaCustomViewStyle styles. On your
Builder, call setCustomContentView() with the RemoteViews
for the content area, plus call setStyle(), passing in an instance
of DecoratedCustomViewStyle or DecoratedMediaCustomViewStyle,
to gain this effect.
Life After Delete
Most of the time, you do not care about your Notification being
dismissed by the user from the notification drawer (e.g., pressing
the Clear button on Android 1.x/2.x devices). If you do care about
the Notification being deleted this way, you can supply a
PendingIntent in the deleteIntent data member of the
Notification — this will be executed when the user gets rid
of your Notification. Usually, this will be a getService() or
getBroadcast() PendingIntent, to have you do something in the
background related to the dismissal. Users are likely to get rather
irritated with you if you pop up an activity because they got rid of
your Notification.
Note that this only works for Notification objects that can be
cleared. If you have FLAG_ONGOING_EVENT set on the Notification,
it will remain on-screen until you get rid of it.
The Mysterious Case of the Missing Number
The Notification class has a number data member. On Android 1.x
and 2.x, setting that data member would cause a number to be
super-imposed on top of your icon in the status bar. That data member
no longer works as of Android 3.0.
However, NotificationCompat.Builder has a setNumber() method which
does work on API Level 11 and higher, though with slightly
different behavior. Instead of putting the number on top of your
status bar icon, the number will appear in your notification drawer
entry. This only works if you do not use setContent() with
NotificationCompat.Builder to define your own notification drawer entry
layout — in that case, you could put your own number in
wherever you would like.
Notifications and MessagingStyle
Android 7.0 offers a new MessagingStyle to the roster of expanded
Notification styles. This one is designed for a chat-style presentation,
where you supply a series of chat messages (person, timestamp, and message),
and they are rendered in the Notification. It is designed to be used
with the RemoteInput option described earlier in this chapter,
for the user to be able to participate in a chat without having to open
up your activity.
As usual, there are two implementations of MessagingStyle:

	
Notification.MessagingStyle is part of Android 7.0’s SDK
and requires you to build for Android 7.0 (e.g., compileSdkVersion 24)

	
NotificationCompat.MessagingStyle, from the Android Support libraries,
for backwards compatibility

The
Notifications/Messaging
sample project demonstrates the use of the latter, along with the RemoteInput
support from earlier.
While the RemoteInput and MessagingStyle from NotificationCompat
will build and run on older devices, they do not work especially well. You
simply get a do-nothing Notification action for the RemoteInput and
no real context around the messages. As such, you only want to use these
options on Android 7.0 devices, gracefully degrading to some other experience
on older devices.
Also note that the NotificationCompat.MessagingStyle is from the v24
generation of the Android Support libraries. In this case, we are using
25.0.0 of support-compat, which contains NotificationCompat
and NotificationManagerCompat.

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.android.support:support-compat:26.1.0'
}

android {
 compileSdkVersion 26
 buildToolsVersion '26.0.2'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 26
 versionCode 1
 versionName "1.0"
 }
}

(from Notifications/Messaging/app/build.gradle)
As with the RemoteInput sample, the MainActivity is here just to provide
us with an easy way to get the Notification to appear on the screen. In
this case, though, all we do is use NotificationManagerCompat to show
a Notification built elsewhere:

package com.commonsware.android.messaging;

import android.app.Activity;
import android.os.Bundle;
import android.support.v4.app.NotificationManagerCompat;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 NotificationManagerCompat
 .from(this)
 .notify(RemoteInputReceiver.NOTIFY_ID,
 RemoteInputReceiver.buildNotification(this).build());

 finish();
 }
}

(from Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/MainActivity.java)
Our RemoteInputReceiver is more complex as a result:

package com.commonsware.android.messaging;

import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Build;
import android.os.Bundle;
import android.support.v4.app.NotificationCompat;
import android.support.v4.app.NotificationManagerCompat;
import android.support.v4.app.RemoteInput;
import android.util.Log;
import java.util.Stack;

public class RemoteInputReceiver extends BroadcastReceiver {
 private static final String CHANNEL_WHATEVER="channel_whatever";
 static final int NOTIFY_ID=1337;
 static final String EXTRA_INPUT="input";
 static final Stack<Message> MESSAGES=new Stack<>();
 static final long INITIAL_TIMESTAMP=System.currentTimeMillis();

 static NotificationCompat.Builder buildNotification(Context ctxt) {
 NotificationManager mgr=
 (NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 Intent i=new Intent(ctxt, RemoteInputReceiver.class);
 PendingIntent pi=
 PendingIntent.getBroadcast(ctxt, 0, i, PendingIntent.FLAG_UPDATE_CURRENT);

 RemoteInput remoteInput=
 new RemoteInput.Builder(RemoteInputReceiver.EXTRA_INPUT)
 .setLabel(ctxt.getString(R.string.talk))
 .build();

 NotificationCompat.Action remoteAction=
 new NotificationCompat.Action.Builder(
 android.R.drawable.ic_btn_speak_now,
 ctxt.getString(R.string.talk),
 pi).addRemoteInput(remoteInput).build();

 NotificationCompat.MessagingStyle style=
 new NotificationCompat.MessagingStyle("Me")
 .setConversationTitle("A Fake Chat");

 style.addMessage("Want to chat?", INITIAL_TIMESTAMP, "Somebody");

 for (Message msg : MESSAGES) {
 style.addMessage(msg.text, msg.timestamp,
 style.getUserDisplayName());
 }

 NotificationCompat.Builder builder=
 new NotificationCompat.Builder(ctxt, CHANNEL_WHATEVER)
 .setSmallIcon(
 android.R.drawable.stat_sys_download_done)
 .setContentTitle(ctxt.getString(R.string.title))
 .setStyle(style)
 .addAction(remoteAction);

 return(builder);
 }

 @Override
 public void onReceive(Context ctxt, Intent i) {
 Bundle input=RemoteInput.getResultsFromIntent(i);

 if (input!=null) {
 CharSequence text=input.getCharSequence(EXTRA_INPUT);

 if (text!=null) {
 MESSAGES.push(new Message(text));
 }
 else {
 Log.e(getClass().getSimpleName(), "No voice response speech");
 }
 }
 else {
 Log.e(getClass().getSimpleName(), "No voice response Bundle");
 }

 NotificationManagerCompat
 .from(ctxt)
 .notify(RemoteInputReceiver.NOTIFY_ID,
 buildNotification(ctxt).build());
 }

 private static class Message {
 final CharSequence text;
 final long timestamp;

 Message(CharSequence text) {
 this.text=text;
 timestamp=System.currentTimeMillis();
 }
 }
}

(from Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/RemoteInputReceiver.java)
For the MessagingStyle, we need messages. In a production app, this
would be part of your app’s data model, probably saved in a file or database
somewhere, with an in-memory cache for speed. In this sample app, we just
have a static MESSAGES Stack, for our messages. Initially, this Stack
is empty, but we will eventually fill in Message objects, each of which
has text and a timestamp. Since this is a sample app, and all Message objects
will come from our app’s user, we do not need Message to track the sender
of the message — a real chat-style app would need this, in all likelihood.
The buildNotification() method starts off with the same basic code
shown in the RemoteInput sample. But then, mid-way through the method,
we build up the MessagingStyle:

 NotificationCompat.MessagingStyle style=
 new NotificationCompat.MessagingStyle("Me")
 .setConversationTitle("A Fake Chat");

 style.addMessage("Want to chat?", INITIAL_TIMESTAMP, "Somebody");

 for (Message msg : MESSAGES) {
 style.addMessage(msg.text, msg.timestamp,
 style.getUserDisplayName());
 }

(from Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/RemoteInputReceiver.java)
The parameter to the MessagingStyle constructor is the name associated
with the user of this app. That name will appear alongside messages that
come from this user. A MessagingStyle can have a title, set via
setConversationTitle(), to provide some context for the chat transcript.
We then add one fake message, ostensibly from the chat partner,
via the addMessage() method. The version we use here takes the text,
timestamp, and name of the other party to use in the message.
Then, if there are messages in the MESSAGES stack, we add those to the
chat transcript as well. Note that our third parameter is
style.getUserDisplayName(), which returns the value that we passed into
the MessagingStyle constructor. We could
get the same effect by passing null for the third parameter.
That MessagingStyle then is attached to the NotificationCompat.Builder
via setStyle().
At the outset, since MESSAGES is empty, we get a single message from
“Somebody”:

[image: Messaging Demo Notification, As Initially Launched]

Figure 414: Messaging Demo Notification, As Initially Launched
If the user taps “Talk to Me”, types in a message, and clicks the send
button, our RemoteInputReceiver will take that text, put it in a Message,
push that Message into the MESSAGES Stack, then update the Notification
with the new transcript:

[image: Messaging Demo Notification, After Two Replies]

Figure 415: Messaging Demo Notification, After Two Replies
The timestamp does not show up; it is unclear how that is used by Android.
Changes in API Level 23
Historically, while we could supply a “large bitmap” (e.g., photo or
avatar) to a Notification for use in the tile in the notification tray
as a Bitmap, the “small icon” used for the status bar always had to be
a resource in our app. This was aggravating for developers that wanted
to tailor the small icon, such as a weather app showing the current
temperature. Now, we can supply an Icon object, which can wrap a
drawable resource, a Uri to a ContentProvider, a byte array
of encoded bitmap data, a Bitmap, or a path to a local PNG or JPEG
file. Any of those can be used for the small icon, offering greater
flexibility. That being said, please do bear in mind that the small
icon is small (i.e., tiny changes may not be noticeable) and that
ideally it should adhere to the platform aesthetic for notification
icons (i.e., do not use a photo).
The user can now disable our heads-up notifications, if the user finds
them irritating. We can get an idea of what the user’s chosen notification
policies are via getCurrentInterruptionFilter() and getNotificationPolicy(),
so we have some general sense of what the user is and is not expecting to
see in terms of notifications.
And, at long last, we can find out all of our active notifications, via
a getActiveNotifications() method. This will include any notification
that is visible to the user (i.e., the user has not dismissed it and we
have not gotten rid of it via cancel()).
Sounds and Android 7.0
You can put a custom ringtone on a Notification, via methods like
setSound() on NotificationCompat.Builder. This requires a Uri.
And, unfortunately, your options for that Uri are limited:

	
android.resource Uri values are fine, if the sound that you want
to play is a raw resource

	
file Uri values will work prior to Android 7.0 and for apps
whose targetSdkVersion is below 24

	
content Uri values are the preferred solution for sounds that
exist as files (e.g., by using FileProvider), but they do not work
on Android 7.0 without additional work, because Android may not have
read access to your content

The best easy solution at the moment, for content Uri values,
is to grant read access to your content to the com.android.systemui
package, via the grantUriPermissions() method on Context:

grantUriPermission("com.android.systemui", sound,
 Intent.FLAG_GRANT_READ_URI_PERMISSION);

(where sound is the Uri that you want to use with setSound())
However, it is unclear if this is the right package to use for all
versions of Android and all possible device manufacturer modifications
to Android.
Another possibility is for you to create a read-only ContentProvider
that can serve your file, perhaps modeled after
this book sample, then export that provider.
The FileProvider from the Android Support library would work, except that
it cannot be exported.
Eventually, the author’s StreamProvider
will be updated to support this sort of public read-only pattern.
With luck, future versions of Android (and the NotificationCompat backport)
will address this more formally.
Auto-Timeout
In Android 8.0+ can now provide a time when the notification should be automatically deleted,
as if the user had cleared it personally. This is good for notifications whose
value declines a lot after a particular point in time.
To use this, call setTimeoutAfter() on the NotificationCompat.Builder, supplying a
duration in milliseconds:

 public void raiseCoins(View view) {
 Notification n=new NotificationCompat.Builder(MainActivity.this, CHANNEL_COINS)
 .setContentTitle(getString(R.string.notif_coins_title))
 .setContentText(getString(R.string.notif_coins_text))
 .setSmallIcon(android.R.drawable.stat_sys_warning)
 .setTimeoutAfter(5000)
 .build();

 mgr.notify(NOTIF_ID_COINS, n);

(from Notifications/Channels/app/src/main/java/com/commonsware/android/notify/channel/MainActivity.java)
Here, we set the notification to time out after five seconds. Five seconds would
be far too short of an active window for ordinary users, but it allows a developer
to see the results more quickly.
Launcher Icon Badge
Depending on the home screen launcher implementation, your notifications
may display a dot on the home screen launcher icon:

[image: Home Screen Launcher Notification Dot, from Pixel]

Figure 416: Home Screen Launcher Notification Dot, from Pixel
This will happen by default; you do not need to do anything to make it happen.
However, it will only appear on a handful of devices that have a compatible
home screen.
You can disable this by calling setShowBadge(false) on the NotificationChannel
when you create it.
For launchers that support badges, a long-press on the launcher icon may show
details of the notification:

[image: Home Screen Launcher Notification Details, from Pixel]

Figure 417: Home Screen Launcher Notification Details, from Pixel
You can control two elements of this, beyond what you would normally configure
in the notification itself:

	Call setBadgeIconType() on the NotificationCompat.Builder to indicate
whether the icon should be displayed or not, and whether the small or the large
icon will be used

	Call setNumber() on the NotificationCompat.Builder to offer up a number
to show in the details:

[image: Home Screen Launcher Notification Details With Number, from Pixel]

Figure 418: Home Screen Launcher Notification Details With Number, from Pixel
For example, you might use this for an unread message count, if that information
is not otherwise present in the notification.
Multi-Window Support
From the standpoint of users, the most visible new capability in
Android 7.0 is multi-window support. Now, the user can be working
with more than one Android activity at a time, whether from separate
apps or — with the assistance of the app — from the same app. This
is akin to the proprietary implementations seen in devices from
Samsung, LG, and other manufacturers.
The good news — more or less — is that support for multi-window is
automatic. You do not need to change anything in your Android app
to have your app moved into a portion of the screen, instead of taking
up the full screen.
However, you may want to tweak your app to behave better in a multi-window
environment.
Prerequisites
Understanding this chapter requires you to have read the core chapters
of the book.
A History of Windows
In the beginning, we were happy to have just one app on the screen
at a time.
However, as phones got larger, there was increasing interest in having
more than one app visible at a time. Some manufacturers handled this
via their own “small apps”, such as floating calculator windows.
However, some, such as Samsung and LG, added support for split-screen
dual-window environments, where two apps could be run side-by-side.
These were proprietary extensions to Android that developers had to
opt into.
Other manufacturers, such as Jide, set up alternative versions of
Android (e.g., Jide’s Remix OS) that supported windows akin to desktop
operating systems, with an arbitrary number of overlapping windows.
These too were proprietary extensions, unique to those environments.
With Android 7.0, these sorts of capabilities are now part of the core
OS, with standardized ways for developers to work with them.
What The User Sees
For most Android devices, the user experience will be what is known
as the split-screen view:

[image: Split-Screen Mode on Nexus 9]

Figure 419: Split-Screen Mode on Nexus 9
The user can enter split-screen mode by long-pressing on the OVERVIEW
button (the one that brings up the recent tasks). The existing foreground
activity will be put in one pane, with the overview screen in the other
pane, where the user can choose another app.
If the user rotates the screen, the split-screen remains, still
splitting along the long axis:

[image: Split-Screen Mode on Nexus 9, Portrait Mode]

Figure 420: Split-Screen Mode on Nexus 9, Portrait Mode
The divider is movable between three positions, to either equally
split the space (default) or to give one pane or the other about two-thirds of
the space:

[image: Split-Screen Mode on Nexus 9, After Moving Divider]

Figure 421: Split-Screen Mode on Nexus 9, After Moving Divider
Android TV devices support a “picture-in-picture” mode instead, where
one activity is in a small floating window, overlaying the other activity.
The documentation also describes a “freeform” mode,
where Android behaves
like a desktop OS with overlapping fully-resizable windows. At the
time this paragraph was written (October 2016), no production devices
officially support freeform multi-window, though power users have a way
of enabling it.
What Your Code Sees
From your activity’s standpoint, the fact that it once used most of the screen,
and now is only smaller part of a screen, is just a configuration change, no
different than orientation changes or other screen size changes (e.g.,
putting the device in a dock that provides a larger screen).
Whatever activity the user tapped on last is considered to be the
foreground activity. Other activities that are visible, such as the
activity in the adjacent split-screen pane, will be paused. This is in
line with the way Android has always worked:

	if your activity is visible, but not in the foreground, it will be
paused (e.g., a system-supplied dialog-themed activity is in the foreground)

	if your activity is no longer visible, it will be stopped

You will want to think through what business logic of your activities
belongs in onStart()/onStop() and what belongs in onResume()/onPause().
Historically, since being visible but not in the foreground was an uncommon,
short-lived state, we did not necessarily have to worry that much about
the distinction between “paused” and “stopped”. Now the distinction takes
on much greater importance.
In split-screen mode, if the user moves the divider, your activity
initially will be simply redrawn to adopt the extra space. Once the
user lets go of the divider, and it settles on its final position, your
activity may undergo a configuration change. Whether you undergo a
configuration change seems somewhat random. With luck, this will be
more predictable in the future.
If needed, activities and fragments can find out what is going on with
respect to multi-window behavior:

	They can call isInMultiWindowMode() to find out if they are in multi-window
mode presently… in theory

	They can override onMultiWindowModeChanged() to find out if the multi-window
state changes

There are also variants of these for picture-in-picture mode for Android
TV: isInPictureInPictureMode() and onPictureInPictureModeChanged(). However,
picture-in-picture mode is a particular case of multi-window mode. For example,
if isInPictureInPictureMode() returns true, so will isInMultiWindowMode().
However, isInMultiWindowMode() is unreliable,
apparently by design. Ideally, avoid doing anything specific for when
you are in multi-window mode or not.
Also note that, as of Android 8.0, there are two variants of
onMultiWindowModeChanged():

	A one-parameter version, taking a boolean, which was the original method
added in Android 7.0 but is marked as deprecated in Android 8.0

	A two-parameter version, taking a boolean and a Configuration, added
in Android 8.0

In general, if your minSdkVersion is 26 or higher, override the two-parameter
version. Otherwise, override the one-parameter version.
Opting Out
For various reasons, you may not want your activity to be eligible to
be used in some form of multi-window mode. This may disappoint your users,
but you may have valid reasons for this decision.
If your targetSdkVersion is N (or whatever that turns into, probably 24,
when Android 7.0 ships in final form), you can have an
android:resizeableActivity="false" attribute on a specific <activity>
element or on the <application> element in your manifest. This
will tell Android to always give you the full screen, even if the user tries
launch your activity into some form of multi-window mode.
If your targetSdkVersion is 23 or lower, whether you support
multi-window mode is determined by the android:screenOrientation
attribute (on an <activity> or inherited from the <application>).
A fixed-orientation activity — such as one that is locked to landscape –
will not be put into multi-window mode.
Note that if your targetSdkVersion is 23 or lower, and you support
any orientation (e.g., you do not have android:screenOrientation),
Android will allow the user to use your activity in multi-window mode.
However, a Toast will appear, advising the user that your activity
is not designed for multi-window mode and there may be compatibility issues.
However, this will serve as a note to users that your app is out of
date with respect to newer versions of Android, which may not be in
your best interests.
Opting In
As noted, Android will allow your activity to be put in multi-window
mode by default.
To avoid the aforementioned warning Toast, set your targetSdkVersion
to N. Optionally, you can explicitly have android:resizeableActivity="true"
in the manifest, though this is the default.
Note that not all activities need to support multi-window mode. For example,
you might have some general activities that are fine in multi-window
mode, plus a video player that really should be full-screen in landscape.
You might put android:resizeableActivity="false" on that latter activity,
plus have android:resizeableActivity="true" on the <application> element
(for documentation purposes).
If, for some reason, regular multi-window modes are fine, but picture-in-picture
will be a problem, you can have android:supportsPictureInPicture="false"
on an <activity>.
Configuring the Layout
You can add a <layout> element as a child to your <activity> element,
to control aspects of how the activity appears on the screen in multi-window
mode.
The only facet of <layout> that we can use today is the minimal
size, represented by android:minWidth and android:minHeight
attributes.
These indicates how small you are willing to have your activity be
in the stated direction. If the user moves the divider, and the resulting size of
your activity is smaller than your requested minimal size, your activity
will appear to extend “under” the other pane.
For example, the
MultiWindow/OptIn
sample application has its minimal width set to 3 inches (480dp):

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:resizeableActivity="true"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name="MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <layout android:minWidth="480dp" />
 </activity>
 </application>

</manifest>

(from MultiWindow/OptIn/app/src/main/AndroidManifest.xml)
When positioned on the left of the split-screen, with a size less
than 3 inches, the activity “extends beneath” the right pane:

[image: 3-Inch Minimum Size on Left of Split-Screen]

Figure 422: 3-Inch Minimum Size on Left of Split-Screen
The OptIn sample app has a ListView showing the events received
in the lifetime of this activity instance, so you can see the effect
of tapping on one activity versus the other in the split-screen mode.
Also, the other activity shown in these screenshots is
Google’s official multi-window sample app.
For freeform multi-window mode, you also have:

	
android:defaultWidth and android:defaultHeight, to supply a suggested
size for your window (as a dimension or as a fraction of the screen size), and

	
android:gravity, which works like the equivalent widget attribute,
suggesting where on the screen your window should be opened

Avoiding Stutter
Since resizing an activity in multi-window mode may cause a configuration
change, it is very important for you to handle configuration changes quickly:

	For small bits of data that can be put in a Bundle, use the saved
instance state Bundle, so that your new activity (and fragments) can
not only rapidly handle these configuration changes but also handle
other scenarios, such as your process being terminated while in the
background.

	For larger chunks of data, or data that cannot be put into a Bundle, use
a retained fragment or a process-level cache. Be careful with the latter
technique, though, so that you do not consume too much heap space.

What you want to avoid, if at all possible, is having to do I/O of
any form due to a configuration change.
In addition, while the user is resizing your activity, it is simply
being redrawn using its current UI, pending completion of the
resize (at which point, a configuration change may occur). The more work
you do to render the UI, the more work that needs to be done to redraw
the UI while the user is resizing, and the more likely that it is that
the user will perceive some jank. Possible problem areas include:

	Having hundreds of widgets in your activity

	Having custom widgets that are expensive to redraw

	Triggering some sort of controller-style logic due to a redraw that
in turn triggers more serious work (e.g., “we want to log every time
the widget gets drawn to a file”)

In a pinch, you can optimize certain configuration changes, overriding
the default activity destroy-and-recreate cycle, via android:configChanges.
On the plus side, you can try to make fine-grained changes to your UI
and react more responsively. However, this is an optimization, not a
replacement for proper state management (e.g., saved instance state
Bundle), as state management is for more than configuration changes.
If you wish to use android:configChanges to opt out of automatic handling
of certain configuration changes, the ones of relevance for multi-window are:

	screenSize

	smallestScreenSize

	screenLayout

	orientation

If you have not used this technique before, you can read more about it
in the chapter on configuration changes.
Managing the Background
While the user is resizing the window, Android does not attempt to
re-render your UI. Instead, if the window is being shrunk, your existing UI
is clipped. If the window is being expanded, a background is shown over
the new area. Only once the resize is done does Android perform the
configuration change and re-render your UI.
The android:windowBackground and android:windowBackgroundFallback
theme attributes control what that background looks like. You may wish
to set android:windowBackground in your app’s theme to a value that
matches your natural window background, so there is a seamless
transition between your regular background and the new background added
by Android during the resize operation.
How Low Can You Go?
The smallest window size in split-screen mode is 220dp. Your activity
should aim to support a width or height of 220dp for maximum compatibility.
Using android:minWidth and android:minHeight will allow
your activity to support those small sizes by having your UI be
clipped, but this is not an ideal user experience. Rely on
android:minWidth and android:minHeight only for cases where
you have no good way of supporting 220dp directly.
It is unclear whether this 220dp minimum also holds for freeform or
picture-in-picture multi-window mode.
Handling the Screen Size Transition
Suppose your activity launches in a window size that, based on your
layout rules, pulls in a phone-sized layout resource. Now, the user
resizes your window, and the resulting size would pull in a tablet-sized
layout resource.
Assuming that you are handling all of this properly via the configuration
change, technically your activity should work just fine. But from the
user’s standpoint, it may result in a jarring transition, if the UI for
one screen size is significantly different from the UI for another
screen size.
You sometimes see this with Web sites. Some sites apply their site
designs based solely on the size of the browser viewport, so they are not
dependent upon flaky ways of detecting whether the browser is coming
from a mobile device or not. If the viewport is small enough, the page’s
CSS renders a mobile-friendly UI; larger viewports result in more of
a desktop feel. However, if this is based on CSS, resizing a desktop
browser window to be small causes the Web page to dynamically shift from
desktop to mobile mode, or vice versa. This puts some stress on the Web
page design, so that the design not only works statically (i.e., a small
rendition works well on mobile) but also dynamically (i.e., the user does
not get too confused when the Web page transitions from one set of CSS
rules to another).
We will wind up with the same problem in multi-window on Android, as the
user resizes windows past our natural transition points.
Ideally, your app uses one UI for everything from small phones (or small
windows in multi-window) to large tablets (or large windows in multi-window),
regardless of window orientation. Few UI designs work well this way.
And since you cannot reliably determine whether or not you are in
multi-window mode via isInMultiWindowMode(), you cannot reliably treat
that as a separate case.
As such, the community will eventually need to evolve some patterns for
handling this scenario.
Parallel Processing
Normally, multi-window is for multiple apps. For example, the user
might be watching a video in one pane while taking notes in another.
However, there will be cases where it might help the user to have
two activities of yours be in the panes of the split-screen mode.
Or, there may be cases where users want to launch some content of yours
into a separate window in freeform mode.
To do this, you can add FLAG_ACTIVITY_LAUNCH_ADJACENT to the Intent
that starts up another activity. If the device is in some form of multi-window
mode, this serves as a hint that you want this new activity to be in a
different pane or window than is the current activity. If the device
is not in multi-window mode, adding this flag has no effect — you cannot
force a device into multi-window mode.
Because this is only conditionally available, you will want to set up
your UI to reflect that fact. Possible strategies include:

	Only offering a “start in a new pane/window” option if isInMultiWindowMode()
returns true, or toggling its availability in onMultiWindowChanged()

	Always having the option to start the activity in a new pane or
window, but if isInMultiWindowMode() returns false at that point, show
a dialog or Snackbar or something to point out that the user has to
set up multi-window mode first

However, the two activities (e.g., the ones in each pane of split-screen)
need to be part of separate tasks. The recipe for doing this is to not
only use FLAG_ACTIVITY_LAUNCH_ADJACENT, but also FLAG_ACTIVITY_NEW_TASK
and FLAG_ACTIVITY_MULTIPLE_TASK.
For example, MainActivity in the OptIn sample app has an overflow
menu with a “Clone” menu item. This opens a second
instance of MainActivity into the other split-screen pane:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.clone) {
 Intent i=
 new Intent(this, MainActivity.class)
 .setFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT |
 Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_MULTIPLE_TASK);

 startActivity(i);
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from MultiWindow/OptIn/app/src/main/java/com/commonsware/android/multiwindow/MainActivity.java)
Note that the Intent gets all three of the aforementioned flags:
FLAG_ACTIVITY_LAUNCH_ADJACENT, FLAG_ACTIVITY_NEW_TASK, and
FLAG_ACTIVITY_MULTIPLE_TASK.
You also have the option of using the two-parameter startActivity()
that takes a Bundle, building that Bundle using the
ActivityOptions class. On ActivityOptions, there is setLaunchBounds(),
to indicate where on the screen the new task’s window should appear.
The parameter to setLaunchBounds() is either a Rect (providing that
size/location in screen coordinates) or null (indicating that the
new task’s window should occupy the full screen).
Split-Screen, HOME, and Your Activity
We are used to the notion that when the user presses HOME, we are called
with onStop(). In fact, onStop() is even more important than before
with Android 7.0, as our activities will be paused (but not stopped)
a lot more with multi-window. So, whereas we might have used onResume()
and onPause() for setting up and tearing down foreground work, we might
now switch to onStart() and onStop().
However, onStop() is not always called when the user presses HOME.
If the device is in normal, non-split-screen mode, and the user presses
HOME, your foreground activity moves to the background, and onStop()
is called.
If the device is in split-screen mode, and your activity is in the bottom
or right pane (depending on device orientation), and the user presses HOME,
your activity is stopped, so you get an onStop() call. Visually, the
activity animates off-screen fully, and if the user presses the RECENTS
button, the pane you had been occupying is replaced with the recent-tasks
list.
But, if your activity is in the top or left pane of split-screen,
and the user presses HOME, your activity is not stopped.
Unfortunately, we are not given any sort of callback or other indication
that this has occurred. The theory is that the device will be in this
“transient home” state for a short period of time, but that is not
guaranteed.
For many activities, there is no real problem,
but if your activity is holding a wakelock (e.g., you are using
android:keepScreenOn or setKeepScreenOn()), you are not given an
opportunity to release that wakelock, so as long as the device stays in
this state, you drain the battery.
For something like a wakelock, you could release that in onPause(), while
continuing to do the “real work” of the activity until onStop().
That is not ideal — the user might be intentionally watching the video
in split-screen and want the screen to stay on. However,
until we get some means of identifying this state,
our options are limited.
Split-Screen and Orientations
If an activity of yours is in the foreground, and the user enters into split-screen mode,
your activity will undergo a configuration change. We tend to focus on the
fact that the amount of screen space is cut in half. However, in addition,
your orientation is likely to change, as half the screen probably has
the opposite orientation from the full screen.
As a result, if you have resources, such as layouts, that are orientation-dependent,
as the user flips between split-screen and normal modes, your activity
will change orientations. This may even occur if the user drags the divider
between the split-screen panes, depending on the aspect ratio of the
device screen.
From a programming standpoint, this should not be a problem, as there
are many more common ways for a device to change orientation (e.g., user
rotates the device). However, the user might not expect a significant
layout change based solely on entering or exiting split-screen mode,
whereas they may be more comfortable with such a change when rotating
the screen.
Furthermore, freeform multi-window mode
allows the user to arbitrarily resize the window.
In that case, the user might switch orientations by resizing the window.
Aim to minimize orientation-dependent resources. Where you need them,
try to make the transition between orientations fairly gentle, so the
user does not have an adverse reaction to seeing your UI shift on the fly.
Forcing Your App Into Multi-Window/Multi-Instance
Android 7.0 started shipping in August 2016. By September 2016, apps
were appearing on the Play Store that allow users to do what
some bloggers think
is launch multiple instances of an app.
In reality, they launch multiple instances of your launcher activity
in separate panes of a split-screen multi-window environment. So, for
example, you could have two instances of Google’s News and Weather
up side-by-side, even though the app does not directly support this:

[image: Pair of News and Weather Activities]

Figure 423: Pair of “News and Weather” Activities
This does not require (much) devious hacking, and it is very possible
that we will start seeing device manufacturers offer this sort of capability
built into their Android 7.0+ devices.
To understand what’s going on, let’s examine the
Introspection/Sidecar
sample application. This sample application allows the user to add
a custom tile to the quick-settings area of the
notification shade. When this Sidecar tile is tapped, a user-specified
activity will launch into one of the panes of the split-screen mode. And,
as a bonus, if the activity tries blocking split-screen operation via
android:resizeableActivity="false", the Sidecar gets around that.
The net effect is that any Sidecar user can get two instances of a launcher
activity side-by-side… at least, for most apps. For example, the
screenshot shown above was set up via Sidecar.
Using Sidecar
Sidecar is not really a production-ready app.
That being said, if you want to play around with this, run and install the app on an
Android 7.0+ device. You will be greeted by an activity that shows
a list of candidate activities for the Sidecar tile to open. Tap on
one. The activity will vanish, showing a “Saved!” Toast.
Then, open the notification shade all the way and
click “Edit” in the quick-settings area. You should see a “Sidecar”
tile that you can drag into the quick-settings area:

[image: Quick Settings, Showing Sidecar Tile]

Figure 424: Quick Settings, Showing Sidecar Tile
At this point, if you enter into multi-window mode, then open the
notification shade and tap on the Sidecar tile, it will launch the
activity you chose into one of the available windows. In mobile
device split-screen mode, usually the Sidecar-launched activity will
appear in the top or left pane. This will happen even if you have
another instance of that same activity in the opposite pane.
Choosing the Activity
Sidecar’s MainActivity is a near-clone of the Launchalot activity
profiled elsewhere in the book. It uses PackageManager
and queryIntentActivities() to find all activities that have the
ACTION_MAIN/CATEGORY_LAUNCHER <intent-filter>, sorts them alphabetically,
and displays them in a ListView. The differences here are the filtering
performed in Sidecar and what happens when the user taps on a ListView
row.
In Launchalot, the entire roster of launchable activities is shown
in the ListView. In Sidecar’s MainActivity, only a subset are
shown, specifically rejecting those whose android:launchMode is
set to singleInstance or singleTask:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 PackageManager pm=getPackageManager();
 Intent main=new Intent(Intent.ACTION_MAIN, null);

 main.addCategory(Intent.CATEGORY_LAUNCHER);

 List<ResolveInfo> launchables=pm.queryIntentActivities(main, 0);
 List<ResolveInfo> filtered=new ArrayList<>();

 for (ResolveInfo launchable : launchables) {
 int launchMode=launchable.activityInfo.launchMode;

 if (launchMode!=ActivityInfo.LAUNCH_SINGLE_INSTANCE &&
 launchMode!=ActivityInfo.LAUNCH_SINGLE_TASK) {
 filtered.add(launchable);
 }
 }

 Collections.sort(filtered,
 new ResolveInfo.DisplayNameComparator(pm));

 adapter=new AppAdapter(pm, filtered);
 setListAdapter(adapter);
 }

(from Introspection/Sidecar/app/src/main/java/com/commonsware/android/sidecar/MainActivity.java)
So, we iterate over the launchables, find the launchMode for
each, and only add the “good” ones to filtered. The filtered list
is what gets shown in the ListView.
In Launchalot, when the user taps on a row, we create an Intent
identifying that particular activity, then start up that activity.
In Sidecar’s MainActivity, we save the ComponentName identifying
the activity to a SharedPreferences for later use:

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 ResolveInfo launchable=adapter.getItem(position);
 ActivityInfo activity=launchable.activityInfo;
 ComponentName name=new ComponentName(activity.applicationInfo.packageName,
 activity.name);

 PreferenceManager
 .getDefaultSharedPreferences(this)
 .edit()
 .putString(SidecarTileService.PREF_TO_LAUNCH,
 name.flattenToString())
 .apply();
 Toast
 .makeText(this, R.string.msg_saved, Toast.LENGTH_LONG)
 .show();
 finish();
 }

(from Introspection/Sidecar/app/src/main/java/com/commonsware/android/sidecar/MainActivity.java)
The easiest way to persist a ComponentName is to use flattenToString(),
then persist the String. That value can later be used with the
unflattenFromString() static method on ComponentName to get back
an equivalent ComponentName, as will be seen shortly.
So, the job of MainActivity is to let the user choose an activity
for the Sidecar to launch.
Implementing the TileService
A TileService is the Android 7.0+ way to set up tiles that the user
can add to the quick-settings area of the notification shade. Full
details on how to set up one of those can be found
elsewhere in the book. Suffice it to say that
we are called with onClick() in a subclass of TileService — named
SidecarTileService — when the user taps on our tile. At this
point, what we want to do is launch the user’s requested activity.

package com.commonsware.android.sidecar;

import android.content.ComponentName;
import android.content.Intent;
import android.content.SharedPreferences;
import android.content.pm.ActivityInfo;
import android.preference.PreferenceManager;
import android.service.quicksettings.TileService;
import android.util.Log;
import android.view.Gravity;
import android.widget.Toast;
import java.lang.reflect.Field;

public class SidecarTileService extends TileService {
 static final String PREF_TO_LAUNCH="toLaunch";

 @Override
 public void onClick() {
 super.onClick();

 SharedPreferences prefs=
 PreferenceManager.getDefaultSharedPreferences(this);
 String cnFlat=prefs.getString(PREF_TO_LAUNCH, null);

 if (cnFlat!=null) {
 ComponentName cn=ComponentName.unflattenFromString(cnFlat);

 try {
 ActivityInfo info=getPackageManager().getActivityInfo(cn, 0);
 Intent i=new Intent().setComponent(cn);
 Field f=ActivityInfo.class.getField("resizeMode");
 Integer resizeMode=(Integer)f.get(info);
 boolean resizeable=(resizeMode.intValue()!=0);

 if (resizeable) {
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_MULTIPLE_TASK |
 Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT);

 startActivity(i);
 }
 else {
 Intent taskRoot=
 new Intent(this, TaskRootActivity.class)
 .putExtra(Intent.EXTRA_INTENT, i)
 .setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_MULTIPLE_TASK |
 Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT);

 startActivity(taskRoot);
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception trying to launch activity", e);

 toast(R.string.msg_sorry);
 }
 }
 else {
 toast(R.string.msg_choose);
 }
 }

 private void toast(int msg) {
 Toast t=Toast.makeText(this, msg, Toast.LENGTH_LONG);

 t.setGravity(Gravity.END | Gravity.BOTTOM, 32, 32);
 t.show();
 }
}

(from Introspection/Sidecar/app/src/main/java/com/commonsware/android/sidecar/SidecarTileService.java)
First, we get our SharedPreferences and go looking for our saved
ComponentName. If that is not found — getString() returns null
for our PREF_TO_LAUNCH — then the user has not chosen an activity
from the Sidecar MainActivity. So, we show a Toast to let the user
know that they need to choose an activity.
The setGravity() call
in the toast() method shoves our Toast over into a lower
corner of the screen, to try to get it a bit out of the way of
the opened notification shade, as the shade will float over the Toast.
This approach only works well on wider screens. A production-quality
app would do something else here.
Given that we have the String representation of the ComponentName,
we unflattenFromString() to get the ComponentName back, then put
that ComponentName into an Intent. In most cases, we will then
add the multiple-instance flags to the Intent (FLAG_ACTIVITY_NEW_TASK,
FLAG_ACTIVITY_MULTIPLE_TASK, and FLAG_ACTIVITY_LAUNCH_ADJACENT), then
start the activity.
Forcing Activities to Resize
However, if the activity in question has android:resizeableActivity set
to false, we have more work to do.
First, to determine if that is the case for this activity, we have to
access a hidden resizeMode field inside the ActivityInfo object.
ActivityInfo contains a lot of the information from the <activity>
element, though not all of it is part of the public Android SDK. Hacking
into SDK objects using reflection is strongly discouraged, as there
is no guarantee that this field will exist on all devices, courtesy of
firmware modifications. Using reflection this way is a great way to get
a lot of customer service complaints from users about your app crashing.
Regardless, we use the technique here. Based on the ActivityInfo
source code, android:resizeableActivity="false" turns into a resizeMode
of 0. So, the activity is resizable if resizeMode is anything other
than 0.
However, as was discussed earlier in this chapter, android:resizeableActivity
is only honored if your activity is the root of the task. For resizable
activities, then, we can just launch the activity directly, but for
non-resizable activities, we need to arrange to have something else
be the task root. To that end, we have a TaskRootActivity that simply
takes a supplied Intent (via an EXTRA_INTENT extra), starts an
activity using that Intent, and finishes:

package com.commonsware.android.sidecar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

public class TaskRootActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 startActivity((Intent)getIntent().getParcelableExtra(Intent.EXTRA_INTENT));
 finish();
 }
}

(from Introspection/Sidecar/app/src/main/java/com/commonsware/android/sidecar/TaskRootActivity.java)
TaskRootActivity is set up in the manifest to have a theme
of Theme.Translucent.NoTitleBar, so the user will not usually see
the activity, just the one that it starts. However, that is sufficient
to allow TaskRootActivity to decide the resize rules for the task,
overriding those of the user’s chosen activity.
So, for non-resizable activities, SidecarTileService wraps the
real Intent in one for TaskRootActivity, sets the multiple-instance
flags, and starts that activity, which in turn starts the real activity
in the separate pane.
Breaking the Sidecar
So, what can we learn from Sidecar about these other apps that do this
sort of thing?
If your activity is exported — as are launcher activities — then
there is little that you can do to stop other apps from launching
your activity in a separate task to enable this sort of multi-window/multi-instance
behavior. One thing that does stop it is to have android:launchMode
of singleInstance or singleTask. That at least prevents multiple
instances of your activity being launched in parallel, as it overrides
the FLAG_ACTIVITY_NEW_TASK and FLAG_ACTIVITY_MULTIPLE_TASK flags.
Similarly — as we saw earlier in the chapter — there is nothing much
that you can do to stop some other app from launching your activity in
an existing task, thereby blocking you from controlling whether your
activity gets resized.
Ideally, you do not worry much about either of these things, but instead
set up your app to be able to work acceptably in these cases. Again,
it is well within reason that device manufacturers will start offering
this sort of “start another copy of the app” feature to their users.
Sidecar, in this respect, can serve as a testbed for how well your
app behaves when the user does this sort of thing.
Supporting Legacy Proprietary Multi-Window
As noted earlier in the chapter, some manufacturers experimented with
multi-window implementations prior to Google rolling it into Android 7.0.
These come in three flavors:

	Some, like Jide’s Remix OS, require no developer work. Apps just show
up in windows. There might be compatibility concerns, particularly since
many Remix OS-powered devices have keyboards and mice.
However, there is no up-front requirement to do something to opt
into participating in the multi-window experience.

	Some, like Samsung’s and LG’s, require minor modification of your
app’s manifest, but no other specific work.

	Some, like
SONY’s “small apps”,
require a proprietary SDK, and therefore
are somewhat more work. And, in the specific case of SONY’s implementation,
it has been discontinued.

Since the manifest-only modifications are “low-hanging fruit”, giving your
users some benefit with little additional work, let’s take a look at
how to enable those. The
MultiWindow/Legacy
sample application is a clone of the OptIn sample, adjusted to allow
pre-N versions of Android to run the app, and adjusted to support
Samsung’s and LG’s legacy multi-window implementation.
The changes lie purely in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.multiwindow"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true" />

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:resizeableActivity="true"
 android:theme="@style/Theme.Apptheme">
 <uses-library
 android:name="com.sec.android.app.multiwindow"
 android:required="false" />

 <meta-data
 android:name="com.sec.android.support.multiwindow"
 android:value="true" />
 <meta-data
 android:name="com.lge.support.SPLIT_WINDOW"
 android:value="true" />

 <activity android:name="MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 <category android:name="android.intent.category.MULTIWINDOW_LAUNCHER" />
 </intent-filter>
 <layout android:minWidth="480dp" />
 </activity>
 </application>

</manifest>

(from MultiWindow/Legacy/app/src/main/AndroidManifest.xml)
LG requires only one thing: a <meta-data> element in the <application>,
with a name set to com.lge.support.SPLIT_WINDOW and a value of true.
It assumes that your launcher activity (or activities) are suitable
for showing in a split screen view.
Samsung requires three things:

	A similar <meta-data> element, setting com.sec.android.support.multiwindow
to true

	A <uses-library> element, pulling in a firmware-supplied
com.sec.android.app.multiwindow library, if it is available (android:required="false")

	
[category android:name="android.intent.category.MULTIWINDOW_LAUNCHER" /] added
to any <intent-filter> of any activity that you want to be able to be
launched into the split-screen environment

In this case, we have only one activity, so it now has two
<category> elements, for LAUNCHER and MULTIWINDOW_LAUNCHER. Note
that while android.intent.category.MULTIWINDOW_LAUNCHER has
the android.intent.category namespace, and not something like
com.sec.android, MULTIWINDOW_LAUNCHER is not part of standard
Android.
For supported devices from those manufacturers, your app will be
available for split-screen use:

[image: Samsung Legacy Split-Screen Mode]

Figure 425: Samsung Legacy Split-Screen Mode
In the case of Samsung, it may also be available as a popup floating
window:

[image: Samsung Legacy Popup Window Mode]

Figure 426: Samsung Legacy Popup Window Mode
One notable difference between these implementations and Android 7.0’s
multi-window implementation comes with lifecycle events. Android 7.0
will call lifecycle methods on your activity as appropriate during
the transition to and from multi-window mode, and sometimes based on
size changes of your window. Neither Samsung’s nor LG’s legacy
multi-window does this.
Freeform Multi-Window Mode
Freeform multi-window mode — with desktop-style overlapping resizable
windows — is not presently available in an official fashion. However,
there are tricks for making it work, even without rooting a device. As
a result, some power users will start playing with your app in freeform
windows, despite the lack of official support.
Playing with Freeform
If you would like to play with the unofficial freeform multi-window
mode, there are a few ways of going about it.
The Taskbar App
There are some apps out on the Play Store and other distribution channels
that allow you to launch apps in freeform mode, such as
Braden Farmer’s Taskbar app.
Freeform support requires you to go into the “Developer options” area
of the Settings app and enable “Force activities to be resizable”:

[image: Resizable Windows Developer Setting]

Figure 427: Resizable Windows Developer Setting
If you allow Taskbar to be your home screen, it can launch freeform
windows reliably. If you use Taskbar solely as a floating launcher bar –
the default — it can launch freeform windows from the overview screen
(a.k.a., recent-tasks list) or the home screen, but not elsewhere, and
occasionally there will be hiccups where the activity will be launched
normally (not freeform).
The adb Setting
If you prefer, you can enable freeform multi-window mode for your
device or emulator via:

adb shell settings put global enable_freeform_support 1

Then, after a reboot, when you visit the overview screen, you will see
a window-inset icon in the title bar of the overview cards:

[image: Overview Screen, Showing Freeform Title Bar Icons]

Figure 428: Overview Screen, Showing Freeform Title Bar Icons
Tapping that freeform-window icon will open that particular task in
a freeform window:

[image: Calculator in Freeform Window]

Figure 429: Calculator in Freeform Window

[image: Calculator and Settings in Freeform Window]

Figure 430: Calculator and Settings in Freeform Window
To undo this change, run:

adb shell settings put global enable_freeform_support 0

After a reboot, platform-level freeform multi-window support will be
disabled again.
The Freecar App
Braden Farmer’s Taskbar app is open source.
All that it is doing is using documented APIs to describe how a window
should be displayed in freeform mode, so one can imagine that home screen
app developers might start offering a similar capability.
The
Introspection/Freecar
sample application is a simpler demonstration of launching freeform
windows on devices where either “Force activities to be resizable”
or the enable_freeform_support global setting is enabled. This is a
clone of the earlier Sidecar sample, except this time the notification
shade tile will launch the chosen activity in freeform mode.
API Level 16 added a version of startActivity() that takes both an
Intent and a Bundle as parameters. The Bundle is a way of providing
additional information to Android describing how the activity should
be started. That Bundle is typically created via an ActivityOptions
object, where you configure a set of options, call toBundle() on it
to convert the options into a Bundle, then pass that Bundle to
startActivity().
On API Level 24+ devices, setLaunchBounds() on ActivityOptions
indicates that you would like the window to be launched in freeform
mode at a particular location, described via a Rect.
FreecarTileService — the TileService for our notification shade
tile — responds to a click by getting the chosen activity details
and using setLaunchBounds() as part of startActivity():

 @Override
 public void onClick() {
 super.onClick();

 SharedPreferences prefs=
 PreferenceManager.getDefaultSharedPreferences(this);
 String cnFlat=prefs.getString(PREF_TO_LAUNCH, null);

 if (cnFlat!=null) {
 ComponentName cn=ComponentName.unflattenFromString(cnFlat);

 try {
 ActivityInfo info=getPackageManager().getActivityInfo(cn, 0);
 ActivityInfo.WindowLayout layout=info.windowLayout;
 Intent i=
 new Intent()
 .setComponent(cn)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 Point size=new Point();

 getSystemService(DisplayManager.class)
 .getDisplay(Display.DEFAULT_DISPLAY)
 .getSize(size);

 if (layout==null) {
 size.x=size.x/2;
 size.y=size.y/2;
 }
 else {
 if (layout.widthFraction>0.0f) {
 size.x=
 Math.max(layout.minWidth,
 (int)(size.x*layout.widthFraction));
 }
 else {
 size.x=layout.width;
 }

 if (layout.heightFraction>0.0f) {
 size.y=
 Math.max(layout.minHeight,
 (int)(size.y*layout.heightFraction));
 }
 else {
 size.y=layout.height;
 }
 }

 ActivityOptions opts=
 ActivityOptions
 .makeBasic()
 .setLaunchBounds(new Rect(0, 0, size.x, size.y));

 startActivity(i, opts.toBundle());
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception trying to launch activity", e);

 toast(R.string.msg_sorry);
 }
 }
 else {
 toast(R.string.msg_choose);
 }
 }

(from Introspection/Freecar/app/src/main/java/com/commonsware/android/freecar/FreecarTileService.java)
There are a few possibilities for the values for the window size:

	If the activity does not have a <layout> element as a child of
its <activity> element in the manifest, we have no idea how big the
activity should be, so we set it to be half of the screen size.

	If the activity has a <layout> element, use its android:width,
android:height, android:minWidth, and android:minHeight values,
along with the window size, to calculate the desired size.

We find out about those values by getting the ActivityInfo for this
activity from the PackageManager and looking at the WindowLayout
provided via the windowLayout field. This will be null if we have
no <layout> element; otherwise, it will contain the values specified
in that <layout> element.
Freeform and Your App
While basic freeform multi-window support shipped with Android 7.0, it
is unclear how close it is to something that device manufacturers might
enable. It is also unclear whether Google endorses this or whether the
7.0 freeform multi-window support is merely for experimentation purposes.
As such, probably it is not worthwhile to spend a lot of time testing your
app in freeform multi-window mode. Once we have a better idea of whether
this is something that substantial numbers of users will have access to,
we will be able to better judge how much testing time is warranted.
Picture-in-Picture
Android 7.0 added picture-in-picture support for apps, but only on Android TV.
Android 8.0 extended this to mobile devices. An activity can elect to support
picture-in-picture and can elect to move itself into picture-in-picture mode.
While in picture-in-picture mode, the activity is considered to be paused,
as it no longer receives input events. However, you can add “actions”, with
toolbar-style icons and associated PendingIntents, that will get triggered
when the user taps on the window to show the toolbar, then taps on an action:

[image: Picture-in-Picture, Showing Single-Item Toolbar and X]

Figure 431: Picture-in-Picture, Showing Single-Item Toolbar and X
If the user exits the picture-in-picture activity via the X icon, the activity
is not destroyed. Rather, it returns to normal size. However, if you follow
the documented instructions, and use android:launchMode="singleTask" on this
activity, the activity’s task will be moved to the background when the user
exits it. The result is that the activity will be stopped (as it is no longer
visible), but the activity remains, and the user could return to it through
the overview screen if desired. Whether this is a good idea or not remains to
be seen.
The
MultiWindow/PiP
sample project illustrates how this works. This sample app is a clone of
a sample from the chapter on RecyclerView, where we use
the MediaStore to pull up a list of videos, then view the video when the user
taps on the list row. In the original example, we play the video using some
default video player (e.g., ACTION_VIEW Intent on the video Uri). In this
revised example, we have our own crude video player via a VideoView in a custom
VideoPlayerActivity. That activity supports picture-in-picture mode.
To opt into picture-in-picture support, you first need to have
android:supportsPictureInPicture="true" on the <activity> element in the
manifest:

 <activity
 android:name=".VideoPlayerActivity"
 android:configChanges="screenSize|smallestScreenSize|screenLayout|orientation"
 android:launchMode="singleTask"
 android:supportsPictureInPicture="true"
 android:theme="@style/Theme.Apptheme.NoActionBar" />

(from MultiWindow/PiP/app/src/main/AndroidManifest.xml)
The documentation also recommends that you use android:launchMode="singleTask", so
that there is at most one instance of this activity outstanding at a time.
A practical requirement is that this activity cannot support the action bar,
as you cannot get rid of it when you move into picture-in-picture mode. And,
particularly since this activity will be handling video playback, opting into
handling some of the configuration changes tied to screen rotations may be appropriate.
Simply having android:supportsPictureInPicture="true" means that the activity
supports picture-in-picture mode. However, by default, it is not in picture-in-picture
mode. To move into that mode, upon user request, call enterPictureInPictureMode().
In the sample app, the VideoPlayerActivity has a floating action button (FAB)
that, when clicked, moves the activity into picture-in-picture mode:

 @Override
 public void onClick(View view) {
 aspectRatio=new Rational(video.getWidth(), video.getHeight());
 enterPictureInPictureMode(updateActions());
 }

(from MultiWindow/PiP/app/src/main/java/com/commonsware/android/recyclerview/videolist/VideoPlayerActivity.java)
We want to set up the aspect ratio of the picture-in-picture window to match
that of the video. By this time, our VideoView has the proper dimensions,
so we can calculate that aspect ratio. However, rather than using a float
or double, the picture-in-picture system uses a Rational. This class,
added to API Level 21, captures the numerator and denominator of a rational
number. Among other things, it postpones or eliminates the need to switch
to the imprecision of floating-point numbers.
The enterPictureInPictureMode() method takes a PictureInPictureParams
object, which we build here via the updateActions() method:

 private PictureInPictureParams updateActions() {
 ArrayList<RemoteAction> actions=new ArrayList<>();

 if (video.isPlaying()) {
 actions.add(buildRemoteAction(REQUEST_PAUSE,
 R.drawable.ic_pause_white_24dp, R.string.pause, R.string.pause_desc));
 }
 else {
 actions.add(buildRemoteAction(REQUEST_PLAY,
 R.drawable.ic_play_arrow_white_24dp, R.string.play, R.string.play_desc));
 }

 return(new PictureInPictureParams.Builder()
 .setAspectRatio(aspectRatio)
 .setActions(actions)
 .build());
 }

(from MultiWindow/PiP/app/src/main/java/com/commonsware/android/recyclerview/videolist/VideoPlayerActivity.java)
Partly, the PictureInPictureParams object captures and uses that
aspectRatio Rational value. Mostly, though, we use PictureInPictureParams
for a roster of
RemoteAction objects, representing the toolbar-style buttons. Here, depending
upon whether or not the video is currently playing, we set an action for a
play or a pause operation. buildRemoteAction() wraps our desired icon and
other information in a RemoteAction:

 private RemoteAction buildRemoteAction(int requestCode, int iconId,
 int titleId, int descId) {
 Intent i=new Intent(this, RemoteActionReceiver.class)
 .putExtra(EXTRA_REQUEST, requestCode);
 PendingIntent pi=PendingIntent.getBroadcast(this, requestCode, i, 0);
 Icon icon=Icon.createWithResource(this, iconId);
 String title=getString(titleId);
 String desc=getString(descId);

 return(new RemoteAction(icon, title, desc, pi));
 }

(from MultiWindow/PiP/app/src/main/java/com/commonsware/android/recyclerview/videolist/VideoPlayerActivity.java)
Of note, we have the actions trigger a RemoteActionReceiver via a
broadcast PendingIntent.
We could use a dynamically-registered
BroadcastReceiver, but those are always exported, and that makes securing them
a bit tricky. Instead, RemoteActionReceiver is registered (but not exported)
in the manifest. All it does is forward the received Intent to the rest of the
app via greenrobot’s EventBus:

package com.commonsware.android.recyclerview.videolist;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import org.greenrobot.eventbus.EventBus;

public class RemoteActionReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 EventBus.getDefault().post(intent);
 }
}

(from MultiWindow/PiP/app/src/main/java/com/commonsware/android/recyclerview/videolist/RemoteActionReceiver.java)
VideoPlayerActivity picks up that event, looks at the EXTRA_REQUEST
extra, pauses or resumes the video based on the request, and updates the actions
to reflect the new video state:

 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onReceive(Intent intent) {
 int requestCode=intent.getIntExtra(EXTRA_REQUEST, -1);

 if (requestCode==REQUEST_PAUSE) {
 video.pause();
 }
 else if (requestCode==REQUEST_PLAY) {
 video.start();
 }

 setPictureInPictureParams(updateActions());
 }

(from MultiWindow/PiP/app/src/main/java/com/commonsware/android/recyclerview/videolist/VideoPlayerActivity.java)
You can find out when an activity enters or leaves picture-in-picture mode by
overriding onPictureInPictureModeChanged(). In VideoPlayerActivity, we use
this to hide and show the FAB, as the FAB is not needed when we are in
picture-in-picture mode:

 @Override
 public void onPictureInPictureModeChanged(boolean isInPictureInPictureMode,
 Configuration cfg) {
 super.onPictureInPictureModeChanged(isInPictureInPictureMode, cfg);

 fab.setVisibility(isInPictureInPictureMode ? View.GONE : View.VISIBLE);
 }

(from MultiWindow/PiP/app/src/main/java/com/commonsware/android/recyclerview/videolist/VideoPlayerActivity.java)
Note that while there is an enterPictureInPicture() mode, there is no equivalent way for
you to programmatically leave picture-in-picture mode.
Multi-Display Support
Android 8.0 also gave us a new way to put content on an external display, such as a TV
or projector attached to a mobile device. Formerly, we had to use
Presentation and related classes. With Android 8.0+, we can use
multi-window techniques to send an activity to the external display, which
is far simpler. It involves three main steps:

	Finding the Display that you want to send the other activity to,

	Building an ActivityOptions that includes the display ID of that Display, and

	Calling a version of startActivity() that accepts a Bundle created by
ActivityOptions as a parameter, and using an Intent with the appropriate
flags

Since an external display does not support any form of input, the net result
is akin to picture-in-picture: we can show an activity, but the user cannot
interact with it directly. In fact, the user has less ability to interact with
it than the user does with an activity started in picture-in-picture mode.
Primarily, this feature is designed for control being managed by a device’s native
form of input (e.g., touchscreen on typical phones and tablets), and with
the external display being used purely for output (e.g., a movie, a presentation,
a set of charts).
The
Presentation/MultiDisplay
sample project shows the basic technique. This is a clone of the
Presentation/Slides sample project, which used a ViewPager and a Presentation
to allow a presenter to show slides from a phone or tablet connected to a projector.
Presentation/MultiDisplay changes that to use a separate activity on Android 8.0+,
routed to the projector, that displays the current slide.
Our two activities — MainActivity with the ViewPager and a PresentationActivity
to show on the projector — are both in the manifest, with PresentationActivity
set up to be locked to landscape orientation:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.preso.slides"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".PresentationActivity"
 android:configChanges="keyboard|keyboardHidden|orientation|screenSize|smallestScreenSize"
 android:label="@string/app_name"
 android:screenOrientation="landscape"
 android:theme="@style/PresoAppTheme" />
 </application>

</manifest>

(from Presentation/MultiDisplay/app/src/main/AndroidManifest.xml)
MainActivity, in onCreate(), sets up a ViewPager with a SampleAdapter
that will show one slide per page. It also sets up a TabLayout from the CWAC-CrossPort
library to use for the tabs. Most importantly, though, is that on Android 8.0+,
it starts the work to see if we have a presentation display to use:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 pager=(ViewPager)findViewById(R.id.pager);
 adapter=new SlidesAdapter(this);
 pager.setAdapter(adapter);

 TabLayout tabs=(TabLayout)findViewById(R.id.tabs);

 tabs.setupWithViewPager(pager);
 tabs.setTabMode(TabLayout.MODE_SCROLLABLE);
 tabs.addOnTabSelectedListener(this);

 if (iCanHazO()) {
 dm=getSystemService(DisplayManager.class);
 dm.registerDisplayListener(this, null);
 checkForPresentationDisplays();
 }
 }

(from Presentation/MultiDisplay/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
iCanHazO() relies on Build.VERSION.CODENAME to determine if we are on Android 8.0+,
given that developer previews use the prior API level for Build.VERSION.SDK_INT:

 public static boolean iCanHazO() {
 return(Build.VERSION.SDK_INT>=Build.VERSION_CODES.O);
 }

(from Presentation/MultiDisplay/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
If we are on Android 8.0+, onCreate() obtains a DisplayManager, registers the
activity itself as a listener for changes in the state of available displays,
and calls checkForPresentationDisplays(). That method, in turn, will see
if we have a DISPLAY_CATEGORY_PRESENTATION display:

 private void checkForPresentationDisplays() {
 if (dm!=null && presoItem!=null) {
 Display[] displays=
 dm.getDisplays(DisplayManager.DISPLAY_CATEGORY_PRESENTATION);

 if (displays.length>0) {
 presoItem.setEnabled(true);
 presoDisplay=displays[0];
 }
 else {
 presoItem.setEnabled(false);
 presoDisplay=null;
 }
 }
 }

(from Presentation/MultiDisplay/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
If we do, we hold onto the Display object identifying that display, plus enable
an action bar item. When that action bar item is clicked, we want to start
PresentationActivity on that Display:

 Intent i=
 new Intent(this, PresentationActivity.class)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK|Intent.FLAG_ACTIVITY_MULTIPLE_TASK);
 Bundle opts=ActivityOptions
 .makeBasic()
 .setLaunchDisplayId(presoDisplay.getDisplayId())
 .toBundle();

 startActivity(i, opts);

(from Presentation/MultiDisplay/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
For starting one of our own activities into the external display, we need to
add the FLAG_ACTIVITY_NEW_TASK and FLAG_ACTIVITY_MULTIPLE_TASK flags to our
Intent, akin to what we would use with FLAG_ACTIVITY_LAUNCH_ADJACENT to
launch our activity into a separate window. For starting a third-party app’s activity
into the external display, we might be able to skip those flags, depending on
the task settings in the manifest of the activity that we are starting.
ActivityOptions is a class for configuring how an activity should be started.
Mostly, it is used for controlling transition effects. However, Android 8.0 extended
it with setLaunchDisplayId(), which takes the display ID of the Display on
which we want to start this activity. In our case, that is the presentation
Display that we obtained from the DisplayManager. ActivityOptions can
then be converted to a Bundle, which gets passed to startActivity() along
with our Intent.
The net result: the user can only use this action bar item on Android 8.0+ devices
connected to a presentation display, and on those devices, PresentationActivity
is shown on that display. This can be tested on O Developer Preview devices
using the simulated secondary display option in Developer Options in Settings.
However, we still need a way for the user to control the contents of
the PresentationActivity. The idea here is the same as in the original
Presentation/Slides sample: the PresentationActivity should show the currently-selected
slide in the ViewPager.
To that end, onCreate() of MainActivity registered itself to respond
to TabLayout events. In onTabSelected(), we post a sticky message to
greenrobot’s EventBus, containing the drawable resource ID of the currently-shown slide:

 @Override
 public void onTabSelected(TabLayout.Tab tab) {
 int position=tab.getPosition();
 int resourceId=adapter.getPageResource(position);

 EventBus
 .getDefault()
 .postSticky(new SlideChangedEvent(resourceId));
 }

(from Presentation/MultiDisplay/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
PresentationActivity, in turn, registers for that sticky event and shows
that slide, or the first slide if there is no such event:

package com.commonsware.android.preso.slides;

import android.app.Activity;
import android.os.Bundle;
import android.support.annotation.Nullable;
import android.widget.ImageView;
import org.greenrobot.eventbus.EventBus;
import org.greenrobot.eventbus.Subscribe;
import org.greenrobot.eventbus.ThreadMode;

public class PresentationActivity extends Activity {
 private ImageView slide;

 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_preso);

 slide=(ImageView)findViewById(R.id.slide);

 MainActivity.SlideChangedEvent event=
 EventBus.getDefault().getStickyEvent(MainActivity.SlideChangedEvent.class);

 if (event==null) {
 slide.setImageResource(R.drawable.img0);
 }
 }

 @Override
 protected void onStart() {
 super.onStart();

 EventBus.getDefault().register(this);
 }

 @Override
 protected void onStop() {
 EventBus.getDefault().unregister(this);

 super.onStop();
 }

 @Subscribe(sticky = true, threadMode =ThreadMode.MAIN)
 public void onSlideChanged(MainActivity.SlideChangedEvent event) {
 slide.setImageResource(event.resourceId);
 }
}

(from Presentation/MultiDisplay/app/src/main/java/com/commonsware/android/preso/slides/PresentationActivity.java)
Using a sticky event means that MainActivity does not really care if
PresentationActivity is currently available or not. It just fires off the
events, knowing that whenever PresentationActivity is started, it can pick up
the latest such event, plus any new ones raised while PresentationActivity is
around.
Not only can use multi-display mode as a replacement for Presentation, but
you can do something that was never officially supported with Presentation:
control the external display while allowing some other activity to take over
the primary display. This is illustrated in the
Presentation/MultiDisplayDetached
sample app. This is a clone of the MultiDisplay one, but set up where
MainActivity goes away after kicking off the presentation.
MainActivity has the same action bar items as before, but this time, when
the user starts the presentation, we handle that event slightly differently:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.present:
 Intent i=
 new Intent(this, PresentationActivity.class)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK|Intent.FLAG_ACTIVITY_MULTIPLE_TASK);
 Bundle opts=ActivityOptions
 .makeBasic()
 .setLaunchDisplayId(presoDisplay.getDisplayId())
 .toBundle();

 startActivity(i, opts);
 showNotification();
 finish();

 break;

 case R.id.first:
 pager.setCurrentItem(0);
 break;

 case R.id.last:
 pager.setCurrentItem(adapter.getCount() - 1);
 break;
 }

 return(super.onOptionsItemSelected(item));
 }

(from Presentation/MultiDisplayDetached/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
After starting the PresentationActivity in multi-display mode, we finish()
the MainActivity. However, we also call showNotification(), which brings
up a Notification to use to control the slides:

 private void showNotification() {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER)
 .setOngoing(true)
 .setContentTitle("Presentation!")
 .setSmallIcon(android.R.drawable.stat_notify_more)
 .addAction(android.R.drawable.ic_media_previous,
 getString(R.string.action_previous), buildPreviousPendingIntent())
 .addAction(android.R.drawable.ic_media_next,
 getString(R.string.action_next), buildNextPendingIntent())
 .addAction(android.R.drawable.ic_media_pause,
 getString(R.string.action_stop), buildStopPendingIntent());

 mgr.notify(1337, b.build());
 }

 private PendingIntent buildPreviousPendingIntent() {
 Intent i=new Intent(this, ControlReceiver.class).putExtra(EXTRA_DELTA, -1);

 return(PendingIntent.getBroadcast(this, PI_PREVIOUS, i, 0));
 }

 private PendingIntent buildNextPendingIntent() {
 Intent i=new Intent(this, ControlReceiver.class).putExtra(EXTRA_DELTA, 1);

 return(PendingIntent.getBroadcast(this, PI_NEXT, i, 0));
 }

 private PendingIntent buildStopPendingIntent() {
 Intent i=new Intent(this, ControlReceiver.class).putExtra(EXTRA_STOP, true);

 return(PendingIntent.getBroadcast(this, PI_STOP, i, 0));
 }

(from Presentation/MultiDisplayDetached/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
Those broadcasts go to a ControlReceiver, which is registered in the manifest
and simply forwards those broadcasts on an event bus:

package com.commonsware.android.preso.slides;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import org.greenrobot.eventbus.EventBus;

public class ControlReceiver extends BroadcastReceiver {
 static final String EXTRA_DELTA="delta";
 static final String EXTRA_STOP="orMyMomWillShoot";

 @Override
 public void onReceive(Context context, Intent intent) {
 EventBus.getDefault().post(intent);
 }
}

(from Presentation/MultiDisplayDetached/app/src/main/java/com/commonsware/android/preso/slides/ControlReceiver.java)
PresentationActivity can then listen for that event, along with the
SlidePositionEvent, using each to update the visible slide:

 @Subscribe(sticky=true, threadMode=ThreadMode.MAIN)
 public void onSlideChanged(SlidePositionEvent event) {
 position=event.position;
 updateSlide();
 }

 @Subscribe(threadMode=ThreadMode.MAIN)
 public void onBroadcast(Intent i) {
 if (i.getBooleanExtra(EXTRA_STOP, false)) {
 ((NotificationManager)getSystemService(NOTIFICATION_SERVICE)).cancelAll();
 finish();
 }
 else {
 int delta=i.getIntExtra(EXTRA_DELTA, 0);

 if (position+delta>=0 && position+delta<SlidesAdapter.SLIDES.length) {
 position+=delta;
 updateSlide();
 }
 }
 }

 private void updateSlide() {
 slide.setImageResource(SlidesAdapter.SLIDES[position]);
 }

(from Presentation/MultiDisplayDetached/app/src/main/java/com/commonsware/android/preso/slides/PresentationActivity.java)
The result is that the slides remain visible — and controllable via the
Notification — even though MainActivity is gone:
[image: Presentation Slides on Secondary Display, With Control Notification]
Advanced ConstraintLayout
The original chapter on ConstraintLayout covered some
basic uses of this container class, particularly how it can be used
in the place of classic containers like LinearLayout and RelativeLayout.
In this chapter, we will explore other features that ConstraintLayout
offers and other use cases for this container.
This chapter examines some more layouts from
the
Containers/Sampler
sample project.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, particularly the original chapter on ConstraintLayout.
Guidelines
Guidelines in graphics editors help in drawing operations. For example,
in an SVG editor like Inkscape, you can
“snap” shapes to align along a guideline. The guideline itself does not
appear in the output; it is merely something used at drawing time to aid
in drawing.
A Guideline serves a similar role with ConstraintLayout. A Guideline
is not rendered as part of our UI. It does, however, allow us to anchor
widgets inside the ConstraintLayout to the Guideline, just as we
can anchor those widgets to other widgets or to the ConstraintLayout
itself. And, as the name suggests, a Guideline is part of our GUI
builder as well, to allow you to visually place the Guideline and
connect widgets to that Guideline.
A Guideline has an orientation, such as horizontal, set via android:orientation.
horizontal means that they
span the width of the ConstraintLayout, and something else has to indicate
where they reside vertically within the ConstraintLayout.
That “something else” is the app:layout_constraintGuide_percent
attribute. For a horizontal Guideline, this indicates how far down from the start of the ConstraintLayout
the Guideline widget belongs, in terms of a fraction of the
overall height of the ConstraintLayout.
In the original chapter on ConstraintLayout, we saw how to allocate
space on a percentage basis directly using specific constraints (e.g., app:layout_constraintWidth_percent).
Here is another edition of the stacked-percentage layout, this time implemented using
Guideline widgets:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.constraint.Guideline
 android:id="@+id/guideline_50"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 app:layout_constraintGuide_percent=".50" />

 <android.support.constraint.Guideline
 android:id="@+id/guideline_80"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 app:layout_constraintGuide_percent=".80" />

 <Button
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:text="@string/fifty_percent"

 app:layout_constraintBottom_toTopOf="@id/guideline_50"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <Button
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:text="@string/thirty_percent"

 app:layout_constraintBottom_toTopOf="@id/guideline_80"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="@id/guideline_50" />

 <Button
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:text="@string/twenty_percent"

 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="@id/guideline_80" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/stacked_percent_cl_guideline.xml)
Here, we have two such Guideline widgets, each set to horizontal, and set to
appear 50% (.50) and 80% (.80) from the start.
Our three Button widgets do not specify their own heights — they use
0dp for android:layout_height. They just anchor themselves between the
ConstraintLayout bounds and the two Guideline widgets.
So, our top Button has its top edge aligned with the top edge of the
ConstraintLayout (app:layout_constraintTop_toTopOf="parent"). But
it also has its bottom anchored to the top of the .50 Guideline
(app:layout_constraintBottom_toTopOf="@id/guideline_50"). Combined
with the 0dp height, this stretches the Button between the top and
the middle of the ConstraintLayout.
The middle Button anchors itself between the two Guideline widgets,
using app:layout_constraintBottom_toTopOf="@id/guideline_80" and
app:layout_constraintTop_toTopOf="@id/guideline_50". It too stretches
to fill that gap, and so it will take up 30% of the space (between the
.50 and the .80 Guideline widgets).
Similarly, the bottom Button ties itself to the bottom of the
ConstraintLayout (app:layout_constraintBottom_toBottomOf="parent")
as well as to the .80 Guideline
(app:layout_constraintTop_toTopOf="@id/guideline_80").
The result is the 50%/30%/20% look that we achieved using LinearLayout
and that we achieved using app:layout_constraintHeight_percent with
a ConstraintLayout:

[image: Stacked-Percent Layout, Using ConstraintLayout]

Figure 432: Stacked-Percent Layout, Using ConstraintLayout
To add a guideline through the graphical layout editor, use the toolbar
button that looks like a vertical dotted line between two small solid
horizontal lines. Clicking that opens up a drop-down to choose a vertical
or a horizontal guideline, among other options:

[image: Guideline Toolbar Button, With Drop-Down]

Figure 433: Guideline Toolbar Button, With Drop-Down
Choosing one of the guideline options drops a guideline in the desired
orientation into the blueprint view, which you can then drag to the desired
location.
Barriers to Entry
When ConstraintLayout was released in its original 1.0.0 form, one of the big
gaps in its functionality was with tabular forms, such as the one that we set
up with TableLayout back in the chapter on the classic container classes:

[image: A Form UI, Using TableLayout]

Figure 434: A Form UI, Using TableLayout
We had no means of saying that the column of fields should appear after the
column of labels, as ConstraintLayout did not have anything that mapped to a table’s
“columns”.
And, with ConstraintLayout 1.1.0, we still do not have columns.
But we do have barriers, and for the purposes of this sort of form, they are
close enough:

[image: ConstraintLayout, Using Barriers to Implement Form UI]

Figure 435: ConstraintLayout, Using Barriers to Implement Form UI
Like a Guideline, a Barrier is a virtual element of a ConstraintLayout.
It is used for interpreting constraint rules as part of laying out a ConstraintLayout
and establishing all of its contents’ sizes and positions. A Guideline is
positioned based on a percentage offset from the start or top of the ConstraintLayout.
A Barrier, in contrast, is positioned based on the locations of other widgets
inside that ConstraintLayout.
Here is the ConstraintLayout used to create that form:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout android:id="@+id/tableLayout"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1">

 <TextView
 android:id="@+id/nameLabel"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginStart="16dp"
 android:layout_marginTop="31dp"
 android:text="@string/name"
 app:layout_constraintEnd_toStartOf="@+id/name"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <EditText
 android:id="@+id/name"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:inputType="text"
 app:layout_constraintBaseline_toBaselineOf="@+id/nameLabel"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/labelBarrier" />

 <TextView
 android:id="@+id/planetLabel"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginStart="16dp"
 android:text="@string/home_planet"
 app:layout_constraintBaseline_toBaselineOf="@+id/planet"
 app:layout_constraintEnd_toStartOf="@+id/planet"
 app:layout_constraintStart_toStartOf="parent" />

 <EditText
 android:id="@+id/planet"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:inputType="text"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/labelBarrier"
 app:layout_constraintTop_toBottomOf="@+id/name" />

 <CheckBox
 android:id="@+id/dev"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="11dp"
 android:text="@string/android_programmer"
 app:layout_constraintEnd_toEndOf="@+id/planet"
 app:layout_constraintStart_toEndOf="@+id/labelBarrier"
 app:layout_constraintTop_toBottomOf="@+id/planetLabel" />

 <TextView
 android:id="@+id/foodLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginStart="16dp"
 android:text="@string/favorite_food"
 app:layout_constraintBaseline_toBaselineOf="@+id/food"
 app:layout_constraintEnd_toStartOf="@+id/food"
 app:layout_constraintStart_toStartOf="parent" />

 <EditText
 android:id="@+id/food"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:inputType="text"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/labelBarrier"
 app:layout_constraintTop_toBottomOf="@+id/dev" />

 <Button
 android:id="@+id/something"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:text="@string/do_something"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/food" />

 <android.support.constraint.Barrier
 android:id="@+id/labelBarrier"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:barrierDirection="end"
 app:constraint_referenced_ids="nameLabel,planetLabel,foodLabel" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/form_cl.xml)
Most of the widgets have conventional constraints, to the edges of the
ConstraintLayout or to other widgets. However, the EditText widgets and
the CheckBox each have app:layout_constraintStart_toEndOf pointing to
labelBarrier. And, as the widget ID suggests, that is a Barrier.
The rules for using a Barrier are:

	Set the width and height each to wrap_content

	Have app:constraint_referenced_ids contain the comma-delimited list of
the base widget ID names of the widgets associated with this barrier

	Have app:barrierDirection indicate what side of those widgets determines
the location of this Barrier

In the sample layout, app:constraint_referenced_ids is set to
nameLabel,planetLabel,foodLabel. Those are the three TextView widgets
serving as our labels. Note that the @id/ or @+id/ prefix is left off
here. If you have widgets that use framework IDs (e.g., @android:id/list),
you can use them with the fully-qualified ID (i.e., with the @android:id/ part),
but they cannot appear at the front of the list.
The sample layout has app:barrierDirection="end". Hence, the Barrier will
be placed at the furthest of the end positions of the three identified
widgets. Anything with a constraint tied to this Barrier will be positioned
relative to that furthest end location.
This allows us to set up what amount to columns in a ConstraintLayout:
associate a Barrier with all of the widgets that belong to the column, setting
the app:barrierDirection value based on whether other widgets need to constrain
themselves to the start or end of the column.
You can add a barrier to your layout via the graphical layout editor, by choosing
“Add Vertical Barrier” or “Add Horizontal Barrier” from the same drop-down that
you used for adding a guideline:

[image: Guideline/Barrier Toolbar Button, With Drop-Down]

Figure 436: Guideline/Barrier Toolbar Button, With Drop-Down
However, it is not obvious how you add widgets to the list referenced in the
app:constraint_referenced_ids via the graphical layout editor.
Disclosing Your Bias
For a given axis, there are roughly three models for how you use constraints
for a given widget:

	Anchor one side of the widget to something based upon that axis
(e.g., app:layout_constraintStart_toStartOf="parent")

	Anchor both sides of the widget to something based upon that axis,
with the size on that axis (e.g., android:layout_width for the horizontal
axis) set to 0dp

	Anchor both sides of the widget to something based upon that axis,
with the size on that axis set to wrap_content or some non-zero dimension

In the first case, the widget is simply attached to the anchor point,
taking any margins into account. In the second case, the widget is stretched
between the two anchor points.
The default for the third case is for the widget to be centered within
the available space between the two anchor points, assuming that its
size on that axis is smaller than the available space. However, we can
use “bias” to slide the widget along that axis away from the center point,
so it appears closer to one end than the other.
Centering a widget within a RelativeLayout is a matter of using
android:layout_centerInParent="true":

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:text="@string/button"/>

</RelativeLayout>

(from Containers/Sampler/app/src/main/res/layout/center_rl.xml)
Centering a widget within a ConstraintLayout is more verbose, requiring
you to anchor all four sides of the widget to the four edges of the
ConstraintLayout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/center_cl.xml)
However, that verbosity also allows us to apply biases, via
app:layout_constraintHorizontal_bias and
app:layout_constraintVertical_bias:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.33"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.32999998"
 tools:layout_editor_absoluteX="98dp" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/bias_cl.xml)
The default values for the biases are 0.5, meaning that the center point
of the widget is centered evenly between the two anchor points. A bias
of less than 0.5 slides the widget towards the beginning of that axis
(towards the start size of the horizontal axis or the top of the vertical
axis). A bias of higher than 0.5 slides the widget towards the end of that axis.
So, for bias values of 0.33 along each axis, the Button is slid towards
the start and top:

[image: Bias Sample, Using ConstraintLayout]

Figure 437: Bias Sample, Using ConstraintLayout
It is impractical to replicate this using the classic container classes.
LinearLayout comes closest, using something like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:weightSum="100">

 <View
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="33" />

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="67"
 android:orientation="horizontal"
 android:weightSum="100">

 <View
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="33" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button" />
 </LinearLayout>

</LinearLayout>

(from Containers/Sampler/app/src/main/res/layout/bias_ll.xml)
Here, we use empty View widgets as spacers, along with weights to get
the proportions the way that we want. However, this puts a corner of
the Button at the appropriate location, not its center. So, compared
to the ConstraintLayout approach, the LinearLayout implementation
is a bit closer to the center:

[image: Bias Sample, Using LinearLayout]

Figure 438: Bias Sample, Using LinearLayout
ConstraintLayout biases are not limited to constraints placed against the
ConstraintLayout edges. You can apply biases based on constraints tied to
guidelines or other widgets as well:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="@+id/guideline"
 app:layout_constraintHorizontal_bias="0.1"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="@+id/guideline"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.25" />

 <android.support.constraint.Guideline
 android:id="@+id/guideline"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 app:layout_constraintGuide_percent=".50" />

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_other"
 app:layout_constraintHorizontal_bias="0.8"
 app:layout_constraintLeft_toRightOf="@+id/button3"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="@+id/button3" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/bias_peers_cl.xml)
Here we have a ConstraintLayout with two buttons. The “Button!” button has
two biases:

	A vertical bias to place it at the 25% mark from the top

	A horizontal bias to place it at the 10% mark between the screen edge and a
center Guideline

The “Other Button!” button has a horizontal bias to place it at the 80% mark
between the edge of the first button and the screen edge.
The buttons are positioned with those biases applied:

[image: Biases with Widgets, Guidelines, and Edges]

Figure 439: Biases with Widgets, Guidelines, and Edges
The configuration tool atop the Attributes pane lets you control the
bias, by adjusting the slider for the bias to apply to that particular axis:

[image: Configuration Thingy, Showing 33% Bias]

Figure 440: Configuration Thingy, Showing 33% Bias
Centering Yourself
Sometimes, we want to have one widget be centered upon another widget.
This could be in either direction: horizontal centering or vertical
centering.
The classic way to approximate this would involve you wrapping those two
widgets in a container, then use android:layout_gravity to ask
each of those widgets to center itself within the container:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="16dp"
 android:text="@string/button" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="16dp"
 android:text="@string/another_button" />

</LinearLayout>

(from Containers/Sampler/app/src/main/res/layout/center_align_ll.xml)

[image: Center Alignment, Using LinearLayout]

Figure 441: Center Alignment, Using LinearLayout
However, this approach has flaws:

	This actually centers the smaller widget on the larger one. In this
case, the bottom Button has a larger caption, and so the smaller (top)
Button is centered within the larger (bottom) Button.

	It requires that the two widgets be wrapped in a container, which
may make it more difficult for those widgets to be positioned overall
within the layout. They have to be moved in unison, rather than treated
separately (other than for the center alignment aspect). This extra
container also consumes heap size, rendering time, etc.

Using ConstraintLayout, we can just have rules that enforce the
center alignment, along with all the rest of our rules, without the
need for the additional container.
The trick is to simply have the dependent widget constrain its edges
to match the edges of the independent widget. So, if we wanted to say
that the bottom Button should be centered on the top Button, we get
this:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="16dp"
 android:text="@string/button"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="16dp"
 android:text="@string/another_button"
 app:layout_constraintEnd_toEndOf="@id/button"
 app:layout_constraintStart_toStartOf="@id/button"
 app:layout_constraintTop_toBottomOf="@id/button" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/center_align_cl.xml)
The top Button centers itself within the ConstraintLayout and anchors
itself to the top of the ConstraintLayout.
The bottom Button uses app:layout_constraintStart_toStartOf and
app:layout_constraintEnd_toEndOf to align its edges with
those of the top Button. However, its width is set to wrap_content,
so the size of the Button will not change. Instead, those rules are
treated as meaning that the bottom Button should be centered on the
top Button.
In essence, both Button widgets are doing the same thing: using
app:layout_constraintStart_toStartOf and
app:layout_constraintEnd_toEndOf to center themselves. The difference
is that the top Button is centering itself inside the ConstraintLayout,
while the bottom Button is centering itself on the top Button.

[image: Center Alignment, Using ConstraintLayout]

Figure 442: Center Alignment, Using ConstraintLayout
Assuming that we are putting the ConstraintLayout to other good uses,
managing the position and size of other widgets, we are avoiding having
a dedicated container for these two widgets. This has the potential to
be more efficient and more flexible.
Keeping Things Proportional
Occasionally, we have a widget that we want to have a particular aspect
ratio. That is relatively unusual. Perhaps the most common case is
an ImageView, where you know in advance what the aspect ratio of the
image is and you want to have the ImageView be sized to match.
ConstraintLayout offers an app:layout_constraintDimensionRatio that
can help here.
To use the dimension ratio constraint, you need to pick one axis to
have a known size (e.g., wrap_content). The other axis needs a size
of 0dp. Then, app:layout_constraintDimensionRatio will scale
the widget along the 0dp axis to match the specified aspect ratio:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="0dp"
 android:src="@drawable/freedom_tower"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintDimensionRatio="4:3"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/aspect_cl.xml)
Alternatively, you could have both axes have a size of 0dp, and use
an H, or W, prefix on the ratio to indicate which axis is the one
that should be constrained (e.g., W,4:3).
Constraining Sizes
As an expression of a width or height, wrap_content is nice. It adapts automatically
to whatever the content is. However, sometimes the content is really small or really
large, at which point wrap_content becomes a bit of a problem. Sometimes, we
can address this by abandoning wrap_content and using other sorts of
constraints. Other times, we can address this by setting minimum and maximum
sizes, so that wrap_content stays within those bounds.
How that works varies based upon what you need to limit: widgets inside of the
ConstraintLayout, or the ConstraintLayout itself.
…of Children of the ConstraintLayout
For widgets with android:layout_width of 0dp, you can use
app:layout_constraintWidth_min and app:layout_constraintWidth_max to put
boundaries as to how big or how small the actual size will be. This runs counter
to the default behavior of 0dp, which is to stretch the widget horizontally between
relevant constraints. It appears — based on some poorly-written documentation –
that this also works if you use wrap_content for the width, but you then need
to also have app:layout_constrainedWidth="true" to opt into this behavior.
There is a similar app:layout_constraintHeight_min and app:layout_constraintHeight_max
pair of attributes for constraining the height. And, as with the width, this
works for 0dp heights “out of the box”, and perhaps for wrap_content
heights if you opt in via app:layout_constrainedHeight="true"
For example, this ConstraintLayout contains two TextView children:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/first"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:ellipsize="end"
 android:text="@string/jabberwocky"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/second"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:ellipsize="end"
 android:text="@string/jabberwocky"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHeight_min="80sp"
 app:layout_constraintHeight_max="160sp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/first"
 app:layout_constraintWidth_max="160sp" />
</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/childsize_cl.xml)
Both have their text set to a passage from Lewis Carroll’s “The Jabberwocky”:

’Twas brillig, and the slithy toves, Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe.

The top widget has its height set to wrap_content and its width set to 0dp.
It also has constraints to tie it to the top, start, and end of the ConstraintLayout.
As a result, it happily occupies the space needed to show the entire text:

[image: ConstraintLayout, with Constrained Size of Second Child]

Figure 443: ConstraintLayout, with Constrained Size of Second Child
The bottom widget has its height and width both set to 0dp. It has constraints
to tie it to the start, end, and bottom of the ConstraintLayout, plus positioning
it below the top TextView. Given the 0dp width and height, you would expect
it to fill all remaining space and show the entire snippet of prose.
However, this widget also has three size constraints:

	app:layout_constraintHeight_min="80sp"

	app:layout_constraintHeight_max="160sp"

	app:layout_constraintWidth_max="160sp"

As a result, the TextView is kept within those bounds, and as a result
not all of the text can be seen. It is not clear exactly how ConstraintLayout
chooses the actual size between the minimum and maximum values though.
…of the ConstraintLayout Itself
To control the size of the ConstraintLayout itself, we can use the following attributes:

 	If This Is wrap_content…
 	…Then You Can Use

 	android:layout_width
 	
android:minWidth and android:maxWidth

 	android:layout_height
 	
android:minHeight and android:maxHeight

Each takes a dimension and works pretty much as you might expect from
the attribute names.
This layout uses all four of those:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.constraint.ConstraintLayout
 android:id="@+id/first"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:layout_marginEnd="8dp"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:maxHeight="160dp"
 android:maxWidth="160dp"
 android:minHeight="80dp"
 android:minWidth="80dp">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ellipsize="end"
 android:text="@string/jabberwocky"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
 </android.support.constraint.ConstraintLayout>
</FrameLayout>

(from Containers/Sampler/app/src/main/res/layout/size_cl.xml)
Here, the ConstraintLayout is centered within a FrameLayout. The width and
height officially are wrap_content, but the minimum and maximum for each
is set to 80dp and 160dp, respectively.
The results are somewhat unexpected:

[image: ConstraintLayout, with Constrained Size]

Figure 444: ConstraintLayout, with Constrained Size
Given that there is more text, and that the TextView itself is not limited
by android:maxLines or something, one might expect a 160dp x 160dp allocation
for the ConstraintLayout. Instead, the height is left at 80dp, for unclear reasons.
Chains, Without the Whips
Chains represent a linked series of widgets in a row or column inside of
a ConstraintLayout. You can then set up some rules for how the entire chain
should be rendered, such as how to handle whitespace between those widgets.
How Do We Set up a Chain?
A chain is an implicit structure. There is no app:chainId or similar mechanism
to identify chains.
Rather, a chain is defined any time there are 2 widgets with mutual constraints,
such as the left side of one widget being tied to the right side of the other
widget, and vice-versa.
A chain itself can be as many widgets as needed, so long as pair-wise
they have the mutual constraints. So, for example, here is a chain containing
three Button widgets:

 <Button
 android:id="@+id/button1a"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="1"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintHorizontal_chainStyle="spread"
 app:layout_constraintEnd_toStartOf="@+id/button2a"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.1" />

 <Button
 android:id="@+id/button2a"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="2"
 app:layout_constraintBaseline_toBaselineOf="@+id/button1a"
 app:layout_constraintStart_toEndOf="@+id/button1a"
 app:layout_constraintEnd_toStartOf="@+id/button3a" />

 <Button
 android:id="@+id/button3a"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="3"
 app:layout_constraintBaseline_toBaselineOf="@+id/button2a"
 app:layout_constraintStart_toEndOf="@+id/button2a"
 app:layout_constraintEnd_toEndOf="parent" />

(from Containers/Sampler/app/src/main/res/layout/chains_cl.xml)
button1a and button2a have their horizontal constraints connected to each other,
as do button2a and button3a. Hence, the three widgets represent a single chain.
Styles of Chains
Configuring a chain comes in part by adding a “chain style” attribute to the head
of the chain. The head is defined as the left-most widget in a horizontal chain
(e.g., button1a) or the top-most widget in a vertical chain.
Spread
If you do not otherwise specify on a chain, the chain style is “spread”. By
default, this means that whitespace should be allocated between the widgets
in the chain and outside the ends of the chain. And, by default, that allocation
is even, so the space between each widget in the chain is the same, and the same
amount of space appears outside the chain on either side.
That’s what we get from the chain shown above:

[image: Spread Chain]

Figure 445: Spread Chain
The chain head (button1a) has app:layout_constraintHorizontal_chainStyle="spread"
to positively declare that this chain has a spread style, though this is unnecessary,
as this is the default chain behavior.
Spread-Inside
A spread_inside chain style is similar to spread, except that there is no whitespace
added to either end of the chain. All whitespace goes between the pairs of widgets.

[image: Spread-Inside Chain]

Figure 446: Spread-Inside Chain
Packed
Conversely, a packed chain style puts all the whitespace on either end of the
chain, having the widgets directly adjacent to each other:

[image: Packed Chain]

Figure 447: Packed Chain
Chains and Biases
Spread and packed chains — ones where there is whitespace outside the chain –
respond to biases, where a bias slides the entire chain to a given side by
allocating the whitespace non-equally.
For example, here is a biased packed chain:

 <Button
 android:id="@+id/button1e"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="1"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintHorizontal_bias="0.8"
 app:layout_constraintHorizontal_chainStyle="packed"
 app:layout_constraintEnd_toStartOf="@+id/button2e"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.9" />

 <Button
 android:id="@+id/button2e"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="2"
 app:layout_constraintBaseline_toBaselineOf="@+id/button1e"
 app:layout_constraintStart_toEndOf="@+id/button1e"
 app:layout_constraintEnd_toStartOf="@+id/button3e" />

 <Button
 android:id="@+id/button3e"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="3"
 app:layout_constraintBaseline_toBaselineOf="@+id/button2e"
 app:layout_constraintStart_toEndOf="@+id/button2e"
 app:layout_constraintEnd_toEndOf="parent" />

(from Containers/Sampler/app/src/main/res/layout/chains_cl.xml)
Here, the chain head has app:layout_constraintHorizontal_bias="0.8", sliding
the entire packed chain to the right:

[image: Packed Chain with Horizontal Bias]

Figure 448: Packed Chain with Horizontal Bias
Chains and Weights
Spread and spread-inside chains — ones where there is whitespace inside the
chain — respond to weights, reminiscent of the weights used with LinearLayout.
Simply marking the widget as having a width (or height, for vertical chains)
of 0dp causes that widget to absorb the whitespace:

 <Button
 android:id="@+id/button1c"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="1"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintHorizontal_chainStyle="spread_inside"
 app:layout_constraintEnd_toStartOf="@+id/button2c"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.5" />

 <Button
 android:id="@+id/button2c"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:text="2"
 app:layout_constraintBaseline_toBaselineOf="@+id/button1c"
 app:layout_constraintStart_toEndOf="@+id/button1c"
 app:layout_constraintEnd_toStartOf="@+id/button3c" />

 <Button
 android:id="@+id/button3c"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="3"
 app:layout_constraintBaseline_toBaselineOf="@+id/button2c"
 app:layout_constraintStart_toEndOf="@+id/button2c"
 app:layout_constraintEnd_toEndOf="parent" />

(from Containers/Sampler/app/src/main/res/layout/chains_cl.xml)

[image: Spread-Inside Chain, With Middle Button Filling Space]

Figure 449: Spread-Inside Chain, With Middle Button Filling Space
If two or more widgets use 0dp this way, they will divide the space equally,
by default. Using app:layout_constraintHorizontal_weight or
app:layout_constraintVertical_weight on the affected widgets can be used to
divide the space on a weighted basis (e.g., giving one widget twice the
space of another).
Going in a Circle
Ordinary constraints work on the classic X/Y axes that dominate most of
2D UI design.
ConstraintLayout adds circular constraints, which allow you to position widgets
based on angles and radii. Most apps will have no need for this, though a few will.
For example, maybe you need something akin to a compass rose:

[image: ConstraintLayout, Showing Circular Constraints]

Figure 450: ConstraintLayout, Showing Circular Constraints
Setting up the four cardinal directions (north, south, east, west) using X/Y
axes would be trivial. Setting up the other four directions would be a bit
more complicated. And setting up widgets in other positions — such as the twelve
positions of a classic analog clock dial — would get you into some trigonometry
to work out the X/Y positions to use.
With ConstraintLayout, it is much simpler.
Each child to be constrained using circular constraints need three attributes:

	
app:layout_constraintCircle, providing the ID of the widget that is at the
center of the circle

	
app:layout_constraintCircleRadius, with a dimension indicating how far away
the widget is from that center

	
app:layout_constraintCircleAngle, with a value between 0 and 359, measuring
the angle in degrees, with 0 representing “up” or “north”

This crude compass rose has a single circle, so all of the app:layout_constraintCircle
and app:layout_constraintCircleRadius values can remain the same. The only thing
that varies is the angle:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:id="@+id/compass"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:src="@drawable/ic_location_searching_black_24dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/northeast"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compass"
 app:layout_constraintCircleAngle="45"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/east"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compass"
 app:layout_constraintCircleAngle="90"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/southeast"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compass"
 app:layout_constraintCircleAngle="135"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/south"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compass"
 app:layout_constraintCircleAngle="180"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/southwest"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compass"
 app:layout_constraintCircleAngle="225"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/west"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compass"
 app:layout_constraintCircleAngle="270"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/northwest"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compass"
 app:layout_constraintCircleAngle="315"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/north"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compass"
 app:layout_constraintCircleAngle="0"
 app:layout_constraintCircleRadius="@dimen/radius" />
</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/circle_cl.xml)
Groups of Views… But Not ViewGroups
One of the side benefits of having widgets be in a container is that you can
toggle the visibility of the container, thereby affecting the visibility of
all of those widgets. However, this only works if the contents of the container
are exactly what need to be toggled this way, with no extra widgets or widgets
that are outside of the container.
ConstraintLayout offers a Group facility that allows you to logically
group widgets together for visibility control, but does not otherwise affect
their layout rules. To do this, simply have a Group in your layout with
an app:constraint_referenced_ids attribute that lists the widgets that belong
to the group. As we saw in the section on barriers,
app:constraint_referenced_ids contains a comma-delimited list of widget names,
without the @id/ or @+id/ prefixes. If you give the Group its own ID, you
can retrieve it via findViewById() at runtime and toggle the visibility.
For example, this layout is a near-clone of the circular constraints one
from above. The difference is that the center is now an ImageButton and
a Group appears at the bottom:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageButton
 android:id="@+id/compassButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:src="@drawable/ic_location_searching_black_24dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView android:id="@+id/northeast"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/northeast"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compassButton"
 app:layout_constraintCircleAngle="45"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView android:id="@+id/east"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/east"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compassButton"
 app:layout_constraintCircleAngle="90"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView android:id="@+id/southeast"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/southeast"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compassButton"
 app:layout_constraintCircleAngle="135"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView android:id="@+id/south"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/south"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compassButton"
 app:layout_constraintCircleAngle="180"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView android:id="@+id/southwest"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/southwest"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compassButton"
 app:layout_constraintCircleAngle="225"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView android:id="@+id/west"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/west"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compassButton"
 app:layout_constraintCircleAngle="270"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView android:id="@+id/northwest"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/northwest"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compassButton"
 app:layout_constraintCircleAngle="315"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <TextView android:id="@+id/north"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/north"
 android:textAppearance="?android:attr/textAppearanceLarge"
 app:layout_constraintCircle="@id/compassButton"
 app:layout_constraintCircleAngle="0"
 app:layout_constraintCircleRadius="@dimen/radius" />

 <android.support.constraint.Group android:id="@+id/directions"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:visibility="visible"
 app:constraint_referenced_ids="north,northeast,east,southeast,south,southwest,west,northwest"/>
</android.support.constraint.ConstraintLayout>

(from Containers/Sampler/app/src/main/res/layout/group_cl.xml)
This app uses a ViewPager, with fragments for each page, with one page
per layout. As part of setting up that fragment, we check to see if there is
a compassButton widget and, if so, set up an OnClickListener (via a lambda
expression) to toggle the group visibility:

 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 View compassButton=view.findViewById(R.id.compassButton);

 if (compassButton!=null) {
 compassButton.setOnClickListener(v -> {
 View group=view.findViewById(R.id.directions);

 if (group.getVisibility()==View.VISIBLE) {
 group.setVisibility(View.GONE);
 }
 else {
 group.setVisibility(View.VISIBLE);
 }
 });
 }
 }

(from Containers/Sampler/app/src/main/java/com/commonsware/android/containers/sampler/MainActivity.java)
The result is that when the user clicks the button, the eight direction
labels either disappear or re-appear, as appropriate.
Note that there is a bug that
limits Group to VISIBLE and GONE visibility states. It does not work with
INVISIBLE.
GridLayout
In 2011, Google added GridLayout to our roster of available container classes
(a.k.a., layout managers). GridLayout is an attempt to make setting up complex
Android layouts a bit easier, particularly with an eye towards working well with
IDE graphical layout editors. In this chapter, we will examine why
GridLayout was added and how we can use it in our projects.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Issues with the Classic Containers
Most layouts are implemented using a combination of LinearLayout,
RelativeLayout, and TableLayout. Almost everything you would want to be able to create can
be accomplished using one, or sometimes more than one, of those containers.
However, there are issues with the classic containers. The two most prominent might
be the over-reliance upon nested containers and issues with drag-and-drop
GUI building capability.
Nested Containers
LinearLayout and TableLayout suffer from a tendency to put too many containers inside
of other containers. For example, implementing some sort of 2x2 grid would involve:

	A vertical LinearLayout holding onto a pair of horizontal LinearLayouts, or

	A TableLayout holding onto a pair of TableRows

On the surface, this does not seem that bad. And, in many cases, it is not that bad.
However, views and containers are relatively heavyweight items. They consume a fair bit
of heap space, and when it comes time to lay them out on the screen, they consume a
fair bit of processing power. In particular, the fact that a container can hold onto
any type of widget or container means that it is difficult to optimize common scenarios
(e.g., a 2x2 grid) for faster processing. Instead, a container treats its children
more or less as “black boxes”, requiring lots of method invocations up and down the
call stack to calculate sizes and complete the layout process.
Moreover, the call stack itself can be an issue. The stack size of the main application
thread has historically been rather small (8KB was the last reported value). If you
have a complex UI, with more than ~15 nested containers, you are likely to run into
a StackOverflowError. Android itself will contribute some of these containers,
exacerbating this problem.
RelativeLayout, by comparison, can implement some UI patterns without any nested
containers, simply by positioning widgets relative to the container’s bounds and relative
to each other.
Drag-and-Drop
Where RelativeLayout falls down is with the drag-and-drop capability of the graphical
layout editor in IDEs like Android Studio.
When you release the mouse button when dropping a widget into the preview area, the
tools need to determine what that really means in terms of layout rules.
LinearLayout works fairly well: it will either insert your widget in between two other
widgets or add it to the end of the row or column you dropped into. TableLayout
behaves similarly.
RelativeLayout, though, has a more difficult time guessing what particular combination
of rules you really mean by this particular drop target. Are you trying to attach the
widget to another widget? If so, which one? Are you trying to attach the widget to
the bounds of the RelativeLayout? While sometimes it will guess properly, sometimes
it will not, with potentially confusing results. It is reasonably likely that you
will need to tweak the layout rules manually, either via the Attributes pane or via
the raw XML.
The New Contender: GridLayout
GridLayout tries to cull the best of the capabilities of the classic containers and
drop as many of their limitations as possible.
GridLayout works a bit like TableLayout, insofar as it sets things up in a grid,
with rows and columns, where the row and column sizes are computed based upon what
is placed into those rows and columns. However, unlike TableLayout, which relies
upon a separate TableRow container to manage the rows, GridLayout takes the
RelativeLayout approach of putting rules on the individual widgets (or containers)
in the grid, where those rules steer the layout processing. For example, with
GridLayout, widgets can declare specifically which row and column they should slot
into.
GridLayout also goes a bit beyond what TableLayout offers in terms of capabilities.
Notably, it supports row spans as well as column spans, whereas TableRow only supports
a column span. This gives you greater flexibility when designing your layout to fit
the grid-style positioning rules. You can also:

	Explicitly state how many columns there are, rather than having that value be
inferred by row contents

	Allow Android to determine where to place a widget without specifying any
row or column, with it finding the next available set of grid cells capable of holding
the widget, based upon its requested row span and column span values

	Have control over orientation: whereas TableLayout always was a column of rows,
you could have a GridLayout be a row of columns, if that makes implementing the
design easier

	And so on

GridLayout and the Android Support Package
GridLayout was natively added to the Android SDK in API Level 14 (Android 4.0).
Fortunately, the Android Support package has a backport of GridLayout. However, the
backport is not in one of the JAR files, such as support-v4, as GridLayout
requires some resources. Hence, it is in an Android library project that you must add
to your project, known as gridlayout-v7.
Android Studio users can simply add a implementation 'com.android.support:gridlayout-v7:...'
statement to their top-level dependencies closure, for some version identified by
So long as those users have the Android Support Repository set up in the SDK Manager,
Gradle will be able to find and incorporate the artifact.
When using the backported GridLayout, you will need to declare another XML namespace
in your layout XML resources. That namespace will be
http://schemas.android.com/apk/res-auto. If you use an IDE to add the
GridLayout to the layout resource, it will automatically add this namespace, under
the prefix of app, such as:

<android.support.v7.widget.GridLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:columnCount="2">
</android.support.v7.widget.GridLayout>

That namespace is required for GridLayout-specific attributes. For example,
we can have a columnCount attribute, indicating how many columns the GridLayout
should contain. For the native API Level 14 GridLayout, that attribute would be
android:columnCount. For the backport, it will be app:columnCount, assuming
that you gave the namespace the prefix of app.
When citing GridLayout-specific attributes, the rest of this chapter will
use the app prefix, to clarify which attributes need that prefix for the backport.
If you are using the native API Level 14 implementation of GridLayout, and you are
manually working with the XML, just remember to use android as a prefix instead
of app.
The sample app shows both the native and the backport implementations of GridLayout:
on API Level 14+ devices/emulators it will use native implementations from res/layout-v14/,
and it will use the backport on older environments.
Our Test App
To look at a series of GridLayout-based layouts, let’s turn our attention to the
GridLayout/Sampler
sample project. This has the same ViewPager and PagerTabStrip as did the
second sample app from the chapter on ViewPager. However, rather
than use a list of 10 EditText widgets managed by fragments, in this case, our
fragments will manage layouts containing GridLayout. Each page of our pager will
contain a TrivialFragment, whose contents are based on a Sample class that is a
simple pair of a layout resource ID and a string resource ID for the fragment’s title:

package com.commonsware.android.gridlayout;

class Sample {
 int layoutId;
 int titleId;

 Sample(int layoutId, int titleId) {
 this.layoutId=layoutId;
 this.titleId=titleId;
 }
}

(from GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/Sample.java)
Our revised SampleAdapter maintains a static ArrayList of these Sample objects,
one per layout we wish to examine, and uses those values to populate our ViewPager
title:

package com.commonsware.android.gridlayout;

import android.content.Context;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;
import java.util.ArrayList;

public class SampleAdapter extends FragmentPagerAdapter {
 static ArrayList<Sample> SAMPLES=new ArrayList<Sample>();
 private Context ctxt=null;

 static {
 SAMPLES.add(new Sample(R.layout.row, R.string.row));
 SAMPLES.add(new Sample(R.layout.column, R.string.column));
 SAMPLES.add(new Sample(R.layout.table, R.string.table));
 SAMPLES.add(new Sample(R.layout.table_flex, R.string.flexible_table));
 SAMPLES.add(new Sample(R.layout.implicit, R.string.implicit));
 SAMPLES.add(new Sample(R.layout.spans, R.string.spans));
 }

 public SampleAdapter(Context ctxt, FragmentManager mgr) {
 super(mgr);
 this.ctxt=ctxt;
 }

 @Override
 public int getCount() {
 return(SAMPLES.size());
 }

 @Override
 public Fragment getItem(int position) {
 return(TrivialFragment.newInstance(getSample(position).layoutId));
 }

 @Override
 public String getPageTitle(int position) {
 return(ctxt.getString(getSample(position).titleId));
 }

 private Sample getSample(int position) {
 return(SAMPLES.get(position));
 }
}

(from GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/SampleAdapter.java)
TrivialFragment just inflates our desired layout, having received the layout resource
ID as a parameter to its factory method:

package com.commonsware.android.gridlayout;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class TrivialFragment extends Fragment {
 private static final String KEY_LAYOUT_ID="layoutId";

 static TrivialFragment newInstance(int layoutId) {
 TrivialFragment frag=new TrivialFragment();
 Bundle args=new Bundle();

 args.putInt(KEY_LAYOUT_ID, layoutId);
 frag.setArguments(args);

 return(frag);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 return(inflater.inflate(getArguments().getInt(KEY_LAYOUT_ID, -1),
 container, false));
 }
}

(from GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/TrivialFragment.java)
Note that if you load this project from the GitHub repository, you will need to update
it for your copy of the GridLayout library project.
Replacing the Classics
Let’s first examine the behavior of GridLayout by seeing how it can replace some of
the classic layouts we would get from LinearLayout and TableLayout.
Each of the following sub-sections will examine one GridLayout-based
layout XML resource, how it can be constructed, and what the result looks like when
viewed in the sample project.
Horizontal LinearLayout
The classic way to create a row of widgets is to use a horizontal LinearLayout. The
LinearLayout will put each of its children, one after the next, within the row.
The GridLayout equivalent is to specify one that has an app:columnCount equal to
the number of widgets in the row. Then, each widget will have app:layout_column
set to its specific column index (starting at 0) and app:layout_row set to 0,
as seen in res/layout/row.xml:

<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:columnCount="2">

 <Button
 app:layout_column="0"
 app:layout_row="0"
 android:text="@string/button"/>

 <Button
 app:layout_column="1"
 app:layout_row="0"
 android:text="@string/button"/>

</android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/row.xml)
Unlike LinearLayout, though, we do not specify sizes of the children, in terms
of android:layout_width and android:layout_height. GridLayout works a bit like
TableLayout in this regard, supplying default values for these attributes. In the
case of GridLayout, the defaults are wrap_content, and this cannot be overridden
(akin to the behavior of immediate children of a TableRow). Instead, you will control
size via row and column spans, as will be illustrated later in this chapter.
Given the above layout, we get:

[image: Row Using GridLayout, on a 4.0.3 Emulator]

Figure 451: Row Using GridLayout, on a 4.0.3 Emulator
Vertical LinearLayout
Similarly, the conventional way you would specify a column is to use a vertical
LinearLayout, which would position its children one after the next. The GridLayout
equivalent would be to have app:columnCount set to 1, and to place the widgets in
each required row via app:layout_row attributes, as seen in res/layout/column.xml:

<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:columnCount="1">

 <Button
 app:layout_column="0"
 app:layout_row="0"
 android:text="@string/button"/>

 <Button
 app:layout_column="0"
 app:layout_row="1"
 android:text="@string/button"/>

</android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/column.xml)

[image: Column Using GridLayout, on a 4.0.3 Emulator]

Figure 452: Column Using GridLayout, on a 4.0.3 Emulator
All that being said, it is still probably better to use LinearLayout in these cases,
rather than mess with GridLayout.
TableLayout
The big key to a TableLayout is column width, where columns expand to fill their
contents, assuming there is sufficient room in the table. GridLayout also expands its
columns to address the sizes of its contents.
For example, here is a simple 2x2 table, with TextView widgets in the left column
and EditText widgets in the right column, as seen in res/layout/table.xml:

<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:columnCount="2">

 <TextView
 app:layout_column="0"
 app:layout_row="0"
 android:text="@string/name"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

 <EditText
 app:layout_column="1"
 app:layout_row="0"
 android:inputType="textPersonName">

 <requestFocus/>
 </EditText>

 <TextView
 app:layout_column="0"
 app:layout_row="1"
 android:text="@string/address"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

 <EditText
 app:layout_column="1"
 app:layout_row="1"
 android:inputType="textPostalAddress"/>

</android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/table.xml)
However, our EditText widgets are small, because nothing is causing them to fill the
available space. To do that, we can use android:layout_gravity, to ask the GridLayout
to let the widgets fill the available horizontal space, as seen in res/layout/table_flex.xml:

<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:columnCount="2">

 <TextView
 app:layout_column="0"
 app:layout_row="0"
 android:text="@string/name"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

 <EditText
 app:layout_column="1"
 app:layout_row="0"
 app:layout_gravity="fill_horizontal"
 android:inputType="textPersonName">

 <requestFocus/>
 </EditText>

 <TextView
 app:layout_column="0"
 app:layout_row="1"
 android:text="@string/address"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

 <EditText
 app:layout_column="1"
 app:layout_row="1"
 app:layout_gravity="fill_horizontal"
 android:inputType="textPostalAddress"/>

</android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/table_flex.xml)
This allows the EditText widgets to fill the width of the column:

[image: Table Using GridLayout, on a 4.0.3 Emulator]

Figure 453: Table Using GridLayout, on a 4.0.3 Emulator
That holds true regardless of how wide that column is:

[image: Table Using GridLayout, in Landscape, on a 4.0.3 Emulator]

Figure 454: Table Using GridLayout, in Landscape, on a 4.0.3 Emulator
Implicit Rows and Columns
While all the previous samples showed the row and column of each widget being
defined explicitly via app:layout_row and app:layout_column attributes, that
is not your only option.
If you have app:columnCount on the GridLayout element itself, you can allow
GridLayout to assign rows and columns. In this respect, GridLayout behaves a bit
like a “flow layout”: it assigns widgets to cells in the first row, starting from the
first column and working its way across, wrapping to the next row when it runs out of
room. This makes for a more terse layout file, at the cost of perhaps introducing a bit
of confusion when you add or remove a widget and everything after it in the layout
file shifts location.
For example, res/layout/implicit.xml is the same as res/layout/table_flex.xml,
except that it skips the app:layout_row and app:layout_column attributes, allowing
GridLayout to assign the positions:

<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:columnCount="2"
 app:orientation="horizontal">

 <TextView
 android:text="@string/name"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

 <EditText
 app:layout_gravity="fill_horizontal"
 android:inputType="textPersonName">

 <requestFocus/>
 </EditText>

 <TextView
 android:text="@string/address"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

 <EditText
 app:layout_gravity="fill_horizontal"
 android:inputType="textPostalAddress"/>

</android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/implicit.xml)
Visually, this sample is identical to the last one:

[image: Table Using GridLayout and Implicit Positions, on a 4.0.3 Emulator]

Figure 455: Table Using GridLayout and Implicit Positions, on a 4.0.3 Emulator
The “across columns, then down rows” model holds for GridLayout in the default
orientation: horizontal. You can add an app:orientation attribute to the
GridLayout, setting it to vertical. Then, based on an app:rowCount value,
GridLayout will automatically assign positions, working down the first column, then
across to the next column when it runs out of rows.
Row and Column Spans
Like TableLayout, GridLayout supports the notion of column spans. You can use
app:layout_columnSpan to indicate how many columns a particular widget should span
in the resulting grid.
However, GridLayout also supports row spans, in the form of app:layout_rowSpan
attributes. A widget can span rows, columns, or both, as needed.
If you are using implicit positions, per the previous section, GridLayout will seek
the next available space that has sufficient rows and columns for a widget’s set of
spans.
For example, the following diagram depicts five buttons placed in a GridLayout
with various spans, and an attempt to add a sixth button that should span two columns:

[image: Span Sample (image courtesy of Android Open Source Project)]

Figure 456: Span Sample (image courtesy of Android Open Source Project)
Assuming the first five buttons were added in sequence and with implicit positioning,
GridLayout ordinarily would drop the sixth button into the fourth column of the third
row. However, there is only a one-column-wide space available there, given that the
third button intrudes into the third row. Hence, GridLayout will skip over the
smaller space and put the sixth button into the sixth column in the third row.
A GridLayout-based layout that implements the above diagram can be found in
res/layout/spans.xml:

<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:columnCount="9"
 app:orientation="horizontal"
 app:rowCount="5">

 <Button
 app:layout_gravity="fill"
 app:layout_columnSpan="2"
 app:layout_rowSpan="2"
 android:text="@string/string_1"/>

 <Button
 app:layout_gravity="fill_horizontal"
 app:layout_columnSpan="2"
 android:text="@string/string_2"/>

 <Button
 app:layout_gravity="fill_vertical"
 app:layout_rowSpan="4"
 android:text="@string/string_3"/>

 <Button
 app:layout_gravity="fill"
 app:layout_columnSpan="3"
 app:layout_rowSpan="2"
 android:text="@string/string_4"/>

 <Button
 app:layout_gravity="fill_horizontal"
 app:layout_columnSpan="3"
 android:text="@string/string_5"/>

 <Button
 app:layout_gravity="fill_horizontal"
 app:layout_columnSpan="2"
 android:text="@string/string_6"/>

 <android.support.v7.widget.Space
 android:layout_width="36dp"
 app:layout_column="0"
 app:layout_row="4"/>

 <android.support.v7.widget.Space
 android:layout_width="36dp"
 app:layout_column="1"
 app:layout_row="4"/>

 <android.support.v7.widget.Space
 android:layout_width="36dp"
 app:layout_column="2"
 app:layout_row="4"/>

 <android.support.v7.widget.Space
 android:layout_width="36dp"
 app:layout_column="3"
 app:layout_row="4"/>

 <android.support.v7.widget.Space
 android:layout_width="36dp"
 app:layout_column="4"
 app:layout_row="4"/>

 <android.support.v7.widget.Space
 android:layout_width="36dp"
 app:layout_column="5"
 app:layout_row="4"/>

 <android.support.v7.widget.Space
 android:layout_width="36dp"
 app:layout_column="6"
 app:layout_row="4"/>

 <android.support.v7.widget.Space
 android:layout_width="36dp"
 app:layout_column="7"
 app:layout_row="4"/>

 <android.support.v7.widget.Space
 android:layout_height="36dp"
 app:layout_column="8"
 app:layout_row="0"/>

 <android.support.v7.widget.Space
 android:layout_height="36dp"
 app:layout_column="8"
 app:layout_row="1"/>

 <android.support.v7.widget.Space
 android:layout_height="36dp"
 app:layout_column="8"
 app:layout_row="2"/>

 <android.support.v7.widget.Space
 android:layout_height="36dp"
 app:layout_column="8"
 app:layout_row="3"/>

 <android.support.v7.widget.Space
 android:layout_height="36dp"
 app:layout_column="8"
 app:layout_row="4"/>

</android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/spans.xml)
This layout shows one of the limitations of GridLayout: its columns and rows will
have a size of 0 by default. Hence, to ensure that each row and column has a minimum
size, this layout uses Space elements (in an eighth column and fifth row) to establish
those minimums. This makes the layout file fairly verbose, but it gives the desired
results:

[image: GridLayout Spans, on a 4.0.3 Emulator]

Figure 457: GridLayout Spans, on a 4.0.3 Emulator
However, the fixed-sized Space elements break the fluidity of the layout:

[image: GridLayout Spans, in Landscape, on a 4.0.3 Emulator]

Figure 458: GridLayout Spans, in Landscape, on a 4.0.3 Emulator
Perhaps someday someone will create a PercentSpace widget, occupying a percentage
of the parent’s size, that could be used instead.
The author would like to give thanks to
those on Stack Overflow who assisted in getting the span layout to work.
Dialogs and DialogFragments
Generally speaking, modal dialogs are considered to offer poor UX, particularly
on mobile devices. You want to give the user more choices, not fewer, and so
locking them into “deal with this dialog right now, or else” is not especially
friendly. That being said, from time to time, there will be cases where that
sort of modal interface is necessary, and to help with that, Android does
have a dialog framework that you can use.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
DatePickerDialog and TimePickerDialog
Android has a pair of built-in dialogs that handle the common operations of allowing
the user to select a date (DatePickerDialog) or a time (TimePickerDialog).
These are simply dialog wrappers around the DatePicker
and TimePicker widgets, as
are described in this book’s Widget Catalog.
The DatePickerDialog allows you to set the starting date for
the selection, in the form of a year, month, and day of month value. Note
that the month runs from 0 for January through 11 for December. Most
importantly, both let you provide a callback object (OnDateChangedListener
or OnDateSetListener) where you are informed of a new date selected by the
user. It is up to you to store that date someplace, particularly if you are
using the dialog, since there is no other way for you to get at the chosen
date later on.
Similarly, TimePickerDialog lets you:

	Set the initial time the user can adjust, in the form of an hour (0
through 23) and a minute (0 through 59)

	Indicate if the selection should be in 12-hour mode with an AM/PM
toggle, or in 24-hour mode (what in the US is thought of as
“military time” and what in much of the rest of the world is thought of as
“the way times are supposed to be”)

	Provide a callback object (OnTimeChangedListener or
OnTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

For example, from the
Dialogs/Chrono
sample project, here’s a trivial layout
containing a label and two buttons — the buttons will pop up the dialog
flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <TextView android:id="@+id/dateAndTime"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <Button android:id="@+id/dateBtn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Set the Date"
 android:onClick="chooseDate"
 />
 <Button android:id="@+id/timeBtn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Set the Time"
 android:onClick="chooseTime"
 />
</LinearLayout>

(from Dialogs/Chrono/app/src/main/res/layout/main.xml)
The more interesting stuff comes in the Java source:

package com.commonsware.android.chrono;

import android.app.Activity;
import android.app.DatePickerDialog;
import android.app.TimePickerDialog;
import android.os.Bundle;
import android.text.format.DateUtils;
import android.view.View;
import android.widget.DatePicker;
import android.widget.TextView;
import android.widget.TimePicker;
import java.util.Calendar;

public class ChronoDemo extends Activity {
 TextView dateAndTimeLabel;
 Calendar dateAndTime=Calendar.getInstance();

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

 updateLabel();
 }

 public void chooseDate(View v) {
 new DatePickerDialog(this, d,
 dateAndTime.get(Calendar.YEAR),
 dateAndTime.get(Calendar.MONTH),
 dateAndTime.get(Calendar.DAY_OF_MONTH))
 .show();
 }

 public void chooseTime(View v) {
 new TimePickerDialog(this, t,
 dateAndTime.get(Calendar.HOUR_OF_DAY),
 dateAndTime.get(Calendar.MINUTE),
 true)
 .show();
 }

 private void updateLabel() {
 dateAndTimeLabel
 .setText(DateUtils
 .formatDateTime(this,
 dateAndTime.getTimeInMillis(),
 DateUtils.FORMAT_SHOW_DATE|DateUtils.FORMAT_SHOW_TIME));
 }

 DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener() {
 public void onDateSet(DatePicker view, int year, int monthOfYear,
 int dayOfMonth) {
 dateAndTime.set(Calendar.YEAR, year);
 dateAndTime.set(Calendar.MONTH, monthOfYear);
 dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
 updateLabel();
 }
 };

 TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener() {
 public void onTimeSet(TimePicker view, int hourOfDay,
 int minute) {
 dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
 dateAndTime.set(Calendar.MINUTE, minute);
 updateLabel();
 }
 };
}

(from Dialogs/Chrono/app/src/main/java/com/commonsware/android/chrono/ChronoDemo.java)
The “model” for this activity is just a Calendar instance, initially set to be the
current date and time. In the updateLabel() method, we take the current
Calendar, format it using DateUtils and formatDateTime(), and put it in the
TextView. The nice thing about using Android’s DateUtils class is that it will
format dates and times using the user’s choice of date formatting,
determined through the Settings application.
Each button has a corresponding method that will get control when the
user clicks it (chooseDate() and chooseTime()). When the button is clicked,
either a DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it an OnDateSetListener callback that updates the
Calendar with the new date (year, month, day of month). We also give the
dialog the last-selected date, getting the values out of the Calendar. In the
case of the TimePickerDialog, it gets an OnTimeSetListener callback to update
the time portion of the Calendar, the last-selected time, and a true
indicating we want 24-hour mode on the time selector
With all this wired together, the resulting activity looks like this:

[image: ChronoDemo, As Initially Launched, on Android 7.1]

Figure 459: ChronoDemo, As Initially Launched, on Android 7.1

[image: ChronoDemo, Showing DatePickerDialog]

Figure 460: ChronoDemo, Showing DatePickerDialog

[image: ChronoDemo, Showing TimePickerDialog]

Figure 461: ChronoDemo, Showing TimePickerDialog
Changes and Bugs
Android 4.1 through 4.4 have some changes in behavior from what came before
and what came after.
First, the “Cancel” button was removed, unless you specifically add a negative
button listener to the underlying DatePicker or TimePicker widget:

[image: ChronoDemo, Showing DatePickerDialog, on Android 4.1]

Figure 462: ChronoDemo, Showing DatePickerDialog, on Android 4.1
The user can press BACK to exit the dialog, so all functionality is still there,
but you may need to craft your documentation to accommodate this difference.
And, on Android 5.0+, the Cancel button returned.
Second, your OnDateSetListener or OnTimeSetListener will be called an extra time.
If the user presses BACK to leave the dialog, your onDateSet() or onTimeSet()
will be called. If the user clicks the positive button of the dialog, you are
called twice. There is a workaround
documented on Stack Overflow.
This too was repaired in Android 5.0.
AlertDialog
For your own custom dialogs, you could extend the Dialog base class, as do
DatePickerDialog and TimePickerDialog. More commonly, though, developers
create custom dialogs via AlertDialog, in large part due to the existence
of AlertDialog.Builder. This builder class allows you to construct a custom
dialog using a single (albeit long) Java statement, rather than having to create
your own custom subclass. Builder offers a series of methods to
configure an AlertDialog, each method returning the Builder for easy
chaining.
Commonly-used configuration methods on Builder include:

	
setMessage() if you want the “body” of the dialog to be a simple
textual message, from either a supplied String or a supplied string
resource ID.

	
setTitle() and setIcon(), to configure the text and/or icon to
appear in the title bar of the dialog box.

	
setPositiveButton(), setNeutralButton(), and setNegativeButton(),
to indicate which button(s) should appear across the bottom of the
dialog, where they should be positioned (left, center, or right,
respectively), what their captions should be, and what logic should
be invoked when the button is clicked (besides dismissing the
dialog).

Calling create() on the Builder will give you the AlertDialog, built according
to your specifications. You can use additional methods on AlertDialog itself to
perhaps configure things beyond what Builder happens to support.
Note, though, that calling create() does not actually display the dialog.
The modern way to display the dialog is to tie it to a DialogFragment, as will
be discussed in the next section.
DialogFragments
One challenge with dialogs comes with configuration changes, notably screen rotations.
If they pivot the device from portrait to landscape (or vice versa), presumably the
dialog should remain on the screen after the change. However, since Android wants
to destroy and recreate the activity, that would have dire impacts on your dialog.
Pre-fragments, Android had a “managed dialog” facility that would attempt to help
with this. However, with the introduction of fragments came the DialogFragment,
which handles the configuration change process.
You have two ways of supplying the dialog to the DialogFragment:

	You can override onCreateDialog() and return a Dialog, such as
AlertDialog created via an AlertDialog.Builder

	You can override onCreateView(), as you would with an ordinary fragment,
and the View that you return will be placed inside of a dialog

The
Dialogs/DialogFragment
sample project demonstrates the use of a DialogFragment in conjunction with
an AlertDialog in this fashion.
Here is our DialogFragment, named SampleDialogFragment:

package com.commonsware.android.dlgfrag;

import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;
import android.util.Log;
import android.view.View;
import android.widget.EditText;
import android.widget.Toast;

public class SampleDialogFragment extends DialogFragment implements
 DialogInterface.OnClickListener {
 private View form=null;

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 form=
 getActivity().getLayoutInflater()
 .inflate(R.layout.dialog, null);

 AlertDialog.Builder builder=new AlertDialog.Builder(getActivity());

 return(builder.setTitle(R.string.dlg_title).setView(form)
 .setPositiveButton(android.R.string.ok, this)
 .setNegativeButton(android.R.string.cancel, null).create());
 }

 @Override
 public void onClick(DialogInterface dialog, int which) {
 String template=getActivity().getString(R.string.toast);
 EditText name=(EditText)form.findViewById(R.id.title);
 EditText value=(EditText)form.findViewById(R.id.value);
 String msg=
 String.format(template, name.getText().toString(),
 value.getText().toString());

 Toast.makeText(getActivity(), msg, Toast.LENGTH_LONG).show();
 }

 @Override
 public void onDismiss(DialogInterface unused) {
 super.onDismiss(unused);

 Log.d(getClass().getSimpleName(), "Goodbye!");
 }

 @Override
 public void onCancel(DialogInterface unused) {
 super.onCancel(unused);

 Toast.makeText(getActivity(), R.string.back, Toast.LENGTH_LONG).show();
 }
}

(from Dialogs/DialogFragment/app/src/main/java/com/commonsware/android/dlgfrag/SampleDialogFragment.java)
In onCreateDialog(), we inflate a custom layout (R.layout.dialog) that consists
of some TextView labels and EditText fields:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:orientation="horizontal">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/display_name"/>

 <EditText
 android:id="@+id/title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="text"/>
 </LinearLayout>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:orientation="horizontal">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/value"/>

 <EditText
 android:id="@+id/value"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="number"/>
 </LinearLayout>

</LinearLayout>

(from Dialogs/DialogFragment/app/src/main/res/layout/dialog.xml)
We then create an instance of AlertDialog.Builder, then start configuring the
dialog by calling a series of methods on the Builder:

	
setTitle() to supply the text to appear in the title bar of the dialog

	
setView() to define the contents of the dialog, in the form of our inflated View

	
setPositiveButton() to define the caption of one button (set here to the
Android-supplied “OK” string resource) and to arrange to get control when that button is clicked
(via this as the second parameter and our activity implementing
DialogInterface.OnClickListener)

	
setNegativeButton() to define the caption of the other button (set here to the
Android-supplied “Cancel” resource)

We do not supply a listener to setNegativeButton(), because we do not need one in
this case. Whenever the user clicks on any of the buttons, the dialog will be
dismissed automatically. Hence, you only need a listener if you intend to do something
special beyond dismissing the dialog when a button is clicked.
At that point, we call create() to construct the actual AlertDialog instance
and hand that back to Android.
If the user taps our positive button, we are called with onClick() and can collect
information from our form and do something with it, in this case displaying a Toast.
We also override:

	
onCancel(), which is called if the user presses the BACK button to exit the
dialog

	
onDismiss(), which is called whenever the dialog goes away for any reason
(BACK or a button click)

Our activity (MainActivity), has a big button tied to a showMe() method,
which calls show() on a newly-created instance of our SampleDialogFragment:

 public void showMe(View v) {
 new SampleDialogFragment().show(getSupportFragmentManager(), "sample");
 }

(from Dialogs/DialogFragment/app/src/main/java/com/commonsware/android/dlgfrag/MainActivity.java)
The second parameter to show() is a tag that can be used to retrieve this
fragment again later from the FragmentManager via findFragmentByTag().
When you click the big button in the activity, our dialog is displayed:

[image: SampleDialogFragment, As Initially Launched, on Android 4.0.3]

Figure 463: SampleDialogFragment, As Initially Launched, on Android 4.0.3
Android will handle the configuration change, and so long as our dialog uses
typical widgets like EditText, the standard configuration change logic will
carry our data forward from the old activity’s dialog to the new activity’s dialog.
DialogFragment: The Other Flavor
If you do not override onCreateDialog(), Android will assume that you want
the View returned by onCreateView() to be poured into an ordinary Dialog,
which DialogFragment will create for you automatically.
One advantage of this approach is that you can selectively show the fragment
as a dialog or show it as a regular fragment as part of your main UI.
To show the fragment as a dialog, use the same show() technique as was outlined
in the previous section. To display the fragment as part of the main UI,
use a FragmentTransaction to add() it, the way you would for any other
dynamic fragment.
This is one alternative to the normal fragment approach of having dedicated
activities for each fragment on smaller screen sizes.
We will also see this approach used when we try to apply fragments to display
content on a secondary screen using Android 4.2’s Presentation class,
covered elsewhere in this book.
Dialogs: Modal, Not Blocking
Dialogs in Android are modal in terms of UI. The user cannot proceed in your
activity until they complete or dismiss the dialog.
Dialogs in Android are not blocking in terms of the programming model. When you
call show() to display a dialog — either directly or by means of adding a
DialogFragment to the screen — this is not a blocking call. The dialog will
be displayed sometime after the call to show(), asynchronously. You use callbacks,
such as the button event listeners, to find out about events going on with respect
to the dialog that you care about.
This runs counter to a couple of GUI toolkits, where displaying the dialog blocks
the thread that does the displaying. In those toolkits, the call to show() would
not return until the dialog had been displayed and dealt with by the user.
That being said, most modern GUI toolkits take the approach Android does and have
dialogs be non-blocking. Some developers try to figure out some way of hacking a
blocking approach on top of Android’s non-blocking dialogs — their time would be
far better spent learning modern event-driven programming.
Advanced ListViews
The humble ListView is the backbone of many an Android application. On phone-sized
screens, the screen may be dominated by a single ListView, to allow the user to choose
something to examine in more detail (e.g., pick a contact). On larger screens, the
ListView may be shown side-by-side with the details of the selected item, to minimize
the “pogo stick” effect seen on phones as users bounce back and forth between the list
and the details.
While we have covered the basics of ListView in the core chapters of this book,
there is a lot more that you can do if you so choose, to make your lists that much
more interesting — this chapter will cover some of these techniques.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly
the one on Adapter and AdapterView.
Multiple Row Types, and Self Inflation
When we originally looked at ListView, we had all of our rows come from a common
layout. Hence, while the data in each row would vary, the row structure itself would
be consistent for all rows. This is very easy to set up, but it is not always what
you want. Sometimes, you want a mix of row structures, such as header rows versus
detail rows, or detail rows that vary a bit in structure based on the data:

[image: ListView with Row Structure Mix (image courtesy of Google)]

Figure 464: ListView with Row Structure Mix (image courtesy of Google)
Here, we see some header rows (e.g., “SINGLE LINE LIST”) along with detail rows.
While the detail rows visually vary a bit, they might still be all inflated from
the same layout, simply making some pieces (second line of text, thumbnail, etc.)
visible or invisible as needed. However, the header rows are sufficiently visually
distinct that they really ought to come from separate layouts.
The good news is that Android supports multiple row types. However, this comes
at a cost: you will need to handle the row creation yourself, rather than chaining
to the superclass.
Our sample project,
Selection/HeaderDetailList
will demonstrate this, along with showing how you can create your own custom adapter
straight from BaseAdapter, for data models that do not quite line up with what
Android supports natively.
Our Data Model and Planned UI
The HeaderDetailList project is based on the ViewHolderDemo project
from the chapter on ListView. However, this time, we have our list
of 25 Latin words broken down into five groups of five, as seen in the HeaderDetailList activity:

 private static final String[][] items= {
 { "lorem", "ipsum", "dolor", "sit", "amet" },
 { "consectetuer", "adipiscing", "elit", "morbi", "vel" },
 { "ligula", "vitae", "arcu", "aliquet", "mollis" },
 { "etiam", "vel", "erat", "placerat", "ante" },
 { "porttitor", "sodales", "pellentesque", "augue", "purus" } };

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)
We want to display a header row for each batch:

[image: HeaderDetailList, on Android 4.0.3]

Figure 465: HeaderDetailList, on Android 4.0.3
The Basic BaseAdapter
Once again, we have a custom ListAdapter named IconicAdapter. However, this time,
instead of inheriting from ArrayAdapter, or even CursorAdapter, we are inheriting
from BaseAdapter. As the name suggests, BaseAdapter is a basic implementation of
the ListAdapter interface, with stock implementations of many of the ListAdapter
methods. However, BaseAdapter is abstract, and so there are a few methods that
we need to implement:

	
getCount() returns the total number of rows that would be in the list. In our
case, we total up the sizes of each of the batches, plus add one for each batch for
our header rows:

 @Override
 public int getCount() {
 int count=0;

 for (String[] batch : items) {
 count+=1 + batch.length;
 }

 return(count);
 }

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

	
getItem() needs to return the data model for a given position, passed in as
the typical int index. An ArrayAdapter would return the value out of the array
at that index; a CursorAdapter would return the Cursor positioned at that
row. In our case, we will return one of two objects: either the String for rows
that are to display a Latin word, or an Integer containing our batch’s index for
rows that are to be a header:

 @Override
 public Object getItem(int position) {
 int offset=position;
 int batchIndex=0;

 for (String[] batch : items) {
 if (offset == 0) {
 return(Integer.valueOf(batchIndex));
 }

 offset--;

 if (offset < batch.length) {
 return(batch[offset]);
 }

 offset-=batch.length;
 batchIndex++;
 }

 throw new IllegalArgumentException("Invalid position: "
 + String.valueOf(position));
 }

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

	
getItemId() needs to return a unique long value for a given position. A
CursorAdapter would find the _id value in the Cursor for that position and return
it. In our case, lacking anything else, we simply return the position itself:

 @Override
 public long getItemId(int position) {
 return(position);
 }

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

	
getView(), which returns the View to use for a given row. This is the method
that we overrode on our IconicAdapter in some previous incarnations to tailor the
way the rows were populated. Our getView() implementation will be a bit more complex
in this case, due to our multiple-row-type requirement, so we will examine it a bit
later in this section.

Requesting Multiple Row Types
The methods listed above are the abstract ones that you have no choice but to
implement yourself. Anything else on the ListAdapter interface that you wish to
override you can, to replace the stub implementation supplied by BaseAdapter.
If you wish to have more than one type of row, there are two such methods that
you will wish to override:

	
getViewTypeCount() needs to return the number of distinct row types you will
use. In our case, there are just two:

 @Override
 public int getViewTypeCount() {
 return(2);
 }

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

	
getItemViewType() needs to return a value from 0 to getViewTypeCount()-1,
indicating the index of the particular row type to use for a particular row position.
In our case, we need to return different values for headers (0) and detail rows
(1). To determine which is which, we use getItem() — if we get an Integer
back, we need to use a header row for that position:

 @Override
 public int getItemViewType(int position) {
 if (getItem(position) instanceof Integer) {
 return(0);
 }

 return(1);
 }

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)
The reason for supplying this information is for row recycling. The View that is
passed into getView() is either null or a row that we had previously created that
has scrolled off the screen. By passing us this now-unused View, Android is asking
us to reuse it if possible. By specifying the row type for each position, Android
will ensure that it hands us the right type of row for recycling — we will not be
passed in a header row to recycle when we need to be returning a detail row, for
example.
Creating and Recycling the Rows
Our getView() implementation, then, needs to have two key enhancements over previous
versions:

	We need to create the rows ourselves, particularly using the appropriate layout for
the required row type (header or detail)

	We need to recycle the rows when they are provided, as this has a major impact
on the scrolling speed of our ListView

To help simplify the logic, we will have getView() focus on the detail rows,
with a separate getHeaderView() to create/recycle and populate the header rows.
Our getView() determines up front whether the row required is a header and, if so,
delegates the work to getHeaderView():

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 if (getItemViewType(position) == 0) {
 return(getHeaderView(position, convertView, parent));
 }

 View row=convertView;

 if (row == null) {
 row=getLayoutInflater().inflate(R.layout.row, parent, false);
 }

 ViewHolder holder=(ViewHolder)row.getTag();

 if (holder == null) {
 holder=new ViewHolder(row);
 row.setTag(holder);
 }

 String word=(String)getItem(position);

 if (word.length() > 4) {
 holder.icon.setImageResource(R.drawable.delete);
 }
 else {
 holder.icon.setImageResource(R.drawable.ok);
 }

 holder.label.setText(word);
 holder.size.setText(String.format(getString(R.string.size_template),
 word.length()));

 return(row);
 }

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)
Assuming that we are to create a detail row, we then check to see if we were passed
in a non-null View. If we were passed in null, we cannot recycle that row, so we
have to inflate a new one via a call to inflate() on a LayoutInflater we get via
getLayoutInflater(). But, if we were passed in an actual View to recycle, we can
skip this step.
From here, the getView() implementation is largely the way it was before, including
dealing with the ViewHolder. The only change of significance is that we have to manage
the label TextView ourselves — before, we chained to the superclass and let
ArrayAdapter handle that. So our ViewHolder now has a label data member with our
label TextView, and we fill it in along with the size and icon. Also, we use
getItem() to retrieve our Latin word, so it can find the right word for the given
position out of our various word batches.
Our getHeaderView() does much the same thing, except it uses getItem() to retrieve
our batch index, and we use that for constructing our header:

 private View getHeaderView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row == null) {
 row=getLayoutInflater().inflate(R.layout.header, parent, false);
 }

 Integer batchIndex=(Integer)getItem(position);
 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(String.format(getString(R.string.batch),
 1 + batchIndex.intValue()));

 return(row);
 }

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)
Choice Modes and the Activated Style
Sometimes, our ListView is alongside other content, such as in the “master-detail”
UI pattern:

[image: Master-Detail UI Pattern]

Figure 466: Master-Detail UI Pattern
In that case, the ListView should have a durable indication of what the user
last clicked on, since the detail widgets will contain details of that particular
item. A typical approach for this is to use the “activated” style for ListView
rows. In the chapter on styles, we saw an example of an “activated” style
that referred to a device-specific color to use for an activated background.
With ListView, you can show a selection by marking the selected row as “activated”,
so its style-specified “activated” background shows up.
Hence, the recipe for using activated notation for a ListView adjacent to details
on the last-clicked-upon ListView row is:

	Use CHOICE_MODE_SINGLE (or android:choiceMode="singleChoice") on the
ListView.

	Have a style resource, in res/values-v11/, that references the device-specific
activated background:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated" parent="android:Theme.Holo">
 <item name="android:background">?android:attr/activatedBackgroundIndicator</item>
 </style>
</resources>

	Have the same style resource also defined in res/values if you are supporting
pre-Honeycomb devices, where you skip the parent and the background color override,
as neither of those specific values existed before API Level 11:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="activated">
 </style>
</resources>

	Use that style as the background of your ListView row (e.g., style="@style/activated")

Android will automatically color the row background based upon the last row clicked,
instead of checking a RadioButton as you might ordinarily see with CHOICE_MODE_SINGLE
lists.
Custom Mutable Row Contents
Lists with pretty icons next to them are all fine and well. But, can we create
ListView widgets whose rows contain interactive child widgets instead of
just passive widgets like TextView and ImageView? For example, there is a
RatingBar widget that allows users to assign a rating by clicking on a set of
star icons. Could we combine the RatingBar with text in order to allow
people to scroll a list of, say, songs and rate them right inside the list?
There is good news and bad news.
The good news is that interactive widgets in rows work just fine. The bad
news is that it is a little tricky, specifically when it comes to taking action
when the interactive widget’s state changes (e.g., a value is typed into a
field). We need to store that state somewhere, since our RatingBar widget
will be recycled when the ListView is scrolled. We need to be able to set the
RatingBar state based upon the actual word we are viewing as the RatingBar
is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.
What makes this interesting is that, by default, the RatingBar has absolutely
no idea what item in the ArrayAdapter it represents. After all, the RatingBar
is just a widget, used in a row of a ListView. We need to teach the rows
which item in the ArrayAdapter they are currently displaying, so when their
RatingBar is checked, they know which item’s state to modify.
So, let’s see how this is done, using the activity in the
Selection/RateList
sample project. We will use the same basic classes as in most of our ListView
samples, where we are showing a list of Latin words. In this case,
you can rate the words on a three-star rating. Words given a top rating are put in all caps:

package com.commonsware.android.ratelist;

import android.app.ListActivity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.LinearLayout;
import android.widget.RatingBar;
import android.widget.TextView;
import java.util.ArrayList;

public class RateListDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 ArrayList<RowModel> list=new ArrayList<RowModel>();

 for (String s : items) {
 list.add(new RowModel(s));
 }

 setListAdapter(new RatingAdapter(list));
 }

 private RowModel getModel(int position) {
 return(((RatingAdapter)getListAdapter()).getItem(position));
 }

 class RatingAdapter extends ArrayAdapter<RowModel> {
 RatingAdapter(ArrayList<RowModel> list) {
 super(RateListDemo.this, R.layout.row, R.id.label, list);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 RatingBar bar=(RatingBar)row.getTag();

 if (bar==null) {
 bar=(RatingBar)row.findViewById(R.id.rate);
 row.setTag(bar);

 RatingBar.OnRatingBarChangeListener l=
 new RatingBar.OnRatingBarChangeListener() {
 public void onRatingChanged(RatingBar ratingBar,
 float rating,
 boolean fromTouch) {
 Integer myPosition=(Integer)ratingBar.getTag();
 RowModel model=getModel(myPosition);

 model.rating=rating;

 LinearLayout parent=(LinearLayout)ratingBar.getParent();
 TextView label=(TextView)parent.findViewById(R.id.label);

 label.setText(model.toString());
 }
 };

 bar.setOnRatingBarChangeListener(l);
 }

 RowModel model=getModel(position);

 bar.setTag(Integer.valueOf(position));
 bar.setRating(model.rating);

 return(row);
 }
 }

 class RowModel {
 String label;
 float rating=2.0f;

 RowModel(String label) {
 this.label=label;
 }

 public String toString() {
 if (rating>=3.0) {
 return(label.toUpperCase());
 }

 return(label);
 }
 }
}

(from Selection/RateList/app/src/main/java/com/commonsware/android/ratelist/RateListDemo.java)
Here is what is different in this activity and getView() implementation than
in earlier, simpler samples:

	While we are still using String array items as the list of Latin words,
rather than pour that String array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model:
it holds the Latin word plus the current rating. In a real
system, these might be objects populated from a database, and the
properties would have more business meaning.

	Utility methods like onListItemClick() had to be updated to reflect
the change from a pure-String model to use a RowModel.

	The ArrayAdapter subclass (RatingAdapter), in getView(), lets
ArrayAdapter inflate and recycle the row, then checks to see if we
have a ViewHolder in the row’s tag. If not, we create a new ViewHolder
and associate it with the row. For the row’s RatingBar, we add an
anonymous onRatingChanged() listener that looks at the row’s tag
(getTag()) and converts that into an Integer, representing the
position within the ArrayAdapter that this row is displaying. Using
that, the rating bar can get the actual RowModel for the row and
update the model based upon the new state of the rating bar. It also
updates the text adjacent to the RatingBar when checked to match
the rating bar state.

	We always make sure that the RatingBar has the proper contents
and has a tag (via setTag()) pointing to the position in the adapter
the row is displaying.

The row layout is very simple: just a RatingBar and a TextView inside a
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
>
 <RatingBar
 android:id="@+id/rate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="3"
 android:stepSize="1"
 android:rating="2" />
 <TextView
 android:id="@+id/label"
 android:padding="2dip"
 android:textSize="18sp"
 android:layout_gravity="left|center_vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

(from Selection/RateList/app/src/main/res/layout/row.xml)
And the result is what you would expect, visually:

[image: RateList, As Initially Shown]

Figure 467: RateList, As Initially Shown
This includes the toggled rating bars turning their words into all caps:

[image: RateList, With a Three-Star Word]

Figure 468: RateList, With a Three-Star Word
From Head To Toe
Perhaps you do not need section headers scattered throughout your
list. If you only need extra “fake rows” at the beginning or end of
your list, you can use header and footer views.
ListView supports addHeaderView() and addFooterView() methods
that allow you to add View objects to the beginning and end of the
list, respectively. These View objects otherwise behave like
regular rows, in that they are part of the scrolled area and will
scroll off the screen if the list is long enough. If you want fixed
headers or footers, rather than put them in the ListView itself,
put them outside the ListView, perhaps using a LinearLayout.
To demonstrate header and footer views, take a peek at the
Selection/HeaderFooter
sample project, particularly the HeaderFooterDemo class:

package com.commonsware.android.header;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import android.app.ListActivity;
import android.os.Bundle;
import android.os.SystemClock;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.TextView;

public class HeaderFooterDemo extends ListActivity {
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 private long startTime=SystemClock.uptimeMillis();
 private boolean areWeDeadYet=false;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 getListView().addHeaderView(buildHeader());
 getListView().addFooterView(buildFooter());
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 areWeDeadYet=true;
 }

 private View buildHeader() {
 Button btn=new Button(this);

 btn.setText("Randomize!");
 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 List<String> list=Arrays.asList(items);

 Collections.shuffle(list);

 setListAdapter(new ArrayAdapter<String>(HeaderFooterDemo.this,
 android.R.layout.simple_list_item_1,
 list));
 }
 });

 return(btn);
 }

 private View buildFooter() {
 TextView txt=new TextView(this);

 updateFooter(txt);

 return(txt);
 }

 private void updateFooter(final TextView txt) {
 long runtime=(SystemClock.uptimeMillis()-startTime)/1000;

 txt.setText(String.valueOf(runtime)+" seconds since activity launched");

 if (!areWeDeadYet) {
 getListView().postDelayed(new Runnable() {
 public void run() {
 updateFooter(txt);
 }
 }, 1000);
 }
 }
}

(from Selection/HeaderFooter/app/src/main/java/com/commonsware/android/header/HeaderFooterDemo.java)
Here, we add a header View built via buildHeader(), returning a
Button that, when clicked, will shuffle the contents of the list.
We also add a footer View built via buildFooter(), returning a
TextView that shows how long the activity has been running, updated
every second. The list itself is the ever-popular list of lorem ipsum words.
When initially displayed, the header is visible but the footer is
not, because the list is too long:

[image: A ListView with a header view shown]

Figure 469: A ListView with a header view shown
If you scroll downward, the header will slide off the top, and
eventually the footer will scroll into view:

[image: A ListView with a footer view shown]

Figure 470: A ListView with a footer view shown
Enter RecyclerView
RecyclerView is a more powerful (and more complex) replacement for
ListView and GridView. You can read more about
what it does and how you can use it.
Action Modes
If you have spent much time on an Android 3.0+ device,
then you probably have run into a curious phenomenon. Sometimes,
when you select an item in a list or other widget, the action bar
magically transforms from its normal look:

[image: Regular Action Bar for Activity with EditText]

Figure 471: Regular Action Bar for Activity with EditText
to one designed to perform operations on what you have selected:

[image: Action Mode, Given Selected Word in EditText]

Figure 472: Action Mode, Given Selected Word in EditText
The good news is that this is not some sort of magic limited only to
built-in widgets like EditText. You too can have this effect in
your application, by triggering an “action mode”.
In this chapter, we will explore how you can set up and respond
to action modes.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.
A Matter of Context
Most desktop operating systems have had the notion of a “context menu” for some
time, typically triggered by a click of the right mouse button. In particular, a
right-click over some selected item might bring up a context menu of operations
to perform on that item:

	Selecting text in a text editor, then right-clicking, might bring up a context
menu for cut/copy/paste of the text

	Right-clicking over a file in some sort of file explorer might bring up a context
menu for cut/copy/paste of the file

	Etc.

Android supports context menus, driven by a long-tap on a widget rather than a
right-click. You will find a few applications that offer such menus, particularly
on lists of things. However, context menus are a very old UI design
pattern in Android, and modern apps rarely use them.
Instead, contextual operations are raised via an action mode, so when
the user specifies a context (e.g., selects a word in an EditText),
the action bar changes to show operations relevant for the selection.
Manual Action Modes
A common pattern will be to activate an action mode when the user
checks off something in a multiple-choice ListView.
If you want to go that route, there is
some built-in scaffolding to make that work, described
later in this chapter.
You can, if you wish, move the action bar into an action mode
whenever you want. This would be particularly important if your UI is
not based on a ListView. For example, tapping on an image in a
GridView might activate it and move you into an action mode for
operations upon that particular image.
In this section, we will examine the
ActionMode/ManualNative
sample project. This is another variation on the “show a list of Latin words
in a list” sample used elsewhere in this book.
Choosing Your Trigger
As mentioned above, selecting a word or passage in an EditText (e.g., via a long-tap)
brings up an action mode for cut/copy/paste operations. Other apps
might bring up an action mode when you check an item in a checklist.
Yet others might bring up an action mode when you long-tap on an item
in a regular list. And so on.
You will need to choose, for your own UI, what trigger mechanism
will bring up an action mode. It should be some trigger that makes it
obvious to the user what the action mode will be acting upon. For
example:

	If the user long-taps on an item in a GridView, bring up an
action mode, and treat future taps on GridView items as adding or
removing items from the “selection” while that action mode is visible

	If the user “rubber-bands” some figures in your vector art drawing
View, bring up an action mode for operations on those figures
(e.g., rotate, resize)

	And so on

In the case of the sample project, we stick with the
classic long-tap on a ListView row to bring up an action mode:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 initAdapter();
 getListView().setLongClickable(true);
 getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 getListView().setOnItemLongClickListener(new ActionModeHelper(
 this,
 getListView()));
 }

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeDemo.java)
Starting the Action Mode
Starting an action mode is trivially easy: just call
startActionMode() on your Activity, passing in an implementation
of ActionMode.Callback, which will be called with various lifecycle
methods for the action mode itself.
In the case of the ActionMode sample project, ActionModeHelper
– our OnItemLongClickListener from the preceding section
– also is our ActionMode.Callback implementation. Hence, when
the user long-clicks on an item in the ListView, the
ActionModeHelper establishes itself as the action mode:

 @Override
 public boolean onItemLongClick(AdapterView<?> view, View row,
 int position, long id) {
 modeView.clearChoices();
 modeView.setItemChecked(position, true);

 if (activeMode == null) {
 activeMode=host.startActionMode(this);
 }

 return(true);
 }

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)
Note that startActionMode() returns an ActionMode object, which
we can use later on to configure the mode’s behavior, by stashing it in
an actionMode data member.
Also, we make the long-clicked-upon item be “checked”, to show which item the action
mode will act upon. Our row layout will make a checked row show up with the
“activated” style, courtesy of Android’s simple_list_item_activated_1 stock
layout.
Also note that we only start the action mode if it is not already started.
Implementing the Action Mode
The real logic behind the action mode lies in your
ActionMode.Callback implementation. It is in these four lifecycle
methods where you define what the action mode should look like and
what should happen when choices are made in it.
onCreateActionMode()
The onCreateActionMode() method will be called shortly after you
call startActionMode(). Here, you get to define what goes in the
action mode. You get the ActionMode object itself (in case you do
not already have a reference to it). More importantly, you are passed
a Menu object, just as you get in onCreateOptionsMenu(). And,
just like with onCreateOptionsMenu(), you can inflate a menu
resource into the Menu object to define the contents of the action
mode:

 @Override
 public boolean onCreateActionMode(ActionMode mode, Menu menu) {
 MenuInflater inflater=host.getMenuInflater();

 inflater.inflate(R.menu.context, menu);
 mode.setTitle(R.string.context_title);

 return(true);
 }

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)
In addition to inflating our menu resource into the action
mode’s menu, we also set the title of the ActionMode, which shows
up to the right of the Done button:

[image: The ManualNative Sample App, Showing an Action Mode]

Figure 473: The ManualNative Sample App, Showing an Action Mode
onPrepareActionMode()
If you determine that you need to change the contents of your action
mode, you can call invalidate() on the ActionMode object. That,
in turn, will trigger a call to onPrepareActionMode(), where you
once again have an opportunity to configure the Menu object. If you
do make changes, return true — otherwise, return false. In
the case of ActionModeHelper, we take the latter approach:

 @Override
 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
 return(false);
 }

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)
onActionItemClicked()
Just as onCreateActionMode() is the action mode analogue to
onCreateOptionsMenu(), onActionItemClicked() is the action mode
analogue to onOptionsItemSelected(). This will be called if the
user clicks on something related to your action mode. You are passed
in the corresponding MenuItem object (plus the ActionMode
itself), and you can take whatever steps are necessary to do whatever
the work is.
On the ActionModeDemo class, we have the
business logic for handling the data-change operations in a performAction() method:

 public boolean performAction(int itemId, int position) {
 switch (itemId) {
 case R.id.cap:
 String word=words.get(position);

 word=word.toUpperCase();

 adapter.remove(words.get(position));
 adapter.insert(word, position);

 return(true);

 case R.id.remove:
 adapter.remove(words.get(position));

 return(true);
 }

 return(false);
 }

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeDemo.java)
And, the onActionItemClicked() method calls performAction():

 @Override
 public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
 boolean result=
 host.performAction(item.getItemId(),
 modeView.getCheckedItemPosition());

 if (item.getItemId() == R.id.remove) {
 activeMode.finish();
 }

 return(result);
 }

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)
onActionItemClicked() also dismisses the action mode if the user
chose the “remove” item, since the action mode is no longer needed.
You get rid of an active action mode by calling finish() on it.
onDestroyActionMode()
The onDestroyActionMode() callback will be invoked when the action
mode goes away, for any reason, such as:

	The user clicks the Done button on the left

	The user clicks the BACK button

	You call finish() on the ActionMode

Here, you can do any necessary cleanup. ActionModeHelper tries to
clean things up, notably the “checked” state of the last item
long-tapped-upon:

 @Override
 public void onDestroyActionMode(ActionMode mode) {
 activeMode=null;
 modeView.clearChoices();
 modeView.requestLayout();
 }

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)
However, for reasons that are not yet clear, clearChoices() does
not update the UI when called from onDestroyActionMode() unless you
also call requestLayout().
Multiple-Choice-Modal Action Modes
For many cases, the best user experience will be for you to have a
multiple-choice ListView, where checking items in that list enables
an action mode for performing operations on the checked items. For
this scenario, API Level 11+ has a built-in ListView choice mode,
CHOICE_MODE_MULTIPLE_MODAL, that automatically sets up an
ActionMode for you as the user checks and unchecks items.
To see how this works, let’s examine the
ActionMode/ActionModeMC
sample project. This is the same project as in the preceding section, but
altered to have a multiple-choice ListView, utilizing an action
mode on API Level 11+.
Once again, in onCreate(), we need to set up the smarts for our
ListView. This time, though, we will use
CHOICE_MODE_MULTIPLE_MODAL:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 initAdapter();

 getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE_MODAL);
 getListView().setMultiChoiceModeListener(new HCMultiChoiceModeListener(
 this, getListView()));
 }

(from ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/ActionModeDemo.java)
We enable
CHOICE_MODE_MULTIPLE_MODAL for the ListView, and register an
instance of an HCMultiChoiceModeListener object via
setMultiChoiceModeListener(). This object is an implementation of
the MultiChoiceModeListener interface that we will examine shortly.
Since we now may have multiple checked items, our performAction()
method must take this into account, capitalizing or removing all
checked words:

 public boolean performActions(MenuItem item) {
 SparseBooleanArray checked=getListView().getCheckedItemPositions();

 switch (item.getItemId()) {
 case R.id.cap:
 for (int i=0; i < checked.size(); i++) {
 if (checked.valueAt(i)) {
 int position=checked.keyAt(i);
 String word=words.get(position);

 word=word.toUpperCase(Locale.ENGLISH);

 adapter.remove(words.get(position));
 adapter.insert(word, position);
 }
 }

 return(true);

 case R.id.remove:
 ArrayList<Integer> positions=new ArrayList<Integer>();

 for (int i=0; i < checked.size(); i++) {
 if (checked.valueAt(i)) {
 positions.add(checked.keyAt(i));
 }
 }

 Collections.sort(positions, Collections.reverseOrder());

 for (int position : positions) {
 adapter.remove(words.get(position));
 }

 getListView().clearChoices();

 return(true);
 }

 return(false);
 }

(from ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/ActionModeDemo.java)
MultiChoiceModeListener
extends the ActionMode.Callback interface we used with our manual
action mode earlier in this book. Hence, we need to implement all the
standard ActionMode.Callback methods, plus a new
onItemCheckedStateChanged() method introduced by
MultiChoiceModeListener:

package com.commonsware.android.actionmodemc;

import android.annotation.TargetApi;
import android.os.Build;
import android.view.ActionMode;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.AbsListView;
import android.widget.ListView;

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
public class HCMultiChoiceModeListener implements
 AbsListView.MultiChoiceModeListener {
 ActionModeDemo host;
 ActionMode activeMode;
 ListView lv;

 HCMultiChoiceModeListener(ActionModeDemo host, ListView lv) {
 this.host=host;
 this.lv=lv;
 }

 @Override
 public boolean onCreateActionMode(ActionMode mode, Menu menu) {
 MenuInflater inflater=host.getMenuInflater();

 inflater.inflate(R.menu.context, menu);
 mode.setTitle(R.string.context_title);
 mode.setSubtitle("(1)");
 activeMode=mode;

 return(true);
 }

 @Override
 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
 return(false);
 }

 @Override
 public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
 boolean result=host.performActions(item);

 updateSubtitle(activeMode);

 return(result);
 }

 @Override
 public void onDestroyActionMode(ActionMode mode) {
 activeMode=null;
 }

 @Override
 public void onItemCheckedStateChanged(ActionMode mode, int position,
 long id, boolean checked) {
 updateSubtitle(mode);
 }

 private void updateSubtitle(ActionMode mode) {
 mode.setSubtitle("(" + lv.getCheckedItemCount() + ")");
 }
}

(from ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/HCMultiChoiceModeListener.java)
Android will automatically start our action mode for us when the user
checks the first item in the list, using our
MultiChoiceModeListener as the callback. Android will also
automatically finish the action mode if the user unchecks all
previously-checked items.
In onCreateActionMode(), we populate the menu, plus set up a title
and subtitle on the ActionMode. The subtitle appears below the
title, as you might expect. In this case, we are indicating how many
words are checked and therefore will be affected by the actions the
user chooses in the action mode:

[image: The ActionModeMC Sample App, Showing the Action Mode]

Figure 474: The ActionModeMC Sample App, Showing the Action Mode
Then, in onActionItemClicked(), we both call performActions() to
affect the desired changes, plus update the subtitle in case the user
removed words (which means they are no longer checked).
The new onItemCheckedStateChanged() will be called whenever the
user checks or unchecks an item, up until the last item is unchecked.
HCMultiChoiceModeListener simply updates the subtitle to reflect
the new count of checked items.
On the whole, using CHOICE_MODE_MULTIPLE_MODAL is simpler than
setting up your own trigger mechanism and managing the action mode
yourself. That being said, both are completely valid options, which
is particularly important for situations where a multiple-choice
ListView is not the desired user interface.
Long-Click To Initiate an Action Mode
However, rather than having checkboxes or the like always in the
ListView, a more modern approach is to move into multiple-selection
mode based on a long-click. Before then, clicks on rows behave like with any
other ListView, but after a long-click, the action mode appears
and the user can tap on rows to select which of them to operate upon.
The
ActionMode/LongPress
sample project is a variation on the preceding project, with some
slight simplifications, and adopting the long-click as the means to enter
the action mode.
Setting Up the Listeners
In onCreate(), we set up listeners for both a long click (via
setOnItemLongClickListener()) and for multiple-choice mode (via
setMultiChoiceModeListener(). Both times, we supply the activity as the
listener, as it implements the appropriate interfaces:

 getListView().setOnItemLongClickListener(this);
 getListView().setMultiChoiceModeListener(this);

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)
Handling the Long Click
By default, the ListView is in no-choice mode, where clicks on rows
simply trigger onListItemClick() or the equivalent. However, if the user
long-clicks on a row, our onItemLongClick() method will be called, and we can
both switch into multiple-choice mode and mark the long-clicked row as being
checked:

 @Override
 public boolean onItemLongClick(AdapterView<?> parent, View view,
 int position, long id) {
 getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE_MODAL);
 getListView().setItemChecked(position, true);

 return(true);
 }

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)
At this point, the action mode will also start up, courtesy of having called
setMultiChoiceModeListener().
Addressing Configuration Changes
If we undergo a configuration change, we want:

	To keep the current set of words, including any that were added

	To keep the action mode going, if the user had long-clicked to enter the action
mode

	To keep our checked item states, if the action mode is active

Keeping the checked item states will be handled for us by the built-in
instance-state management of ListView and ListActivity. However,
the rest we need to handle ourselves. So, we have an onSaveInstanceState()
implementation in the activity, which saves the current choice mode, plus
the current word list:

 @Override
 public void onSaveInstanceState(Bundle state) {
 super.onSaveInstanceState(state);
 state.putInt(STATE_CHOICE_MODE, getListView().getChoiceMode());
 state.putStringArrayList(STATE_MODEL, words);
 }

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)
Plus, in onCreate(), after setting up the listeners, we set up the choice
mode of the ListView based upon the passed in instance state Bundle, if
there is one:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 if (state == null) {
 initAdapter(null);
 }
 else {
 initAdapter(state.getStringArrayList(STATE_MODEL));
 }

 getListView().setOnItemLongClickListener(this);
 getListView().setMultiChoiceModeListener(this);

 int choiceMode=
 (state == null ? ListView.CHOICE_MODE_NONE
 : state.getInt(STATE_CHOICE_MODE));

 getListView().setChoiceMode(choiceMode);
 }

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)
Once we call setChoiceMode() with the previous activity instance’s choice mode,
if that was CHOICE_MODE_MULTIPLE_MODAL, Android will automatically open up
the action mode again and restore our checked items.
Resetting the Choice Mode
Where things get a bit interesting is when the user dismisses the action mode,
at which point we need to move back to no-choice mode.
You might think that this would merely be a matter of calling setChoiceMode()
on the ListView, asking for CHOICE_MODE_NONE. Indeed, that is part of the
solution. However, there are two problems:

	If you call that in onDestroyActionMode() directly, you wind up with
infinite recursion and a StackOverflowError, as changing the choice mode
while the action mode is still technically active will cause it to destroy
the action mode again.

	Switching the choice mode back to “none” enables some optimizations within
ListView that ignore the checked state of our rows. However, those rows still
already checked will show up as activated, even after calling setChoiceMode()
to return to the normal “none” mode. clearChoices() also does not have a
worthwhile effect, for whatever reason.

Hence, in onDestroyActionMode(), not only do we need to call setChoiceMode(),
but we need to “smack around” the ListView enough to get it to clear our
checked rows, and the easiest way to do that is to call setAdapter() on it,
passing in its existing adapter:

 @Override
 public void onDestroyActionMode(ActionMode mode) {
 if (activeMode != null) {
 activeMode=null;
 getListView().setChoiceMode(ListView.CHOICE_MODE_NONE);
 getListView().setAdapter(getListView().getAdapter());
 }
 }

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)
And, we only do that while our action mode is active (i.e., activeMode is not
null), to avoid the infinite recursion.
This is a bit clunky, but it works.
The Results
When initially launched, the activity looks like a simple ListActivity:

[image: Action Mode Long Press Demo, As Initially Launched]

Figure 475: Action Mode Long Press Demo, As Initially Launched
Tapping on a row provides the normal momentary highlight.
However, if the user long-clicks a row, we move into the action mode and
a multiple-choice ListView:

[image: Action Mode Long Press Demo, with Action Mode Activated]

Figure 476: Action Mode Long Press Demo, with Action Mode Activated

[image: Action Mode Long Press Demo, with Multiple Selections]

Figure 477: Action Mode Long Press Demo, with Multiple Selections
Dismissing the action mode returns the ListView to normal operation.
Other Advanced Action Bar Techniques
The action bar offers a number of other features that developers
can take advantage of, ones that do not necessarily fit into the
other chapters. Hence, this chapter is a “catch all” for other
things you may wish to do with your action bar.
Note that this chapter is focused on the native action bar, not
the AppCompat backport.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.
Action Layouts
What happens if you want something other than a button to appear as an
action bar item? Suppose you want a field instead?
Fortunately, this is supported. Otherwise, this would be a completely pointless
section of the book.
You can specify android:actionLayout on an <item> element in a menu
resource. This
will point to a reference to a layout XML resource that you want to have inflated
into the action bar instead of a toolbar button. Then, in onCreateOptionsMenu(),
you can call findMenuItem() on the Menu to retrieve the MenuItem
associated with this <item> element, then call getActionView() to retrieve
the root of your inflated layout. At that point, you can hook up event listeners
to the widgets in that layout, as needed.
Obviously, since the action
bar is only so big, you will need to be judicious about your use of space.
Action Views and Action Providers
If all you need is a single widget to replace the toolbar button, rather
than a whole layout resource, you can use android:actionViewClass instead
of android:actionLayout. In android:actionViewClass, you provide the
fully-qualified class name of the widget that you wish to use to replace
the toolbar button. You still use getActionView() to retrieve a reference
to this at runtime.
If the widget you use implements the CollapsibleActionView interface,
then it has an additional behavior: the ability to collapse into a
standard toolbar button or expand into its normal mode. The only example
of this in the current Android SDK is SearchView, which can expand into
a field for searching or collapse into a simple search icon (magnifying glass)
as needed. We will see more about SearchView, and how it behaves as a
CollapsibleActionView, later in this chapter.
Yet another possible toolbar button replacement is an action provider.
Whereas an action view or action layout provide the UI, and your code
provides the handling of touch events, an action provider is an “all-in-one”
solution. It is designed to be configured, then used by the user without
any required additional intervention by the developer. That being said, an
action provider can have its own listener interfaces to let developers
know about various events that have occurred. The two primary implementations
of the ActionProvider base class are:

	
MediaRouteActionProvider, covered later elsewhere in the book,
is used to allow users to control the destination
for media, such as routing audio to Bluetooth headphones instead of the device
speaker or playing content back on a Chromecast

	
ShareActionProvider can simplify sharing content via ACTION_SEND,
as is covered elsewhere in the book

To use an ActionProvider, you add the android:actionProviderClass attribute
to an <item> in the <menu> resource, providing the fully-qualified
class name of the ActionProvider implementation. You can call
getActionProvider() on the MenuItem to retrieve the ActionProvider
instance, for configuration at runtime.
Searching with SearchView
Many apps employ a SearchView in their action bar. The user typically sees
the search icon as a regular toolbar button:

[image: SearchView Demo, Showing Collapsed Action View]

Figure 478: SearchView Demo, Showing Collapsed Action View
Tapping that opens a search field, taking over more of the action bar:

[image: SearchView Demo, Showing Expanded Action View]

Figure 479: SearchView Demo, Showing Expanded Action View
Typing something in initiates some sort of search, as defined by the activity
that is using the SearchView. BACK or the app icon in the action bar will
“collapse” the SearchView back into its iconified state.
The
ActionBar/SearchView
sample project, profiled in this section, shows how you can use
SearchView within your app. This sample is a clone of one
of the previous action bar samples, where we have the list of 25 words, hosted
in a ListFragment, with action bar items to add a word and reset the word
list. In this section, we will augment the sample with a SearchView and a
filtered ListView.
SearchView… in the Menu Resource
The project’s menu resource (res/menu/actions.xml) contains a regular
action item (reset), an action item employing an action layout (add),
and an action item containing our SearchView (search):

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/search"
 android:actionViewClass="android.widget.SearchView"
 android:icon="@drawable/ic_action_search"
 android:showAsAction="ifRoom|collapseActionView"
 android:title="@string/filter">
 </item>

</menu>

(from ActionBar/SearchView/app/src/main/res/menu/actions.xml)
Note that the search item not only has
android:actionViewClass="android.widget.SearchView" to tie in our action view,
but it also has android:showAsAction="ifRoom|collapseActionView", to
indicate that this action view should support collapsing and expanding.
SearchView… in the Action Bar Configuration
In onCreateOptionsMenu() of our ActionBarFragment, in addition to
inflating the menu resource
to configure the add action layout, we now also call a configureSearchView()
method to configure the SearchView:

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.actions, menu);

 configureSearchView(menu);

 super.onCreateOptionsMenu(menu, inflater);
 }

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)
In configureSearchView(), surprisingly enough, we configure the SearchView:

 private void configureSearchView(Menu menu) {
 MenuItem search=menu.findItem(R.id.search);

 sv=(SearchView)search.getActionView();
 sv.setOnQueryTextListener(this);
 sv.setOnCloseListener(this);
 sv.setSubmitButtonEnabled(false);
 sv.setIconifiedByDefault(true);

 if (initialQuery != null) {
 sv.setIconified(false);
 search.expandActionView();
 sv.setQuery(initialQuery, true);
 }
 }

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)
Specifically, we:

	Register our fragment as the QueryTextListener and the OnCloseListener,
which will be covered in greater detail later in this chapter

	Disable the submit button, as we will be using the SearchView for filtering
rather than querying

	Indicate that the SearchView should be collapsed (“iconified”) as the default
state

Also, our fragment has an initialQuery data member, and if that is not null,
we expand the SearchView and fill in initialQuery as the query to be shown
in the SearchView, also submitting it.
initialQuery comes from our configuration change logic, as if the user fills
in something in the SearchView in one configuration (e.g., portrait), we do not
want to lose it on a configuration change (e.g., to landscape). In our
onSaveInstanceState() method, we save both the query from the SearchView and
the words currently in our list:

 @Override
 public void onSaveInstanceState(Bundle state) {
 super.onSaveInstanceState(state);

 if (!sv.isIconified()) {
 state.putCharSequence(STATE_QUERY, sv.getQuery());
 }

 state.putStringArrayList(STATE_MODEL, words);
 }

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)
In onViewCreated(), we use the savedInstanceState Bundle to populate
the adapter with the previous set of words, plus store the old SearchView’s query
in initialQuery:

 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 if (savedInstanceState == null) {
 initAdapter(null);
 }
 else {
 initAdapter(savedInstanceState.getStringArrayList(STATE_MODEL));
 initialQuery=savedInstanceState.getCharSequence(STATE_QUERY);
 }
 }

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)
Hence, on a configuration change, by the time configureSearchView() is called,
we will have our initialQuery, if there is one, and we can set up the UI to be
the same as it was in the old configuration.
SearchView… And Filtering a ListView
The ActionBarFragment implements the SearchView.OnQueryTextListener and
SearchView.OnCloseListener interfaces, which is why we can pass this to
setOnQueryTextListener() and setOnCloseListener() in configureSearchView().
Those two interfaces require a total of three methods, described below.
onQueryTextChange()
The onQueryTextChange() method — required by SearchView.OnQueryTextListener –
will be called whenever the user has changed the contents of the expanded
SearchView, such as by typing a character. This is used when you want to
employ the SearchView for filtering, updating the filter as the user types,
rather than for searching, in which case you would wait until the user “submits”
the search request.
Our implementation takes advantage of ArrayAdapter’s built-in filtering capability:

 @Override
 public boolean onQueryTextChange(String newText) {
 if (TextUtils.isEmpty(newText)) {
 adapter.getFilter().filter("");
 }
 else {
 adapter.getFilter().filter(newText.toString());
 }

 return(true);
 }

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)
Adapters that implement the Filterable interface can be filtered, automatically
restricting the displayed items to ones that match the filter. Calling getFilter()
on a Filterable returns a Filter. The default implementation of a Filter
filters on the leading characters of toString() of getItem() from the
Adapter. Hence, filtering an ArrayAdapter on our roster of 25 words, where
the filter string is 'm', would show morbi and molllis but skip amet, let
alone other words not beginning with m.
So, our onQueryTextChange() method simply updates the Filter with whatever
the user has typed into the SearchView, setting the filter to the empty string
if the SearchView is either empty or has null contents.
onQueryTextSubmit()
The onQueryTextSubmit() method — required by SearchView.OnQueryTextListener –
would be called if the user tapped on the submit button within the expanded
SearchView, to ask us to perform the search. In this sample, we have disabled
that button, as we are filtering our list on the fly, rather than performing
a query once the SearchView is filled out. Hence, ActionBarFragment has
a do-nothing implementation of onQueryTextSubmit(), simply returning false
to indicate that we have not consumed the event:

 @Override
 public boolean onQueryTextSubmit(String query) {
 return(false);
 }

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)
The chapter on advanced database techniques has a section on full-text indexing,
and the sample app in that chapter demonstrates the use of the submit button
in a SearchView and onQueryTextSubmit().
onClose()
The onClose() method — required by SearchView.OnCloseListener — in theory will be called
when the SearchView is collapsed. Here, we simply clear out the filter that we
are using to limit the contents of the ListView, plus return true to say that
we have handled the event:

 @Override
 public boolean onClose() {
 adapter.getFilter().filter("");

 return(true);
 }

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)
According to the SearchView source code, it will only be called if:

	The query text is empty, and

	The SearchView is iconified by default (setIconifiedByDefault(true))

In practice, not even that works very well.
Hence, if you really need to find out when the SearchView is collapsed,
you will probably need to use the more generic OnActionExpandListener
interface, attached to the SearchView via setOnActionExpandListener().
onMenuItemActionCollapse() should be called when the SearchView
is collapsed. This also works for other types of collapsible action views, not
just SearchView.
SearchView… From the User’s Perspective
If the user taps on the search icon, then starts typing into the SearchView’s
editing area, the ListView is filtered based upon the typed-in prefix:

[image: SearchView Demo, Showing Filtered Results]

Figure 480: SearchView Demo, Showing Filtered Results
Floating Action Bars
By default, your action bar will be separate from the main content area of your
activity. Normally, that is what you want.
But, sometimes, you may want to have the action bar(s) float over the top of your
activity, as can be seen in Google Maps:

[image: Google Maps, with Floating Action Bar (image courtesy of Google)]

Figure 481: Google Maps, with Floating Action Bar (image courtesy of Google)
To accomplish this, you can use FEATURE_ACTION_BAR_OVERLAY, as is illustrated
in the ActionBar/OverlayNative
sample project.
This is nearly identical to the ActionBar/ActionBarDemoNative sample project, with
just a few changes, mostly in the onCreate() method of our activity:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 getWindow().requestFeature(Window.FEATURE_ACTION_BAR_OVERLAY);

 initAdapter();

 Drawable d=
 getResources().getDrawable(R.drawable.action_bar_background);

 getActionBar().setBackgroundDrawable(d);
 }

(from ActionBar/OverlayNative/app/src/main/java/com/commonsware/android/actionbaroverlay/ActionBarDemoActivity.java)
In addition to the original logic, we:

	Call requestFeature() on our Window (obtained via a call to getWindow()),
asking for FEATURE_ACTION_BAR_OVERLAY

	Call setBackgroundDrawable() on our ActionBar, supplying a reference
to a drawable resource to use for the background of the floating action bar

The drawable resource is a ShapeDrawable, defined in XML:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">

 <solid android:color="#AAFFFFFF"/>

</shape>

(from ActionBar/OverlayNative/app/src/main/res/drawable/action_bar_background.xml)
We will discuss ShapeDrawable in much greater detail
later in this book .
For the moment, take it on faith that our resource is defining a rectangle, with
a translucent white fill. The alpha channel (AA) for our translucence is important,
so the user can see a bit of our activity underneath the floating action bar.
The result is that our action bars float over the top of the list:

[image: Floating Action Bar]

Figure 482: Floating Action Bar
In this case, the effect is not very good, as the words will blend in too strongly
with the overlaid action bars. However, that is a question of organizing the
screen content and using this overlay feature only in cases where you will see
good results, such as in the Google Maps example shown above.
Toolbar
Android 5.0 introduced a Toolbar widget, offering functionality akin
to the action bar, but in the form of a ViewGroup that can be positioned
where you need it. You can even use a Toolbar as an outright replacement
for the action bar, for cases where you need a bit more control over
the action bar implementation than you get by default.
In this chapter, we will explore the use of Toolbar. Note that
an upcoming chapter will cover the use of
a backport of Toolbar that works back to API
Level 7… albeit with some issues.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.
Note that the examples in this chapter are clones of a couple from the core
chapters. This chapter’s prose was written assuming that you were familiar
with those samples, so you may need to go back and review them as needed.
One of the samples relies upon using a custom Parcelable class, which
is covered in another chapter.
Basic Toolbar Mechanics
As noted earlier, a Toolbar is an ordinary ViewGroup. While it does
not support placing arbitrary children in it the way a LinearLayout
might, it otherwise can be used like any other ViewGroup. In particular,
you can put it in a layout resource and position it wherever it makes
sense, such as in a lower quadrant of a tablet-sized screen, tied to
some specific part of your UI.
However, the Toolbar is not the action bar… at least, not by default.
As such, you will use somewhat different methods for interacting with
it, particularly for dealing with menu items:

	You will call inflateMenu() when you want to pour action items
into the menu, as a counterpart to the work you do in onCreateOptionsMenu()
for the action bar

	You will call setOnMenuItemClickListener() to set a listener to be
invoked when the user taps on a menu item in the Toolbar, as a counterpart
to the work you do in onOptionsItemSelected()

A Toolbar does not automatically adopt much in the way of styling from
your activity’s theme. In particular, it does not set the background
color to be the primary color of a Theme.Material theme, the way the
action bar does. However, whether via a style resource, XML attributes in
a layout file, or Java code, you can affect these same sorts of
capabilities.
Use Case: Split Action Bar
In Android 4.x, and in the original implementation of
the appcompat-v7 action bar backport, we had the
notion of the “split action bar”. On phone-sized screens in portrait
orientation, the action bar could easily get too crowded. We could
opt into having a split action bar in these cases, where action items
and the overflow would go into a bar at the bottom of the screen,
leaving the top for the app’s title, icon, and navigation items.
However, Theme.Material and modern editions of appcompat-v7 have
dropped support for the split action bar. To achieve the same basic
effect, you can use a Toolbar that you position yourself at the bottom
of the screen.
The
Toolbar/SplitActionBar
sample project demonstrates both the original Android 4.x way of getting
a split action bar and using Toolbar to get the same basic visual effect
on Android 5.0+. This is a clone of the ActionBar/VersionedColor sample
app from a previous chapter, supporting a tinted action
bar on Android 4.x (via a custom theme based off of Theme.Holo) and
Android 5.0+ (via a custom theme based off of Theme.Material).
Enabling Stock Android 4.x Behavior
Getting a split action bar on Android 4.x was easy: just add
android:uiOptions="splitActionBarWhenNarrow" to the <activity> or
<application> in the manifest. Putting it on <application> will affect
the default for all activities; putting it on a single <activity> affects
only that activity.
The sample app’s manifest uses android:uiOptions="splitActionBarWhenNarrow"
on the one-and-only activity:

 <activity
 android:name="ActionBarDemoActivity"
 android:label="@string/app_name"
 android:uiOptions="splitActionBarWhenNarrow">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

(from Toolbar/SplitActionBar/app/src/main/AndroidManifest.xml)
The result is, as the name suggests, a split action bar:

[image: Split Action Bar on Android 4.3]

Figure 483: Split Action Bar on Android 4.3
Note that the bottom bar retains the tinting rules applied via our theme,
created via the Action Bar Style Generator.
Adding the Toolbar
Since Toolbar is an ordinary ViewGroup, we can put one in a layout resource,
such as res/layout-v21/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"/>

 <Toolbar
 android:id="@+id/toolbar"
 style="@style/SplitActionBar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

</LinearLayout>

(from Toolbar/SplitActionBar/app/src/main/res/layout-v21/main.xml)
Here, we allocate wrap_content height for the Toolbar and give all
remaining space to the ListView (by means of android:layout_weight="1" and
no weight on the Toolbar).
The style attribute on the Toolbar points to a custom style resource,
in res/values-v21/styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="Theme.Apptheme" parent="android:Theme.Material">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>
 <style name="SplitActionBar">
 <item name="android:background">@color/primary</item>
 </style>
</resources>

(from Toolbar/SplitActionBar/app/src/main/res/values-v21/styles.xml)
This sets the background color of the Toolbar to be the same background
color that we are using for the colorPrimary tint for our Theme.Material-based
custom theme. By default, Toolbar has a black background, despite
setting colorPrimary on the theme.
Using the Layout
In onCreate() of the activity, we load up the layout file if we are
on Android 5.0 or higher:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
 setContentView(R.layout.main);
 }

 initAdapter();
 }

(from Toolbar/SplitActionBar/app/src/main/java/com/commonsware/android/toolbar/sab/ActionBarDemoActivity.java)
Note that we could have had a separate res/layout/main.xml resource,
containing just the ListView. Then, we could call setContentView()
regardless of API level, with the resource system pulling in the right
one based on the device’s API level. In this case, since we are using
ListActivity, we do not need a layout for Android 4.x. Having two
lines of Java versus a separate layout resource is a tradeoff that could
be made either way.
This gives us a Toolbar, but by default it will be empty, making
it less than useful.
Populating and Using the Toolbar
On Android 4.x, we can just implement onCreateOptionsMenu() and
onOptionsItemSelected(), and the items will work, whether we chose a
split action bar or not. On Android 5.0+, we need to explicitly put
the action bar items into the Toolbar and explicitly register a listener
to find out when those items are tapped.
We handle all of that in onCreateOptionsMenu() itself, using
different behavior based on API level:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
 Toolbar tb=(Toolbar)findViewById(R.id.toolbar);

 tb.inflateMenu(R.menu.actions);
 tb.setOnMenuItemClickListener(new Toolbar.OnMenuItemClickListener() {
 @Override
 public boolean onMenuItemClick(MenuItem item) {
 return(onOptionsItemSelected(item));
 }
 });
 }
 else {
 getMenuInflater().inflate(R.menu.actions, menu);
 }

 return(super.onCreateOptionsMenu(menu));
 }

(from Toolbar/SplitActionBar/app/src/main/java/com/commonsware/android/toolbar/sab/ActionBarDemoActivity.java)
If we are on an Android 4.x device, we just inflate() a menu resource
into the supplied Menu for the action bar. If we are on an Android 5.0+
device, we:

	Retrieve the Toolbar from the inflated layout

	Inflate our menu resource into the Toolbar via inflateMenu()

	Register an OnMenuItemClickListener with the Toolbar, routing
the menu item click over to our onOptionsItemSelected() method, so
we can have one common implementation of logic for handling action items
that are either in the action bar or the Toolbar

Results and Changes
Running this sample on Android 5.0+ gives us a split “action bar”
implemented as a Toolbar:

[image: Split Action Bar, Via a Toolbar, on Android 5.1]

Figure 484: Split “Action Bar”, Via a Toolbar, on Android 5.1
One significant visual difference is the horizontal placement of the
action items. In a true split action bar, they are evenly spaced across
the bar. In a Toolbar, they are flush right (or, more accurately,
flush “end”, to handle right-to-left languages). There is nothing built
into Toolbar to spread the items out. While there are
hacks to make this happen,
they rely on internal implementation of Toolbar and may prove unreliable
over time.
Use Case #2: Replacement Action Bar
Another thing that you can do with a Toolbar is make it serve as your
action bar. The net effect is that you can position your activity’s action
bar wherever you like, rather than have it be anchored at the top of
the screen. Also, you can control the Toolbar more than you can the
original action bar, for things like animations. For example, if you have
seen apps where the action bar slides out of the way while you are scrolling
down a list, only to return when you scroll back up the list, that could
be accomplished via a Toolbar as your action bar.
The basic mechanics of making a Toolbar serve as the action bar are
not especially difficult. Primarily, you need to inherit from
Theme.Material.NoActionBar (to suppress the regular action bar)
and call setActionBar() to attach your Toolbar to the activity to
serve as the activity’s action bar. As with all Toolbar-specific
code, this will only work on API Level 21+, though the appcompat-v7
backport offers similar capabilities.
The
Toolbar/SplitActionBar2
sample project is a clone of the SplitActionBar project from earlier
in this chapter, except that the Toolbar is set up to serve as the
activity’s action bar.
Our activity’s theme (Theme.Apptheme) now inherits from
Theme.Material.NoActionBar:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="Theme.Apptheme" parent="android:Theme.Material.NoActionBar">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>
 <style name="SplitActionBar">
 <item name="android:background">@color/primary</item>
 </style>
</resources>

(from Toolbar/SplitActionBar2/app/src/main/res/values-v21/styles.xml)
The build.gradle file sets the minSdkVersion to 21, so we dispense
with the backwards-compatibility checks. So, in onCreate(), rather
than conditionally using main.xml as our layout, we always use it, followed
by a call to setActionBar():

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setContentView(R.layout.main);
 setActionBar((Toolbar)findViewById(R.id.toolbar));

 initAdapter();
 }

(from Toolbar/SplitActionBar2/app/src/main/java/com/commonsware/android/toolbar/sab2/ActionBarDemoActivity.java)
Our onCreateOptionsMenu() can also dispense with the conditional check
to see if we are on API Level 21+. However, since we are using the
Toolbar as our action bar, we can simply populate the action bar normally,
and it will affect the Toolbar:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);

 return(super.onCreateOptionsMenu(menu));
 }

(from Toolbar/SplitActionBar2/app/src/main/java/com/commonsware/android/toolbar/sab2/ActionBarDemoActivity.java)
The result is that we have a regular action bar, with its normal contents
(e.g., title), but positioned where we put the Toolbar, at the bottom
of the screen, where it used to serve as the bottom half of the split action
bar:

[image: Toolbar as Action Bar on Android 5.1]

Figure 485: Toolbar as Action Bar on Android 5.1
AppCompat: The Official Action Bar Backport
Approximately 30 months after Google added the action bar to Android 3.0,
Google released a backport for previous devices. Referred to here as AppCompat or,
appcompat-v7 (after its library name), this adds action
bar support to Android apps, going all the way back to API Level 7.
The appcompat-v7 Android Support Package artifact houses AppCompat. Version 21
and higher of this artifact change the way that AppCompat looks, to try to
not only backport the action bar, but to backport a bit of the Material Design
aesthetic.
This chapter will outline why you might want to use AppCompat and how to
employ it in your Android applications.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.
Ummmm… Why?
You might wonder why we would bother with any of it. AppCompat is
not required, and apps can work fine without it. And, in truth,
most apps will be just fine using the native action bar implementation.
That being said, you may find some pressures nudging you towards using
an action bar backport, and AppCompat specifically.
Why an Action Bar Backport?
If your minSdkVersion is 11 or higher, you have an action bar on all
Android versions that your app supports.
If, however, your minSdkVersion is below 11, by default you will
get the old-style options menu on Android 1.x/2.x devices. That is not
a crime. However, the action bar design pattern had been used in various
Android apps prior to Android 3.0’s formalization of the pattern. Many
apps that users will see on older devices will have an action bar,
courtesy of one of the backports. By adopting a backport, you will
gain a measure of consistency in your UX across Android versions that you
would otherwise miss by falling back to the options menu.
You might also adopt a backport because something else is steering you
to use AppCompat, and therefore you elect to use it for those reasons.
Why AppCompat?
AppCompat is a somewhat controversial library nowadays. It did not start
that way when it was released in the Summer of 2013.
But Google has been rather aggressive about trying to get developers to
use AppCompat, and that aggressiveness has had its downsides.
Supported
The #1 reason for using AppCompat is because you decided, for other reasons,
that you wanted an action bar backport, and AppCompat right now is the
primary supported option.
The original backport, ActionBarSherlock, was officially deprecated by
its author (Jake Wharton), who is steering you towards the native action
bar or AppCompat as alternatives. While this does not prevent you from
using ActionBarSherlock, it is probably not a great choice today given
that Google is supporting AppCompat.
Materialistic
The current version of AppCompat does not only give you an action bar.
It gives you an action bar that looks like the one that you get from
Theme.Material. It also will attempt to apply your accent color
to select widgets, the way Android 5.0 and Theme.Material do, to make
your app abide a bit more by the Material Design aesthetic.
Whether or not this is a good thing is up to you.
Consistent
One hidden advantage of using AppCompat, particularly in concert with
the fragments backport, is consistency across Android versions. By using
the native action bar and fragments, you are at some risk of inconsistent
behavior based upon:

	Android OS version, due to bug fixes, deprecations, and the like

	Manufacturer or ROM modder tweaks to the native implementations, which
you do not control

Having your action bar and fragments be in a library in your app isolates
you from those changes. AppCompat
always uses its own implementation, so any changes in the native implementation
will not affect your app.
This comes at a cost of additional complexity and APK size.
Forced
Some things in the Android development ecosystem, like official support
for the MediaRouteActionProvider, only work with the AppCompat action bar,
as Google has either not shipped or has deprecated their native alternatives.
You may find some “cross-ports” of those things that work with the native
action bar, but those are unlikely to be as well-supported as Google’s own
editions.
Also, new projects created via Android Studio basically shove appcompat-v7
down your throat. This is why this book’s tutorials have you start by
importing an existing project, so you do not have to rip appcompat-v7 and
its references out by the roots to start a new project.
While it is theoretically possible that Google itself will eventually offer
native action bar implementations of those things, it is unlikely. Hence, if
you determine that you need one of those, you may be more inclined to use
AppCompat, even if you do not need it for any other reason.
The Basics of Using AppCompat
The recipe for using the AppCompat action bar requires no new skills beyond what you have learned
so far in this book. However, there are some subtle and not-so-subtle differences
in the approaches AppCompat takes when compared to the native action bar.
To see the basic differences, we will take a look at
the AppCompat/ActionBar
sample project. This is a port of the fragments-and-action-bar sample
from earlier in the book, where we have replaced
the native action bar with AppCompat.
The Library Project
AppCompat is provided by the appcompat-v7 Android library project, part
of the Android Support Package.
Just add the implementation 'com.android.support:appcompat-v7:...' line to your
dependencies closure, replacing ... with a suitable version number of
the library. That will take care of downloading the library and adding it
to your project.
To get the material effects described in this chapter, you will want
to use version 21 or higher of appcompat-v7
(e.g., com.android.support:appcompat-v7:22.2.0). And, due to a particular
name change that we will examine shortly, using version 22 or higher is
probably a good idea.
But, more importantly, you really want version 23 or higher. There are
changes to ART –
the Android runtime used on Android 5.0+ — that apparently will
break the older versions of appcompat-v7 when running on Android 6.0+
devices.
Your Build Settings
If you are using version 22 or higher of AppCompat, your build target must
be API Level 22 or higher. Basically, for the Android Support libraries,
your compileSdkVersion should match the major version of the library.
In Android Studio and the Android Gradle Plugin, this would
be the compileSdkVersion found in your build.gradle file. In Eclipse,
this would be the API level chosen in Project > Properties > Android.
Your Theme
Rather than using Theme.Holo or Theme.Material, when using AppCompat you
will use Theme.AppCompat, whether you use that theme directly or create
your own custom theme inheriting from it. There is also Theme.AppCompat.Light
and Theme.AppCompat.Light.DarkActionBar, mirroring their native counterparts.

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.AppCompat">

(from AppCompat/ActionBar/app/src/main/AndroidManifest.xml)
Your Menu Resources
Where things start to get a bit strange with AppCompat comes with our
menu resources. AppCompat
forces you to use a different namespace for any action bar-related
attributes, those added in API Level 11 or higher.
So, we started with:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/add"
 android:icon="@drawable/ic_action_new"
 android:showAsAction="always"
 android:title="@string/add"/>
 <item
 android:id="@+id/reset"
 android:icon="@drawable/ic_action_refresh"
 android:showAsAction="always|withText"
 android:title="@string/reset"/>

</menu>

(from Fragments/ActionBarNative/app/src/main/res/menu/actions.xml)
and we had to change it to:

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/add"
 android:icon="@drawable/ic_action_new"
 app:showAsAction="always"
 android:title="@string/add"/>
 <item
 android:id="@+id/reset"
 android:icon="@drawable/ic_action_refresh"
 app:showAsAction="always|withText"
 android:title="@string/reset"/>
 <item
 android:id="@+id/about"
 android:icon="@drawable/ic_action_about"
 app:showAsAction="never"
 android:title="@string/about">
 </item>

</menu>

(from AppCompat/ActionBar/app/src/main/res/menu/actions.xml)
Note that we have a new xmlns:app="http://schemas.android.com/apk/res-auto"
namespace declaration in the root <menu> element, and that namespace is used
for the app:showAsAction attribute. The
actual prefix name, here shown as app, can be whatever you want.
It just has to be unique
within the document and a valid XML namespace prefix (e.g., no whitespace).
Your Activity and Fragments
We have to inherit from an AppCompatActivity class to use
AppCompat. AppCompatActivity itself inherits from FragmentActivity,
and so we can use the Android Support Package’s backport of fragments without
issue, so you have access to backported versions of Fragment, ListFragment, etc.
NOTE: Prior to version 22 of appcompat-v7, you would inherit from
an ActionBarActivity class. That class is still available for backwards
compatibility, but you are recommended to inherit from AppCompatActivity
instead.
However, note that there are no other analogues of AppCompatActivity
for other scenarios, such as ListActivity. In principle, you should be able
to make your own mash-ups of AppCompatActivity
and other base activity classes, though the proof of this is left as an exercise
for the reader. The sample app just uses AppCompatActivity directly for
showing a ListView:

package com.commonsware.android.inflation;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;
import android.widget.ListView;
import android.widget.Toast;
import java.util.ArrayList;

public class ActionBarDemoActivity extends AppCompatActivity {
 private static final String[] items= { "lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante", "porttitor", "sodales",
 "pellentesque", "augue", "purus" };
 private ArrayList<String> words=null;
 private ArrayAdapter<String> adapter=null;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setContentView(R.layout.list_content_simple);
 initAdapter();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch(item.getItemId()) {
 case R.id.add:
 addWord();

 return(true);

 case R.id.reset:
 initAdapter();

 return(true);

 case R.id.about:
 Toast.makeText(this, R.string.about_toast, Toast.LENGTH_LONG)
 .show();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 private void initAdapter() {
 words=new ArrayList<String>();

 for (int i=0;i<5;i++) {
 words.add(items[i]);
 }

 adapter=
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 words);

 setListAdapter(adapter);
 }

 private void addWord() {
 if (adapter.getCount()<items.length) {
 adapter.add(items[adapter.getCount()]);
 }
 }

 private void setListAdapter(ListAdapter la) {
 ((ListView)findViewById(android.R.id.list)).setAdapter(la);
 }
}

(from AppCompat/ActionBar/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)
The layout, res/layout/list_content_simple.xml, is cloned from the one
used by ListActivity itself:

<?xml version="1.0" encoding="utf-8"?>
<!--
/* //device/apps/common/assets/res/layout/list_content.xml
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->
<ListView xmlns:android="http://schemas.android.com/apk/res/android" android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:drawSelectorOnTop="false"
 />

(from AppCompat/ActionBar/app/src/main/res/layout/list_content_simple.xml)
Your Callback Methods
In many cases, your onCreateOptionsMenu() and onOptionsItemSelected() methods
will be the same for AppCompat as they would be for a regular Android app.
However, if you do need to manipulate action bar-specific attributes of your
inflated menu resources, you will be unable to do so directly.
The workaround is to use MenuCompat and MenuItemCompat, from the Android
Support package, to give you access to newer Menu and MenuItem features
in a backwards-compatible fashion.
Your Results
Visually, the results are very similar to what we get from Theme.Material,
whether we run on Android 5.0 itself:

[image: AppCompat, on Android 5.0 Emulator]

Figure 486: AppCompat, on Android 5.0 Emulator
…or on something older, like an Android 4.1 emulator:

[image: AppCompat, on Android 4.1 Emulator]

Figure 487: AppCompat, on Android 4.1 Emulator
Other AppCompat Effects
While the above recipe will give you the basics, you can go a lot further
with AppCompat, just as you can with the native action bar. Generally speaking,
AppCompat’s backport includes all of the capabilities of the native action
bar.
The biggest key is that when working with AppCompatActivity, if you
need to access your ActionBar instance, call getSupportActionBar(),
not getActionBar(). The latter will compile, but it will return null
at runtime, as you are disabling the native action bar and using AppCompat’s
instead.
Tinting
The same basic tinting rules that apply for Theme.Material apply for
Theme.AppCompat and AppCompatActivity, with two noteworthy differences.
First, the theme attributes do not have the android prefix, but instead
are just the bare names (e.g., colorPrimary). So, in
the AppCompat/ActionBarColor
sample project, the style resource becomes:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="Theme.Apptheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/primary</item>
 <item name="colorPrimaryDark">@color/primary_dark</item>
 <item name="colorAccent">@color/accent</item>
 </style>
</resources>

(from AppCompat/ActionBarColor/app/src/main/res/values/styles.xml)
Second, not all widgets will have their colors affected by the theme. As of
version 22 of appcompat-v7, the roster is limited to:

	AutoCompleteTextView

	Button

	CheckBox

	CheckedTextView

	EditText

	MultiAutoCompleteTextView

	RadioButton

	RatingBar

	Spinner

	TextView

Also, Switch adopts the colors, if you use the SwitchCompat backport
discussed in the next section.
In the AppCompat/Basic
directory you will find projects mirroring those from the BasicMaterial
directory. In BasicMaterial, we saw how widgets were tinted based on
a Theme.Material-based theme; in AppCompat/Basic, you will see how
widgets are tinted based upon a Theme.AppCompat-based theme.
Switch Backport
As mentioned above, there is an official backport of the Switch widget,
known as SwitchCompat, added to the appcompat-v7 library. This works back
to API Level 7, as does everything in appcompat-v7. And, for better or worse,
it provides a backport of the Material Design implementation of a Switch.
So, rather than the Theme.Holo ON/OFF toggle, we get the unlabeled “looks like
a really tiny SeekBar” widget:

[image: SwitchCompat, on an Android 4.3 Emulator]

Figure 488: SwitchCompat, on an Android 4.3 Emulator
The above screenshot comes from
the AppCompat/Basic/Switch
sample project, which uses a layout specifying the SwitchCompat widget:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.SwitchCompat
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toggle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

(from AppCompat/Basic/Switch/app/src/main/res/layout/main.xml)
Also note that SwitchCompat only works inside an AppCompatActivity. It
is not a general backport of Switch that can be used in any activity.
Overlay
AppCompat supports the same basic sort of
floating action bar that
is supported by the native action bar implementation. There are two
slight changes in the recipe:

	Use supportRequestWindowFeature(), rather than requestWindowFeature(),
to request Window.FEATURE_ACTION_BAR_OVERLAY

	Use getSupportActionBar(), rather than getActionBar(), to set the
background

This is illustrated in onCreate() of the ActionBarDemoActivity
version found in the
AppCompat/Overlay
sample project:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 supportRequestWindowFeature(Window.FEATURE_ACTION_BAR_OVERLAY);

 setContentView(R.layout.list_content_simple);

 initAdapter();

 Drawable d=
 getResources().getDrawable(R.drawable.action_bar_background);

 getSupportActionBar().setBackgroundDrawable(d);
 getSupportActionBar().setSplitBackgroundDrawable(d);
 }

(from AppCompat/Overlay/app/src/main/java/com/commonsware/android/actionbaroverlay/ActionBarDemoActivity.java)
And, you get the same basic results as with the native action bar:

[image: AppCompat with FEATURE_ACTION_BAR_OVERLAY on an Android 4.3 Emulator]

Figure 489: AppCompat with FEATURE_ACTION_BAR_OVERLAY on an Android 4.3 Emulator
SearchView
AppCompat has its own implementation of SearchView, as
android.support.v7.widget.SearchView. To use it, switch to that class
in your menu resource, then use MenuItemCompat.getActionView() to retrieve
the instance after your menu resource has been inflated.
For example, the
AppCompat/SearchView
sample project uses the AppCompat implementation of SearchView in its
res/menu/actions.xml file:

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/search"
 app:actionViewClass="android.support.v7.widget.SearchView"
 android:icon="@drawable/ic_action_search"
 app:showAsAction="ifRoom|collapseActionView"
 android:title="@string/filter">
 </item>

</menu>

(from AppCompat/SearchView/app/src/main/res/menu/actions.xml)
Then, in onCreateOptionsMenu(), ActionBarFragment calls out to a private
configureSearchView() method that retrieves the SearchView and sets it
up, much as you saw with the native implementation of SearchView from
earlier in this book:

 private void configureSearchView(Menu menu) {
 MenuItem search=menu.findItem(R.id.search);

 sv=(SearchView)MenuItemCompat.getActionView(search);
 sv.setOnQueryTextListener(this);
 sv.setOnCloseListener(this);
 sv.setSubmitButtonEnabled(false);
 sv.setIconifiedByDefault(true);

 if (initialQuery != null) {
 sv.setIconified(false);
 search.expandActionView();
 sv.setQuery(initialQuery, true);
 }
 }

(from AppCompat/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)
The resulting SearchView is tied into AppCompat and offers a Material Design-esque
look, applying your tints when opened:

[image: AppCompat with SearchView on an Android 4.3 Emulator]

Figure 490: AppCompat with SearchView on an Android 4.3 Emulator
ShareActionProvider
Similarly, AppCompat has its own implementation of ShareActionProvider,
as android.support.v7.widget.ShareActionProvider. The recipe for using
it resembles that of using SearchView:

	Refer to the AppCompat edition of the class in your menu resource

	Use MenuItemCompat.getActionProvider() to retrieve your ShareActionProvider
instance after inflating the menu resource, to configure and use it

The
AppCompat/Share
sample project is a clone of the ShareActionProvider project described
elsewhere in the book, converted to use AppCompat and
its edition of ShareActionProvider.
Toolbar and AppCompat
AppCompat has its own backport of the Toolbar widget.
By and large, you use it in much the same way as you use the native
Toolbar. On the plus side, the backported Toolbar works back to
API Level 7, allowing you to take advantage of this on much older
devices. However, it requires you to be using AppCompatActivity — you
cannot use the backported Toolbar with a regular activity.
The
Toolbar/SplitActionBarCompat
sample project is a clone of the Toolbar/SplitActionBar sample.
That sample uses the native Toolbar to replicate
the “split action bar” pattern, where there is a
second “action bar” at the bottom of the screen, for actions that would
not fit in the regular action bar. This clone uses the AppCompat
backport of Toolbar, and that requires some changes.
First, we now depend upon appcompat-v7 in the app/ module’s
build.gradle file:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.android.support:appcompat-v7:22.2.1'
}

android {
 compileSdkVersion 22
 buildToolsVersion '26.0.2'

 defaultConfig {
 minSdkVersion 14
 targetSdkVersion 22
 }
}

(from Toolbar/SplitActionBarCompat/app/build.gradle)
Our styles and themes change to use Theme.AppCompat as a base:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="Theme.Apptheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/primary</item>
 <item name="colorPrimaryDark">@color/primary_dark</item>
 <item name="colorAccent">@color/accent</item>
 </style>

 <style name="SplitActionBar">
 <item name="background">@color/primary</item>
 </style>
</resources>

(from Toolbar/SplitActionBarCompat/app/src/main/res/values/styles.xml)
Note that the SplitActionBar style, like Theme.Apptheme, drops the
android: from the name attributes. That is because our Toolbar
now comes from a library, and so we are no longer using system-defined
attributes, but rather library-defined attributes.
The layout resource simply fully-qualifies the class name for the
Toolbar widget to refer to the one from AppCompat:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"/>

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 style="@style/SplitActionBar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

</LinearLayout>

(from Toolbar/SplitActionBarCompat/app/src/main/res/layout/main.xml)
ActionBarDemoActivity now needs to inherit from AppCompatActivity,
rather than ListActivity. That means we no longer have any scenario
in which we will get a ListView “for free” — we always have to inflate
our layout resource:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setContentView(R.layout.main);
 initAdapter();
 }

(from Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java)
This also means we need our own setListAdapter() method, since we are
no longer inheriting one:

 private void setListAdapter(ListAdapter adapter) {
 ListView lv=(ListView)findViewById(android.R.id.list);

 lv.setAdapter(adapter);
 }

(from Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java)
The only other change is to the Toolbar import statement, to pull
in the backport:

import android.support.v7.widget.Toolbar;

(from Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java)
The result is visually very similar to what we would have had on
Android 5.0+, but it works back to API Level 7:

[image: AppCompat Toolbar Backport, as a Split Action Bar]

Figure 491: AppCompat Toolbar Backport, as a Split Action Bar
To Material, or Not to Material
(the following is adapted from
one of the author’s blog posts)
There has been a lot of discussion regarding the adoption of
Material Design aesthetics in Android apps. Newcomers to
Android might conclude that Material Design must be
The Most Important Thing in Android Development and therefore
should be pursued immediately at all costs.
Not everybody shares this opinion
With that in mind, here are the author’s recommendations on what
to consider with Material Design:
DO start considering the effects of Material Design upon
your Android app. Theme.Material is the dominant theme on Android
5.0 devices, and it should remain the dominant theme on future
Android versions, at least for a while. There will be hundreds of
millions of these devices in use, eventually, and you will want
your app to look like “it belongs” on those devices. On those
devices, not only will Google’s apps be employing Theme.Material,
but manufacturer-supplied apps should do so as well. While not
everything on the device may necessarily adopt this theme, more
than enough will that your app may stand out somewhat if your app
does not and the user thinks that it should.
DON’T blindly assume that you should be using a Material-ish
look on all versions of Android. Your objective should be having
an app that looks like it belongs on the device. Material-themed
apps are highly unlikely to achieve majority status, let alone
dominance, on pre-Android 5.0 releases. After all, device manufacturers
are not going to be shipping Material-themed updates to built-in
apps en masse, and there are plenty of apps out there that are
still using pre-Holo themes. This is all on top of app that have
no identifiable Android theme (e.g., most games). Certainly, there
will be Material-themed apps running on Android 4.x devices,
courtesy of Google and some other developers. But there will be enough
Holo-themed apps that your app will not look out of place on
Android 4.x any time soon, if ever. Hence, you have your choice of
adopting Material Design across the board or not — user pressure
is unlikely to be a major criterion any time soon.
DON’T fall victim to the “our app must look the same across
all devices” mindset. Again, your app should look like it belongs
on the device, which is why trying to ape an iOS look-and-feel on
Android is rarely a good move. Most people do not have two
Android devices, and only a small subset of those will have an Android 5.x
device and an Android 4.x (or older) device. Hence, most
of the people who will care about your app appearing identical on
those devices will be in your meeting room discussing the issue.
Few of your users will notice — they want an app that works,
does what the user wants, and looks like it belongs on their device.
DO consider whether adopting Material Design across the
board may offer engineering benefits. For example, if you have
been heavily customizing widget colors in a Holo-based theme,
the tinting options provided by appcompat-v7 may simplify your
app a fair bit, reducing APK size, maintenance costs after the
Material conversion, etc. Since your users are unlikely to be
terribly concerned one way or the other, engineering considerations
may help to “tip the scales” in one direction or another.
DON’T blindly assume that appcompat-v7 will result in a
simpler app, or that it should be the basis for all new apps.
appcompat-v7 has had a history of bugs.
Not all of those bugs are Google’s fault (e.g., the Samsung device
issue was really caused by a screwy decision on Samsung’s part),
but that comes as cold comfort to developers trying to distribute
appcompat-v7 apps. And, if you are comfortable with using
themes based on Theme.Holo for pre-Android 5.0 devices,
appcompat-v7 may be much more of an impediment than an advance.
appcompat-v7 is a tool, not a religion — use it where it clearly adds
value to you and your app.
DO start planning for Google’s next major theme overhaul.
Google, of course, is portraying Material Design as being The One
True UI Design. Google will probably get irritated when people
point out that Theme.Material is the third major theme in
the six-year production history of Android, and so assuming
that Theme.Material is “the be-all and end-all” of themes is
unrealistic. Whether the next-generation theme is a refinement on
Material Design or a larger overhaul remains to be seen. But you
should be taking into account that we may well wind up going through
this same process in, say, early 2018. The more you can isolate
the theme-related changes from the rest of your app, the more likely
it is that you will be able to accommodate future theme changes
with less work.
The Android Design Support Library
In 2014, to much fanfare, Google released their first edition of
the Material Design guidelines.
What was missing was an actual implementation of most of these guidelines.
Beyond the obvious question of “how do you know that it will work well
if you have not tried it?”, it put Android developers in the unenviable
position of being pressured to make their apps “look more material” without
having anything really to do that.
In the months that followed Google I|O 2014, various developers took
this implementation gap as a challenge and created their own implementations
of many bits of Material Design. Much of this was released in the form
of open source components, easily added to an app via dependencies
added to a project’s build.gradle file (at least, for Android Studio
developers and other Gradle users).
In 2015, to a bit less fanfare, Google
released
the Android Design Support Library. The vision is that this would be
the official implementation of many Material Design core components,
like floating action buttons (FABs), snackbars, and the like.
This chapter explores some components from the Android Design Support
Library. This chapter also explores some independent implementations
of the same components, particularly ones that seem to be superior to
what Google is offering at present.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar. You also
should read the chapter on
the appcompat-v7 action bar backport.
Note that the examples in this chapter are clones of a couple from the core
chapters. This chapter’s prose was written assuming that you were familiar
with those samples, so you may need to go back and review them as needed.
One of the book samples makes use of the animator framework.
GUIs and the Support Package
Many developers think that the libraries in the Android Support Package
are purely backports. They then get confused when they realize that
certain classes, like ViewPager, are not part of the core Android
framework for any API level and exist only in the Android Support
Package.
In truth, a lot of what is in the Android Support Package consists of
backports: fragments, the action bar, NotificationCompat, and so on.
However, the Android Support Package really consists of code that
Google wants to make available to developers that can be used right
away, even on older devices.
Many pieces of the Android Support Package are GUI-related, yet are
not backports:

	
support-v4 and support-v13 have the aforementioned ViewPager

	
cardview-v7 has CardView

	
recyclerview-v7 has RecyclerView

	
leanback-v17 has classes for “the ten-foot UI” approach used for
Android apps appearing on televisions, such as via Android TV boxes

Now, we can add the Android Design Support Library to that list.
Right now, this library is focused on Material Design components,
and that is likely to remain its near-term focus. It remains to be
seen if other GUI components, not specifically tied to Material
Design, wind up in the Android Design Support Library, in
support-v4/support-v13, or in other libraries.
Adding the Library… and What Comes With It
On the surface, Android Studio users can simply add
com.android.support:design:... (for some version number
for ..., such as 25.1.1) as a dependency:

implementation 'com.android.support:design:25.1.1'

However, this library has a transitive dependency that pulls
in appcompat-v7. Most pieces of the Android Design Support
Library do indeed seem to require that you use appcompat-v7,
using Theme.AppCompat, AppCompatActivity, and friends.
This is true even if you planned on using Theme.Material
itself, with a minSdkVersion of 21 or higher.
There are two ways to work around this appcompat-v7 requirement:

	Use a third-party implementation of the same GUI element

	Use CWAC-CrossPort, described in the next section

Introducing CWAC-CrossPort
CWAC-CrossPort is a library,
published by the author of this book, that contains a subset of the GUI elements
from the Design Support library. All references to appcompat-v7 have been
removed, replaced with equivalents from Theme.Material. As such, you can use
CWAC-CrossPort on apps with a minSdkVersion of 21 or higher, to get the Material
Design elements from the Design Support library, but without the appcompat-v7
baggage.
CWAC-CrossPort does not include everything from the Design Support library,
but it does include most of it.
As with the rest of the CWAC libraries, using it requires that you add
the CWAC artifact repository to your Gradle configuration:

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

Then, add a dependency on the artifact itself, for some version:

dependencies {
 implementation 'com.commonsware.cwac:crossport:0.3.0'
}

Snackbars: Sweeter than Toasts
The Toast has been in Android since the beginning. It allows you
to pop up a message to show the user, one that does not interfere with
the rest of your activity layout. And, it is fairly easy to use.
However, some people get burned by Toast:

	A Toast is modeless, so you cannot get user input via a Toast

	Because a Toast is modeless, it is time-limited, and therefore
the user might never see your message, because the user is not glancing
at the screen during the short window your Toast is visible

	A Toast is a separate window from the window that is displaying your
activity, so your Toast will remain visible even if the user navigates
to some other activity, which can be annoying at times

The Material Design guidelines instead call for the use of a “snackbar”,
and the Design Support Library offers a Snackbar implementation of this
UI pattern. In contrast to a Toast:

	A Snackbar is part of your activity’s UI, and so it can collect input
from the user, while it is around, usually in the form of some sort of
“action”

	A Snackbar can be time-limited (for information notices) or durable
(for errors or getting user input)

	While a Snackbar is part of your activity (and will go away when
the user leaves your activity), you do not have to declare it in your
layout files

With that in mind, let’s take a look at some use cases for a Snackbar
and how they can be implemented.
Alerts
The quintessential reason to use a Toast was to display a simple
message to the user. You can use a Snackbar in the same role, with
most of the same code.
Snackbar has a static make() method, mirroring the makeText()
method on Toast. make() takes three parameters, only slightly
different from those on makeText():

	A View in the activity that wishes to show the Snackbar

	The message, in the form of a CharSequence (e.g., a String)
or a string resource ID

	The duration of the Snackbar, which is either Snackbar.LENGTH_SHORT,
Snackbar.LENGTH_LONG, or possibly something else (the documentation
is inconsistent on this point)

As with makeText() on Toast, simply calling make() on Snackbar
creates a Snackbar object for you, but does not display anything. You
need to call show() on the Snackbar instance to get it to appear.
The DesignSupport/Snackbar
sample project is a clone of the Threads/AsyncDemo sample from earlier
in the book. The app shows a list of 25 Latin words, progressively
added to the list via an AsyncTask. When the list is fully populated,
the original sample would display a Toast, from onPostExecute()
of the AsyncTask.
The revised sample substitutes a Snackbar:

 @Override
 protected void onPostExecute(Void unused) {
 Snackbar.make(getListView(), R.string.done,
 Snackbar.LENGTH_LONG).show();

 task=null;
 }

(from DesignSupport/Snackbar/app/src/main/java/com/commonsware/android/snackbar/async/AsyncDemoFragment.java)
The Snackbar will be centered along the bottom:

[image: Official Snackbar]

Figure 492: Official Snackbar
Unfortunately, there does not seem to be much support for styling
the look of the Snackbar. To do this manually, you can obtain
the actual View for the Snackbar via getView(). While you
should make few assumptions about what this View actually is,
you should be able to call setters on that View to change things
like background colors.
Also note that the user can get rid of a Snackbar via a swipe
gesture, in addition to allowing the Snackbar to time out on its own.
This is not possible with Toast, as a Toast is modeless.
Action Bars. No, Not Those Action Bars.
We can expand upon the user interaction with a Snackbar by adding
an action to it. To do this, just call setAction() on the Snackbar
after creating it, passing in the display string for the action (what
the user will see on the Snackbar) and a View.OnClickListener
that will get control when the user taps on that action. The look and
feel of the action is up to the Snackbar implementation.
The DesignSupport/SnackbarAction
sample project is a clone of the previous sample, adding one of
these actions. Specifically, once the list is loaded, we want a “Restart”
action to clear the list and load it again. Perhaps the user found
loading the list to be exciting and wishes to see it happen all over
again.
To that end, we should pull out the work of loading our list into
a loadModel() method that can be used from multiple places:

 private void loadModel() {
 task=new AddStringTask();
 task.execute();
 }

(from DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java)
The onCreate() method now delegates to loadModel():

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 adapter=
 new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1,
 model);

 loadModel();
 }

(from DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java)
And, more importantly for this section, we also call loadModel()
from the View.OnClickListener of the action that we add to our
Snackbar:

 @Override
 protected void onPostExecute(Void unused) {
 Snackbar munchie=Snackbar.make(getListView(), R.string.done,
 Snackbar.LENGTH_LONG);

 munchie.setAction(R.string.snackbar_action_restart,
 new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 adapter.clear();
 loadModel();
 }
 });

 munchie.show();

 task=null;
 }

(from DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java)
The action will appear on the Snackbar itself:

[image: Official Snackbar, with an Action]

Figure 493: Official Snackbar, with an Action
Tapping the action triggers the listener, which in our case clears
the list and starts the load all over again.
CWAC-CrossPort
CWAC-CrossPort supports Snackbar, with all the same features as are in the
original Design Support implementation. The
DesignSupport/SnackbarActionCP
sample project is a clone of the previous sample, where we have migrated to
CWAC-CrossPort.
Our app/build.gradle file not only adds the CWAC-CrossPort dependency, but it
sets the minSdkVersion to 21:

apply plugin: 'com.android.application'

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.android.support:support-fragment:27.1.1'
 implementation 'com.commonsware.cwac:crossport:0.3.0'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 21
 targetSdkVersion 27
 applicationId 'com.commonsware.android.snackbar.action.crossport'
 }
}

(from DesignSupport/SnackbarActionCP/app/build.gradle)
Removing appcompat-v7 has rippling effects across the rest of the code:

	We switch to inheriting from Theme.Material.Light.DarkActionBar in
Theme.Apptheme, replacing the former Theme.AppCompat theme

	We change the theme colors to use the android: prefix (e.g., android:colorPrimary),
instead of the bare names used by appcompat-v7

	Our activity now just inherits from Activity, instead of AppCompatActivity

	Our fragment now just inherits from android.app.Fragment, instead of
android.support.v4.app.Fragment

	Our Snackbar import is now for com.commonsware.cwac.crossport.design.widget.Snackbar

Otherwise, the code is identical, and we get identical results, though with
an inverse theme and adjusted title bar, to help distinguish the original from
the CWAC-CrossPort edition:

[image: CWAC-CrossPort Snackbar]

Figure 494: CWAC-CrossPort Snackbar
Absolutely FABulous
Perhaps no single element of the Material Design aesthetic has gotten
more attention than has the floating action button, or FAB. These are round
buttons, usually floating towards the bottom of the screen over top of
the main UI:

[image: Google Maps, with a Pair of FABs, on a Nexus 4]

Figure 495: Google Maps, with a Pair of FABs, on a Nexus 4
The job of the FAB is to provide rapid access to the primary action
that users might take on that particular screen. Typically, in a
master/detail sort of UI, the FAB will allow creating a new item
for the collection:

	A voice recording app showing a list of previous recordings might
have a FAB to make a new recording

	A blood pressure monitoring app showing a list of previous readings
might have a FAB to take a new reading

	A to-do list app showing the current tasks might have a FAB to add
a new task

However, the FAB does not have to be an “add” operation. The only
real limitation is that it should be a screen-level operation, not
affecting only some selected item on that screen. So, for example,
in the video recording app example, you would not use a FAB to play
back one of the existing videos… at least on a screen listing those
videos. If tapping a video in that list brings up some sort of detail
screen, that screen could possibly have a FAB to play back the video.
The Design Support library has a rudimentary FAB implementation, and
there are third-party alternatives that either add power or solve other
FAB-related problems.
FAB Mechanics
In many respects, setting up a FAB is not that different from setting
up any other widget: put it in your layout, positioned where you want
it, then access it in Java code to set up listeners. In particular,
Google’s FAB implementation supports a View.OnClickListener much like
a regular Button.
The DesignSupport/FAB
sample project is a clone of the first Snackbar sample from earlier
in this chapter. The second Snackbar sample added a “restart” action
to the Snackbar. In this sample, we instead have a “restart” action
on a FAB.
Before, we did not need a layout resource for the AsyncDemoFragment,
as it was an ordinary ListFragment and therefore would supply a
ListView automatically. However, this time, we want to have a FAB as
well, so we need our own layout file:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:drawSelectorOnTop="false" />

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/refresh"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentRight="true"
 android:layout_marginBottom="@dimen/fab_margin"
 android:layout_marginEnd="@dimen/fab_margin"
 android:layout_marginRight="@dimen/fab_margin"
 android:src="@drawable/ic_refresh_black_24dp" />

</RelativeLayout>

(from DesignSupport/FAB/app/src/main/res/layout/main.xml)
Here, the FAB (a.k.a., android.support.design.widget.FloatingActionButton)
is later in a RelativeLayout than is the ListView, so the FAB will
have higher elevation and will appear to float over the ListView.
The android:src attribute points to a drawable resource, much like
how that attribute works on an ImageButton.
However, the interesting bit is the pair of margin attributes
(android:layout_marginRight and android:layout_marginBottom). They
point to a fab_margin dimension resource, one with some specific values
required due to bugs (or curious implementation choices) in Google’s FAB
implementation.
By default, the fab_margin in res/values/dimens.xml is used, which
has a dimension of 0dp:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="fab_margin">0dp</dimen>
</resources>

(from DesignSupport/FAB/app/src/main/res/values/dimens.xml)
You might think that this would cause the FAB to be slammed up against
the side and bottom of the RelativeLayout. However, the FAB has built-in
margins… on older devices.
But, for whatever reason, on API Level 21+, that automatic margin vanishes.
So, we have another definition of fab_margin, in res/values-v21/dimens.xml,
setting it to 16dp:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="fab_margin">16dp</dimen>
</resources>

(from DesignSupport/FAB/app/src/main/res/values-v21/dimens.xml)
Furthermore, Google’s Material Design docs state that there should be
24dp margin on tablets, not 16dp. So, we have a third definition
of fab_margin, in res/values-sw720dp-v21, to set the margin to 24dp:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="fab_margin">24dp</dimen>
</resources>

(from DesignSupport/FAB/app/src/main/res/values-sw720dp-v21/dimens.xml)
It is possible that a full implementation of this would need a fourth
fab_margin value, for Android 4.x tablets, where fab_margin would
be set to something that gives a 24dp margin but takes into account
the automatic margin that the FAB seems to have prior to API Level 21.
This sample avoids this, going with the automatic margin on all
tablets, regardless of API level.
The Java code is fairly straightforward, retrieving the FAB in
onViewCreated() and hooking up a View.OnClickListener to the
FAB, where that listener is the AsyncDemoFragment itself:

 @Override
 public void onViewCreated(View v, Bundle savedInstanceState) {
 super.onViewCreated(v, savedInstanceState);

 getListView().setScrollbarFadingEnabled(false);
 setListAdapter(adapter);

 FloatingActionButton fab=v.findViewById(R.id.refresh);

 fab.setOnClickListener(this);
 }

(from DesignSupport/FAB/app/src/main/java/com/commonsware/android/fab/async/AsyncDemoFragment.java)
In onClick(), if the AsyncTask is still running, we cancel()
it. Then, we clear the list and kick off a fresh task via the same
sort of loadModel() method as seen in the second Snackbar example:

 @Override
 public void onClick(View view) {
 if (task!=null) {
 task.cancel(false);
 }

 adapter.clear();
 loadModel();
 }

 void loadModel() {
 task=new AddStringTask();
 task.execute();
 }

(from DesignSupport/FAB/app/src/main/java/com/commonsware/android/fab/async/AsyncDemoFragment.java)
This gives us our FAB:
Coordinating with Snackbars
However, what the above screenshots do not illustrate is what happens
when our Snackbar appears:

[image: Official FAB, Conflicting with the Snackbar]

Figure 496: Official FAB, Conflicting with the Snackbar
The fact that the Snackbar overlaps the FAB should not be much of a
surprise. After all, the Snackbar overlaps the ListView as well. A
Toast would also overlap the list and FAB. Hence, to some extent, the
fact that there is this lack of coordination between the Snackbar and
the FAB seems to be fairly normal.
That being said, the Design Support library has a container designed for
coordinating between different children as those children animate and
scroll. This container — CoordinatorLayout — is a subclass of FrameLayout,
meaning other than Z-axis ordering (elevation) and gravity, it has no
other notable layout rules. It merely exists to perform this sort of
coordination.
As it turns out, CoordinatorLayout has special awareness of
Snackbar and the FAB, so simply using CoordinatorLayout will cause
the FAB to slide upwards to make room for the Snackbar.
The DesignSupport/CoordinatedFAB
sample project is a clone of the previous FAB example, except that
we switch from a RelativeLayout root container to a CoordinatorLayout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:drawSelectorOnTop="false" />

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/refresh"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_marginBottom="@dimen/fab_margin"
 android:layout_marginEnd="@dimen/fab_margin"
 android:layout_marginRight="@dimen/fab_margin"
 android:src="@drawable/ic_refresh_black_24dp" />

</android.support.design.widget.CoordinatorLayout>

(from DesignSupport/CoordinatedFAB/app/src/main/res/layout/main.xml)
Since CoordinatorLayout is based on FrameLayout, not RelativeLayout,
we have to adjust the layout rules on the FAB to match, using android:layout_gravity
to position the FAB towards the bottom right corner.
With no other changes, we now get coordinated movements of the FAB
and the Snackbar as the Snackbar appears and disappears:

[image: Official FAB, Coordinated with the Snackbar]

Figure 497: Official FAB, Coordinated with the Snackbar
CWAC-CrossPort
CWAC-CrossPort also has ports of FloatingActionButton and CoordinatorLayout,
as can be seen in the
DesignSupport/CoordinatedFABCP
sample project.
In addition to the sorts of changes needed before (e.g., replace appcompat-v7
with crossport, change imports, change the theme), our layout now uses
crossport classes:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:drawSelectorOnTop="false"
 />

 <com.commonsware.cwac.crossport.design.widget.FloatingActionButton
 android:id="@+id/refresh"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_marginBottom="@dimen/fab_margin"
 android:layout_marginEnd="@dimen/fab_margin"
 android:src="@drawable/ic_refresh_black_24dp"/>

</android.support.design.widget.CoordinatorLayout>

(from DesignSupport/CoordinatedFABCP/app/src/main/res/layout/main.xml)
And, as before, we get the same results as with the official implements, just
without the appcompat-v7 overhead:

[image: Coordinated FAB CrossPort Demo]

Figure 498: Coordinated FAB CrossPort Demo
Third-Party FABs… and FAMs
The Design Support implementation of a FAB works, and it works nicely
“out of the box” with CoordinatorLayout. However, it implements only
a subset of the Material Design FAB capabilities, let alone related
structures like the floating action menu (FAM).
As a result, there are
many FAB projects listed on the Android Arsenal,
offering other implementations of a FAB.
In addition to complete FAB and FAM implementations, developers
have been publishing libraries that add on other Material Design
features to existing FAB implementations, such as:

	Wrapping a progress bar around a FAB,
perhaps to show the progress of some work triggered by a previous click
on the FAB

	Using a “material sheet”
or a “floating action toolbar”
as an alternative to the FAM pattern

Material Tabs with TabLayout
Android has had a myriad of tab implementations over the years:

	
TabHost and TabWidget

	
FragmentTabHost and TabWidget

	the now-deprecated action bar tabs

	
PagerTabStrip, used in conjunction with a ViewPager

The Design Support library adds yet another tab implementation: TabLayout.
Specifically, this implementation’s claim to fame is a faithful implementation
of a subset of Google’s Material Design guidelines for how tabs should
look and behave.
TabLayout can be used with or without a ViewPager. If you elect to skip
the ViewPager, TabLayout works in a form reminiscent of action bar
tabs, where it is responsible for the tab UI and you are responsible for
updating the rest of your UI based upon the chosen tab (e.g., commit a
FragmentTransaction). If you elect to use a ViewPager, TabLayout
can lightly integrate with the ViewPager, so navigating by one means
(e.g., swiping the pager) updates the other UI (e.g., changing the selected
tab).
From a layout standpoint, you use TabLayout much like you would use
TabWidget: put it where the tabs should go. Since Material Design
wants the tabs on top, that means that typically you would put TabLayout
inside a vertical LinearLayout, with the actual tabbed content
beneath the TabLayout.
This is illustrated in the
DesignSupport/TabLayout
sample project. It is based on the original ViewPager samples, showing
a set of editors in pages, this time using a TabLayout as the tab implementation
(as opposed to PagerTabStrip or the TabPagerIndicator from the ViewPagerIndicator
library).
The layout loaded by the activity has a setup much as described above:
a vertical LinearLayout wrapped around a TabLayout and our ViewPager:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <android.support.design.widget.TabLayout
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </android.support.v4.view.ViewPager>
</LinearLayout>

(from DesignSupport/TabLayout/app/src/main/res/layout/main.xml)
TabLayout can have its tabs operate in one of two modes: fixed and scrollable.
With fixed tabs, all tabs will be on the screen at all times, where they divide
the available horizontal space between them. This works fine for just a few
tabs. But for lots of tabs, each tab becomes very small, making it unlikely
that the user can read the tab caption. Scrollable tabs each take up as much
room as their caption requires, and if the roster of tabs becomes too wide
for the screen, the user can swipe the tabs.
The sample app demonstrates both of these approaches, using a checkable
action bar item to toggle between three editors with fixed tabs or ten
editors with scrollable tabs. The default state is to be in fixed-tab mode:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/fixed"
 android:title="@string/menu_fixed"
 android:checkable="true"
 android:checked="true"
 app:showAsAction="never"/>
</menu>

(from DesignSupport/TabLayout/app/src/main/res/menu/actions.xml)
The entire app was switched over to use AppCompatActivity and the
fragment backport, as that is what the Design Support library requires.
Beyond that, the EditorFragment is pretty much unchanged from the
original implementations, just showing a large EditText widget with
a hint based on the page number.
Our PagerAdapter — SamplePagerAdapter — has one change beyond
the switch to the fragment backport. To accommodate switching between
fixed and scrollable tabs, rather than hard-coding the number of pages,
the adapter offers a setPageCount() method to stipulate the number
of pages. The page count defaults to 3.

package com.commonsware.android.tablayout;

import android.content.Context;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;

public class SampleAdapter extends FragmentPagerAdapter {
 private final Context ctxt;
 private int pageCount=3;

 public SampleAdapter(Context ctxt, FragmentManager mgr) {
 super(mgr);

 this.ctxt=ctxt;
 }

 @Override
 public int getCount() {
 return(pageCount);
 }

 @Override
 public Fragment getItem(int position) {
 return(EditorFragment.newInstance(position));
 }

 @Override
 public String getPageTitle(int position) {
 return(EditorFragment.getTitle(ctxt, position));
 }

 void setPageCount(int pageCount) {
 this.pageCount=pageCount;
 }
}

(from DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/SampleAdapter.java)
In MainActivity, in onCreate(), we set up the ViewPager and
the TabLayout:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 pager=(ViewPager)findViewById(R.id.pager);
 adapter=new SampleAdapter(this, getSupportFragmentManager());
 pager.setAdapter(adapter);

 tabs=(TabLayout)findViewById(R.id.tabs);
 tabs.setupWithViewPager(pager);
 tabs.setTabMode(TabLayout.MODE_FIXED);
 }

(from DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/MainActivity.java)
The bulk of the TabLayout setup work is handled with one call
to setupWithViewPager(). This:

	Creates one tab for every page, based on whatever the PagerAdapter
in the ViewPager is reporting at the time of this call

	Sets up the appropriate listeners, so that taps on a tab switches
pages in the ViewPager, and swipes between pages update the selected
tab

We also call setTabMode(TabLayout.MODE_FIXED), as we are going with
fixed tabs at the outset.
This gives us our three tabs:

[image: TabLayout Sample, As Initially Launched, Showing Three Fixed Tabs]

Figure 499: TabLayout Sample, As Initially Launched, Showing Three Fixed Tabs
But we also have that menu resource, to allow the user to switch between
fixed and scrollable tabs. We inflate() that resource in onCreateOptionsMenu()
as usual, and we handle the checked state change in onOptionsItemSelected():

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.fixed) {
 item.setChecked(!item.isChecked());

 if (item.isChecked()) {
 adapter.setPageCount(3);
 tabs.setTabMode(TabLayout.MODE_FIXED);
 }
 else {
 adapter.setPageCount(10);
 tabs.setTabMode(TabLayout.MODE_SCROLLABLE);
 }

 adapter.notifyDataSetChanged();

 if (pager.getCurrentItem()>=3) {
 pager.setCurrentItem(2);
 }

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/MainActivity.java)
If the user taps on our checkable overflow item, we invert the item’s
checked state (which, unfortunately, does not happen automatically).
Then, we call setPageCount() on the SampleAdapter and
setTabMode() on the TabLayout based on the now-current checked
state, to either have three fixed tabs or ten scrollable tabs.
Changing the page count of the SampleAdapter requires calling
notifyDataSetChanged() to alert the ViewPager that the data
set changed and it needs to repaint. However, while the associated TabLayout
repaints, the selected page is left alone. That is fine when going from
3 pages to 10, but it could be a problem when going from 10 pages to 3, if
the selected page is after those three. So, we use setCurrentItem() to
manually move the selection to the last valid page, if that situation
occurs.
Clicking on the “Fixed” checkable overflow item, and thereby unchecking
it from its initial checked state, gives us ten scrollable tabs:

[image: TabLayout Sample, Showing Scrollable Tabs]

Figure 500: TabLayout Sample, Showing Scrollable Tabs
Note that while this particular sample app shows TabLayout working
with a ViewPager, a ViewPager is not required to be able to use
TabLayout. You can simply have the TabLayout plus your own system
for whatever the tabs switch in your UI. Then, you can use methods
like addTab() and setOnTabSelectedListener() to set up tabs and
find out when the user taps on them, so you can adjust your UI to match
the selected tab. That being said, many users may come to expect that
they can horizontally swipe to move between pages of content, and so
definitely consider using a ViewPager if practical.
CWAC-CrossPort
CWAC-CrossPort has a port of TabLayout. The
DesignSupport/TabLayoutCP
sample project is identical to the DesignSupport/TabLayout sample app, except
that it uses CWAC-CrossPort. The same sorts of modifications as seen earlier
in this chapter are required, such as changing the layout to refer to the
appropriate package for the ported TabLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <com.commonsware.cwac.crossport.design.widget.TabLayout
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </android.support.v4.view.ViewPager>
</LinearLayout>

(from DesignSupport/TabLayoutCP/app/src/main/res/layout/main.xml)
In this particular sample, since we are using menu resources, we have one additional
change to make: switching from app:showAsAction to android:showAsAction, as
we are using the native action bar:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/fixed"
 android:title="@string/menu_fixed"
 android:checkable="true"
 android:checked="true"
 android:showAsAction="never"/>
</menu>

(from DesignSupport/TabLayoutCP/app/src/main/res/menu/actions.xml)
Floating Labels
The EditText widget supports the android:hint attribute. The hint is
shown in the EditText when the EditText is otherwise empty. However,
if the EditText has actual text in it (whether typed by the user, loaded
from a database, or whatever), the hint is not shown. This saves screen
space compared to having a TextView label always visible; the hint
itself serves as the label.
However, the hint-as-label pattern has a major drawback: the hint is not
visible if there is text in the EditText. In the long term, as the user
learns your UI, this is not a big problem. However, particularly early
on, the user might look at a filled-in field and wonder what that field
is for. This is even more likely in cases where the user is not the one
who typed the text into the field in the first place, such as editing a
database entry pulled from a server, where somebody (or something) else
had created the entry in the first place.
The “floating label” pattern starts with a hint in the field. However,
when the field is used, the hint animates out of the field itself
and “floats” above the field in a shrunken form. This way, the label
is always visible. However, in its smaller floating state, it takes
up less screen space, yet while the field is otherwise empty, we can take
advantage of that space to offer a “full-size” label instead.
The Design Support library offers TextInputLayout as a way of implementing
the floating label pattern. This is not a subclass of EditText,
but rather a ViewGroup that is wrapped around the EditText. This
is convenient, insofar as it allows developers to use other EditText
subclasses and still get the floating-label behavior.
TextInputLayout also supports an error state, where we can optionally
show an error message below the EditText, such as an indication of an
invalid bit of data entry.
Using TextInputLayout
The
DesignSupport/FloatingLabel
sample project is a clone of an earlier sample
where we allowed the user to enter in a URL and then, upon a button click,
would parse the URL into a Uri, wrap that in an ACTION_VIEW Intent,
then try to start an activity for that Intent.
The original sample’s layout looks like:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <EditText
 android:id="@+id/url"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/url"
 android:inputType="textUri"/>

 <Button
 android:id="@+id/browse"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="showMe"
 android:text="@string/show_me"/>

</LinearLayout>

(from Activities/LaunchWeb/app/src/main/res/layout/main.xml)
In this revised sample,
the original EditText is augmented with a TextInputLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <Button
 android:id="@+id/browse"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="showMe"
 android:text="@string/show_me">

 <requestFocus/>
 </Button>

 <android.support.design.widget.TextInputLayout
 android:id="@+id/til"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <EditText
 android:id="@+id/url"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/url"
 android:inputType="textUri"/>
 </android.support.design.widget.TextInputLayout>

</LinearLayout>

(from DesignSupport/FloatingLabel/app/src/main/res/layout/main.xml)
You will notice that there are a few changes here:

	The EditText is wrapped by an android.support.design.widget.TextInputLayout
container that provides the actual floating label itself

	The Button is moved ahead of the EditText, in terms of the top-down
organization of our vertical LinearLayout

	The Button has a [requestFocus/] child element, indicating to Android
that this widget should get the focus first

Those latter two changes are due to one major limitation with
TextInputLayout: the hint moves out of the EditText into the floating
position when either there is text in the EditText or the EditText
gains the focus. Strangely, simply putting the Button before the
EditText is insufficient, as is simply adding [requestFocus/] on
the Button. Both have to be implemented to cause the TextInputLayout
to show the hint in its default location at the outset.
The Java code is also augmented a bit from the original sample, to
take advantage of the error-reporting feature of TextInputLayout:

package com.commonsware.android.design.til;

import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.support.design.widget.TextInputLayout;
import android.support.v7.app.AppCompatActivity;
import android.util.Patterns;
import android.view.View;
import android.widget.EditText;

public class LaunchDemo extends AppCompatActivity {
 private TextInputLayout til;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 til=(TextInputLayout)findViewById(R.id.til);
 til.setErrorEnabled(true);
 }

 public void showMe(View v) {
 EditText urlField=(EditText)findViewById(R.id.url);
 String url=urlField.getText().toString();

 if (Patterns.WEB_URL.matcher(url).matches()) {
 startActivity(new Intent(Intent.ACTION_VIEW, Uri.parse(url)));
 }
 else {
 til.setError(getString(R.string.til_error));
 }
 }
}

(from DesignSupport/FloatingLabel/app/src/main/java/com/commonsware/android/design/til/LaunchDemo.java)
The Patterns class in Android contains a series of stock regular
expressions. One, WEB_URL, is designed to see if the URL that was
entered looks like a Web URL. When the user taps the button, if the
pattern matches what the user entered in the field, we go ahead
and try to start the activity. If not, we show an error.
To show the error, we need to do two things:

	Up front, we call setErrorEnabled(), to tell TextInputLayout to
reserve some space for an error message

	At the point where we want to show the error, we call setError()
on the TextInputLayout

When we run the app, the TextInputLayout leaves the hint in the EditText
itself, as the EditText is empty and does not have the focus:

[image: FloatingLabel Sample, As Initially Launched]

Figure 501: FloatingLabel Sample, As Initially Launched
Once the user taps on the field, though, the hint “floats” above the
EditText:

[image: FloatingLabel Sample, After Focus Change]

Figure 502: FloatingLabel Sample, After Focus Change
And, if the user tries entering an invalid URL, the error message appears
when the user taps the button to try to visit the invalid URL:

[image: FloatingLabel Sample, After Erroneous Data Entry]

Figure 503: FloatingLabel Sample, After Erroneous Data Entry
CWAC-CrossPort
CWAC-CrossPort has a port of TextInputLayout and TextInputEditText, the latter
being the EditText subclass that actually winds up being used with a
TextInputLayout.
The
DesignSupport/FloatingLabelCP
sample project is a port of the FloatingLabel sample, converted to using
CWAC-CrossPort. The standard sorts of changes seen earlier in this chapter,
such as artifact dependencies and themes, are needed. In addition, the layout
needs to change to use the CWAC-CrossPort editions of the classes:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <Button
 android:id="@+id/browse"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="showMe"
 android:text="@string/show_me">

 <requestFocus />
 </Button>

 <com.commonsware.cwac.crossport.design.widget.TextInputLayout
 android:id="@+id/til"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <com.commonsware.cwac.crossport.design.widget.TextInputEditText
 android:id="@+id/url"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/url"
 android:inputType="textUri" />
 </com.commonsware.cwac.crossport.design.widget.TextInputLayout>

</LinearLayout>

(from DesignSupport/FloatingLabelCP/app/src/main/res/layout/main.xml)
Third-Party Floating Labels
As with the rest of the Design Support library, TextInputLayout
requires appcompat-v7. There are
other implementations of the floating label pattern
that do not require appcompat-v7, or perhaps offer additional features
that you may want.
FloatLabeledEditText
is one such implementation. It lacks the error message capability of
TextInputLayout. However:

	It only floats the hint when there is text in the EditText widget,
not when the EditText gets the focus, and

	It does not require appcompat-v7

The
DesignSupport/FloatingLabelNative
sample project is a clone of the previous sample, where the
TextInputLayout is replaced by a FloatLabeledEditText:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <com.wrapp.floatlabelededittext.FloatLabeledEditText
 android:id="@+id/til"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <EditText
 android:id="@+id/url"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/url"
 android:inputType="textUri"/>
 </com.wrapp.floatlabelededittext.FloatLabeledEditText>

 <Button
 android:id="@+id/browse"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="showMe"
 android:text="@string/show_me"/>

</LinearLayout>

(from DesignSupport/FloatingLabelNative/app/src/main/res/layout/main.xml)
As with TextInputLayout, FloatLabeledEditText is a decorating
container around a regular EditText. Here, since the hint is left
alone when the EditText gets focus, we have it back in its original
position at the top of the form.
Visually, it is fairly similar to TextInputLayout, albeit with the
native action bar:

[image: FloatingLabelNative Sample, As Initially Launched]

Figure 504: FloatingLabelNative Sample, As Initially Launched
[image: FloatingLabelNative Sample, After Floating]
Advanced RecyclerView
RecyclerView is the “Swiss army knife” of Android selection widgets.
You can use it for a wide range of scenarios, well beyond what
classic AdapterView widgets — like ListView or GridView — could
handle.
In this chapter, we will “go outside the (AdapterView) box” and
explore some advanced uses of RecyclerView.
Prerequisites
Understanding this chapter requires that you have read
the core chapter on RecyclerView.
One section involves the use of custom XML drawables.
Another section demonstrates using content pulled from
the MediaStore ContentProvider.
This chapter also covers things like action modes
and comparisons with other advanced ListView techniques.
What About Cursors?
So far, our model data has been a simple static array. Often times, though,
we need to be working with model data culled from a database or
ContentProvider. It may be that, for other reasons, we want to convert
the Cursor we get back from queries into an array of ordinary Java
objects. However, there is nothing stopping us from using a Cursor
more directly as the model for a RecyclerView.
The RecyclerView.Adapter is responsible for teaching the
RecyclerView.ViewHolder the model data to bind against.
The RecyclerView.Adapter base class is oblivious to how that model
data is organized: array, ArrayList, Cursor, JSONArray, etc. And
the actual bind-the-data logic for the ReyclerView.ViewHolder is our
responsibility — again, the base class is oblivious to where the
data is coming from. Hence, we can create our own protocol for passing
the model data for the needed position from the RecyclerView.Adapter
to the RecyclerView.ViewHolder. If we want to use a Cursor as the
vehicle for doing this, we are welcome to do so.
This is illustrated in the
RecyclerView/VideoList
sample project, which is a clone of the VideoList project introduced
in the chapter on the MediaStore ContentProvider.
In the original sample, the list was a ListView; in this sample, the
list is a RecyclerView.
The core “plumbing” of the app is akin to the previous RecyclerView
samples, such as using RecyclerViewActivity for handling getting
the RecyclerView on the screen. However, our row layout is now
based on the original VideoList row:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:padding="8dp"
 android:background="?android:attr/selectableItemBackground">

 <ImageView
 android:id="@+id/thumbnail"
 android:layout_width="64dp"
 android:layout_height="64dp"
 android:contentDescription="@string/thumbnail"/>

 <TextView
 android:id="@android:id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="8dp"
 android:layout_gravity="center_vertical"
 android:textSize="24sp"/>

</LinearLayout>

(from RecyclerView/VideoList/app/src/main/res/layout/row.xml)
However, as we will now be accessing media, we need the READ_EXTERNAL_STORAGE
permission, so we request that in the manifest:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.recyclerview.videolist"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

 <application
 android:icon="@drawable/ic_launcher"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from RecyclerView/VideoList/app/src/main/AndroidManifest.xml)
And our app/build.gradle file gives us a targetSdkVersion of 23,
requiring us to deal with runtime permissions on Android 6.0+:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 implementation 'com.android.support:support-fragment:27.1.1'
 implementation 'com.squareup.picasso:picasso:2.5.2'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 16
 targetSdkVersion 27
 }
}

(from RecyclerView/VideoList/app/build.gradle)
onCreate() sets up the empty RecyclerView with a LinearLayoutManager
and a VideoAdapter (that we will examine shortly). However, we also
confirm whether we have READ_EXTERNAL_STORAGE already — if yes, we
call loadVideos() to get the videos. If we do not have permission, and we
are not in the middle of requesting permission, we ask for permission using
requestPermissions():

 private static final String STATE_IN_PERMISSION="inPermission";
 private static final int REQUEST_PERMS=137;
 private boolean isInPermission=false;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setLayoutManager(new LinearLayoutManager(this));
 setAdapter(new VideoAdapter());

 if (state!=null) {
 isInPermission=
 state.getBoolean(STATE_IN_PERMISSION, false);
 }

 if (hasFilesPermission()) {
 loadVideos();
 }
 else if (!isInPermission) {
 isInPermission=true;

 ActivityCompat.requestPermissions(this,
 new String[] {Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_PERMS);
 }
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
hasFilesPermission() just uses checkSelfPermission() to see whether
we can read external storage:

 private boolean hasFilesPermission() {
 return(ContextCompat.checkSelfPermission(this,
 Manifest.permission.READ_EXTERNAL_STORAGE)==
 PackageManager.PERMISSION_GRANTED);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
We then call loadVideos() once we have permission, plus keep track of
whether or not we are in the process of requesting permissions (so we do
not raise the permission dialog again if we undergo a configuration
change while the permission dialog is already on-screen):

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
 }

 @Override
 public void onRequestPermissionsResult(int requestCode,
 String[] permissions,
 int[] grantResults) {
 isInPermission=false;

 if (requestCode==REQUEST_PERMS) {
 if (hasFilesPermission()) {
 loadVideos();
 }
 else {
 finish(); // denied permission, so we're done
 }
 }
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
loadVideos() just calls initLoader() to request that we load
the videos from the MediaStore:

 private void loadVideos() {
 getSupportLoaderManager().initLoader(0, null, this);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
The CursorLoader logic, for getting details about videos from the
MediaStore, is pretty much the same as before, other than providing
the Cursor to the VideoAdapter when it is ready:

 @Override
 public Loader<Cursor> onCreateLoader(int arg0, Bundle arg1) {
 return(new CursorLoader(this,
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 null, null, null,
 MediaStore.Video.Media.TITLE));
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 ((VideoAdapter)getAdapter()).setVideos(c);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 ((VideoAdapter)getAdapter()).setVideos(null);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
VideoAdapter is another subclass of RecyclerView.Adapter, this time
with smarts for dealing with a Cursor as the source of model data:

 class VideoAdapter extends RecyclerView.Adapter<RowController> {
 Cursor videos=null;

 @Override
 public RowController onCreateViewHolder(ViewGroup parent, int viewType) {
 return(new RowController(getLayoutInflater()
 .inflate(R.layout.row, parent, false)));
 }

 void setVideos(Cursor videos) {
 this.videos=videos;
 notifyDataSetChanged();
 }

 @Override
 public void onBindViewHolder(RowController holder, int position) {
 videos.moveToPosition(position);
 holder.bindModel(videos);
 }

 @Override
 public int getItemCount() {
 if (videos==null) {
 return(0);
 }

 return(videos.getCount());
 }
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
Specifically:

	
getItemCount() returns the count of videos from the Cursor, or 0
if the Cursor is null (mimicking the behavior of CursorAdapter, which
also treats a null Cursor as merely being one that has no rows)

	
onCreateViewHolder() creates the RowController

	
onBindViewHolder() moves the Cursor to the desired position, then
passes the Cursor over to the RowController

Also note that we have a setVideos() method that is used to associate our
Cursor of video information with the adapter. This also triggers a call
to notifyDataSetChanged(), to ensure that the RecyclerView knows that
our model has changed and it should re-render its contents.
The RowController constructor retrieves the necessary widgets
from the row and setting up an OnClickListener:

 RowController(View row) {
 super(row);

 title=row.findViewById(android.R.id.text1);
 thumbnail=row.findViewById(R.id.thumbnail);

 row.setOnClickListener(this);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)
The bindModel() method invoked by onBindViewHolder() on VideoAdapter
uses the same basic logic from the original VideoList sample to populate
the row widgets, plus holds onto the Uri and MIME type of the video in
data members for the current row:

 void bindModel(Cursor row) {
 title.setText(row.getString(
 row.getColumnIndex(MediaStore.Video.Media.TITLE)));

 videoUri=
 ContentUris.withAppendedId(
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));

 Picasso.with(thumbnail.getContext())
 .load(videoUri.toString())
 .fit().centerCrop()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(thumbnail);

 int mimeTypeColumn=
 row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);

 videoMimeType=row.getString(mimeTypeColumn);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)
The onClick() method uses those saved Uri and MIME type values for
starting up the activity to play the selected video:

 @Override
 public void onClick(View v) {
 Intent i=new Intent(Intent.ACTION_VIEW);

 i.setDataAndType(videoUri, videoMimeType);
 title.getContext().startActivity(i);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)
Other than the lack of dividers, the UI is very similar to the
original VideoList.
This sample app is used as the basis for many other samples in this
book, such as the drag-and-drop examples.
Grids
So far, we have focused on one visual representation of our collection
of model data: a vertically-scrolling list. In the AdapterView
family, a given AdapterView subclass has a specific visual
representation (ListView for a vertically-scrolling list,
GridView for a two-dimensional grid, etc.). With RecyclerView,
the choice of layout manager determines most of the visual representation,
and so switching from a list to a grid can be as simple as a single-line
change to our code.
The key, though, is the word can in the previous sentence. Depending
upon what you want to do, a grid-styled RecyclerView can be more
complicated, simply because you now have two dimensions’ worth of power
and configuration to play with.
A Simple Grid
Making a RecyclerView use a grid is a matter of swapping out
LinearLayoutManager for GridLayoutManager. In the
RecyclerView/Grid
sample project, you will see a clone of the CardRippleList3 sample app,
where we are now using GridLayoutManager in onCreate()
of MainActivity:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setLayoutManager(new GridLayoutManager(this, 2));
 setAdapter(new IconicAdapter());
 }

(from RecyclerView/Grid/app/src/main/java/com/commonsware/android/recyclerview/grid/MainActivity.java)
GridLayoutManager takes a number of “spans”, as well as a Context,
as constructor parameters. In the simple case, as is with this app,
“spans” will equate to “columns”: each item returned by the
RecyclerView.Adapter will go into a single-row, single-span cell.
In our case, we requested two spans, and so our result resides in two
columns:

[image: Grid RecyclerView Demo]

Figure 505: Grid RecyclerView Demo
In this case, this is a “true” grid, with rows and columns of cells.
Hence, the height of a row is determined by the tallest cell in that
row. The “amet” cell in the left column of the third row is taller
than required because of the word-wrap of the “consectetuer” cell
in the right column of the same row, for example.
Later in this chapter, we will examine
yet another option, StaggeredGridLayoutManager, where cells do not
necessarily line up neatly in rows.
Choosing the Number of Columns
If we rotate the screen for the above sample, you will see that the
cells fit a bit better, since they are really repurposed list-style
rows:

[image: Grid RecyclerView Demo, Landscape]

Figure 506: Grid RecyclerView Demo, Landscape
However, some apps may have smaller per-cell content. Plus, we have tablets
to consider, and perhaps even televisions. It may be that you want to
determine how many spans to use based on screen size and orientation.
One approach for doing that would be to use integer resources. You
could have a res/values/ints.xml file with <integer> elements,
giving the integer a name (name attribute) and value (text of the
<integer> node). You could also have res/values-w600dp/ints.xml or
other variations of the resource, where you provide different
values to use for different screen sizes. Then, at runtime,
call getResources().getInteger() to retrieve the correct value of
the resource to use for the current device, and use that
in your GridLayoutManager constructor. Now, you are in control
over how many columns there are, by controlling how many spans
are supplied to the constructor.
Another approach,
suggested by Chiu-Ki Chan,
is to create a subclass of RecyclerView, on which you provide a custom
attribute for a desired approximate column width. Then, in your
subclass’ onMeasure() method, you can calculate the number of spans
to use to give you the desired column width.
Of course, another way to take advantage of screen space is to grow
the cells. By default, they will grow evenly, as each cell takes up
one span, and the spans are evenly sizes. However, you can change
that behavior, by attaching a GridLayoutManager.SpanSizeLookup to
the GridLayoutManager. The GridLayoutManager.SpanSizeLookup
is responsible for indicating, for a given item’s position, how
many spans it should take up in the grid. We will examine how this works
later in this chapter.
Varying the Items
So far, all of the items in the RecyclerView have had the same basic
structure, just with varying content in the widgets in those items.
But, it is entirely possible that we will want to have some items
be more substantively different, based on different layouts.
ListView and kin handle this via getViewTypeCount() and
getItemViewType() in the ListAdapter. RecyclerView and
RecyclerView.Adapter offer a similar mechanism, including their own
variant of the getItemViewType() method. In this section, we will
examine how this works, both with lists and grids.
A List with Headers
There are many cases where we want to have a list with some sort of
section headers. The look of the headers usually is substantially
different than the look of the rest of the rows, and therefore the
best way to handle this is to teach the adapter about multiple row
types.
This can be seen in the
RecyclerView/HeaderList
sample project. This is a clone of a similar project for ListView,
where we want to put the 25 Latin words into 5 groups of 5 words each,
with each group getting its own header.
Hence, our model data is now a two-dimensional String array:

 private static final String[][] items= {
 { "lorem", "ipsum", "dolor", "sit", "amet" },
 { "consectetuer", "adipiscing", "elit", "morbi", "vel" },
 { "ligula", "vitae", "arcu", "aliquet", "mollis" },
 { "etiam", "vel", "erat", "placerat", "ante" },
 { "porttitor", "sodales", "pellentesque", "augue", "purus" } };

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)
Our getItemCount() method now needs to take into account the headers,
as well as the regular rows. There is one header row per batch of items,
and so getItemCount() sums up the sizes of the batches with the extra
header rows:

 @Override
 public int getItemCount() {
 int count=0;

 for (String[] batch : items) {
 count+=1 + batch.length;
 }

 return(count);
 }

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)
In order to teach RecyclerView about our different rows, we need
to implement getItemViewType(). Unlike its counterpart on ListAdapter,
getItemViewType() can return any int value, so long as it is unique
for the row type. In fact, the recommendation is to use dedicated ID
resources to ensure that uniqueness.
To that end, we define two ID resources, in a res/values/ids.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <item type="id" name="header"/>
 <item type="id" name="detail"/>
</resources>

(from RecyclerView/HeaderList/app/src/main/res/values/ids.xml)
Then, getItemViewType() can return R.id.header or R.id.detail to
identify the two row types, and specifically which row type corresponds
to the supplied position:

 @Override
 public int getItemViewType(int position) {
 if (getItem(position) instanceof Integer) {
 return(R.id.header);
 }

 return(R.id.detail);
 }

 private Object getItem(int position) {
 int offset=position;
 int batchIndex=0;

 for (String[] batch : items) {
 if (offset == 0) {
 return(Integer.valueOf(batchIndex));
 }

 offset--;

 if (offset < batch.length) {
 return(batch[offset]);
 }

 offset-=batch.length;
 batchIndex++;
 }

 throw new IllegalArgumentException("Invalid position: "
 + String.valueOf(position));
 }

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)
This leverages a copy of the getItem() method from the original ListView
version of this sample, which returns an Integer for a header item (identifying
which header it is) and a String for detail item (identifying what
Latin word to use). Note that getItem() is not part of the
RecyclerView.Adapter protocol, but you are certainly welcome to
have one if you want it.
In onCreateViewHolder(), we can now start paying attention to
the second parameter, which we have been studiously ignoring until now.
That value, viewType, will be a value that we returned from
getItemViewType(), and it indicates what sort of RecyclerView.ViewHolder
we should return. In our case, there are only two possibilities, and so
we just inflate the appropriate layout and use a dedicated controller
class (HeaderController for headers, RowController for detail):

 @Override
 public RecyclerView.ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 if (viewType==R.id.detail) {
 return(new RowController(getLayoutInflater()
 .inflate(R.layout.row, parent, false)));
 }

 return(new HeaderController(getLayoutInflater()
 .inflate(R.layout.header, parent, false)));
 }

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)
Similarly, our binding logic in onBindViewHolder() needs to route
the right sort of model information to the proper controller:

 @Override
 public void onBindViewHolder(RecyclerView.ViewHolder holder, int position) {
 if (holder instanceof RowController) {
 ((RowController)holder).bindModel((String)getItem(position));
 }
 else {
 ((HeaderController)holder).bindModel((Integer)getItem(position));
 }
 }

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)
RowController is the same sort of setup as we have had in past
examples. HeaderController is too, though it is far simpler, as
we have only one widget needing to be updated (a TextView named
label) and we do not care about click events:

package com.commonsware.android.recyclerview.headerlist;

import android.support.v7.widget.RecyclerView;
import android.view.View;
import android.widget.TextView;

class HeaderController extends RecyclerView.ViewHolder {
 TextView label=null;
 String template=null;

 HeaderController(View row) {
 super(row);

 label=(TextView)row.findViewById(R.id.label);

 template=label.getContext().getString(R.string.header_template);
 }

 void bindModel(Integer headerIndex) {
 label.setText(String.format(template, headerIndex.intValue()+1));
 }
}

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/HeaderController.java)
The results are header rows with one look-and-feel, and detail rows
with a different look-and-feel:

[image: HeaderList RecyclerView Demo]

Figure 507: HeaderList RecyclerView Demo
A Grid-Style Table
In the discussion of RecyclerView grids, we saw that one way to
take advantage of larger screens is to have more cells, in part
by having more spans across the screen.
Another way to take advantage of screen space is to grow
the cells. By default, they will grow evenly, as each cell takes up
one span, and the spans are evenly sizes. However, you can change
that behavior, by attaching a GridLayoutManager.SpanSizeLookup to
the GridLayoutManager. The GridLayoutManager.SpanSizeLookup
is responsible for indicating, for a given item’s position, how
many spans it should take up in the grid.
One way of employing a GridLayoutManager.SpanSizeLookup is to
make a table. If you want a table, but the user should only be able
to select rows, that would be a matter of using a LinearLayoutManager
and setting up the rows with “cells” that are of consistent size per
row. For example, each row could be a horizontal LinearLayout, where
the “column” widths are determined using android:layout_weight. But
sometimes you want a table where individual cells can be clicked upon
(or selected via a five-way navigation option, like a trackball).
In this case, GridLayoutManager.SpanSizeLookup will let you indicate,
for a “column” of your output, how many spans the cell should take up.
By using a consistent number of spans for each column, you can get the
same sort of weighted column width that you might get with
LinearLayout-based rows in a LinearLayoutManager-powered
RecyclerView.
And that will make a lot more sense (hopefully) when you see an example.
The
RecyclerView/VideoTable
sample project is a clone of the VideoList sample project from earlier
in the chapter, with a few changes:

	We are going to use a GridLayoutManager, yet still organize our
output into logical rows, by having three cells per row (title,
thumbnail, and video duration)

	We are going to use GridLayoutManager.SpanSizeLookup to control the
widths of each column in our grid

	Because our cells have varying content (ImageView in one, TextView
in others), we will use different controllers for those cells, each
optimized for handling that cell’s sort of content

The two columns that will hold text (title and video duration) will use
the following layout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="?android:attr/selectableItemBackground"
 android:orientation="horizontal"
 android:padding="8dp">

 <TextView
 android:id="@android:id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:layout_marginLeft="8dp"
 android:layout_marginStart="8dp"
 android:textSize="20sp" />
</LinearLayout>

(from RecyclerView/VideoTable/app/src/main/res/layout/label.xml)
The LinearLayout root element may seem superfluous, but we are using it
for the selectableItemBackground, to provide a response when the
cell is clicked upon.
Similarly, we have a layout dedicated to the thumbnail:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:padding="8dp"
 android:background="?android:attr/selectableItemBackground">

 <ImageView
 android:id="@+id/thumbnail"
 android:layout_width="96dp"
 android:layout_height="72dp"
 android:contentDescription="@string/thumbnail"/>

</LinearLayout>

(from RecyclerView/VideoTable/app/src/main/res/layout/thumbnail.xml)
onCreate() of MainActivity is largely the same as before. This time,
though, we are creating an instance of a ColumnWeightSpanSizeLookup
class and using it for two things:

	Calling its getTotalSpans() to tell the GridLayoutManager how
many spans to use

	Using it as a GridLayoutManager.SpanSizeLookup, attaching it to the
GridLayoutManager via setSpanSizeLookup():

 ColumnWeightSpanSizeLookup spanSizer=new ColumnWeightSpanSizeLookup(COLUMN_WEIGHTS);
 GridLayoutManager mgr=new GridLayoutManager(this, spanSizer.getTotalSpans());

 mgr.setSpanSizeLookup(spanSizer);
 setLayoutManager(mgr);
 setAdapter(new VideoAdapter());

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)
The latter point means that ColumnWeightSpanSizeLookup is a subclass
of the abstract GridLayoutManager.SpanSizeLookup base class. The one
method that you need to override in a GridLayoutManager.SpanSizeLookup
subclass is getSpanSize(). Given an item’s position, getSpanSize()
returns the number of spans that the item’s cell should… um… span.
(we overload the word “span” a lot in Android…)
ColumnWeightSpanSizeLookup handles this via a set of column weights,
which it gets as an int array in the constructor. onCreate()
referenced a COLUMN_WEIGHTS static data member for the weights:

 private static final int[] COLUMN_WEIGHTS={1, 4, 1};

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)
This int array tells us both how many columns there are and how wide
each column should be, in terms of spans.
Converting the position to a column index is a matter of applying
the modulo (%) operator, so the implementation of getSpanSize() on
ColumnWeightSpanSizeLookup just returns the columnWeights value
for the desired column:

package com.commonsware.android.recyclerview.videotable;

import android.support.v7.widget.GridLayoutManager;

class ColumnWeightSpanSizeLookup extends GridLayoutManager.SpanSizeLookup {
 private final int[] columnWeights;

 ColumnWeightSpanSizeLookup(int[] columnWeights) {
 this.columnWeights=columnWeights;
 }

 @Override
 public int getSpanSize(int position) {
 return(columnWeights[position % columnWeights.length]);
 }

 int getTotalSpans() {
 int sum=0;

 for (int weight : columnWeights) {
 sum+=weight;
 }

 return(sum);
 }
}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/ColumnWeightSpanSizeLookup.java)
getTotalSpans() is a convenience method, to sum all of the column weights.
That is how many spans the GridLayoutManager will use overall, with each
column getting its specific number of spans based upon the int array.
Note that while we hard-coded the int array values in this case, there
is nothing stopping us from using <integer-array> resources to pull these
values out of the Java code, and perhaps even vary them by screen size
or other configuration variations.
All of that will set up our grid with the correct number of spans and
the right number of spans to use per column of the output. The combination
will give us the row structure, as each row’s worth of columns uses all
of the spans for that row, forcing GridLayoutManager to put subsequent
items on the next row.
The rest of the project is focused on having different widgets for those
different cells, using getItemViewType() and so on.
The VideoAdapter implementation of getItemViewType() simply returns
the position modulo 3, to return a unique value (in this case, 0, 1,
or 2):

 @Override
 public int getItemViewType(int position) {
 return(position % 3);
 }

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)
getItemCount() takes into account that there are three cells per
video, and so the number of items being managed by this adapter is
triple the number of videos:

 @Override
 public int getItemCount() {
 if (videos==null) {
 return(0);
 }

 return(videos.getCount()*3);
 }

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)
The onCreateViewHolder() and onBindViewHolder() methods take into
account those three item types, using a VideoThumbnailController
or a VideoTextController depending on the item type. Both of those
classes will inherit from a BaseVideoController, which defines a
bindModel() method that onBindViewHolder() can use:

 @Override
 public BaseVideoController onCreateViewHolder(ViewGroup parent, int viewType) {
 BaseVideoController result=null;

 switch(viewType) {
 case 0:
 result=new VideoThumbnailController(getLayoutInflater()
 .inflate(R.layout.thumbnail,
 parent, false));
 break;

 case 1:
 int cursorColumn=videos.getColumnIndex(MediaStore.Video.VideoColumns.DISPLAY_NAME);

 result=new VideoTextController(getLayoutInflater()
 .inflate(R.layout.label,
 parent, false),
 android.R.id.text1,
 cursorColumn);
 break;

 case 2:
 cursorColumn=videos.getColumnIndex(MediaStore.Video.VideoColumns.DURATION);

 result=new VideoTextController(getLayoutInflater()
 .inflate(R.layout.label,
 parent, false),
 android.R.id.text1,
 cursorColumn);
 break;
 }

 return(result);
 }

 @Override
 public void onBindViewHolder(BaseVideoController holder, int position) {
 videos.moveToPosition(position/3);
 holder.bindModel(videos);
 }

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)
BaseVideoController handles click events on the cell, along with
collecting the Uri and MIME type of the video to use on click events:

package com.commonsware.android.recyclerview.videotable;

import android.content.ContentUris;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.provider.MediaStore;
import android.support.v7.widget.RecyclerView;
import android.view.View;

abstract class BaseVideoController extends RecyclerView.ViewHolder
 implements View.OnClickListener {
 protected Uri videoUri=null;
 private String videoMimeType=null;

 BaseVideoController(View cell) {
 super(cell);

 cell.setOnClickListener(this);
 }

 @Override
 public void onClick(View v) {
 Intent i=new Intent(Intent.ACTION_VIEW);

 i.setDataAndType(videoUri, videoMimeType);
 itemView.getContext().startActivity(i);
 }

 void bindModel(Cursor row) {
 int mimeTypeColumn=
 row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);

 videoUri=ContentUris.withAppendedId(
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));
 videoMimeType=row.getString(mimeTypeColumn);
 }
}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/BaseVideoController.java)
VideoTextController extends BaseVideoController and handles binding
some column from the MediaStore Cursor to a TextView with some
ID:

package com.commonsware.android.recyclerview.videotable;

import android.database.Cursor;
import android.view.View;
import android.widget.TextView;

class VideoTextController extends BaseVideoController {
 private TextView label=null;
 private int cursorColumn;

 VideoTextController(View cell, int labelId, int cursorColumn) {
 super(cell);
 this.cursorColumn=cursorColumn;

 label=(TextView)cell.findViewById(labelId);
 }

 @Override
 void bindModel(Cursor row) {
 super.bindModel(row);

 label.setText(row.getString(cursorColumn));
 }
}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/VideoTextController.java)
VideoThumbnailController handles using Picasso to get the video thumbnail
asynchronously and binding it to an ImageView in the inflated cell View:

package com.commonsware.android.recyclerview.videotable;

import android.content.ContentUris;
import android.database.Cursor;
import android.net.Uri;
import android.provider.MediaStore;
import android.view.View;
import android.widget.ImageView;
import com.squareup.picasso.Picasso;

class VideoThumbnailController extends BaseVideoController {
 private ImageView thumbnail=null;

 VideoThumbnailController(View cell) {
 super(cell);

 thumbnail=(ImageView)cell.findViewById(R.id.thumbnail);
 }

 @Override
 void bindModel(Cursor row) {
 super.bindModel(row);

 Picasso.with(thumbnail.getContext())
 .load(videoUri.toString())
 .fit().centerCrop()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(thumbnail);
 }
}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/VideoThumbnailController.java)
The result is the same information as was in the original VideoList
demo, but organized into a table, where each cell is clickable:

[image: VideoTable RecyclerView Demo]

Figure 508: VideoTable RecyclerView Demo
The duration is returned by MediaStore in milliseconds, which is not a
great choice to present directly to the user. An improved version of this
app might use a dedicated RecyclerView.ViewHolder that would convert
the millisecond count into a duration measured in hours, minutes, and
seconds (e.g., shown as HH:MM:SS to the user).
Also note that the cell sizes are purely driven by their weights, which
will not necessarily handle all content in all configurations very well.
The chosen weights barely work on a 10" tablet in portrait, for
example:

[image: VideoTable RecyclerView Demo, Portrait]

Figure 509: VideoTable RecyclerView Demo, Portrait
Mutable Row Contents
So far, all of the items we have used have been display-only. At most,
they might respond to click events, along the lines of clicking a ListView
row or GridView cell.
But, what about choice modes?
ListView and GridView — by way of their common AbsListView ancestor –
have the concept of choice modes, where the user can “check” and “uncheck”
items, and the list or grid will keep track of those states.
Well, as with lots of other things involving RecyclerView, RecyclerView
does not offer choice modes… though you can implement that yourself.
The
RecyclerView/ChoiceList
sample project turns our list-style RecyclerView into a checklist,
with CheckBox widgets in each row, where the RecyclerView.Adapter
will keep track of the CheckBox checked states for us.
First, we need to add a CheckBox to the row:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:cardview="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 cardview:cardCornerRadius="4dp">

 <LinearLayout
 android:id="@+id/row_content"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:background="?android:attr/selectableItemBackground">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:padding="2dip"
 android:src="@drawable/ok"
 android:contentDescription="@string/icon"/>

 <LinearLayout
 android:layout_width="0dip"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:orientation="vertical">

 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="25sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"/>
 </LinearLayout>

 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/cb"
 android:layout_gravity="center_vertical"/>

 </LinearLayout>
</android.support.v7.widget.CardView>

(from RecyclerView/ChoiceList/app/src/main/res/layout/row.xml)
Our IconicAdapter is only slightly different than before:

	it inherits from a ChoiceCapableAdapter that we will examine
shortly, and

	it supplies a MultiChoiceMode instance to ChoiceCapableAdapter
as part of chaining to the ChoiceCapableAdapter constructor

 class IconicAdapter extends ChoiceCapableAdapter<RowController> {
 IconicAdapter() {
 super(new MultiChoiceMode());
 }

 @Override
 public RowController onCreateViewHolder(ViewGroup parent, int viewType) {
 return(new RowController(this, getLayoutInflater()
 .inflate(R.layout.row, parent, false)));
 }

 @Override
 public void onBindViewHolder(RowController holder, int position) {
 holder.bindModel(items[position]);
 }

 @Override
 public int getItemCount() {
 return(items.length);
 }
 }

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/MainActivity.java)
ChoiceCapableAdapter is simply a RecyclerView.Adapter that knows
how to handle choice modes, as implemented via the ChoiceMode
interface:

package com.commonsware.android.recyclerview.choicelist;

import android.os.Bundle;

public interface ChoiceMode {
 void setChecked(int position, boolean isChecked);
 boolean isChecked(int position);
 void onSaveInstanceState(Bundle state);
 void onRestoreInstanceState(Bundle state);
}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ChoiceMode.java)
A ChoiceMode is effectively a strategy class, responsible for tracking
the checked states, not only for the current ChoiceCapableAdapter
instance, but for future ones created as part of a configuration change.
It requires four methods:

	
setChecked() and isChecked() are getters and setters for whether
or not a given position is checked

	
onSaveInstanceState() and onRestoreInstanceState() manage storing
and restoring those check states from the saved instance state Bundle
of an activity or fragment

This project uses a MultiChoiceMode implementation of ChoiceMode:

package com.commonsware.android.recyclerview.choicelist;

import android.os.Bundle;

public class MultiChoiceMode implements ChoiceMode {
 private static final String STATE_CHECK_STATES="checkStates";
 private ParcelableSparseBooleanArray checkStates=new ParcelableSparseBooleanArray();

 @Override
 public void setChecked(int position, boolean isChecked) {
 checkStates.put(position, isChecked);
 }

 @Override
 public boolean isChecked(int position) {
 return(checkStates.get(position, false));
 }

 @Override
 public void onSaveInstanceState(Bundle state) {
 state.putParcelable(STATE_CHECK_STATES, checkStates);
 }

 @Override
 public void onRestoreInstanceState(Bundle state) {
 checkStates=state.getParcelable(STATE_CHECK_STATES);
 }
}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/MultiChoiceMode.java)
MultiChoiceMode, in turn, is mostly handled by a ParcelableSparseBooleanArray.
SparseBooleanArray is a class, supplied in the Android SDK, that is a
space-efficient mapping of int values to boolean values, as opposed to
using a HashMap and having to convert those primitives to Integer
and Boolean objects. However, for inexplicable reasons, SparseBooleanArray
was not implemented to be Parcelable, and therefore it cannot be stored
in a Bundle. ParcelableSparseBooleanArray is a subclass of SparseBooleanArray
that handles the Parcelable aspects:

package com.commonsware.android.recyclerview.choicelist;

import android.os.Parcel;
import android.os.Parcelable;
import android.util.SparseBooleanArray;

public class ParcelableSparseBooleanArray extends SparseBooleanArray
 implements Parcelable {
 public static Parcelable.Creator<ParcelableSparseBooleanArray> CREATOR
 =new Parcelable.Creator<ParcelableSparseBooleanArray>() {
 @Override
 public ParcelableSparseBooleanArray createFromParcel(Parcel source) {
 return(new ParcelableSparseBooleanArray(source));
 }

 @Override
 public ParcelableSparseBooleanArray[] newArray(int size) {
 return(new ParcelableSparseBooleanArray[size]);
 }
 };

 public ParcelableSparseBooleanArray() {
 super();
 }

 private ParcelableSparseBooleanArray(Parcel source) {
 int size=source.readInt();

 for (int i=0; i < size; i++) {
 put(source.readInt(), (Boolean)source.readValue(null));
 }
 }

 @Override
 public int describeContents() {
 return(0);
 }

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 dest.writeInt(size());

 for (int i=0;i<size();i++) {
 dest.writeInt(keyAt(i));
 dest.writeValue(valueAt(i));
 }
 }
}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ParcelableSparseBooleanArray.java)
The net effect is that MultiChoiceMode, by means of ParcelableSparseBooleanArray,
can track the checked/unchecked states of particular item position values.
ChoiceCapableAdapter, then, is a RecyclerView.ViewHolder that surfaces
a ChoiceMode implementation:

package com.commonsware.android.recyclerview.choicelist;

import android.os.Bundle;
import android.support.v7.widget.RecyclerView;

abstract public class
 ChoiceCapableAdapter<T extends RecyclerView.ViewHolder>
 extends RecyclerView.Adapter<T> {
 private final ChoiceMode choiceMode;

 public ChoiceCapableAdapter(ChoiceMode choiceMode) {
 super();
 this.choiceMode=choiceMode;
 }

 void onChecked(int position, boolean isChecked) {
 choiceMode.setChecked(position, isChecked);
 }

 boolean isChecked(int position) {
 return(choiceMode.isChecked(position));
 }

 void onSaveInstanceState(Bundle state) {
 choiceMode.onSaveInstanceState(state);
 }

 void onRestoreInstanceState(Bundle state) {
 choiceMode.onRestoreInstanceState(state);
 }
}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ChoiceCapableAdapter.java)
The methods exposed by ChoiceCapableAdapter can then be used by outside
parties. Specifically, MainActivity delegates onSaveInstanceState()
and onRestoreInstanceState() to ChoiceCapableAdapter, so checked states
can span configuration changes and the like. Plus, RowController can
hook up on OnCheckedChangedListener and to update ChoiceCapableAdapter
based on the state of checkbox changes:

package com.commonsware.android.recyclerview.choicelist;

import android.annotation.TargetApi;
import android.os.Build;
import android.support.v7.widget.RecyclerView;
import android.view.MotionEvent;
import android.view.View;
import android.widget.CheckBox;
import android.widget.CompoundButton;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;

class RowController extends RecyclerView.ViewHolder
 implements View.OnClickListener, CompoundButton.OnCheckedChangeListener {
 private ChoiceCapableAdapter adapter;
 private TextView label=null;
 private TextView size=null;
 private ImageView icon=null;
 private String template=null;
 private CheckBox cb=null;

 RowController(ChoiceCapableAdapter adapter, View row) {
 super(row);

 this.adapter=adapter;
 label=(TextView)row.findViewById(R.id.label);
 size=(TextView)row.findViewById(R.id.size);
 icon=(ImageView)row.findViewById(R.id.icon);
 cb=(CheckBox)row.findViewById(R.id.cb);

 template=size.getContext().getString(R.string.size_template);

 row.setOnClickListener(this);

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 row.setOnTouchListener(new View.OnTouchListener() {
 @TargetApi(Build.VERSION_CODES.LOLLIPOP)
 @Override
 public boolean onTouch(View v, MotionEvent event) {
 v
 .findViewById(R.id.row_content)
 .getBackground()
 .setHotspot(event.getX(), event.getY());

 return(false);
 }
 });
 }

 cb.setOnCheckedChangeListener(this);
 }

 @Override
 public void onClick(View v) {
 Toast.makeText(v.getContext(),
 String.format("Clicked on position %d", getAdapterPosition()),
 Toast.LENGTH_SHORT).show();
 }

 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 adapter.onChecked(getAdapterPosition(), isChecked);
 }

 void bindModel(String item) {
 label.setText(item);
 size.setText(String.format(template, item.length()));

 if (item.length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 cb.setChecked(adapter.isChecked(getAdapterPosition()));
 }
}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/RowController.java)
Here, bindModel() updates the CheckBox based upon the ChoiceCapableAdapter
isChecked() value for the RecyclerView.ViewHolder position (obtained via
getPosition()). And, onCheckedChanged() updates the ChoiceCapableAdapter
to keep track of whether this position is checked or unchecked, to handle
row recycling, configuration changes, etc.
The result is much as you would expect: a version of our same sort
of UI as before, except that if the user clicks the CheckBox, instead
of the rest of the row, the CheckBox toggles its checked state, and that
state survives row recycling, configuration changes, and so on:

[image: ChoiceList RecyclerView Demo]

Figure 510: ChoiceList RecyclerView Demo
Note that since this sample is using Theme.Material on Android 5.0+
devices, and since the screenshot is from an Android 5.0 emulator,
the CheckBox styling is based on the accent color, here shown as bright
yellow.
Switching to the Activated Style
Also note that ChoiceCapableAdapter, MultiChoiceMode, and kin
are oblivious to how the user is informed about what is checked
and unchecked. RowController in the previous sample happens to use a
CheckBox. RowController could use some other widget, like a Switch.
Another approach is to use the activated state. Once again, this is the
sort of thing that is automatically handled for us by ListView and its
choice modes, but with some minor tweaks, we can get our RowController
to use this approach. This is shown in the
RecyclerView/ActivatedList
sample project.
First, we need to give our row a background that has a StateListDrawable
that supports the activated state. The simplest approach — and the one
traditionally used with ListView — is to set up an activated style
with the stock theme-supplied background drawable, then apply that style
to the row.
So, this sample app defines activated in res/values/styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="Theme.Apptheme" parent="@android:style/Theme.Holo.Light.DarkActionBar">
 </style>

 <style name="activated" parent="Theme.Apptheme">
 <item name="android:background">?android:attr/activatedBackgroundIndicator</item>
 </style>

</resources>

(from RecyclerView/ActivatedList/app/src/main/res/values/styles.xml)
Note that activated inherits from Theme.Apptheme. This means that
we will get the Theme.Holo-flavored background normally, but on
API Level 21+, we will get the Theme.Material-flavored background, courtesy
of a res/values-v21/styles.xml override of Theme.Apptheme:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="Theme.Apptheme" parent="android:Theme.Material.Light.DarkActionBar">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>
</resources>

(from RecyclerView/ActivatedList/app/src/main/res/values-v21/styles.xml)
Our row layout now dumps the CardView (whose own background may conflict
with the activated one) and applies the activated style to the root
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 style="@style/activated">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:padding="2dip"
 android:src="@drawable/ok"
 android:contentDescription="@string/icon"/>

 <LinearLayout
 android:layout_width="0dip"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:orientation="vertical">

 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="25sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"/>
 </LinearLayout>

</LinearLayout>

(from RecyclerView/ActivatedList/app/src/main/res/layout/row.xml)
The row also no longer has the CheckBox, as it is no longer needed.
RowController now uses the OnClickListener interface to respond to
clicks and use that to toggle the activated state for that row:

 @Override
 public void onClick(View v) {
 boolean isCheckedNow=adapter.isChecked(getAdapterPosition());

 adapter.onChecked(getAdapterPosition(), !isCheckedNow);
 row.setActivated(!isCheckedNow);
 }

(from RecyclerView/ActivatedList/app/src/main/java/com/commonsware/android/recyclerview/activatedlist/RowController.java)
setActivated(), applied to a View, indicates that it is (or is not)
activated, affecting anything in that View that depends upon that
state, such as the background.
Similarly, bindModel() uses setActivated() to update the activated
state when binding our data:

 void bindModel(String item) {
 label.setText(item);
 size.setText(String.format(template, item.length()));

 if (item.length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 row.setActivated(adapter.isChecked(getAdapterPosition()));

(from RecyclerView/ActivatedList/app/src/main/java/com/commonsware/android/recyclerview/activatedlist/RowController.java)
Everything else is the same as the original CheckBox version of the
sample. But now, the “checked” state is indicated by the activated
highlight:

[image: ActivatedList RecyclerView Demo]

Figure 511: ActivatedList RecyclerView Demo
And, since this demo is running on Android 5.0, the activated highlight
color is the accent color, which in this case is set to be yellow.
But, What About Single-Choice?
Both of the preceding examples illustrate multiple-choice behavior. Sometimes,
though, single-choice behavior is the better option. For example, in a master-detail
structure, in dual-pane mode (e.g., tablets, where the master and the detail are
both visible), you probably normally want single-choice mode.
That is certainly possible, though, once again, RecyclerView does not
offer it. It also adds a wrinkle: how do we arrange to uncheck a previously-checked
item, when the user checks another item? Like RadioButton widgets
in a RadioGroup, we need to ensure that only one item at a time
is checked, and that will require us to update the UI of the formerly-checked-but-now-unchecked
item.
With some tweaks, the last sample project, where we used the activated
state for a multiple-choice list, can be revised to limit the user to a
single choice. Those tweaks are illustrated in the
RecyclerView/SingleActivatedList
sample project.
The ChoiceMode interface now has two new methods:

	
isSingleChoice() will return true for a single-choice ChoiceMode
strategy, false otherwise

	
getCheckedPosition() will return the position of whatever
the currently-checked item is

package com.commonsware.android.recyclerview.singleactivatedlist;

import android.os.Bundle;

public interface ChoiceMode {
 boolean isSingleChoice();
 int getCheckedPosition();
 void setChecked(int position, boolean isChecked);
 boolean isChecked(int position);
 void onSaveInstanceState(Bundle state);
 void onRestoreInstanceState(Bundle state);
}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceMode.java)
SingleChoiceMode is now our implementation of ChoiceMode:

package com.commonsware.android.recyclerview.singleactivatedlist;

import android.os.Bundle;

public class SingleChoiceMode implements ChoiceMode {
 private static final String STATE_CHECKED="checkedPosition";
 private int checkedPosition=-1;

 @Override
 public boolean isSingleChoice() {
 return(true);
 }

 @Override
 public int getCheckedPosition() {
 return(checkedPosition);
 }

 @Override
 public void setChecked(int position, boolean isChecked) {
 if (isChecked) {
 checkedPosition=position;
 }
 else if (isChecked(position)) {
 checkedPosition=-1;
 }
 }

 @Override
 public boolean isChecked(int position) {
 return(checkedPosition==position);
 }

 @Override
 public void onSaveInstanceState(Bundle state) {
 state.putInt(STATE_CHECKED, checkedPosition);
 }

 @Override
 public void onRestoreInstanceState(Bundle state) {
 checkedPosition=state.getInt(STATE_CHECKED, -1);
 }
}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/SingleChoiceMode.java)
SingleChoiceMode tracks the currently-checked position, using -1
to indicate no position is checked. Of note, if a position was
checked, then setChecked() unchecks it, SingleChoiceMode goes back
to -1 and indicates that there is no currently-checked position.
ChoiceCapableAdapter also has a couple of modifications. First, it now
accepts the RecyclerView itself as a constructor parameter, holding onto
it in an rv data member. And, onChecked() needs to be modified to take
care of removing the activated state from whatever item had been previously
checked when some new item is checked:

package com.commonsware.android.recyclerview.singleactivatedlist;

import android.os.Bundle;
import android.support.v7.widget.RecyclerView;

abstract public class
 ChoiceCapableAdapter<T extends RecyclerView.ViewHolder>
 extends RecyclerView.Adapter<T> {
 private final ChoiceMode choiceMode;
 private final RecyclerView rv;

 public ChoiceCapableAdapter(RecyclerView rv,
 ChoiceMode choiceMode) {
 super();
 this.rv=rv;
 this.choiceMode=choiceMode;
 }

 void onChecked(int position, boolean isChecked) {
 if (choiceMode.isSingleChoice()) {
 int checked=choiceMode.getCheckedPosition();

 if (checked>=0) {
 RowController row=
 (RowController)rv.findViewHolderForAdapterPosition(checked);

 if (row!=null) {
 row.setChecked(false);
 }
 }
 }

 choiceMode.setChecked(position, isChecked);
 }

 boolean isChecked(int position) {
 return(choiceMode.isChecked(position));
 }

 void onSaveInstanceState(Bundle state) {
 choiceMode.onSaveInstanceState(state);
 }

 void onRestoreInstanceState(Bundle state) {
 choiceMode.onRestoreInstanceState(state);
 }

 @Override
 public void onViewAttachedToWindow(T holder) {
 super.onViewAttachedToWindow(holder);

 if (holder.getAdapterPosition()!=choiceMode.getCheckedPosition()) {
 ((RowController)holder).setChecked(false);
 }
 }
}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java)
To do that, onChecked() asks the ChoiceMode if it is single choice. If
yes, it gets the last checked position. If that position is plausible (0 or
higher), it gets the RecyclerView.ViewHolder for that position via
findViewHolderForAdapterPosition(), called on the RecyclerView. If this returns
something other than null, then it must be a RowController, and so
onChecked() calls setChecked(false) on that row to remove the activated
state.
findViewHolderForAdapterPosition() and findViewHolderForLayoutPosition()
replace the now-deprecated findViewHolderForPosition() method. All three
methods do the same basic thing: given a position, return the ViewHolder
for that position, if any. findViewHolderForPosition() and
findViewHolderForLayoutPosition() have the same implementation, at least
at the present time. The primary thing that findViewHolderForAdapterPosition()
does differently is it always returns null if the data has been changed
(e.g., notifyDataSetChanged() was called on the adapter) but those changes
have not yet been laid out. In this sample app, that difference is academic,
but findViewHolderForAdapterPosition() probably is a safer choice
for most use cases.
However, these find...() methods have a wrinkle: they only return a
ViewHolder if the row is visible. If the ViewHolder is cached, but
not visible, find...() will still not return it. This causes a problem
where we need to de-select a row that is not visible (and so find...()
does not work) but will not be re-bound using onBindViewHolder()
(as the ViewHolder is already set up). This requires us to implement
onViewAttachedToWindow() — called whenever a ViewHolder contents
are actually attached as children to the RecyclerView — and update
the checked state there, as a fallback.
(and many thanks to Mahmoud Abou-Eita for
reporting that problem)
setChecked() did not exist in the previous sample, as the activated state
was handled purely internally to RowController. So, now RowController
has a setChecked() method to toggle the activated state:

 void setChecked(boolean isChecked) {
 row.setActivated(isChecked);
 }

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/RowController.java)
MainActivity now must supply the RecyclerView to the IconicAdapter
in onCreate():

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setLayoutManager(new LinearLayoutManager(this));
 adapter=new IconicAdapter(getRecyclerView());
 setAdapter(adapter);
 }

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/MainActivity.java)
…so that IconicAdapter() can supply it to the ChoiceCapableAdapter
superclass constructor:

 IconicAdapter(RecyclerView rv) {
 super(rv, new SingleChoiceMode());
 }

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/MainActivity.java)
Visually, the results are identical to the previous example, except that
at most only one item can be checked at a time. The key is the phrase
“at most” — this implementation allows the user to tap on a checked item
to uncheck it. This may be fine, as your app may simply hide the detail in
this scenario, still allowing the user to interact with action bar items
(e.g., a “create new model” item). If you wanted to prevent that, have
SingleChoiceMode not set checkedPosition to -1 when the user
taps on a previously-checked item, to leave the currently-checked position
intact.
Keyboard Navigation
If you try using the RecyclerView/SingleActivatedList app — or any
of the sample apps presented so far — on a device that has a physical
keyboard or five-way navigation option (e.g., D-pad), you will find that
RecyclerView has no built-in keyboard navigation. This is in contrast
with standard AdapterView classes like ListView, where key events
are handled automatically. Once again, if you want the behavior, you
have to add it yourself.
The exact details of what you want to do when the user tries navigating
with a keyboard will vary, based on lots of things:

	What sort of layout manager are you using? If it is a list, you only
need to worry about moving up and down, while if it is a grid, you will
need to handle movement along both axes.

	Do you have focusable widgets in your RecyclerView items? If so,
how will navigation between those widgets blend with navigation
through the RecyclerView overall?

	Are you using any sort of “selection” or “choice” model? If so, do
you want keyboard navigation to change the choice? Or, do you want
keyboard navigation to only make a choice when the user does something
special (e.g., presses an Enter key or a center D-pad button),
with the two-way or four-way navigation showing up as something separate
from the user’s choice?

The
RecyclerView/SingleActivatedListKB
sample project is a clone of the SingleActivatedList sample, except that
we now support keyboard events. Specifically, the user can use the up
and down arrow keys to change the selected row in the list. This is perhaps
the simplest scenario:

	We have no focusable widgets, so key events can just change the
selected row

	It is just a list, so we only need to worry about two directions, not four

	We want either zero or one selected row, and so we do not need to have
a distinction between navigation and selection, as we might with a multiple-choice
list

And, the best part is that we only need to change ChoiceCapableAdapter — the rest
of the app can remain unchanged.
First, we override another method on RecyclerView.Adapter:
onAttachedToRecyclerView(). As the name suggests, this method is called
when our adapter is assigned to a RecyclerView instance. Here, if we are
in single-choice mode, we register an OnKeyListener on the RecyclerView
itself, to find out when it receives key events:

 // inspired by http://stackoverflow.com/a/28838834/115145

 @Override
 public void onAttachedToRecyclerView(RecyclerView rv) {
 super.onAttachedToRecyclerView(rv);

 if (choiceMode.isSingleChoice()) {
 rv.setOnKeyListener(new View.OnKeyListener() {
 @Override
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (event.getAction()==KeyEvent.ACTION_DOWN) {
 switch (keyCode) {
 case KeyEvent.KEYCODE_DPAD_DOWN:
 return(chooseNext());
 case KeyEvent.KEYCODE_DPAD_UP:
 return(choosePrevious());
 }
 }

 return(false);
 }
 });
 }
 }

(from RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java)
When the user presses down either the up or down arrow key (or equivalents
on a D-pad), we call out to private choosePrevious() and chooseNext()
methods, which will return true if we moved the selection
in that direction, false otherwise. If the key event is not one of those,
we return false to indicate that we are not consuming the key event.
The choosePrevious() and chooseNext() methods are responsible for
determining what our next selection should be, assuming that the selection
can change in the designated direction:

 private boolean chooseNext() {
 long now=System.currentTimeMillis();
 boolean result=false;

 if (lastDownKeyTime==-1 || now-lastDownKeyTime>KEY_TIME_DELTA) {
 lastDownKeyTime=now;
 lastUpKeyTime=-1L;

 int checked=choiceMode.getCheckedPosition();

 if (checked<0) {
 onChecked(0, true, true);
 result=true;
 }
 else if (checked<getItemCount()-1) {
 onChecked(checked+1, true, true);
 result=true;
 }
 }

 return(result);
 }

 private boolean choosePrevious() {
 long now=System.currentTimeMillis();
 boolean result=false;

 if (lastUpKeyTime==-1 || now-lastUpKeyTime>KEY_TIME_DELTA) {
 lastUpKeyTime=now;
 lastDownKeyTime=-1L;

 int checked=choiceMode.getCheckedPosition();

 if (checked>0) {
 onChecked(checked-1, true, true);
 result=true;
 }
 else if (checked<0) {
 onChecked(0, true, true);
 result=true;
 }
 }

 return(result);
 }

(from RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java)
In both cases, we find out what the current selection is. If it is a
negative number, we do not have a selection yet, so we select the first
row. Otherwise, if we can still move in the desired direction, add or
subtract one from the current selection.
However, in this crude implementation, we need to slow down how frequently
we change the selection. Simply changing which row is highlighted is fast,
but if the list has to scroll to uncover that row, doing too many of those
too quickly results in a “smearing” effect. The simplest way to avoid
that smearing is to limit how many consecutive identical key events we process
(e.g., user holds down an arrow key).
The approach taken in this code is to track the last time we were called
to process an arrow key event for each direction, in lastUpKeyTime
and lastDownKeyTime fields. We use -1 to indicate that we have not
just processed another one of that type. If, when we get a key event,
either the related time value is -1 or is within KEY_TIME_DELTA of
now, we go ahead and update the checked position (if needed), plus update
the times. KEY_TIME_DELTA is defined as 250, limiting us to four
updates per second.
We change the current selection, where needed, via a call to a new
three-parameter onChecked() method:

 void onChecked(int position, boolean isChecked) {
 onChecked(position, isChecked, false);
 }

 void onChecked(int position, boolean isChecked, boolean updateUI) {
 if (choiceMode.isSingleChoice()) {
 int checked=choiceMode.getCheckedPosition();

 if (checked>=0) {
 RowController row=
 (RowController)rv.findViewHolderForAdapterPosition(checked);

 if (row!=null) {
 row.setChecked(false);
 }
 }
 }

 choiceMode.setChecked(position, isChecked);

 if (updateUI) {
 notifyItemChanged(position);
 rv.scrollToPosition(position);
 }
 }

(from RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java)
The third parameter indicates if we need to update the UI or not. For
touchscreen events, activating rows and such is enough to ensure that
the UI is properly updated. With key events, we need to:

	Make sure that Android is going to repaint the affected row and pick
up the change in the activated state (notifyItemChanged()), and

	Make sure that the user can see the affected row, since they key
event might now select a row that is not visible on the screen
(scrollToPosition())

Action Modes
Another thing that ListView gave us was support for action modes.
In particular, the “multiple-choice modal” setting would automatically
start and finish an action mode for us.
And, once again, RecyclerView has no hooks for action modes, though
you can do it yourself if desired. We have to manually start and destroy
the action mode, in addition to responding to the user’s interaction
with the action mode (tapping on items, or dismissing the action mode
manually).
Where things get interesting is in the connection between checked
items and the action mode. There are two UX rules:

	When there are no checked items, there should be no action mode

	When there is no action mode, there should be no checked items

You might think that those two rules are the same, and to some extent
they are. They are phrased this way to emphasize the state changes
that are involved:

	When the user checks an item, an action mode should appear

	When the user unchecks the last checked item, and therefore there are
no more checked items, the action mode should disappear

	When the user dismisses the action mode (e.g., presses BACK), all
checked items should become unchecked

Handling these transitions takes a bit of work, demonstrated in the
RecyclerView/ActionModeList
sample project. This is a clone of the ChoiceList sample from earlier,
augmented with an action mode when 1+ items are checked. The action mode
logic is largely cloned from one of the book’s action mode samples, where
we want to allow the user to capitalize or remove the checked items.
Once again, we have some tweaks to ChoiceMode, adding two methods:

	
getCheckedCount(), to return the number of checked items, which
we will use for the subtitle of the action mode

	
clearChecks(), to uncheck all checked items

package com.commonsware.android.recyclerview.actionmodelist;

import android.os.Bundle;

public interface ChoiceMode {
 void setChecked(int position, boolean isChecked);
 boolean isChecked(int position);
 void onSaveInstanceState(Bundle state);
 void onRestoreInstanceState(Bundle state);
 int getCheckedCount();
 void clearChecks();
}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/ChoiceMode.java)
MultiChoiceMode implements those, plus adds a subtle change to setChecked().
Previous editions of MultiChoiceMode would simply put the checked state
boolean into the ParceableSparseBooleanArray, with false as a default
value for any position not in the array. Now, we specifically remove items
that are unchecked, so the only items in the ParcelableSparseBooleanArray are
those that are checked. This makes getCheckedCount() and clearChecks()
very simple to implement:

package com.commonsware.android.recyclerview.actionmodelist;

import android.os.Bundle;

public class MultiChoiceMode implements ChoiceMode {
 private static final String STATE_CHECK_STATES="checkStates";
 private ParcelableSparseBooleanArray checkStates=new ParcelableSparseBooleanArray();

 @Override
 public void setChecked(int position, boolean isChecked) {
 if (isChecked) {
 checkStates.put(position, isChecked);
 }
 else {
 checkStates.delete(position);
 }
 }

 @Override
 public boolean isChecked(int position) {
 return(checkStates.get(position, false));
 }

 @Override
 public void onSaveInstanceState(Bundle state) {
 state.putParcelable(STATE_CHECK_STATES, checkStates);
 }

 @Override
 public void onRestoreInstanceState(Bundle state) {
 checkStates=state.getParcelable(STATE_CHECK_STATES);
 }

 @Override
 public int getCheckedCount() {
 return(checkStates.size());
 }

 @Override
 public void clearChecks() {
 checkStates.clear();
 }
}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MultiChoiceMode.java)
ChoiceCapableAdapter exposes the two new ChoiceMode capabilities to
its subclasses:

package com.commonsware.android.recyclerview.actionmodelist;

import android.os.Bundle;
import android.support.v7.widget.RecyclerView;

abstract public class
 ChoiceCapableAdapter<T extends RecyclerView.ViewHolder>
 extends RecyclerView.Adapter<T> {
 private final ChoiceMode choiceMode;

 public ChoiceCapableAdapter(ChoiceMode choiceMode) {
 super();
 this.choiceMode=choiceMode;
 }

 void onChecked(int position, boolean isChecked) {
 choiceMode.setChecked(position, isChecked);
 }

 boolean isChecked(int position) {
 return(choiceMode.isChecked(position));
 }

 void onSaveInstanceState(Bundle state) {
 choiceMode.onSaveInstanceState(state);
 }

 void onRestoreInstanceState(Bundle state) {
 choiceMode.onRestoreInstanceState(state);
 }

 int getCheckedCount() {
 return(choiceMode.getCheckedCount());
 }

 void clearChecks() {
 choiceMode.clearChecks();
 }
}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/ChoiceCapableAdapter.java)
IconicAdapter now not only extends ChoiceCapableAdapter, but it implements
the ActionMode.Callback interface, and therefore will be responsible for
managing the action mode:

 class IconicAdapter extends ChoiceCapableAdapter<RowController>
 implements ActionMode.Callback {

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java)
IconicAdapter now overrides onChecked(), normally just handled by
ChoiceCapableAdapter. In addition to chaining to the superclass for
standard behavior, IconicAdapter manages the action mode:

	If we do not have any checked items, and we have an active action mode,
finish() that action mode, as the user has unchecked the last checked
item and the action mode is no longer needed

	Otherwise, update the subtitle, and if we are checking an item (isChecked is true),
and if we do not already have an action mode going (tracked by an
activeMode data member), start the action mode using startActionMode()

 @Override
 void onChecked(int position, boolean isChecked) {
 super.onChecked(position, isChecked);

 if (getCheckedCount()==0 && activeMode!=null) {
 activeMode.finish();
 }
 else {
 updateSubtitle(activeMode);

 if (isChecked) {
 if (activeMode==null) {
 activeMode=startActionMode(this);
 }
 }
 }
 }

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java)
Because IconicAdapter implements ActionMode.Callback, it needs
to implement the methods required by that interface. This
includes:

	
onCreateActionMode(), to set up the action mode

	
onPrepareActionMode(), just because it is required by the interface

	
onActionItemClicked(), where we should do some real work, but for the
moment just have a TODO comment

	
onDestroyActionMode(), where we make sure that all checked items
are unchecked (clearChecks()) and tell the RecyclerView.Adapter that
the data set changed, to force a repaint of all the visible rows, so they
will now reflect the fact that they are no longer checked

 @Override
 public boolean onCreateActionMode(ActionMode mode, Menu menu) {
 MenuInflater inflater=getMenuInflater();

 inflater.inflate(R.menu.context, menu);
 mode.setTitle(R.string.context_title);
 activeMode=mode;
 updateSubtitle(activeMode);

 return(true);
 }

 @Override
 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
 return(false);
 }

 @Override
 public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
 // TODO: do something based on the action

 updateSubtitle(activeMode);

 return(true);
 }

 @Override
 public void onDestroyActionMode(ActionMode mode) {
 if (activeMode != null) {
 activeMode=null;
 clearChecks();
 notifyDataSetChanged();
 }
 }

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java)
The updateSubtitle() method, referred to by some of the previous methods,
just updates the subtitle of the action mode to reflect the current
count of checked items:

 private void updateSubtitle(ActionMode mode) {
 if (mode!=null) {
 mode.setSubtitle("("+getCheckedCount()+")");
 }
 }

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java)
The resulting app looks a lot like the original ChoiceList sample,
until we check one or more items, at which point the action mode appears:

[image: ActionModeList RecyclerView Demo]

Figure 512: ActionModeList RecyclerView Demo
Changing the Contents
The obvious problem with the preceding sample is that we are not actually
doing anything in response to user clicks on action mode items. We really
should be capitalizing and/or removing words. However, this involves modifying
the model data and how that model data is being visually displayed by
the RecyclerView.
The less-obvious problem is that we are calling notifyDataSetChanged()
when the action mode is dismissed, to force a full repaint of the RecyclerView
contents. While this works, it is overkill, as probably only a subset of
the visible items are checked. Ideally, we would only update the specific
positions that were checked and now, with the action mode finished, are
unchecked. We could find the affected RowController instances, using
findViewHolderByPosition() on RecyclerView, as we did in the single-choice
list sample. But, really, updating the checked state is just another
manifestation of the same problem that capitalizing or removing words
causes: we need to ensure that the RecyclerView depicts the current
model state, ideally with minimum work.
So, let’s see how this is accomplished, by looking at the
RecyclerView/ActionModeList2
sample project. As the name suggests, this is a clone of the
ActionModeList shown in the preceding section. This time, we will
fully implement onActionItemClicked() and allow our model data to be
mutable.
Updating Existing Contents
With AdapterView and Adapter classes based on BaseAdapter,
the only way we had to tell the AdapterView about model data changes
was notifyDataSetChanged(). This would trigger a rebuild of the entire
AdapterView, which is slow and expensive.
While RecyclerView.Adapter has its own notifyDataSetChanged(), that is
really for total reloads of the model data, such as having gotten a fresh
Cursor from a database and not knowing exactly what the changes are.
If you are driving the changes yourself from the UI — and particularly
if your model data is something like an ArrayList of model objects –
you can use methods on RecyclerView.Adapter that are more fine-grained
than is notifyDataSetChanged().
If an item was updated in place — such as a word now being capitalized –
you can use notifyItemChanged() on RecyclerView.Adapter to point
out the specific position that changed. Alternatives include:

	
notifyItemMoved(), to indicate that an item is still in the model
data but now is in a new position

	
notifyItemRangeChanged(), to indicate a range of positions that
were modified, instead of having to repeatedly call notifyItemChanged()

ActionModeList2 uses notifyItemChanged() when the user capitalizes
words, to get those items repainted, if needed. It may not
be needed immediately, if one or more of those items are not presently
visible within the RecyclerView.
However, so far, our model data has been a static String array, and now
we need a mutable model. So, we take the same approach as the ListView
action mode samples use, converting our model to be an ArrayList
that happens to be populated by a static String array.
The items data member of MainActivity
is now an ArrayList of String, with the static String
array being converted into ORIGINAL_ITEMS:

 private static final String[] ORIGINAL_ITEMS={"lorem", "ipsum", "dolor",
 "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};
 private ArrayList<String> items;

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)
Places that used to refer to items now use a private getItems() method,
which lazy-instantiates the list if needed:

 private ArrayList<String> getItems() {
 if (items==null) {
 items=new ArrayList<String>();

 for (String s : ORIGINAL_ITEMS) {
 items.add(s);
 }
 }

 return(items);
 }

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)
We also need to ensure that we hold onto the items across configuration changes,
since those items could be changed by the user. So, our onSaveInstanceState()
and onRestoreInstanceState() methods on MainActivity now handle that
chore, in addition to their original behavior of having the ChoiceCapableAdapter
persist checked states:

 @Override
 public void onSaveInstanceState(Bundle state) {
 adapter.onSaveInstanceState(state);
 state.putStringArrayList(STATE_ITEMS, items);
 }

 @Override
 public void onRestoreInstanceState(Bundle state) {
 adapter.onRestoreInstanceState(state);
 items=state.getStringArrayList(STATE_ITEMS);
 }

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)
(here, STATE_ITEMS is a static data member, serving as the constant key
for the Bundle entry)
In order to be able to capitalize or remove the checked words from the list,
we need to know which ones are checked. Rather than expose that data
directly, ChoiceMode now has a visitChecks() method, where we can supply
a Visitor to be invoked for every checked position:

package com.commonsware.android.recyclerview.actionmodelist2;

import android.os.Bundle;

public interface ChoiceMode {
 void setChecked(int position, boolean isChecked);
 boolean isChecked(int position);
 void onSaveInstanceState(Bundle state);
 void onRestoreInstanceState(Bundle state);
 int getCheckedCount();
 void clearChecks();
 void visitChecks(Visitor v);

 public interface Visitor {
 void onCheckedPosition(int position);
 }
}

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/ChoiceMode.java)
MultiChoiceMode implements visitChecks() by iterating over a copy
of the checkStates ParcelableSparseBooleanArray. That way, if the
visitor modifies checkStates (e.g., unchecks a position), our loop
is unaffected.

 @Override
 public void visitChecks(Visitor v) {
 SparseBooleanArray copy=checkStates.clone();

 for (int i=0;i<copy.size();i++) {
 v.onCheckedPosition(copy.keyAt(i));
 }
 }

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MultiChoiceMode.java)
visitChecks() is also exposed by ChoiceCapableAdapter, as are all the
other methods on ChoiceMode.
Now, IconicAdapter can capitalize the words, by using visitChecks():

 case R.id.cap:
 visitChecks(new ChoiceMode.Visitor() {
 @Override
 public void onCheckedPosition(int position) {
 String word=getItems().get(position);

 word=word.toUpperCase(Locale.ENGLISH);
 getItems().set(position, word);
 notifyItemChanged(position);
 }
 });
 break;

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)
Here, for each checked item, we capitalize the word, replace the original
word with its capitalized equivalent, and call notifyItemChanged() to
let the RecyclerView know that this position had its model data changed
and therefore should be repainted, if needed.
We also use visitChecks() now in onDestroyActionMode(), to avoid
the notifyDataSetChanged() call:

 @Override
 public void onDestroyActionMode(ActionMode mode) {
 if (activeMode != null) {
 activeMode=null;
 visitChecks(new ChoiceMode.Visitor() {
 @Override
 public void onCheckedPosition(int position) {
 onChecked(position, false);
 notifyItemChanged(position);
 }
 });
 }
 }

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)
Each item that was checked is unchecked, and we use notifyItemChanged()
to ensure that the item is repainted if needed.
Now, checking some items and choosing “CAPITALIZE” from the action
mode will capitalize those words:

[image: ActionModeList2 RecyclerView Demo, with Capitalized Words]

Figure 513: ActionModeList2 RecyclerView Demo, with Capitalized Words
Adding and Removing Items
There are also methods on RecyclerView.Adapter to specifically call out
when you are adding or removing items from the adapter. Not only does this
cause the RecyclerView to update itself, but it will animate the changes,
if the relevant position(s) are visible.
Specifically, you can call:

	
notifyItemInserted(), to indicate that a new item was inserted at
a specified position, with everything else moving one position later in the
roster

	
notifyItemRangeInserted(), to insert several items in a block

	
notifyItemRemoved(), to indicate a position that had an item removed from
the roster, with later items moving up to take over earlier positions

	
notifyItemRangeRemoved(), to remove several items in a block

The ActionModeList2 sample uses notifyItemRemoved() as part
of its handling of the remove action mode item:

 case R.id.remove:
 final ArrayList<Integer> positions=new ArrayList<Integer>();

 visitChecks(new ChoiceMode.Visitor() {
 @Override
 public void onCheckedPosition(int position) {
 positions.add(position);
 }
 });

 Collections.sort(positions, Collections.reverseOrder());

 for (int position : positions) {
 getItems().remove(position);
 notifyItemRemoved(position);
 }

 clearChecks();
 activeMode.finish();
 break;

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)
Because items slide up to take over vacated positions, when removing
items, it is important to remove the lowest items first and work your
way up the roster. That is why this code:

	Aggregates the list of positions that are checked

	Sorts the checked items in reverse order

	Iterates over the checked items, removing each from the ArrayList
and calling notifyItemRemoved() to inform the adapter that the old
item at this position is now gone

	Clears all of the checks from the ChoiceMode (as all checked items
are now removed) and finishes the action mode (as there are no more
checked items)

The result is that when the user removes items, they rapidly fade out,
then later items in the list slide up to occupy the now-vacated space.
If you would prefer to use other animations, you can do so, by creating
your own subclass of RecyclerView.ItemAnimator and attaching it to
the RecyclerView with setItemAnimator().
The Order of Things
Version 22+ of recyclerview-v7 offers SortedList. On the surface,
the class appears to be a regular List that offers sorting. However,
it also has a callback interface designed to be tied into RecyclerView,
so that changes made to the SortedList can be reflected in the
RecyclerView itself, complete with animations, optional batched processing,
and so on.
This is illustrated in the
RecyclerView/SortedList
sample project. Along the way, we will also see how to use RecyclerView
in a fragment and how to populate RecyclerView from the background thread.
The Gradle Change
This project requires version 22 or higher of recyclerview-v7, as the
original v21 release of recyclerview-v7 did not have SortedList. So,
the Gradle build file requests something appropriate:

 implementation 'com.android.support:recyclerview-v7:27.0.2'
 implementation 'com.android.support:cardview-v7:27.0.2'

(from RecyclerView/SortedList/app/build.gradle)
The RecyclerViewFragment
Prior samples in this chapter used a RecyclerViewActivity for basic
RecyclerView setup. However, in this sample, we want to use a
retained fragment for managing the AsyncTask, which suggests putting
the RecyclerView in a fragment, rather than having it be managed
directly by the activity.
So, this project has a reworking of RecyclerViewActivity into
RecyclerViewFragment:

package com.commonsware.android.recyclerview.sorted;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.support.v7.widget.RecyclerView;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class RecyclerViewFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 RecyclerView rv=new RecyclerView(getActivity());

 rv.setHasFixedSize(true);

 return(rv);
 }

 public void setAdapter(RecyclerView.Adapter adapter) {
 getRecyclerView().setAdapter(adapter);
 }

 public RecyclerView.Adapter getAdapter() {
 return(getRecyclerView().getAdapter());
 }

 public void setLayoutManager(RecyclerView.LayoutManager mgr) {
 getRecyclerView().setLayoutManager(mgr);
 }

 public RecyclerView getRecyclerView() {
 return((RecyclerView)getView());
 }
}

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/RecyclerViewFragment.java)
Basically, what had been in onCreate() mostly moves into onCreateView(),
where we set up the RecyclerView. The rest of the core API is unchanged.
The project has SortedFragment, which extends RecyclerViewFragment
and handles loading of the data — we will examine more of it later in
this chapter.
The revised MainActivity then just loads up SortedFragment via
a FragmentTransaction:

package com.commonsware.android.recyclerview.sorted;

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;

public class MainActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new SortedFragment()).commit();
 }
 }
}

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/MainActivity.java)
The SortedFragment
Most of SortedFragment is reminiscent of the original AsyncTask
demo from the chapter on threads, mashed up with
one of the CardView/RecyclerView samples from earlier in this chapter.
However, the SortedList gets weaved throughout.
The SortedList
The model in the original AsyncTask demo was a simple ArrayList.
Now it is a SortedList, initialized in onCreate() of the SortedFragment:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 model=new SortedList<String>(String.class, sortCallback);

 task=new AddStringTask();
 task.execute();
 }

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)
The SortedList constructor takes two parameters:

	the Java class object for the models inside the list (in this case,
String.class)

	a SortedList.Callback object that will be invoked when the model
changes based on List APIs (e.g., add(), insert(), remove())

There is an optional third parameter for the capacity, unused in this sample.
We will take a peek at the SortedList.Callback implementation, named
sortCallback, shortly.
The IconicAdapter
The IconicAdapter from earlier RecyclerView samples worked directly
off of the static array of String values. Now, we want it to work off
of the model SortedList. Hence, onBindViewHolder() and getItemCount()
need to be modified to refer to appropriate methods on the model:

 class IconicAdapter extends RecyclerView.Adapter<RowController> {
 @Override
 public RowController onCreateViewHolder(ViewGroup parent, int viewType) {
 return(new RowController(getActivity().getLayoutInflater()
 .inflate(R.layout.row, parent, false)));
 }

 @Override
 public void onBindViewHolder(RowController holder, int position) {
 holder.bindModel(model.get(position));
 }

 @Override
 public int getItemCount() {
 return(model.size());
 }
 }

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)
Also note that when we create the adapter in onViewCreated(), that we
hold onto it in an adapter data member of the fragment:

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 setLayoutManager(new LinearLayoutManager(getActivity()));
 adapter=new IconicAdapter();
 setAdapter(adapter);
 }

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)
The SortedList.Callback
The job of the SortedList.Callback is to serve as the bridge between
the SortedList and the RecyclerView.Adapter.
SortedList, as the name
suggests, sorts its contents. That means that any change to the SortedList
contents can have different impacts on the RecyclerView. For example,
while an add() to an ArrayList would just add a new row to the end
of the RecyclerView, an add() on SortedList might need to insert
a row in the middle of the RecyclerView, to maintain the sorted order.
Hence, your SortedList.Callback is responsible for two things:

	Helping with the sorting itself, by comparing elements

	Passing information about how the sorting is done out to the
RecyclerView.Adapter, so the appropriate moves can be made there,
complete with animations

With that in mind, here is the sortedCB implementation of
SortedList.Callback:

 private SortedList.Callback<String> sortCallback=new SortedList.Callback<String>() {
 @Override
 public int compare(String o1, String o2) {
 return o1.compareTo(o2);
 }

 @Override
 public boolean areContentsTheSame(String oldItem, String newItem) {
 return(areItemsTheSame(oldItem, newItem));
 }

 @Override
 public boolean areItemsTheSame(String oldItem, String newItem) {
 return(compare(oldItem, newItem)==0);
 }

 @Override
 public void onInserted(int position, int count) {
 adapter.notifyItemRangeInserted(position, count);
 }

 @Override
 public void onRemoved(int position, int count) {
 adapter.notifyItemRangeRemoved(position, count);
 }

 @Override
 public void onMoved(int fromPosition, int toPosition) {
 adapter.notifyItemMoved(fromPosition, toPosition);
 }

 @Override
 public void onChanged(int position, int count) {
 adapter.notifyItemRangeChanged(position, count);
 }
 };

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)
The first method is your standard sort of compare() comparison
method, as you might implement on a Comparator. It should return zero
if the two model objects are the same from a sorting standpoint,
a negative number if the first parameter sorts before the second
parameter, or a positive number if the first parameter sorts after
the second parameter.
Then there are two similarly-named methods that serve as more-or-less
replacements for the equals() that you might have on a Comparator:
areContentsTheSame() and areItemsTheSame().
areItemsTheSame() should
return true if the two passed-in values represent the same actual
logical item. In the case of SortedFragment, that is simply whether
or not the strings are equal. But, with a more complex data model, you
might be comparing primary keys or some other form of immutable identifier.
areContentsTheSame() should return true if the visual representation
of the items look the same, as this will be used to optimize the changes
made to the RecyclerView.
For example, suppose a shopping cart fragment
wanted to use SortedList. Further suppose that if you added three boxes
of laundry detergent to the cart, rather than having one row in the
list with “Quantity: 3”, you were representing them as three rows in the
RecyclerView. In this case:

	
compare() returns a value to indicate the sorting rules of
those shopping cart items, perhaps based on the title of the item

	
areItemsTheSame() might return false for any combination of these
three items, as they are logically distinct rows within the RecyclerView

	
areContentsTheSame() might return true for any combination of these
three items, as while they are three separate line items, each is visually
identical in terms of what the RecyclerView rows look like

In many cases, areContentsTheSame() can simply invoke areItemsTheSame(),
under the premise that different items probably have different visual
representations. That is what is done in this sample, where areItemsTheSame()
in turn uses compare() to see whether or not the items are the same.
Finally, there are four on...() methods that are simply forwarded
along to their RecyclerView.Adapter counterparts, so changes to the
SortedList make the corresponding changes to the RecyclerView
contents.
Note that there is a SortedListAdapterCallback that takes a
RecyclerView.Adapter as a constructor parameter and handles the
on...() methods for you. However, since we want to retain the
SortedList across configuration changes, and since SortedList
does not allow us to change the SortedList.Callback object, we cannot
readily switch the SortedList to the new fragment and new adapter
after a configuration change.
The AsyncTask
The AddStringTask is the same as with the original AsyncTask sample,
except that now it adds the words to the SortedList, which (via its
Callback) will update the RecyclerView:

 private class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 if (isCancelled())
 break;

 publishProgress(item);
 SystemClock.sleep(400);
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(String... item) {
 if (!isCancelled()) {
 model.add(item[0]);
 }
 }

 @Override
 protected void onPostExecute(Void unused) {
 Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
 .show();

 task=null;
 }
 }

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)
The Results
If you run this sample, you will see the words be added to the list,
every 400ms. However, in the original ListView-based sample, new rows
were appended to the end, and so you would not see new rows appear after
the ListView space was filled. In this sample, the Latin words are sorted
by SortedList, and you will see them animate into position at the appropriate
spots as they are added. In the end, you get the same look as in earlier
CardView-based RecyclerView implementations, except that the words
are sorted:

[image: SortedList RecyclerView Demo]

Figure 514: SortedList RecyclerView Demo
Other Bits of Goodness
To quote the infamous American infomercial line: “But wait! There’s more!”
In addition to LinearLayoutManager and GridLayoutManager, there
is StaggeredGridLayoutManager. With a vertically-scrolling
GridLayoutManager, rows are
all a consistent height, but the cell widths might vary. With a
vertically-scrolling StaggeredGridLayoutManager, the columns are all
the same width, but the cell heights might vary.
All three of the standard layout managers support horizontal operation
as well, through a boolean on a constructor. In these cases, the
content will scroll horizontally, rather than vertically. This eliminates
the need for third-party horizontal ListView implementations and the like.
And, of course, you can implement your own RecyclerView.LayoutManager,
avoiding any of the built-in ones.
Animating the Deltas
SortedList is interesting, but it is inflexible. For example,
you cannot readily change the sort order, without completely replacing
the SortedList.
Moreover, it assumes that the changes that you want to make are simply
to keep a list in sorted order. There are plenty of other possible
changes to your data set that might occur, such as from the results of
some Web service call to synchronize your local data with that on a server.
You would have to somehow perform your own “diff” on the data shown
in your RecyclerView and the new roster of data, to determine what
changed, what did not change, and how those changes affect things like
item positions within the list or grid.
We have two options for handling this:

	The low-level approach offered by DiffUtil

	The simplified approach offered by ListAdapter

First, let’s look at DiffUtil. This handles all of the difference calculations
to identify the specific changes needed to switch the RecyclerView from one
list to another. You hand it two collections (old and new),
plus an object that can help determine what the changes are (one reminiscent
of a SortedList.Callback). It gives you a results object that, in turn,
can update the RecyclerView to affect those changes.
The
Java8/VideoLambda
sample project is yet another rendition of the “list of videos” sample
app from earlier in this chapter. However, it shows the list in sorted
order, but using DiffUtil rather than SortedList. This allows us to
offer the user the ability to change the sort order (ascending or descending).
Model
The original version of this sample used a Cursor directly, wrapping
it in a RecyclerView.Adapter. That is fine, but we cannot readily
sort a Cursor. It is simpler to convert the Cursor into a list
of model objects, so we can sort the list.
To that end, the VideoLambda sample app has a Video class, with
a constructor that can populate itself from a Cursor positioned
on a valid row:

package com.commonsware.android.recyclerview.videolist;

import android.content.ContentUris;
import android.database.Cursor;
import android.net.Uri;
import android.provider.MediaStore;

class Video implements Comparable<Video> {
 final String title;
 final Uri videoUri;
 final String mimeType;

 Video(Cursor row) {
 this.title=
 row.getString(row.getColumnIndex(MediaStore.Video.Media.TITLE));
 this.videoUri=ContentUris.withAppendedId(
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));
 this.mimeType=
 row.getString(row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE));
 }

 @Override
 public boolean equals(Object obj) {
 if (!(obj instanceof Video)) {
 return(false);
 }

 return(videoUri.equals(((Video)obj).videoUri));
 }

 @Override
 public int hashCode() {
 return(videoUri.hashCode());
 }

 @Override
 public int compareTo(Video video) {
 return(title.compareTo(video.title));
 }
}

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/Video.java)
Note that Video has an implementation of equals() considering
two Video objects to be equal if they point to the same Uri. That will
be important when we use DiffUtil, as DiffUtil (and our helper code)
need to know when two Video objects logically represent the same video.
Video also implements Comparable and therefore has a compareTo()
method, implemented by comparing the titles of the videos. This will be
used as part of our sorting logic.
The VideoAdapter has a setVideos() method, taking a Cursor that we
loaded from the MediaStore, as before. However, now VideoAdapter
does not hold that Cursor in a field. Rather, it holds an ArrayList
of Video objects as the videos field, with setVideos() handling
the conversion of data from the Cursor into the Video objects:

 void setVideos(Cursor c) {
 if (c==null) {
 videos=null;
 notifyDataSetChanged();
 }
 else {
 ArrayList<Video> temp=new ArrayList<>();

 while (c.moveToNext()) {
 temp.add(new Video(c));
 }

 if (videos==null) {
 videos=new ArrayList<>();
 }

 sortAndApply(temp);
 }
 }

 @Override

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
We will see the sortAndApply() method, and understand what the temp
local variable is all about, a bit later in this section. For now, take
it on faith that:

	If the Cursor is null (e.g., onLoaderReset() was called), we
null out the videos field and call notifyDataSetChanged(), to
let the RecyclerView know that our entire roster of videos changed

	If the Cursor is not null, we convert it into an ArrayList
of Video objects, then use sortAndApply() to update the
RecyclerView

The Menu
The other time we need to sort the videos is if the user chooses to
switch from ascending to descending sort (or back again).
The app has a menu resource with a checkable menu <item>, named
sort, that the user will be able to use to toggle the sort order:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/sort"
 android:checkable="true"
 android:checked="true"
 android:enabled="false"
 android:showAsAction="never"
 android:title="@string/sort_ascending" />
</menu>

(from Java8/VideoLambda/app/src/main/res/menu/actions.xml)
Note that it is disabled initially. When the app starts up, we do not
yet have our videos, since they need to be loaded from the MediaStore.
Hence, we keep the item disabled until the videos are ready.
In the activity’s onCreateOptionsMenu() method, we inflate the resource,
get the sort MenuItem, hold onto it in a field (also named sort),
and enable it if the VideoAdapter happens to already have some videos:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);
 sort=menu.findItem(R.id.sort);
 sort.setEnabled(adapter.getItemCount()>0);

 return(super.onCreateOptionsMenu(menu));
 }

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
Then, in onOptionsItemSelected(), if the user taps on this action bar
item, we toggle its checked state, then tell the VideoAdapter to
sort() based upon that state:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.sort) {
 item.setChecked(!item.isChecked());
 adapter.sort(item.isChecked());

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
sort(), in turn, keeps track of the current sort order, then calls
the same sortAndApply() that we did in setVideos():

 sortAscending=checked;
 sortAndApply(new ArrayList<>(videos));
 }
 }
 }
}

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
The Diff-ing
The job of sortAndApply() is to do what the name suggests: sort the
videos and apply the sorted list to the RecyclerView. In principle,
there are two possible scenarios:

	We are showing the videos for the very first time

	We are showing the videos again, after a re-sort, or perhaps after
a new video was scanned by the MediaStore, triggering the Loader
framework to hand us a fresh Cursor

Fortunately, we can handle both the same way:

 Collections.sort(newVideos,
 (one, two) -> one.compareTo(two));
 }
 else {
 Collections.sort(newVideos,
 (one, two) -> two.compareTo(one));
 }

 DiffUtil.Callback cb=new SimpleCallback<>(videos, newVideos);
 DiffUtil.DiffResult result=DiffUtil.calculateDiff(cb, true);

 videos=newVideos;
 result.dispatchUpdatesTo(this);
 }

 private void sort(boolean checked) {

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
The new list of videos is the newVideos parameter to sortAndApply().
Based on the sortAscending value, we use Collections.sort() to
sort the newVideos list… using a Java 8 lambda expression.
Lambda expressions are covered elsewhere in the book.
However, we could just sort using an anonymous inner class implementation
of Comparator, such as this for sorting in ascending order:

Collections.sort(temp, new Comparator<Video>() {
 @Override
 public int compare(Video one, Video two) {
 return(one.compareTo(two));
 }
});

Given the newly-sorted list, we create an instance of a DiffUtil.Callback
object, called SimpleCallback. We will see its implementation shortly.
Its role is to help DiffUtil calculate the nature of the changes to
list of videos, comparing what is in the RecyclerView now (videos)
with what we want the RecyclerView to show (newVideos).
That DiffUtil.Callback object is passed to the calculateDiff() method
on DiffUtil. The second parameter — true — indicates whether or
not objects in the list may have moved. Sometimes, we know that the updates
do not move objects around in the list, but merely insert new ones
or remove existing ones. In such cases, calculateDiff() can optimize
its tracking algorithm to run more efficiently. In our case, we most
definitely are changing the positions of existing objects, and therefore
we need to pass true.
In principle, calculateDiff() should be called on a background thread.
For long lists and complicated comparisons, calculateDiff() could take
long enough that you might exhibit some jank by taking up
too much time on the main application thread. In this case, the comparisons
are cheap, and hopefully you do not have too many videos on your test
device.
The result of calculateDiff() is a DiffUtil.DiffResult object.
After updating our video field to be the sorted newVideos collection,
we call dispatchUpdatesTo() on the DiffResult, to have it apply the
changes to the VideoAdapter. We need to update videos first because
dispatchUpdatesTo() may trigger fresh onBindViewHolder() calls, and
we need to make sure that we are using the newly-sorted list for those.
The SimpleCallback
SimpleCallback, as the name suggests, is a naive implementation of
DiffUtil.Callback:

package com.commonsware.android.recyclerview.videolist;

import android.support.v7.util.DiffUtil;
import java.util.ArrayList;

class SimpleCallback<T extends Comparable> extends DiffUtil.Callback {
 private final ArrayList<T> oldItems;
 private final ArrayList<T> newItems;

 public SimpleCallback(ArrayList<T> oldItems,
 ArrayList<T> newItems) {
 this.oldItems=oldItems;
 this.newItems=newItems;
 }

 @Override
 public int getOldListSize() {
 return(oldItems.size());
 }

 @Override
 public int getNewListSize() {
 return(newItems.size());
 }

 @Override
 public boolean areItemsTheSame(int oldItemPosition,
 int newItemPosition) {
 return(oldItems.get(oldItemPosition)
 .equals(newItems.get(newItemPosition)));
 }

 @Override
 public boolean areContentsTheSame(int oldItemPosition,
 int newItemPosition) {
 return(oldItems.get(oldItemPosition)
 .compareTo(newItems.get(newItemPosition))==0);
 }
}

(from Java8/VideoLambda/app/src/main/java/com/commonsware/android/recyclerview/videolist/SimpleCallback.java)
Any DiffUtil.Callback needs to implement four key abstract methods:

	
getOldListSize() and getNewListSize(), which return pretty much
what their names would indicate

	
areItemsTheSame(), where you need to indicate if a particular
item from the old list (identified by position) represents the same
logical entity as does a particular item from the new list (also identified
by position)

	
areContentsTheSame(), where you need to indicate if objects from
the old and new list (identified by positions) are similar enough
that the user would not notice a visual difference

Those latter two methods basically fill the same roles as do
methods of the same names on a SortedList.Callback.
In the case of SimpleCallback, areItemsTheSame() uses
equals(). Since Video implements equals() to compare
the video Uri values, areItemsTheSame() will return true
if the two Video objects point to the same video.
areContentsTheSame()
leverages compareTo(), which compares the titles of the videos.
If compareTo() return 0, the titles are the same, and so
areContentsTheSame() returns true to indicate that the visual
representation of the videos is the same. This might not actually
be the case, as we are showing the video thumbnails in the rows,
and so it is possible that we have two videos that have the same
title but different thumbnails. In that case, DiffUtil might
not cause RecyclerView to redraw one or the other row.
An alternative approach would be to have areContentsTheSame()
simply return the value of areItemsTheSame(). This covers the
thumbnails issue, at the expense of possibly doing some unnecessary
shuffling of RecyclerView items, for cases where we have two
videos with identical titles and thumbnails. It will be up to you,
in your own app, to determine the best implementation of
areContentsTheSame() based on your UI.

ListAdapter. No, Not That ListAdapter.
android.widget.ListAdapter is what we use with ListView.
android.support.v7.recyclerview.extensions.ListAdapter is a ListAdapter
designed to work with RecyclerView. In particular, it integrates
the DiffCallback behavior, so that as you provide updated lists of
content, it calculates the differences and animates the necessary changes.
The
RecyclerView/ListAdapter
sample project illustrates the use of ListAdapter. It has the same
functionality as the SortedList sample shown earlier in this chapter:
animate the changes as we load 25 Latin words slowly into a RecyclerView,
keeping the list sorted. The differences are:

	We use ListAdapter rather than SortedList

	We use RxJava instead of an AsyncTask

	We have to sort the contents ourselves, since SortedList
is not doing that for us

The Callback
ListAdapter uses DiffUtil.ItemCallback. This is very similar to
DiffUtil.Callback. In particular, it too uses areItemsTheSame() and
areContentsTheSame() for the same roles:

	
areItemsTheSame() should return true if the two items represent
the same thing (e.g., have the same primary key)

	
areContentsTheSame() should return true if the visual representation
of the two items would be identical

However, ListAdapter and ItemCallback do not expect you to hold onto
the lists in the callback — instead, you are passed actual objects
for comparison:

 class StringDiffCallback extends DiffUtil.ItemCallback<String> {
 @Override
 public boolean areItemsTheSame(String oldItem, String newItem) {
 return oldItem.equals(newItem);
 }

 @Override
 public boolean areContentsTheSame(String oldItem, String newItem) {
 return areItemsTheSame(oldItem, newItem);
 }
 }

(from RecyclerView/ListAdapter/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)
In this case, our “models” are simple strings, so StringDiffCallback
is handed strings for comparison purposes. Strings are very simple, so areItemsTheSame()
and areContentsTheSame() have an identical implementation: use equals().
Having both callback methods use the same logic is a reasonable starting point
even for more complex models.
The Adapter
The revised IconicAdapter now extends from ListAdapter:

 class IconicAdapter extends ListAdapter<String, RowController> {
 IconicAdapter() {
 super(new StringDiffCallback());
 }

 @NonNull
 @Override
 public RowController onCreateViewHolder(@NonNull ViewGroup parent, int viewType) {
 return(new RowController(getActivity().getLayoutInflater()
 .inflate(R.layout.row, parent, false)));
 }

 @Override
 public void onBindViewHolder(@NonNull RowController holder, int position) {
 holder.bindModel(getItem(position));
 }
 }

(from RecyclerView/ListAdapter/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)
This works similar to a regular RecyclerView.Adapter, with a few differences:

	We need to provide an instance of a suitable DiffUtil.ItemCallback in the
constructor, so we pass a StringDiffCallback

	We do not need to keep track of the actual list of model objects ourselves,
as ListAdapter does that for us

	In onBindViewHolder(), we can call getItem() to return the model object
for a given position, for use in binding our RecyclerView.ViewHolder

To give a ListAdapter the models to show, call submitList(). If this is the
first list that the ListAdapter has seen, the items just get displayed in
the associated RecyclerView. If, however, the ListAdapter already has a list,
the ListAdapter uses the DiffUtil.ItemCallback to determine what changes
are needed in the RecyclerView to switch from the old list to the new one.
Then, it makes the appropriate calls to make those incremental changes, triggering
animated effects along the way.
The Rx Stuff
This particular sample happens to use RxJava and Java 8 lambda expresssions
for feeding our list of words, 400 milliseconds at a time, to the RecyclerView.
That is handled in the onViewCreated() method of our SortedFragment:

 @Override
 public void onViewCreated(@NonNull View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 IconicAdapter adapter=new IconicAdapter();

 setAdapter(adapter);
 setLayoutManager(new LinearLayoutManager(getActivity()));

 ArrayList<String> wordsSoFar=new ArrayList<>();

 sub=Observable.fromArray(ITEMS)
 .zipWith(Observable.interval(400, TimeUnit.MILLISECONDS), (item, interval) -> item)
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())
 .map(word -> {
 wordsSoFar.add(word);

 Collections.sort(wordsSoFar);

 return new ArrayList<>(wordsSoFar);
 })
 .doOnComplete(() ->
 Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
 .show())
 .subscribe(adapter::submitList);
 }

(from RecyclerView/ListAdapter/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)
We start an Observable chain with fromArray(), which points to our static
array of 25 Latin words.
Next, we attach a zipWith() operator. For every item emitted from our array,
zipWith() will wait for an item to be emitted from some other Observable, then
let us combine those two objects as we see fit. The other Observable that we use
is created from interval(), which simply emits an object every so often, based
on a supplied period. The net effect of this line is that we introduce a 400
millisecond delay for each of the items in the array.
Right now, our Observable chain is emitting individual words. What we want
to give the ListAdapter is the list of words that we have so far, in the order
that we want them to appear in the RecyclerView. So, we attach a map() operator
to the chain. For each word that comes in, we:

	Add it to a master copy of the words that we have received so far

	Sort that master copy

	Emit a copy of the master copy, as ListAdapter needs a fresh ArrayList
in submitList(), not a modified edition of the list that it already has (otherwise,
it loses track of what the old list was, since you changed it)

Then, after setting up the threads, we use doOnComplete() to find out when
our array is finished so we can show a Toast to let the user know that all
the words were added.
Finally, we subscribe() and pass each edition of the sorted list over
to the ListAdapter by means of submitList().
The net effect is the same as the earlier SortedList example: each item appears
in the list, with animated effects to handle the inserted values.
Expandable Rows
A common pattern in vertically-scrolling lists is to have the rows
expand and contract when clicked. This allows you to have more information
inline in the list, without always taking up all of the vertical space that
the information might require.
This might not sound very hard: just toggle the visibility of some
widgets, perhaps using an animation.
However, what we really want is that when a row is expanded, that the
entirety of the expanded row is visible, assuming that there is sufficient
screen space for it. Otherwise, if the user happens to expand some row
at the bottom of the list, the user might not realize that more
information is available off the bottom of the screen.
Making this work requires knowing where the row is in the list, how much
space will be required when it is expanded, whether the expanded row will
fit given the RecyclerView size, and how to scroll the RecyclerView
to make the row fit if needed.
That sounds complicated.
And so, we turn to a library: the ExpandableLayout provided
by com.github.SilenceDut:ExpandableLayout.
This library is demonstrated in the
RecyclerView/ExpandableRow
sample project. However, this sample project makes extensive use of
the data binding framework, so you may wish to read
that chapter before continuing with this section.
This app is another “list the recent questions on Stack Overflow” apps
that have been profiled elsewhere in the book, starting with
the chapter on Internet access. In this case, we are
using a RecyclerView for the list, with the data binding framework
populating the rows.
A Stack Overflow question has
lots of possible pieces of data,
far more than we would want to display in a RecyclerView row.
Even showing a subset of this information would make for a really long
list, as each row would be fairly large. So, instead, we will use
ExpandableLayout to show the title, owner’s avatar, and question
score all the time and show the tags, view count, and answer count
after the user taps on a row. Since we are “stealing” the click event
to expand and collapse the row, we cannot use it for anything else,
so we also want a “View” button in the expanded area, to allow the user
to view the Stack Overflow question on the Stack Overflow Web site.
Our build.gradle file pulls in libraries for accessing the Stack Exchange
API (Retrofit and Picasso), libraries for displaying the results
(recyclerview-v7 and cardview-v7), plus ExpandableLayout:

apply plugin: 'com.android.application'

repositories {
 maven { url "https://jitpack.io" }
}

dependencies {
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.squareup.retrofit:retrofit:1.9.0'
 implementation 'com.android.support:recyclerview-v7:27.1.0'
 implementation 'com.android.support:cardview-v7:27.1.0'
 implementation("com.android.support:support-v4:27.1.0") {
 exclude group: 'com.android.support', module: 'support-media-compat'
 } // for https://issuetracker.google.com/issues/64909326
 implementation 'com.github.SilenceDut:ExpandableLayout:1.2.0'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 versionCode 1
 versionName "1.0"
 applicationId "com.commonsware.android.databind.expandable"
 }

 dataBinding {
 enabled = true
 }
}

(from RecyclerView/ExpandableRow/app/build.gradle)
An ExpandableLayout contains two children. The first child will
be shown all the time, while the second child represents the additional
content to be shown when the ExpandableLayout is expanded. So, our
res/layout/row.xml resource contains an ExpandableLayout,
wrapping around the desired UI. The ExpandableLayout itself is wrapped
in a CardView for formatting, and the whole thing is inside a
<layout> for the data binding framework:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <data>

 <import type="android.text.Html" />

 <import type="android.text.TextUtils" />

 <variable
 name="question"
 type="com.commonsware.android.databind.basic.Question" />

 <variable
 name="controller"
 type="com.commonsware.android.databind.basic.QuestionController" />
 </data>

 <android.support.v7.widget.CardView
 xmlns:cardview="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 cardview:cardCornerRadius="4dp">

 <com.silencedut.expandablelayout.ExpandableLayout
 android:id="@+id/row_content"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="?android:attr/selectableItemBackground"
 android:onTouch="@{controller::onTouch}"
 app:expWithParentScroll="true">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"
 app:error="@{@drawable/owner_error}"
 app:imageUrl="@{question.owner.profileImage}"
 app:placeholder="@{@drawable/owner_placeholder}" />

 <TextView
 android:id="@+id/title"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_gravity="left|center_vertical"
 android:layout_weight="1"
 android:text="@{Html.fromHtml(question.title)}"
 android:textSize="20sp" />

 <TextView
 android:id="@+id/score"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:text="@{Integer.toString(question.score)}"
 android:textSize="40sp"
 android:textStyle="bold" />

 </LinearLayout>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:padding="8dp">

 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:orientation="vertical">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ellipsize="end"
 android:maxLines="1"
 android:text='@{@string/tags+" "+TextUtils.join(", ", question.tags)}' />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text='@{@string/views+" "+question.viewCount}' />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text='@{@string/answers+" "+question.answerCount}' />

 </LinearLayout>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="@{()->controller.showQuestion(context, question)}"
 android:text="@string/btn_view" />
 </LinearLayout>
 </com.silencedut.expandablelayout.ExpandableLayout>
 </android.support.v7.widget.CardView>
</layout>

(from RecyclerView/ExpandableRow/app/src/main/res/layout/row.xml)
We do not need to do anything to teach ExpandableLayout to expand
and collapse based upon click events, as that is built into the class.
However, we do opt into one optional feature, via app:expWithParentScroll="true".
This indicates that we want to scroll the parent (here, referring to
the RecyclerView) to allow the expanded ExpandableLayout to be fully
visible where possible.
When the activity is launched, the rows are collapsed:

[image: Expandable RecyclerView Rows, Collapsed]

Figure 515: Expandable RecyclerView Rows, Collapsed
Tapping on one expands it to show the rest of the content, including
scrolling the RecyclerView so it is visible:

[image: Expandable RecyclerView Rows, One Row Expanded]

Figure 516: Expandable RecyclerView Rows, One Row Expanded
RecyclerView as Pager
ViewPager has been used for horizontally-swiped page-at-a-time user
interfaces since its debut in 2011.
However, ViewPager is not that flexible:

	You can only swipe horizontally. It has no setSwipeDirection()
or similar method to switch to vertical swiping.

	It was designed to work with fragments as pages. While PagerAdapter
itself can work with views as pages, even the minimum required API is
difficult to understand.
And using fragments as pages means that you may wind up in cases with
nested fragments, which adds to the complexity.

	While PagerAdapter has enough hooks to allow you to add and remove
pages on the fly, neither FragmentPagerAdapter nor FragmentStatePagerAdapter
support this use case, requiring you to roll your own PagerAdapter
implementation.

And so on.
However, as it turns out, RecyclerView can be readily adapted to serve
as a ViewPager replacement. Instead of a PagerAdapter, you use an
ordinary RecyclerView.Adapter, where your pages are simple views.
RecyclerView itself is far more flexible than is ViewPager, giving you
a stronger foundation for more advanced paging scenarios.
Using RecyclerViewPager
The original solution for using RecyclerView as a ViewPager
replacement came in the form of a third-party library,
com.github.lsjwzh.RecyclerViewPager. This library offers
a RecyclerViewPager subclass of RecyclerView that offers the
page-at-a-time swiping metaphor.
The
RecyclerViewPager/PlainRVP
sample project illustrates its use. This is another rendition of the
10-EditText-widgets pager that was used in the chapter on ViewPager,
swapping in RecyclerViewPager for the ViewPager.
Adding the Dependency
The com.github.lsjwzh.RecyclerViewPager library is not on JCenter
or Maven Central. Instead, it is on jitpack.io, an artifact
repository that builds artifacts directly from GitHub source
repositories. So, to use this library, we need to add jitpack.io
as a repository, in addition to adding the RecyclerViewPager library
itself:

apply plugin: 'com.android.application'

repositories {
 maven { url "https://jitpack.io" }
}

dependencies {
 implementation 'com.android.support:recyclerview-v7:25.1.0'
 implementation 'com.github.lsjwzh.RecyclerViewPager:lib:v1.1.2'
}

android {
 compileSdkVersion 25
 buildToolsVersion '26.0.2'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 25
 }
}

(from RecyclerViewPager/PlainRVP/app/build.gradle)
Using the Widget
In the equivalent ViewPager sample app, the main.xml layout resource
held the ViewPager. In this sample, it holds the RecyclerViewPager
(or, more accurately, the com.lsjwzh.widget.recyclerviewpager.RecyclerViewPager,
since the class name needs to be fully-qualified since it is coming
from a library):

<?xml version="1.0" encoding="utf-8"?>
<com.lsjwzh.widget.recyclerviewpager.RecyclerViewPager android:id="@+id/pager"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:clipToPadding="false"
 android:layout_margin="@dimen/pager_padding"
 app:rvp_singlePageFling="true"
 app:rvp_triggerOffset="0.1" />

(from RecyclerViewPager/PlainRVP/app/src/main/res/layout/main.xml)
The app:rvp_singlePageFling indicates that we want to limit the user
to switch one page at a time, rather than a long fling gesture resulting
in moving through many pages at once. The app:rvp_triggerOffset
attribute is undocumented but appears to control how much of a swipe
gesture is necessary to trigger a page change.
Populating the Pages
With ViewPager, you supply the pages via a PagerAdapter, typically
a FragmentPagerAdapter or a FragmentStatePagerAdapter. With
RecyclerViewPager, you supply the pages via a RecyclerView.Adapter,
just as you would with any other RecyclerView.
So, in onCreate() of the MainActivity, we get the RecyclerViewPager,
hand it a horizontal LinearLayoutManager, create a PageAdapter, and
attach that PageAdapter to the RecyclerViewPager:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 RecyclerViewPager pager=(RecyclerViewPager)findViewById(R.id.pager);

 pager.setLayoutManager(new LinearLayoutManager(this,
 LinearLayoutManager.HORIZONTAL, false));
 adapter=new PageAdapter(pager, getLayoutInflater());
 pager.setAdapter(adapter);
 }

(from RecyclerViewPager/PlainRVP/app/src/main/java/com/commonsware/android/rvp/MainActivity.java)
By using a horizontal LinearLayoutManager, the RecyclerViewPager
will behave akin to a regular ViewPager, with navigation occurring
via horizontal swipes. Want a vertical ViewPager? Replace the
horizontal LinearLayoutManager with a vertical one, and you are set.
Our PageAdapter is a RecyclerView.Adapter, for a RecyclerView.ViewHolder
named PageController. The basic setup for PageAdapter is not that
different than any other RecyclerView.Adapter:

	We create a PageController in onCreateViewHolder()

	We populate that PageController with model data in onBindViewHolder()

	We indicate how many items there are in getItemCount()

class PageAdapter extends RecyclerView.Adapter<PageController> {
 private static final String STATE_BUFFERS="buffers";
 private static final int PAGE_COUNT=10;
 private final RecyclerViewPager pager;
 private final LayoutInflater inflater;
 private ArrayList<String> buffers=new ArrayList<>();

 PageAdapter(RecyclerViewPager pager, LayoutInflater inflater) {
 this.pager=pager;
 this.inflater=inflater;

 for (int i=0;i<10;i++) {
 buffers.add("");
 }
 }

 @Override
 public PageController onCreateViewHolder(ViewGroup parent, int viewType) {
 return(new PageController(inflater.inflate(R.layout.editor, parent, false)));
 }

 @Override
 public void onBindViewHolder(PageController holder, int position) {
 holder.setText(buffers.get(position));
 }

 @Override
 public int getItemCount() {
 return(PAGE_COUNT);
 }

(from RecyclerViewPager/PlainRVP/app/src/main/java/com/commonsware/android/rvp/PageAdapter.java)
In this case, our model data is an ArrayList of String objects,
representing the text that the user enters into each page’s EditText.
PAGE_COUNT caps the number of editors (and pages) at 10, and so we
initialize 10 buffers in the PageAdapter constructor.
The layout used for the pages — inflated by onCreateViewHolder() –
is just a full-page multi-line EditText widget:

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/editor"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:inputType="textMultiLine"
 android:gravity="left|top"
 />

(from RecyclerViewPager/PlainRVP/app/src/main/res/layout/editor.xml)
PageController is a fairly basic RecyclerView.ViewHolder, wrapping
our EditText and offering a getter and setter for manipulating the
text in the editor:

package com.commonsware.android.rvp;

import android.support.v7.widget.RecyclerView;
import android.view.View;
import android.widget.EditText;

class PageController extends RecyclerView.ViewHolder {
 private final EditText editor;

 PageController(View itemView) {
 super(itemView);

 editor=(EditText)itemView.findViewById(R.id.editor);
 }

 void setText(String text) {
 editor.setText(text);
 editor.setHint(editor.getContext().getString(R.string.hint,
 getAdapterPosition()+1));
 }

 String getText() {
 return(editor.getText().toString());
 }
}

(from RecyclerViewPager/PlainRVP/app/src/main/java/com/commonsware/android/rvp/PageController.java)
In case the buffer is empty (as it is at the outset), we also set the
hint of the EditText to be the current page’s index, adding one to
adjust the range to start at 1 rather than 0. The hint text itself
is in a string resource, with a %d placeholder for the page number:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">RVP Demo</string>
 <string name="hint">Editor #%d</string>

</resources>

(from RecyclerViewPager/PlainRVP/app/src/main/res/values/strings.xml)
We use the N-parameter getString() method to not only retrieve the
hint string resource but run it through String.format() to populate
the placeholders, in this case using getAdapterPosition() to determine
our page number.
Dealing with Recycling
RecyclerView wants to recycle its items. That is in contrast to how
the stock PagerAdapter implementation works:

	
FragmentPagerAdapter holds onto every fragment created due to the
user’s navigation

	
FragmentStatePagerAdapter holds onto some fragments, but lets
others get garbage-collected, to minimize memory consumption

If our pages were read-only, we would not have to worry about recycling.
This is how many RecyclerView implementations work — they just focus
on binding the right data into the right RecyclerView.ViewHolder at the right time,
based on calls to onBindViewHolder in the RecyclerView.Adapter.
However, when the RecyclerView items are interactive, we need to make
sure that we hold onto the changed data, rather than having it be
overwritten when we bind fresh data into the recycled item’s views.
In PageAdapter, we handle this by overriding onViewDetachedFromWindow(),
which is called when the views of a PageController are no longer
part of our activity’s window.
Typically, this will occur as part
of scrolling. In our case,
we use this opportunity to grab the current contents of that
EditText widget and update our buffers data model to match:

 @Override
 public void onViewDetachedFromWindow(PageController holder) {
 super.onViewDetachedFromWindow(holder);

 buffers.set(holder.getAdapterPosition(), holder.getText());
 }

(from RecyclerViewPager/PlainRVP/app/src/main/java/com/commonsware/android/rvp/PageAdapter.java)
Alternatively, you could aim to deal with this more in “real time”,
such as by using a TextWatcher to update the model as the user types.
That adds a fair bit of overhead, though.
Dealing with Configuration Changes
We need to make sure that we do not lose what the user types into the
pages when we undergo a configuration change. Since our model is a simple
ArrayList of String objects, we can use the saved instance state
Bundle to hold onto the in-flight information.
A RecyclerView.Adapter does not have its own onSaveInstanceState()
method, but we can add one, then call it from MainActivity:

 @Override
 protected void onSaveInstanceState(Bundle state) {
 super.onSaveInstanceState(state);

 Bundle adapterState=new Bundle();

 adapter.onSaveInstanceState(adapterState);
 state.putBundle(STATE_ADAPTER, adapterState);
 }

(from RecyclerViewPager/PlainRVP/app/src/main/java/com/commonsware/android/rvp/MainActivity.java)
Here, MainActivity provides a fresh Bundle to the adapter. This way,
values that the adapter wishes to save in the instance state will not
collide with anything else the activity would want to save in the instance
state, due to accidental key collisions. In this case, this may well be
superfluous, but it is a worthwhile practice.
The challenge in our PageAdapter is that buffers only has text
from those PageController objects that have been recycled. That will
not include the currently-visible page or possibly some adjacent pages.
So, we iterate over all pages and call findViewHolderForAdapterPosition()
on the RecyclerView itself. This will return null for any positions
for which no PageController is presently allocated, or the PageController
for the position for those positions that are actively being used. For
those latter ones, we update the buffers to reflect whatever is in
the EditText widgets, saving that into the instance state
Bundle:

 void onSaveInstanceState(Bundle state) {
 for (int i=0;i<PAGE_COUNT;i++) {
 PageController holder=
 (PageController)pager.findViewHolderForAdapterPosition(i);

 if (holder!=null) {
 buffers.set(i, holder.getText());
 }
 }

 state.putStringArrayList(STATE_BUFFERS, buffers);
 }

(from RecyclerViewPager/PlainRVP/app/src/main/java/com/commonsware/android/rvp/PageAdapter.java)
MainActivity has a corresponding onRestoreInstanceState() method:

 @Override
 protected void onRestoreInstanceState(Bundle state) {
 super.onRestoreInstanceState(state);

 adapter.onRestoreInstanceState(state.getBundle(STATE_ADAPTER));
 }

(from RecyclerViewPager/PlainRVP/app/src/main/java/com/commonsware/android/rvp/MainActivity.java)
That delegates the work to the onRestoreInstanceState() method on the
PageAdapter:

 void onRestoreInstanceState(Bundle state) {
 buffers=state.getStringArrayList(STATE_BUFFERS);
 }

(from RecyclerViewPager/PlainRVP/app/src/main/java/com/commonsware/android/rvp/PageAdapter.java)
This sets up our buffers for use in populating pages again.
Using SnapHelper
RecyclerViewPager was first released in 2014. Since then, RecyclerView
and its supporting classes have evolved. Now, you can get much of the
functionality of RecyclerViewPager with an ordinary RecyclerView,
with the assistance of SnapHelper. As Lisa Wray profiled in
a droidcon NYC 2016 presentation,
SnapHelper is a utility class that forces swipe gestures to “snap”
to certain locations or boundaries. And, there is a PagerSnapHelper
that, in conjunction with properly-configured RecyclerView and
items, gives you ViewPager-like behavior.
The
RecyclerViewPager/PlainSnap
sample project is a clone of the PlainRVP sample, except that the
RecyclerViewPager is replaced by a RecyclerView and a PagerSnapHelper.
There are three requirements of PagerSnapHelper. Two are tied to the
layouts: both the RecyclerView and its items need to have match_parent
for android:layout_width and android:layout_height. That was how
PlainRVP was set up already, though PlainSnap swaps in a RecyclerView
for the RecyclerViewPager in main.xml:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.RecyclerView android:id="@+id/pager"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="@dimen/pager_padding"
 android:clipToPadding="false" />

(from RecyclerViewPager/PlainSnap/app/src/main/res/layout/main.xml)
The other requirement is that we create an instance of PagerSnapHelper
and call attachToRecyclerView() on it, supplying our RecyclerView.
This is handled in an updated MainActivity:

package com.commonsware.android.rvp;

import android.app.Activity;
import android.os.Bundle;
import android.support.v7.widget.LinearLayoutManager;
import android.support.v7.widget.PagerSnapHelper;
import android.support.v7.widget.RecyclerView;
import android.support.v7.widget.SnapHelper;

public class MainActivity extends Activity {
 private static final String STATE_ADAPTER="adapter";
 private final SnapHelper snapperCarr=new PagerSnapHelper();
 private PageAdapter adapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 RecyclerView pager=(RecyclerView)findViewById(R.id.pager);

 pager.setLayoutManager(new LinearLayoutManager(this,
 LinearLayoutManager.HORIZONTAL, false));
 snapperCarr.attachToRecyclerView(pager);

 adapter=new PageAdapter(pager, getLayoutInflater());
 pager.setAdapter(adapter);
 }

 @Override
 protected void onSaveInstanceState(Bundle state) {
 super.onSaveInstanceState(state);

 Bundle adapterState=new Bundle();

 adapter.onSaveInstanceState(adapterState);
 state.putBundle(STATE_ADAPTER, adapterState);
 }

 @Override
 protected void onRestoreInstanceState(Bundle state) {
 super.onRestoreInstanceState(state);

 adapter.onRestoreInstanceState(state.getBundle(STATE_ADAPTER));
 }
}

(from RecyclerViewPager/PlainSnap/app/src/main/java/com/commonsware/android/rvp/MainActivity.java)
We hold onto the PagerSnapHelper in a field, to ensure that it will
not be garbage-collected unexpectedly. Probably the PagerSnapHelper
has sufficient connections to the RecyclerView to ensure that it will
stay around as long as its associated RecyclerView does, but that is
not apparent from the API or the documentation.
Beyond that, we configure the RecyclerView much as we had configured
the RecyclerViewPager, and our PageAdapter and PageController
are largely unaffected by the UI switch. In the end, we wind up once again
with page-at-a-time horizontal swiping, though this time we can skip
the third-party library.
Adding Tabs
Many times, with a pager-style interface, we want an indicator to help
the user understand where they are within the range of pages offered
by the pager. One of the more popular indicator styles is tabs, as those
also provide an alternative navigation option, with the user tapping on
tabs to switch to particular pages.
For adding tabs to a RecyclerView-powered pager, you need a tab
implementation that is not tied inextricably to ViewPager, the way
PagerTabStrip is. At the same time, you need one that is not
tied inextricably to some other particular UI setup, the way that
FragmentTabHost is. Instead, you need tabs that “stick to their
knitting” and focus solely on handling the tab UI, giving you the
hooks necessary to update your UI based on tab changes, and to update
the tabs based on other UI changes.
TabLayout, from the Design Support library,
is one such tab implementation. While it offers hooks into ViewPager,
those are optional. You have two main options for using TabLayout:

	Literally use the version from the Design Support library, which will
require you to use appcompat-v7. This works back to API Level 7, as does
RecyclerView itself.

	Use the TabLayout from the CWAC-CrossPort library,
which is the official TabLayout code, with all references to appcompat-v7
replaced by references to Theme.Material and related native items. However,
this limits this cross-ported TabLayout to API Level 21 and higher
(Android 5.0).

The
RecyclerViewPager/TabSnap
sample project is a clone of the PlainSnap sample, with tabs added,
via the TabLayout from CWAC-CrossPort. As a result, we need the
CWAC-CrossPort dependency and need to raise our minSdkVersion to
21:

apply plugin: 'com.android.application'

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.android.support:recyclerview-v7:25.1.0'
 implementation 'com.commonsware.cwac:crossport:0.0.2'
}

android {
 compileSdkVersion 25
 buildToolsVersion '26.0.2'

 defaultConfig {
 minSdkVersion 21
 targetSdkVersion 25
 applicationId 'com.commonsware.cwac.rvp.tabsnap'
 }
}

(from RecyclerViewPager/TabSnap/app/build.gradle)
The tabs themselves can then go above the RecyclerView, in a vertical
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:orientation="vertical">

 <com.commonsware.cwac.crossport.design.widget.TabLayout
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:tabMode="scrollable"/>

 <android.support.v7.widget.RecyclerView
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="@dimen/pager_padding"
 android:clipToPadding="false" />
</LinearLayout>

(from RecyclerViewPager/TabSnap/app/src/main/res/layout/main.xml)
Next, we need to set up the tab contents in onCreate() of MainActivity.
To do that, we get our hands
on the TabLayout using findViewById(), then iterate through the
items in the PageAdapter to set up tabs for each:

 final TabLayout tabs=(TabLayout)findViewById(R.id.tabs);

 for (int i=0;i<adapter.getItemCount();i++) {
 tabs.addTab(tabs.newTab().setText(adapter.getTabText(this, i)));
 }

(from RecyclerViewPager/TabSnap/app/src/main/java/com/commonsware/android/rvp/MainActivity.java)
We ask the PageAdapter for the text to show in the tab, via a getTabText()
method:

 String getTabText(Context ctxt, int position) {
 return(PageController.getTitle(ctxt, position));
 }

(from RecyclerViewPager/TabSnap/app/src/main/java/com/commonsware/android/rvp/PageAdapter.java)
That, in turn, delegates to a static version of the getTitle() method
on PageController, to fill in the string resource template with the
proper page number:

 static String getTitle(Context ctxt, int position) {
 return(ctxt.getString(R.string.hint, position+1));
 }

(from RecyclerViewPager/TabSnap/app/src/main/java/com/commonsware/android/rvp/PageController.java)
We now need to add code in onCreate() of MainActivity to tie the
navigation together:

	When the user taps a tab, we need to update the pager

	When the user swipes the pager, we need to update the tabs to show
the new selection

This is handled by event listeners:

 tabs.addOnTabSelectedListener(new TabLayout.OnTabSelectedListener() {
 @Override
 public void onTabSelected(TabLayout.Tab tab) {
 pager.smoothScrollToPosition(tab.getPosition());
 }

 @Override
 public void onTabUnselected(TabLayout.Tab tab) {
 // unused
 }

 @Override
 public void onTabReselected(TabLayout.Tab tab) {
 // unused
 }
 });

 pager.setOnScrollListener(new RecyclerView.OnScrollListener() {
 @Override
 public void onScrolled(RecyclerView recyclerView, int dx, int dy) {
 int tab=layoutManager.findFirstCompletelyVisibleItemPosition();

 if (tab>=0 && tab<tabs.getTabCount()) {
 tabs.getTabAt(tab).select();
 }
 }
 });

(from RecyclerViewPager/TabSnap/app/src/main/java/com/commonsware/android/rvp/MainActivity.java)
When a tab is selected, our anonymous TabLayout.OnTabSelectedListener
implementation will get control in onTabSelected(). There, we tell
the RecyclerView to scroll to show a particular position, tied to the
position of the selected tab.
Similarly, when the user scrolls the pager, we need to update the tabs
to show the new selection. To do that, we take advantage of the
findFirstCompletelyVisibleItemPosition() method on LinearLayoutManager.
As the (lengthy) method name suggests, this returns the position of the
first item that is completely visible within the pager. This might return
–1, if we are in the middle of a swipe, as no item may be completely
visible at that point. But, once we get a plausible value, we tell
the TabLayout to select that tab.
RecyclerViewPager has a more sophisticated algorithm for integrating
with the official Design Support library implementation of TabLayout.
RecyclerViewPager calculates the position of the tab highlight, based
upon the current swipe position, and updates that. This provides
visual feedback within the tabs while the swipe is going on. The approach
shown in the sample app has the effect of only updating the tabs once
the swipe is completed.
Declaring a LayoutManager in the Layout
The typical way of setting up a LayoutManager is to call setLayoutManager()
on the RecyclerView. There may be no choice in some cases, if the LayoutManager
that you wish to use has a custom constructor that you need.
However, in some cases, where the LayoutManager has adequate setters to configure
it beyond the constructor, you can set up the LayoutManager in your layout
resource file. Just add the app:layoutManager attribute to the RecyclerView
element, with the value being:

	the bare class name of a standard LayoutManager, such as LinearLayoutManager, or

	the fully-qualified class name of some custom LayoutManager, one that you wrote
or are using from a library

The app XML namespace (xmlns:app="http://schemas.android.com/apk/res-auto")
can be added to the layout resource file by an Android Studio quick-fix.
Transcript Mode
“Transcript mode” with ListView means that the ListView automatically
scrolls to keep the bottom entries in view. This is useful for things like
chat transcripts, where you want to append new messages and show those
new messages to the user, and the new messages (traditionally) go below older
messages. This approach — using setTranscriptMode() — has been used a couple
of times in this book, such as in
the chapter profiling various event bus implementations.
RecyclerView also supports this approach, though it is set up somewhat
differently.
The
RecyclerView/Transcript
sample project is a clone of the
EventBus/GreenRobot3
sample project, where the ListView is replaced by a RecyclerView.
In a layout resource, we declare our RecyclerView, with a few interesting attributes:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.RecyclerView android:id="@+id/transcript"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layoutManager="LinearLayoutManager"
 app:reverseLayout="true"
 app:stackFromEnd="true" />

(from RecyclerView/Transcript/app/src/main/res/layout/main.xml)
Specifically, we have:

	
app:layoutManager defines the layout manager that we want to use, in this
case a LinearLayoutManager

	
app:reverseLayout="true" and app:stackFromEnd="true", which combine to give
us a transcript-style effect

Note that those latter two attributes are actually documented on LinearLayoutManager,
not on RecyclerView (and, even then, they are largely undocumented). Those
attributes may not work with other layout managers (e.g., GridLayoutManager).
Beyond that, the rest of the code works pretty much as the original sample app
did, except that we need to substitute in RecyclerView equivalents for
the ListView functionality. So, for example, rather than inheriting from
ListViewFragment, the EventLogFragment is now a regular Fragment, where
we inflate our layout in onCreateView() and attach its EventLogAdapter
in onViewCreated():

 @Nullable
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return(inflater.inflate(R.layout.main, container, false));
 }

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 if (adapter==null) {
 adapter=new EventLogAdapter();
 }

 RecyclerView transcript=(RecyclerView)view.findViewById(R.id.transcript);

 transcript.setAdapter(adapter);
 }

(from RecyclerView/Transcript/app/src/main/java/com/commonsware/android/rv/transcript/EventLogFragment.java)
The old ArrayAdapter is gone, so EventLogAdapter is now a RecyclerView.Adapter,
managing a series of RowHolder objects for our rows:

 class EventLogAdapter extends RecyclerView.Adapter<RowHolder> {
 private final ArrayList<RandomEvent> events=new ArrayList<>();

 @Override
 public RowHolder onCreateViewHolder(ViewGroup parent,
 int viewType) {
 View row=
 getActivity()
 .getLayoutInflater()
 .inflate(android.R.layout.simple_list_item_1, parent, false);

 return(new RowHolder(row));
 }

 @Override
 public void onBindViewHolder(RowHolder holder,
 int position) {
 holder.bind(events.get(position));
 }

 @Override
 public int getItemCount() {
 return(events.size());
 }

 void add(RandomEvent event) {
 events.add(event);
 notifyItemInserted(getItemCount());
 }
 }

 static class RowHolder extends RecyclerView.ViewHolder {
 private static final DateFormat fmt=
 new SimpleDateFormat("HH:mm:ss", Locale.US);
 private final TextView tv;

 RowHolder(View itemView) {
 super(itemView);

 tv=(TextView)itemView.findViewById(android.R.id.text1);
 }

 void bind(RandomEvent event) {
 tv.setText(String.format("%s = %x", fmt.format(event.when),
 event.value));
 }
 }

(from RecyclerView/Transcript/app/src/main/java/com/commonsware/android/rv/transcript/EventLogFragment.java)
And, when we get a RandomEvent, we add() that to our EventLogAdapter, which
adds it to its array of events and updates the RecyclerView to match:

 @Subscribe(threadMode = ThreadMode.MAIN)
 public void onRandomEvent(final RandomEvent event) {
 adapter.add(event);
 }

(from RecyclerView/Transcript/app/src/main/java/com/commonsware/android/rv/transcript/EventLogFragment.java)
Advanced Uses of WebView
Android uses the WebKit browser engine as the foundation for both its
Browser application and the WebView embeddable browsing widget. The
Browser application, of course, is something Android users can
interact with directly; the WebView widget is something you can
integrate into your own applications for places where an HTML
interface might be useful.
Earlier in this book, we saw a simple integration of a WebView into
an Android activity, with the activity dictating what the browsing
widget displayed and how it responded to links.
Here, we will expand on this theme, and show how to more tightly
integrate the Java environment of an Android application with the
JavaScript environment of WebKit.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one covering WebView. Some of the samples
use LocationManager for obtaining a GPS fix.
Friends with Benefits
When you integrate a WebView into your activity, you can control
what Web pages are displayed, whether they are from a local provider
or come from over the Internet, what should happen when a link is
clicked, and so forth. And between WebView, WebViewClient, and
WebSettings, you can control a fair bit about how the embedded
browser behaves. Yet, by default, the browser itself is just a
browser, capable of showing Web pages and interacting with Web sites,
but otherwise gaining nothing from being hosted by an Android
application.
However, WebView offers a few options for more tightly integrating
the Java and JavaScript realms, so Web content can call into your app
to get data to display, and your app can push data into the Web page for
JavaScript to render.
Unfortunately, the techniques for doing this have changed over the
years. Partially that is due to changes in WebView, particularly
starting with Android 4.4. But, some of the changes are due to
security issues, particularly when you are loading arbitrary content,
such as Web-based ads from an ad network, into your WebView.
The following sections will go over four separate sample apps. All do
the same thing: provide data about the ambient light level, using
the sensor on the phone or tablet, to the Web page for rendering.
The differences are whether we are pushing data from Java into JavaScript
(e.g., as the light level changes), or whether we are pulling data
from Java using JavaScript (e.g., in response to a user tapping on something
in the Web page). Also, we will see two approaches to push and two
approaches to pull.
JavaScript Calling Java: addJavascriptInterface()
The addJavascriptInterface() method on WebView allows you to
inject a Java object into the WebView, exposing its methods, so
they can be called by JavaScript loaded by the Web content in the
WebView itself.
Now you have the power to provide access to a wide range of Android
features and capabilities to your WebView-hosted content. If you
can access it from your activity, and if you can wrap it in something
convenient for use by JavaScript, your Web pages can access it as
well.
The
WebKit/SensorPull
sample project demonstrates using addJavascriptInterface() to pull light
sensor data into a Web page to display to the user.
For all four of these sample apps, the UI is just a WebView:

<?xml version="1.0" encoding="utf-8"?>
<WebView android:id="@+id/webkit"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

</WebView>

(from WebKit/SensorPull/app/src/main/res/layout/main.xml)
In onCreate(), we set things up:

 @SuppressLint({"AddJavascriptInterface", "SetJavaScriptEnabled"})
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
 light=mgr.getDefaultSensor(Sensor.TYPE_LIGHT);

 wv=(WebView)findViewById(R.id.webkit);
 wv.getSettings().setJavaScriptEnabled(true);
 wv.addJavascriptInterface(jsInterface, "LIGHT_SENSOR");
 wv.loadUrl("file:///android_asset/index.html");
 }

(from WebKit/SensorPull/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
Specifically, we:

	Get a SensorManager and the appropriate Sensor for measuring ambient light
levels, saving those in fields

	Get our WebView via findViewById()

	Enable JavaScript (which comes disabled by default), using getSettings()
and setJavaScriptEnabled(true)

	Call addJavascriptInterface(), and

	Load a Web page from assets (which we will examine shortly)

Because we are enabling JavaScript, Lint will complain that this poses security
risks, so onCreate() has a @SuppressLint annotation for SetJavaScriptEnabled
to indicate that we are aware of the risks. Similarly, because we are calling
addJavascriptInterface(), Lint will complain that this poses even more security
risks. So, @SuppressLint suppresses both the SetJavaScriptEnabled warning
and the AddJavascriptInterface warning.
Also, you may notice that there is a significant debate within the Android SDK
as to whether the “s” in “JavaScript” gets capitalized or not. In general, it
does, but addJavascriptInterface() shipped in API Level 1 with a lowercase “s”
in its name, and so that method, and variations of it (e.g., the AddJavascriptInterface
annotation) will use a lowercase “s”. Eventually, you just get used to this.
addJavascriptInterface() takes two parameters: a Java object to inject into
the JavaScript of the Web page, and a String that is the name by which JavaScript
can reference that object. So, we have a jsInterface object that JavaScript
can reference via LIGHT_SENSOR.
jsInterface is an instance of JSInterface, a static nested class inside
MainActivity:

 private static class JSInterface {
 float lux=0.0f;

 private void updateLux(float lux) {
 this.lux=lux;
 }

 @JavascriptInterface
 public String getLux() {
 return(String.format(Locale.US, "{\"lux\": %f}", lux));
 }
 }

(from WebKit/SensorPull/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
It just has a getter and setter around the current light level, which is a
float named lux (referring to the unit of brightness used for the values
coming from the ambient light sensor). The getter, however, has two interesting
traits:

	It returns a String, representing a JSON object wrapped around the lux
value

	It is annotated with @JavascriptInterface

This annotation is required of apps with
android:targetSdkVersion set to 17 or higher, though it is a good idea
to start using it anyway. With such an android:targetSdkVersion, in an
app running on an Android 4.2 or higher device, only public methods with the
@JavascriptInterface annotation will be accessible by JavaScript code.
On earlier devices, or with an earlier android:targetSdkVersion, all
public methods on the JsInterface object would be accessible by JavaScript,
including those inherited from superclasses like Object. Note that your
build target (i.e., compileSdkVersion in Android Studio)
will need to be Android 4.2 or higher in order to reference
the @JavascriptInterface annotation.
The reason for returning a JSON object (in string form), rather than just
the float, is for two reasons:

	For more complex APIs, you cannot pass into JavaScript an arbitrary Java object.
All return types from @JavascriptInterface objects need to be something that
JavaScript can use, and a simple way to do that is to create data structures
in JSON.

	
float did not seem to work well as a return type, as it always seemed to
turn into 0.0 on the JavaScript side, for unknown reasons

We register with the SensorManager to find out when the light level changes,
via registerListener() (in onStart()) and unregisterListener() (in onStop()):

 @Override
 protected void onStart() {
 super.onStart();

 mgr.registerListener(this, light, SensorManager.SENSOR_DELAY_UI);
 }

 @Override
 protected void onStop() {
 mgr.unregisterListener(this);

 super.onStop();
 }

(from WebKit/SensorPull/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
That, in turn, will trigger a call to onSensorChanged() when the light level
changes. There, we pass the light level (the first float out of the
values array from the SensorEvent) to the JsInterface instance, ready to
be retrieved by the JavaScript code in our Web page:

 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 jsInterface.updateLux(sensorEvent.values[0]);
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int i) {
 // unused
 }

(from WebKit/SensorPull/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
In the Web page, we set it up to show the current light level, starting with
a value of 0.0. When the user taps on the Light Level caption, we
call a pull() JavaScript function, which:

	Calls our getLux() method on the LIGHT_SENSOR global object

	Parses our JSON into a JavaScript object

	Calls an update_lux() function to update the lux span with the
new light level

<html>
<head>
<title>Android Light Sensor Demo</title>
<script language="javascript">
 function update_lux(lux) {
 document.getElementById("lux").innerHTML=lux;
 }

 function pull() {
 var result=JSON.parse(LIGHT_SENSOR.getLux());

 update_lux(result.lux);
 }
</script>
</head>
<body>
<p>Light Level: 0.0 lux</p>
</body>
</html>

(from WebKit/SensorPull/app/src/main/assets/index.html)
If you run the app, you get our trivial Web page in the WebView:

[image: SensorPull Demo, As Initially Launched]

Figure 517: SensorPull Demo, As Initially Launched
Tapping on the words “Light Level” will cause JavaScript to request the
light level, updating the page to match:

[image: SensorPull Demo, Showing Light Level]

Figure 518: SensorPull Demo, Showing Light Level
Note that this sample app will only work on devices with an ambient light
sensor. It is rather likely that the app will crash spectacularly on devices
lacking such a sensor.
Unfortunately, addJavascriptInterface() opens up a number of security issues,
outlined later in this chapter. Where possible, avoid
the use of this API.
Java Calling JavaScript: loadUrl() and evaluateJavascript()
Now that we have seen how JavaScript can call into Java, it would be
nice if Java could somehow call out to JavaScript.
Well, as luck would have it, we can do that too. This is a good
thing, otherwise, this would be a really weak section of the book.
What is unusual is how you call out to JavaScript. One might imagine
there would be an evaluateJavaScript() counterpart to
addJavascriptInterface(), where you could supply some JavaScript
source and have it executed within the context of the
currently-loaded Web page.
Actually, there is such a method on Android 4.4. However, earlier
versions of Android lacked that method.
Instead, on older versions of Android,
given your snippet of JavaScript source to execute, you call
loadUrl() on your WebView, as if you were going to load a Web
page, but you put javascript: in front of your code and use that as
the “address” to load.
If you have ever created a “bookmarklet” for a desktop Web browser,
you will recognize this technique as being the Android analogue
– the javascript: prefix tells the browser to treat the rest
of the address as JavaScript source, injected into the
currently-viewed Web page.
The
WebKit/SensorPush
sample project expands upon the SensorPull app. This time, though, in addition
to pulling via addJavascriptInterface(), we support pushing light levels as
sensor readings come in.
That comes courtesy of a revised onSensorChanged() method:

 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 float lux=sensorEvent.values[0];

 jsInterface.updateLux(lux);

 String js=String.format(Locale.US, "update_lux(%f)", lux);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.KITKAT) {
 wv.evaluateJavascript(js, null);
 }
 else {
 wv.loadUrl("javascript:"+js);
 }
 }

(from WebKit/SensorPush/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
Before, we just updated the JsInterface object with the new light level. Now,
we also format a JavaScript call to update_lux(), supplying our light level.
Then, based on Android OS version (Build.VERSION.SDK_INT), we either call
evaluateJavascript() or loadUrl(), the latter also employing the javascript:
scheme.
Because we had pulled out update_lux() as a separate function before, our HTML
and JavaScript does not need to change at all:

<html>
<head>
<title>Android Light Sensor Demo</title>
<script language="javascript">
 function update_lux(lux) {
 document.getElementById("lux").innerHTML=lux;
 }

 function pull() {
 var result=JSON.parse(LIGHT_SENSOR.getLux());

 update_lux(result.lux);
 }
</script>
</head>
<body>
<p>Light Level: 0.0 lux</p>
</body>
</html>

(from WebKit/SensorPush/app/src/main/assets/index.html)
If you run this sample app, you will find that the Web page updates in real
time as you wave your hand in front of the light sensor, shine a light on that
sensor, etc.
Java Calling JavaScript: WebMessage
Both of those techniques have worked since API Level 1. But, as mentioned,
addJavascriptInterface() has security issues. Also, evaluateJavascript()
(or its loadUrl() equivalent) requires the Java code to know what functions
are available in the Web page. That may tie the Java and JavaScript more tightly
than you might like.
Android 6.0 introduced another pair of options for communicating between
Java and JavaScript — WebMessage and WebMessagePort — that try to eliminate
these issues.
The simpler of the two approaches is WebMessage. Instead of calling
evaluateJavascript() or loadUrl(), you create a WebMessage object and
call postWebMessage() to deliver it to the JavaScript in your Web page.
So, in the
WebKit/SensorMessage
sample project, we have an updated onSensorChanged() method that does this:

 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 float lux=sensorEvent.values[0];

 jsInterface.updateLux(lux);

 String js=String.format(Locale.US, "update_lux(%f)", lux);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 wv.postWebMessage(new WebMessage(jsInterface.getLux()),
 Uri.EMPTY);
 }
 else if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.KITKAT) {
 wv.evaluateJavascript(js, null);
 }
 else {
 wv.loadUrl("javascript:"+js);
 }
 }

(from WebKit/SensorMessage/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
The WebMessage constructor that we are using here takes a simple string that
is the content of the message. In this case, it is the JSON object wrapping
our light level in lux, using the same getLux() method that JavaScript can
call on our JsInterface instance that we registered via addJavascriptInterface().
postWebMessage() takes two parameters. The first is the WebMessage to deliver
to the page. The other is supposed to be the Uri of the Web page. This is supposed
to be used to confirm that you are sending the message to the page that you think
you are sending it to.
Unfortunately, this is not behaving especially well.
It only works as advertised for http/https URLs, or for data that you
load using loadDataWithBaseURL() and supply some http or https URL.
If you load from a file URL, as we are doing here, you cannot use the
actual URL. Instead, you have to use Uri.EMPTY, which is a “wildcard” that
skips over this test, which is what we use here. Apparently, this is all
working as intended.
To receive these messages, our JavaScript needs to define an onmessage()
global function:

<html>
<head>
<title>Android Light Sensor Demo</title>
<script language="javascript">
 function update_lux(lux) {
 document.getElementById("lux").innerHTML=lux;
 }

 function parse(json) {
 var result=JSON.parse(json);

 update_lux(result.lux);
 }

 function pull() {
 parse(LIGHT_SENSOR.getLux());
 }

 onmessage = function (e) {
 parse(e.data);
 }
</script>
</head>
<body>
<p>Light Level: 0.0 lux</p>
</body>
</html>

(from WebKit/SensorMessage/app/src/main/assets/index.html)
This receives the HTML Web message equivalent of the WebMessage that we posted.
The data field on the supplied event object (e in the sample) contains
our string. So, we turn around and parse() it, just as we would parse()
the JSON we got from calling getLux() on our LIGHT_SENSOR.
If you run this sample app on an Android 6.0+ device, you should get the same
results as with SensorPush, where the light level changes automatically. However,
in this case, we will be using code that relies upon WebMessage and
postWebMessage(), instead of evaluateJavascript() or loadUrl(). In particular,
our Java code does not need to know anything about the internal workings of the
JavaScript (e.g., function names) — it just passes over the message and relies
on the JavaScript to have registered itself appropriately to receive the message.
JavaScript Calling Java: WebMessagePort
What would be nice is to use this WebMessage system to be able to replace
addJavascriptInterface() and allow JavaScript to call back into Java. This
is possible, but it is fairly complex.
For our Java code to receive messages sent to it from JavaScript, we need
to do three things:

	Call createWebMessageChannel() on the WebView. This creates a private
communications channel between us and our target Web page. It returns
a two-element WebMessagePort array. Index 0 of that array is our end
of the channel; index 1 is the JavaScript end of the channel.

	Call setWebMessageCallback() on our WebMessagePort, supplying a
WebMessageCallback that will be called with onMessage() when a message
arrives on the port from JavaScript.

	Send the other WebMessagePort to JavaScript using a WebMessage.

In the
WebKit/SensorPort
sample project, this is handled by an initPort() method:

 @TargetApi(Build.VERSION_CODES.M)
 private void initPort() {
 final WebMessagePort[] channel=wv.createWebMessageChannel();

 port=channel[0];
 port.setWebMessageCallback(new WebMessagePort.WebMessageCallback() {
 @Override
 public void onMessage(WebMessagePort port, WebMessage message) {
 postLux();
 }
 });

 wv.postWebMessage(new WebMessage("", new WebMessagePort[]{channel[1]}),
 Uri.EMPTY);
 }

(from WebKit/SensorPort/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
The WebMessage constructor that we use this time takes two parameters: an
arbitrary string (here, just set to "", as we are not using it) and
a one-element WebMessagePort array containing the JavaScript end of the
communications channel.
However, we cannot do any of this work until the Web page is ready to be used.
Otherwise, the JavaScript code will not receive our WebMessage, since it is
not yet ready.
So, we have to postpone calling initPort() until a WebViewClient is called
with onPageFinished(), as we do in onCreate():

 @SuppressLint({"AddJavascriptInterface", "SetJavaScriptEnabled"})
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
 light=mgr.getDefaultSensor(Sensor.TYPE_LIGHT);

 wv=(WebView)findViewById(R.id.webkit);
 wv.getSettings().setJavaScriptEnabled(true);
 wv.addJavascriptInterface(jsInterface, "LIGHT_SENSOR");

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 wv.setWebViewClient(new WebViewClient() {
 @Override
 public void onPageFinished(WebView view, String url) {
 initPort();
 }
 });
 }

 wv.loadUrl(URL);
 }

(from WebKit/SensorPort/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
Our WebMessageCallback, upon receipt of a WebMessage from the JavaScript,
calls a postLux() method. We are just using the existence of the message
as a “ping” from the JavaScript to Java, asking for us to send it the ambient light
level. So, in postLux(), we create a WebMessage and send it to JavaScript…
but not via the postWebMessage() method on WebView. Instead, we use our
end of the WebMessagePort communications channel, calling postMessage() on it,
in a postLux() method:

 @TargetApi(Build.VERSION_CODES.M)
 private void postLux() {
 port.postMessage(new WebMessage(jsInterface.getLux()));
 }

(from WebKit/SensorPort/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
So, when the JavaScript sends a WebMessage to Java, Java sends a WebMessage
right back, supplying the light level JSON.
To prove that this is working, this sample comments out the automated push of
the light level in onSensorChanged() — ordinarily, we would call postLux()
to push over the light level when we get it:

 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 float lux=sensorEvent.values[0];

 jsInterface.updateLux(lux);

 String js=String.format(Locale.US, "update_lux(%f)", lux);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 // postLux();
 }
 else if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.KITKAT) {
 wv.evaluateJavascript(js, null);
 }
 else {
 wv.loadUrl("javascript:"+js);
 }
 }

(from WebKit/SensorPort/app/src/main/java/com/commonsware/android/webkit/bridge/MainActivity.java)
In JavaScript, our onmessage global function is now a bit more complex as
well. We get our end of the communications channel by retrieving our port
from ports on the event delivered to onmessage(). Then, we register
an onmessage function on that port, which is how we receive the light
levels that Java delivers via postMessage() on its WebMessagePort.
When the user taps the label, we call a pull() function in JavaScript,
that calls postMessage() on the port, supplying some string as a message
(here, hardcoded as "ping" and ignored by our Java code):

<html>
<head>
<title>Android Light Sensor Demo</title>
<script language="javascript">
 function update_lux(lux) {
 document.getElementById("lux").innerHTML=lux;
 }

 function parse(json) {
 var result=JSON.parse(json);

 update_lux(result.lux);
 }

 var port;

 function pull() {
 port.postMessage("ping");
 }

 onmessage = function (e) {
 port = e.ports[0];

 port.onmessage = function (f) {
 parse(f.data);
 }
 }
</script>
</head>
<body>
<p>Light Level: 0.0 lux</p>
</body>
</html>

(from WebKit/SensorPort/app/src/main/assets/index.html)
If you run this sample on Android 6.0+, and you tap the “Light Level” label,
you will get the light level, delivered by means of our WebMessagePort-based
communications channel.
(NOTE: the author would like to thank Diego Torres Milano for his
assistance in finding out how this stuff works).
Navigating the Waters
There is no navigation toolbar with the WebView
widget. This allows you to use it in places where such a toolbar would be
pointless and a waste of screen real estate. That being said, if you want to
offer navigational capabilities, you can, but you have to supply the UI.
WebView offers ways to perform garden-variety browser navigation,
including:

	
reload() to refresh the currently-viewed Web page

	
goBack() to go back one step in the browser history, and canGoBack()
to determine if there is any history to go back to

	
goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

	
goBackOrForward() to go backwards or forwards in the browser
history, where negative numbers represent a count of steps to go
backwards, and positive numbers represent how many steps to go
forwards

	
canGoBackOrForward() to see if the browser can go backwards or
forwards the stated number of steps (following the same
positive/negative convention as goBackOrForward())

	
clearCache() to clear the browser resource cache and clearHistory()
to clear the browsing history

Settings, Preferences, and Options (Oh, My!)
With your favorite desktop Web browser, you have some sort of “settings”
or “preferences” or “options” window. Between that and the toolbar
controls, you can tweak and twiddle the behavior of your browser, from
preferred fonts to the behavior of JavaScript.
Similarly, you can adjust the settings of your WebView widget as you see fit,
via the WebSettings instance returned from calling the widget’s
getSettings() method.
There are lots of options on WebSettings to play with. Most appear fairly
esoteric (e.g., setFantasyFontFamily()). However, here are some that you
may find more useful:

	Control the font sizing via setDefaultFontSize() (to use a point size)
or setTextSize() (to use constants indicating relative sizes like
LARGER and SMALLEST)

	Control Web site rendering via setUserAgent(), so you can supply
your own user agent string to make the Web server think you are a
desktop browser, another mobile device (e.g., iPhone), or whatever.
The settings you change are not persistent, so you should store them
somewhere (such as via the Android preferences engine) if you are allowing
your users to determine the settings, versus hard-wiring the settings in your
application.

Security and Your WebView
More so than normal widgets, WebView opens up potential security
issues, just as a Web browser could. If all you are doing is displaying
your own content, the risks are minimal. If, on the other hand, you are
displaying content from third parties, it is possible that their content
is malicious in a way that can compromise your app’s security, to your
users’ detriment.
Rogue JavaScript Risks
If you call setJavaScriptEnabled(true) on your WebSettings, you are
allowing JavaScript code to be loaded and executed by WebView. In many
cases, this is essential to get your content to render properly (e.g.,
the JavaScript is issuing AJAX calls). However, if you did not write the
scripts, you do not know what they might be doing. If there are flaws
in WebView — such as those discussed in the next sections — then
your users may be at risk.
Even in the absence of such bugs, JavaScript can always:

	Consume so much CPU that it represents an attempt at a denial-of-service
attack on the user’s device

	Access anything the user enters into the Web page

	Access anything you enter into the Web page, using approaches as
javascript: URLs or evaluateJavaScript()

The addJavascriptInterface() Bugs
Another way that rogue JavaScript can attack users is if you use
addJavascriptInterface() to allow JavaScript code to call out to a
Java object that you supply.
As was noted earlier in this chapter, when
addJavascriptInterface() was introduced, there is this
@JavascriptInterface annotation that we should apply to the methods
we want JavaScript to be able to call on the object we supply via
addJavascriptInterface(). This is because of a bug in the
addJavascriptInterface() implementation, whereby on 4.1 and below
any method on the Java object could be called by JavaScript. This
includes methods like getClass()… which in turn would allow
JavaScript to use Class.forName() to get at arbitrary stuff. This
was used by various bits of malware.
Hence, using addJavascriptInterface() on Android 4.1 and below
is rather risky, if you are loading arbitrary third-party JavaScript.
If you have the means of examining that JavaScript (e.g., you are
loading the scripts yourself), you might perform some simple scans
of it to see if they appear to be doing anything unfortunate with your
Java object that you injected into JavaScript via addJavascriptInterface().
Worse, Android sometimes also injects its own objects, without our
requesting them.
In particular, this security bug
points out that, through Android 4.3, if users have enabled an accessibility
service, Android automatically injects objects into WebView, using
addJavascriptInterface(), named accessibility and accessibilityTraversal.
So, even if you do not inject any objects yourself via addJavascriptInterface(),
your WebView may be at risk. The security researchers who uncovered
this attack vector suggest using removeJavascriptInterface() to specifically
get rid of those objects.
The Same-Origin Policy Bug
Due to a bizarre bug in the parsing of URLs, it is possible for JavaScript
code to violate the “same-origin policy” of a WebView on Android 4.3 and
earlier.
Quoting Wikipedia from September 2014:

the same-origin policy is an important concept in the web application security model. The policy permits scripts running on pages originating from the same site — a combination of scheme, hostname, and port number — to access each other’s DOM with no specific restrictions, but prevents access to DOM on different sites… This mechanism bears a particular significance for modern web applications that extensively depend on HTTP cookies to maintain authenticated user sessions, as servers act based on the HTTP cookie information to reveal sensitive information or take state-changing actions. A strict separation between content provided by unrelated sites must be maintained on the client side to prevent the loss of data confidentiality or integrity.

All modern Web browsers implement the same-origin policy (SOP)… but there can
be bugs. A security researcher disclosed that the original AOSP Browser
application failed to implement the SOP properly,
when a javascript: URL has a null byte before the j in javascript.
And while the report was focused on the AOSP Browser app, the problem
really lies with WebView.
To see this in action, load https://commonsware.com/misc/sop-demo.html
in the AOSP Browser app on Android 4.3 or lower. This Web page consists
of:

<html>
<head>
<title>WebView SOP Test</title>
</head>
<body>
<h1>WebView SOP Test</h1>
<iframe name="test" src="http://developer.android.com"></iframe>
<input type=button value="test" onclick="window.open('\u0000javascript:alert(document.domain)','test')">
</body>
</html>

It is derived from a similar example found in
the blog post outlining the security flaw.
In an SOP-compliant browser, clicking the button will have no effect.
In the AOSP Browser app, clicking the button shows the domain name of the
document in the iframe. And, loading this HTML into a WebView has
the same effect.
Part of the WebView overhaul in Android 4.4 — replacing the original
implementation with a new one backed by Chromium — had the effect of fixing
this bug, whether intentionally or inadvertently.
There is no obvious mitigation approach for this bug, insofar as for the
attack shown above, none of the callbacks on WebViewClient or
WebChromeClient seem to allow us to intercept this URL before its
JavaScript is executed. If you are loading HTML yourself from a third party,
you might consider scanning that HTML for obvious signs of the attack
(e.g., regular expression check for \u0000javascript), but that will
be limited at best. Beyond that, try to limit the content in a WebView
to be from only one origin, so that there is nothing for attackers to
obtain via this bug.
Also note that the security researcher who found this bug has also
found another SOP violation,
suggesting that mitigation strategies may
be impractical.
Android 8.0 WebView Changes
WebView, as Android developers use it, is really a facade API, as of Android 5.0.
Previously, the WebView implementation was part of the Android framework.
Nowadays, the implementation is delegated to the Android System WebView, which
allows Google to update the WebView implementation without relying upon
manufacturers to distribute firmware updates.
Hence, to some extent, WebView continuously changes, as the Android System
WebView app gets updated a few times per year.
However, it is only in a new version of Android that Google changes the API or
the general approach taken by a WebView implementation. In Android 8.0, two significant
changes arrived: multi-process mode and support for banning of cleartext
traffic.
Multi-Process Mode
Historically, WebView code ran in your app’s regular process. Because we often
load JavaScript into a WebView, having the WebView in our process would raise
the risks of WebView bugs. If JavaScript could cause arbitrary code to execute
in our own process, it would have whatever rights our own application code does,
including everything for which we have runtime permissions.
Android 7.0 added a developer option for moving the WebView execution to a
separate process, and that is now standard on Android 8.0. As the documentation describes it,
“Web content is handled in a separate, isolated process from the containing app’s process for enhanced security.”
In principle, this should not require code changes. However, this is a significant
architectural change, and so it is worthwhile to fully test your WebView usage
on Android 8.0+, to make sure nothing breaks compared with that same code
running on Android 7.1 or older devices.
Honors Cleartext Traffic Setting
If your app has a targetSdkVersion over 25, and in your
network security configuration you banned cleartext traffic,
WebView will honor that setting on Android 8.0+. On older devices, WebView ignores the network
security configuration, and it appears that it still ignores the rest
of the configuration (e.g., certificate pinning).
However, this allows you to block the accidental transmission of data over
unencrypted channels. Most apps doing network I/O should ban cleartext traffic,
at least for debug builds, to identify where they are accidentally using
a plain http URL. Apps for which security is a priority might also ban cleartext
traffic for release builds.
The
WebKit/BrowserSecure
sample project demonstrates this. It has a network security configuration
XML file that bands cleartext traffic:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <base-config cleartextTrafficPermitted="false">
 <trust-anchors>
 <certificates src="system" />
 </trust-anchors>
 </base-config>
</network-security-config>

(from WebKit/BrowserSecure/app/src/main/res/xml/net_security_config.xml)
It applies that configuration in the manifest via the android:networkSecurityConfig
attribute on the <application> element:

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:networkSecurityConfig="@xml/net_security_config">
 <activity android:name=".BrowserDemo1">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

(from WebKit/BrowserSecure/app/src/main/AndroidManifest.xml)
The activity just loads up a plain HTTP-served Web page:

package com.commonsware.android.browser1;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemo1 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.webkit);
 browser.loadUrl("http://www.andglobe.com");
 }
}

(from WebKit/BrowserSecure/app/src/main/java/com/commonsware/android/browser1/BrowserDemo1.java)
The project is set up to target 26:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 25
 buildToolsVersion '26.0.2'

 defaultConfig {
 minSdkVersion 25
 targetSdkVersion 26
 applicationId 'com.commonsware.android.browser.secure'
 }
}

(from WebKit/BrowserSecure/app/build.gradle)
If you change that to have it target 25, the app will run “normally” on Android 8.0,
showing the designated Web page. But, with a targetSdkVersion set at 26, the
WebView will not show that page, as it would be loaded over a cleartext (HTTP)
connection:

[image: BrowserSecure Sample, Showing Banned Cleartext Traffic]

Figure 519: BrowserSecure Sample, Showing Banned Cleartext Traffic
Chrome Custom Tabs
Chrome custom tabs
serve as middle ground between using a WebView in your own
app and launching a URL into a separate Web browser.
With a WebView, you have complete control over the overall user
experience within your app. However, your WebView is decoupled
from any other browser the user may be using on the device.
Conversely, launching URLs into the user’s chosen browser gives the
user their normal browsing experience, but you have no control over
the user experience, as the user is now in the browser app, not your app.
With Chrome custom tabs, while Chrome is handling the URL, it will allow
you limited control over the action bar (color and custom actions). It also
simplifies some things that you might otherwise have had to handle yourself,
such as pre-fetching a Web page to be able to quickly switch to it.
Basic integration is also fairly easy, coming in the form of extras on
the same sort of ACTION_VIEW Intent that you might have used for
launching the URL in a standalone browser.
At the same time, there are some concerns:

	
The documentation
states that there is a “Shared Cookie Jar and permissions model so users
don’t have to log in to sites they are already connected to, or re-grant
permissions they have already granted”, which would require significant
testing to ensure that you are not leaking information into Chrome
that might be somehow delivered to other sites (including Google).

	While it uses an ACTION_VIEW Intent, and so the user can choose
to view the URL in a different browser, you will not get the custom
integration in that case. This may be fine, but you will need to make
sure that from a marketing and documentation standpoint you handle both
the case where the user chooses Chrome (and you get the “custom tab”)
and the case where the user chooses something else.

	Since any app could handle the ACTION_VIEW Intent, you need to take
into account that any information in the custom extras, like the PendingIntent
to use for a custom action bar item, is stuff that you are willing
for arbitrary apps to get their hands on. Do not assume that your
communications will solely be with Chrome.

The Input Method Framework
We think of Android devices as having “soft keyboards”. The official
term for this is that Android devices offer one or more “input method editors”
(or “input methods” for short).
These input methods allow for text entry on a touchscreen, avoiding the
need for a physical keyboard. This chapter is focused on how
ordinary app developers are affected by input methods, and how an app
can help steer the behavior of the input method to benefit the user.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the section covering the EditText widget.
Keyboards, Hard and Soft
Some Android devices have a hardware keyboard that is visible some of
the time (when it is slid out). A few Android devices have a hardware
keyboard that is always visible (so-called “bar” or “slab” phones).
Most Android devices, though, have no hardware keyboard at all.
The IMF handles all of these scenarios. In short, if there is no
hardware keyboard, an input method editor (IME) will be available to
the user when they tap on an enabled EditText.
This requires no code changes to your application… if the default
functionality of the IME is what you want. Fortunately, Android is
fairly smart about guessing what you want, so it may be you can just
test with the IME but otherwise make no specific code changes.
Of course, the keyboard may not quite behave how you would like. For
example, in the Basic/Field sample project, the FieldDemo activity
has the IME overlaying the multiple-line EditText:

[image: The input method editor, as seen in the FieldDemo sample application]

Figure 520: The input method editor, as seen in the FieldDemo sample application
It would be nice to have more control over how this appears, and for
other behavior of the IME. Fortunately, the framework as a whole gives
you many options for this, as is described over the bulk of this
chapter.
Tailored To Your Needs
Android 1.1 and earlier offered many attributes on EditText widgets
to control their style of input, such as android:password to indicate
a field should be for password entry (shrouding the password keystrokes
from prying eyes). Starting in Android 1.5, with the IMF, many of these
have been combined into a single android:inputType attribute.
The android:inputType attribute takes a class plus modifiers, in a
pipe-delimited list (where | is the pipe character). The class
generally describes what the user is allowed to input, and this
determines the basic set of keys available on the soft keyboard. The
available classes are:

	
text (the default)

	number

	phone

	datetime

	date

	time

Many of these classes offer one or more modifiers, to further refine
what the user will be entering. To help explain those, take a look at
the res/layout/main.xml file from the
InputMethod/IMEDemo1
project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
</TableLayout>

(from InputMethod/IMEDemo1/app/src/main/res/layout/main.xml)
Here, you will see a TableLayout containing five rows, each
demonstrating a slightly different flavor of EditText:

	One has no attributes at all on the EditText, meaning you get a
plain text entry field

	One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

	One allows for signed decimal numeric input, via android:inputType = "number|numberSigned|numberDecimal"

	One is set up to allow for data entry of a date (android:inputType = "date")

	The last allows for multi-line input with auto-correction of probable
spelling errors (android:inputType = "text|textMultiLine|textAutoCorrect")

The class and modifiers tailor the keyboard. So, a plain text entry
field results in a plain soft keyboard:

[image: A standard input method editor (a.k.a., soft keyboard)]

Figure 521: A standard input method editor (a.k.a., soft keyboard)
An email address field might put the @ symbol on the soft keyboard,
perhaps at the cost of a smaller spacebar, depending on the keyboard
implementation:

[image: The input method editor for email addresses]

Figure 522: The input method editor for email addresses
Note, though, that this behavior is specific to the input method
editor. Some editors might put an @ sign on the primary keyboard for an
email field. Some might put a “.com” button on the primary keyboard.
Some might not react at all. It is up to the implementation of the
input method editor — all you can do is supply the hint.
Numbers and dates restrict the keys to numeric keys, plus a set of
symbols that may or may not be valid on a given field:

[image: The input method editor for signed decimal numbers]

Figure 523: The input method editor for signed decimal numbers
And so on.
By choosing the appropriate android:inputType, you can give the user
a soft keyboard that best suits what it is they should be entering.
Tell Android Where It Can Go
You may have noticed a subtle difference between the first and second
input method editors, beyond the addition of the @ key. If you look
in the lower-right corner of the soft keyboard, the second field’s
editor has a “Next” button, while the first field’s editor has a
newline button.
This points out two things:

	
EditText widgets are multi-line by default if you do not specify
android:inputType

	You can control what goes on with that lower-right-hand button,
called the action key

By default, on an EditText where you have specified
android:inputType, the action key will be “Next”, moving you to
the next EditText in sequence, or “Done”, if you are on the last
EditText on the screen. You can manually stipulate what the action key
will be labeled via the android:imeOptions attribute. For
example, in the res/layout/main.xml from the
InputMethod/IMEDemo2
sample project, you
will see an augmented version of the previous example, where two input
fields specify what their action key should look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
>
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 android:imeOptions="actionSend"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 android:imeOptions="actionDone"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
 </TableLayout>
</ScrollView>

(from InputMethod/IMEDemo2/app/src/main/res/layout/main.xml)
Here, we attach a “Send” action to the action key for the email
address (android:imeOptions = "actionSend"), and the “Done” action on
the middle field (android:imeOptions = "actionDone").
By default, “Next” will move the focus to the next EditText and
“Done” will close up the input method editor. However, for those, or
for any other ones like “Send”, you can use
setOnEditorActionListener() on EditText (technically, on the
TextView superclass) to get control when the action key is
clicked or the user presses the <Enter> key. You are provided with a
flag indicating the desired action (e.g., IME_ACTION_SEND), and you
can then do something to handle that request (e.g., send an email to
the supplied email address).
If you need more control over the action button, you can set:

	
android:imeActionId, which provides a custom value for the actionId
that is passed to onEditorAction() of your OnEditorActionListener

	
android:imeActionLabel, where you provide your own caption for the
button (bearing in mind that your desired caption may or may not fit)

Fitting In
You will notice that the IMEDemo2 layout shown above has another
difference from its IMEDemo1 predecessor: the use of a ScrollView
container wrapping the TableLayout. This ties into another level of
control you have over the input method editors: what happens to your
activity’s own layout when the input method editor appears?
There are three possibilities, depending on circumstances:

	Android can “pan” your activity, effectively sliding the whole
layout up to accommodate the input method editor, or overlaying your
layout, depending on whether the EditText being edited is at the top
or bottom. This has the effect of hiding some portion of your UI.

	Android can resize your activity, effectively causing it to shrink
to a smaller screen dimension, allowing the input method editor to sit
below the activity itself. This is great when the layout can readily be
shrunk (e.g., it is dominated by a list or multi-line input field that
does not need the whole screen to be functional).

	In landscape mode, Android may display the input method editor
full-screen, obscuring your entire activity. This allows for a bigger
keyboard and generally easier data entry.

Android controls the full-screen option purely on its own. And, by
default, Android will choose between pan and resize modes depending on
what your layout looks like. If you want to specifically choose between
pan and resize, you can do so via an android:windowSoftInputMode
attribute on the <activity> element in your AndroidManifest.xml
file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.imf.two"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-sdk
 android:minSdkVersion="7"
 android:targetSdkVersion="11"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name=".IMEDemo2"
 android:label="@string/app_name"
 android:windowSoftInputMode="adjustResize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from InputMethod/IMEDemo2/app/src/main/AndroidManifest.xml)
Because we specified resize, Android will shrink our layout to
accommodate the input method editor. With the ScrollView in place,
this means the scrollbar will appear as needed when the user is scrolling:

[image: The shrunken, scrollable layout]

Figure 524: The shrunken, scrollable layout
Jane, Stop This Crazy Thing!
Sometimes, you need the input method editor to just go away. For
example, if you make the action button be “Search”, the user tapping
that button will not automatically hide the editor.
To hide the editor, you will need to make a call to the
InputMethodManager, a system service that controls these input method
editors:

InputMethodManager
mgr=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 0);

(where fld is the EditText whose input method editor you want to
hide)
Fonts and Text
Inevitably, you’ll get the question “hey, can we change this
font?” when doing application development. The answer depends on what
fonts come with the platform, whether you can add other fonts, and how
to apply them to the widget or whatever needs the font change.
Android is no different. It comes with some fonts plus a means for
adding new fonts. Though, as with any new environment, there are a few
idiosyncrasies to deal with.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on files.
Love The One You’re With
Android natively knows three fonts, by the shorthand names of
“sans”, “serif”, and “monospace”. For Android 1.x, 2.x, and 3.x,
these fonts are actually
the Droid series of fonts, created for the Open Handset Alliance by
Ascender. A new font set,
Roboto, is used in Android 4.x and beyond, though the look of the font
changed somewhat in Android 5.0.
For those fonts, you can just reference them in your layout XML, if you
choose, such as the following layout from the
Fonts/FontSampler
sample project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1">

 <TableRow>

 <TextView
 android:layout_marginRight="4dip"
 android:text="@string/label_sans"
 android:textSize="20sp" />

 <TextView
 android:id="@+id/sans"
 android:text="@string/hello_world"
 android:textSize="20sp"
 android:typeface="sans" />
 </TableRow>

 <TableRow>

 <TextView
 android:layout_marginRight="4dip"
 android:text="@string/label_serif"
 android:textSize="20sp" />

 <TextView
 android:id="@+id/serif"
 android:text="@string/hello_world"
 android:textSize="20sp"
 android:typeface="serif" />
 </TableRow>

 <TableRow>

 <TextView
 android:layout_marginRight="4dip"
 android:text="@string/label_monospace"
 android:textSize="20sp" />

 <TextView
 android:id="@+id/monospace"
 android:text="@string/hello_world"
 android:textSize="20sp"
 android:typeface="monospace" />
 </TableRow>

 <TableRow>

 <TextView
 android:layout_marginRight="4dip"
 android:text="@string/label_custom"
 android:textSize="20sp" />

 <TextView
 android:id="@+id/custom"
 android:text="@string/hello_world"
 android:textSize="20sp" />
 </TableRow>

 <TableRow android:id="@+id/filerow">

 <TextView
 android:layout_marginRight="4dip"
 android:text="@string/label_custom_from_file"
 android:textSize="20sp" />

 <TextView
 android:id="@+id/file"
 android:text="@string/hello_world"
 android:textSize="20sp" />
 </TableRow>
</TableLayout>

(from Fonts/FontSampler/app/src/main/res/layout/main.xml)
This layout builds a table showing short samples of five fonts. Notice
how the first three have the android:typeface attribute, whose value
is one of the three built-in font faces (e.g., “sans”).
The three built-in fonts are very nice. However, it may be that a
designer, or a manager, or a customer wants a different font than one
of those three. Or perhaps you want to use a font for specialized
purposes, such as an image font instead of a series of PNG
graphics.
The easiest way to accomplish this is to package the desired font(s)
with your application. To do this, simply create an assets/ folder in
the project root, and put your TrueType (TTF) fonts in the assets. You
might, for example, create assets/fonts/ and put your TTF files in
there. Note that Android has some support for OpenType (OTF) fonts, as well.
Then, you need to tell your widgets to use that font. Unfortunately,
you can no longer use layout XML for this, since the XML does not know
about any fonts you may have tucked away as an application asset.
Instead, you need to make the change in Java code:

package com.commonsware.android.fonts;

import android.app.Activity;
import android.graphics.Typeface;
import android.os.Bundle;
import android.os.Environment;
import android.view.View;
import android.widget.TextView;
import java.io.File;

public class FontSampler extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 TextView tv=(TextView)findViewById(R.id.custom);
 Typeface face=
 Typeface.createFromAsset(getAssets(), "fonts/HandmadeTypewriter.ttf");

 tv.setTypeface(face);

 File font=
 new File(Environment.getExternalStorageDirectory(), "MgOpenCosmeticaBold.ttf");

 if (font.exists()) {
 tv=(TextView)findViewById(R.id.file);
 face=Typeface.createFromFile(font);

 tv.setTypeface(face);
 }
 else {
 findViewById(R.id.filerow).setVisibility(View.GONE);
 }
 }
}

(from Fonts/FontSampler/app/src/main/java/com/commonsware/android/fonts/FontSampler.java)
Here we grab the TextView for our “custom” sample, then create a
Typeface object via the static createFromAsset() builder method.
This takes the application’s AssetManager (from getAssets()) and
a path within your assets/ directory to the font you want.
Then, it is just a matter of telling the TextView to setTypeface(),
providing the Typeface you just created. In this case, we are using
the
Handmade Typewriter font.
You can also load a font out of a local file and use it. The benefit is
that you can customize your fonts after your application has been
distributed. On the other hand, you have to somehow arrange to get the
font onto the device. But just as you can get a Typeface via
createFromAsset(), you can get a Typeface via createFromFile().
In our FontSampler, we look in the root of “external storage”
(typically the SD card) for the MgOpenCosmeticaBold TrueType font file,
and if it is found, we use it for the fifth row of the table.
Otherwise, we hide that row.
The results?

[image: The FontSampler application]

Figure 525: The FontSampler application
Note that Android does not seem to like all TrueType fonts. When
Android dislikes a custom font, rather than raise an Exception, it
seems to substitute Droid Sans (“sans”) quietly. So, if you try to
use a different font and it does not seem to be working, it may be that
the font in question is incompatible with Android, for whatever reason.
Yeah, But Do We Really Have To Do This in Java?
One common complaint with font handling in Android is that you
have to apply a custom font on a per-widget basis in Java code.
This gets old quickly.
It is not too bad with just a single TextView. But for a whole
activity, or a whole application, changing all of the relevant
TextView widgets (and descendents, like Button) gets to be a bit
tedious.
While there are “traverse the widget hierarchy and fix up the fonts”
code snippets available, you are probably better served using a third-party
library, like Christoper Jenkins’
Calligraphy, which lets
you define custom fonts in layout XML files or style resources.
Here a Glyph, There a Glyph
TrueType fonts can be rather pudgy, particularly if they support an
extensive subset of the available Unicode characters. The Handmade
Typewriter font used above runs over 70KB; the DejaVu free fonts can
run upwards of 500KB apiece. Even compressed, these add bulk to your
application, so be careful not to go overboard with custom fonts, lest
your application take up too much room on your users’ phones.
Conversely, bear in mind that fonts may not have all of the glyphs that
you need. As an example, let us talk about the ellipsis.
Android’s TextView class has the built-in ability to “ellipsize”
text, truncating it and adding an ellipsis if the text is longer than
the available space. You can use this via the android:ellipsize
attribute, for example. This works fairly well, at least for
single-line text.
The ellipsis that Android uses is not three periods. Rather it uses an
actual ellipsis character, where the three dots are contained in a
single glyph. Hence, any font that you use in a TextView where you also use the
“ellipsizing” feature will need the ellipsis glyph.
Beyond that, though, Android pads out the string that gets rendered
on-screen, such that the length (in characters) is the same before and
after “ellipsizing”. To make this work, Android replaces one character
with the ellipsis, and replaces all other removed characters with the
Unicode character ‘ZERO WIDTH NO-BREAK SPACE’ (U+FEFF). This means
the “extra” characters after the ellipsis do not take up any visible
space on screen, yet they can be part of the string.
However, this means any custom fonts you use for TextView widgets
that you use with android:ellipsize must also support this special
Unicode character. Not all fonts do, and you will get artifacts in the
on-screen representation of your shortened strings if your font lacks
this character (e.g., rogue X’s appear at the end of the line).
And, of course, Android’s international deployment means your font must
handle any language your users might be looking to enter, perhaps
through a language-specific input method editor.
Hence, while using custom fonts in Android is very possible, there are
many potential problems, and so you must weigh carefully the benefits
of the custom fonts versus their potential costs.
Auto-Sizing TextView
Text comes in all lengths.
Sometimes, when showing text in a TextView, we can allow that text to word-wrap
and extend vertically. Other times, though, that proves to be impractical, such
as when using a TextView as a label for another widget. However, even in those
times, the text to be shown may vary in length by a significant amount. Translations
of the label’s text might range from a couple of kanji in Japanese to a 20-letter
word in German or Icelandic.
One long-standing solution to that problem has been to use an auto-sizing TextView.
Here, what is being “auto-sized” is the size of the font used for the text,
to keep the TextView at a fixed dimension regardless of translation. It is up
to the developer to ensure that for a given screen size and translation that the
font does not wind up being too small to be read.
However, Android itself never had a widget for this, so developers would rely
instead upon third-party or home-grown implementations.
Android 8.0 adds this sort of auto-sizing capability to TextView itself (and,
by extension, subclasses like Button). You have two main approaches for
implementing this:

	Set android:autoSizeTextType="uniform" on the TextView to engage auto-size
capability. Then, use android:autoSizeMinTextSize and android:autoSizeMaxTextSize
to set the lower and upper bounds for the text size, where Android can choose
any size in between those. If you also add android:autoSizeStepGranularity, you
can choose the increments in which Android will move between the ends of the
text size range (the default is 1px).

	Set android:autoSizeTextType="uniform" on the TextView, as in the above
option. Then, instead of providing the starting and ending values of a range,
use an <array> resource to define specific sizes that you want to support,
then use android:autoSizePresetSizes to point to that resource. This is a bit
more difficult to set up, as you need to define the array resource, but it
may simplify testing, as you are in complete control over the possible sizes.

To make this work, you need to constrain the size of the TextView, so that
it does not expand to fill all available space. That might be through having
both axes set to wrap_content, but have the container holding the TextView
limit how big the TextView can get. It might be through TextView-specific
configuration, such as android:maxLines. Or, it might be through setting the
size of the axes to be some specific dimension or match_parent.
The Basic/AutoSize
sample project illustrates the use of both forms of android:autoSizeTextType.
The activity’s layout consists of an EditText, a pair of TextView widgets,
and a pair of divider lines (horizontal View widgets with background and margin),
all inside of a vertical LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.commonsware.android.autosize.MainActivity">

 <EditText
 android:id="@+id/input"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:hint="@string/hint_input" />

 <View
 android:layout_width="match_parent"
 android:layout_height="2dp"
 android:layout_margin="4dp"
 android:background="@android:color/black" />

 <TextView
 android:id="@+id/granular"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:autoSizeMaxTextSize="40sp"
 android:autoSizeMinTextSize="5sp"
 android:autoSizeStepGranularity="5sp"
 android:autoSizeTextType="uniform"
 android:maxLines="1" />

 <View
 android:layout_width="match_parent"
 android:layout_height="2dp"
 android:layout_margin="4dp"
 android:background="@android:color/black" />

 <TextView
 android:id="@+id/steps"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:autoSizePresetSizes="@array/autosize_sizes"
 android:autoSizeTextType="uniform"
 android:maxLines="1" />

</LinearLayout>

(from Basic/AutoSize/app/src/main/res/layout/activity_main.xml)
Both TextView widgets have android:autoSizeTextType set to uniform. The top
one uses android:autoSizeMinTextSize, android:autoSizeMaxTextSize, and
android:autoSizeStepGranularity to allow the text size to float between
5sp and 40sp in 5sp increments. The bottom one uses android:autoSizePresetSizes
to tie in an array resource for the valid sizes to use:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <array name="autosize_sizes">
 <item>10sp</item>
 <item>12sp</item>
 <item>14sp</item>
 <item>16sp</item>
 <item>18sp</item>
 <item>20sp</item>
 </array>
</resources>

(from Basic/AutoSize/app/src/main/res/values/arrays.xml)
Here, the size can float between 10sp and 20sp in 2sp increments. However,
there is no requirement that the sizes increment in a uniform fashion when using
the array approach.
The MainActivity that uses the layout sets up a TextWatcher on the EditText
and copies what you enter into the two TextView widgets, to allow you to experiment
in real time with changes in the text size:

 EditText input=(EditText)findViewById(R.id.input);
 final TextView granular=(TextView)findViewById(R.id.granular);
 final TextView steps=(TextView)findViewById(R.id.steps);

 input.addTextChangedListener(new TextWatcher() {
 @Override
 public void beforeTextChanged(CharSequence charSequence, int i, int i1,
 int i2) {
 // unused
 }

 @Override
 public void onTextChanged(CharSequence charSequence, int i, int i1,
 int i2) {
 // unused
 }

 @Override
 public void afterTextChanged(Editable editable) {
 granular.setText(editable.toString());
 steps.setText(editable.toString());
 }
 });
 }
}

(from Basic/AutoSize/app/src/main/java/com/commonsware/android/autosize/MainActivity.java)
When you run the app, initially the EditText and corresponding TextView
widgets have no text. If you start typing, you will see your text appear in
the TextView widgets:

[image: Auto-Sizing TextViews, with Some Text]

Figure 526: Auto-Sizing TextViews, with Some Text
As you continue typing, the text size decreases:

[image: Auto-Sizing TextViews, with Some More Text]

Figure 527: Auto-Sizing TextViews, with Some More Text
If you are using appcompat-v7, there are equivalent capabilities added to
its wrapper backport of TextView.
Justified Text
If you are reading the PDF edition of this book, its paragraphs do not use justified
text. If you are reading the Kindle edition of this book — at least when using
the Amazon Kindle app for Android — its paragraphs do use justified text.
Justified text is when text (e.g., in the middle of a paragraph) fills the entire line,
usually with bits of extra space added between the words to get them to neatly
fill the available horizontal space.
For years, TextView never supported justified text, though you could get it through
third-party libraries.
In Android 8.0+, you can now enable justified text on a TextView via setJustificationMode().
Android 9.0 adds android:justificationMode to be able to configure this
from a layout resource or theme.
Rich Text
Plain text is so, well, plain.
Fortunately, Android has fairly extensive support for formatted text,
before you need to break out something as heavy-weight as WebView.
However, some of this rich text support has been shrouded in mystery,
particularly how you would allow users to edit formatted text.
This chapter will explain how the rich text support in Android works
and how you can take advantage of it, with particular emphasis on
some open source projects to help you do just that.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on
basic widgets and the
input method framework.
The Span Concept
You may have noticed that many methods in Android accept or return a
CharSequence. The CharSequence interface is little used in
traditional Java, if for no other reason than there are relatively
few implementations of it outside of String. However, in Android,
CharSequence becomes much more important, because of a
sub-interface named Spanned.
Spanned defines sequences of characters (CharSequence) that
contain inline markup rules. These rules — mostly instances of
CharacterStyle and ParagraphStyle subclasses –
indicate whether the “spanned” portion of
the characters should be rendered in an alternate font, or be turned
into a hyperlink, or have other effects applied to them.
Methods that take a CharSequence as a parameter, therefore, can
work equally well with String objects as well as objects that
implement Spanned.
Implementations
The base interface for rich-text CharSequence objects is Spanned.
This is used for any CharSequence that has inline markup rules, and
it defines methods for retrieving markup rules applied to portions of
the underlying text.
The primary concrete implementation of Spanned is SpannedString.
SpannedString, like String, is immutable — you cannot
change either the text or the formatting of a SpannedString.
There is also the Spannable sub-interface of Spanned. Spannable
is used for any CharSequence with inline markup rules that can be
modified, and it defines the methods for modifying the formatting.
There is a corresponding SpannableString implementation.
Finally, there is a related Editable interface, which is for a
CharSequence that can have its text modified in-place.
SpannableStringBuilder implements both Editable and Spannable,
for modifying text and formatting at the same time.
TextView and Spanned
One of the most important uses of Spanned objects is with
TextView. TextView is capable of rendering a Spanned, complete
with all of the specified formatting. So, if you have a Spanned
that indicates that the third word should be rendered in italics,
TextView will faithfully italicize that word.
TextView, of course, is an ancestor of many other widgets, from
EditText to Button to CheckBox. Each of those, therefore, can
use and render Spannable objects. The fact that EditText has the
ability to render Spanned objects — and even allow them to be
edited — is key for allowing users to enter rich text
themselves as part of your UI.
Available Spans
As noted above, the markup rules come in the form of instances of
base classes known as CharacterStyle and ParagraphStyle.
Despite those names, most of the
SDK-supplied subclasses of CharacterStyle and ParagraphStyle
end in Span (not
Style), and so you will likely see references to these as “spans”
as often as “styles”. That also helps minimize confusion between
character styles and style resources.
There are well over a dozen supplied CharacterStyle subclasses,
including:

	
ForegroundColorSpan and BackgroundColorSpan for coloring text

	
StyleSpan, TextAppearanceSpan, TypefaceSpan,
UnderlineSpan, and StrikethroughSpan for affecting the true
“style” of text

	
AbsoluteSizeSpan, RelativeSizeSpan, SuperscriptSpan, and
SubscriptSpan for affecting the size (and, in some cases, vertical
position) of the text

And so on. Similarly, ParagraphStyle has subclasses like BulletSpan
for bulleted lists.
You can implement your own custom subclasses of
CharacterStyle and ParagraphStyle, though the book does not cover
this subject at this time.
Loading Rich Text
Spanned objects do not appear by magic. Plenty of things in Java
will give you ordinary strings, from XML and JSON parsers to loading
data out of a database to simply hard-coding string constants.
However, there are only a few ways that you as a developer will get a
Spanned complete with formatting, and that includes you creating
such a Spanned yourself by hand.
String Resource
The primary way most developers get a Spanned object into their
application is via a string resource. String resources support inline
markup in the form of HTML tags. Bold (), italics (<i>), and
underline (<u>) are officially supported, such as:

<string name="welcome">Welcome to Android!</string>

When you
retrieve the string resource via getText(), you get back a
CharSequence that represents a Spanned object with the markup
rules in place.
HTML
The next-most common way to get a Spanned object is to use
Html.fromHtml(). This parses an HTML string and returns a Spanned
object, with all recognized tags converted into corresponding spans.
You might use this for text loaded from a database, retrieved from a
Web service call, extracted from an RSS feed, etc.
Unfortunately, the list of tags that fromHtml() understands is
undocumented. Based upon the source code to fromHtml(), the
following seem safe:

	[a href="..."]

	

	<big>

	<blockquote>

	

	<cite>

	<dfn>

	[div align="..."]

	

	[font size="..." color="..." face="..."]

	<h1>

	<h2>

	<h3>

	<h4>

	<h5>

	<h6>

	<i>

	[img src="..."]

	<p>

	<small>

	

	<sub>

	<sup>

	<tt>

	<u>

However, do bear in mind that these are undocumented and therefore
are subject to change. Also note that fromHtml() is perhaps slower
than you might think, particularly for longer strings.
You might also wind up using some other support code to get your
HTML. For example, some data sources might publish text formatted as
Markdown —
Stack Overflow, GitHub, etc. use this extensively. Markdown can be
converted to HTML, through any number of available Java libraries or
via CWAC-AndDown, which
wraps the native hoedown
Markdown-to-HTML converter for maximum speed. CWAC-AndDown will
be explored in a bit more detail in
the chapter on the NDK.
From EditText
The reason why so much sample code calls getText() followed by
toString() on an EditText widget is because EditText is going
to return an Editable object from getText(), not a simple string.
That’s because, in theory, EditText could be returning something
with formatting applied. The call to toString() simply strips out
any potential formatting as part of giving you back a String.
However, you could elect to use the Editable object (presumably a
SpannableStringBuilder) if you wanted, such as for pouring the
entered text into a TextView, complete with any formatting that
might have wound up on the entered text.
Manually
You are welcome to create a SpannableString via its constructor,
supplying the text that you wish to display, then calling various
methods on SpannableString to format it.
Or, you are welcome to create a SpannableStringBuilder via its
constructor. In some respects, SpannableStringBuilder works like
the classic StringBuilder — you call append() to add more
text. However, SpannableStringBuilder also offers delete(),
insert(), and replace() methods to modify portions of the
existing content. It also supports the same methods that
SpannableString does, via the Spannable interface, for applying
formatting rules to portions of text.
Editing Rich Text
If the Spannable you wound up with is a SpannedString, it is what
it is — you cannot change it. If, however, you have a
SpannableString, that can be modified by you, or by the user. Of
course, allowing the user to modify a Spannable gets a wee bit
tricky, and is why the RichEditText project was born.
Spannable offers two methods for modifying its formatting:
setSpan() to apply formatting, and removeSpan() to get rid of an
existing span. And, since Spannable extends Spanned, a
Spannable also has getSpans(), to return existing spans of a
current type within a certain range of characters in the text. These
methods, along with others on Spanned, allow you to get and set
whatever formatting you wish to apply on a Spannable object, such
as a SpannableString.
For example, let’s take a look at the
RichText/Search
sample
project. Here, we are going to load some text into a TextView, then
allow the user to enter a search string in an EditText, and we will
use the Spannable methods to highlight the search string
occurrences inside the text in the TextView.
Our layout is simply an EditText atop a TextView (wrapped in a
ScrollView):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <EditText
 android:id="@+id/search"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:singleLine="true">

 <requestFocus/>
 </EditText>

 <ScrollView
 android:id="@+id/scroll"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/prose"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/address"
 android:textAppearance="?android:attr/textAppearanceMedium"/>
 </ScrollView>

</LinearLayout>

(from RichText/Search/app/src/main/res/layout/main.xml)
We pre-fill the TextView with a string resource
(@string/address), which in this project is the text of Lincoln’s
Gettysburg Address, with a bit of inline markup (e.g., “Four score
and seven years ago” italicized). So, when we fire up the project at
the outset, we see the formatted prose from the string resource:

[image: The RichTextSearch sample, as initially launched]

Figure 528: The RichTextSearch sample, as initially launched
In onCreate() of our activity, we find the EditText widget and
designate the activity itself as being an OnEditorActionListener
for the EditText:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 search=(EditText)findViewById(R.id.search);
 search.setOnEditorActionListener(this);
 }

(from RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java)
That means when the user presses <Enter>, we will get control in an
onEditorAction() method. There, we pass the search text to a
private searchFor() method, plus ensure that the input method
editor is hidden (if one was used to fill in the search text):

 @Override
 public boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
 if (event == null || event.getAction() == KeyEvent.ACTION_UP) {
 searchFor(search.getText().toString());

 InputMethodManager imm=
 (InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

 imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
 }

 return(true);
 }

(from RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java)
The searchFor() method is where the formatting is applied to our
search text:

 private void searchFor(String text) {
 TextView prose=(TextView)findViewById(R.id.prose);
 Spannable raw=new SpannableString(prose.getText());
 BackgroundColorSpan[] spans=raw.getSpans(0,
 raw.length(),
 BackgroundColorSpan.class);

 for (BackgroundColorSpan span : spans) {
 raw.removeSpan(span);
 }

 int index=TextUtils.indexOf(raw, text);

 while (index >= 0) {
 raw.setSpan(new BackgroundColorSpan(0xFF8B008B), index, index
 + text.length(), Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);
 index=TextUtils.indexOf(raw, text, index + text.length());
 }

 prose.setText(raw);
 }

(from RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java)
First, we get a Spannable object out of the TextView. While an
EditText returns an Editable from getText(), getText() on a
TextView returns a CharSequence. In particular, the first time we
execute searchFor(), getText() will return a SpannedString, as
that is what a string resource turns into. However, that is not
modifiable, so we convert it into a SpannableString so we can apply
formatting to it. An optimization would be to see if getText()
returns something implementing Spannable and then just using it
directly.
We want to highlight the search terms using a BackgroundColorSpan.
However, that means we first need to get rid of any existing
BackgroundColorSpan objects applied to the prose from a previous
search — otherwise, we would keep highlighting more and more of
the prose. So, we use getSpans() to find all BackgroundColorSpan
objects anywhere in the prose (from index 0 through the length of the
text). For each that we find, we call removeSpan() to get rid of it
from our Spannable.
Then, we use indexOf() on TextUtils to find the first occurrence
of whatever the user typed into the EditText. If we find it, we
create a new BackgroundColorSpan and apply it to the matching
portion of the prose using setSpan(). The last parameter to
setSpan() is a flag, indicating what should happen if text is
inserted at either the starting or ending point. In our case, the
text itself is remaining constant, so the flag does not matter much
– here, we use SPAN_EXCLUSIVE_EXCLUSIVE, which would mean
that the span would not cover any text inserted at the starting or
ending point of the span.
We then continue using indexOf() to find any remaining occurrences
of the search text. Once we are done modifying our Spannable, we
put it into the TextView via setText().
The result is that all matching substrings are highlighted in a
purple/magenta shade:

[image: The RichTextSearch sample, after searching on can]

Figure 529: The RichTextSearch sample, after searching on “can”
Saving Rich Text
SpannableString and SpannedString are not Serializable. There
is no built-in way to persist them directly.
However, Html.toHtml() will convert a Spanned object into
corresponding HTML, for all CharacterStyle and ParagraphStyle objects that can be
readily converted into HTML. You can then persist the resulting HTML
any place you would persist a String (e.g., database column).
In principle, you could create other similar conversion code, such as
something to take a Spanned and return the corresponding Markdown
source.
Manipulating Rich Text
The TextUtils class has many utility methods that manipulate a
CharSequence, to allow you to do things that you might ordinarily
have done just with methods on String. These utility methods will
work with any CharSequence, including SpannedString and
SpannableString.
Some are specifically aimed at Spanned objects, such as
copySpansFrom() (to apply formatting from one CharSequence onto
another). Some are clones of String equivalents, such as split(),
join(), and substring(). Yet others are designed for developers
using the Canvas 2D drawing API, such as ellipsize() and
commaEllipsize() for intelligently truncating messages.
Animators
Users like things that move. Or fade, spin, or otherwise offer a dynamic experience.
Much of the time, such animations are handled for us by the framework. We do not have
to worry about sliding rows in a ListView when the user scrolls, or as the user pans
around a ViewPager, and so forth.
However, sometimes, we will need to add our own animations, where we want effects that
either are not provided by the framework innately or are simply different (e.g., want
something to slide off the bottom of the screen, rather than off the left edge).
Android had an animation framework back in the beginning, one that is
still available for you today. However, Android 3.0 introduced a new animator framework
that is going to be Android’s primary focus for animated effects going forward.
Many, but not all, of the animator framework capabilities are available to us as
developers via a backport.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book. Also, you should read the chapter on custom views, to
be able to make sense of one of the samples.
ViewPropertyAnimator
Let’s say that you want to fade out a widget, instead of simply setting its visibility
to INVISIBLE or GONE.
For a widget whose name is v, on API Level 11 or higher, that is as simple as:

v.animate().alpha(0);

Here, “alpha” refers to the “alpha channel”. An alpha of 1 is normal opacity, while
an alpha of 0 is completely transparent, with values in between representing various
levels of translucence.
That may seem rather simple. The good news is, it really is that easy. Of course, there
is a lot more you can do here, and you might have to worry about supporting older Android
versions, and we need to think about things other than fading widgets in and out,
and so forth.
First, though, let’s consider what is really going on when we call animate() on a
widget on API Level 11+.
Native Implementation
The call to animate() returns an instance of ViewPropertyAnimator. This object
allows us to build up a description of an animation to be performed, such as calling
alpha() to change the alpha channel value. ViewPropertyAnimator uses a so-called
fluent interface, much like the
various builder classes (e.g., Notification.Builder) — calling a method on a
ViewPropertyAnimator() usually returns the ViewPropertyAnimator itself. This
allows you to build up an animation via a chained series of method calls, starting
with that call to animate() on the widget.
You will note that we do not end the chain of method calls with something like a
start() method. ViewPropertyAnimator will automatically arrange to start the
animation once we return control of the main application thread back to the framework.
Hence, we do not have to explicitly start the animation.
You will also notice that we did not indicate any particulars about how the animation
should be accomplished, beyond stating the ending alpha channel value of 0.
ViewPropertyAnimator will use some standard defaults for the animation, such as a
default duration, to determine how quickly Android changes the alpha value from
its starting point to 0. Most of those particulars can be overridden from their
defaults via additional methods called on our ViewPropertyAnimator, such as
setDuration() to provide a duration in milliseconds.
There are four standard animations that ViewPropertyAnimator can perform:

	Changes in alpha channel values, for fading widgets in and out

	Changes in widget position, by altering the X and Y values of the upper-left
corner of the widget, from wherever on the screen it used to be to some new
value

	Changes in the widget’s rotation, around any of the three axes

	Changes in the widget’s size, where Android can scale the widget by some
percentage to expand or shrink it

We will see an example of changing a widget’s position, using the translationXBy()
method, later in this chapter.
You are welcome to use more than one animation effect simultaneously, such as
using both alpha() and translationXBy() to slide a widget horizontally and
have it fade in or out.
There are other aspects of the animation that you can control. By default, the
animation happens linearly — if we are sliding 500 pixels in 500ms, the widget
will move evenly at 1 pixel/ms. However, you can specify a different “interpolator”
to override that default linear behavior (e.g., start slow and accelerate as the
animation proceeds). You can attach a listener object to find out about
when the animation starts and ends. And, you can specify withLayer() to indicate
that Android should try to more aggressively use hardware acceleration for an
animation, a concept that we will get into in greater detail
later in this chapter.
To see this in action, take a look at the
Animation/AnimatorFade
sample app.
The app consists of a single activity (MainActivity). It uses a layout that
is dominated by a single TextView widget, whose ID is fadee:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/fadee"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/fading_out"
 android:textAppearance="?android:attr/textAppearanceLarge"
 tools:context=".MainActivity"/>

</RelativeLayout>

(from Animation/AnimatorFade/app/src/main/res/layout/activity_main.xml)
In onCreate(), we load up the layout and get our hands on the fadee widget:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 fadee=(TextView)findViewById(R.id.fadee);
 }

(from Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java)
MainActivity itself implements Runnable, and our run() method will perform
some animated effects:

 @Override
 public void run() {
 if (fadingOut) {
 fadee.animate().alpha(0).setDuration(PERIOD);
 fadee.setText(R.string.fading_out);
 }
 else {
 fadee.animate().alpha(1).setDuration(PERIOD);
 fadee.setText(R.string.coming_back);
 }

 fadingOut=!fadingOut;

 fadee.postDelayed(this, PERIOD);
 }

(from Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java)
Specifically,
we use ViewPropertyAnimator to fade out the TextView over a certain period
(fadee.animate().alpha(0).setDuration(PERIOD);) and set its caption
to a value indicating that we are fading out. If we are to
be fading back in, we perform the opposite animation and set the caption
to a different value. We then flip the fadingOut boolean for the next pass
and use postDelayed() to reschedule ourselves to run after the period has
elapsed.
To complete the process, we run() our code initially in onStart() and
cancel the postDelayed() loop in onStop():

 @Override
 public void onStart() {
 super.onStart();

 run();
 }

 @Override
 public void onStop() {
 fadee.removeCallbacks(this);

 super.onStop();
 }

(from Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java)
The result is that the TextView smoothly fades out and in, alternating
captions as it goes.
However, it would be really unpleasant if all this animator goodness worked
only on API Level 11+. Fortunately for us, somebody wrote a backport.
Backport Via NineOldAndroids
Jake Wharton wrote NineOldAndroids. This is, in effect,
a backport of ViewPropertyAnimator
and its underpinnings. There are some slight changes in how you use it, because
NineOldAndroids is simply a library. It cannot add methods to existing classes
(like adding animate() to View), nor can it add capabilities that the underlying
firmware simply lacks. But, it may cover many of your animator needs, even if the
name is somewhat inexplicable, and it works going all the way back to API Level 1,
ensuring that it will cover any Android release that you care about.
NineOldAndroids is an Android library project.
Android Studio users can add a implementation statement
to their dependencies closure in build.gradle to pull in com.nineoldandroids:library:...
(for some version indicated by ...).
Since NineOldAndroids cannot add animate() to View, the recommended approach
is to use a somewhat obscure feature of Java: imported static methods. An
import static statement, referencing a particular static method of a class,
makes that method available as if it were a static method on the class that you are
writing, or as some sort of global function. NineOldAndroids has an animate() method
that you can import this way, so instead of v.animate(), you use animate(v)
to accomplish the same end. Everything else is the same, except perhaps some imports,
to reference NineOldAndroids instead of the native classes.
You can see this in the
Animation/AnimatorFadeBC
sample app.
In addition to having the NineOldAndroids JAR in libs/, the only difference
between this edition and the previous sample is in how the animation is set up.
Instead of lines like:

fadee.animate().alpha(0).setDuration(PERIOD);

we have:

animate(fadee).alpha(0).setDuration(PERIOD);

This takes advantage of our static import:

import static com.nineoldandroids.view.ViewPropertyAnimator.animate;

If the static import makes you queasy, you are welcome to simply import
the com.nineoldandroids.view.ViewPropertyAnimator class, rather than the
static method, and call the animate() method on ViewPropertyAnimator:

ViewPropertyAnimator.animate(fadee).alpha(0).setDuration(PERIOD);

The Foundation: Value and Object Animators
ViewPropertyAnimator itself is a layer atop of a more primitive set of animators,
known as value and object animators.
A ValueAnimator handles the core logic of transitioning some value, from an old
to a new value, over a period of time. ValueAnimator offers replaceable “interpolators”,
which will determine how the values change from start to finish over the animation
period (e.g., start slowly, accelerate, then end slowly). ValueAnimator also handles
the concept of a “repeat mode”, to indicate if the animation should simply happen once,
a fixed number of times, or should infinitely repeat (and, in the latter cases,
whether it does so always
transitioning from start to finish or if it reverses direction on alternate passes,
going from finish back to start).
What ValueAnimator does not do is actually change anything. It is merely
computing the different values based on time. You can call getAnimatedValue() to
find out the value at any point in time, or you can call addUpdateListener()
to register a listener object that will be notified of each change in the value, so
that change can be applied somewhere.
Hence, what tends to be a bit more popular is ObjectAnimator, a subclass of
ValueAnimator that automatically applies the new values. ObjectAnimator does
this by calling a setter method on some object, where you supply the object and the
“property name” used to derive the getter and setter method names. For example,
if you request a property name of foo, ObjectAnimator will try to call getFoo()
and setFoo() methods on your supplied object.
As with ViewPropertyAnimator, ValueAnimator and ObjectAnimator are implemented
natively in API Level 11 and are available via the NineOldAndroids backport as well.
To see what ObjectAnimator looks like in practice, let us examine the
Animation/ObjectAnimator
sample app.
Once again, our activity’s layout is pretty much just a centered TextView,
here named word:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/word"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:textAppearance="?android:attr/textAppearanceLarge"
 tools:context=".MainActivity"/>

</RelativeLayout>

(from Animation/ObjectAnimator/app/src/main/res/layout/activity_main.xml)
The objective of our activity is to iterate through 25 words, showing
one at a time in the TextView:

package com.commonsware.android.animator.obj;

import android.animation.ObjectAnimator;
import android.animation.ValueAnimator;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity {
 private static final String[] items= { "lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante", "porttitor", "sodales",
 "pellentesque", "augue", "purus" };
 private TextView word=null;
 int position=0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 word=findViewById(R.id.word);

 ValueAnimator
 positionAnim = ObjectAnimator.ofInt(this, "wordPosition", 0, 25);
 positionAnim.setDuration(12500);
 positionAnim.setRepeatCount(ValueAnimator.INFINITE);
 positionAnim.setRepeatMode(ValueAnimator.RESTART);
 positionAnim.start();
 }

 public void setWordPosition(int position) {
 this.position=position;
 word.setText(items[position]);
 }

 public int getWordPosition() {
 return(position);
 }
}

(from Animation/ObjectAnimator/app/src/main/java/com/commonsware/android/animator/obj/MainActivity.java)
To accomplish this, we use NineOldAndroids version of ObjectAnimator,
saying that we wish to “animate” the wordPosition property of the activity
itself, from 0 to 24.
We configure the animation to run for 12.5 seconds (i.e., 500ms per
word) and to repeat indefinitely by restarting the animation from the beginning
on each pass. We then call start() to kick off the animation.
For this to work, though, we need getWordPosition() and setWordPosition()
accessor methods for the theoretical wordPosition property. In our case,
the “word position” is simply an integer data member of the activity, which
we return in getWordPosition() and update in setWordPosition(). However,
we also update the TextView in setWordPosition(), to display the
word at that position.
The net effect is that words appear in our TextView, changing on
average every 500ms.
Animating Custom Types
In the previous section, we animated an int property of an Activity. That
works, because Android knows how to compute int values between the start
and end position, through simple math.
But, what if we wanted to animate something that is not a simple number?
For example, what if we want to animate a Color, or a LatLng from
Maps V2, or a TastyTreat class of our own design?
So long as we can perform the calculations, we can animate a type of
anything we want, using TypeEvaluator and ofObject() on ObjectAnimator.
A TypeEvaluator is a simple interface, containing a single method that
we need to override: evaluate(). However, TypeEvaluator uses generics,
and so our implementation will actually be of some concrete class (e.g.,
a TypeEvaluator of TastyTreat). Our job in evaluate() is to return
a value of our designated type (e.g., TastyTreat) given three inputs:

	The initial value for our animation range, in the form of our designated type

	The end value for our animation range, in the form of our designated type

	The fraction along that range that represents how much we have moved from
the initial value to the end value

Note that the fraction is not limited to being between 0 and 1, as certain
interpolators (e.g., an overshoot interpolator) might result in a fraction
being negative (e.g., we overshot past the initial value) or greater than one
(e.g., we overshot past the end value).
For example, to have a TypeEvaluator of Color, we might have evaluate()
generate a new Color instance based upon applying the fraction to the
initial and end red, green, blue, and alpha channels.
To use a TypeEvaluator, instead of ofInt(), ofFloat(), or similar
simple factory methods on ObjectAnimator, we use ofObject(). ofObject()
takes the object to be animated, the property to be animated, the TypeEvaluator
to assist in the actual animation, and the final value of the animation (or,
optionally, a series of waypoints to be animated along).
A flavor of
ofObject() that takes the property name — akin to the wordPosition ofInt()
used in the previous section — has been around since API Level 11. API Level
14 added an ofObject() method that takes a Property value instead of the
name of the property. This version has the added benefit of type-safety, as it
can ensure that your object to be animated, TypeEvaluator, and final position
are all of the same type.
You can see an example of using TypeEvaluator this way in
the chapter on Maps V2, as we animate the movement
of a map marker from a starting point to an ending point.
Hardware Acceleration
Animated effects operate much more smoothly with hardware acceleration. There
are two facets to employing hardware acceleration for animations: enabling
it overall and directing its use for the animations themselves.
Hardware acceleration is enabled overall on Android devices running Android
4.0 or higher (API Level 14). On Android 3.x, hardware acceleration is
available but is disabled by default — use android:hardwareAccelerated="true"
in your <application> or <activity> element in the manifest to enable
it on those versions. Hardware acceleration for 2D graphics operations like
widget animations is not available on older versions of Android.
While this will provide some benefit across the board, you may also wish
to consider rendering animated widgets or containers in an off-screen buffer,
or “hardware layer”, that then gets applied to the screen via the GPU. In
particular, the GPU can apply certain animated transformations to a hardware
layer without forcing software to redraw the widgets or containers (e.g.,
what happens when you invalidate() them). As it turns out, these GPU-enhanced
transformations match the ones supported by ViewPropertyAnimator:

	Changes in alpha channel values, for fading widgets in and out

	Changes in widget position, by altering the X and Y values of the upper-left
corner of the widget, from wherever on the screen it used to be to some new
value

	Changes in the widget’s rotation, around any of the three axes

	Changes in the widget’s size, where Android can scale the widget by some
percentage to expand or shrink it

By having the widget be rendered in a hardware layer, these ViewPropertyAnimator
operations are significantly more efficient than before.
However, since hardware layers take up video memory, generally you do not
want to keep a widget or container in a hardware layer indefinitely. Instead,
the recommended approach is to have the widget or container be rendered in a
hardware layer only while the animation is ongoing, by calling setLayerType()
for LAYER_TYPE_HARDWARE before the animation begins, then calling
setLayerType() for LAYER_TYPE_NONE (i.e., return to default behavior) when
the animation completes. Or, for ViewPropertyAnimator on API Level 16 and
higher, use withLayer() in the fluent interface to have it apply the hardware
layer automatically just for the animation duration.
We will see examples of using hardware acceleration this way in the next
section.
The Three-Fragment Problem
The original tablet implementation of Gmail organized its landscape main activity into two panes,
one on the left taking up ~30% of the screen, and one on the right taking up the
remainder:

[image: Gmail Fragments (image courtesy of Google and AOSP)]

Figure 530: Gmail Fragments (image courtesy of Google and AOSP)
Gmail had a very specific navigation mode in its
main activity when viewed in landscape on a tablet, where upon some UI event
(e.g., tapping on something in the right-hand area):

	The original left-hand fragment (Fragment A) slid off the screen to the left

	The original right-hand fragment (Fragment B) slid to the left edge of the screen and shrunk to take up the spot vacated by Fragment A

	Another fragment (Fragment C) slid in from the right side of the screen and expanded to take up the spot vacated by Fragment B

And a BACK button press reversed this operation.
This is a bit tricky to set up, leading to the author of this book posting
a question on Stack Overflow to get input.
Here, we will examine one of the results of that discussion, based in large part on the
implementation of the AOSP Email app, which has a similar navigation flow. The other
answers on that question may have merit in other scenarios as well.
You can see one approach for implementing the three-pane solution in the
Animation/ThreePane
sample app.
The ThreePaneLayout
The logic to handle the animated effects is encapsulated in a ThreePaneLayout
class. It is designed to be used in a layout XML resource where you supply the
contents of the three panes, sizing the first two as you want, with the
third “pane” having zero width at the outset:

<com.commonsware.android.anim.threepane.ThreePaneLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/root"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <FrameLayout
 android:id="@+id/left"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="3"/>

 <FrameLayout
 android:id="@+id/middle"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="7"/>

 <Button
 android:layout_width="0dp"
 android:layout_height="match_parent"/>

</com.commonsware.android.anim.threepane.ThreePaneLayout>

(from Animation/ThreePane/app/src/main/res/layout/activity_main.xml)
ThreePaneLayout itself is a subclass of LinearLayout, set up to always
be horizontal, regardless of what might be set in the layout XML resource.

 public ThreePaneLayout(Context context, AttributeSet attrs) {
 super(context, attrs);
 initSelf();
 }

 void initSelf() {
 setOrientation(HORIZONTAL);
 }

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)
When the layout finishes inflating, we grab the three panes (defined as the
first three children of the container) and stash them in data members named
left, middle, and right, with matching getter methods:

 @Override
 public void onFinishInflate() {
 super.onFinishInflate();

 left=getChildAt(0);
 middle=getChildAt(1);
 right=getChildAt(2);
 }

 public View getLeftView() {
 return(left);
 }

 public View getMiddleView() {
 return(middle);
 }

 public View getRightView() {
 return(right);
 }

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)
The major operational API, from the standpoint of an activity using ThreePaneLayout,
is hideLeft() and showLeft(). hideLeft() will switch from showing the
left and middle widgets in their original size and position to showing
the middle and right widgets wherever left and middle had been originally.
showLeft() reverses the operation.
The problem is that, initially, we do not know where the widgets are or how
big they are, as that should be able to be set from the layout XML resource
and are not known until the ThreePaneLayout is actually applied to the
screen. Hence, we lazy-retrieve those values in hideLeft(), plus remove
any weights that had been originally defined, setting the actual pixel widths
on the widgets instead:

 public void hideLeft() {
 if (leftWidth == -1) {
 leftWidth=left.getWidth();
 middleWidthNormal=middle.getWidth();
 resetWidget(left, leftWidth);
 resetWidget(middle, middleWidthNormal);
 resetWidget(right, middleWidthNormal);
 requestLayout();
 }

 translateWidgets(-1 * leftWidth, left, middle, right);

 ObjectAnimator.ofInt(this, "middleWidth", middleWidthNormal,
 leftWidth).setDuration(ANIM_DURATION).start();
 }

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)
The work to change the weights into widths is handled in resetWidget():

 private void resetWidget(View v, int width) {
 LinearLayout.LayoutParams p=
 (LinearLayout.LayoutParams)v.getLayoutParams();

 p.width=width;
 p.weight=0;
 }

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)
After the lazy-initialization and widget cleanup, we perform the two animations.
translateWidgets() will slide each of our three widgets to the left by the
width of the left widget, using a ViewPropertyAnimator and a hardware layer:

 private void translateWidgets(int deltaX, View... views) {
 for (final View v : views) {
 v.setLayerType(View.LAYER_TYPE_HARDWARE, null);

 v.animate().translationXBy(deltaX).setDuration(ANIM_DURATION)
 .setListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 v.setLayerType(View.LAYER_TYPE_NONE, null);
 }
 });
 }
 }

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)
The resize animation — to set the middle size to be what left had been –
is handled via an ObjectAnimator, for a theoretical property of middleWidth
on ThreePaneLayout. That is backed by a setMiddleWidth() method that
adjusts the width property of the middle widget’s LayoutParams and triggers
a redraw:

 @SuppressWarnings("unused")
 private void setMiddleWidth(int value) {
 middle.getLayoutParams().width=value;
 requestLayout();
 }

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)
The showLeft() method simply performs those two animations in reverse:

 public void showLeft() {
 translateWidgets(leftWidth, left, middle, right);

 ObjectAnimator.ofInt(this, "middleWidth", leftWidth,
 middleWidthNormal).setDuration(ANIM_DURATION)
 .start();
 }

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)
Using the ThreePaneLayout
The sample app uses one activity (MainActivity) and one fragment
(SimpleListFragment) to set up and use the ThreePaneLayout. The objective
is a UI that roughly mirrors that of the AOSP Email app: a list
on the left, a list in the middle (whose contents are based on the item chosen
in the left list), and something else on the right (whose contents are based
on the item chosen in the middle list).
SimpleListFragment is used for both lists. Its newInstance() factory
method is handed the list of strings to display. SimpleListFragment just
loads those into its ListView, also setting up CHOICE_MODE_SINGLE for
use with the activated style, and routing all clicks on the list to
the MainActivity that hosts the fragment:

package com.commonsware.android.anim.threepane;

import android.app.ListFragment;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import java.util.ArrayList;
import java.util.Arrays;

public class SimpleListFragment extends ListFragment {
 private static final String KEY_CONTENTS="contents";

 public static SimpleListFragment newInstance(String[] contents) {
 return(newInstance(new ArrayList<String>(Arrays.asList(contents))));
 }

 public static SimpleListFragment newInstance(ArrayList<String> contents) {
 SimpleListFragment result=new SimpleListFragment();
 Bundle args=new Bundle();

 args.putStringArrayList(KEY_CONTENTS, contents);
 result.setArguments(args);

 return(result);
 }

 @Override
 public void onViewCreated(View v, Bundle savedInstanceState) {
 super.onViewCreated(v, savedInstanceState);

 getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 setContents(getArguments().getStringArrayList(KEY_CONTENTS));
 }

 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
 ((MainActivity)getActivity()).onListItemClick(this, position);
 }

 void setContents(ArrayList<String> contents) {
 setListAdapter(new ArrayAdapter<String>(
 getActivity(),
 R.layout.simple_list_item_1,
 contents));
 }
}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/SimpleListFragment.java)
MainActivity populates the left FrameLayout with a SimpleListFragment
in onCreate(), if the fragment does not already exist (e.g., from a configuration
change). When an item in the left list is clicked, MainActivity populates
the middle FrameLayout. When an item in the middle list is clicked, it
sets the caption of the right Button and uses hideLeft() to animate
that Button onto the screen, hiding the left list. If the user presses
BACK, and our left list is not showing, MainActivity calls showLeft()
to reverse the animation:

package com.commonsware.android.anim.threepane;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;
import java.util.ArrayList;

public class MainActivity extends Activity {
 private static final String KEY_MIDDLE_CONTENTS="middleContents";
 private static final String[] items= { "lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante", "porttitor", "sodales",
 "pellentesque", "augue", "purus" };
 private boolean isLeftShowing=true;
 private SimpleListFragment middleFragment=null;
 private ArrayList<String> middleContents=null;
 private ThreePaneLayout root=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 root=(ThreePaneLayout)findViewById(R.id.root);

 if (getFragmentManager().findFragmentById(R.id.left) == null) {
 getFragmentManager().beginTransaction()
 .add(R.id.left,
 SimpleListFragment.newInstance(items))
 .commit();
 }

 middleFragment=
 (SimpleListFragment)getFragmentManager().findFragmentById(R.id.middle);
 }

 @Override
 public void onBackPressed() {
 if (!isLeftShowing) {
 root.showLeft();
 isLeftShowing=true;
 }
 else {
 super.onBackPressed();
 }
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putStringArrayList(KEY_MIDDLE_CONTENTS, middleContents);
 }

 @Override
 protected void onRestoreInstanceState(Bundle inState) {
 middleContents=inState.getStringArrayList(KEY_MIDDLE_CONTENTS);
 }

 void onListItemClick(SimpleListFragment fragment, int position) {
 if (fragment == middleFragment) {
 ((Button)root.getRightView()).setText(middleContents.get(position));

 if (isLeftShowing) {
 root.hideLeft();
 isLeftShowing=false;
 }
 }
 else {
 middleContents=new ArrayList<String>();

 for (int i=0; i < 20; i++) {
 middleContents.add(items[position] + " #" + i);
 }

 if (getFragmentManager().findFragmentById(R.id.middle) == null) {
 middleFragment=SimpleListFragment.newInstance(middleContents);
 getFragmentManager().beginTransaction()
 .add(R.id.middle, middleFragment).commit();
 }
 else {
 middleFragment.setContents(middleContents);
 }
 }
 }
}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/MainActivity.java)
The Results
If you run this app on a landscape tablet running API Level 11 or higher, you
start off with a single list of words on the left:

[image: ThreePane, As Initially Launched]

Figure 531: ThreePane, As Initially Launched
Clicking on a word brings up a second list, taking up the rest of
the screen, with numbered entries based upon the clicked-upon word:

[image: ThreePane, After Clicking a Word]

Figure 532: ThreePane, After Clicking a Word
Clicking on an entry in the second list starts the animation, sliding the
first list off to the left, sliding the second list into the space vacated
by the first list, and sliding in a “detail view” into the right portion of
the screen:

[image: ThreePane, After Clicking a Numbered Word]

Figure 533: ThreePane, After Clicking a Numbered Word
Pressing BACK once will reverse the animation, restoring you to the two-list
perspective.
The Backport
The ThreePane sample described above uses the native API Level 11 version of the
animator framework and the native implementation of fragments. However, the same
approach can work using the Android Support package’s version of fragments and
NineOldAndroids. You can see this in the
Animation/ThreePaneBC
sample app.
Besides changing the import statements and adding the NineOldAndroids JAR file,
the only other changes of substance were:

	Using ViewPropertyAnimator.animate(v) instead of v.animate() in translateWidgets()

	Conditionally setting the hardware acceleration layers via setLayerType() in
translateWidgets() based upon API level, as that method was only added in API Level 11

The smoothness of animations, though, will vary by hardware capabilities. For example,
on a first-generation Kindle Fire, running Android 2.3, the backport works but is not
especially smooth, while the animations are very smooth on more modern hardware where
hardware acceleration can be applied.
The Problems
As we will see in the chapter on “jank”, there is some stutter in the
rendering of this app. Fixing it requires removing the animated change in the width
of the middle pane, which in turn makes the animation itself look worse. More details
on the analysis can be found in the “jank” chapter.
Legacy Animations
Before ViewPropertyAnimator and the rest of the animator framework
were added in API Level 11, we had the original Animation base
class and specialized animations based upon it, like TranslateAnimation
for movement and AlphaAnimation for fades. On the whole, you will want
to try to use the animator framework where possible, as the new system
is more powerful and efficient than the legacy Animation approach.
However, particularly for apps where the NineOldAndroids backport is
insufficient, you may wish to use the legacy framework.
After an overview of the role of the animation
framework, we go in-depth to animate the movement
of a widget across the screen. We then look at alpha animations,
for fading widgets in and out. We then see
how you can get control during the lifecycle of an
animation, how to control the acceleration of
animations, and how to group animations together for
parallel execution. Finally, we see how the same framework can now be
used to control the animation for the switching of
activities.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic resources and
basic widgets. Also, you should read the chapter on
custom views.
It’s Not Just For Toons Anymore
Android has a package of classes (android.view.animation) dedicated
to animating the movement and behavior of widgets.
They center around an Animation base class that describes what is
to be done. Built-in animations exist to move a widget
(TranslateAnimation), change the transparency of a widget
(AlphaAnimation), revolve a widget (RotateAnimation), and
resize a widget (ScaleAnimation). There is even a way to
aggregate animations together into a composite Animation called an
AnimationSet. Later sections in this chapter will examine the use
of several of these animations.
Given that you have an animation, to apply it, you have two main
options:

	You may be using a container that supports animating its contents,
such as a ViewFlipper or TextSwitcher. These are typically
subclasses of ViewAnimator and let you define the “in” and “out”
animations to apply. For example, with a ViewFlipper, you can
specify how it flips between Views in terms of what animation is
used to animate “out” the currently-visible View and what animation
is used to animate “in” the replacement View.

	You can simply tell any View to startAnimation(), given the
Animation to apply to itself. This is the technique we will be
seeing used in the examples in this chapter.

A Quirky Translation
Animation takes some getting used to. Frequently, it takes a fair bit
of experimentation to get it all working as you wish. This is
particularly true of TranslateAnimation, as not everything about it
is intuitive, even to authors of Android books.
Mechanics of Translation
The simple constructor for TranslateAnimation takes four parameters
describing how the widget should move: the before and after X offsets
from the current position, and the before and after Y offsets from
the current position. The Android documentation refers to these as
fromXDelta, toXDelta, fromYDelta, and toYDelta.
In Android’s pixel-space, an (X,Y) coordinate of (0,0) represents
the upper-left corner of the screen. Hence, if toXDelta is greater
than fromXDelta, the widget will move to the right, if toYDelta
is greater than fromYDelta, the widget will move down, and so on.
Imagining a Sliding Panel
Some Android applications employ a sliding panel, one that is
off-screen most of the time but can be called up by the user (e.g.,
via a menu) when desired. When anchored at the bottom of the screen,
you get a container that
slides up from the bottom and slides down and out when being removed.
One way to implement such a panel is to have a container (e.g., a
LinearLayout) whose contents are absent (INVISIBLE) when the panel is
closed and is present (VISIBLE) when the drawer is open. If we
simply toggled setVisibility() using the aforementioned values,
though, the panel would wink open and closed immediately, without any
sort of animation. So, instead, we want to:

	Make the panel visible and animate it up from the bottom of the
screen when we open the panel

	Animate it down to the bottom of the screen and make the panel
invisible when we close the panel

The Aftermath
This brings up a key point with respect to TranslateAnimation: the
animation temporarily moves the widget, but if you want the widget to
stay where it is when the animation is over, you have to handle that
yourself. Otherwise, the widget will snap back to its original
position when the animation completes.
In the case of the panel opening, we handle that via the transition
from INVISIBLE to VISIBLE. Technically speaking, the panel is always
“open”, in that we are not, in the end, changing its position. But
when the body of the panel is INVISIBLE, it takes up no space on the
screen; when we make it VISIBLE, it takes up whatever space it is
supposed to.
Later in this chapter, we will cover how to use animation listeners
to accomplish this end for closing the panel.
Introducing SlidingPanel
With all that said, turn your attention to the
Animation/SlidingPanel
sample project and, in particular, the
SlidingPanel class.
This class implements a layout that works as a panel, anchored to the
bottom of the screen. A toggle() method can be called by the
activity to hide or show the panel. The panel itself is a
LinearLayout, so you can put whatever contents you want in there.
We use two flavors of TranslateAnimation, one for opening the panel
and one for closing it.
Here is the opening animation:

 anim=new TranslateAnimation(0.0f, 0.0f,
 getHeight(),
 0.0f);

(from Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java)
Our fromXDelta and toXDelta are both 0, since we are not
shifting the panel’s position along the horizontal axis. Our
fromYDelta is the panel’s height according to its layout parameters
(representing how big we want the panel to be), because we want the
panel to start the animation at the bottom of the screen; our
toYDelta is 0 because we want the panel to be at its “natural”
open position at the end of the animation.
Conversely, here is the closing animation:

 anim=new TranslateAnimation(0.0f, 0.0f, 0.0f,
 getHeight());

(from Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java)
It has the same basic structure, except the Y values are reversed,
since we want the panel to start open and animate to a closed
position.
The result is a container that can be closed:

[image: The SlidingPanel sample application, with the panel closed]

Figure 534: The SlidingPanel sample application, with the panel closed
… or open, in this case toggled via a menu choice in the
SlidingPanelDemo activity:

[image: The SlidingPanel sample application, with the panel open]

Figure 535: The SlidingPanel sample application, with the panel open
Using the Animation
When setting up an animation, you also need to indicate how long the
animation should take. This is done by calling setDuration() on the
animation, providing the desired length of time in milliseconds.
When we are ready with the animation, we simply call
startAnimation() on the SlidingPanel itself, causing it to move
as specified by the TranslateAnimation instance.
Fading To Black. Or Some Other Color.
AlphaAnimation allows you to fade a widget in or out by making it
less or more transparent. The greater the transparency, the more the
widget appears to be “fading”.
Alpha Numbers
You may be used to alpha channels, when used in #AARRGGBB color
notation, or perhaps when working with alpha-capable image formats
like PNG.
Similarly, AlphaAnimation allows you to change the alpha channel
for an entire widget, from fully-solid to fully-transparent.
In Android, a float value of 1.0 indicates a fully-solid widget,
while a value of 0.0 indicates a fully-transparent widget. Values
in between, of course, represent various amounts of transparency.
Hence, it is common for an AlphaAnimation to either start at 1.0
and smoothly change the alpha to 0.0 (a fade) or vice versa.
Animations in XML
With TranslateAnimation, we showed how to construct the animation
in Java source code. One can also create animation resources, which
define the animations using XML. This is similar to the process for
defining layouts, albeit much simpler.
For example, there is a second animation project,
Animation/SlidingPanelEx,
which demonstrates a panel that fades out
as it is closed. In there, you will find a res/anim/ directory,
which is where animation resources should reside. In there, you will
find fade.xml:

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromAlpha="1.0"
 android:toAlpha="0.0" />

(from Animation/SlidingPanelEx/app/src/main/res/anim/fade.xml)
The name of the root element indicates the type of animation (in this
case, alpha for an AlphaAnimation). The attributes specify the
characteristics of the animation, in this case a fade from 1.0 to
0.0 on the alpha channel.
This XML is the same as calling new AlphaAnimation(1.0f,0.0f) in
Java.
Using XML Animations
To make use of XML-defined animations, you need to inflate them, much
as you might inflate a View or Menu resource. This is
accomplished by using the loadAnimation() static method on the
AnimationUtils class, seen here in our SlidingPanel constructor:

 public SlidingPanel(final Context ctxt, AttributeSet attrs) {
 super(ctxt, attrs);

 TypedArray a=ctxt.obtainStyledAttributes(attrs,
 R.styleable.SlidingPanel,
 0, 0);

 speed=a.getInt(R.styleable.SlidingPanel_speed, 300);

 a.recycle();

 fadeOut=AnimationUtils.loadAnimation(ctxt, R.anim.fade);
 }

(from Animation/SlidingPanelEx/app/src/main/java/com/commonsware/android/anim2/SlidingPanel.java)
Here, we are loading our fade animation, given a Context. This is
being put into an Animation variable, so we neither know nor care
that this particular XML that we are loading defines an
AlphaAnimation instead of, say, a RotateAnimation.
When It’s All Said And Done
Sometimes, you need to take action when an animation completes.
For example, when we close the panel, we want to use a
TranslationAnimation to slide it down from the open position to
closed… then keep it closed. With the system used in
SlidingPanel, keeping the panel closed is a matter of calling
setVisibility() on the contents with INVISIBLE.
However, you cannot do that when the animation begins; otherwise, the
panel is gone by the time you try to animate its motion.
Instead, you need to arrange to have it become invisible when the animation
ends. To do that, you use an animation listener.
An animation listener is simply an instance of the
AnimationListener interface, provided to an animation via
setAnimationListener(). The listener will be invoked when the
animation starts, ends, or repeats (the latter courtesy of
CycleInterpolator, discussed later in this chapter). You can put
logic in the onAnimationEnd() callback in the listener to take
action when the animation finishes.
For example, here is the AnimationListener for SlidingPanel:

 Animation.AnimationListener collapseListener=new Animation.AnimationListener() {
 public void onAnimationEnd(Animation animation) {
 setVisibility(View.INVISIBLE);
 }

 public void onAnimationRepeat(Animation animation) {
 // not needed
 }

 public void onAnimationStart(Animation animation) {
 // not needed
 }
 };

(from Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java)
All we do is set our content’s visibility to be INVISIBLE, thereby
closing the panel.
Loose Fill
You will see attributes, available on Animation, named
android:fillEnabled and android:fillAfter. Reading those, you may
think that you can dispense with the AnimationListener and just use
those to arrange to have your widget wind up being “permanently” in
the state represented by the end of the animation. All you would have
to do is set each of those to true in your animation XML (or the
equivalent in Java), and you would be set.
At least for TranslateAnimation, you would be mistaken.
It actually will look like it works — the animated widgets will
be drawn in their new location. However, if those widgets are
clickable, they will not be clicked in their new location, but rather
in their old one. This, of course, is not terribly useful.
Hence, even though it is annoying, you will want to use the
AnimationListener techniques described in this chapter.
Hit The Accelerator
In addition to the Animation classes themselves, Android also
provides a set of Interpolator classes. These provide instructions
for how an animation is supposed to behave during its operating
period.
For example, the AccelerateInterpolator indicates that, during the
duration of an animation, the rate of change of the animation should
begin slowly and accelerate until the end. When applied to a
TranslateAnimation, for example, the sliding movement will start
out slowly and pick up speed until the movement is complete.
There are several implementations of the Interpolator interface
besides AccelerateInterpolator, including:

	
AccelerateDecelerateInterpolator, which starts slowly, picks up
speed in the middle, and slows down again at the end

	
DecelerateInterpolator, which starts quickly and slows down
towards the end

	
LinearInterpolator, the default, which indicates the animation
should proceed smoothly from start to finish

	
CycleInterpolator, which repeats an animation for a number of
cycles, following the AccelerateDecelerateInterpolator pattern
(slow, then fast, then slow)

To apply an interpolator to an animation, simply call
setInterpolator() on the animation with the Interpolator
instance, such as the following line from SlidingPanel:

 anim.setInterpolator(new AccelerateInterpolator(1.0f));

(from Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java)
You can also specify one of the stock interpolators via the
android:interpolator attribute in your animation XML file.
Animate. Set. Match.
For the Animation/SlidingPanelEx project, though, we want the panel
to slide open, but also fade when it slides closed. This implies two
animations working at the same time (a fade and a slide). Android
supports this via the AnimationSet class.
An AnimationSet is itself an Animation implementation. Following
the composite design pattern, it simply cascades the major
Animation events to each of the animations in the set.
To create a set, just create an AnimationSet instance, add the
animations, and configure the set. For example, here is the logic
from the SlidingPanel implementation in Animation/SlidingPanelEx:

 public void toggle() {
 TranslateAnimation anim=null;
 AnimationSet set=new AnimationSet(true);

 isOpen=!isOpen;

 if (isOpen) {
 setVisibility(View.VISIBLE);
 anim=new TranslateAnimation(0.0f, 0.0f,
 getHeight(),
 0.0f);
 }
 else {
 anim=new TranslateAnimation(0.0f, 0.0f, 0.0f,
 getHeight());
 anim.setAnimationListener(collapseListener);
 set.addAnimation(fadeOut);
 }

 set.addAnimation(anim);
 set.setDuration(speed);
 set.setInterpolator(new AccelerateInterpolator(1.0f));
 startAnimation(set);
 }

(from Animation/SlidingPanelEx/app/src/main/java/com/commonsware/android/anim2/SlidingPanel.java)
If the panel is to be opened, we make the contents visible (so we can
animate the motion upwards), and create a TranslateAnimation for
the upward movement. If the panel is to be closed, we create a
TranslateAnimation for the downward movement, but also add a
pre-defined AlphaAnimation (fadeOut) to an AnimationSet. In
either case, we add the TranslateAnimation to the set, give the set
a duration and interpolator, and run the animation.
Active Animations
Starting with Android 1.5, users could indicate if they wanted to
have inter-activity animations: a slide-in/slide-out effect as they
switched from activity to activity. However, at that time, they could
merely toggle this setting on or off, and applications had no control
over these animations whatsoever.
Starting in Android 2.0, though, developers have a bit more control.
Specifically:

	Developers can call overridePendingTransition() on an
Activity, typically after calling startActivity() to launch
another activity or finish() to close up the current activity. The
overridePendingTransition() indicates an in/out animation pair that
should be applied as control passes from this activity to the next
one, whether that one is being started (startActivity()) or is the
one previous on the stack (finish()).

	Developers can start an activity via an Intent containing the
FLAG_ACTIVITY_NO_ANIMATION flag. As the name suggests, this flag
requests that animations on the transitions involving this activity
be suppressed.

These are prioritized as follows:

	Any call to overridePendingTransition() is always taken into
account

	Lacking that, FLAG_ACTIVITY_NO_ANIMATION will be taken into
account

	In the normal case, where neither of the two are used, whatever the
user’s preference, via the Settings application, is applied

Custom Drawables
Many times, our artwork can simply be some PNG or JPEG files, perhaps
with different variations in different resource directories by density.
Sometimes, though, we need something more.
In addition to supporting standard PNG and JPEG files, Android has a number
of custom drawable resource formats — mostly written in XML — that handle
specific scenarios.
For example, you may wish to customize “the background”
of a Button, but a Button really has several different background images
for different circumstances (normal, pressed, focused, disabled, etc.).
Android has a certain type of drawable resource that aggregates other
drawable resources, indicating which of those other resources should be used
in different circumstances (e.g., for a normal button use X, for a disabled
button use Y).
In this chapter, we will explore these non-traditional types of “drawables”
and how you can use them within your apps.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic resources,
basic widgets, and vector drawables.
Having read the chapters on
animators and legacy animations would be
useful.
Where Do These Things Go?
All of the drawables described in this chapter, unless otherwise noted,
are density-independent. Hence, they do not normally go in a density-dependent
directories like res/drawable-hdpi/. However, that still leaves
three possible candidates: res/drawable-nodpi/, res/drawable-anydpi/,
and the unadorned res/drawable/.
nodpi: Fallback
A drawable in res/drawable-nodpi/ is valid for any screen density.
However, if there is another drawable with the same base name
in a density-specific directory, and the device running your app happens
to have that screen density, the density-specific resource will be used.
As a result, -nodpi becomes a fallback, to be used in cases where
you do not have something specific for a density.
For example, suppose that we have res/drawable-nodpi/foo.xml and
res/drawable-xxhdpi/foo.png. An -xxhdpi device would use the PNG;
all other devices would use the XML.
anydpi: Takeover
A drawable in res/drawable-anydpi/ also is valid for any screen density.
However, in this case, the -anydpi variant trumps any density-specific
variant.
For example, suppose that we have res/drawable-anydpi/foo.xml and
res/drawable-xxhdpi/foo.png. All devices would use the XML, even
-xxhdpi devices.
For this reason, often you will see -anydpi used in conjunction with
other qualifiers. A popular one will be -v21, to restrict the
resources to be used on API Level 21+ devices.
No Qualifier: Just Say “WTF?”
res/drawable/ is a synonym for res/drawable-mdpi/, for backwards
compatibility with really old Android apps, written before we had
density-specific resources. Hence, res/drawable/ is not really an
appropriate choice for density-independent drawables.
Alas, Android Studio may put some drawables here, for uncertain reasons.
So long as there are no other resources with the same basename,
the choice made by Android Studio’s developers is unlikely to cause
any harm.
ColorDrawable
The simplest XML drawable format, by far, is for ColorDrawable. Not
surprisingly, this defines a Drawable that is a solid color.
So, you can have a res/drawable/thing.xml file, containing something
like this:

<color xmlns:android="http://schemas.android.com/apk/res/android"
 android:color="#80FF00FF"/>

From there, you can use @drawable/thing or R.drawable.thing in the same
places that you would use any other drawable resource.
Note that a ColorDrawable is different than a color resource. A color
resource (e.g., res/values/colors.xml) specifies a color. A ColorDrawable
resource defines a Drawable of a color. A ColorDrawable resource is
welcome to reference a color defined by a color resource, though:

<color xmlns:android="http://schemas.android.com/apk/res/android"
 android:color="@color/primary_dark"/>

AnimationDrawable
The original way of doing animation on the Web was via the animated GIF.
An individual GIF file could contain many frames, and the browser would
switch between those frames to display a basic animated effect. This was
used by Web designers for things both good (animated progress “spinners”)
and bad (“hit the monkey” ad banners).
Android, on the whole, does not support animated GIF files, certainly not
as regular images for use with widgets like ImageView.
However, there are times where having this sort of frame-by-frame animation
would be useful. For example, in another chapter,
we will look at
ProgressBar, which is Android’s primary way of demonstrating progress of background
work. You may wish to customize the “spinning wheel” image that Android
uses by default, to match your app’s color scheme, or to spin your company
logo, or whatever. On the Web, particularly on older browsers, you might use
an animated GIF for that. On Android, you still could, though it would
require a third-party library or
some fairly heavyweight solutions (e.g., WebView, Movie).
Another possibility is to use an AnimationDrawable.
AnimationDrawable has the net effect of an animated GIF:

	You define a series of images that serve as the frames of the animation

	You define how long each of those images should be on the screen

	You define whether the animation should loop back to the beginning after
it reaches the end or not

However, rather than encoding all of this in an animated GIF, you instead
encode this information in an XML file, stored as a drawable resource.
XML-encoded drawable resources are typically stored in a drawable
directory that does not contain density information, such as res/drawable/.
That is because the XML-encoded drawable resources are density-invariant:
they behave the same regardless of density. Those, like the AnimationDrawable,
that refer to other images might well refer to other images that are stored
in density-dependent resource directories, but the XML-encoded drawable
itself is independent of density.
An AnimationDrawable is defined as in XML with a root <animation-list>
element, containing a series of <item> elements for each frame:

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="true">
 <item android:drawable="@drawable/frame1" android:duration="250" />
 <item android:drawable="@drawable/frame2" android:duration="250" />
 <item android:drawable="@drawable/frame3" android:duration="250" />
 <item android:drawable="@drawable/frame4" android:duration="250" />
</animation-list>

The root <animation-list> element can have an android:oneshot attribute,
indicating whether the animation should repeat after displaying the last
frame (false) or stop (true).
The <item> elements have android:drawable attributes pointing to the
individual images for the individual frames. Usually these frames are PNG
or JPEG files, but you refer to them as drawable resources, using @drawable
syntax, so Android can find the right image based upon the density (or
other characteristics) of the current device. The <item> elements also
need an android:duration attribute, specifying the time in milliseconds
that this frame should be on the screen. While the above example has all
durations the same, that is not required.
For example, the Android OS uses AnimationDrawable resources in a few
places. One is for the download icon used in a Notification for use
with DownloadManager and similar situations. That drawable resource –
stat_sys_download.xml — looks like this:

<?xml version="1.0" encoding="utf-8"?>
<!--
/* //device/apps/common/res/drawable/status_icon_background.xml
**
** Copyright 2008, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->
<animation-list
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/stat_sys_download_anim0" android:duration="200" />
 <item android:drawable="@drawable/stat_sys_download_anim1" android:duration="200" />
 <item android:drawable="@drawable/stat_sys_download_anim2" android:duration="200" />
 <item android:drawable="@drawable/stat_sys_download_anim3" android:duration="200" />
 <item android:drawable="@drawable/stat_sys_download_anim4" android:duration="200" />
 <item android:drawable="@drawable/stat_sys_download_anim5" android:duration="200" />
</animation-list>

Here, we have a repeating animation (android:oneshot="false"), consisting of
six frames, each on the screen for 200 milliseconds.
By specifying an AnimationDrawable in your Notification for its icon,
you too can have this sort of animated effect. Of course, the animation is
“fire and forget”: other than by removing or replacing the Notification, you
cannot affect the animation in any other way.
Animated GIF Conversion
It may be that you have an animated GIF that you would like to use as the
basis for your AnimationDrawable. If you have passing familiarity with
Ruby, the author of this book has published
a Ruby script, named gif2animdraw,
that automates the conversion.
To use gif2animdraw, in addition to the script itself and a Ruby interpreter,
you will need the RMagick, slop, and builder gems. Note that RMagick, in
turn, will require ImageMagick libraries and therefore
is a bit more complicated to install than is your ordinary gem.
On Linux environments,
you can also chmod the script to run it directly; otherwise, you would
run it via the ruby command.
The script takes four command-line switches:

	
-i should point to the GIF file to be converted

	
-o should point to the root output directory, which typically would be a
project’s res/ directory

	
-d should have, as a value, one of the Android density bucket names (e.g., hdpi);
this will be used as the density for the frames of the GIF

	Optionally, include --oneshot to indicate that this should be a one-shot animation,
not a repeating one

The results will be:

	A drawable/ directory underneath your supplied root, containing a file with the
same name as the GIF file, but with a .xml extension, representing the AnimationDrawable
itself

	A drawable-XXXX/ directory, where XXXX is your stated density, containing each
frame of the animated GIF, as a PNG file, with a sequentially numbered filename based
on the GIF’s filename

StateListDrawable
Another XML-defined drawable resource, the StateListDrawable, is
key if you want to have different images when widgets are in
different states.
As outlined in the introduction to this chapter, what makes a Button
visually be a Button is its
background. To handle different looks for the Button background for
different states (normal, pressed, disabled, etc.), the standard
Button background is a StateListDrawable, one that looks
something like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_window_focused="false" android:state_enabled="true"
 android:drawable="@drawable/btn_default_normal" />
 <item android:state_window_focused="false" android:state_enabled="false"
 android:drawable="@drawable/btn_default_normal_disable" />
 <item android:state_pressed="true"
 android:drawable="@drawable/btn_default_pressed" />
 <item android:state_focused="true" android:state_enabled="true"
 android:drawable="@drawable/btn_default_selected" />
 <item android:state_enabled="true"
 android:drawable="@drawable/btn_default_normal" />
 <item android:state_focused="true"
 android:drawable="@drawable/btn_default_normal_disable_focused" />
 <item
 android:drawable="@drawable/btn_default_normal_disable" />
</selector>

The XML has a <selector> root element, indicating this is a
StateListDrawable. The <item> elements inside the root describe
what Drawable resource should be used if the StateListDrawable is
being used in some state. For example, if the “window” (think
activity or dialog) does not have the focus
(android:state_window_focused="false") and the Button is enabled
(android:state_enabled="true"), then we use the
@drawable/btn_default_normal Drawable resource. That resource, as
it turns out, is a nine-patch PNG file, described
later in this chapter.
Android applies each rule in turn, top-down, to find the Drawable
to use for a given state of the StateListDrawable. The last rule
has no android:state_* attributes, meaning it is the overall
default image to use if none of the other rules match.
So, if you want to change the background of a Button, you need to:

	Copy the above resource, found in your Android SDK as
res/drawable/btn_default.xml inside any of the platforms/ directories,
into your project

	Copy each of the Button state nine-patch images into your project

	Modify whichever of those nine-patch images you want, to affect the
visual change you seek

	If need be, tweak the states and images defined in the
StateListDrawable XML you copied

	Reference the local StateListDrawable as the background for your
Button

The backgrounds of most widgets that have backgrounds by default will
use a StateListDrawable. Searching a platform version’s res/drawable/
directory for XML files containing <selector> elements comes up with
a rather long list.
ColorStateList
A ColorStateList is analogous to a StateListDrawable, in that it
defines states and identifies what should be used for a given state. Whereas
StateListDrawable ties states to drawables, ColorStateList ties
states to colors. This allows you to, say, change the color of some
text based upon whether that text is drawn in a widget that is being
pressed, or has the focus, or is disabled. If you tailor the background
of a text-based widget using a StateListDrawable, you may well wind
up tailoring the foreground text using a ColorStateList.
While this chapter mentions ColorStateList, technically a ColorStateList
is not a Drawable. You do not use it in methods that take drawables
or in widget XML attributes that take drawables. Rather, there are other
methods and other attributes that take a ColorStateList, such as
android:textColor.
Similarly, while you can define a ColorStateList in XML, you do not
do so in a res/drawable/ resource directory, but rather a
res/color/ resource directory. Beyond that, though, a ColorStateList
XML resource looks a lot like a StateListDrawable XML resource, such
as this definition of @android:color/primary_text_dark from Android 4.4:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="false" android:color="@android:color/bright_foreground_dark_disabled"/>
 <item android:state_window_focused="false" android:color="@android:color/bright_foreground_dark"/>
 <item android:state_pressed="true" android:color="@android:color/bright_foreground_dark_inverse"/>
 <item android:state_selected="true" android:color="@android:color/bright_foreground_dark_inverse"/>
 <item android:state_activated="true" android:color="@android:color/bright_foreground_dark_inverse"/>
 <item android:color="@android:color/bright_foreground_dark"/> <!-- not selected -->
</selector>

Based upon the state, the ColorStateList pulls in a separate resource
to define the actual color. Those colors, in turn, are defined via <color>
elements in res/values/colors.xml as color resources, or are pulled
in from system-defined colors (@android:color/... syntax):

 <color name="background_dark">#ff000000</color>
 <color name="background_light">#ffffffff</color>
 <color name="bright_foreground_dark">@android:color/background_light</color>
 <color name="bright_foreground_light">@android:color/background_dark</color>
 <color name="bright_foreground_dark_disabled">#80ffffff</color>
 <color name="bright_foreground_light_disabled">#80000000</color>
 <color name="bright_foreground_dark_inverse">@android:color/bright_foreground_light</color>
 <color name="bright_foreground_light_inverse">@android:color/bright_foreground_dark</color>

LayerDrawable
A LayerDrawable basically stacks a bunch of other drawables on top of each
other. Later drawables are drawn on top of earlier drawables, much as later
children of a RelativeLayout are drawn on top of earlier children.
Typically, you will create a LayerDrawable via a <layer-list>
XML drawable resource.
For example, a ToggleButton widget has a LayerDrawable as its
background:

?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<layer-list xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+android:id/background" android:drawable="@android:drawable/btn_default_small" />
 <item android:id="@+android:id/toggle" android:drawable="@android:drawable/btn_toggle" />
</layer-list>

This LayerDrawable draws two images on top of each other. One is a standard small button
background (@android:drawable/btn_default_small). The other is the actual face of the
toggle itself — a StateListDrawable that uses different images for checked and unchecked
states.
In the <layer-list>, you can have several <item> elements. Each <item> element usually will
need an android:drawable attribute, pointing to the drawable that should be drawn. Optionally,
you can assign ID values to the items via android:id attributes, much like you would do
for widgets in a layout XML resource. Later on, you can call findDrawableByLayerId() on
the LayerDrawable to retrieve an individual Drawable representing the layer, given its
android:id value.
There are also android:left, android:right, android:top, and android:bottom attributes,
which you can use to provide dimension values to offset an image within the layered set.
For example, you could use android:left to inset one of the layers by a certain number
of pixels (or dp or whatever).
By default, the layers in the LayerDrawable are scaled to fit the size of whatever View
is holding them (e.g., the size of the ToggleButton using the LayerDrawable as a background).
To prevent this, you can skip the android:drawable attribute, and instead nest a <bitmap>
element inside the <item>, where you can provide an android:gravity attribute to control
how the image should be handled relative to its containing View. We will get more into
nested <bitmap> elements later in this chapter.
TransitionDrawable
A TransitionDrawable is a LayerDrawable with one added feature: for a two-layer drawable,
it can smoothly transition from showing one layer to another on top.
For example, you may have noticed that when you tap-and-hold on a row in a ListView that
the selector highlight has an animated effect, slowly shifting colors from the color used
for a simple click to one signifying that you have long-clicked the row. Android accomplishes
this via a TransitionDrawable, set up as a <transition> XML drawable resource:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<transition xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@android:drawable/list_selector_background_pressed" />
 <item android:drawable="@android:drawable/list_selector_background_longpress" />
</transition>

The TransitionDrawable object has a startTransition() method that you can use,
that will have Android smoothly switch from the first drawable to the second. You
specify the duration of the transition as a number of milliseconds passed to
startTransition(). There are also options to reverse the transition, set up
more of a cross-fade effect, and the like.
LevelListDrawable
A LevelListDrawable is similar in some respects to a StateListDrawable, insofar
as one specific item from the “list drawable” will be displayed based upon certain
conditions. In the case of StateListDrawable, the conditions are based upon the
state of the widget using the drawable (e.g., checked, pressed, disabled). In the
case of LevelListDrawable, it is merely an integer level.
For example, the status or system bar of your average Android device has an icon
indicating the battery charge level. That is actually implemented as a LevelListDrawable,
via an XML resource containing a root <level-list> element:

<?xml version="1.0" encoding="utf-8"?>
<!--
/* //device/apps/common/res/drawable/stat_sys_battery.xml
**
** Copyright 2007, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->

<level-list xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:maxLevel="4" android:drawable="@android:drawable/stat_sys_battery_0" />
 <item android:maxLevel="15" android:drawable="@android:drawable/stat_sys_battery_15" />
 <item android:maxLevel="35" android:drawable="@android:drawable/stat_sys_battery_28" />
 <item android:maxLevel="49" android:drawable="@android:drawable/stat_sys_battery_43" />
 <item android:maxLevel="60" android:drawable="@android:drawable/stat_sys_battery_57" />
 <item android:maxLevel="75" android:drawable="@android:drawable/stat_sys_battery_71" />
 <item android:maxLevel="90" android:drawable="@android:drawable/stat_sys_battery_85" />
 <item android:maxLevel="100" android:drawable="@android:drawable/stat_sys_battery_100" />
</level-list>

This LevelListDrawable has eight items, whose android:drawable attributes point to
specific other drawable resources (in this case, standard PNG files with different
implementations for different densities). Each <item> has an android:maxLevel value.
When someone calls setLevel() on the Drawable or setImageLevel() on the ImageView,
Android will choose the item with the lowest maxLevel that meets or exceeds the requested
level, and show that. In the case of the battery icon, when the battery level changes,
the status bar picks up that change and calls setImageLevel() with the battery charge
percentage (expressed as an integer from 0-100) — that, in turn, triggers the right
PNG file to be displayed.
Another use of LevelListDrawable is with a RemoteViews, such as for an
app widget.
The setImageLevel() method is “remotable”, despite not being directly part of the
RemoteViews API. Hence, given that you use a LevelListDrawable in your app widget’s
layout, you should be able to use setInt() with a method name of "setImageLevel" to
have the app widget update to display the proper image.
ScaleDrawable and ClipDrawable
A ScaleDrawable does pretty much what its name suggests: it scales another
drawable. A ClipDrawable does pretty much what its name suggests: it clips
another drawable.
How they do this, and how you control it, requires a bit more explanation.
Like LevelListDrawable, ScaleDrawable and ClipDrawable leverage the setLevel()
method on Drawable (or the setImageLevel() method on ImageView). Whereas
LevelListDrawable uses this to choose an individual image out of a set of possible
images, ScaleDrawable and ClipDrawable use the level to control how much an
image should be scaled or clipped. For this, they support a range of levels from
0 to 10000.
Scaling
For a level of 0, ScaleDrawable will not draw anything. For a level from 1 to
10000, ScaleDrawable will scale an image from a configurable minimum size
to the bounds of the View to which the drawable is applied.
The amount of scaling is determined by android:scaleHeight and
android:scaleWidth attributes:

<?xml version="1.0" encoding="utf-8"?>
<scale xmlns:android="http://schemas.android.com/apk/res/android"
 android:drawable="@android:drawable/btn_default"
 android:scaleGravity="left|top"
 android:scaleHeight="50%"
 android:scaleWidth="50%"/>

(from Drawable/ScaleClip/app/src/main/res/drawable/scale.xml)
The above ScaleDrawable (denoted by the <scale> root element) says that
we should scale both height and width of the underlying drawable to 50% of the
available space for the drawable, when the level is at its maximum (10000).
Note that you do not have to scale along both dimensions. If, for
example, you kept android:scaleWidth but deleted android:scaleHeight,
setImageLevel() would control the scaled width of the underlying
image (provided via android:drawable) but not the height.
The android:scaleGravity attribute indicates where the scaled image
should reside within the available space (the 10000 level, determined by
the bounds of the View to which the drawable is applied). The value
shown above, center, keeps the image centered within the available
space, and shrinks or expands it around the center. A value of left|top
would keep the image in the upper-left corner of the space, having the
visual effect of moving the lower-right corner based upon the supplied
level.
Clipping
Scaling proportionally reduces the height and/or width of an image.
Clipping, on the other hand, chops off part of the height or width
of the image.

<clip xmlns:android="http://schemas.android.com/apk/res/android"
 android:clipOrientation="horizontal"
 android:drawable="@drawable/btn_default_normal"
 android:gravity="left"/>

(from Drawable/ScaleClip/app/src/main/res/drawable/clip.xml)
In this sample ClipDrawable (indicated by the <clip> root element),
we are going to allow the level to chop off part of the image indicated
by the android:drawable attribute. Our android:clipOrientation, set
to horizontal, means we are going to chop off part of the width
(vertical would have us chop off part of the height). The amount
that is going to be chopped off is the level you supply (e.g., setImageLevel())
divided by 10000. Hence, a level of 5000 will chop off 0.5 (a.k.a., 50%)
of the image.
Where in the image the clipping occurs is determined by the android:gravity
attribute. An android:clipOrientation of horizontal and an android:gravity
of left, as in the sample drawable above, means that the left side of the image
is retained, and the image will be clipped on the right. Specifying right instead
of left would reverse that, clipping the image from the right, while center
would clip equally from both sides. There are other gravity values as well,
such as top and bottom values to be used with a vertical orientation.
Seeing It In Action
To see these effects, take a look at the
Drawable/ScaleClip
sample project. This is derived from an earlier example showing how to use ViewPager
with PagerTabStrip. In that example, we had 10 tabs, each being a large EditText
widget. In this example, we have 2 tabs, “Scale” and “Clip”, both using the same
layout:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:id="@+id/image"
 android:layout_width="150dp"
 android:layout_height="150dp"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="20dp"
 android:scaleType="fitXY"/>

 <SeekBar
 android:id="@+id/level"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_marginBottom="20dp"
 android:layout_marginLeft="20dp"
 android:layout_marginRight="20dp"
 android:max="10000"
 android:progress="10000"/>

</RelativeLayout>

(from Drawable/ScaleClip/app/src/main/res/layout/scaleclip.xml)
This is simply a 150dp square ImageView towards the top of the screen and a
SeekBar towards the bottom of the screen. The SeekBar will be used to control
the level applied to a ScaleDrawable and ClipDrawable, which is why we have
android:max set to 10000. We also have our “progress” (original SeekBar
value) set to 10000, so the bar’s thumb will be fully slid over to the right
at the outset.
The fragments that we will use for the tabs both inherit from a common abstract
FragmentBase class:

package com.commonsware.android.scaleclip;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.SeekBar;

abstract public class FragmentBase extends Fragment implements
 SeekBar.OnSeekBarChangeListener {
 abstract void setImageBackground(ImageView image);

 private ImageView image=null;

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 setRetainInstance(true);

 View result=inflater.inflate(R.layout.scaleclip, container, false);
 SeekBar bar=((SeekBar)result.findViewById(R.id.level));

 bar.setOnSeekBarChangeListener(this);
 image=(ImageView)result.findViewById(R.id.image);
 setImageBackground(image);
 image.setImageLevel(bar.getProgress());

 return(result);
 }

 @Override
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 image.setImageLevel(progress);
 }

 @Override
 public void onStartTrackingTouch(SeekBar seekBar) {
 // no-op
 }

 @Override
 public void onStopTrackingTouch(SeekBar seekBar) {
 // no-op
 }
}

(from Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/FragmentBase.java)
In onCreateView(), we inflate the above layout file, hook up the fragment itself to be
the listener for SeekBar change events, call the subclass’ setImageBackground() method
to populate the ImageView with an image, and set the ImageView’s level to be
the initial value of the SeekBar. When the SeekBar value changes, our onProgressChanged()
method will adjust the level.
The concrete subclasses — ScaleFragment and ClipFragment — simply populate the
ImageView with the ScaleDrawable and ClipDrawable resources shown earlier in
this section:

package com.commonsware.android.scaleclip;

import android.widget.ImageView;

public class ScaleFragment extends FragmentBase {
 @Override
 void setImageBackground(ImageView image) {
 image.setImageResource(R.drawable.scale);
 }
}

(from Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/ScaleFragment.java)

package com.commonsware.android.scaleclip;

import android.widget.ImageView;

public class ClipFragment extends FragmentBase {
 @Override
 void setImageBackground(ImageView image) {
 image.setImageResource(R.drawable.clip);
 }
}

(from Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/ClipFragment.java)
Those two drawables based their scaling and clipping on res/drawable-xdpi/btn_default_normal.9.png. This
is a slightly-modified copy of the default button background, and is a nine-patch PNG file. We
will discuss nine-patch PNG files later in this chapter — suffice it to say
for now that it is a PNG file with rules about how it should be stretched.
Our scale tab starts off showing the full image:

[image: ScaleDrawable, Level of 10000]

Figure 536: ScaleDrawable, Level of 10000
As we start sliding the SeekBar thumb to the left, the image shrinks progressively:

[image: ScaleDrawable, Level of Approximately 5000]

Figure 537: ScaleDrawable, Level of Approximately 5000
It eventually tends towards the 50% level specified in our android:scaleHeight and
android:scaleWidth values:

[image: ScaleDrawable, Level of Approximately 100]

Figure 538: ScaleDrawable, Level of Approximately 100
Sliding it all the way to the left, though, causes the image to vanish.
The ClipDrawable starts off looking much like the ScaleDrawable:

[image: ClipDrawable, Level of 10000]

Figure 539: ClipDrawable, Level of 10000
As we slide the SeekBar to the left, the right side of the image gets clipped:

[image: ClipDrawable, Level of Approximately 5000]

Figure 540: ClipDrawable, Level of Approximately 5000
InsetDrawable
An InsetDrawable allows you to apply insets on any side (or all sides) of some
other drawable resource. The use case cited in
the documentation
is “This is used when a View needs a background that is smaller than the View’s actual bounds”.
However, at the present time, nothing in the Android open source code uses this particular
type of resource, or even the Java class.
In principle, though, you could have an XML drawable resource that looked like this:

<?xml version="1.0" encoding="utf-8"?>
<inset xmlns:android="http://schemas.android.com/apk/res/android"
 android:drawable="@drawable/something_or_another"
 android:insetLeft="20dp"
 android:insetTop="10dp" />

When used as the background for some View, for example, Android would pull in the
something_or_another resource and effectively add 20dp of left margin and 10dp
of top margin on the background when calculating its size and drawing it on the screen.
ShapeDrawable
ShapeDrawable is the original approach to implementing limited vector
art on Android.
It gives you what amounts to a very tiny subset of SVG, for creating simple vector
art shapes.
The root element of a ShapeDrawable resource is <shape>, which may have
child elements, along with attributes, to configure what gets rendered on the screen
when the drawable is applied.
This section will review the elements and attributes available to you, with sample
drawables (and screenshots) culled from
the
Drawable/Shape
sample project.
This is a “sampler” project, designed to depict a number of ShapeDrawables. To accomplish
this, we will use action bar tabs. Our activity
(MainActivity) has a pair of static int arrays, one pointing at string resources to
use for tab captions, the other pointing at corresponding drawable resources:

package com.commonsware.android.shape;

import android.app.ActionBar;
import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;
import android.app.Activity;
import android.app.FragmentTransaction;
import android.os.Bundle;
import android.widget.ImageView;

public class MainActivity extends Activity implements TabListener {
 private static final int TABS[]= { R.string.solid, R.string.gradient,
 R.string.border, R.string.rounded, R.string.ring,
 R.string.layered };
 private static final int DRAWABLES[]= { R.drawable.rectangle,
 R.drawable.gradient, R.drawable.border, R.drawable.rounded,
 R.drawable.ring, R.drawable.layered };
 private ImageView image=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 image=(ImageView)findViewById(R.id.image);

 ActionBar bar=getActionBar();
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

 for (int i=0; i < TABS.length; i++) {
 bar.addTab(bar.newTab().setText(getString(TABS[i]))
 .setTabListener(this));
 }
 }

 @Override
 public void onTabSelected(Tab tab, FragmentTransaction ft) {
 image.setImageResource(DRAWABLES[tab.getPosition()]);
 }

 @Override
 public void onTabUnselected(Tab tab, FragmentTransaction ft) {
 // no-op
 }

 @Override
 public void onTabReselected(Tab tab, FragmentTransaction ft) {
 // no-op
 }
}

(from Drawable/Shape/app/src/main/java/com/commonsware/android/shape/MainActivity.java)
In onCreate(), we toggle the ActionBar into tab-navigation mode, then iterate over the
arrays and add one tab per element.
Our layout is an ImageView, named image, centered on the screen,
taking up 80% of the horizontal space,
plus has 20dp of top and bottom margin:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/LinearLayout1"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
 android:gravity="center"
 android:weightSum="10">

 <ImageView
 android:id="@+id/image"
 android:src="@drawable/rectangle"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="20dp"
 android:layout_gravity="center"
 android:layout_weight="8"/>

</LinearLayout>

(from Drawable/Shape/app/src/main/res/layout/activity_main.xml)
In our activity’s onTabSelected() — implemented because the activity is the TabListener
for our tabs — we get the position of our tab and fill in the appropriate drawable into the
ImageView.
Given that, let’s take a look at how to construct a ShapeDrawable, along with some
sample drawables.
<shape>
Your root element, not surprisingly, is <shape>.
The primary thing that you will define on the <shape> element is the redundantly-named
android:shape attribute, to define what sort of shape you want:

	
line (a shape with no interior)

	
oval (also for ellipses)

	
rectangle (including rounded rectangles)

	
ring (for partially-filled circles)

There are some other attributes available on <shape> for a ring, which we will examine
later in this chapter.
<solid>
Your shape will usually require some sort of fill, to say what color goes in the shape.
There are two types of fills: solid and gradient.
For a solid fill, add a <solid> child element to the <shape>, with an android:color
attribute indicating what color to use. As with most places in Android, this can either
be a literal color or a reference to a color resource.
So, for example, we can specify a solid red rectangle as:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <solid android:color="#FFAA0000"/>
</shape>

(from Drawable/Shape/app/src/main/res/drawable/rectangle.xml)
This gives us the following visual result:

[image: ShapeDrawable, Solid Red Rectangle]

Figure 541: ShapeDrawable, Solid Red Rectangle
<gradient>
Your alternative fill is a gradient. The nice thing about gradients with ShapeDrawable
is that they are generated at runtime from the specifications in the ShapeDrawable,
and therefore will be smooth. Gradients that appear in PNG files and the like, if stretched,
will tend to have a banding effect.
Gradient fills are defined via a <gradient> child element of the <shape> element.
The simplest way to set up a gradient is to use three attributes:

	
android:startColor and android:endColor, to specify the starting and ending colors
of the gradient, respectively, and

	
android:angle, to specify what direction the gradient “flows” in

The angle must be a multiple of 45 degrees. 0 degrees is left-to-right, 90 degrees
is bottom-to-top, 180 degrees is right-to-left, and 270 degrees is top-to-bottom.
So, for example, we could change our rectangle to have a gradient fill, from
red to blue, with red at the top, via:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">

 <gradient
 android:angle="270"
 android:endColor="#FF0000FF"
 android:startColor="#FFFF0000"/>

</shape>

(from Drawable/Shape/app/src/main/res/drawable/gradient.xml)
That gives us:

[image: ShapeDrawable, Gradient Fill Rectangle]

Figure 542: ShapeDrawable, Gradient Fill Rectangle
We will examine some other gradient options in the section on rings,
later in this chapter.
<stroke>
If you want a separate color for a border around your shape, you can use
the <stroke> element, as a child of the <shape> element, to configure one.
There are four attributes that you can declare. The two that you will probably
always use are android:color (to indicate the color of the border) and
android:width (to indicate the thickness of the border). By default, using
just those two will give you a solid line around the edge of your shape.
If you would prefer a dashed border, you can add in android:dashWidth
(to indicate how long each dash segment should be) and android:dashGap
(to indicate how long the gaps between dash segments should be).
So, for example, we can add a dashed border to our gradient rectangle via
a suitable <stroke> element:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">

 <gradient
 android:angle="270"
 android:endColor="#FF0000FF"
 android:startColor="#FFFF0000"/>

 <stroke
 android:width="2dp"
 android:dashGap="4dp"
 android:dashWidth="20dp"
 android:color="#FF000000"/>

</shape>

(from Drawable/Shape/app/src/main/res/drawable/border.xml)
This gives us:

[image: ShapeDrawable, Gradient Fill Rectangle with Dashed Border]

Figure 543: ShapeDrawable, Gradient Fill Rectangle with Dashed Border
<corners>
If we are implementing a rectangle shape, but we really want it to be
a rounded rectangle, we can add a <corners> element as a child of the
<shape> element. You can specify the radius to apply to the corners,
either for all corners (e.g., android:radius), or for individual
corners (e.g., android:topLeftRadius). Here, “radius” basically means
the size of the circle that should implement the corner, where a radius
of 0dp would indicate the default square corner.
So, if we wanted to add rounded corners to our gradient-filled, dash-outlined
rectangle, we could use this:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">

 <gradient
 android:angle="270"
 android:endColor="#FF0000FF"
 android:startColor="#FFFF0000"/>

 <stroke
 android:dashGap="4dp"
 android:dashWidth="20dp"
 android:width="2dp"
 android:color="#FF000000"/>

 <corners android:radius="8dp"/>

</shape>

(from Drawable/Shape/app/src/main/res/drawable/rounded.xml)
This gives us the following:

[image: ShapeDrawable, Gradient Fill Rounded Rectangle with Dashed Border]

Figure 544: ShapeDrawable, Gradient Fill Rounded Rectangle with Dashed Border
<padding> and <size>
There are also <padding> and <size> elements that you can add, that specify
padding to put on the various sizes and the overall size of the drawable. More often
than not, you would actually handle this on the ImageView or other widget that is
using your drawable, but if you would prefer to define those things in the drawable
itself, you are welcome to do so.
Put a Ring On It
Rings are a bit more complicated, in large part because they are not completely
filled. With a ring, the “fill” is filling what goes in the ring itself, not the
“hole” in the center of the ring. This means that we need to teach Android more
about how that “hole” is supposed to be set up.
To do that, we need to provide two pieces of information:

	How big the inner radius should be, where by “inner radius” Android means
“the radius of the hole”

	How thick the ring should be

The ring will then be drawn based upon that inner radius and thickness.
You might wonder, “well, where does the size of the actual drawable come into
play?” After all, if we specify an inner radius of 20dp and a thickness of
10dp, that would give us an outer radius of 30dp, for a total width of
60dp… regardless of how big the actual drawable is.
And that is completely correct.
However, for both the inner radius and the thickness, you have two choices
of how to specify their values:

	As actual sizes (dimensions or references to dimension resources)

	As ratios to the overall drawable width (defined by <size> or the
widget that is using the drawable)

This gives us four total attributes to choose from, to be placed on
the <shape> element for ring drawables:

	android:innerRadius

	android:innerRadiusRatio

	android:thickness

	android:thicknessRatio

Therefore, if you want the ring’s size to be based on the size of the
drawable, you would use innerRadiusRatio, thicknessRatio, or both.
The other thing about rings is that they are round. Hence, a default
linear gradient fill — going from one side of the drawable to another –
may not be what you really want. You can control the type of gradient
fill to use via the android:type attribute on the <gradient> element.
There are three possible values:

	
linear (the default behavior)

	
radial, where the gradient starts from the center (or another
point that you define) and changes color from that center to the edges

	
sweep, where the gradient revolves clockwise in a circle, starting from
whatever android:angle you specify (or 0, meaning “east”, as the
default)

So, for example, take a look at the following ShapeDrawable:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:innerRadiusRatio="3"
 android:shape="ring"
 android:thickness="15dp"
 android:useLevel="false">

 <gradient
 android:centerColor="#4c737373"
 android:endColor="#ff9933CC"
 android:startColor="#4c737373"
 android:type="sweep"/>

</shape>

(from Drawable/Shape/app/src/main/res/drawable/ring.xml)
Here, we:

	Declare that our shape is a ring

	Indicate that the distance between the inner radius and the outer
radius of the ring should be 15dp

	Indicate that there is a 3:1 ratio between the width of the image and
the radius of the “hole” in the ring

	Indicate that the fill should be a gradient that sweeps clockwise
from the default angle of 0

	Indicate that the first half of the gradient (start to center)
should remain a constant color

	Indicate that the second half of the gradient (center to end) should
change color from gray to purple

We also have android:useLevel="false" in the <shape> element.
For unknown reasons, this is required for rings but not for other
types of shapes.
This gives us:

[image: ShapeDrawable, Ring with Gradient Fill]

Figure 545: ShapeDrawable, Ring with Gradient Fill
BitmapDrawable
Having an XML drawable format named BitmapDrawable may seem like a
contradiction in terms. However, BitmapDrawable is not an XML representation
of a bitmap, but rather an XML representation of operations to perform on
an actual bitmap.
The big thing that BitmapDrawable offers is android:tileMode, which
turns a single bitmap into a repeating bitmap. The bitmap is tiled, horizontally
and vertically, using a tiling mode that you specify.
This is demonstrated in the
Drawable/TileMode
sample project.
Our activity’s layout is just a LinearLayout, set to fill the screen:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/widget"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">

</LinearLayout>

(from Drawable/TileMode/app/src/main/res/layout/activity_main.xml)
Our activity populates action bar tabs, where it applies a particular background
image to the LinearLayout (known as R.id.widget) based on the selected
tab:

package com.commonsware.android.tilemode;

import android.app.ActionBar;
import android.app.ActionBar.Tab;
import android.app.ActionBar.TabListener;
import android.app.Activity;
import android.app.FragmentTransaction;
import android.os.Bundle;
import android.view.View;

public class MainActivity extends Activity implements TabListener {
 private static final int TABS[]= { R.string._default, R.string.clamp,
 R.string.repeat, R.string.mirror };
 private static final int DRAWABLES[]= { R.drawable._default,
 R.drawable.clamp, R.drawable.repeat, R.drawable.mirror };
 private View widget=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 widget=findViewById(R.id.widget);

 ActionBar bar=getActionBar();
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

 for (int i=0; i < TABS.length; i++) {
 bar.addTab(bar.newTab().setText(getString(TABS[i]))
 .setTabListener(this));
 }
 }

 @Override
 public void onTabSelected(Tab tab, FragmentTransaction ft) {
 widget.setBackgroundResource(DRAWABLES[tab.getPosition()]);
 }

 @Override
 public void onTabUnselected(Tab tab, FragmentTransaction ft) {
 // no-op
 }

 @Override
 public void onTabReselected(Tab tab, FragmentTransaction ft) {
 // no-op
 }
}

(from Drawable/TileMode/app/src/main/java/com/commonsware/android/tilemode/MainActivity.java)
The res/drawable/_default.xml resource, used on the first tab, is an unadorned
BitmapDrawable resource, where our <bitmap> element simply has an
android:src attribute pointing to a bitmap to be used for this BitmapDrawable:

<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/hatch"/>

(from Drawable/TileMode/app/src/main/res/drawable/_default.xml)
Since we have not specified a tile mode, the image is stretched to fill the
size of our LinearLayout when serving as its background:

[image: BitmapDrawable, Without android:tileMode]

Figure 546: BitmapDrawable, Without android:tileMode
The res/drawable/clamp.xml resource, used on the second tab, adds
android:tileMode="clamp":

<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/hatch"
 android:tileMode="clamp"/>

(from Drawable/TileMode/app/src/main/res/drawable/clamp.xml)
This causes the right-most column of pixels and
the bottom-most row of pixels to be repeated to fill the available space:

[image: BitmapDrawable, Clamped]

Figure 547: BitmapDrawable, Clamped
Zooming in on the upper-left portion of our LinearLayout demonstrates this:

[image: Portion of BitmapDrawable, Clamped]

Figure 548: Portion of BitmapDrawable, Clamped
The res/drawable/repeat.xml resource, used on the third tab, employs
android:tileMode="repeat":

<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/hatch"
 android:tileMode="repeat"/>

(from Drawable/TileMode/app/src/main/res/drawable/repeat.xml)
Here, the image is simply repeated in toto to fill the available space,
rather than only its lower-right edges:

[image: BitmapDrawable, Repeated]

Figure 549: BitmapDrawable, Repeated
Zooming in on an arbitrary chunk
of the LinearLayout shows this effect:

[image: Portion of BitmapDrawable, Repeated]

Figure 550: Portion of BitmapDrawable, Repeated
The res/drawable/mirror.xml resource, used on the fourth tab, uses
android:tileMode="mirror":

<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/hatch"
 android:tileMode="mirror"/>

(from Drawable/TileMode/app/src/main/res/drawable/mirror.xml)
Here, the image is repeated, but alternately mirrored along the repeating
axis. So, it is flipped horizontally for each repeat along the horizontal
axis, and it is flipped vertically for each repeat along the vertical
axis:

[image: BitmapDrawable, Mirrored]

Figure 551: BitmapDrawable, Mirrored
Zooming in on an arbitrary chunk
of the LinearLayout shows this effect:

[image: Portion of BitmapDrawable, Mirrored]

Figure 552: Portion of BitmapDrawable, Mirrored
Composite Drawables
Let’s say that we wanted to have a pair of ShapeDrawable images, one
superimposed on another. Since a single ShapeDrawable defines only one
shape, we would need something else to assist with stacking the images.
One possibility would be to use a LayerDrawable, creating three total
resources:

	The first ShapeDrawable, in its own resource file

	The second ShapeDrawable, in its own resource file

	The LayerDrawable, holding references to the two ShapeDrawable resources

And this will certainly work. But you have an alternative: put all of it
into a single drawable resource.
An android:drawable attribute in an <item> element can be replaced by
child elements representing another drawable structure. Hence, rather
than having a LayerDrawable with two <item> elements pointing to other
drawable resources, we could have those same <item> elements contain
the other drawable XML structures, and thereby cut our number of files from
3 to 1.
For example, we could have something like this:

<?xml version="1.0" encoding="utf-8"?>
<layer-list xmlns:android="http://schemas.android.com/apk/res/android">

 <item>
 <shape android:shape="rectangle">
 <gradient
 android:angle="270"
 android:endColor="#FF0000FF"
 android:startColor="#FFFF0000"/>

 <stroke
 android:dashGap="4dp"
 android:dashWidth="20dp"
 android:width="2dp"
 android:color="#FF000000"/>

 <corners android:radius="8dp"/>
 </shape>
 </item>
 <item>
 <shape
 android:innerRadiusRatio="3"
 android:shape="ring"
 android:thickness="15dp"
 android:useLevel="false">
 <gradient
 android:endColor="#FFFFFFFF"
 android:startColor="#ff000000"
 android:type="sweep"/>
 </shape>
 </item>

</layer-list>

(from Drawable/Shape/app/src/main/res/drawable/layered.xml)
This is a LayerDrawable, layering two ShapeDrawable structures. The
first ShapeDrawable is our dash-bordered, gradient-filled, rounded rectangle
from before. The second ShapeDrawable is a ring with a simple gradient
sweep fill, from black to white.
This gives us:

[image: Composite Drawable]

Figure 553: Composite Drawable
Hence, any of the drawable XML structures other than ShapeDrawable can, in their <item>
elements, hold any drawable XML structure, instead of pointing to another separate
resource.
Android uses this trick as well. For example, the stock ProgressBar image is based
off of a LayerDrawable wrapped around three ShapeDrawable structures:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<layer-list xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@android:id/background">
 <shape>
 <corners android:radius="5dip" />
 <gradient
 android:startColor="#ff9d9e9d"
 android:centerColor="#ff5a5d5a"
 android:centerY="0.75"
 android:endColor="#ff747674"
 android:angle="270"
 />
 </shape>
 </item>

 <item android:id="@android:id/secondaryProgress">
 <clip>
 <shape>
 <corners android:radius="5dip" />
 <gradient
 android:startColor="#80ffd300"
 android:centerColor="#80ffb600"
 android:centerY="0.75"
 android:endColor="#a0ffcb00"
 android:angle="270"
 />
 </shape>
 </clip>
 </item>

 <item android:id="@android:id/progress">
 <clip>
 <shape>
 <corners android:radius="5dip" />
 <gradient
 android:startColor="#ffffd300"
 android:centerColor="#ffffb600"
 android:centerY="0.75"
 android:endColor="#ffffcb00"
 android:angle="270"
 />
 </shape>
 </clip>
 </item>

</layer-list>

We will get into how this works with a ProgressBar in a separate chapter.
A Stitch In Time Saves Nine
Most of the types of non-traditional drawable resources you can create
in Android are described in XML… but not all.
As you read through the Android documentation, you no doubt ran into
references to “nine-patch” or “9-patch” and wondered what Android had
to do with
quilting.
Rest assured, you will not need to take up
needlework to be an effective Android developer.
If, however, you are looking to create backgrounds for resizable
widgets, like a Button, you may wish to work with
nine-patch images.
As the Android documentation states, a nine-patch is “a PNG image in
which you define stretchable sections that Android will resize to fit
the object at display time to accommodate variable sized sections,
such as text strings”. By using a specially-created PNG file, Android
can avoid trying to use vector-based formats (e.g., ShapeDrawable) and their
associated overhead when trying to create a background at runtime.
Yet, at the same time, Android can still resize the background to
handle whatever you want to put inside of it, such as the text of a
Button.
In this section, we will cover some of the basics of nine-patch
graphics, including how to customize and apply them to your own
Android layouts.
Note that nine-patch PNG files, while they provide stretching rules,
are still somewhat dependent upon density. You may wish to have
different versions of your nine-patch PNG files for different densities,
and therefore these images should be put in density-specific resource
directories (e.g., res/drawable-hdpi/).
The Name and the Border
Nine-patch graphics are PNG files whose names end in .9.png. This
means they can be edited using normal graphics tools, but Android
knows to apply nine-patch rules to their use.
What makes a nine-patch graphic different than an ordinary PNG is a
one-pixel-wide border surrounding the image. When drawn, Android will
remove that border, showing only the stretched rendition of what lies
inside the border. The border is used as a control channel, providing
instructions to Android for how to deal with stretching the image to
fit its contents.
Padding and the Box
Along the right and bottom sides, you can draw one-pixel-wide black
lines to indicate the “padding box”. Android will stretch the image
such that the contents of the widget will fit inside that padding box.
For example, suppose we are using a nine-patch as the background of a
Button. When you set the text to appear in the button (e.g.,
“Hello, world!”), Android will compute the size of that text, in
terms of width and height in pixels. Then, it will stretch the
nine-patch image such that the text will reside inside the padding
box. What lies outside the padding box forms the border of the
button, typically a rounded rectangle of some form.

[image: The padding box, as shown by a set of control lines to the right and bottom of the stretchable image]

Figure 554: The padding box, as shown by a set of control lines to the right and bottom of the stretchable image
Stretch Zones
To tell Android where on the image to actually do the stretching,
draw one-pixel-wide black lines on the top and left sides of the
image. Android will scale the graphic only in those areas —
areas outside the stretch zones are not stretched.
Perhaps the most common pattern is the center-stretch, where the
middle portions of the image on both axes are considered stretchable,
but the edges are not:

[image: The stretch zones, as shown by a set of control lines to the left and top of the stretchable image]

Figure 555: The stretch zones, as shown by a set of control lines to the left and top of the stretchable image
Here, the stretch zones will be stretched just enough for the
contents to fit in the padding box. The edges of the graphic are left
unstretched.
Some additional rules to bear in mind:

	If you have multiple discrete stretch zones along an axis (e.g.,
two zones separated by whitespace), Android will stretch both of them
but keep them in their current proportions. So, if the first zone is
twice as wide as the second zone in the original graphic, the first
zone will be twice as wide as the second zone in the stretched
graphic.

	If you leave out the control lines for the padding box, it is
assumed that the padding box and the stretch zones are one and the
same.

Tooling
Android Studio has a nine-patch PNG editor, based on the now-discontinued
draw9patch utility used previously by Android app developers. To work
with this tool:

	If you have a regular PNG that you want to convert into a nine-patch PNG,
right-click over it and choose “Create 9-patch file” from the context menu

	If you already have a nine-patch PNG (with the .9.png extension), or you
created one using “Create 9-patch file”, just double-click on the image to
bring it up in a nine-patch editor

[image: Android Studio, Editing a Nine-Patch PNG]

Figure 556: Android Studio, Editing a Nine-Patch PNG
While a regular graphics editor would allow you to draw any color on
any pixel, the nine-patch editor limits you to drawing or erasing pixels
in the control area:

	Set a pixel (making it black) by clicking on it

	Clear a pixel by shift-clicking on it

If you attempt to draw inside the main image
area itself, you will be blocked.
On the right, you will see samples of the image in various stretched
sizes, so you can see the impact as you change the stretchable zones
and padding box.
While this is convenient for working with the nine-patch nature of
the image, you will still need some other graphics editor to create
or modify the body of the image itself. For example, the image shown
above, from the Drawable/NinePatch project, is a modified version
of a nine-patch graphic from the SDK’s ApiDemos, where the GIMP was
used to add the neon green stripe across the bottom portion of the
image.
Using Nine-Patch Images
Nine-patch images are most commonly used as backgrounds, as
illustrated by the following layout from the
Drawable/NinePatch
sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 >
 <TableRow
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:text="Horizontal:"
 />
 <SeekBar android:id="@+id/horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:text="Vertical:"
 />
 <SeekBar android:id="@+id/vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 </TableLayout>
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <Button android:id="@+id/resize"
 android:layout_width="96px"
 android:layout_height="96px"
 android:text="Hi!"
 android:textSize="10sp"
 android:background="@drawable/button"
 />
 </LinearLayout>
</LinearLayout>

(from Drawable/NinePatch/app/src/main/res/layout/main.xml)
Here, we have two SeekBar widgets, labeled for the horizontal and
vertical axes, plus a Button set up with our nine-patch graphic as
its background (android:background = "@drawable/button").
The NinePatchDemo activity then uses the two SeekBar widgets to
let the user control how large the button should be drawn on-screen,
starting from an initial size of 64px square:

package com.commonsware.android.ninepatch;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.LinearLayout;
import android.widget.SeekBar;

public class NinePatchDemo extends Activity {
 SeekBar horizontal=null;
 SeekBar vertical=null;
 View thingToResize=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 thingToResize=findViewById(R.id.resize);

 horizontal=(SeekBar)findViewById(R.id.horizontal);
 vertical=(SeekBar)findViewById(R.id.vertical);

 horizontal.setMax(144); // 240 less 96 starting size
 vertical.setMax(144); // keep it square @ max

 horizontal.setOnSeekBarChangeListener(h);
 vertical.setOnSeekBarChangeListener(v);
 }

 SeekBar.OnSeekBarChangeListener h=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,
 int progress,
 boolean fromTouch) {
 ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
 ViewGroup.LayoutParams current=new LinearLayout.LayoutParams(64+progress,
 old.height);

 thingToResize.setLayoutParams(current);
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };

 SeekBar.OnSeekBarChangeListener v=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,
 int progress,
 boolean fromTouch) {
 ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
 ViewGroup.LayoutParams current=new LinearLayout.LayoutParams(old.width,
 64+progress);

 thingToResize.setLayoutParams(current);
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };
}

(from Drawable/NinePatch/app/src/main/java/com/commonsware/android/ninepatch/NinePatchDemo.java)
The result is an application that can be used much like the right
pane of draw9patch, to see how the nine-patch graphic looks on
an actual device or emulator in various sizes:

[image: The NinePatch sample project, in its initial state]

Figure 557: The NinePatch sample project, in its initial state

[image: The NinePatch sample project, after making it bigger horizontally]

Figure 558: The NinePatch sample project, after making it bigger horizontally

[image: The NinePatch sample application, after making it bigger in both dimensions]

Figure 559: The NinePatch sample application, after making it bigger in both dimensions
Mapping with Maps V2
One of Google’s most popular services — after search, of course
– is Google Maps, where you can find everything from the nearest
pizza parlor to directions from New York City to San Francisco (only
2,905 miles!) to street views and satellite imagery.
Android has had mapping capability from the beginning, with an API available
to us as developers to bake maps into our apps. However, as we will
see shortly, that original API was getting a bit stale.
In December 2012, Google released a long-awaited update to the mapping capabilities
available to Android app developers. The original mapping solution, now known
as the Maps V1, worked but had serious limitations. The new mapping
solution, known as Maps V2, offers greater power and greater ease of handling
common situations, though it too has its rough edges.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
along with the chapter on drawables. Also, one of the samples involves
location tracking, and another of the samples involves
the use of the animator framework.
One section involves the use of Picasso, covered in
the chapter on Internet access.
This chapter also makes the occasional reference back to Maps V1 for comparisons,
mostly for the benefit of developers already familiar with Maps V1 and looking
to migrate to Maps V2. However, prior experience with Maps V1 is not
necessary to understand this chapter.
A Brief History of Mapping on Android
Back in the dawn of Android, we were given the Maps SDK add-on. This would allow
us to load a firmware-hosted mapping library into our applications, then embed
maps into our activities, by means of a MapView widget.
And it worked.
More importantly, from the standpoint of users, the results from our apps
were visually indistinguishable from the built-in Maps application available on
devices that had the Maps SDK add-on.
This was the case through most of 2009. Eventually, though, the Google Maps team
wanted to update the Maps application… but, for whatever reason, the decision
was made to not update the Maps SDK add-on as well. At this point, the Google
Maps team effectively forked the Maps SDK add-on, causing the Maps application
to diverge from what other Android app developers could deliver. Over time, this
feature gap became quite pronounced.
The release of Android 3.0 in early 2011 compounded the problems. Now, we needed
to consider using fragments to help manage our code and deliver solutions to
all screen sizes. Alas, while we could add maps to our fragments, we could only
do so on API Level 11 or higher — the fragments backport from the Android Support
package did not work with the Maps SDK add-on.
The release of Maps V2 helped all of this significantly. Now we have proper map
support for native and backported versions of the fragment framework. We also
have a look and feel that is closer to what the Maps application itself supports.
While we still cannot reach feature parity with the Maps application, our SDK
apps can at least look like they belong on the same device as the Maps application.
More importantly, as of the time of this writing, Maps V1 is no longer an option for
new developers. Those who already have Maps V1 API keys can use Maps V1, but no
new Maps V1 API keys are being offered. That leaves you with either using Maps V2
or some alternative mapping solution.
Where You Can Use Maps V2
Many devices will be able to use Maps V2… but not all. Notably:

	Devices need to support OpenGL ES 2.0+, to handle the new vector-based tiles
that Maps V2 uses. Over 99% of Android devices
in use today that support the Play Store (or its “Android Market” predecessor)
also support OpenGL ES 2.0+.

	Devices will need an update to the Play Services Framework that accompanies
the Play Store. Devices that do not have the Play Store — either because they
are forever stuck on the old Android Market or, like the Kindle Fire, never had
Play Store support in the first place — will be unable to use Maps V2.

Later in this chapter, we will look at other mapping
libraries that you could use instead of either of Google’s mapping solutions.
Licensing Terms for Maps V2
As with the original Maps SDK add-on, to use Maps V2, you must agree to
a terms of service agreement to be
authorized to embed Google Maps within your application. If you intend to
use Maps V2, you should review these terms closely, as they place many
restrictions on developers. The most notorious of these is that you cannot
use Maps V2 to create an application that offers “real time navigation or
route guidance, including but not limited to turn-by-turn route guidance
that is synchronized to the position of a user’s sensor-enabled device.”
If you find these terms to be an issue for your application, you may need to
consider alternative mapping solutions.
What You Need to Start
If you wish to use Maps V2 in one or more of your Android applications, this
section will outline what you need to get started.
Your Signing Key Fingerprint(s)
As with the legacy Maps SDK add-on, you will need fingerprints of your app
signing keys, to tie your apps to your Google account and the API keys you
will be generating. However, unlike the legacy Maps SDK add-on, the fingerprints
you will be using will be created using the SHA-1 hash algorithm, rather than MD5.
First, you will need to know where the keystore is for your signing key. For
a production keystore that you created yourself for your production apps, you
should know where it is located already. For the debug keystore, used by default
during development, the location is dependent upon operating system:

	macOS and Linux: ~/.android/debug.keystore

	Windows XP: C:\Documents and Settings\$USER\.android\debug.keystore

	Windows Vista and Windows 7: C:\Users\$USER\.android\debug.keystore

(where $USER is your Windows user name)
You will then need to run the keytool command, to dump information related
to this keystore. The keytool command is in your Java SDK, not the Android
SDK. You will need to run this from a command line (e.g., Command Prompt in
Windows). The specific command to run is:

keytool -list -v -keystore ... -alias androiddebugkey -storepass android -keypass android

where the ... is replaced by the path to your debug keystore, enclosed in quotation
marks if the path contains spaces. For your production keystore, you would supply
your own alias and passwords.
This should emit output akin to:

Alias name: androiddebugkey
Creation date: Aug 7, 2011
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate<1>:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 4e3f2684
Valid from: Sun Aug 07 19:57:56 EDT 2011 until: Tue Jul 30 19:57:56 EDT 2041
Certificate fingerprints:
 MD5: 98:84:0E:36:F0:B3:48:9C:CD:13:EB:C6:D8:7F:F3:B1
 SHA1: E6:C5:81:EB:8A:F4:35:B0:04:84:3E:6E:C3:88:BD:B2:66:52:E7:09
 Signature algorithm name: SHA1withRSA
 Version: 3

You will need to make note of the SHA1 entry (see third line from the bottom
of the above sample).
Your Google Account
To sign up for an API key, you need a Google account. Ideally, this account would
be the same one you intend to use for submitting apps to the Play Store (if,
indeed, you intend to do so).
Your API Key
Given that you are logged into the aforementioned Google account, you can visit
the Google Cloud Console to request
access to the Maps V2 API. They have a tendency to keep changing this set of
pages, but these instructions were good as of late February 2014:

	Create a project via the “Create project” option, if you have not done so
already for something else (e.g., GCM)

	Open your project, then select “APIs & auth” from the left navigation bar, and
in there select “APIs”

	Sift through the various APIs until you find “Google Maps Android API v2”, then
toggle that on

	Agree to the Terms of Service that appears when you try to toggle on Maps V2
access

	Click “Credentials” in the left navigation bar

	Click the “CREATE NEW KEY” button

	In the popup dialog, choose “Android key”

	In the fields that appear once you chose “Android key”,
fill in your app’s package name and your SHA1 fingerprint, then click the “Create”
button

This will give you an “API key” that you will need for your application.
If you wish to have
more than one app use Maps V2, you can click “Edit allowed Android applications”
for a key, to return to the dialog where you can paste
in another SHA1 fingerprint and package name, separated by a semicolon.
Or, if you prefer, you can create new keys for each application.
For apps that are in (or going to) production, you will need to supply both the
debug and production SHA1 fingerprints with your package name. By doing this on
the same key, you will use the same API key string for both debug and production
builds, which simplifies things a fair bit over the separate API keys you would
have used with the legacy Maps SDK add-on.
Also note that a single API key seems to only support a few fingerprint/package
pairs. If you try adding a new pair, and the form ignores you, you will need
to set up a separate API key for additional pairs.
The Play Services Library
You also need to set up the Google Play Services library for use with your app.
While this used to be published via a separate “Google Repository” that you had
to download to your development machine, nowadays, it is part of Google’s overall
public Maven repository, the one that google() points to in your build.gradle
files. Most likely, your project is already set up to use this repository.
If so, all you need to do is add
a dependency on com.google.android.gms:play-services-maps for some likely version
(e.g., com.google.android.gms:play-services-maps:15.0.1) to your dependencies
closure.
Note, though, that starting with version 10.x, the minSdkVersion imposed
by the Play Services libraries is 14. If your desired minSdkVersion
is lower than that, you will need to remain on older versions of the Play
Services libraries.
The Book Samples… And You!
If you wish to try to run the book samples outlined in this chapter, you will
need to replace the Maps V2 API key in the manifest with your own.
Setting Up a Basic Map
With that preparation work completed, now you can start working on projects that
use the Maps V2 API. In this section, we will review the
MapsV2/Basic
sample project, which simply brings up a Maps V2 map of the world.
The Dependency
Android Studio
users need an entry in their top-level dependencies closure
to pull in the Play Services SDK artifact:

dependencies {
 implementation 'com.android.support:support-v4:27.1.1'
 implementation 'com.google.android.gms:play-services-maps:15.0.1'
}

(from MapsV2/Basic/app/build.gradle)
The Project Setup and the Manifest
This project uses Maps V2, and so it has a reference to that library project.
Our manifest file is fairly traditional, though there are a number of elements
in it that are required by Maps V2:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.mapsv2.basic"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"
 android:maxSdkVersion="22" />

 <uses-feature
 android:glEsVersion="0x00020000"
 android:required="false" />

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name="MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="AIzaSyC4iyT46cB00IdKGcy5EmAxK5uCOQX2Oy8" />

 <meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

 </application>

</manifest>

(from MapsV2/Basic/app/src/main/AndroidManifest.xml)
Specifically:

	We need the WRITE_EXTERNAL_STORAGE
permissions, but only on Android 5.1 and below, so we can
use android:maxSdkVersion="22" to only request that permission on older devices

	We need a <meta-data> element, with a name of com.google.android.maps.v2.API_KEY,
whose value is the API key we got from the Google APIs Console for use with
this particular package name.

	We can have a second <meta-data> element, with a name of com.google.android.gms.version,
with a value of the @integer/google_play_services_version (an integer resource
supplied by the Play Services SDK library project). Starting with version
8.1.0 of the Maps V2 library, this element is not essential, as it will
be added automatically to our manifest via
the manifest merger process. However, code written
for older versions of Maps V2 than 8.1.0 will need the element, and there
is no particular harm in having it.

We also should include a <uses-feature> element for OpenGL ES 2.0. If your app
absolutely must be able to run Maps V2, have android:required="true" (or
drop the android:required attribute entirely, as true is the default), which
will force devices to have OpenGL ES 2.0 to run your app. If your app will
gracefully degrade for devices incapable of running Maps V2, use
android:required="false", as is shown in the sample.
Beyond those items, everything else in this project is based on what the app
needs, more so than what Maps V2 needs. Note, though, that the Play Services
SDK library project will add additional items to our manifest, notably requests
for a few other permissions, like INTERNET.
Also note that we used to need to define and use a custom permission, based upon our app’s
package name and ending in MAPS_RECEIVE. This is not required as of
Play Services 3.1.59 and the “rev 8” release of the Play Services SDK.
The Play Services Detection
In the fullness of time, all devices that are capable of using Maps V2 will
already have the on-device portion of this logic, known as the “Google Play
services” app.
However, it is entirely possible, in the short term, that you will encounter
devices that are capable of using Maps V2 (e.g., they have OpenGL ES 2.0 or
higher), but do not have the “Google Play services” app from the Play Store,
and therefore you cannot actually use Maps V2 in your app.
This is a departure from the Maps V1 approach, where either the device shipped
with maps capability, or it did not, and nothing (legally) could be done to
change that state.
To determine whether or not the Maps V2 API is available to you, the best option
is to call the isGooglePlayServicesAvailable() static method on the
GooglePlayServicesUtil utility class supplied by the Play Services library.
This will return an int, with a value of ConnectionResult.SUCCESS if
Maps V2 can be used right away.
Actually assisting the user to get Maps V2 set up all the way is conceivable
but is also bug-riddled and annoying. The MapsV2/Basic sample app has an
AbstractMapActivity base class that is designed to hide most of this annoyance
from you. If you wish to know the details of how this works, we will cover
it later in this chapter.
The Fragment and Activity
Our main activity — MainActivity — extends from the aforementioned
AbstractMapActivity and simply overrides onCreate(), as most activities do:

package com.commonsware.android.mapsv2.basic;

import android.os.Bundle;

public class MainActivity extends AbstractMapActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (readyToGo()) {
 setContentView(R.layout.activity_main);
 }
 }
}

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/MainActivity.java)
We call setContentView() to load up the activity_main layout resource:

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/map"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.google.android.gms.maps.SupportMapFragment"/>

(from MapsV2/Basic/app/src/main/res/layout/activity_main.xml)
That resource, in turn, has a <fragment> element pointing to a
com.google.android.gms.maps.SupportMapFragment class supplied by the Play Services
library. This is a fragment that knows how to display a Maps V2 map. There is a corresponding
com.google.android.gms.maps.MapFragment class based on the native Fragment
class.
You will notice, though, that we only call setContentView() if a readyToGo()
method returns true. The readyToGo() method is supplied by the
AbstractMapActivity class and returns true if we are safe to go ahead
and use Maps V2, false otherwise. In the false case, AbstractMapActivity
will be taking care of trying to get Maps V2 going, and we need do nothing
further.
The Result
When you run the app, assuming that Maps V2 is ready for use, you will get
a basic map showing a good-sized chunk of the planet:

[image: Maps V2 Map, as Initially Viewed]

Figure 560: Maps V2 Map, as Initially Viewed
If your Maps V2 API key is incorrect, or you do not have this app’s package name
set up for that key in the Google APIs Console, you will get an “Authorization
failure” error message in Logcat, and you will get a blank map, akin to the
behavior seen in Maps V1 when you had an invalid android:apiKey attribute on
the MapView.
Playing with the Map
Showing a map of a good-sized chunk of the planet is nice, and it is entirely possible
that is precisely what you wanted to show the user. If, on the other hand, you
wanted to show the user something else — another location, a closer look,
etc. — you will need to further configure your map, via a GoogleMap object.
To see how this is done, take a look at the
MapsV2/NooYawk
sample application. This is a clone of MapsV2/Basic that adds in logic to
center and zoom the map over a portion of New York City.
The onCreate() method of the revised MapActivity is now a bit more
involved:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (readyToGo()) {
 setContentView(R.layout.activity_main);

 SupportMapFragment mapFrag=
 (SupportMapFragment)getSupportFragmentManager().findFragmentById(R.id.map);

 if (savedInstanceState == null) {
 mapFrag.getMapAsync(this);
 }
 }
 }

(from MapsV2/NooYawk/app/src/main/java/com/commonsware/android/mapsv2/nooyawk/MainActivity.java)
After calling setContentView(), we can retrieve our SupportMapFragment
via findFragmentById(), no different than any other static fragment.
Then, if savedInstanceState is null — meaning that the activity is
not being recreated, but instead is being created from scratch — we
call getMapAsync() on the SupportMapFragment. This triggers some asynchronous
work to set up a GoogleMap object. getMapAsync() takes an implementation
of OnMapReadyCallback as a parameter. In this case, OnMapReadyCallback
is implemented on the activity itself.
That GoogleMap object will then be delivered to us in onMapReady().
Most of our work in configuring the map will be accomplished by calling methods
on this GoogleMap object:

 @Override
 public void onMapReady(GoogleMap map) {
 CameraUpdate center=
 CameraUpdateFactory.newLatLng(new LatLng(40.76793169992044,
 -73.98180484771729));
 CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

 map.moveCamera(center);
 map.animateCamera(zoom);
 }

(from MapsV2/NooYawk/app/src/main/java/com/commonsware/android/mapsv2/nooyawk/MainActivity.java)
To change where the map is centered, we can create a CameraUpdate object from
the CameraUpdateFactory (“camera” in this case referring to the position of
the user’s virtual eyes with respect to the surface of the Earth). The
newLatLng() factory method on CameraUpdateFactory will give us a CameraUpdate
object that can re-center the map over a supplied latitude and longitude.
Those coordinates are encapsulated in a LatLng object and are maintained as
decimal degrees as Java float or double values (as opposed to the Maps V1
GeoPoint, which used integer microdegrees).
To change the zoom level of the map, we need another CameraUpdate object, this
time from the zoomTo() factory method on CameraUpdateFactory. As with Maps V1,
the zoom levels start at 1 and zoom in by powers of two. As you will see, a
value of 15 gives you a nice block-level view of a city like New York City.
To actually apply these changes to the map, we have two methods on GoogleMap:

	
moveCamera() will perform a “smash cut” and immediately change the map based
upon the supplied CameraUpdate

	
animateCamera() will smoothly animate the map from its original state to the
new state supplied by the CameraUpdate

In our case, we immediately shift to the proper position, but then zoom in
from the default zoom level to 15, giving us a map centered over Columbus Circle,
in the southwest corner of Central Park in Manhattan:

[image: Maps V2 Centered Over Columbus Circle, New York City]

Figure 561: Maps V2 Centered Over Columbus Circle, New York City
Note that you might want to do both actions simultaneously, rather than have one
be animated and one not as in this sample. In that case, you can manually
create a CameraPosition object that describes the desired center, zoom, etc., then
use the newCameraPosition() method on CameraUpdateFactory to get a
CameraUpdate instance that will apply all of those changes.
Map Tiles
The map, by default, shows the normal tile set. setMapType() on the
GoogleMap allows you to switch to satellite, hybrid (satellite view plus place
labels), or terrain tile sets.
Placing Simple Markers
For markers — push-pins and the like — you simply
hand markers to the GoogleMap for display, as is illustrated in the
MapsV2/Markers
sample application. This is a clone of MapsV2/NooYawk, with four markers for
four landmarks within Manhattan.
Our onCreate() method on MainActivity now always invokes getMapAsync(), not
just when the activity is first created. However, we still check savedInstanceState
and set a new needsInit boolean data member to true if savedInstanceState is
null:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (readyToGo()) {
 setContentView(R.layout.activity_main);

 SupportMapFragment mapFrag=
 (SupportMapFragment)getSupportFragmentManager().findFragmentById(R.id.map);

 if (savedInstanceState == null) {
 needsInit=true;
 }

 mapFrag.getMapAsync(this);
 }
 }

(from MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)
Our onMapReady() method performs the camera adjustments if needsInit is true.
It also has four additional statements –
calls to a private addMarker() method to define the four landmarks:

 @Override
 public void onMapReady(GoogleMap map) {
 if (needsInit) {
 CameraUpdate center=
 CameraUpdateFactory.newLatLng(new LatLng(40.76793169992044,
 -73.98180484771729));
 CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

 map.moveCamera(center);
 map.animateCamera(zoom);
 }

 addMarker(map, 40.748963847316034, -73.96807193756104,
 R.string.un, R.string.united_nations);
 addMarker(map, 40.76866299974387, -73.98268461227417,
 R.string.lincoln_center,
 R.string.lincoln_center_snippet);
 addMarker(map, 40.765136435316755, -73.97989511489868,
 R.string.carnegie_hall, R.string.practice_x3);
 addMarker(map, 40.70686417491799, -74.01572942733765,
 R.string.downtown_club, R.string.heisman_trophy);
 }

(from MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)
The addMarker() method on our MainActivity adds markers by creating a
MarkerOptions object and passing it to the addMarker() on GoogleMap.
MarkerOptions offers a so-called “fluent” interface, with a series of methods
to affect one aspect of the MarkerOptions, each of which returns the
MarkerOptions object itself. That way, configuring a MarkerOptions is a
chained series of method calls:

 private void addMarker(GoogleMap map, double lat, double lon,
 int title, int snippet) {
 map.addMarker(new MarkerOptions().position(new LatLng(lat, lon))
 .title(getString(title))
 .snippet(getString(snippet)));
 }

(from MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)
Here, we:

	Set the position() of the marker, in the form of another LatLng object

	Set the title() and snippet() of the marker to be a pair of strings
loaded from string resources

We will see other methods available on MarkerOptions in upcoming sections
of this chapter.
addMarker() on GoogleMap returns an actual Marker object, which we could
hold onto to change certain aspects of it later on (e.g., its title). In the
case of this sample, we ignore this.
Now, you may be wondering why we set up the markers on every onMapReady()
invocation, not just in the needsInit block.
That is because while a SupportMapFragment retains its camera information (center,
zoom, etc.) on a configuration change, it does not retain its markers.
Hence, we need to re-establish the markers in all calls to onCreate(),
not just the very first one.
With no other changes, we get a version of the map that shows markers at our
designated locations:

[image: Maps V2 with Two Markers]

Figure 562: Maps V2 with Two Markers
Initially, we only see two markers, as the other two are outside the current
center position and zoom level of the map. If the user changes the center or
zoom, markers will come and go as needed:

[image: Maps V2 with All Four Markers]

Figure 563: Maps V2 with All Four Markers
We do not need to worry about managing the markers ourselves, so long as
the GoogleMap performance is adequate. It is likely that dumping 10,000
markers into a GoogleMap will still result in sluggish responses, though,
so you may need to add and remove markers yourself based upon what portion
of the world the user happens to be examining in the map at the moment.
Seeing All the Markers
When you add markers to a map, there is no guarantee that the markers will
be visible given the map’s current center position and zoom level. In fact,
it is entirely possible that you add a bunch of markers and none are visible, so
the user may not realize that the markers were added.
There is a way that you can center and zoom the map to show some set of markers,
based on their positions. You get to choose the markers: all of them, the four
nearest markers, etc.
We can see how this works in the
MapsV2/Bounds
sample application. This is a clone of MapsV2/Markers from the previous section,
with reworked code to show all four markers when the map is first displayed.
The key to making this work is a LatLngBounds object. This represents a bounding
box that contains all LatLng locations handed to the LatLngBounds. To build up
a LatLngBounds, you can use the LatLngBounds.Builder class. So, our revised
MainActivity has a LatLngBounds.Builder private data member:

 private LatLngBounds.Builder builder=new LatLngBounds.Builder();

(from MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)
Our revised addMarker() method adds the LatLng values from our markers as they are
added to the map:

 private void addMarker(GoogleMap map, double lat, double lon,
 int title, int snippet) {
 Marker marker=
 map.addMarker(new MarkerOptions().position(new LatLng(lat, lon))
 .title(getString(title))
 .snippet(getString(snippet)));

 builder.include(marker.getPosition());
 }

(from MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)
Finally, the revised onMapReady() moves the CameraUpdateFactory work until after all
four of the addMarker() calls and changes it a bit:

 @Override
 public void onMapReady(final GoogleMap map) {
 addMarker(map, 40.748963847316034, -73.96807193756104,
 R.string.un, R.string.united_nations);
 addMarker(map, 40.76866299974387, -73.98268461227417,
 R.string.lincoln_center,
 R.string.lincoln_center_snippet);
 addMarker(map, 40.765136435316755, -73.97989511489868,
 R.string.carnegie_hall, R.string.practice_x3);
 addMarker(map, 40.70686417491799, -74.01572942733765,
 R.string.downtown_club, R.string.heisman_trophy);

 if (needsInit) {
 findViewById(android.R.id.content).post(new Runnable() {
 @Override
 public void run() {
 CameraUpdate allTheThings=
 CameraUpdateFactory.newLatLngBounds(builder.build(), 32);

 map.moveCamera(allTheThings);
 }
 });
 }
 }

(from MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)
Specifically, we:

	Ask the LatLngBounds.Builder to build() the LatLngBounds

	Pass that to the newLatLngBounds() method on CameraUpdateFactory, along with an inset
value in pixels (all LatLng locations will be that many pixels in from the edges, or more)

	Use moveCamera() to center and zoom the map based upon the resulting CameraUpdate

All of this is done in a Runnable which we post() to a View (here, the FrameLayout
of our activity supplied by Android as android.R.id.content). GoogleMap cannot ensure
that all of our markers are visible until it knows how big the map is, and that is not known
until the map is rendered to the screen. post() will add our work to the end of the
main application thread’s work queue. The Runnable will not be run until after the
map is on the screen, at which time the CameraUpdate can work.
Flattening and Rotating Markers
Markers, by default, appear to be “push pins” pressed into the surface of
the map. This is not necessarily obvious with the default top-down perspective
of the map camera. But, if you use a two-finger vertical swiping gesture, you
can change the camera tilt, and that will illustrate the “push pin” effect
a bit better:

[image: Maps V2 with Markers, Viewed on a Tilt]

Figure 564: Maps V2 with Markers, Viewed on a Tilt
However, you have options for flat markers and rotated markers.
A flat marker is one that is flat on the map. In other words, rather than
theoretically rising out of the Z axis of the map, the marker is kept on
the X-Y plane:

[image: Maps V2 with Markers, One Normal, One Flat]

Figure 565: Maps V2 with Markers, One Normal, One Flat
It is also possible to rotate a marker. The flat marker in the previous screenshot
is rotated 90 degrees from its normal “bulb on the north side” orientation.
The following screenshot shows another flat marker, rotated 270 degrees from normal:

[image: Maps V2 with Markers, Flat and Rotated]

Figure 566: Maps V2 with Markers, Flat and Rotated
These features can be handy for providing pointers in a particular direction,
such as indicating not only the location to make a turn, but what direction to
turn at that location.
These capabilities are courtesy of flat() and rotation() methods
on MarkerOptions, plus corresponding getters and setters on Marker
itself. To see how this works, let’s examine the
MapsV2/FlatMarkers
sample application. This is a clone of MapsV2/Markers, with markers applied using
different values for flat() and rotation().
Specifically, our own addMarker() helper method now takes and applies a boolean
parameter for flat (true means it is flat, false means normal behavior), as well
as a float parameter for rotation (a value between 0 and 360 for the rotation
off the default in degrees):

 private void addMarker(GoogleMap map, double lat, double lon,
 int title, int snippet, boolean flat,
 float rotation) {
 map.addMarker(new MarkerOptions().position(new LatLng(lat, lon))
 .title(getString(title))
 .snippet(getString(snippet))
 .flat(flat).rotation(rotation));
 }

(from MapsV2/FlatMarkers/app/src/main/java/com/commonsware/android/mapsv2/flatmarkers/MainActivity.java)
When we call addMarker(), we supply corresponding values:

 addMarker(map, 40.748963847316034, -73.96807193756104,
 R.string.un, R.string.united_nations, false, 180);
 addMarker(map, 40.76866299974387, -73.98268461227417,
 R.string.lincoln_center,
 R.string.lincoln_center_snippet, false, 0);
 addMarker(map, 40.765136435316755, -73.97989511489868,
 R.string.carnegie_hall, R.string.practice_x3, true, 90);
 addMarker(map, 40.70686417491799, -74.01572942733765,
 R.string.downtown_club, R.string.heisman_trophy, true,
 270);

(from MapsV2/FlatMarkers/app/src/main/java/com/commonsware/android/mapsv2/flatmarkers/MainActivity.java)
Sprucing Up Your “Info Windows”
If the user taps on one of the markers from the preceding sample, Android
will automatically display a popup, known as an “info window”:

[image: Maps V2 with Default Info Window]

Figure 567: Maps V2 with Default Info Window
You can tailor that “info window” if desired, either replacing just the interior
portion (leaving the bounding border with its caret intact) or replacing the
entire window. However, in the interests of memory conservation, you do not
hand new View widgets to the MarkerOptions object. Instead, you can provide
an adapter that will be called when info windows (or their contents) are required.
To see how this works, we can examine the
MapsV2/Popups
sample application. This is a clone of MapsV2/Markers, where we are using our
own layout file for the contents of the info windows, from the popup.xml
layout resource:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:padding="2dip"
 android:src="@drawable/ic_launcher"
 android:contentDescription="@string/icon"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="25sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/snippet"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"/>
 </LinearLayout>

</LinearLayout>

(from MapsV2/Popups/app/src/main/res/layout/popup.xml)
Here, we will show the title and snippet in our own chosen font size and weight,
plus show the launcher icon on the left.
To use this layout, we must create an InfoWindowAdapter implementation — in the
case of this sample project, that is found in the PopupAdapter class:

package com.commonsware.android.mapsv2.popups;

import android.annotation.SuppressLint;
import android.view.LayoutInflater;
import android.view.View;
import android.widget.TextView;
import com.google.android.gms.maps.GoogleMap.InfoWindowAdapter;
import com.google.android.gms.maps.model.Marker;

class PopupAdapter implements InfoWindowAdapter {
 private View popup=null;
 private LayoutInflater inflater=null;

 PopupAdapter(LayoutInflater inflater) {
 this.inflater=inflater;
 }

 @Override
 public View getInfoWindow(Marker marker) {
 return(null);
 }

 @SuppressLint("InflateParams")
 @Override
 public View getInfoContents(Marker marker) {
 if (popup == null) {
 popup=inflater.inflate(R.layout.popup, null);
 }

 TextView tv=(TextView)popup.findViewById(R.id.title);

 tv.setText(marker.getTitle());
 tv=(TextView)popup.findViewById(R.id.snippet);
 tv.setText(marker.getSnippet());

 return(popup);
 }
}

(from MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/PopupAdapter.java)
When an info window is to be displayed, Android will first call getInfoWindow()
on our InfoWindowAdapter, passing in the Marker whose info window is needed.
If we return a View here, that will be used for the entire info window. If,
instead, we return null, Android will call getInfoContents(), passing in the
same Marker object. If we return a View here, Android will use that as the
“body” of the info window, with Android supplying the border. If we return
null, the default info window is displayed. This way, we can conditionally
do any of the three possibilities (replace the window, replace the contents,
or accept the default).
In our case, getInfoContents() will inflate the popup.xml layout and
populate the two TextView widgets with the title and snippet from the Marker.
However, we cache the inflated layout and reuse it on the second and subsequent
calls to getInfoContents(). Despite
the “adapter” name conjuring up visions of ListAdapter and having multiple
outstanding views, InfoWindowAdapter will only ever use one View at a time.
Hence, rather than inflate our layout each time we need to show the info
window, we can safely reuse the previously-used View.
Then, we just need to tell the GoogleMap to use our InfoWindowAdapter,
via a call to setInfoWindowAdapter(), such as this statement from onMapReady()
of our new edition of MainActivity:

 map.setInfoWindowAdapter(new PopupAdapter(getLayoutInflater()));

(from MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java)
Now, when the user taps on a marker, they will get our customized info window:

[image: Maps V2 with Customized Info Window]

Figure 568: Maps V2 with Customized Info Window
We can also call setOnInfoWindowClickListener() on our GoogleMap, passing in
an implementation of the OnInfoWindowClickListener interface, to find out when
the user taps on the info window. In the case of MainActivity, we set up the
activity itself to implement that interface and be the listener:

 map.setOnInfoWindowClickListener(this);

(from MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java)
This requires us to implement an onInfoWindowClick() method, where we are
passed the Marker representing the tapped-upon info window:

 @Override
 public void onInfoWindowClick(Marker marker) {
 Toast.makeText(this, marker.getTitle(), Toast.LENGTH_LONG).show();
 }

(from MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java)
Here, we just display a Toast with the title of the Marker when the user
taps an info window:

[image: Maps V2 with Toast Triggered by Tap on Info Window]

Figure 569: Maps V2 with Toast Triggered by Tap on Info Window
Note that, according to the documentation, you can only find out about taps on
the entire info window. Indeed, if you try setting up click listeners on the
widgets in your custom layout, you will find that they are not called. This is
because the View you return for the info window is converted into a Bitmap,
which is then displayed. Presumably,
this is to steer developers in the direction of making larger tap targets,
rather than expecting users to tap tiny elements within an info window. On the
other hand, if your design calls for a large info window containing several
navigation options, you will need to either re-think your design or avoid
the info window system. We will see how to find out about taps on markers
more directly later in this chapter.
Images and Your Info Window
The Bitmap approach that Maps V2 uses for the info window introduces an additional
challenge: updating the info window itself. Normally, we would just update the
individual widgets in the info window, the way we might update widgets in an already-visible
row in a ListView. However, that is not an option here, as our widgets are discarded
almost immediately.
One particular occurrence of this problem comes when you want to show an image
in the info window. If the image is a resource, or is already in memory, showing
it is not a big problem, as you can just populate your ImageView in your info window
with it. However, if the image is a file (or, worse, needs to be downloaded), you want
to load the image asynchronously. However, if you kick off some background thread, like
an AsyncTask, to retrieve the image, you will return from your InfoWindowAdapter
method long before the task is complete. Your info window will show whatever placeholder
image you used; the image you loaded will never be seen, even if you update your
original ImageView.
There are two solutions to this problem.
The best solution, by far, is to have the images before you need them, wherever
possible. For example, if you are showing a map with 25 markers, for which you need
25 thumbnail images, start downloading those images while you are showing the map.
With luck, at the point in time when the user taps on a marker to show the info window,
you will have your image already.
However, this approach will not work well if:

	You need a ridiculous number of images, or

	You need images, but they need to be downloaded full-sized and turned into thumbnails
locally, as that might consume quite a bit of bandwidth, or

	Your last name is Murphy, and therefore the user taps on an info window before you have
had a chance to prepare its image

The workaround is to make note of the Marker the user tapped upon to open its info
window, then call showInfoWindow() on that Marker to cause the info window to be
redisplayed once you have your image, triggering calls to your InfoWindowAdapter.
There, you can see that your image cache includes the image that you need, and you can
apply it to the info window.
The problem here is that it is possible that the user tapped on another marker, after
the first one, while you were busily fetching and loading the image. Hence, rather
than blindly calling showInfoWindow() on the Marker, you should call isInfoWindowShown()
first, and only call showInfoWindow() to force the refresh if isInfoWindowShown()
returns true. Otherwise, some other marker’s info window is shown. The user is
not expecting this earlier info window to somehow magically reappear.
All of this is a pain. It can be made a bit less of a pain by use of an image
fetching-and-caching library like Picasso. We can see how this
can be applied by looking at the
MapsV2/ImagePopups
sample application. This is a clone of MapsV2/Popups, with some additions to handle
lazy-populating an info window based upon a downloaded image.
First, since we are going to be generating some thumbnails based on downloaded imagery, it
helps to establish a fixed-size ImageView for our icon. So, this project has a pair of
dimension resources, for the image height and width:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="icon_width">96dp</dimen>
 <dimen name="icon_height">64dp</dimen>

</resources>

(from MapsV2/ImagePopups/app/src/main/res/values/dimens.xml)
Those are then used in a revised version of the popup layout resource:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon_width"
 android:layout_height="@dimen/icon_height"
 android:padding="2dip"
 android:src="@drawable/ic_launcher"
 android:contentDescription="@string/icon"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:orientation="vertical">

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="25sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/snippet"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"/>
 </LinearLayout>

</LinearLayout>

(from MapsV2/ImagePopups/app/src/main/res/layout/popup.xml)
We need some way of keeping track of what images should be used for each marker. This is
somewhat annoying to implement, as we cannot subclass Marker, since it is marked as final
and cannot be extended. However, we can use getId() on a Marker to obtain a unique ID,
and we can use that as the key to additional model data. We will examine variations on this
technique later in this chapter. For now, this sample gets away with
a simple HashMap, mapping the string ID of a Marker to a Uri representing an image
to be shown for that Marker’s info window:

 private HashMap<String, Uri> images=new HashMap<String, Uri>();

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java)
Our private addMarker() method now takes a String name of an image, and it
adds a Uri pointing to that image to the HashMap, keyed by the ID of the generated
Marker:

 private void addMarker(GoogleMap map, double lat, double lon,
 int title, int snippet, String image) {
 Marker marker=
 map.addMarker(new MarkerOptions().position(new LatLng(lat, lon))
 .title(getString(title))
 .snippet(getString(snippet)));

 if (image != null) {
 images.put(marker.getId(),
 Uri.parse("http://misc.commonsware.com/mapsv2/"
 + image));
 }
 }

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java)
For three of our markers, we pass in actual filenames; for a fourth, null is used,
indicating that there is no suitable image for use:

 addMarker(map, 40.748963847316034, -73.96807193756104,
 R.string.un, R.string.united_nations, "UN_HQ.jpg");
 addMarker(map, 40.76866299974387, -73.98268461227417,
 R.string.lincoln_center,
 R.string.lincoln_center_snippet,
 "Avery_Fisher_Hall.jpg");
 addMarker(map, 40.765136435316755, -73.97989511489868,
 R.string.carnegie_hall, R.string.practice_x3,
 "Carnegie_Hall.jpg");
 addMarker(map, 40.70686417491799, -74.01572942733765,
 R.string.downtown_club, R.string.heisman_trophy, null);

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java)
Note that the three images being used in this chapter come from Wikipedia. One is public
domain, the others are licensed under the Creative Commons Attribution 1.0 license. Those
two are a picture of Avery Fisher Hall,
part of the Lincoln Center for the Performing Arts (courtesy of Geographer)
and the other is a picture of the United Nations building
(courtesy of WorldIslandInfo).
The PopupAdapter needs access to these images. It will also need access to a Context,
for use with Picasso. So, PopupAdapter now has data members for these, which are passed
into a revised version of its constructor by MainActivity. That constructor not only
holds onto the new objects, but it retrieves the values of the dimension resources for our
images, converted by Android into pixels for the screen density of the device that we
are running on:

 PopupAdapter(Context ctxt, LayoutInflater inflater,
 HashMap<String, Uri> images) {
 this.ctxt=ctxt;
 this.inflater=inflater;
 this.images=images;

 iconWidth=
 ctxt.getResources().getDimensionPixelSize(R.dimen.icon_width);
 iconHeight=
 ctxt.getResources().getDimensionPixelSize(R.dimen.icon_height);
 }

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java)
The revised getInfoContents() method is significantly more complicated than was its
predecessor:

 @SuppressLint("InflateParams")
 @Override
 public View getInfoContents(Marker marker) {
 if (popup == null) {
 popup=inflater.inflate(R.layout.popup, null);
 }

 if (lastMarker == null
 || !lastMarker.getId().equals(marker.getId())) {
 lastMarker=marker;

 TextView tv=(TextView)popup.findViewById(R.id.title);

 tv.setText(marker.getTitle());
 tv=(TextView)popup.findViewById(R.id.snippet);
 tv.setText(marker.getSnippet());

 Uri image=images.get(marker.getId());
 ImageView icon=(ImageView)popup.findViewById(R.id.icon);

 if (image == null) {
 icon.setVisibility(View.GONE);
 }
 else {
 icon.setVisibility(View.VISIBLE);
 Picasso.with(ctxt).load(image).resize(iconWidth, iconHeight)
 .centerCrop().noFade()
 .placeholder(R.drawable.placeholder)
 .into(icon, new MarkerCallback(marker));
 }
 }

 return(popup);
 }

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java)
We track the last Marker that we have processed in a lastMarker data member. Initially,
of course, that will be null. If it is, or if the Marker passed into getInfoContents()
is a different one (based on the getId() value), then we populate the popup View. This
includes fetching the Uri
from the HashMap of Uri values (given the Marker ID). If there is no Uri, getInfoContents() marks
the ImageView as GONE, so it will not take up space in the popup. If, however, there is an image Uri, getInfoContents() asks Picasso to “do its thing”:

	Load the image from the Uri

	Resize the image to be the desired dimensions for the ImageView, center-cropping to
keep the right aspect ratio

	Skip the fade-in animation that is normally applied when Picasso populates an
ImageView (as the Maps V2 Bitmap is generated before the animation completes, resulting
in a washed-out image)

	Use a particular placeholder drawable resource while the image is loading

	Populate the ImageView with the results, specifying a MarkerCallback to be notified
of the results

MarkerCallback, as an implementation of Picasso’s Callback interface, needs onError()
and onSuccess() methods. onError() just dumps a message to Logcat, while onSuccess()
refreshes the info window, via a call to showInfoWindow() on the Marker, if that
info window is still showing:

 static class MarkerCallback implements Callback {
 Marker marker=null;

 MarkerCallback(Marker marker) {
 this.marker=marker;
 }

 @Override
 public void onError() {
 Log.e(getClass().getSimpleName(), "Error loading thumbnail!");
 }

 @Override
 public void onSuccess() {
 if (marker != null && marker.isInfoWindowShown()) {
 marker.showInfoWindow();
 }
 }
 }

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java)
If you run this sample app, you will see the popup with a placeholder image at first, quickly
being replaced by the thumbnail supplied by Picasso:

[image: Maps V2 with Popup and Thumbnail]

Figure 570: Maps V2 with Popup and Thumbnail
Setting the Marker Icon
Maps V2 includes a stock marker icon that looks a lot like the
standard Google Maps marker. You have three major choices for what to use for
your own markers:

	Stick with the stock icon, which is the default behavior

	Change the stock icon to a different hue

	Replace the stock icon with your own from an asset, resource, file, or
in-memory Bitmap

To indicate that you want a different icon than the stock one, use the icon()
method on the MarkerOptions fluent interface. This takes a BitmapDescriptor,
which you get from one of a series of static methods on the
BitmapDescriptorFactory class.
For example, you might have a revised version of the addMarker() method
of MainActivity that took a hue — a value from 0 to 360 representing
different colors along a color wheel. 0 represents red, 120 represents green,
and 240 represents blue, with different shades in between. There is a series
of HUE_ constants defined on BitmapDescriptorFactory, plus a defaultMarker()
method that takes a hue as a parameter and returns a BitmapDescriptor that
will use the stock icon, colored to the specified hue:

 private void addMarker(GoogleMap map, double lat, double lon,
 int title, int snippet, int hue) {
 map.addMarker(new MarkerOptions().position(new LatLng(lat, lon))
 .title(getString(title))
 .snippet(getString(snippet))
 .icon(BitmapDescriptorFactory.defaultMarker(hue)));
 }

(from MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java)
This could then be used to give you different colors per marker, or by category
of marker, etc.:

[image: Maps V2 with Alternate Marker Hues]

Figure 571: Maps V2 with Alternate Marker Hues
Note that you can modify the icon at runtime via the setIcon() method on
the Marker returned by addMarker() method on GoogleMap.
However, you cannot draw the marker directly yourself, the way you might have with
Maps V1. What you can do is draw to a Bitmap-backed Canvas object, then
use the resulting Bitmap with BitmapFactoryDescriptor and its fromBitmap()
factory method.
Responding to Taps
Perhaps we would like to find out when a user taps on one of our markers, instead
of displaying an info window. Maybe we want to have some other UI response to that
tap in our app.
To do that, simply create an implementation of the OnMarkerClickListener
interface and attach it to the GoogleMap via setOnMarkerClickListener().
You will then be called with onMarkerClick() when the user taps on a marker,
and you are passed the Marker object in question. If you return true, you
are indicating that you are handling the event; returning false means that
default handling (the info window) should be done.
You can see this, plus the multi-colored markers, in the
MapsV2/Taps
sample application. This takes MapsV2/Popups and adds a Toast when the
user taps a marker, in addition to displaying the info window:

 @Override
 public boolean onMarkerClick(Marker marker) {
 Toast.makeText(this, marker.getTitle(), Toast.LENGTH_LONG).show();

 return(false);
 }

(from MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java)

[image: Maps V2 with Toast and Info Window]

Figure 572: Maps V2 with Toast and Info Window
Our call to setOnMarkerClickListener() is up in the onMapReady() method of
MainActivity:

 map.setOnMarkerClickListener(this);

(from MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java)
Dragging Markers
By default, markers are not draggable. But, if you call draggable(true) on
your MarkerOptions when creating the marker — or call setDraggable(true)
on the Marker later on — Android will automatically support drag-and-drop.
The user can tap-and-hold on the marker to enable drag mode, then slide
the marker around the map.
Note that at the present time, this functionality is a little odd. When
you tap-and-hold the marker, with drag mode enabled, the marker initially
jumps away from its original position. The user can reposition the marker
to any desired location, and the marker will seem to “drop” where the
user requests. Why the marker makes the sudden shift at the outset, using
the default marker settings, is unclear.
Of course, your code may need to know about drag-and-drop events, such as to
update your own data model to reflect the newly-chosen location. You can register
an OnMarkerDragListener that will be notified of the start of the drag,
where the marker slides during the drag, and where the marker is dropped at the
end of the drag.
You can see all of this in the
MapsV2/Drag
sample application, which is a clone of MapsV2/Popup with drag-and-drop
enabled.
To enable drag-and-drop, we just chain draggable(true) onto the series of
calls on our MarkerOptions when creating the markers:

 private void addMarker(GoogleMap map, double lat, double lon,
 int title, int snippet) {
 map.addMarker(new MarkerOptions().position(new LatLng(lat, lon))
 .title(getString(title))
 .snippet(getString(snippet))
 .draggable(true));
 }

(from MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java)
We also register MainActivity as being the drag listener, up in onMapReady():

 map.setOnMarkerDragListener(this);

(from MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java)
That requires MainActivity to implement OnMarkerDragListener, which in turn
requires three methods to be defined: onMarkerDragStart(), onMarkerDrag(),
and onMarkerDragEnd():

 @Override
 public void onMarkerDragStart(Marker marker) {
 LatLng position=marker.getPosition();

 Log.d(getClass().getSimpleName(), String.format("Drag from %f:%f",
 position.latitude,
 position.longitude));
 }

 @Override
 public void onMarkerDrag(Marker marker) {
 LatLng position=marker.getPosition();

 Log.d(getClass().getSimpleName(),
 String.format("Dragging to %f:%f", position.latitude,
 position.longitude));
 }

 @Override
 public void onMarkerDragEnd(Marker marker) {
 LatLng position=marker.getPosition();

 Log.d(getClass().getSimpleName(), String.format("Dragged to %f:%f",
 position.latitude,
 position.longitude));
 }

(from MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java)
Here, we just dump the information about the new marker position in
Logcat.
So, if you run this app and drag-and-drop a marker, you will see output in
Logcat akin to:

12-19 13:10:36.442: D/MainActivity(22510): Drag from 40.770876:-73.982499
12-19 13:10:36.892: D/MainActivity(22510): Dragging to 40.770876:-73.981593
12-19 13:10:36.912: D/MainActivity(22510): Dragging to 40.770795:-73.981352
12-19 13:10:36.932: D/MainActivity(22510): Dragging to 40.770754:-73.981141
.
.
.
12-19 13:10:38.292: D/MainActivity(22510): Dragging to 40.769596:-73.983615
12-19 13:10:38.372: D/MainActivity(22510): Dragged to 40.769596:-73.983615

The actual list of events was much longer, as onMarkerDrag() is called a lot,
so the ... in the Logcat entries above reflect another 50 or so lines for a
drag-and-drop that took a couple of seconds.
Also, up in onCreate(), we retain our SupportMapFragment across configuration
changes via setRetainInstance(true):

 mapFrag.setRetainInstance(true);

(from MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java)
Retaining the fragment instance causes the fragment to keep our
markers in their moved positions, rather than resetting them to their original
positions.
The “Final” Limitations
In Maps V2, not only do you not create Marker objects directly yourself, but
Marker is marked as final and cannot be extended. Hence, you cannot
use a Marker directly to hold model data.
However, Marker does have getId(), an immutable identifier for the
Marker. We can use that as a key for a HashMap that allows us to get at
additional model data associated with the Marker.
You can see this approach in the
MapsV2/Models
sample application, which is a clone of MapsV2/Popup where we use the ID
in just this fashion.
Our simplified model is merely the data we poured into our Marker objects
in the original MapsV2/Popup project:

package com.commonsware.android.mapsv2.model;

import android.content.Context;

public class Model {
 String title;
 String snippet;
 double lat;
 double lon;

 Model(Context ctxt, double lat, double lon, int title,
 int snippet) {
 this.title=ctxt.getString(title);
 this.snippet=ctxt.getString(snippet);
 this.lat=lat;
 this.lon=lon;
 }

 String getTitle() {
 return(title);
 }

 String getSnippet() {
 return(snippet);
 }

 double getLatitude() {
 return(lat);
 }

 double getLongitude() {
 return(lon);
 }
}

(from MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/Model.java)
Our activity holds onto a HashMap of these Model objects, with the
map keyed by the Marker ID (a String):

 private HashMap<String, Model> models=new HashMap<String, Model>();

(from MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/MainActivity.java)
Of course, a real application would have a much more elaborate setup than this.
We then arrange to populate our map with Marker objects created from our
Model objects, moving the add-the-markers-to-the-map logic to an addMarkers() method:

 private void addMarkers(GoogleMap map) {
 Model model=
 new Model(this, 40.748963847316034, -73.96807193756104,
 R.string.un, R.string.united_nations);

 models.put(addMarkerForModel(map, model).getId(), model);

 model=
 new Model(this, 40.76866299974387, -73.98268461227417,
 R.string.lincoln_center,
 R.string.lincoln_center_snippet);
 models.put(addMarkerForModel(map, model).getId(), model);

 model=
 new Model(this, 40.765136435316755, -73.97989511489868,
 R.string.carnegie_hall, R.string.practice_x3);
 models.put(addMarkerForModel(map, model).getId(), model);

 model=
 new Model(this, 40.70686417491799, -74.01572942733765,
 R.string.downtown_club, R.string.heisman_trophy);
 models.put(addMarkerForModel(map, model).getId(), model);
 }

 private Marker addMarkerForModel(GoogleMap map, Model model) {
 LatLng position=
 new LatLng(model.getLatitude(), model.getLongitude());

 return(map.addMarker(new MarkerOptions().position(position)
 .title(model.getTitle())
 .snippet(model.getSnippet())));

 }

(from MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/MainActivity.java)
Notice that addMarkerForModel() returns the Marker, and we use getId() on that
Marker as the key when adding a Model to the HashMap.
Our PopupAdapter gets the data for the info window
from the Model (though, in truth, in this case, it could have gotten
the data from the Marker itself, since we did not add more information
to the info window):

package com.commonsware.android.mapsv2.model;

import android.view.LayoutInflater;
import android.view.View;
import android.widget.TextView;
import java.util.HashMap;
import com.google.android.gms.maps.GoogleMap.InfoWindowAdapter;
import com.google.android.gms.maps.model.Marker;

class PopupAdapter implements InfoWindowAdapter {
 LayoutInflater inflater=null;
 HashMap<String, Model> models=null;

 PopupAdapter(LayoutInflater inflater, HashMap<String, Model> models) {
 this.inflater=inflater;
 this.models=models;
 }

 @Override
 public View getInfoWindow(Marker marker) {
 return(null);
 }

 @Override
 public View getInfoContents(Marker marker) {
 View popup=inflater.inflate(R.layout.popup, null);

 TextView tv=(TextView)popup.findViewById(R.id.title);

 tv.setText(models.get(marker.getId()).getTitle());
 tv=(TextView)popup.findViewById(R.id.snippet);
 tv.setText(models.get(marker.getId()).getSnippet());

 return(popup);
 }
}

(from MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/PopupAdapter.java)
Visually, this is indistinguishable from the original MapsV2/Popups project.
Of course, a real app would have more complex models, perhaps containing more
discrete information for a more complex info window.
A Bit More About IPC
IPC is not only a problem in terms of disappearing Marker objects.
If you run a Maps V2 app under Traceview, to see what methods
get called and how much time everything takes, you will see that many, many
operations with GoogleMap do little in your process, but instead make
synchronous calls to a Play Services process to do the real work. You
need to avoid manipulating your GoogleMap in time-sensitive
portions of your code.
Finding the User
It is often useful to help point out to the user their current
location. That is a matter of adding a suitable location permission (e.g.,
ACCESS_FINE_LOCATION) and calling setMyLocationEnabled(true) on your
GoogleMap. This activates a layer that will highlight their location, with
the user having an option of having the “camera” (i.e., their perspective
on the map) reposition itself to their location and move as they move.
This latter capability is activated by a small icon in the upper right of
the map.
There does not appear to be a way to force camera tracking of
the user’s position — you are reliant upon the user tapping that icon.
You also have no control over the nature of the location provider that
is used.
However, there is a workaround for this, proposed in
a Stack Overflow answer –
provide your own location data and update the camera yourself, by means
of setLocationSource(). setLocationSource() lets you push locations
to the GoogleMap, making other adjustments (e.g., camera position) along
the way.
You can see this in operation in the
MapsV2/Location
sample application, which is based on MapsV2/Popup but with a variety of
changes to deal with location tracking. A lot of that has to do with
the runtime permissions system on Android 6.0+, as we need
permission from the user to be able to work with the device location.
Dealing with the Runtime Permission
onCreate() of MainActivity now looks radically different:

 @Override
 protected void onCreate(Bundle state) {
 super.onCreate(state);

 if (state==null) {
 needsInit=true;
 }
 else {
 isInPermission=state.getBoolean(STATE_IN_PERMISSION, false);
 autoFollow=state.getBoolean(STATE_AUTO_FOLLOW, true);
 }

 onCreateForRealz(canGetLocation());
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
Most of the original business logic from onCreate() has been moved
into onCreateForRealz(). That method takes a boolean parameter,
indicating whether or not we have permission to access the user’s location.
Here, we get that from a canGetLocation() method that, in turn,
uses ContextCompat.checkSelfPermission() to see if we hold
ACCESS_FINE_LOCATION:

 private boolean canGetLocation() {
 return(ContextCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION)==
 PackageManager.PERMISSION_GRANTED);
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
If we can work with locations, onCreateForRealz() will do what
onCreate() used to do: call readyToGo() and, if we are ready to go,
bring up the map:

 private void onCreateForRealz(boolean canGetLocation) {
 if (canGetLocation) {
 if (readyToGo()) {
 setContentView(R.layout.activity_main);

 SupportMapFragment mapFrag=
 (SupportMapFragment)getSupportFragmentManager().findFragmentById(R.id.map);

 mapFrag.getMapAsync(this);
 }
 }
 else if (!isInPermission) {
 isInPermission=true;

 ActivityCompat.requestPermissions(this,
 new String[] {Manifest.permission.ACCESS_FINE_LOCATION},
 REQUEST_PERMS);
 }
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
If we do not have access to the user’s location, this particular sample
app is not that interesting, so we will ask the user for permission,
via a call to ActivityCompat.requestPermissions(). This will eventually
trigger a call to onRequestPermissionsResult():

 @Override
 public void onRequestPermissionsResult(int requestCode,
 String[] permissions,
 int[] grantResults) {
 isInPermission=false;

 if (requestCode==REQUEST_PERMS) {
 if (canGetLocation()) {
 onCreateForRealz(true);
 }
 else {
 finish(); // denied permission, so we're done
 }
 }
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
Here, if we can now get the location, we go ahead and run through
onCreateForRealz() again, to initialize the map. If, however, the
user denied us the right to access the location, we finish() and
exit the activity outright.
Throughout this code, you have seen references to an isInPermission
field. This tracks whether or not we are in the middle of requesting
a permission:

	It is initialized to false in the activity

	It is set to true just before calling requestPermissions()

	It is set back to false in onRequestPermissionsResult()

	It is saved across configuration changes via onSaveInstanceState()
and is retrieved from that state in onCreate():

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
 outState.putBoolean(STATE_AUTO_FOLLOW, autoFollow);
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
(where STATE_IN_PERMISSION is a static final String to use as a
key for the Bundle value)
This allows us to check whether or not we are in the middle of
requesting permissions already in onCreateForRealz() and avoid popping
up the permission-request dialog twice if the user rotates the screen
while the first dialog is up, then denies the permission.
Tracking If We Should Follow the User
The UI has a checkable overflow item in the action bar, named follow.
When checked, we will use LocationManager to move the map camera ourselves
to the user’s location. When unchecked, we will show the my-location layer,
and the user can manually jump to their current location via the button
supplied by that layer.
So, we need to keep track of whether we should be automatically following
the user or not.
To that end, we have an autoFollow field, initially set to true, as the
action item checkbox initially is checked. We toggle that field as the user
checks and unchecks the item:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);
 menu.findItem(R.id.follow).setChecked(autoFollow);

 return super.onCreateOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.follow) {
 item.setChecked(!item.isChecked());
 autoFollow=item.isChecked();
 follow();

 return true;
 }

 return super.onOptionsItemSelected(item);
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
We also call a follow() method to update the UI based on the user’s choice — we
will see that method shortly.
We also hold onto that autoFollow value in the saved instance state Bundle
and restore it when the activity is recreated.
Showing the My-Location Layer
Part of what we do in onMapReady() is call setMyLocationEnabled(true) on the
map, which puts a blue dot at the user’s location:

 @Override
 public void onMapReady(final GoogleMap map) {
 this.map=map;

 if (needsInit) {
 CameraUpdate center=
 CameraUpdateFactory.newLatLng(new LatLng(40.76793169992044,
 -73.98180484771729));
 CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

 map.moveCamera(center);
 map.animateCamera(zoom);
 }

 addMarker(map, 40.748963847316034, -73.96807193756104,
 R.string.un, R.string.united_nations);
 addMarker(map, 40.76866299974387, -73.98268461227417,
 R.string.lincoln_center,
 R.string.lincoln_center_snippet);
 addMarker(map, 40.765136435316755, -73.97989511489868,
 R.string.carnegie_hall, R.string.practice_x3);
 addMarker(map, 40.70686417491799, -74.01572942733765,
 R.string.downtown_club, R.string.heisman_trophy);

 map.setInfoWindowAdapter(new PopupAdapter(getLayoutInflater()));
 map.setOnInfoWindowClickListener(this);

 map.setMyLocationEnabled(true);
 locMgr=(LocationManager)getSystemService(LOCATION_SERVICE);
 crit.setAccuracy(Criteria.ACCURACY_FINE);
 follow();
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
Part of what follow() does is call setMyLocationButtonEnabled(), with a suitable
boolean value, to toggle whether the “jump to my location” button is shown:

 private void follow() {
 if (map!=null && locMgr!=null) {
 if (autoFollow) {
 locMgr.requestLocationUpdates(0L, 0.0f, crit, this, null);
 map.setLocationSource(this);
 map.getUiSettings().setMyLocationButtonEnabled(false);
 }
 else {
 map.getUiSettings().setMyLocationButtonEnabled(true);
 map.setLocationSource(null);
 locMgr.removeUpdates(this);
 }
 }
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
Supplying Location Data
The rest of follow() either starts up or stops our request for location
data using LocationManager, plus setting up our activity as being the
source of location data, using setLocationSource().
setLocationSource() takes a LocationSource implementation, and we implement
that interface on the activity itself. It therefore needs activate()
and deactivate() methods, where we can track a supplied OnLocationChangedListener
for us to use:

 @Override
 public void activate(OnLocationChangedListener listener) {
 this.mapLocationListener=listener;
 }

 @Override
 public void deactivate() {
 this.mapLocationListener=null;
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
LocationManager will supply our location data to onLocationChanged().
There, we do two things:

	Forward the location along to the OnLocationChangedListener supplied to
our LocationSource, and

	Update the camera to point at the user’s location

 @Override
 public void onLocationChanged(Location location) {
 if (mapLocationListener != null) {
 mapLocationListener.onLocationChanged(location);

 LatLng latlng=
 new LatLng(location.getLatitude(), location.getLongitude());
 CameraUpdate cu=CameraUpdateFactory.newLatLng(latlng);

 map.animateCamera(cu);
 }
 }

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)
The result is that while autoFollow is true, we will find the user’s location
and use that to update the map. When autoFollow is false, we let the map
itself handle that role, including showing that “jump to my location” button.
Drawing Lines and Areas
If you wanted to draw on a map in the Maps V1 framework, you created an Overlay
and drew upon it. This forced you to handle low-level drawing work yourself, as
you were handed a Canvas object and had to handle all the lines, fills, and
so forth yourself.
Maps V2 offers a different approach. Free-form drawing is still conceivable,
though it appears to have to be handled in the form of tile overlays instead
of map overlays. However, for the simpler cases of drawing lines and areas,
Maps V2 has built-in polyline, polygon, and circle support. You tell the GoogleMap
what needs to be drawn, and it handles drawing it, both initially and as the
map is zoomed or panned. A polyline is a line connecting a series of points;
a polygon is a region defined by a series of corners. A circle, from the
standpoint of Maps V2, is defined by a center coordinate and a radius.
We can see polylines and polygons on a GoogleMap in the
MapsV2/Poly
sample application, which is a clone of MapsV2/Popup with two additions:

	A polyline connecting the locations of our four markers

	A polygon enclosing the area of Manhattan known as the Garment District
(bounded by 34th Street, 42nd Street, Fifth Avenue, and Ninth Avenue)

To draw those, we simply add a few lines to onMapReady() of MainActivity:

 PolylineOptions line=
 new PolylineOptions().add(new LatLng(40.70686417491799,
 -74.01572942733765),
 new LatLng(40.76866299974387,
 -73.98268461227417),
 new LatLng(40.765136435316755,
 -73.97989511489868),
 new LatLng(40.748963847316034,
 -73.96807193756104))
 .width(5).color(Color.RED);

 map.addPolyline(line);

 PolygonOptions area=
 new PolygonOptions().add(new LatLng(40.748429, -73.984573),
 new LatLng(40.753393, -73.996311),
 new LatLng(40.758393, -73.992705),
 new LatLng(40.753484, -73.980882))
 .strokeColor(Color.BLUE);

 map.addPolygon(area);

(from MapsV2/Poly/app/src/main/java/com/commonsware/android/mapsv2/poly/MainActivity.java)
The API for adding polylines and polygons is reminiscent of the API for adding
markers: define an ...Options object with the characteristics of the item
to be drawn, then call an add...() method on GoogleMap to add the item.
So, to add a polyline, we create a PolylineOptions object. Using its fluent
interface, we add() a series of LatLng objects, representing the points
to be connected by the line. We also specify the line width in pixels via
width() and the color of the line via color(). If we had several lines that
might overlap, we could specify the zIndex(), where higher indexes indicate
lines to be drawn over the top of lines with lower indexes. We add the polyline to
the map by passing our PolylineOptions to addPolyline() on GoogleMap.
This gives us a line connecting the four markers, with GoogleMap handling
the details of where the line should be drawn on the screen given the current
map center and zoom levels:

[image: Maps V2 with Polyline]

Figure 573: Maps V2 with Polyline
Note that the polyline is drawn using a flat Mercator projection by default.
For most maps, that is perfectly fine. If your map will be showing countries
and continents, rather than city blocks, you might want to call geodesic(true)
on the PolylineOptions, to have the line drawn on a geodesic curve, reflecting
the spherical nature of the Earth (dissenting opinions on that notwithstanding).
Similarly, we create a PolygonOptions object, configure it, and pass it
to addPolygon for our Garment District box. The add() method on
PolygonOptions will take the corners of our polygon, automatically enclosing
that region. We also specify the strokeColor(). We could have specified
a fillColor() (default is transparent), strokeWidth() (default is 10 pixels),
zIndex(), and geodesic().
If we run the app and pan the map down to the south a bit, we see our polygon:

[image: Maps V2 with Polyline and Polygon]

Figure 574: Maps V2 with Polyline and Polygon
As with the polyline, Android automatically handles drawing what is needed
based on map center and zoom levels.
Note that, as with markers, we need to re-add the polylines and polygons after
a configuration change, as the GoogleMap does not retain that information.
Gestures and Controls
By default, standard gestures and controls are enabled on your map:

	The user can change zoom level either by + and - buttons or via “pinch-to-zoom”
gestures

	The user can change the center of the map via simple swipe gestures

	The user can change the camera tilt via two-finger vertical swipes, so instead
of a traditional top-down perspective, the user can see things on an angle

	The user can change the orientation of the map via a two-finger rotating
swipe, to change the typical “north is to the top of the map” to some other
orientation

You can obtain a UiSettings object from your GoogleMap via getUiSettings()
to disable these features, if desired:

	setRotateGesturesEnabled()

	
setScrollGesturesEnabled() (for panning the map)

	setTiltGesturesEnabled()

	
setZoomControlsEnabled() (for the + and - buttons)

	
setZoomGesturesEnabled() (for pinch-to-zoom)

There is also setAllGesturesEnabled() to toggle on or off all gesture-based
map control. This is roughly analogous to the android:clickable attribute
on the Maps V1 edition of MapView.
There is also setCompassEnabled(), to indicate if a compass should be shown
if the user changes the map orientation via a rotate gesture.
Tracking Camera Changes
If you have gestures enabled, the user can change the perspective of the map, referred
to as changing the camera position. You may need to know about these changes, to perform
various operations in your app based upon what is presently visible on the screen.
Originally, to
find out when the camera position changes, you could call setOnCameraChangeListener()
on the GoogleMap, supplying an implementation of OnCameraChangeListener, which would
be called with onCameraChange() as the user pans, zooms, or tilts the map. This
approach was deprecated and replaced with a series of listeners:

	
OnCameraMoveStartedListener, invoked when the user starts moving the map

	
OnCameraMoveListener, invoked when the user continues moving the map after
having originally started moving it, all in one gesture

	
OnCameraIdleListener, invoked when the user stops moving the map
(e.g., lifts up their finger or stylus)

	
OnCameraMoveCanceledListener, invoked if you do something programmatically
to interrupt the camera movement

To see how this works, we can take a quick peek at the
MapsV2/Camera
sample application, which is a clone of MapsV2/Popup with camera position tracking
enabled.
Late in onMapReady() of MainActivity, we call a series of setter methods
on the GoogleMap to associate MainActivity itself as the listener for these events:

 map.setOnCameraMoveStartedListener(this);
 map.setOnCameraMoveListener(this);
 map.setOnCameraMoveCanceledListener(this);
 map.setOnCameraIdleListener(this);

(from MapsV2/Camera/app/src/main/java/com/commonsware/android/mapsv2/camera/MainActivity.java)
This requires MainActivity to implement all four of those listener interfaces:

public class MainActivity extends AbstractMapActivity implements
 OnMapReadyCallback, OnInfoWindowClickListener,
 OnCameraMoveStartedListener,
 OnCameraMoveListener,
 OnCameraMoveCanceledListener,
 OnCameraIdleListener {

(from MapsV2/Camera/app/src/main/java/com/commonsware/android/mapsv2/camera/MainActivity.java)
And, this requires MainActivity to implement the callback method for
each of those listeners:

 	Listener Interface
 	Event Method

 	OnCameraMoveStartedListener
 	onCameraMoveStarted(int i)

 	OnCameraMoveListener
 	onCameraMove()

 	OnCameraIdleListener
 	onCameraIdle()

 	OnCameraMoveCanceledListener
 	onCameraMoveCanceled()

 @Override
 public void onCameraIdle() {
 CameraPosition position=map.getCameraPosition();

 Log.d("onCameraIdle",
 String.format("lat: %f, lon: %f, zoom: %f, tilt: %f",
 position.target.latitude,
 position.target.longitude, position.zoom,
 position.tilt));
 }

 @Override
 public void onCameraMoveCanceled() {
 CameraPosition position=map.getCameraPosition();

 Log.d("onCameraMoveCanceled",
 String.format("lat: %f, lon: %f, zoom: %f, tilt: %f",
 position.target.latitude,
 position.target.longitude, position.zoom,
 position.tilt));
 }

 @Override
 public void onCameraMove() {
 CameraPosition position=map.getCameraPosition();

 Log.d("onCameraMove",
 String.format("lat: %f, lon: %f, zoom: %f, tilt: %f",
 position.target.latitude,
 position.target.longitude, position.zoom,
 position.tilt));
 }

 @Override
 public void onCameraMoveStarted(int i) {
 CameraPosition position=map.getCameraPosition();

 Log.d("onCameraMoveStarted",
 String.format("lat: %f, lon: %f, zoom: %f, tilt: %f",
 position.target.latitude,
 position.target.longitude, position.zoom,
 position.tilt));
 }

(from MapsV2/Camera/app/src/main/java/com/commonsware/android/mapsv2/camera/MainActivity.java)
Here, we just log a message to Logcat on each camera position change, logging:

	the latitude and longitude of the map center, obtained from the target LatLng data member
of the CameraPosition object supplied to onCameraChange(),

	the zoom level of the map, from the zoom data member of CameraPosition, and

	the tilt of the map, in degrees, from the tilt data member of CameraPosition

As a result, if you run this app and play around with the various gestures, you get a
series of Logcat messages with the results:

10-08 12:13:54.449 28718-28718/com.commonsware.android.mapsv2.camera D/onCameraMoveStarted: lat: 40.771664, lon: -73.986067, zoom: 15.000000, tilt: 0.000000
10-08 12:13:54.453 28718-28718/com.commonsware.android.mapsv2.camera D/onCameraMove: lat: 40.771773, lon: -73.985717, zoom: 15.000000, tilt: 0.000000
10-08 12:13:54.483 28718-28718/com.commonsware.android.mapsv2.camera D/onCameraMove: lat: 40.771805, lon: -73.985701, zoom: 15.000000, tilt: 0.000000
10-08 12:13:54.500 28718-28718/com.commonsware.android.mapsv2.camera D/onCameraMove: lat: 40.771843, lon: -73.985669, zoom: 15.000000, tilt: 0.000000
.
.
.
10-08 12:13:57.001 28718-28718/com.commonsware.android.mapsv2.camera D/onCameraIdle: lat: 40.774540, lon: -73.985632, zoom: 15.000000, tilt: 0.000000

Note that onCameraMoveStarted() will be invoked for three reasons:

	The user started panning, tilting, or rotating the map, or used a
pinch-to-zoom gesture

	The user did something else that triggered a camera change, such
as tapping the “my location” button to move the camera to their current
location

	You did something programmatically to change the camera position

The parameter passed into onCameraMoveStarted() will contain
a reason code (e.g., REASON_GESTURE) to help you distinguish these
cases, if that level of detail is needed by your app.
Maps in Fragments and Pagers
One key limitation of Maps V1 was that you could only have one MapView instance per
process. Presumably, the proprietary code at the heart of the Maps SDK add-on used
static data members for some state management, ones that would get messed up if there
were two or more MapView widgets in active use.
Fortunately, Maps V2 gets rid of this restriction. You are welcome to have multiple
SupportMapFragment objects if that makes sense. Maps are relatively memory-intensive, so you
should not be planning on having dozens or hundreds of them in use at a time, but you
can have more than one.
To showcase this, the
MapsV2/Pager
sample application hosts 10 SupportMapFragment instances as pages in a ViewPager.
The bulk of the application is a clone of one of the ViewPager samples from
the chapter on ViewPager.
Having maps in a ViewPager presents a bit of a problem, in terms of interpreting
horizontal swipe events. Normally, ViewPager handles those itself. However, that
would mean that the user cannot pan the map horizontally, which makes using the
map somewhat challenging. In this sample, we will augment the ViewPager with
logic to allow horizontal swiping on the maps and on the tab strip.
Our activity inflates a layout that contains our ViewPager along with a PagerTabStrip:

<?xml version="1.0" encoding="utf-8"?>
<com.commonsware.android.mapsv2.pager.MapAwarePager xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v4.view.PagerTabStrip
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"/>

</com.commonsware.android.mapsv2.pager.MapAwarePager>

(from MapsV2/Pager/app/src/main/res/layout/activity_main.xml)
However, you will note that this is not ViewPager, but rather MapAwarePager,
a custom subclass of ViewPager that we will examine shortly.
MainActivity then populates the MapAwarePager with an instance of a MapPageAdapter:

package com.commonsware.android.mapsv2.pager;

import android.os.Bundle;
import android.support.v4.view.PagerAdapter;
import android.support.v4.view.ViewPager;

public class MainActivity extends AbstractMapActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (readyToGo()) {
 setContentView(R.layout.activity_main);

 ViewPager pager=findViewById(R.id.pager);

 pager.setAdapter(buildAdapter());
 }
 }

 private PagerAdapter buildAdapter() {
 return(new MapPageAdapter(this, getSupportFragmentManager()));
 }
}

(from MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MainActivity.java)
MapPageAdapter is a FragmentStatePagerAdapter, not a FragmentPagerAdapter. This
means that as the user swipes through our ViewPager, the adapter has the right to
discard old fragments when it creates new ones. This helps reduce the overall memory footprint
of our activity.

package com.commonsware.android.mapsv2.pager;

import android.content.Context;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentStatePagerAdapter;

public class MapPageAdapter extends FragmentStatePagerAdapter {
 Context ctxt=null;

 public MapPageAdapter(Context ctxt, FragmentManager mgr) {
 super(mgr);
 this.ctxt=ctxt;
 }

 @Override
 public int getCount() {
 return(10);
 }

 @Override
 public Fragment getItem(int position) {
 return(new PageMapFragment());
 }

 @Override
 public String getPageTitle(int position) {
 return(ctxt.getString(R.string.map_page_title) + String.valueOf(position + 1));
 }
}

(from MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MapPageAdapter.java)
MapPageAdapter declares that there should be ten pages (in getCount()) and returns an
instance of PageMapFragment for each page. PageMapFragment is a subclass of
SupportMapFragment, and so is responsible for displaying our map:

package com.commonsware.android.mapsv2.pager;

import android.os.Bundle;
import android.view.View;
import com.google.android.gms.maps.CameraUpdate;
import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.OnMapReadyCallback;
import com.google.android.gms.maps.SupportMapFragment;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;

public class PageMapFragment extends SupportMapFragment implements OnMapReadyCallback {
 private boolean needsInit=false;

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 if (savedInstanceState == null) {
 needsInit=true;
 }

 getMapAsync(this);
 }

 @Override
 public void onMapReady(final GoogleMap map) {
 if (needsInit) {
 CameraUpdate center=
 CameraUpdateFactory.newLatLng(new LatLng(40.76793169992044,
 -73.98180484771729));
 CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

 map.moveCamera(center);
 map.animateCamera(zoom);
 }

 addMarker(map, 40.748963847316034, -73.96807193756104, R.string.un,
 R.string.united_nations);
 addMarker(map, 40.76866299974387, -73.98268461227417,
 R.string.lincoln_center, R.string.lincoln_center_snippet);
 addMarker(map, 40.765136435316755, -73.97989511489868,
 R.string.carnegie_hall, R.string.practice_x3);
 addMarker(map, 40.70686417491799, -74.01572942733765,
 R.string.downtown_club, R.string.heisman_trophy);
 }

 private void addMarker(GoogleMap map, double lat, double lon,
 int title, int snippet) {
 map.addMarker(new MarkerOptions().position(new LatLng(lat, lon))
 .title(getString(title))
 .snippet(getString(snippet)));
 }
}

(from MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/PageMapFragment.java)
If we simply wanted to display an unconfigured map, we could just have MapPageAdapter
create and return instances of SupportMapFragment directly. If we want to configure
our map, though, we need to get control when the GoogleMap object is ready for use.
One way to do that is to extend SupportMapFragment and override onViewCreated() and
call getMapAsync() there to begin the whole get-the-GoogleMap-loaded process.
In onMapReady(), we can then go ahead and
configure the map much as we have done in previous examples, just from within the fragment
itself rather than from the hosting activity.
MapAwarePager overrides one key method of ViewPager: canScroll():

package com.commonsware.android.mapsv2.pager;

import android.content.Context;
import android.support.v4.view.PagerTabStrip;
import android.support.v4.view.ViewPager;
import android.util.AttributeSet;
import android.view.SurfaceView;
import android.view.View;

public class MapAwarePager extends ViewPager {
 public MapAwarePager(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 @Override
 protected boolean canScroll(View v, boolean checkV, int dx, int x,
 int y) {
 if (v instanceof SurfaceView || v instanceof PagerTabStrip) {
 return(true);
 }

 return(super.canScroll(v, checkV, dx, x, y));
 }
}

(from MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MapAwarePager.java)
canScroll() should return true if the View (and specifically the supplied
X and Y coordinates within that View) can be scrolled horizontally, false
otherwise. In our case, we want to say that the map and the tab strip are each
scrollable horizontally. As it turns out, the passed-in View for our
SupportMapFragment will be the map if it is a subclass of SurfaceView
(determined by trial and error on the author’s part, with hopes for a more
authoritative solution in a future edition of the Maps V2 API). So, if the
passed-in View is either a SurfaceView or a PagerTabStrip, we return true,
otherwise we default to normal logic.
The result is a series of independent maps, one per page:

[image: Multiple Maps V2 Maps in a ViewPager]

Figure 575: Multiple Maps V2 Maps in a ViewPager
Each map is independent: if the user pans or zooms one map, that has no impact on any
of the other pages. Panning the maps horizontally works; to move between pages, use
the tab strip.
Animating Marker Movement
Markers, by default, are static, unless you make them be draggable, and then only
the user can drag them.
However, you are welcome to update the position of a Marker at any point, by
calling setPosition() and supplying a new LatLng. The Marker then will jump to that
position.
But what if you want to animate the movement of a Marker from its current
position to a new one? Maps V2 does not offer anything “out of the box” for implementing
this, but Google demonstrated approaches for this in
a “DevBytes” video and related
bit of code in a GitHub Gist. This
section will cover the technique appropriate for API Level 14+, including a full
working sample (the Gist shows code but not its usage).
Problem #1: Animating a LatLng
The position of a Marker is a LatLng, as we have seen previously. LatLng is
not a simple number, and so the animator framework needs our assistance to
animate them. Specifically, we need a TypeEvaluator for LatLng, with our
evaluate() method taking the initial and end positions and computing another
LatLng representing the fraction position between those other positions.
This concept was introduced back in
the chapter on the animator framework.
A simple approach to computing the fractional LatLng would be to apply
the fraction to the latitude and the longitude as Java double values:

LatLng interpolate(float fraction, LatLng initial, LatLng end) {
 double lat = (end.latitude - initial.latitude) * fraction + initial.latitude;
 double lng = (end.longitude - initial.longitude) * fraction + initial.longitude;

 return(new LatLng(lat, lng));
}

That would work reasonably well for fairly close points, such as animating
a marker within a city. However, animating markers across longer distances
means that we have to take into account some geographic realities that a
simple calculation will miss.
Problem #2: The Earth Is Not Flat (Really!)
One bit of reality is that the Earth is round. The above calculation assumes
that the Earth is flat. Calculating “great circle” positions requires a fair
bit of spherical trigonometry, known to cause loss of hair in software developers.
Hence, ideally, we will use somebody’s existing debugged algorithm for that.
Problem #3: 180 Equals –180, At Least For Longitude
The other problem is that longitudes wrap around, as 180 degrees longitude is
equivalent to –180 degrees longitude, and longitudinal values are considered
to be between 180 and –180. In cases where we would not cross 180 degrees longitude,
this is not an issue. However, a simple calculation might miss this and wind up
having our animation “take the long way” (e.g., animating from –175 degrees
longitude to 175 degrees longitude by going 350 degrees around the Earth, rather
than just 10 degrees and crossing the International Date Line).
Introducing Some Googly Assistance
Google themselves have released a
utility library for Maps V2.
It offers polyline and polygon decoding, primarily for interoperability with
other location-related Google services like the Google Directions API. The
SphericalUtil class handles all of the nasty math for computing distances
along the surface of the Earth and related calculations. It also offers
BubbleIconFactory, which makes it easy to create marker icons that look a
bit like info windows (complete with border and caret) wrapping around a bit
of text or an icon.
In our case, we can use SphericalUtil to handle Problem #2 and Problem #3,
interpolating
the location between two LatLng values, taking the curvature of the Earth
and longitude idiosyncrasies into account.
Seeing This in Action
The
MapsV2/Animator
sample project is a modified version of the MapsV2/Markers project, adding in the
notion of animating a marker from its original position (Lincoln Center) to a new
position (Penn Station) within Manhattan.
Since we want to use the Google map utility library, we need to add it as a dependency.
Android Studio users can simply add implementation 'com.google.maps.android:android-maps-utils:0.3.4'
(or a higher version) to the dependencies closure.
We need to know where our starting and ending position for the animation will
be, in terms of LatLng objects. Since those have no dependencies upon a Context
or anything, we can simply declare them as static final values:

 private static final LatLng PENN_STATION=new LatLng(40.749972,
 -73.992319);
 private static final LatLng LINCOLN_CENTER=
 new LatLng(40.76866299974387, -73.98268461227417);

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)
We will also need the actual Marker object created when we add our starting
position (LINCOLN_CENTER) to the map. So far, we have ignored the Marker
returned by addMarker() on GoogleMap, but now we need that. So, our own
addMarker() method now returns this value:

 private Marker addMarker(GoogleMap map, double lat, double lon,
 int title, int snippet) {
 return(map.addMarker(new MarkerOptions().position(new LatLng(lat,
 lon))
 .title(getString(title))
 .snippet(getString(snippet))));
 }

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)
We also now have a markerToAnimate data member of the activity, for our Marker,
which we populate from our modified addMarker() method:

 addMarker(map, 40.748963847316034, -73.96807193756104,
 R.string.un, R.string.united_nations);
 markerToAnimate=
 addMarker(map, LINCOLN_CENTER.latitude,
 LINCOLN_CENTER.longitude, R.string.lincoln_center,
 R.string.lincoln_center_snippet);
 addMarker(map, 40.765136435316755, -73.97989511489868,
 R.string.carnegie_hall, R.string.practice_x3);
 addMarker(map, 40.70686417491799, -74.01572942733765,
 R.string.downtown_club, R.string.heisman_trophy);

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)
To make the sample work repeatedly, it would be nice to support bi-directional
animation, starting with animating from Lincoln Center to Penn Station, then reversing
the animation to go back to Lincoln Center. That means that we need to know, for any
particular animation, where the end position should be. So, we track a LatLng for
the next end position, surprisingly named nextAnimationEnd, initializing it to be
PENN_STATION (since we are starting at the outset at LINCOLN_CENTER):

 private LatLng nextAnimationEnd=PENN_STATION;

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)
Next, we need to give the user a means of actually requesting the animation to run.
To do that, we define a new menu XML resource for an animate menu item (using the
directions icon for lack of a better handy icon):

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/animate"
 android:icon="@android:drawable/ic_menu_directions"
 android:showAsAction="ifRoom"
 android:title="@string/animate"/>

</menu>

(from MapsV2/Animator/app/src/main/res/menu/animate.xml)
We then load that menu resource in an overridden onCreateOptionsMenu() and direct
the click event to an animateMarker() method in onOptionsItemSelected():

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.animate, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == R.id.animate) {
 animateMarker();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)
In animateMarker(), we need to do two things:

	Actually run the animation

	Ensure that the camera position is such that the animation will actually be visible,
as it is pointless to animate a marker between two points if the currently-viewed portion
of the map does not show those points

To handle the camera position, we need to use moveCamera() with a CameraUpdate
from CameraUpdateFactory, as we used to set the initial camera position and zoom level.
To handle the case where we want one or more points to be visible, we can use the
newLatLngBounds() method on CameraUpdateFactory. This takes a LatLngBounds describing
the area that needs to be visible, plus a padding amount in pixels for where that area
should be inset within the map.
Of course, this implies that we have a LatLngBounds.
Since LatLngBounds also does not depend upon a Context or much of anything,
we can define one of those as a static final data member, using a LatLngBounds.Builder
instance:

 private static final LatLngBounds bounds=
 new LatLngBounds.Builder().include(LINCOLN_CENTER)
 .include(PENN_STATION).build();

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)
A LatLngBounds.Builder takes one or more LatLng objects — passed in via include() –
then constructs a LatLngBounds that encompasses all of those points via build().
Our animateMarker() method then starts off by using moveCamera() to reset the
camera to show that defined region:

 private void animateMarker() {
 map.moveCamera(CameraUpdateFactory.newLatLngBounds(bounds, 48));

 Property<Marker, LatLng> property=
 Property.of(Marker.class, LatLng.class, "position");
 ObjectAnimator animator=
 ObjectAnimator.ofObject(markerToAnimate, property,
 new LatLngEvaluator(), nextAnimationEnd);
 animator.setDuration(2000);
 animator.start();

 if (nextAnimationEnd == LINCOLN_CENTER) {
 nextAnimationEnd=PENN_STATION;
 }
 else {
 nextAnimationEnd=LINCOLN_CENTER;
 }
 }

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)
Then, we need to set up the animation. To do this, we will use the object animator
framework, specifically an ObjectAnimator. We know the Marker that we want to animate
(markerToAnimate) and we know where we want to animate it to (nextAnimationEnd).
What we need is to indicate the property to animate on this object, plus provide
help to actually animate a LatLng.
To specify the property, we could just pass in the name of the property ("position").
However, in animateMarker(), we set up a Property object via the static of()
factory method. This makes our use of ofObject() more type-safe, as Property
will help enforce that
we are animating a Marker using LatLng values.
To animate LatLng values, we need a TypeEvaluator for LatLng, here defined as
a static inner class named LatLngEvaluator:

 private static class LatLngEvaluator implements TypeEvaluator<LatLng> {
 @Override
 public LatLng evaluate(float fraction, LatLng startValue,
 LatLng endValue) {
 return(SphericalUtil.interpolate(startValue, endValue, fraction));
 }
 }

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)
Our evaluate() method turns around and calls the static interpolate() method
on SphericalUtil, supplied by Google’s map utility library. interpolate() handles
all the nasty spherical trigonometry and stuff, so we do not have to.
We then set the duration of the animation to be two seconds, and start the animation.
Finally, to reverse the animation for the next request, animateMarker() resets
the value of nextAnimationEnd to be PENN_STATION or LINCOLN_CENTER, wherever
we will animate to next.
Honoring Traffic Rules, Like “Drive Only On Streets”
You will notice that our animation ignores other aspects of reality,
such as buildings that might be in the way. Sometimes, that
is appropriate, such as animating the movement of:

	a bird

	a plane

	a costumed superhero with independent flight capability

Sometimes, though, we need
to take into account those obstacles, such as animating the movement of:

	a pedestrian

	a car

	a costumed superhero “flying” by means of swinging between buildings using dynamically-generated cables of either natural or synthetic origin

However, to do this implies that we know where the obstacles are. Or, more
accurately, we would need to animate the marker along known good waypoints, such
as streets.
The animation would not be especially difficult, as ofObject() can take a series of
waypoints. However, we would need to find those waypoints, and there is nothing
in Maps V2 itself that supplies this data.
Maps, of the Indoor Variety
The good news is that Maps V2 supports Google’s indoor maps, for those venues for
which Google has indoor map data.
The bad news is that for some reason, only one map at a time supports indoor maps.
The default will be that the first map you create will support indoor maps, and
others will not.
To see if a given map offers indoor map capability, you can call isIndoorEnabled()
on GoogleMap. To toggle this capability, call setIndoorEnabled().
Taking a Snapshot of a Map
Once a map is drawn, you can take a snapshot of it, converting the viewed map
into a Bitmap object. This is designed to take an image of the map and use it
in places where a SupportMapFragment, or even a MapView, cannot go, such as:

	Things tied to a RemoteViews, such as a custom Notification

	Thumbnails of maps, for an app that allows users to manipulate several maps at once

The GoogleMap object has two flavors of a snapshot() method. Both take a
SnapshotReadyCallback object. You will need to supply an instance of something
implementing the SnapshotReadyCallback interface, overriding onSnapshotReady(),
where you will receive your Bitmap.
One flavor of snapshot() takes just the
SnapshotReadyCallback; the other also takes a Bitmap of the proper dimensions,
such as a previous snapshot Bitmap that you want to recycle. Using the latter
snapshot() is recommended where possible, so you do not need to allocate new Bitmap
objects on each snapshot() call.
Note that snapshot() will only work once the map is actually rendered. So, for example,
calling snapshot() from onCreate() of your activity will fail, because the map
has not been rendered yet. snapshot() is designed to be called based upon user input,
either to manually capture a snapshot or based on navigation (e.g., tapping on a
ListView item triggers saving a snapshot of the current map as a thumbnail before
changing the map contents).
Also, the documentation for snapshot() contains the following:

Note: Images of the map must not be transmitted to your servers, or otherwise used outside of the application. If you need to send a map to another application or user, send data that allows them to reconstruct the map for the new user instead of a snapshot.

As this statement may be tied to the terms and conditions of your use of Maps V2,
you should talk with qualified legal counsel before:

	Saving a snapshot to external storage

	Sharing a snapshot via ACTION_SEND

	Sending a snapshot to your server

or similar operations.
SupportMapFragment vs. MapView
So far, all the examples shown in this chapter use SupportMapFragment.
In most cases, this is the right thing to use.
However, there may be places where you really want to use a View, rather than a
Fragment, for your maps.
The good news is that Maps V2 does have a MapView. SupportMapFragment usually handles creating
and managing the MapView for you, but you can, if you wish, avoid SupportMapFragment and
manage the MapView yourself.
The biggest limitation is that you need to forward the lifecycle methods from your activity
or fragment on to the MapView, calling onCreate(), onResume(), onPause(), onDestroy(),
and onSaveInstanceState() on the MapView. Normally, SupportMapFragment would do that for you,
saving you the trouble.
Also note that while MapView is a ViewGroup, you are not allowed to add child widgets
to it.
About That AbstractMapActivity Class…
Early on, we hand-waved our way past the AbstractMapActivity that all of our MainActivity
classes inherit from, and we skirted past the readyToGo() method that we were calling.
Also, you may have noticed that our app has an action bar overflow item, that we do not seem
to be creating in MainActivity.
Now, it is time to dive into what is going on in our AbstractMapActivity implementations.
The readyToGo() method in AbstractMapActivity is designed to help us determine if Maps V2
is “ready to go” and, if not, to help the user perhaps fix their device such that Maps V2
will work in the future:

 protected boolean readyToGo() {
 GoogleApiAvailability checker=
 GoogleApiAvailability.getInstance();

 int status=checker.isGooglePlayServicesAvailable(this);

 if (status == ConnectionResult.SUCCESS) {
 if (getVersionFromPackageManager(this)>=2) {
 return(true);
 }
 else {
 Toast.makeText(this, R.string.no_maps, Toast.LENGTH_LONG).show();
 finish();
 }
 }
 else if (checker.isUserResolvableError(status)) {
 ErrorDialogFragment.newInstance(status)
 .show(getFragmentManager(),
 TAG_ERROR_DIALOG_FRAGMENT);
 }
 else {
 Toast.makeText(this, R.string.no_maps, Toast.LENGTH_LONG).show();
 finish();
 }

 return(false);
 }

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java)
Determining the availability of Maps V2 — or anything in the Play Services
SDK — is handled through an instance of GoogleApiAvailability. You
get a singleton instance of this class via its static getInstance()
method.
First, we call isGooglePlayServicesAvailable() method on the GoogleApiAvailability
singleton.
This will return an integer indicating whether Maps V2 is available for our use or not.
If the return value is ConnectionResult.SUCCESS — meaning Maps V2 is indeed available to us –
we check to see if OpenGL ES is version 2.0 or higher, as we did not require that in the manifest.
There are a few ways in Android to check the OpenGL ES version. This sample uses some code from
the Compatibility Test Suite (CTS), examining PackageManager to determine the major level:

 // following from
 // https://android.googlesource.com/platform/cts/+/master/tests/tests/graphics/src/android/opengl/cts/OpenGlEsVersionTest.java

 /*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of
 * the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in
 * writing, software distributed under the License is
 * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See
 * the License for the specific language governing
 * permissions and limitations under the License.
 */

 private static int getVersionFromPackageManager(Context context) {
 PackageManager packageManager=context.getPackageManager();
 FeatureInfo[] featureInfos=
 packageManager.getSystemAvailableFeatures();
 if (featureInfos != null && featureInfos.length > 0) {
 for (FeatureInfo featureInfo : featureInfos) {
 // Null feature name means this feature is the open
 // gl es version feature.
 if (featureInfo.name == null) {
 if (featureInfo.reqGlEsVersion != FeatureInfo.GL_ES_VERSION_UNDEFINED) {
 return getMajorVersion(featureInfo.reqGlEsVersion);
 }
 else {
 return 1; // Lack of property means OpenGL ES
 // version 1
 }
 }
 }
 }
 return 1;
 }

 /** @see FeatureInfo#getGlEsVersion() */
 private static int getMajorVersion(int glEsVersion) {
 return((glEsVersion & 0xffff0000) >> 16);
 }

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java)
If the major version is 2 or higher,
we return true from readyToGo(), so MainActivity knows to continue on setting up the map.
If the major version is 1, we display a Toast — a production-grade app would do something
else to let the user know of the problem, most likely.
But, what if isGooglePlayServicesAvailable() returns something else?
There are two major possibilities here:

	The error is something that the user might be able to rectify, such as by downloading
the Google Play Services app from the Play Store

	The error is something that the user cannot recover from

We can distinguish these two cases by calling isUserResolvableError() on
the GoogleApiAvailability singleton,
passing in the value we received from isGooglePlayServicesAvailable().
This will return true if the user might be able to fix the problem, false otherwise.
In the false case, the user is just out of luck, so we display a Toast to alert them of
this fact, then finish() the activity and return false, so MainActivity skips over
the rest of its work.
In the true case, we can display something to the user to prompt them to fix the problem.
One way to do that is to use a dialog obtained from Google code, by calling
the static getErrorDialog() method on a GoogleApiAvailability singleton. In our case,
we wrap that in a DialogFragment named ErrorDialogFragment, implemented as a static
inner class of AbstractMapActivity:

 public static class ErrorDialogFragment extends DialogFragment {
 static final String ARG_ERROR_CODE="errorCode";

 static ErrorDialogFragment newInstance(int errorCode) {
 Bundle args=new Bundle();
 ErrorDialogFragment result=new ErrorDialogFragment();

 args.putInt(ARG_ERROR_CODE, errorCode);
 result.setArguments(args);

 return(result);
 }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 Bundle args=getArguments();
 GoogleApiAvailability checker=
 GoogleApiAvailability.getInstance();

 return(checker.getErrorDialog(getActivity(),
 args.getInt(ARG_ERROR_CODE), 0));
 }

 @Override
 public void onDismiss(DialogInterface dlg) {
 if (getActivity()!=null) {
 getActivity().finish();
 }
 }
 }

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java)
While the code and comments around getErrorDialog() suggest that there is some way for
us to find out if the user performed actions that fix the problem, this code does not seem
to work well in practice. After all, downloading Google Play Services is asynchronous, so even
if the user returns to our app, it is entirely likely that Maps V2 is still unavailable.
As a result, when the user is done with the dialog, we finish() the activity, forcing the
user to start it again if and when they are done downloading Google Play Services.
Testing this code requires an older device, one in which the “Google Play services” app can
be uninstalled… if it can be installed at all.
As it turns out, not all Android devices support the Play Store, or the Google Play Services
by extension. Notably, if the device lacks the Play Store,
isUserRecoverableError() returns true, even
though the user cannot recover from this situation (except perhaps via a firmware update).
(An earlier problem where getErrorDialog() could return null
even for cases where the error is supposedly user-recoverable has been fixed)
Helper Libraries for Maps V2
Many developers have been busy writing libraries that help in the development
of Maps V2 applications, beyond Google’s own utility library mentioned in
the section on animating markers.
Perhaps the most expansive of these is the Android Maps Extensions library.
The big thing that this library offers is marker clustering, where
as the user zooms out, individual markers are replaced by a marker representing a
cluster, so you avoid flooding a small area with too many individual markers:

[image: Map with Many Markers (from Android Maps Extensions demo app)]

Figure 576: Map with Many Markers (from Android Maps Extensions demo app)

[image: Same Map with Cluster Markers (from Android Maps Extensions demo app)]

Figure 577: Same Map with Cluster Markers (from Android Maps Extensions demo app)

[image: Same Map with Zoomed In Cluster Markers (from Android Maps Extensions demo app)]

Figure 578: Same Map with Zoomed In Cluster Markers (from Android Maps Extensions demo app)
This library wraps the Maps V2 classes, allowing the library to offer extensions
to the standard Maps V2 API, including:

	Associating your own data with Marker, Polygon, Polyline, and other
classes, to tie them back to your models

	Getters to retrieve previously-defined markers, etc.

	Etc.

Another library offering marker clustering is
clusterkraf, from Two Toasters.
The clusterkraf library can optionally integrate with
Cyril Mottier’s Polaris2 library.
His original Polaris library aimed to provide more features to Maps V1; Polaris2
fills a similar role for Maps V2. At this time, Polaris2 is a smaller library,
simply because Maps V2 handles much of what Polaris provided. Polaris2, like
Android Maps Extensions, wraps the Maps V2 API with its own classes, in lieu
of subclassing (since most Maps V2 classes are marked final). Of note, Polaris2
offers reset() methods on many of the ...Options classes (e.g., MarkerOptions),
and offers constants for the minimum and maximum valid latitude and longitude.
Problems with Maps V2 at Runtime
Portions of the logic that powers your Maps V2 SupportMapFragment are supplied by the Google Play
Services app. As a result, many operations with Maps V2, such as manipulating markers, require
IPC calls between your app and Google Play Services. If those IPC calls are synchronous,
they will add a bit of overhead to your app — enough that you will want to avoid them in
time-critical pieces of code, tight loops, and the like.
Problems with Maps V2 Deployment
Of course, the key question is: should you be using Maps V2 at all?
Google thinks so, as they have
turned off access to new API keys for Maps V1.
That makes ongoing development of Maps V1 solutions a bit
risky, as you cannot create new API keys for new signing keys, such as if you need to
replace your debug keystore.
However, Maps V2 has some deployment limitations at this time. While 99.8+% of Android
devices that have the Play Store have the requisite OpenGL ES 2.0+,
some devices that have a suitable OpenGL ES version may not have the Play
Store or otherwise be unable to get Google Play Services, required for using
Maps V2. The isGooglePlayServicesAvailable() approach advocated by Google can
help determine this at runtime, though this approach used to have some bugs,
and it still cannot always help you recover from this problem.
And, as the next section illustrates, not every Android device supports
Maps V2, because not every device supports Google Play Services.
What Non-Compliant Devices Show
If your app tries to bring up Maps V2 on a device that cannot possibly have the Play
Services Framework — such as a Kindle Fire — the user will see an error dialog:

[image: Maps V2 Error on Kindle Fire]

Figure 579: Maps V2 Error on Kindle Fire
For those devices, you will need to consider some alternative source
of maps.
Mapping Alternatives
Beyond using Maps V2 or Maps V1, you may need to consider other mapping alternatives.
The Google mapping APIs are only available on Android devices that have the Maps SDK add-on
(Maps V1) or Google Play Services (Maps V2). Not all devices have those. And, the limitations
of Maps V2 deployment and the deprecation of Maps V1 may convince you that relying upon
Google for maps is not safe at the present time.
The most common native replacement for Google’s mapping is OpenStreetMap,
which to some extent is “the Wikipedia of maps”. OSMDroid
is a library that provides a Maps V1-ish API for embedding OpenStreetMap-based maps into your
application.
Another solution is to integrate Web-based Google maps into your app, the same way that
you might embed them into your Web site. An activity hosting a WebView can display a
Web-based Google Map, for example.
Certain devices may have access to other native mapping solutions. For example, Amazon
has published their own maps API for use
with the Kindle Fire.
Crafting Your Own Views
One of the classic forms of code reuse is the GUI widget. Since the
advent of Microsoft Windows — and, to some extent, even earlier
– developers have been creating their own widgets to extend an
existing widget set. These range from 16-bit Windows “custom
controls” to 32-bit Windows OCX components to the innumerable widgets
available for Java Swing and SWT, and beyond. Android lets you craft
your own widgets as well, such as extending an existing widget with a
new UI or new behaviors.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Pick Your Poison
You have five major options for creating a custom View class.
First, your “custom View class” might really only be custom
Drawable resources. Many widgets can adopt a radically different
look and feel just with replacement graphics. For example, you might
think that these toggle buttons from the Android 2.1 Google Maps
application are some fancy custom widget:

[image: Google Maps navigation toggle buttons]

Figure 580: Google Maps navigation toggle buttons
In reality, those are just radio buttons with replacement images.
Second, your custom View class might be a simple subclass of an
existing widget, where you override some behaviors or otherwise
inject your own logic. Unfortunately, most of the built-in Android
widgets are not really designed for this sort of simple subclassing,
so you may be disappointed in how well this particular technique
works.
Third, your custom View class might be a composite widget —
akin to an activity’s contents, complete with layout and such, but
encapsulated in its own class. This allows you to create something
more elaborate than you will just by tweaking resources. We will see
this later in the chapter with ColorMixer.
Fourth, you might want to implement your own layout manager, if your
GUI rules do not fit well with RelativeLayout, TableLayout, or
other built-in containers. For example, you might want to create a
layout manager that more closely mirrors the “box model” approach
taken by XUL and Flex, or you might want to create one that mirrors
Swing’s FlowLayout (laying widgets out horizontally until there is
no more room on the current row, then start a new row).
Finally, you might want to do something totally different, where you
need to draw the widget yourself. For example, the ColorMixer
widget uses SeekBar widgets to control the mix of red, blue, and
green. But, you might create a ColorWheel widget that draws a
spectrum gradient, detects touch events, and lets the user pick a
color that way.
Some of these techniques are fairly simple; others are fairly
complex. All share some common traits, such as widget-defined
attributes, that we will see throughout the remainder of this chapter.
Colors, Mixed How You Like Them
The classic way for a user to pick a color in a GUI is to use a color
wheel like this one:

[image: Color Wheel]

Figure 581: Color Wheel
However, a color wheel like that is difficult to manipulate on a
touch screen, particularly a capacitive touchscreen designed for
finger input. Fingers are great for gross touch events and lousy for
selecting a particular color pixel.
Another approach is to use a mixer, with sliders to control the red,
green, and blue values:

[image: The ColorMixer widget, inside an activity]

Figure 582: The ColorMixer widget, inside an activity
That is the custom widget you will see in this section, based on the
code in the
Views/ColorMixer
sample project.
The Layout
ColorMixer is a composite widget, meaning that its contents are
created from other widgets and containers. Hence, we can use a layout
file to describe what the widget should look like.
The layout to be used for the widget is not that much: three
SeekBar widgets (to control the colors), three TextView widgets
(to label the colors), and one plain View (the “swatch” on the left
that shows what the currently selected color is). Here is the file,
found in res/layout/mixer.xml in the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">
 <View android:id="@+id/swatch"
 android:layout_width="40dip"
 android:layout_height="40dip"
 android:layout_alignParentLeft="true"
 android:layout_centerVertical="true"
 android:layout_marginLeft="4dip"
 />
 <TextView android:id="@+id/redLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignTop="@id/swatch"
 android:layout_toRightOf="@id/swatch"
 android:layout_marginLeft="4dip"
 android:text="@string/red"
 android:textSize="24sp"
 />
 <SeekBar android:id="@+id/red"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignTop="@id/redLabel"
 android:layout_toRightOf="@id/redLabel"
 android:layout_marginLeft="4dip"
 android:layout_marginRight="8dip"
 />
 <TextView android:id="@+id/greenLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/redLabel"
 android:layout_toRightOf="@id/swatch"
 android:layout_marginLeft="4dip"
 android:layout_marginTop="4dip"
 android:text="@string/green"
 android:textSize="24sp"
 />
 <SeekBar android:id="@+id/green"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignTop="@id/greenLabel"
 android:layout_toRightOf="@id/greenLabel"
 android:layout_marginLeft="4dip"
 android:layout_marginRight="8dip"
 />
 <TextView android:id="@+id/blueLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/greenLabel"
 android:layout_toRightOf="@id/swatch"
 android:layout_marginLeft="4dip"
 android:layout_marginTop="4dip"
 android:text="@string/blue"
 android:textSize="24sp"
 />
 <SeekBar android:id="@+id/blue"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignTop="@id/blueLabel"
 android:layout_toRightOf="@id/blueLabel"
 android:layout_marginLeft="4dip"
 android:layout_marginRight="8dip"
 />
</merge>

(from Views/ColorMixer/app/src/main/res/layout/mixer.xml)
One thing that is a bit interesting about this layout, though, is the
root element: <merge>. A <merge> layout is a bag of widgets that
can be poured into some other container. The layout rules on the
children of <merge> are then used in conjunction with whatever
container they are added to. As we will see shortly, ColorMixer
itself inherits from RelativeLayout, and the children of the
<merge> element will become children of ColorMixer in Java.
Basically, the <merge> element is only there because XML files need
a single root — otherwise, the <merge> element itself is
ignored in the layout.
The Attributes
Widgets usually have attributes that you can set in the XML file,
such as the android:src attribute you can specify on an
ImageButton widget. You can create your own custom attributes that
can be used in your custom widget, by creating a
res/values/attrs.xml file containing declare-styleable resources
to specify them.
For example, here is the attributes file for ColorMixer:

<resources>
 <declare-styleable name="ColorMixer">
 <attr name="initialColor" format="color" />
 </declare-styleable>
</resources>

(from Views/ColorMixer/app/src/main/res/values/attrs.xml)
The declare-styleable element describes what attributes are
available on the widget class specified in the name attribute —
in our case, ColorMixer. Inside declare-styleable you can have
one or more attr elements, each indicating the name of an
attribute (e.g., initialColor) and what data format the attribute
has (e.g., color). The data type will help with compile-time
validation and in getting any supplied values for this attribute
parsed into the appropriate type at runtime.
Here, we indicate there is only one attribute: initialColor, which
will hold the initial color we want the mixer set to when it first
appears.
There are many possible values for the format attribute in an
attr element, including:

	boolean

	color

	dimension

	float

	fraction

	integer

	
reference (which means a reference to another resource, such as
a Drawable)

	string

You can even support multiple formats for an attribute, by separating
the values with a pipe (e.g., reference|color).
The Class
Our ColorMixer class, a subclass of RelativeLayout, will take
those attributes and provide the actual custom widget implementation,
for use in activities.
Constructor Flavors
A View has three possible constructors:

	One takes just a Context, which usually will be an Activity

	One takes a Context and an AttributeSet, the latter of which
represents the attributes supplied via layout XML

	One takes a Context, an AttributeSet, and the default style to
apply to the attributes

If you are expecting to use your custom widget in layout XML files,
you will need to implement the second constructor and chain to the
superclass. If you want to use styles with your custom widget when
declared in layout XML files, you will need to implement the third
constructor and chain to the superclass. If you want developers to
create instances of your View class in Java code directly, you
probably should implement the first constructor and, again, chain to
the superclass.
In the case of ColorMixer, all three constructors are implemented,
eventually routing to the three-parameter edition, which initializes
our widget. Below, you will see the first two of those constructors,
with the third coming up in the next section:

 public ColorMixer(Context context) {
 this(context, null);
 }

 public ColorMixer(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)
Using the Attributes
The ColorMixer has a starting color — after all, the SeekBar
widgets and swatch View have to show something. Developers can, if
they wish, set that color via a setColor() method:

 public void setColor(int color) {
 red.setProgress(Color.red(color));
 green.setProgress(Color.green(color));
 blue.setProgress(Color.blue(color));
 swatch.setBackgroundColor(color);
 }

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)
If, however, we want developers to be able to use layout XML, we need
to get the value of initialColor out of the supplied
AttributeSet. In ColorMixer, this is handled in the
three-parameter constructor:

 public ColorMixer(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);

 ((Activity)getContext())
 .getLayoutInflater()
 .inflate(R.layout.mixer, this, true);

 swatch=findViewById(R.id.swatch);

 red=(SeekBar)findViewById(R.id.red);
 red.setMax(0xFF);
 red.setOnSeekBarChangeListener(onMix);

 green=(SeekBar)findViewById(R.id.green);
 green.setMax(0xFF);
 green.setOnSeekBarChangeListener(onMix);

 blue=(SeekBar)findViewById(R.id.blue);
 blue.setMax(0xFF);
 blue.setOnSeekBarChangeListener(onMix);

 if (attrs!=null) {
 TypedArray a=getContext()
 .obtainStyledAttributes(attrs,
 R.styleable.ColorMixer,
 0, 0);

 setColor(a.getInt(R.styleable.ColorMixer_initialColor,
 0xFFA4C639));
 a.recycle();
 }
 }

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)
There are three steps for getting attribute values:

	Get a TypedArray conversion of the AttributeSet by calling
obtainStyledAttributes() on our Context, supplying it the
AttributeSet and the ID of our styleable resource (in this case,
R.styleable.ColorMixer, since we set the name of the
declare-styleable element to be ColorMixer)

	Use the TypedArray to access specific attributes of interest, by
calling an appropriate getter (e.g., getInt()) with the ID of the
specific attribute to fetch (R.styleable.ColorMixer_initialColor)

	Recycle the TypedArray when done, via a call to recycle(), to
make the object available to Android for use with other widgets via
an object pool (versus creating new instances every time)

Note that the name of any given attribute, from the standpoint of
TypedArray, is the name of the styleable resource
(R.styleable.ColorMixer) concatenated with an underscore and the
name of the attribute itself (_initialColor).
In ColorMixer, we get the attribute and pass it to setColor().
Since getInt() on AttributeSet takes a default value, we supply
some stock color that will be used if the developer declined to
supply an initialColor attribute.
Also note that our ColorMixer constructor inflates the widget’s
layout. In particular, it supplies true as the third parameter to
inflate(), meaning that the contents of the layout should be added
as children to the ColorMixer itself. When the layout is inflated,
the <merge> element is ignored, and the <merge> element’s
children are added as children to the ColorMixer.
Saving the State
Similar to activities, a custom View overrides
onSaveInstanceState() and onRestoreInstanceState() to persist
data as needed, such as to handle a screen orientation change. The
biggest difference is that rather than receive a Bundle as a
parameter, onSaveInstanceState() must return a Parcelable with
its state… including whatever state comes from the parent View.
The simplest way to do that is to return a Bundle, in which we have
filled in our state (the chosen color) and the parent class’ state
(whatever that may be).
So, for example, here are implementations of onSaveInstanceState()
and onRestoreInstanceState() from ColorMixer:

 @Override
 public Parcelable onSaveInstanceState() {
 Bundle state=new Bundle();

 state.putParcelable(SUPERSTATE, super.onSaveInstanceState());
 state.putInt(COLOR, getColor());

 return(state);
 }

 @Override
 public void onRestoreInstanceState(Parcelable ss) {
 Bundle state=(Bundle)ss;

 super.onRestoreInstanceState(state.getParcelable(SUPERSTATE));

 setColor(state.getInt(COLOR));
 }

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)
The Rest of the Functionality
ColorMixer defines a callback interface, named
OnColorChangedListener:

 public interface OnColorChangedListener {
 public void onColorChange(int argb);
 }

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)
ColorMixer also provides getters and setters for an
OnColorChangedListener object:

 public OnColorChangedListener getOnColorChangedListener() {
 return(listener);
 }

 public void setOnColorChangedListener(OnColorChangedListener listener) {
 this.listener=listener;
 }

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)
The rest of the logic is mostly tied up in the SeekBar handler,
which will adjust the swatch based on the new color and invoke the
OnColorChangedListener object, if there is one:

 private SeekBar.OnSeekBarChangeListener onMix=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 int color=getColor();

 swatch.setBackgroundColor(color);

 if (listener!=null) {
 listener.onColorChange(color);
 }
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)
Seeing It In Use
The project contains a sample activity, ColorMixerDemo, that shows
the use of the ColorMixer widget.
The layout for that activity, shown below, can be found in
res/layout/main.xml of the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:mixer="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
>
 <TextView android:id="@+id/color"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <com.commonsware.android.colormixer.ColorMixer
 android:id="@+id/mixer"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 mixer:initialColor="#FFA4C639"
 />
</LinearLayout>

(from Views/ColorMixer/app/src/main/res/layout/main.xml)
Notice that the root LinearLayout element defines two namespaces,
the standard android namespace, and a separate one named mixer.
The mixer namespace is given a URL of http://schemas.android.com/apk/res-auto,
which indicates to the Android build system to match up mixer
attributes with their respective widgets that are supplied via
Android library projects.
Our ColorMixer widget is in the layout, with a fully-qualified
class name (com.commonsware.android.colormixer.ColorMixer), since
ColorMixer is not in the android.widget package. Notice that we
can treat our custom widget like any other, giving it a width and
height and so on.
The one attribute of our ColorMixer widget that is unusual is
mixer:initialColor. initialColor, you may recall, was the name of
the attribute we declared in res/values/attrs.xml and retrieve in
Java code, to represent the color to start with. The mixer
namespace is needed to identify where Android should be pulling the
rules for what sort of values an initialColor attribute can hold.
Since our <attr> element indicated that the format of
initialColor was color, Android will expect to see a color value
here, rather than a string or dimension.
The ColorMixerDemo activity is not very elaborate:

package com.commonsware.android.colormixer;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class ColorMixerDemo extends Activity {
 private TextView color=null;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 color=findViewById(R.id.color);

 ColorMixer mixer=findViewById(R.id.mixer);

 mixer.setOnColorChangedListener(onColorChange);
 }

 private ColorMixer.OnColorChangedListener onColorChange=
 new ColorMixer.OnColorChangedListener() {
 public void onColorChange(int argb) {
 color.setText(Integer.toHexString(argb));
 }
 };
}

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixerDemo.java)
It gets access to both the ColorMixer and the TextView in the
main layout, then registers an OnColorChangedListener with the
ColorMixer. That listener, in turn, puts the value of the color in
the TextView, so the user can see the hex value of the color along
with the shade itself in the swatch.
ReverseChronometer: Simply a Custom Subclass
Sometimes, what you want to achieve only requires a basic subclass of
an existing widget (or container), into which you can pour your business
logic.
For example, Android has a Chronometer widget, which is used for
denoting elapsed time of some operation. It works well, but it only
counts up from zero. It cannot be used to display a countdown instead.
But, we can roll a ReverseChronometer that does, simply by subclassing
TextView, as seen in the
Views/ReverseChronometer
sample project:

package com.commonsware.android.revchron;

import android.content.Context;
import android.graphics.Color;
import android.os.SystemClock;
import android.util.AttributeSet;
import android.widget.TextView;

public class ReverseChronometer extends TextView implements Runnable {
 long startTime=0L;
 long overallDuration=0L;
 long warningDuration=0L;

 public ReverseChronometer(Context context, AttributeSet attrs) {
 super(context, attrs);

 reset();
 }

 @Override
 public void run() {
 long elapsedSeconds=
 (SystemClock.elapsedRealtime() - startTime) / 1000;

 if (elapsedSeconds < overallDuration) {
 long remainingSeconds=overallDuration - elapsedSeconds;
 long minutes=remainingSeconds / 60;
 long seconds=remainingSeconds - (60 * minutes);

 setText(String.format("%d:%02d", minutes, seconds));

 if (warningDuration > 0 && remainingSeconds < warningDuration) {
 setTextColor(0xFFFF6600); // orange
 }
 else {
 setTextColor(Color.BLACK);
 }

 postDelayed(this, 1000);
 }
 else {
 setText("0:00");
 setTextColor(Color.RED);
 }
 }

 public void reset() {
 startTime=SystemClock.elapsedRealtime();
 setText("--:--");
 setTextColor(Color.BLACK);
 }

 public void stop() {
 removeCallbacks(this);
 }

 public void setOverallDuration(long overallDuration) {
 this.overallDuration=overallDuration;
 }

 public void setWarningDuration(long warningDuration) {
 this.warningDuration=warningDuration;
 }
}

(from Views/ReverseChronometer/app/src/main/java/com/commonsware/android/revchron/ReverseChronometer.java)
ReverseChronometer is designed to show minutes and seconds remaining
from some initial time. In the constructor, by means to a call to a reset() method,
we set the text of the TextView to show a generic starting point (“-:–”), set its
color to black, and note the current time (SystemClock.elapsedRealtime())
in a startTime data member.
ReverseChronometer also tracks two durations in seconds,
with corresponding setter methods:

	
overallDuration is how long the countdown should run from beginning to end

	
warningDuration is how far from the end we should change the color of the
TextView from black to orange, to hint to the viewer that time is running out

ReverseChronometer implements Runnable, and when its run() method is called,
it determines how many seconds have elapsed since that startTime value.
Depending on the amount of seconds remaining, we either:

	Just update the text to show the minutes and seconds remaining

	Update the text and set the color to black or orange

	Set the text to “0:00” (time has run out) and set the text color to red

In either of the first two cases, we also call postDelayed() to schedule
ourselves to run again in a second, where we can update the TextView contents
once more. That continues until somebody calls stop().
As with any custom View, we can reference this in a layout XML resource,
fully-qualifying the class name used as the name of our XML element for the
widget. And, since we inherit from TextView, we can set any of the
attributes that we want on that TextView, in terms of styling the text,
positioning it within a parent container, etc.:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <com.commonsware.android.revchron.ReverseChronometer
 android:id="@+id/chrono"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:textSize="50sp"
 android:textStyle="bold"/>

</RelativeLayout>

(from Views/ReverseChronometer/app/src/main/res/layout/activity_main.xml)
All our activity needs to do is set the durations,
then call run() and stop() at appropriate times,
such as when the activity is resumed and paused:

package com.commonsware.android.revchron;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
 private ReverseChronometer chrono=null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 chrono=(ReverseChronometer)findViewById(R.id.chrono);
 chrono.setOverallDuration(90);
 chrono.setWarningDuration(10);
 }

 @Override
 public void onResume() {
 super.onResume();

 chrono.run();
 }

 @Override
 public void onPause() {
 chrono.stop();

 super.onPause();
 }
}

(from Views/ReverseChronometer/app/src/main/java/com/commonsware/android/revchron/MainActivity.java)
The result is much as you would expect: a countdown of the time remaining:

[image: ReverseChronometer, Early in Countdown]

Figure 583: ReverseChronometer, Early in Countdown
…changing to orange when we are within the warning duration:

[image: ReverseChronometer, Late in Countdown]

Figure 584: ReverseChronometer, Late in Countdown
…and changing to red when time has run out:

[image: ReverseChronometer, With Complete Time Elapsed]

Figure 585: ReverseChronometer, With Complete Time Elapsed
Of course, much more could be done with this widget, if you chose:

	Support other constructors, beyond the two-argument constructor needed for
layout inflation

	Support setting durations and colors via custom XML attributes

	Adding listeners for warning and expired events, so other things can be done
at those points in time (e.g., play a sound, vibrate the device)

AspectLockedFrameLayout: A Custom Container
You can also craft your own custom container classes, whether inheriting
straight from ViewGroup to implement your own set of layout rules, or by
extending an existing ViewGroup to merely augment its functionality.
For example, there may be cases where you want to control the aspect ratio
of some set of widgets. This is important when working with preview frames
off of the Camera to prevent distortion, for example.
AspectLockedFrameLayout, therefore, is a custom extension of FrameLayout
that ensures that its contents are kept within a particular aspect ratio,
reducing the height or width of the contents to keep that aspect ratio.
AspectLockedFrameLayout is published as part of the CWAC-Layouts project,
with its own GitHub repo. As with
many of the CWAC projects, the reusable code is distributed as a JAR and as
an Android library project, with a demo/ sub-project illustrating the use
of some of the library’s contents.
AspectLockedFrameLayout holds onto two data members:

	A double (aspectRatio) that represents a specific aspect ratio to
maintain, initialized to 0.0

	A View (aspectRatioSource) that represents some other widget whose
aspect ratio should be matched, initialized to null

AspectLockedFrameLayout has corresponding setters for each:

 lockedHeight=(int)(lockedWidth / localRatio + .5);
 }

 // Add the padding of the border.
 lockedWidth+=hPadding;
 lockedHeight+=vPadding;

 // Ask children to follow the new preview dimension.
 super.onMeasure(MeasureSpec.makeMeasureSpec(lockedWidth,
 MeasureSpec.EXACTLY),
 MeasureSpec.makeMeasureSpec(lockedHeight,
 MeasureSpec.EXACTLY));
 }
 }

 /**
 * Supplies a View as a source. The AspectLockedFrameLayout will aim to
 * match the aspect ratio of this View. This is a one-time check; if the
 * View changes its aspect ratio later, the AspectLockedFrameLayout will
 * not attempt to match it.
 *
 * @param v some View

The “business logic” of maintaining the aspect ratio comes in onMeasure().
onMeasure() is called on a ViewGroup when it is time for it to determine
its actual size, based upon things like the requested height and width and the
sizes of its children. In our case onMeasure() needs to be tweaked to maintain
the aspect ratio, assuming that we have an aspect ratio to work with:

 }

 /**
 * {@inheritDoc}
 */
 public AspectLockedFrameLayout(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 // from com.android.camera.PreviewFrameLayout, with slight
 // modifications

 /**
 * {@inheritDoc}
 */
 @Override
 protected void onMeasure(int widthSpec, int heightSpec) {
 double localRatio=aspectRatio;

 if (localRatio == 0.0 && aspectRatioSource != null
 && aspectRatioSource.getHeight() > 0) {
 localRatio=
 (double)aspectRatioSource.getWidth()
 / (double)aspectRatioSource.getHeight();
 }

 if (localRatio == 0.0) {
 super.onMeasure(widthSpec, heightSpec);
 }
 else {
 int lockedWidth=MeasureSpec.getSize(widthSpec);
 int lockedHeight=MeasureSpec.getSize(heightSpec);

 if (lockedWidth == 0 && lockedHeight == 0) {
 throw new IllegalArgumentException(
 "Both width and height cannot be zero -- watch out for scrollable containers");
 }

 // Get the padding of the border background.
 int hPadding=getPaddingLeft() + getPaddingRight();
 int vPadding=getPaddingTop() + getPaddingBottom();

 // Resize the preview frame with correct aspect ratio.
 lockedWidth-=hPadding;
 lockedHeight-=vPadding;

 if (lockedHeight > 0 && (lockedWidth > lockedHeight * localRatio)) {
 lockedWidth=(int)(lockedHeight * localRatio + .5);
 }

We start by determining what actually is the desired aspect ratio, held onto
in a localRatio local variable. That will be aspectRatio if we do not have an
aspectRatioSource that already knows its size, otherwise we will calculate the
aspect ratio from the source. And, if localRatio turns out to be 0.0, indicating
that we do not have an aspect ratio to maintain, we just chain to the superclass,
so AspectLockedFrameLayout will behave just like a normal FrameLayout.
If we do have an aspect ratio to maintain, we start by determining our requested
height and width. onMeasure() is passed a pair of “specs” that provides details about
our requested size, and we can get the height and width from those by means of the
MeasureSpec helper class. We remove any
horizontal padding — padding is considered to be “outside” the locked area and
therefore is ignored in aspect ratio calculations. We then adjust the height
or the width, as needed, to maintain the aspect ratio. We add back in the padding,
then chain to the superclass with revised height and width “specs” via MeasureSpec.
Note that much of this logic was derived from com.android.camera.PreviewFrameLayout
from the AOSP Camera application, which is used to maintain the aspect ratio of the
SurfaceView used to display preview frames.
To use an AspectLockedFrameLayout, just add it to your layout XML file, with
an appropriate child widget/container representing the material that needs to
maintain a particular aspect ratio. Since the AspectLockedFrameLayout is
overriding its natural size, you can use android:layout_gravity to control its
positioning within some parent widget, such as centering it:

<FrameLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <com.commonsware.cwac.layouts.AspectLockedFrameLayout
 android:id="@+id/source"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="center">

 <!-- children go here -->
 </com.commonsware.cwac.layouts.AspectLockedFrameLayout>
</FrameLayout>

Mirror and MirroringFrameLayout: Draw It Yourself
Another scenario where aspect ratios matter is when you are presenting information
on an external display via Presentation, as is covered
elsewhere in this book. Ideally, you fill the external display.
And normally this will happen for you automatically, as your Presentation
content view should fill the available screen space… assuming that the content
has the right aspect ratio, or can be suitably stretched.
One scenario where this might be a problem is if you want the same material
shown on both the main display and on the external display. For example,
suppose that you are using Presentation to deliver… well… a presentation.
The external display is probably some form of video projector, and you will
want your slides or other materials shown there. However, it is useful for
you to be able to see those same slides and such on the tablet, as typically
the projector screen is behind, or to the side of, the presenter. If the
presenter has to keep turning around to confirm what is shown on “the big screen”,
it can detract from the presentation.
Moreover, you might not only want to show the same material, but have it
stem from the same source, on the tablet, for interactivity reasons. Suppose
that you want to display a Web page. You might just pop up a WebView in the
Presentation. But… how do you scroll? The Presentation offers no touch
interface — projector screens do not magically respond to pinch-to-zoom just
because we happen to be projecting something onto them from an Android tablet.
In this case, ideally we would like to mirror something. Have the actual
widgets shown on the tablet, which can then respond to touch events and the like.
At the same time, capture what is shown on the tablet and reproduce it, verbatim,
on the Presentation for the audience to see. Now everybody can see the same
material, and the presenter can manipulate that material.
But now aspect ratios come into play. We want to fill the Presentation display
space, without black bars or stretching or whatever. That only works if our
source material — the widgets and containers to be mirrored — have the same
aspect ratio as the Presentation’s Display itself.
With that in mind, the CWAC Layouts project also contains two classes to solve
this problem:

	
MirroringFrameLayout is an AspectLockedFrameLayout that also can mirror
its content to…

	
Mirror, a View that takes a Bitmap representing the MirroringFrameLayout
contents and displays it

Technically, MirroringFrameLayout works with a MirrorSink, an interface that
can receive updates to the content to be mirrored when that content changes.
Mirror implements MirrorSink, and you could have other classes implement
MirrorSink as well if that made sense for your app. The sections that follow
focus on MirroringFrameLayout working with a Mirror, as that is the most
likely scenario.
MirroringFrameLayout
MirroringFrameLayout extends AspectLockedFrameLayout, so that we can lock
the aspect ratio of the to-be-mirrored contents to match the aspect ratio
of the Mirror. The Mirror is designed to be projected by the Presentation,
and so if the Mirror fills the Presentation’s Display, we want our
MirroringFrameLayout to match the aspect ratio so the entire Display can
indeed be filled.
Of course, a ViewGroup like FrameLayout normally just has its children
draw to the screen. In our case, we need to capture what is drawn ourselves,
to supply to the Mirror as needed. This is a bit tricky.

package com.commonsware.cwac.layouts;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Rect;
import android.util.AttributeSet;
import android.view.ViewTreeObserver.OnPreDrawListener;
import android.view.ViewTreeObserver.OnScrollChangedListener;

/**
 * A FrameLayout that locks its aspect ratio (courtesy of AspectLockedFrameLayout)
 * and supplies "screenshots" of its contents to an associated MirrorSink,
 * such as a Mirror.
 *
 * Principally, MirroringFrameLayout and Mirror are designed for use with
 * Android's Presentation system. The MirroringFrameLayout would be part of the
 * UI of the activity on the mobile device, allowing for user interaction. The
 * Mirror would be used in the Presentation to show an audience (e.g., via a
 * projector) what is shown inside the MirroringFrameLayout on the mobile
 * device.
 */
public class MirroringFrameLayout extends AspectLockedFrameLayout
 implements OnPreDrawListener, OnScrollChangedListener {
 private MirrorSink mirror=null;
 private Bitmap bmp=null;
 private Canvas bmpBackedCanvas=null;
 private Rect rect=new Rect();

 /**
 * {@inheritDoc}
 */
 public MirroringFrameLayout(Context context) {
 this(context, null);
 }

 /**
 * {@inheritDoc}
 */
 public MirroringFrameLayout(Context context, AttributeSet attrs) {
 super(context, attrs);

 setWillNotDraw(false);
 }

 /**
 * Associate a MirrorSink; this sink will be given bitmaps representing
 * updated contents of the MirroringFrameLayout as those contents change.
 *
 * @param mirror a Mirror or other MirrorSink implementation
 */
 public void setMirror(MirrorSink mirror) {
 this.mirror=mirror;

 if (mirror != null) {
 setAspectRatioSource(mirror);
 }
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public void onAttachedToWindow() {
 super.onAttachedToWindow();

 getViewTreeObserver().addOnPreDrawListener(this);
 getViewTreeObserver().addOnScrollChangedListener(this);
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public void onDetachedFromWindow() {
 getViewTreeObserver().removeOnPreDrawListener(this);
 getViewTreeObserver().removeOnScrollChangedListener(this);

 super.onDetachedFromWindow();
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public void draw(Canvas canvas) {
 if (mirror != null) {
 bmp.eraseColor(0);

 super.draw(bmpBackedCanvas);
 getDrawingRect(rect);
 canvas.drawBitmap(bmp, null, rect, null);
 mirror.update(bmp);
 }
 else {
 super.draw(canvas);
 }
 }

 /**
 * {@inheritDoc}
 */
 @Override
 protected void onSizeChanged(int w, int h, int oldw, int oldh) {
 initBitmap(w, h);

 super.onSizeChanged(w, h, oldw, oldh);
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public boolean onPreDraw() {
 if (mirror != null) {
 if (bmp == null) {
 requestLayout();
 }
 else {
 invalidate();
 }
 }

 return(true);
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public void onScrollChanged() {
 onPreDraw();
 }

 private void initBitmap(int w, int h) {
 if (mirror != null) {
 if (bmp == null || bmp.getWidth() != w || bmp.getHeight() != h) {
 if (bmp != null) {
 bmp.recycle();
 }

 bmp=Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
 bmpBackedCanvas=new Canvas(bmp);
 }
 }
 }
}

Our one-argument constructor uses this() to chain to the two-argument
constructor. The two-argument constructor calls setWillNotDraw(false)
indicating to Android that we want this ViewGroup to participate in
the drawing process like a regular View — normally, certain steps in
the drawing process are skipped as being irrelevant to View classes that do
not draw anything themselves.
We have a setMirror() method, where the activity or fragment can supply the
MirrorSink that is connected to this MirroringFrameLayout. In addition to
holding onto the MirrorSink in a mirror data member, we call
setAspectRatioSource(), inherited from AspectLockedFrameLayout, so
our contents will match the aspect ratio from that source.
MirroringFrameLayout overrides onAttachedToWindow() and
onDetatchedFromWindow(). As one might guess, these callbacks are called
when views are attached and detached from some window. Usually, that window
represents an activity, though it could represent a Dialog or a Presentation.
In those callbacks, we connect with the ViewTreeObserver of the
MirroringFrameLayout. A ViewTreeObserver is a way to find out about events
of a view tree, rooted at some ViewGroup. In our case, we want to find out
when children are going to be drawn (addOnPreDrawListener()) and when
they are scrolled (addOnScrollChangedListener()).
We override onSizeChanged(). This is called on any View when its size may
have changed, either because it is being sized initially when the UI is being
set up, or because something else nearby changed size (e.g., its parent) and
therefore the size of the View itself may now be different. In our case, we
use onSizeChanged() to set up a Bitmap object, sized to match our size,
and a Canvas object that wraps around that Bitmap object. As you will see,
we will use this Canvas to capture what is being drawn on the screen, for
later use by the Mirror.
We also override draw(). This is, in effect, the “entry point” into the
logic that causes a View to render itself on the screen, by drawing to a
supplied Canvas object. Most View classes do not override draw(), as the
real rendering is done in an onDraw() method, as we will see with Mirror
later in this chapter. However, in our case, we have to override draw() for
one simple reason: we do not want to draw to the Canvas supplied by Android
to the draw() method. We want to draw to our own Canvas, backed by that
Bitmap.
To that end, if we have a MirrorSink, we:

	Make sure the Bitmap starts off blank by calling eraseColor()

	Chain to the superclass, replacing the Canvas given to us in draw() by
our own Bitmap-backed Canvas

	Calculate a Rect object with our size and position, using getDrawingRect()

	Use that Rect and the Bitmap to render the Bitmap to the “real” Canvas
supplied to us in draw()

	Call update() on the MirrorSink, to give it the new Bitmap

By rendering our contents to the Bitmap-backed Canvas, instead of the normal
one, we capture a copy of the output, in the form of the Bitmap. Since the
Bitmap has the same size as the “real” Canvas (courtesy of our onSizeChanged()
work), when we draw the Bitmap onto the Canvas, we effectively “color in” the
same pixels in the same spots as if we had skipped all of this and left the
normal draw() logic alone. But, since we still hold onto our Bitmap, we can
use those same pixels elsewhere… such as in our Mirror.
The problem with relying on draw() is that it is not always called when there
are changes to widgets within the MirroringFrameLayout. In particular, WebView
often does not trigger draw() on the MirroringFrameLayout. That’s where
the pre-draw and scroll-changed events from the ViewTreeObserver come into play:
they give us more indication that we need to update our Bitmap.
The onPreDraw() method is called when a child of this MirroringFrameLayout is
about to be drawn. If we have our MirrorSink, we then either call requestLayout()
(if we have no bitmap yet) or invalidate() (if we do), to trigger Android to go
through the draw process for the MirroringFrameLayout too, allowing us to update
our Bitmap.
The onScrollChanged() method is called when a child of this MirroringFrameLayout
has been scrolled. This delegates to onPreDraw(), to run through the same logic
to force an update to the Bitmap.
Mirror
Mirror extends the base View class, and so it is the most “raw” of all the
custom widgets and containers shown so far in this chapter. It has an update()
method, used to connect the MirroringFrameLayout from which the Mirror can
obtain what it is supposed to display:

package com.commonsware.cwac.layouts;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Rect;
import android.util.AttributeSet;
import android.view.View;

/**
 * A View that implements MirrorSink and renders the supplied bitmaps to its
 * own contents. When connected to a MirroringFrameLayout, Mirror will aim to
 * show the same contents as is in the MirroringFrameLayout, at the same aspect
 * ratio, though possibly at a different size.
 *
 * Principally, MirroringFrameLayout and Mirror are designed for use with
 * Android's Presentation system. The MirroringFrameLayout would be part of the
 * UI of the activity on the mobile device, allowing for user interaction. The
 * Mirror would be used in the Presentation to show an audience (e.g., via a
 * projector) what is shown inside the MirroringFrameLayout on the mobile
 * device.
 */
public class Mirror extends View implements MirrorSink {
 private Rect rect=new Rect();
 private Bitmap bmp=null;

 /**
 * {@inheritDoc}
 */
 public Mirror(Context context) {
 super(context);
 }

 /**
 * {@inheritDoc}
 */
 public Mirror(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 /**
 * {@inheritDoc}
 */
 public Mirror(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public void update(Bitmap bmp) {
 this.bmp=bmp;
 invalidate();
 }

 /**
 * {@inheritDoc}
 */
 @Override
 protected void onDraw(Canvas canvas) {
 super.onDraw(canvas);

 if (bmp != null) {
 getDrawingRect(rect);

 calcCenter(rect.width(), rect.height(), bmp.getWidth(),
 bmp.getHeight(), rect);
 canvas.drawBitmap(bmp, null, rect, null);
 }
 }

 // based upon http://stackoverflow.com/a/14679729/115145

 static void calcCenter(int vw, int vh, int iw, int ih, Rect out) {
 double scale=
 Math.min((double)vw / (double)iw, (double)vh / (double)ih);

 int h=(int)(scale * ih);
 int w=(int)(scale * iw);
 int x=((vw - w) >> 1);
 int y=((vh - h) >> 1);

 out.set(x, y, x + w, y + h);
 }
}

The bulk of the “business logic” lies in onDraw(), plus a helper calcCenter()
static method.
onDraw() is called on a View when it is time for that widget to actually
draw its visual representation onto the supplied Canvas. Different widgets will
use different drawing primitive methods offered by Canvas, to draw lines and
text and whatnot. In our case, we:

	Calculate a Rect object with our size and position, using getDrawingRect()

	Get the Bitmap object from the MirroringFrameLayout, via a call to
getLastBitmap() (which simply returns the Bitmap that the MirroringFrameLayout
is using)

	Call calcCenter to adjust our Rect to take into account the fact that our
size may be different than the size of the actual Bitmap

	Call drawBitmap() on our Canvas, to render the Bitmap into the location
specified by the Rect, where drawBitmap() will automatically down-sample or
up-sample the image as needed to fill the necessary space

Usage and Results
Normally, you would use the Mirror in a layout for a Presentation and the
MirroringFrameLayout in an activity that controls the Presentation. However,
it is possible to use both in the same layout file, for light testing. However,
please do not put the Mirror inside of the MirroringFrameLayout, as this
is likely to cause a rupture in the space-time continuum, and you really do not
want to be responsible for that.
So, in the SimpleMirrorActivity from the demo/ sub-project, we use a layout
that has both Mirror and MirroringFrameLayout, with the latter set to mirror
a WebView:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".SimpleMirrorActivity">

 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1">

 <com.commonsware.cwac.layouts.MirroringFrameLayout
 android:id="@+id/source"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="center">

 <EditText
 android:id="@+id/editor"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="left|top"
 android:inputType="textMultiLine"/>
 </com.commonsware.cwac.layouts.MirroringFrameLayout>
 </FrameLayout>

 <View
 android:layout_width="match_parent"
 android:layout_height="4dip"
 android:background="#FF000000"/>

 <com.commonsware.cwac.layouts.Mirror
 android:id="@+id/target"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="2"/>

</LinearLayout>

In this case, we set the background of the FrameLayout holding our
MirroringFrameLayout to green, to show how the MirroringFrameLayout size is
changed to maintain our aspect ratio.
(or, perhaps we just like green)
Besides configuring the to-be-mirrored widgets, all you need to do is call
setMirror() on the MirroringFrameLayout to enable the mirroring logic:

package com.commonsware.cwac.layouts.demo;

import android.app.Activity;
import android.os.Bundle;
import com.commonsware.cwac.layouts.Mirror;
import com.commonsware.cwac.layouts.MirroringFrameLayout;

public class SimpleMirrorActivity extends Activity {
 MirroringFrameLayout source=null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.simple_mirror);

 source=findViewById(R.id.source);
 Mirror target=findViewById(R.id.target);

 source.setMirror(target);
 }
}

[image: MirroringFrameLayout Above Its Mirror]

Figure 586: MirroringFrameLayout Above Its Mirror
While the bottom portion is just the Mirror and therefore is non-interactive,
the top is the real WebView, which can be scrolled, with the resulting changes
reflected in the Mirror in real-time:

[image: MirroringFrameLayout and Mirror, Showing Scrolled Contents]

Figure 587: MirroringFrameLayout and Mirror, Showing Scrolled Contents
Limitations
MirroringFrameLayout only works for materials drawn in the Java layer, that therefore
can be drawn to the Bitmap-backed Canvas. Content not drawn in the Java layer
will not work with MirroringFrameLayout, notably anything involving a SurfaceView.
This not only includes your own SurfaceView widgets, but anything else that depends
upon SurfaceView, such as VideoView or the Maps V2 MapView and MapFragment.
Also, the re-sampling done by Mirror is not especially sophisticated and will
cause jagged effects, particularly when up-sampling. Ideally, the MirroredFrameLayout
will be the same size or larger than the Mirror. This may not always be possible,
particularly with a Mirror shown on a 1080p external display, but the closer you can
get will improve the output.
Advanced Preferences
We saw SharedPreferences and PreferenceFragment
earlier in the book. However, we can have
more elaborate preference collection options if we wish,
such as a full master-detail implementation like the
Settings app sports. There are also many other common
attributes on the preference XML elements that we might
consider taking advantage of, such as allowing us to automatically
enable and disable preferences based upon whether some
other preference is checked or unchecked.
In this chapter, we will explore some of these additional
capabilities in the world of Android preferences.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on SharedPreferences.
Introducing PreferenceActivity
If you have a fairly simple set of preferences to collect from the user,
using a single PreferenceFragment should be sufficient.
On the far other end of the spectrum, Android’s Settings app collects
a massive amount of preference values from the user. These are spread
across a series of groups of preferences, known as preference headers.
While your app may not need to collect as many preferences as does
the Settings app, you may need more than what could be collected
easily in a single PreferenceFragment. In that case, you can consider
adopting the same structure of headers-and-fragments that the Settings
app uses, by means of a PreferenceActivity.
To see this in action, take a look at the
Prefs/FragmentsBC
sample project. It is very similar to the original SharedPreferences
demo app from before. However, this one arranges to collect
a fifth preference value, in a separate PreferenceFragment, and uses
PreferenceActivity to allow access to both PreferenceFragment UI
structures.
Defining Your Preference Headers
In the master-detail approach offered by PreferenceActivity, the
“master” list is a collection of preference headers. Typically, you
would define these in another XML resource.
In the sample project, that is found in
res/xml/preference_headers.xml:

<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">

 <header
 android:fragment="com.commonsware.android.preffragsbc.EditPreferences$First"
 android:summary="@string/header1summary"
 android:title="@string/header1title">
 </header>
 <header
 android:fragment="com.commonsware.android.preffragsbc.EditPreferences$Second"
 android:summary="@string/header2summary"
 android:title="@string/header2title">
 </header>

</preference-headers>

(from Prefs/FragmentsBC/app/src/main/res/xml/preference_headers.xml)
Here, your root element is <preference-headers>, containing a series of
<header> elements. Each <header> contains at least three attributes:

	
android:fragment, which identifies the Java class implementing the
PreferenceFragment to use for this header, as is described in the next
section

	
android:title, which is a few words identifying this header to
the user

Once again, you may wish to also include android:summary,
which is a short sentence explaining what the user will find inside of this header.
You can, if you wish, include one or more <extra> child elements inside
the <header> element. These values will be put into the “arguments” Bundle that
the associated PreferenceFragment can retrieve via getArguments().
Creating Your PreferenceActivity
EditPreferences — which in the original sample app was a regular
Activity — is now a PreferenceActivity. It contains little
more than
the two fragments referenced in the above preference header XML:

package com.commonsware.android.preffragsbc;

import android.os.Bundle;
import android.preference.PreferenceActivity;
import android.preference.PreferenceFragment;
import java.util.List;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onBuildHeaders(List<Header> target) {
 loadHeadersFromResource(R.xml.preference_headers, target);
 }

 @Override
 protected boolean isValidFragment(String fragmentName) {
 if (First.class.getName().equals(fragmentName)
 || Second.class.getName().equals(fragmentName)) {
 return(true);
 }

 return(false);
 }

 public static class First extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }
 }

 public static class Second extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences2);
 }
 }
}

(from Prefs/FragmentsBC/app/src/main/java/com/commonsware/android/preffragsbc/EditPreferences.java)
onBuildHeaders() is where we supply the preference headers, via a call
to loadHeadersFromResource().
We also need to have an isValidFragment() method, that will return true
if the supplied fragment name is one we should be showing in this
PreferenceActivity, false otherwise. This will only be called on
Android 4.4+. However, we need to set up the project build target
(e.g., compileSdkVersion in Android Studio) to API Level 19
or higher. Failing to have this method will cause your app to crash
on Android 4.4+ devices, when the user tries to bring up one
of your PreferenceFragments.
Each PreferenceFragment is then responsible for calling
addPreferencesFromResource() to populate its contents. In this
case, we now have two such resources: res/xml/preferences.xml
(the original, used by First) and res/xml/preferences2.xml
(used by Second).
The Results
On a wide enough screen — like that of a Nexus 9 in landscape — we
get a master-detail presentation:

[image: PreferenceActivity UI, on a Landscape Nexus 9]

Figure 588: PreferenceActivity UI, on a Landscape Nexus 9
Here, we see the first preference fragment already pre-selected,
showing its settings. Tapping on the second header will show the
other preferences.
On a smaller screen, the master-detail approach means that we
see a list of headers first:

[image: PreferenceActivity UI, on a Portrait Nexus 5]

Figure 589: PreferenceActivity UI, on a Portrait Nexus 5
Tapping the headers give us access to the individual fragments.
Intents for Headers or Preferences
If you have the need to collect some preferences that are beyond what the
standard preferences can handle, you have some choices.
One is to create a custom Preference. Extending DialogPreference to create
your own Preference implementation is not especially hard. However, it does
constrain you to something that can fit in a dialog.
Another option is to specify an <intent> element as a child of a <header>
element. When the user taps on this header, your specified Intent is used
with startActivity(), giving you a gateway to your own activity for
collecting things that are beyond what the preference UI can handle. For
example, you could have the following <header>:

<header android:icon="@drawable/something"
 android:title="Fancy Stuff"
 android:summary="Click here to transcend your
plane of existence">
 <intent android:action="com.commonsware.android.MY_CUSTOM_ACTION" />
</header>

Then, so long as you have an activity with an <intent-filter> specifying your
desired action (com.commonsware.android.MY_CUSTOM_ACTION), that activity will
get control when the user taps on the associated header.
Conditional Headers
The two-tier, headers-and-preferences approach is fine and helps to
organize large rosters of preferences.
However, it does tend to steer developers in the direction of displaying
headers all of the time. For many apps, that is rather pointless,
because there are too few preferences to collect to warrant having more
than one header.
One alternative approach is to use the headers on larger devices,
but skip them on smaller devices. That way, the user does not have to
tap past a single-item ListFragment just to get to the actual
preferences to adjust.
This is a wee bit tricky to implement. However, you have two options for
how to accomplish it.
(The author would like to thank Richard Le Mesurier, whose question on this
topic spurred the development of this section and its samples)
Option #1: Do Not Define the Headers
The basic plan in the first approach is to have smarts in onBuildHeaders() to handle this.
onBuildHeaders() is the callback that Android invokes on our
PreferenceActivity to let us define the headers to use in the
master-detail pattern. If we want to have headers, we would supply
them here; if we want to skip the headers, we would instead fall
back to the classic (and, admittedly, deprecated)
addPreferencesFromResource() method to load up some preference
XML.
There is an isMultiPane() method on PreferenceActivity, starting
with API Level 11, that will tell you if the activity will render
with two fragments (master+detail) or not. In principle, this would
be ideal to use. Unfortunately, it does not seem to be designed to
be called from onBuildHeaders(). Similarly, addPreferencesFromResource()
does not seem to be callable from onBuildHeaders(). Both are due
to timing: onBuildHeaders() is called in the middle of the
PreferenceActivity onCreate() processing.
So, we have to do some fancy footwork.
By examining the source code to PreferenceActivity,
you will see that the logic that drives the single-pane vs. dual-pane
UI decision boils down to:

onIsHidingHeaders() || !onIsMultiPane()

If that expression returns true, we are in single-pane mode; otherwise,
we are in dual-pane mode. onIsHidingHeaders() will normally return
false, while onIsMultiPane() will return either true or false
based upon screen size.
So, we can leverage this information in a PreferenceActivity to
conditionally load our headers, as seen in the EditPreferences
class in the
Prefs/SingleHeader
sample project:

package com.commonsware.android.pref1header;

import android.os.Bundle;
import android.preference.PreferenceActivity;
import java.util.List;

public class EditPreferences extends PreferenceActivity {
 private boolean needResource=false;

 @SuppressWarnings("deprecation")
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (needResource) {
 addPreferencesFromResource(R.xml.preferences);
 }
 }

 @Override
 public void onBuildHeaders(List<Header> target) {
 if (onIsHidingHeaders() || !onIsMultiPane()) {
 needResource=true;
 }
 else {
 loadHeadersFromResource(R.xml.preference_headers, target);
 }
 }

 @Override
 protected boolean isValidFragment(String fragmentName) {
 return(StockPreferenceFragment.class.getName().equals(fragmentName));
 }
}

(from Prefs/SingleHeader/app/src/main/java/com/commonsware/android/pref1header/EditPreferences.java)
Here, if we are in dual-pane mode, onBuildHeaders() populates the
headers as normal. If, though, we are in single-pane mode, we skip
that step and make note that we need to do some more work in onCreate().
Then, in onCreate(), if we did not load our headers we use the classic addPreferencesFromResource()
method.
The net result is that on Android 3.0+ tablets, we get the dual-pane,
master-detail look with our one header, but on smaller devices
(regardless of version), we roll straight to the preferences themselves.
Note that this sample application uses a single PreferenceFragment
implementation, named StockPreferenceFragment:

package com.commonsware.android.pref1header;

import android.os.Bundle;
import android.preference.PreferenceFragment;

public class StockPreferenceFragment extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 int res=
 getActivity().getResources()
 .getIdentifier(getArguments().getString("resource"),
 "xml",
 getActivity().getPackageName());

 addPreferencesFromResource(res);
 }
}

(from Prefs/SingleHeader/app/src/main/java/com/commonsware/android/pref1header/StockPreferenceFragment.java)
StockPreferenceFragment does what it is supposed to: call
addPreferencesFromResource() in onCreate() with the resource ID of the
preferences to load. However, rather than hard-coding a resource ID, as we
normally would, we look it up at runtime.
The <extra> elements in our preference header XML supply the name of the
preference XML to be loaded:

<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">

 <header
 android:fragment="com.commonsware.android.pref1header.StockPreferenceFragment"
 android:summary="@string/header1summary"
 android:title="@string/header1title">
 <extra
 android:name="resource"
 android:value="preferences"/>
 </header>

</preference-headers>

(from Prefs/SingleHeader/app/src/main/res/xml/preference_headers.xml)
We get that name via the arguments Bundle
(getArguments().getString("resource")).
To look up a resource ID at runtime, we can use the Resources object, available
from our activity via a call to getResources(). Resources has a method,
getIdentifier(), that will return a resource ID given three pieces of information:

	The base name of the resource (in our case, the value retrieved from the <extra>
element)

	The type of the resource (e.g., "xml")

	The package holding the resource (in our case, our own package, retrieved
from our activity via getPackageName())

Note that getIdentifier() uses reflection to find this value, and so there
is some overhead in the process. Do not use getIdentifier() in a long loop
– cache the value instead.
The net is that StockPreferenceFragment loads the preference XML described
in the <extra> element, so we do not need to create separate
PreferenceFragment implementations per preference header.
Option #2: Go Directly to the Fragment
The advantage of the above approach is that it works with Android’s own logic
of whether to display the master-detail fragments or just one at a time.
However, that logic — the fact that onIsHidingHeaders() || !onIsMultiPane()
determines the look of the activity — is not documented, and therefore may
change in future Android releases.
Another option is to launch your PreferenceActivity in such a way that
tells Android to skip showing the headers. This approach
is better documented and therefore perhaps more stable. This can also be
used in cases where you do want headers sometimes, but at other times you
want to route the user to a specific PreferenceFragment. The downside
is that this technique only works on API Level 11+.
To see how this works, take a look at the
Prefs/SingleHeader2
sample project.
Our EditPreferences class is the same implementation as in the original sample
for this chapter, except that we only load up the single XML resource’s worth
of preferences:

package com.commonsware.android.pref1header;

import android.preference.PreferenceActivity;
import java.util.List;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onBuildHeaders(List<Header> target) {
 loadHeadersFromResource(R.xml.preference_headers, target);
 }

 @Override
 protected boolean isValidFragment(String fragmentName) {
 return(StockPreferenceFragment.class.getName().equals(fragmentName));
 }
}

(from Prefs/SingleHeader2/app/src/main/java/com/commonsware/android/pref1header/EditPreferences.java)
However, there is a change in our main activity (FragmentsDemo). Before, when
the user chose the “Settings” action bar overflow item, we would just call
startActivity() to bring up EditPreferences. Now, we delegate that work
to an editPrefs() method on FragmentsDemo, which will have the smarts to
control how we bring up the EditPreferences activity:

 private void editPrefs() {
 Intent i=new Intent(this, EditPreferences.class);

 i.putExtra(PreferenceActivity.EXTRA_SHOW_FRAGMENT,
 StockPreferenceFragment.class.getName());

 Bundle b=new Bundle();

 b.putString("resource", "preferences");

 i.putExtra(PreferenceActivity.EXTRA_SHOW_FRAGMENT_ARGUMENTS, b);

 startActivity(i);
 }

(from Prefs/SingleHeader2/app/src/main/java/com/commonsware/android/pref1header/FragmentsDemo.java)
Here, we will add two extras to our Intent:

	
EXTRA_SHOW_FRAGMENT, set to the fully-qualified class name of the PreferenceFragment
to be displayed, here obtained by calling getName() on the Class object
for StockPreferenceFragment

	
EXTRA_SHOW_FRAGMENT_ARGUMENTS, set to a Bundle containing the same values that
would ordinarily be loaded from the <extra> elements in the preference header
XML resource (in our case, the name of the preference XML resource to load)

Those extras will be automatically handled by PreferenceActivity (on API Level 11+)
and will have the effect of directly taking the user to our one-and-only fragment, bypassing
the headers.
Dependent Preferences
In the Settings app, or in other apps that appear to be using
PreferenceFragment-based UIs, you may have noticed that there are
times when preferences are disabled. They become enabled when you
check a CheckBoxPreference or toggle on a SwitchPreference.
That is handled via the android:dependency attribute on the to-be-disabled
preferences. The value of android:dependency is the key of
a TwoStatePreference subclass, such as a
CheckBoxPreference or a SwitchPreference. The enabled/disabled
state of the preference with the android:dependency attribute
depends on the checked state of the named dependency.
For example, the
Prefs/Dependency
sample project is a clone of
the original SharedPreferences demo app with one slight
change: all the preferences other than checkbox are now dependent
upon checkbox:

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

 <CheckBoxPreference
 android:key="checkbox"
 android:summary="@string/pref1summary"
 android:title="@string/pref1title"/>

 <RingtonePreference
 android:dependency="checkbox"
 android:key="ringtone"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="@string/pref2summary"
 android:title="@string/pref2title"/>

 <EditTextPreference
 android:dependency="checkbox"
 android:dialogTitle="@string/dialogtitle"
 android:key="text"
 android:summary="@string/pref3summary"
 android:title="@string/pref3title"/>

 <ListPreference
 android:dependency="checkbox"
 android:dialogTitle="@string/listdialogtitle"
 android:entries="@array/cities"
 android:entryValues="@array/airport_codes"
 android:key="list"
 android:summary="@string/pref4summary"
 android:title="@string/pref4title"/>

</PreferenceScreen>

(from Prefs/Dependency/app/src/main/res/xml/preferences.xml)
When you run the project, the dependent preferences are disabled
while the checkbox is unchecked:

[image: Dependent Preferences, Disabled]

Figure 590: Dependent Preferences, Disabled
…but become enabled once the user checks the checkbox:

[image: Dependent Preferences, Enabled]

Figure 591: Dependent Preferences, Enabled
Nested Screens
Perhaps you have more preferences than you want to collect on a single
screen, but you do not feel that a master-detail presentation is
the right structure. Or, perhaps you have lots of preferences to
collect, and even collecting preferences into groups by header is
insufficient.
Another possibility is to nest preference screens. One screen
holds another. On the outer preference screen, the user has a
“preference” entry that simply displays the nested screen, as opposed
to directly collecting any preferences.
A <PreferenceScreen> element in your preference XML can hold
another <PreferenceScreen> element. That inner <PreferenceScreen>
can come in one of two forms:

	Inside the inner <PreferenceScreen> you have more preference
XML elements. This means there is only one PreferenceFragment for
the whole structure (outer <PreferenceScreen>, including the
inner <PreferenceScreen>). However, visually, the user will
“drill down” from the outer screen into the inner one by tapping on
an entry.

	The inner <PreferenceScreen> has an android:fragment
attribute, just like a preference header might. This points to
a Fragment — typically a PreferenceFragment — that will be
responsible for the “inner” content. This is a bit more complex
to set up, as it requires a couple of fragments. However, it gives
you greater flexibility. Plus, it is fairly easy to then switch
from using preference headers and the master-detail approach to
using nested preference screens, or back again, as you are simply
reusing the same PreferenceFragment implementations in either
case.

The
Prefs/NestedScreens
sample project takes the master-detail approach shown earlier
in this chapter and switches it to having a top-level screen
and a nested screen. This is accomplished by adding a <PreferenceScreen>
element to res/xml/preferences.xml, pointing to our
Second PreferenceFragment:

 <PreferenceScreen
 android:fragment="com.commonsware.android.preffragsbc.EditPreferences$Second"
 android:key="unused"
 android:title="@string/nested_title"/>

(from Prefs/NestedScreens/app/src/main/res/xml/preferences.xml)
Here, the android:title (and optional android:summary) will be shown
on the outer screen, as an entry that the user can tap on to get to
this inner screen. While in this sample, we are not using android:key,
in principle you could use this to get at the PreferenceScreen itself
to manipulate it at runtime (e.g., disable it).
For this style of <PreferenceScreen> to work, the preference XML must
be used by a PreferenceFragment in a PreferenceActivity — you cannot
use it with a regular Activity. However, just because you use
PreferenceActivity does not mean that you have to opt into the
master-detail structure. We can use the same onCreate(),
show-the-PreferenceFragment approach that we use with a regular
Activity.
However, there is one big catch: when the user taps on the entry
that will launch the inner screen, the Android framework will start
another instance of our PreferenceActivity. It will give us the
same EXTRA_SHOW_FRAGMENT value as we saw earlier in this chapter.
However, PreferenceActivity will automatically show that fragment; we
do not need to show it ourselves.
But, this means that our onCreate() needs to distinguish between
the “show the outer screen ourselves” case and the “show the inner
screen automatically” case, which we can do by seeing if
EXTRA_SHOW_FRAGMENT exists:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getIntent().getStringExtra(PreferenceActivity.EXTRA_SHOW_FRAGMENT)==null) {
 if (getFragmentManager().findFragmentById(android.R.id.content)==null) {
 getFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new First()).commit();
 }
 }
 }

(from Prefs/NestedScreens/app/src/main/java/com/commonsware/android/preffragsbc/EditPreferences.java)
The result is that we see the outer screen first, containing our
entry for the inner screen:

[image: Nested Preferences, Outer Screen]

Figure 592: Nested Preferences, Outer Screen
Tapping on that entry brings up the inner, nested, screen:

[image: Nested Preferences, Inner Screen]

Figure 593: Nested Preferences, Inner Screen
Listening to Preference Changes
Sometimes, you may need to take steps when the user interacts with
a preference in your PreferenceFragment-based UI.
A common scenario for this comes with the summary. In some cases,
is it handy to have the summary reflect the current value of the
preference. While some preferences naturally show their value inline
(e.g., a CheckBoxPreference), those that extend from DialogPreference
only show their value when the user taps on the preference to display
the dialog. Putting something in the summary that reflects the
value can save the user a click.
However, by default, the summary is static, populated by the
android:summary attribute in your preference XML. If you want it
to reflect the current preference value, you not only need to be able
to set the summary in Java, but to be able to respond when the user
changes the value, so you can update the summary again.
The
Prefs/CustomSubtitle
sample project demonstrates how this works. This is yet another
clone of the original SharedPreferences demo app.
This time, the preference XML is unchanged from the original. However,
we have a slightly more elaborate PreferenceFragment implementation:

 public static class Prefs extends PreferenceFragment
 implements Preference.OnPreferenceChangeListener {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);

 Preference pref=findPreference("text");

 updateSummary(pref,
 pref.getSharedPreferences().getString(pref.getKey(), null));
 pref.setOnPreferenceChangeListener(this);
 }

 @Override
 public boolean onPreferenceChange(Preference pref, Object newValue) {
 updateSummary(pref, newValue.toString());

 return(true);
 }

 private void updateSummary(Preference pref, String value) {
 if (value==null || value.length()==0) {
 pref.setSummary(R.string.msg_missing_text);
 }
 else {
 pref.setSummary(value);
 }
 }
 }

(from Prefs/CustomSubtitle/app/src/main/java/com/commonsware/android/preffrag/EditPreferences.java)
In onCreate(), after addPreferencesFromResource(), we call
findPreference() to retrieve the Preference object that manages
the snippet of UI for a particular preference. The flow here
mimics that of setContentView() and findViewById(): first you
inflate the resource, then you find the Java object corresponding
to some XML element out of that resource. findPreference()
takes the key of the preference that you are looking for; in this
case, we are looking for the EditTextPreference, whose key is
text.
We then call a private updateSummary() method, which takes the
Preference and the current value of that preference and updates
the summary. To get the current value, onCreate() can ask the
Preference for its backing SharedPreferences (via getSharedPreferences()),
then retrieve the value using standard getters (e.g., getString()).
updateSummary() then shows the string representation of the
current value, or a canned message if there does not appear to be
a current value.
We also register the fragment itself as being the OnPreferenceChangeListener,
and register the fragment with the preference via
setOnPreferenceChangeListener(). This means that when the user
manipulates this preference, we will be called with onPreferenceChange().
This is done before the SharedPreferences are updated. Our options
are either to return true and have the normal persistence process
continue, or return false and manage persistence ourselves (e.g.,
perform some conversion on the raw value before storing it). In our
case, we are just using this to call updateSummary() again.
If you install the app and run it, you will not have an existing
value for the preference, and so the summary shows a stock
message:

[image: Custom Subtitle Demo, Before Editing Text]

Figure 594: Custom Subtitle Demo, Before Editing Text
After you tap on the EditTextPreference and fill in some value
in the dialog, the summary updates to show what you typed in:

[image: Custom Subtitle Demo, After Editing Text]

Figure 595: Custom Subtitle Demo, After Editing Text
Defaults, and Defaults
When you use SharedPreferences to retrieve a value, you can usually
provide a default value along with the key for the value that you want.
If there is no preference value for that key, you get the default
that you supplied.
A preference in preference XML also has an android:defaultValue
attribute. This is, roughly speaking, the preference UI counterpart
to that second parameter to the SharedPreferences getters. If the
user interacts with the preference, the android:defaultValue value
will be presented to the user if there was no preference value stored
for that key in the underlying SharedPreferences.
To synchronize these, you can call setDefaultValues() on
the PreferenceManager class. Given the resource ID of some preference
XML, PreferenceManager will find all android:defaultValue attributes
and then persist those default values to the SharedPreferences under
their respective keys.
Listening to Preference Value Changes
Sometimes, you will have components that need to know when preference
values are changed elsewhere in your app. For example, you may have
a Service that is using information from SharedPreferences, and
the Service may need to know when those values change.
One approach, used in all the sample apps, is simply to re-read the
preference values as needed, rather than caching them in data members
or something. After the first time SharedPreferences are accessed,
the SharedPreferences themselves are held in heap space, and so
accessing them can be fairly cheap. So, the sample apps’ launcher
activities just re-read the preference values in onResume() and update
the UI that way.
If, however, that is inappropriate, inconvenient, or otherwise not
what you want to do, you can call registerOnSharedPreferenceChangeListener()
on a SharedPreferences object, supplying an instance of an implementation
of the OnSharedPreferenceChangeListener interface. That object will
be called with onSharedPreferenceChanged() every time a preference value
changes. You are given the key to the changed value, so you can implement
a filter to only pay attention to keys that matter to you. When one of
those keys is reported to have changed, you can ask the SharedPreferences
for the new value.
Dynamic ListPreference Contents
Many times, the items that the user can choose from in your
ListPreference or MultiSelectListPreference are fixed, allowing you
to populate them from <string-array> resources. However, sometimes,
the items (display names and corresponding values) are dynamic, based
upon information held elsewhere: database, server, or something at a
system level. For those, we need to be able to define the preference
in XML, but configure its contents in Java code.
For example, the
Introspection/SAWMonitor
sample project is a monitor for new and upgraded apps that ask for
the SYSTEM_ALERT_WINDOW permission. Such apps have the right to draw
over top of other apps, for anything from Facebook “chatheads” to
tapjacking attacks.
However, some apps may request this permission that you are perfectly
fine with having it. By default, SAWMonitor will point out this
permission on each subsequent update, which can get tiresome after a while.
Hence, SAWMonitor allows you to add apps to a “whitelist”; those apps
will be ignored, even if they request SYSTEM_ALERT_WINDOW.
To that end, we have a settings.xml resource describing some preferences
to collect from the user:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
 <SwitchPreference
 android:key="enabled"
 android:title="@string/msg_enable"
 android:defaultValue="true"/>
 <MultiSelectListPreference
 android:key="whitelist"
 android:title="@string/msg_whitelist" />
</PreferenceScreen>

(from Introspection/SAWMonitor/app/src/main/res/xml/settings.xml)
Here we have two preferences: a SwitchPreference for whether we
should be monitoring for SYSTEM_ALERT_WINDOW at all, and a MultiSelectListPreference
to allow the user to control the whitelist.
In onCreate() of our SettingsFragment, we load up those preferences
into the UI via addPreferencesFromResource(), use findPreference()
to retrieve both of the Preference objects, and use setOnPreferenceChangeListener()
to be notified about changes to the enabled preference:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.settings);
 pm=getActivity().getPackageManager();

 enabled=(SwitchPreference)findPreference(MonitorApp.PREF_ENABLED);

 populateWhitelist((MultiSelectListPreference)findPreference("whitelist"));
 }

(from Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)
The populateWhitelist() call is where we fill in the details for the
MultiSelectListPreference. In our case, the possible values are the
apps presently installed that have requested the SYSTEM_ALERT_WINDOW
permission. So, we use PackageManager to find those, then use that
information to populate the whitelist preference:

 void populateWhitelist(MultiSelectListPreference whitelist) {
 List<ApplicationInfo> apps=pm.getInstalledApplications(0);

 Collections.sort(apps,
 new ApplicationInfo.DisplayNameComparator(pm));

 ArrayList<CharSequence> displayNames=
 new ArrayList<CharSequence>();
 ArrayList<String> packageNames=new ArrayList<String>();

 for (ApplicationInfo app : apps) {
 try {
 PackageInfo pkgInfo=
 pm.getPackageInfo(app.packageName,
 PackageManager.GET_PERMISSIONS);

 if (pkgInfo.requestedPermissions!=null) {
 for (String perm : pkgInfo.requestedPermissions) {
 if (SYSTEM_ALERT_WINDOW.equals(perm)) {
 displayNames.add(app.loadLabel(pm));
 packageNames.add(app.packageName);
 break;
 }
 }
 }
 }
 catch (PackageManager.NameNotFoundException e) {
 // should not happen, quietly ignore
 }
 }

 whitelist
 .setEntries(displayNames
 .toArray(new CharSequence[displayNames.size()]));
 whitelist
 .setEntryValues(packageNames
 .toArray(new String[packageNames.size()]));
 }

(from Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)
Most of the code is determining which applications have that permission.
However, MultiSelectListPreference complicates matters, by having
two separate setter methods for its contents:

	
setEntries() sets the display names, what the user will see in the
multi-select dialog

	
setEntryValues() sets the corresponding values, what will be stored
in the SharedPreferences based upon the user’s input

These each take arrays of CharSequence implementations, like String.
Hence, we need two parallel arrays of values, rather than a single
ArrayList of Pair objects or something.
With that in mind, populateWhitelist():

	Gets the list of installed applications from the PackageManager
(pm is a field initialized in onCreate())

	Sorts those by display name, so our results will wind up in alphabetical
order

	Creates an ArrayList for the display names and a separate one for the
package names, which will serve as our entry values

	Iterates over the applications, gets the permissions requested by each
app, and if any of those is SYSTEM_ALERT_WINDOW, add the display name
(loadLabel()) and the package name to their respective lists

	Converts each of those ArrayList objects into a corresponding
Java array, and passes them to their appropriate setters

The resulting SettingsFragment has the two preferences:

[image: SAWMonitor SettingsFragment]

Figure 596: SAWMonitor SettingsFragment
Tapping on the “Whitelist” entry brings up the MultiSelectListPreference:

[image: SAWMonitor Whitelist MultiSelectListPreference]

Figure 597: SAWMonitor Whitelist MultiSelectListPreference
If you run the app on your device or emulator, you will wind up with
different possible entries in the MultiSelectListPreference, as the
mix of apps requesting SYSTEM_ALERT_WINDOW will be different for
different devices and users.
Dealing with External Changes to Preferences
What happens if you have a PreferenceFragment in the foreground,
and the preference changes “behind the scenes” by some other component
of your app?
For preferences with dialogs — ListPreference, EditTextPreference,
etc. — the pattern seems to be “transaction by dialog”. Whatever the
preference value is at the time the dialog appears is what the user
sees, and that does not change (and cannot readily be changed)
if the preference changes while that dialog is on the screen.
However, for inline preferences — CheckBoxPreference, SwitchPreference,
etc. — while the UI will not automatically update based on the external
change, you can handle that yourself.
For example, SAWMonitor offers
an optional notification shade tile using a TileService on Android 7.0+ devices.
The tile allows the user to enable and disable the monitoring, just as
the user can from the SwitchPreference. So… what happens if the
SettingsFragment is on the screen, the user slides open the notification
shade, and taps the tile? By default, the SettingsFragment would
be oblivious to this, with the result of the SwitchPreference being
out of sync.
But, we can fix this.
In SettingsFragment, in onStart(),
we register for preference changes, plus call a syncEnabledStates()
method. We unregister from preference changes in onStop():

 @Override
 public void onStart() {
 super.onStart();

 prefs=PreferenceManager.getDefaultSharedPreferences(getActivity());
 prefs.registerOnSharedPreferenceChangeListener(this);
 syncEnabledStates();
 }

 @Override
 public void onStop() {
 super.onStop();

 prefs.unregisterOnSharedPreferenceChangeListener(this);
 }

(from Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)
The onSharedPreferenceChanged() method on our SettingsFragment
will be called when any of our preferences changes. If the enabled
preference changes, we call syncEnabledStates():

 @Override
 public void onSharedPreferenceChanged(SharedPreferences prefs,
 String s) {
 if (MonitorApp.PREF_ENABLED.equals(s)) {
 syncEnabledStates();
 }
 }

(from Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)
syncEnabledStates() simply updates the checked state of enabled based
upon the now-current value in SharedPreferences:

 void syncEnabledStates() {
 enabled.setChecked(prefs.getBoolean(MonitorApp.PREF_ENABLED, false));
 }

(from Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)
Hence, this also handles the case where our SettingsFragment
was displayed, the user navigated elsewhere, one of our preferences changes,
and then the user returns to our running SettingsFragment. Normally,
the SettingsFragment might miss that preference change, but with this
implementation, the SettingsFragment will be kept in sync with the
actual preference value.
Preferences in Device Settings App
On Android 7.0+, you can have the Settings app show a “gear” icon on your activity
that collects preferences.
When the user taps that gear, the Settings app will launch your
designated activity:

[image: Settings Activity Gear Icon]

Figure 598: Settings Activity Gear Icon
To offer this, you need to add an <intent-filter> for your desired
activity, with an <action> of android.intent.action.APPLICATION_PREFERENCES:

<activity
 android:name="EditPreferences"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.APPLICATION_PREFERENCES" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

However, by default, there is a cost to this: any app can start your
settings activity, whenever another app wants to. Your settings activity
is exported once you add the <intent-filter>, and it needs to be exported
for the Settings app to be able to start the activity.
However, it is fairly likely that this activity was not exported before you
added this <intent-filter>.
And while you may not mind it if the Settings app starts this activity,
or if your own application code starts this activity, you may not want
arbitrary other apps to start this activity. A general rule of thumb
in modern development is to keep your “attack surface” low. Having an
activity be exported for little value is an unnecessary increase in your
app’s attack surface.
There is no officially-documented solution for this, though
perhaps they will add one someday.
There are two candidate approaches. An unexpected
one works:
you can mark the activity as being not exported, via android:exported="false".
For some reason, the Settings app can still start up that activity,
perhaps due to some system-level privilege.
However, other apps will
be unable to start the activity. This would result in an <activity>
element like this:

<activity
 android:name="EditPreferences"
 android:label="@string/app_name"
 android:exported="false">
 <intent-filter>
 <action android:name="android.intent.action.APPLICATION_PREFERENCES" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

Another approach that should work is to use android:permission to limit what other
apps can start your activity, choosing a permission that the Settings app
is sure to have but that most other apps will lack. WRITE_SECURE_SETTINGS
is one candidate:

<activity
 android:name="EditPreferences"
 android:label="@string/app_name"
 android:permission="android.permission.WRITE_SECURE_SETTINGS">
 <intent-filter>
 <action android:name="android.intent.action.APPLICATION_PREFERENCES" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

Now, the only other apps that can start your activity must hold
the WRITE_SECURE_SETTINGS permission, which ordinary Android SDK apps
cannot hold.
Custom Preference Storage
SharedPreferences are stored in an app’s portion of internal storage as an
XML file. This is fine in many cases. However, it is a problem for apps that
need to ensure that persisted data is encrypted. While you can create a wrapper
around SharedPreferences that encrypts the keys and values, that will not
work well with things like the preference screen UI system. Basically, anything
that does not know about the wrapper would try working with the actual
SharedPreference data and be broken by the encryption.
This has always been disappointing, considering that SharedPreferences is
an interface, and so setting up some sort of decorator approach should have been
fairly easy to add.
In Android 8.0+, Google does not do that.
However, they do add in another mechanism: PreferenceDataStore.
You can create a PreferenceDataStore and associate it with a PreferenceManager
via setPreferenceDataStore().
Then, all SharedPreferences loaded from that PreferenceManager will not use
the normal XML-based persistence. Instead, the PreferenceDataStore will be used
instead. That interface has getter and setter methods for all of the types supported
by SharedPreferences, and it is the responsibility of some instance of
PreferenceDataStore to handle the persistence as you see fit.
This solution is goofy, but it works, after a fashion, as is illustrated in the
Prefs/DataStore
sample project.
In that project, we have a SillyDataStore implementation of the PreferenceDataStore
interface. It just stuffs all the data into a HashMap:

package com.commonsware.android.preffrag;

import android.preference.PreferenceDataStore;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

class SillyDataStore implements PreferenceDataStore {
 static private final SillyDataStore INSTANCE=new SillyDataStore();
 private Map<String, Object> cache=new HashMap<>();

 static SillyDataStore get() {
 return(INSTANCE);
 }

 private SillyDataStore() {
 // just here to prevent accidental creation from outside
 }

 @Override
 public void putString(String key, String value) {
 cache.put(key, value);
 }

 @Override
 public void putStringSet(String key, Set<String> values) {
 cache.put(key, values);
 }

 @Override
 public void putInt(String key, int value) {
 cache.put(key, value);
 }

 @Override
 public void putLong(String key, long value) {
 cache.put(key, value);
 }

 @Override
 public void putFloat(String key, float value) {
 cache.put(key, value);
 }

 @Override
 public void putBoolean(String key, boolean value) {
 cache.put(key, value);
 }

 @SuppressWarnings("Since15")
 @Override
 public String getString(String key, String defValue) {
 return((String)cache.getOrDefault(key, defValue));
 }

 @SuppressWarnings("Since15")
 @Override
 public Set<String> getStringSet(String key, Set<String> defValues) {
 return((Set<String>)cache.getOrDefault(key, defValues));
 }

 @SuppressWarnings("Since15")
 @Override
 public int getInt(String key, int defValue) {
 return((Integer)cache.getOrDefault(key, defValue));
 }

 @SuppressWarnings("Since15")
 @Override
 public long getLong(String key, long defValue) {
 return((Long)cache.getOrDefault(key, defValue));
 }

 @SuppressWarnings("Since15")
 @Override
 public float getFloat(String key, float defValue) {
 return((Float)cache.getOrDefault(key, defValue));
 }

 @SuppressWarnings("Since15")
 @Override
 public boolean getBoolean(String key, boolean defValue) {
 return((Boolean)cache.getOrDefault(key, defValue));
 }
}

(from Prefs/DataStore/app/src/main/java/com/commonsware/android/preffrag/SillyDataStore.java)
This implementation is truly silly, as it does no type checking and no persistence.
It should be considered the bare minimum implementation of a PreferenceDataStore,
though one that might be useful, instead of rolling a mock, in unit testing.
(note: the @SuppressWarnings("Since15") annotations are because this code
uses the getOrDefault() method on HashMap, which was added in Java 8 and
is new to Android 8.0)
There is a singleton instance of SillyDataStore. That way we can ensure that
the same instance is used wherever we want it.
We apply that singleton in the PreferenceFragment subclass:

 public static class Prefs extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getPreferenceManager().getPreferenceDataStore()==null) {
 getPreferenceManager().setPreferenceDataStore(SillyDataStore.get());
 }

 addPreferencesFromResource(R.xml.preferences);
 }
 }

(from Prefs/DataStore/app/src/main/java/com/commonsware/android/preffrag/EditPreferences.java)
Here, we check to see if there is a PreferenceDataStore associated with the
PreferenceManager and, if not, we attach the SillyDataStore singleton.
This causes the SharedPreferences used by this PreferenceFragment to use
the SillyDataStore for storage, instead of the default XML-based persistence.
This works… somewhat. There are some problems.
First, a PreferenceManager is not a system service. Of note, each instance
of our PreferenceFragment gets its own fresh PreferenceManager. This is why
we need to check for, and set, the PreferenceDataStore on the PreferenceManager
for the PreferenceFragment each time.
Second, we have no way of associating a PreferenceDataStore with the default
SharedPreferences obtained from PreferenceManager.getDefaultSharedPreferences().
That will always use the standard XML backing store. The initial activity contents
are in the form of a PreferenceContentsFragment that reads from the default
SharedPreferences in onResume(). Normally, that would cause changes that we
make via our PreferenceFragment to show up when the PreferenceContentsFragment
is resumed. In this specific sample, that does not happen, as the
PreferenceContentsFragment is using the default XML data store, and our data
is really in the SillyDataStore.
This illustrates the fatal flaw of this system: you can never really use
the SharedPreferences. You cannot create PreferenceManager instances yourself,
as it has no public constructors. All of the code that gives you
SharedPreferences objects back other than through a PreferenceManager
has no way of associating a PreferenceDataStore with the SharedPreferences.
Instead of using SharedPreferences… you have to read and write from your
PreferenceDataStore itself. This, in turn, loses everything that you normally
associate with SharedPreferences, such as atomicity of updates and preference-change
listeners.
Worse, since PreferenceDataStore has no API telling you when to persist changes,
you would have to do that yourself… somehow.
These can be overcome, with a sufficiently-robust PreferenceDataStore implementation
and lots of documentation. However, for casual use, other than perhaps for test
mocks, PreferenceDataStore is not a well-engineered solution and probably should
be avoided.
Custom Dialogs and Preferences
Android ships with a number of dialog classes for specific
circumstances, like DatePickerDialog and ProgressDialog.
Similarly, Android comes with a smattering of Preference classes
for your PreferenceActivity, to accept text or selections from
lists and so on.
However, there is plenty of room for improvement in both areas. As
such, you may find the need to create your own custom dialog or
preference class. This chapter will show you how that is done.
We start off by looking at creating a
custom AlertDialog, not by using AlertDialog.Builder, but
via a custom subclass. Then, we show how to create your
own dialog-style Preference, where tapping on the
preference pops up a dialog to allow the user to customize the
preference value.
Prerequisites
Understanding this chapter requires that you have read
the chapter on dialogs, along with
the chapter on the preference system. Also, the samples
here use the custom ColorMixer View described
in another chapter.
Your Dialog, Chocolate-Covered
For your own application, the simplest way to create a custom
AlertDialog is to use AlertDialog.Builder, as described
in a previous chapter. You do not need to
create any special subclass — just call methods on the
Builder, then show() the resulting dialog.
However, if you want to create a reusable AlertDialog, this may
become problematic. For example, where would this code to create the
custom AlertDialog reside?
So, in some cases, you may wish to extend AlertDialog and supply
the dialog’s contents that way, which is how TimePickerDialog and
others are implemented. Unfortunately, this technique is not well
documented. This section will illustrate how to create such an
AlertDialog subclass, as determined by looking at how the core
Android team did it for their own dialogs.
The sample code is ColorMixerDialog, a dialog wrapping around the
ColorMixer widget shown in a previous chapter. The implementation
of ColorMixerDialog can be found in the
CWAC-ColorMixer
GitHub repository, as it is part of the CommonsWare Android
Components.
Using this dialog works much like using DatePickerDialog or
TimePickerDialog. You create an instance of ColorMixerDialog,
supplying the initial color to show and a listener object to be
notified of color changes. Then, call show() on the dialog. If the
user makes a change and accepts the dialog, your listener will be
informed.

[image: The ColorMixerDialog]

Figure 599: The ColorMixerDialog
Basic AlertDialog Setup
The ColorMixerDialog class is not especially long, since
all of the actual color mixing is handled by the ColorMixer widget:

package com.commonsware.cwac.colormixer;

import android.app.AlertDialog;
import android.content.Context;
import android.content.DialogInterface;
import android.os.Bundle;

public class ColorMixerDialog extends AlertDialog
 implements DialogInterface.OnClickListener {
 static private final String COLOR="c";
 private ColorMixer mixer=null;
 private int initialColor;
 private ColorMixer.OnColorChangedListener onSet=null;

 public ColorMixerDialog(Context ctxt,
 int initialColor,
 ColorMixer.OnColorChangedListener onSet) {
 super(ctxt);

 this.initialColor=initialColor;
 this.onSet=onSet;

 mixer=new ColorMixer(ctxt);
 mixer.setColor(initialColor);

 setView(mixer);
 setButton(ctxt.getText(R.string.cwac_colormixer_set),
 this);
 setButton2(ctxt.getText(R.string.cwac_colormixer_cancel),
 (DialogInterface.OnClickListener)null);
 }

 @Override
 public void onClick(DialogInterface dialog, int which) {
 if (initialColor!=mixer.getColor()) {
 onSet.onColorChange(mixer.getColor());
 }
 }

 @Override
 public Bundle onSaveInstanceState() {
 Bundle state=super.onSaveInstanceState();

 state.putInt(COLOR, mixer.getColor());

 return(state);
 }

 @Override
 public void onRestoreInstanceState(Bundle state) {
 super.onRestoreInstanceState(state);

 mixer.setColor(state.getInt(COLOR));
 }
}

We extend the AlertDialog class and implement a constructor
of our own design. In this case, we take in three parameters:

	A Context (typically an Activity), needed for the superclass

	The initial color to use for the dialog, such as if the user is
editing a color they chose before

	A ColorMixer.OnColorChangedListener object, just like
ColorMixer uses, to notify the dialog creator when the color is
changed

We then create a ColorMixer and call setView() to make that be
the main content of the dialog. We also call setButton() and
setButton2() to specify a “Set” and “Cancel” button for the dialog.
The latter just dismisses the dialog, so we need no event handler.
The former we route back to the ColorMixerDialog itself, which
implements the DialogInterface.OnClickListener interface.
Handling Color Changes
When the user clicks the “Set” button, we want to notify the
application about the color change…if the color actually changed.
This is akin to DatePickerDialog and TimePickerDialog only
notifying you of date or times if the user clicks Set and actually
changed the values.
The ColorMixerDialog tracks the initial color via the
initialColor data member. In the onClick() method —
required by DialogInterface.OnClickListener — we see if the
mixer has a different color than the initialColor, and if so, we
call the supplied ColorMixer.OnColorChangedListener callback object:

 @Override
 public void onClick(DialogInterface dialog, int which) {
 if (initialColor!=mixer.getColor()) {
 onSet.onColorChange(mixer.getColor());
 }
 }

State Management
Dialogs use onSaveInstanceState() and onRestoreInstanceState(),
just like activities do. That way, if the screen is rotated, or if
the hosting activity is being evicted from RAM when it is not in the
foreground, the dialog can save its state, then get it back later as
needed.
The biggest difference with onSaveInstanceState() for a dialog is
that the Bundle of state data is not passed into the method.
Rather, you get the Bundle by chaining to the superclass, then
adding your data to the Bundle it returned, before returning it
yourself:

 @Override
 public Bundle onSaveInstanceState() {
 Bundle state=super.onSaveInstanceState();

 state.putInt(COLOR, mixer.getColor());

 return(state);
 }

The onRestoreInstanceState() pattern is much closer to the
implementation you would find in an Activity, where the Bundle
with the state data to restore is passed in as a parameter:

 @Override
 public void onRestoreInstanceState(Bundle state) {
 super.onRestoreInstanceState(state);

 mixer.setColor(state.getInt(COLOR));
 }

Preferring Your Own Preferences, Preferably
The Android Settings application, built using the Preference
system, has lots of custom Preference classes. You too can create
your own Preference classes, to collect things like dates, numbers,
or colors. Once again, though, the process of creating such classes
is not well documented. This section reviews one recipe for making a
Preference — specifically, a subclass of DialogPreference
– based on the implementation of other Preference classes in
Android.
The result is ColorPreference, a Preference that uses the
ColorMixer widget. As with the ColorMixerDialog from the previous
section, the ColorPreference is from the CommonsWare Android
Components, and its source code can be found in the
CWAC-ColorMixer
GitHub repository.
One might think that ColorPreference, as a subclass of
DialogPreference, might use ColorMixerDialog. However, that is
not the way it works, as you will see.
The Constructor
A Preference is much like a custom View, in that
there are a variety of constructors, some taking an AttributeSet
(for the preference properties), and some taking a default style. In
the case of ColorPreference, we need to get the string resources to
use for the names of the buttons in the dialog box, providing them to
DialogPreference via setPositiveButtonText() and
setNegativeButtonText().
Here, we just implement the standard two-parameter constructor, since
that is the one that is used when this preference is inflated from a
preference XML file:

 public ColorPreference(Context ctxt, AttributeSet attrs) {
 super(ctxt, attrs);

 setPositiveButtonText(ctxt.getText(R.string.cwac_colormixer_set));
 setNegativeButtonText(ctxt.getText(R.string.cwac_colormixer_cancel));
 }

Creating the View
The DialogPreference class handles the pop-up dialog that appears
when the preference is clicked upon by the user. Subclasses get to
provide the View that goes inside the dialog. This is handled a bit
reminiscent of a CursorAdapter, in that there are two separate
methods to be overridden:

	
onCreateDialogView() works like newView() of CursorAdapter,
returning a View that should go in the dialog

	
onBindDialogView() works like bindView() of CursorAdapter,
where the custom Preference is supposed to configure the View for
the current preference value

In the case of ColorPreference, we use a ColorMixer for the
View:

 @Override
 protected View onCreateDialogView() {
 mixer=new ColorMixer(getContext());

 return(mixer);
 }

Then, in onBindDialogView(), we set the mixer’s color to be
lastColor, a private data member:

 @Override
 protected void onBindDialogView(View v) {
 super.onBindDialogView(v);

 mixer.setColor(lastColor);
 }

We will see later in this section where lastColor comes from
– for the moment, take it on faith that it holds the user’s
chosen color, or a default value.
Dealing with Preference Values
Of course, the whole point behind a Preference is to allow the user
to set some value that the application will then use later on.
Dealing with values is a bit tricky with DialogPreference, but not
too bad.
Getting the Default Value
The preference XML format has an android:defaultValue attribute,
which holds the default value to be used by the preference. Of
course, the actual data type of the value will differ widely —
an EditTextPreference might expect a String, while
ColorPreference needs a color value.
Hence, you need to implement onGetDefaultValue(). This is passed a
TypedArray — similar to how a custom View uses a
TypedArray for getting at its custom attributes in an XML layout
file. It is also passed an index number into the array representing
android:defaultValue. The custom Preference needs to return an
Object representing its interpretation of the default value.
In the case of ColorPreference, we simply get an integer out of the
TypedArray, representing the color value, with an overall default
value of 0xFFA4C639 (a.k.a., Android green):

 @Override
 protected Object onGetDefaultValue(TypedArray a, int index) {
 return(a.getInt(index, 0xFFA4C639));
 }

Setting the Initial Value
When the user clicks on the preference, the DialogPreference
supplies the last-known preference value to its subclass, or the
default value if this preference has not been set by the user to date.
The way this works is that the custom Preference needs to override
onSetInitialValue(). This is passed in a boolean flag
(restoreValue) indicating whether or not the user set the value of
the preference before. It is also passed the Object returned by
onGetDefaultValue(). Typically, a custom Preference will look at
the flag and choose to either use the default value or load the
already-set preference value.
To get the existing value, Preference defines a set of
type-specific getter methods — getPersistedInt(),
getPersistedString(), etc. So, ColorPreference uses
getPersistedInt() to get the saved color value:

 @Override
 protected void onSetInitialValue(boolean restoreValue, Object defaultValue) {
 lastColor=(restoreValue ? getPersistedInt(lastColor) : (Integer)defaultValue);
 }

Here, onSetInitialValue() stores that value in lastColor —
which then winds up being used by onBindDialogView() to tell the
ColorMixer what color to show.
Closing the Dialog
When the user closes the dialog, it is time to persist the chosen
color from the ColorMixer. This is handled by the
onDialogClosed() callback method on your custom Preference:

 @Override
 protected void onDialogClosed(boolean positiveResult) {
 super.onDialogClosed(positiveResult);

 if (positiveResult) {
 if (callChangeListener(mixer.getColor())) {
 lastColor=mixer.getColor();
 persistInt(lastColor);
 }
 }
 }

The passed-in boolean indicates if the user accepted or dismissed the
dialog, so you can elect to skip saving anything if the user
dismissed the dialog. The other DialogPreference implementations
also call callChangeListener(), which is somewhat ill-documented.
Assuming both the flag and callChangeListener() are true, the
Preference should save its value to the persistent store via
persistInt(), persistString(), or kin.
Using the Preference
Given all of that, using the custom Preference class in an
application is almost anti-climactic. You simply add it to your
preference XML, with a fully-qualified class name:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <com.commonsware.cwac.colormixer.ColorPreference
 android:key="favoriteColor"
 android:defaultValue="0xFFA4C639"
 android:title="Your Favorite Color"
 android:summary="Blue. No yel-- Auuuuuuuugh!" />
</PreferenceScreen>

At this point, it behaves no differently than does any other
Preference type. Since ColorPreference stores the value as an
integer, your code would use getInt() on the SharedPreferences to
retrieve the value when needed.
The user sees an ordinary preference entry in the
PreferenceActivity:

[image: A PreferenceActivity, showing the ColorPreference]

Figure 600: A PreferenceActivity, showing the ColorPreference
When tapped, it brings up the mixer:

[image: The ColorMixer in a custom DialogPreference]

Figure 601: The ColorMixer in a custom DialogPreference
Choosing a color and clicking “Set” persists the color
value as a preference.
Progress Indicators
Sometimes, we make the user wait. And wait. And wait some more.
Often, in these cases, it is useful to let the user know that something they requested
is something that we are diligently working on. To do this, we can use some form
of progress indicator. We saw basic use of a ProgressBar in the tutorials earlier
in this book — now is the time to take a much closer look at ProgressBar and other
means of displaying progress.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book. Having read the chapters on dialogs,
custom drawables, and animators is also a
good idea.
Progress Bars
The classic way to tell the user that we are doing something for them is to use a
ProgressBar widget, much as we briefly displayed one in the EmPubLite sample app
in the tutorials.
However, a ProgressBar is much more than a simple spinning image. We can use it
to display either indeterminate progress (“we will be done… sometime”) or specific
progress (“we are 34% complete”). We can use it either as a circle or as a classic
horizontal bar, the latter typically used for specific progress. And, for specific
progress, we can actually show two tiers of progress, known as “primary” and
“secondary” (e.g., primary for the progress in copying a directory’s worth of files,
secondary for the progress on a specific file).
In this section, we will take a look at these different ways of using ProgressBar.
Circular vs. Horizontal
As the name suggests, a ProgressBar denotes progress. As the name does not
suggest, a ProgressBar is not a bar, by default — it is a circle. Hence,
the following element from an XML layout resource:

 <ProgressBar
 android:id="@+id/progressCI"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginBottom="20dp"
 android:layout_marginTop="20dp"/>

(from Progress/BarSampler/app/src/main/res/layout/activity_main.xml)
gives us:

[image: Android 5.1 ProgressBar, Default Style]

Figure 602: Android 5.1 ProgressBar, Default Style

[image: Android 4.0 ProgressBar, Default Style]

Figure 603: Android 4.0 ProgressBar, Default Style
However, referencing style="?android:attr/progressBarStyleHorizontal" in
the element:

 <ProgressBar
 android:id="@+id/progressHI"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="20dp"
 android:indeterminate="true"/>

(from Progress/BarSampler/app/src/main/res/layout/activity_main.xml)
gives us a horizontal bar:

[image: Android 5.1 ProgressBar, Horizontal Style]

Figure 604: Android 5.1 ProgressBar, Horizontal Style

[image: Android 4.0 ProgressBar, Horizontal Style]

Figure 605: Android 4.0 ProgressBar, Horizontal Style
Note that the look-and-feel of these widgets have changed over the years.
On Android 1.x and 2.x, they will look like this:

[image: Android 2.3.3 ProgressBar, Both Styles]

Figure 606: Android 2.3.3 ProgressBar, Both Styles
Specific vs. Indeterminate
Typically, you use the circular ProgressBar style for indeterminate progress,
where the circle simply spins in place to let the user know that work is
proceeding and the device (or activity) has not frozen. The horizontal
ProgressBar style is used to illustrate specific amounts of progress, from
0 to a value you choose.
However, while those patterns are typical, the choice of whether to use indeterminate or
some specific amount of progress is independent of the style of the widget.
The android:indeterminate attribute controls whether the ProgressBar will
render an indeterminate look or a specific look. For the latter, calls
to setMax() (or the android:max attribute) will set the upper end of the
progress range (the default is 100),
and setProgress() or incrementProgressBy() will set how much progress
along that range is illustrated.

[image: Android 5.1 ProgressBar, Horizontal Style, Indeterminate and Specific]

Figure 607: Android 5.1 ProgressBar, Horizontal Style, Indeterminate and Specific

[image: Android 4.0 ProgressBar, Horizontal Style, Indeterminate and Specific]

Figure 608: Android 4.0 ProgressBar, Horizontal Style, Indeterminate and Specific

[image: Android 2.3.3 ProgressBar, Horizontal Style, Indeterminate and Specific]

Figure 609: Android 2.3.3 ProgressBar, Horizontal Style, Indeterminate and Specific
Primary vs. Secondary
For specific progress, you actually have two independent amounts of progress.
setProgress(), incrementProgressBy(), and android:progress control the
primary progress, while setSecondaryProgress(),
incrementSecondaryProgressBy(), and android:secondaryProgress control the
secondary progress. Here, “primary progress” refers to the progress along an
entire piece of work (e.g., copying a folder’s worth of files), while
“secondary progress” refers the progress along a discrete chunk of the
overall work (e.g., copying an individual file).
A ProgressBar will render these with different colors, though primary
trumps secondary, and so the secondary progress will only be visible when
its value exceeds that of the primary progress:

[image: Android 4.0 ProgressBar, Horizontal Style, Primary-Only and Primary-Plus-Secondary]

Figure 610: Android 4.0 ProgressBar, Horizontal Style, Primary-Only and Primary-Plus-Secondary

[image: Android 2.3.3 ProgressBar, Horizontal Style, Primary-Only and Primary-Plus-Secondary]

Figure 611: Android 2.3.3 ProgressBar, Horizontal Style, Primary-Only and Primary-Plus-Secondary
ProgressBar and Threads
Normally, you cannot update the UI of a widget from a background thread.
ProgressBar is an exception. You can safely call setProgress() and
incrementProgressBy() from a background thread to update the primary progress,
and you can safely call setSecondaryProgress() and
incrementSecondaryProgressBy() from a background thread to update the
secondary progress.
To see this in action, take a look at the
Progress/BarSampler
sample project.
This project has a single activity (MainActivity), whose layout
(activity_main.xml) contains four ProgressBar widgets, two indeterminate
and two for specific progress:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <ProgressBar
 android:id="@+id/progressCI"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginBottom="20dp"
 android:layout_marginTop="20dp"/>

 <ProgressBar
 android:id="@+id/progressHI"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="20dp"
 android:indeterminate="true"/>

 <ProgressBar
 android:id="@+id/progressHS"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="20dp"
 android:indeterminate="false"
 android:max="100"/>

 <ProgressBar
 android:id="@+id/progressHS2"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:max="100"/>

</LinearLayout>

(from Progress/BarSampler/app/src/main/res/layout/activity_main.xml)
The activity gets access to the latter two ProgressBar widgets and
sets up a ScheduledThreadPoolExecutor to get control every second in a
background thread, which calls our run() method. The run() method
will increment both ProgressBar widgets primary progress by 2 each time,
and the secondary progress by 10 (dropping back to the starting point when
the secondary progress reaches the maximum of 100). When the primary progress
gets to 100, we cancel our scheduled work in the ScheduledThreadPoolExecutor:

package com.commonsware.android.progress;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ProgressBar;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class MainActivity extends Activity implements Runnable {
 private static final int PERIOD_SECONDS=1;
 private ScheduledThreadPoolExecutor executor=
 new ScheduledThreadPoolExecutor(1);
 private ProgressBar primary=null;
 private ProgressBar secondary=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 primary=(ProgressBar)findViewById(R.id.progressHS);
 secondary=(ProgressBar)findViewById(R.id.progressHS2);

 executor.setExecuteExistingDelayedTasksAfterShutdownPolicy(false);
 executor.scheduleAtFixedRate(this, 0, PERIOD_SECONDS,
 TimeUnit.SECONDS);
 }

 @Override
 public void onDestroy() {
 executor.shutdown();

 super.onDestroy();
 }

 @Override
 public void run() {
 if (primary.getProgress() < 100) {
 primary.incrementProgressBy(2);
 secondary.incrementProgressBy(2);

 if (secondary.getSecondaryProgress() == 100) {
 secondary.setSecondaryProgress(10);
 }
 else {
 secondary.incrementSecondaryProgressBy(10);
 }
 }
 else {
 executor.remove(this);
 }
 }
}

(from Progress/BarSampler/app/src/main/java/com/commonsware/android/progress/MainActivity.java)
The net effect is that you see the progress march across the screen, with the
secondary progress going through five passes for the primary progress’ single
pass through the 0-100 range.
Tailoring Progress Bars
The stock ProgressBar look and feel is decent, if perhaps not spectacular. Often
times, the stock look is sufficient for your needs. If you wish to have greater
control over the look of your ProgressBar, the following sections will demonstrate
some possibilities.
Changing the Progress Colors
The ProgressBar uses different colors for primary and secondary specific
progress. By default, those colors are defined by the theme you are using, and
the stock themes have firmware-defined colors (e.g., yellows for Android 1.x and
2.x, blues for Android 3.x and higher).
However, you can change the colors by using a
LayerListDrawable and associating it with a
ProgressBar by means of the android:progressDrawable attribute.
The ProgressBar background image needs to be a LayerListDrawable with
three specific layers:

	
android:id="@android:id/background" for the background color of the bar

	
android:id="@android:id/progress" for the primary progress

	
android:id="@android:id/secondaryProgress" for the secondary progress

Whether those layers are defined as
ShapeDrawable structures, or as
nine-patch PNG files is up to you, but they will need the
ability to stretch to fit however big your bar winds up being.
To see what this means, let’s take a look at the
Progress/Styled
sample project. This is a near-clone of the Progress/BarSampler project from earlier,
using custom backgrounds
for the bars. Here, we will look at the horizontal ProgressBar
widgets — in the next section, we will look at how
to change the background of a circular indefinite ProgressBar.
For the first horizontal ProgressBar (progressHS), for Android 4.x,
we will use a custom
style created by the
Android Holo Colors Generator, a Web site
set up to help us create custom versions of the holographic widget theme.
When you visit this site in Google Chrome (note: other browsers are not
supported at this time), you can fill in a name for your theme (e.g., “AppTheme”),
the color scheme to use for the theme, and the foundation theme to use
(light or dark):

[image: Android Holo Colors Generator, Basic Info]

Figure 612: Android Holo Colors Generator, Basic Info
You can then toggle on and off which widgets you intend to use, so the
generator will create custom styles for them:

[image: Android Holo Colors Generator, Widget Selection]

Figure 613: Android Holo Colors Generator, Widget Selection
Then, the generator will create a ZIP file that you can download that
contains the generated resources for your custom styles.
The Progress/Styled project contains the files generated by the generator,
replacing the original style resources. Note that the generator does not
create a .DarkActionBar version of the style resource, so the values-v14
resource directory in the project has one hand-crafted based upon a regular
generated style resource.
On Android 5.0+, we will use a theme with the same name, but where
we are using tints in the theme to affect the colors of the progress
indicators.
Our manifest points to our AppTheme as being how we wish to style
widgets in this application:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.progress"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/title_activity_main">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Progress/Styled/app/src/main/AndroidManifest.xml)
That theme, defined in apptheme_themes.xml, points to style resources for
horizontal ProgressBar widgets:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generated (in part) with http://android-holo-colors.com -->
<resources xmlns:android="http://schemas.android.com/apk/res/android">

 <style name="AppTheme" parent="android:Theme.Holo.Light.DarkActionBar">

 <item name="android:progressBarStyleHorizontal">@style/ProgressBarAppTheme</item>

 </style>

</resources>

(from Progress/Styled/app/src/main/res/values-v14/apptheme_themes.xml)
The ProgressBarAppTheme style resource is defined in a separate
apptheme_styles.xml resource:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generated with http://android-holo-colors.com -->
<resources xmlns:android="http://schemas.android.com/apk/res/android">

 <style name="ProgressBarAppTheme" parent="android:Widget.Holo.Light.ProgressBar.Horizontal">
 <item name="android:progressDrawable">@drawable/progress_horizontal_holo_light</item>
 <item name="android:indeterminateDrawable">@drawable/progress_indeterminate_horizontal_holo_light</item>
 </style>

</resources>

(from Progress/Styled/app/src/main/res/values-v11/apptheme_styles.xml)
Here, we say that we want the android:progressDrawable property to be a
progress_horizontal_holo_light drawable resource. We also set the
android:indeterminateDrawable property — used for indeterminate
bars — to a progress_indeterminate_horizontal_holo_light drawable resource.
Those are defined as XML-based drawables, in the res/drawable/ directory
in the project. The progress_horizontal_holo_light resource is defined as:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2010 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<layer-list xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@android:id/background"
 android:drawable="@drawable/progress_bg_holo_light" />

 <item android:id="@android:id/secondaryProgress">
 <scale android:scaleWidth="100%"
 android:drawable="@drawable/progress_secondary_holo" />
 </item>

 <item android:id="@android:id/progress">
 <scale android:scaleWidth="100%"
 android:drawable="@drawable/progress_primary_holo" />
 </item>

</layer-list>

(from Progress/Styled/app/src/main/res/drawable/progress_horizontal_holo_light.xml)
The generator creates our LayerListDrawable resource with our three layers,
each pointing to a nine-patch PNG file (with different versions for different
densities) that contains our desired custom color. The progress and
secondaryProgress layers use
ScaleDrawable definitions to ensure that the images
are measured against the complete width of the background layer, which in turn
will be sized according to the size of the ProgressBar itself.
We will take a look at the progress_indeterminate_horizontal_holo_light drawable
resource in the next section.
Note that you could skip the custom theme and style if you wished, and simply add
the android:progressDrawable attribute to the ProgressBar widget definition
in its layout XML resource.
Regardless, the result is that our progress bars have the desired purple color
scheme:

[image: Custom ProgressBar Style, Primary and Secondary]

Figure 614: Custom ProgressBar Style, Primary and Secondary
Also, you can have your LayerListDrawable use ShapeDrawable layers,
to avoid creating nine-patch PNG files, if you prefer, using a resource
like this:

<?xml version="1.0" encoding="utf-8"?>
<layer-list xmlns:android="http://schemas.android.com/apk/app/src/main/res/android">
 <item android:id="@android:id/background">
 <shape>
 <stroke android:width="1dip" android:color="#FF333333" />
 <gradient
 android:startColor="#FF9C9E9C"
 android:centerColor="#FF5A5D5A"
 android:centerY="0.71"
 android:endColor="#FF6B716B"
 android:angle="270"
 />
 </shape>
 </item>
 <item android:id="@android:id/secondaryProgress">
 <clip>
 <shape>
 <stroke android:width="1dip" android:color="#FF333333" />
 <gradient
 android:startColor="#4cffffff"
 android:centerColor="#4cE7E7E7"
 android:centerY="0.71"
 android:endColor="#4cFFFBFF"
 android:angle="270"
 />
 </shape>
 </clip>
 </item>
 <item android:id="@android:id/progress">
 <clip>
 <shape>
 <stroke android:width="1dip" android:color="#FF333333" />
 <gradient
 android:startColor="#FFFFFFFF"
 android:centerColor="#FFE7E7E7"
 android:centerY="0.71"
 android:endColor="#FFFFFBFF"
 android:angle="270"
 />
 </shape>
 </clip>
 </item>
</layer-list>

On Android 5.0+, we have it much easier, as ProgressBar automatically
adopts the accent tint. So we go with a much simpler theme definition:

<resources>

 <style name="AppTheme" parent="android:Theme.Material">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>

</resources>

(from Progress/Styled/app/src/main/res/values-v21/styles.xml)
This references colors from a separate colors.xml resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primary">#3f51b5</color>
 <color name="primary_dark">#1a237e</color>
 <color name="accent">#ffee58</color>
</resources>

(from Progress/Styled/app/src/main/res/values-v21/colors.xml)
The result are yellow-tinted progress bars:

[image: Material ProgressBar Style, Primary and Secondary]

Figure 615: Material ProgressBar Style, Primary and Secondary
Changing the Indeterminate Animation
Similarly, for indefinite progress “bars”, changing the progress
drawable
will let you change the way they look. However, in this case, the drawable
also needs to implement the animation itself. You can accomplish this either
by using an AnimationDrawable or by using some
other type of drawable wrapped in an animation, such as
a ShapeDrawable wrapped in a <rotate> animation.
For example, the Android 4.x custom theme created by the Android Holo Colors Generator
assigns the following drawable resource to
android:indeterminateDrawable in the theme:

<?xml version="1.0" encoding="utf-8"?>
<!--
/*
** Copyright 2011, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->
<animation-list
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/progressbar_indeterminate_holo1" android:duration="50" />
 <item android:drawable="@drawable/progressbar_indeterminate_holo2" android:duration="50" />
 <item android:drawable="@drawable/progressbar_indeterminate_holo3" android:duration="50" />
 <item android:drawable="@drawable/progressbar_indeterminate_holo4" android:duration="50" />
 <item android:drawable="@drawable/progressbar_indeterminate_holo5" android:duration="50" />
 <item android:drawable="@drawable/progressbar_indeterminate_holo6" android:duration="50" />
 <item android:drawable="@drawable/progressbar_indeterminate_holo7" android:duration="50" />
 <item android:drawable="@drawable/progressbar_indeterminate_holo8" android:duration="50" />
</animation-list>

(from Progress/Styled/app/src/main/res/drawable/progress_indeterminate_horizontal_holo_light.xml)
Hence, every horizontal indeterminate ProgressBar will use that
AnimationDrawable. The individual images in the animation are
PNG files, with different versions for different densities.
Circular ProgressBar widgets also need a custom progress drawable, though
obviously the image will need to be circular, not a bar. You can certainly
use an AnimationDrawable for this, or you can use a ShapeDrawable, such
as the res/drawable/progress_circular.xml resource shown below:

<?xml version="1.0" encoding="utf-8"?>
<rotate xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromDegrees="0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:toDegrees="360">

 <shape
 android:innerRadiusRatio="3"
 android:shape="ring"
 android:thicknessRatio="8"
 android:useLevel="false">
 <gradient
 android:centerColor="#4c737373"
 android:centerY="0.50"
 android:endColor="#ff9933CC"
 android:startColor="#4c737373"
 android:type="sweep"
 android:useLevel="false"/>
 </shape>

</rotate>

(from Progress/Styled/app/src/main/res/drawable/progress_circular.xml)
Here, we have a ring ShapeDrawable, with a certain thickness and radius,
filled with a gradient. Half of the fill is actually a solid color
(#4c737373), as the start and center colors are the same. The other half
is a sweep gradient from the starting color to the same purple shade that
is used by the other bar styles. This ring is then wrapped in a rotate
animation. This yields a simple gradient-filled ring, that rotates smoothly
to indicate progress:

[image: Custom ProgressBar Styles, Including Circular Indefinite]

Figure 616: Custom ProgressBar Styles, Including Circular Indefinite
Note that the Android Holo Colors Generator does not generate circular
indefinite ProgressBar resources as of the time of this writing.
Once again, Android 5.0+ can leverage Theme.Material and get rid
of all the extra clutter. Just having an accent color defined will have
your indefinite progress bars adopt that same color:

[image: Material ProgressBar Styles, Including Circular Indefinite]

Figure 617: Material ProgressBar Styles, Including Circular Indefinite
Progress Dialogs
One use of a ProgressBar is to have it wrapped in a ProgressDialog. Like all dialogs,
ProgressDialog is modal, preventing the user from interacting with an underlying
activity while the dialog is displayed. From a UI design standpoint, a ProgressDialog
is an easy way to temporarily show progress without having to find a spot for a
ProgressBar widget somewhere in the UI. Also, since usually there are things in the
activity that are dependent upon the work being done in the background, having the
dialog in place prevents anyone from trying to use things that are not yet ready.
However, modal dialogs are not a great design approach, as they aggressively limit the
user’s options. ProgressDialog is perhaps the worst in this regard, as the user
can do nothing except wait. While part of your app may not yet be ready, other
parts surely are, such as reading the documentation, or adjusting settings, or clicking
on your ad banners. Hence, using anything else other than ProgressDialog, while
perhaps a bit more work, will be an improvement in the usability of your app.
That being said, let us see how to set up a ProgressDialog. The
Progress/Dialog
sample project is a near-clone of the
Dialogs/DialogFragment
sample project from the chapter on dialogs. The only difference
is the onCreateDialog() method of our DialogFragment, where we directly
create a ProgressDialog instead of using an AlertDialog.Builder to create
an AlertDialog as before:

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 ProgressDialog dlg=new ProgressDialog(getActivity());

 dlg.setMessage(getActivity().getString(R.string.dlg_title));
 dlg.setIndeterminate(true);
 dlg.setProgressStyle(ProgressDialog.STYLE_SPINNER);

 return(dlg);
 }

(from Progress/Dialog/app/src/main/java/com/commonsware/android/progdlg/SampleDialogFragment.java)
We create the ProgressDialog via its constructor, set the message explaining
what we are waiting for via setMessage(), indicate that the ProgressBar
should be an indeterminate one via setIndeterminate(), and indicate that we
want a circular “spinner” ProgressBar rather than a horizontal one by calling
setProgressStyle(ProgressDialog.STYLE_SPINNER). There are a variety of other
things you could configure on the ProgressDialog if desired, and
ProgressDialog inherits from AlertDialog, so some things you could configure
on an AlertDialog will also be available on the ProgressDialog.
The result is a dialog that you may have seen from other apps in Android:

[image: ProgressDialog]

Figure 618: ProgressDialog
Title Bar and Action Bar Progress Indicators
Another place to let users know that you are doing something on their behalf
is to put a progress indicator in the title bar or action bar of your activity.
This avoids your having to put an indeterminate ProgressBar somewhere
in your activity’s UI. It is also very simple to set up, as we can see in the
Progress/TitleBar
sample project.

package com.commonsware.android.titleprog;

import android.app.Activity;
import android.os.Bundle;
import android.view.Window;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 getWindow().requestFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);
 setProgressBarIndeterminateVisibility(true);
 }
}

(from Progress/TitleBar/app/src/main/java/com/commonsware/android/titleprog/MainActivity.java)
Up front, as the first thing that you do in your onCreate() call,
you need to call:

getWindow().requestFeature(Window.FEATURE_INDETERMINATE_PROGRESS);

This tells Android to reserve space in your title bar or action bar for
an indeterminate progress indicator, though the indicator does not appear
at this point.
Later on, when you want the indicator to actually appear, call
setProgressBarIndeterminateVisibility(true) on your activity, and later
call setProgressBarIndeterminateVisibility(false) to make the indicator go
away.
This particular application has android:targetSdkVersion set to 11 or
higher, but it is not using an action bar backport.
Hence, when you run it on
an older Android environment, you get a classic title bar with the progress
indicator on the right:

[image: Progress Indicator in Title Bar]

Figure 619: Progress Indicator in Title Bar
When you have an action bar, you get the same basic effect, albeit with a
larger indicator to match the larger bar:

[image: Progress Indicator in Action Bar]

Figure 620: Progress Indicator in Action Bar
Note that this approach is not supported by Theme.Material or
the appcompat-v7 action bar backport, which makes it far less commonly
used today.
Direct Progress Indication
Sometimes, the best way to let the user know about updates is to simply update the
data in place. Rather than have some separate indicator, let the core UI itself
convey the work being done.
We saw this in the chapter on threads, where we populated a ListView
in “real time” as we loaded in data into its adapter.
Other variations on this theme include:

	Updating a page count TextView to show the number of downloaded pages, while
the user is reading earlier pages, perhaps with some sort of style (e.g., italics)
or color coding (e.g., red) to indicate data that is being loaded.

	Simply disabling the buttons, action bar items, and other ways that the
user could navigate to a point in your app where you need the data that is
being loaded in the background. The key here is to make sure that users
understand why those items are disabled, and sometimes that is not obvious.
Hence, while this step may be necessary, it is often tied in with progress
indicators in the title bar or action bar or other means of indicating to the
user the reason they cannot perform certain operations.

More Fun with Pagers
In earlier chapters, we saw basic uses of ViewPager.
However, there are other ways to apply ViewPager and integrate it into the rest
of your application, some of which we will examine in this chapter.
Prerequisites
This chapter assumes that you have read the core chapters, particularly the one
showing how to use ViewPager.
Hosting ViewPager in a Fragment
If you have a ViewPager use fragments for pages and also be itself in a fragment,
you are using nested fragments: one fragment holds another fragment. This was not
originally possible with fragments, but that capability was added to the library
implementation of fragments in 2014 or so.
However, using nested fragments requires a minor modification to the way we set up
a PagerAdapter, as is illustrated in the
ViewPager/Nested
sample project. This is the same project as ViewPager/Indicator, with the
twist that the pages are fragments and the ViewPager is inside a fragment.
Our activity now implements the standard add-the-fragment-if-it-does-not-exist
pattern that we have seen previously:

package com.commonsware.android.pagernested;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class ViewPagerIndicatorActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new PagerFragment()).commit();
 }
 }
}

(from ViewPager/Nested/app/src/main/java/com/commonsware/android/pagernested/ViewPagerIndicatorActivity.java)
This loads a PagerFragment, which contains most of the logic from our
original activity:

package com.commonsware.android.pagernested;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.support.v4.view.PagerAdapter;
import android.support.v4.view.ViewPager;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class PagerFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.pager, container, false);
 ViewPager pager=(ViewPager)result.findViewById(R.id.pager);

 pager.setAdapter(buildAdapter());

 return(result);
 }

 private PagerAdapter buildAdapter() {
 return(new SampleAdapter(getActivity(), getChildFragmentManager()));
 }
}

(from ViewPager/Nested/app/src/main/java/com/commonsware/android/pagernested/PagerFragment.java)
The biggest difference is that our call to the constructor of SampleAdapter
no longer uses getSupportFragmentManager(). Instead, it uses
getChildFragmentManager(). This allows SampleAdapter to use fragments
hosted by PagerFragment, rather than ones hosted by the activity as a whole.
No other code changes are required, and from the user’s standpoint, there
is no visible difference.
Pages and the Action Bar
Fragments that are pages inside a ViewPager can participate in the action bar,
supplying items to appear as toolbar buttons, in the overflow menu, etc. This
is not significantly different than
how any fragment participates in the action bar:

	Call setHasOptionsMenu() early in the fragment lifecycle (e.g., onCreateView())
to state that the fragment wishes to contribute to the action bar contents

	Override onCreateOptionsMenu() and onOptionsItemSelected(), much as you
would with an activity

ViewPager and FragmentManager will manage the contents of the action bar,
based upon the currently-visible page. That page’s contributions will appear in
the action bar, then will be removed when the user switches to some other page.
To see this in action, take a look at the
ViewPager/ActionBar
sample project. This is the same as the ViewPager/Indicator project from
before, except:

	In onCreateView(), for even-numbered page positions (0, 2, etc.), we call
setHasOptionsMenu(true):

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.editor, container, false);
 EditText editor=(EditText)result.findViewById(R.id.editor);

 position=getArguments().getInt(KEY_POSITION, -1);
 editor.setHint(getTitle(getActivity(), position));

 if ((position % 2)==0) {
 setHasOptionsMenu(true);
 }

 return(result);
 }

(from ViewPager/ActionBar/app/src/main/java/com/commonsware/android/pagerbar/EditorFragment.java)

	In onCreateOptionsMenu(), we inflate a res/menu/actions.xml menu resource:

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.actions, menu);

 super.onCreateOptionsMenu(menu, inflater);
 }

(from ViewPager/ActionBar/app/src/main/java/com/commonsware/android/pagerbar/EditorFragment.java)
Normally, we would also implement onOptionsItemSelected(), to find out when
the action bar item was tapped, though this is skipped in this sample.
The result is that when we have an even-numbered page position — equating to
an odd-numbered title and hint — we have items in the action bar:

[image: A ViewPager, PagerTabStrip, and Action Bar Item on Android 4.1]

Figure 621: A ViewPager, PagerTabStrip, and Action Bar Item on Android 4.1
…but as soon as we swipe to an odd-numbered page position — equating to
an even-numbered title and hint — our action bar item is removed, as that
fragment did not call setHasOptionsMenu(true):

[image: A ViewPager and PagerTabStrip, Sans Action Bar Item on Android 4.1]

Figure 622: A ViewPager and PagerTabStrip, Sans Action Bar Item on Android 4.1
ViewPagers and Scrollable Contents
There are other things in Android that can be scrolled horizontally, besides
a ViewPager:

	HorizontalScrollView

	
WebView, for content that is wider than the width of the screen

	the deprecated Gallery widget

	maps from many mapping engines, such as Google Maps

	various third-party widgets

The challenge then comes in terms of dealing with horizontal swipe events. The
ideal situation is for you to be able to swipe horizontally on the material
inside the page, until you hit some edge (e.g., end of the HorizontalScrollView),
then have swipe events move you to the adjacent page.
You can assist ViewPager in handling this scenario by subclassing it and overriding
the canScroll() method. This will be called on a horizontal swipe, and it is
up to you to indicate if the contents can be scrolled (returning true) or not
(returning false). If the built-in logic is insufficient, tailoring canScroll()
to your particular needs can help.
We will see an example of this elsewhere in the book, when
we put some maps into a ViewPager.
Showing More Pages
In some cases,
when the ViewPager is on a larger screen, we simply want larger pages — a digital
book reader, for example, would simply have a larger page in a bigger font for easier
reading.
Sometimes, though, we might not be able to take advantage of the full space offered
by the large screen, particularly when our ViewPager takes up the whole screen.
In cases like this, it might be useful to allow ViewPager, in some cases, to show
more than one page at a time. Each “page” is then designed to be roughly phone-sized, and
we choose whether to show one, two, or perhaps more pages at a time based upon the
available screen space.
Mechanically, allowing ViewPager to show more than one page is fairly easy, involving
overriding one more method in our PagerAdapter: getPageWidth(). To see this in action,
take a look at the
ViewPager/MultiView1
sample project.
Each page in this sample is simply a TextView widget, using the activity’s style’s
“large appearance”, centered inside a LinearLayout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical">

 <TextView
 android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

</LinearLayout>

(from ViewPager/MultiView1/app/src/main/res/layout/page.xml)
The activity, in onCreate(), gets our ViewPager from the res/layout/activity_main.xml
resource, and sets its adapter to be a SampleAdapter:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 pager=findViewById(R.id.pager);
 pager.setAdapter(new SampleAdapter());
 pager.setOffscreenPageLimit(6);
 }

(from ViewPager/MultiView1/app/src/main/java/com/commonsware/android/mvp1/MainActivity.java)
In this case, SampleAdapter is not a FragmentPagerAdapter, nor a
FragmentStatePagerAdapter. Instead, it is its own implementation of the PagerAdapter
interface:

 /*
 * Inspired by
 * https://gist.github.com/8cbe094bb7a783e37ad1
 */
 private class SampleAdapter extends PagerAdapter {
 @Override
 public Object instantiateItem(ViewGroup container, int position) {
 View page=
 getLayoutInflater().inflate(R.layout.page, container, false);
 TextView tv=page.findViewById(R.id.text);
 int blue=position * 25;

 final String msg=
 String.format(getString(R.string.item), position + 1);

 tv.setText(msg);
 tv.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(MainActivity.this, msg, Toast.LENGTH_LONG)
 .show();
 }
 });

 page.setBackgroundColor(Color.argb(255, 0, 0, blue));
 container.addView(page);

 return(page);
 }

 @Override
 public void destroyItem(ViewGroup container, int position,
 Object object) {
 container.removeView((View)object);
 }

 @Override
 public int getCount() {
 return(9);
 }

 @Override
 public float getPageWidth(int position) {
 return(0.5f);
 }

 @Override
 public boolean isViewFromObject(View view, Object object) {
 return(view == object);
 }
 }

(from ViewPager/MultiView1/app/src/main/java/com/commonsware/android/mvp1/MainActivity.java)
To create your own PagerAdapter, the big methods that you need to implement are:

	
instantiateItem(), where you create the page itself and add it to the supplied
container. In this case, we inflate the page, set the text of the TextView based
on the supplied position, set the background color of the page itself to be a different
shade of blue based on the position, set up a click listener to show a Toast when
the TextView is tapped, and use that for our page. We return some object
that identifies this page; in this case, we return the inflated View itself. A
fragment-based PagerAdapter would probably return the fragment.

	
destroyItem(), where we need to clean up a page that is being removed from the
pager, where the page is identified by the Object that we had previously returned
from instantiateItem(). In our case, we just remove it from the supplied container.

	
isViewFromObject(), where we confirm whether some specific page in the pager
(represented by a View) is indeed tied to a specific Object returned from
instantiateItem(). In our case, since we return the View from instantiateItem(),
we merely need to confirm that the two objects are indeed one and the same.

	
getCount(), as with the built-in PagerAdapter implementations, to return how
many total pages there are.

In our case, we also override getPageWidth(). This indicates, for a given position,
how much horizontal space in the ViewPager should be given to this particular page.
In principle, each page could have its own unique size. The return value is a float,
from 0.0f to 1.0f, indicating what fraction of the pager’s width goes to this page.
In our case, we return 0.5f, to have each page take up half the pager.
The result is that we have two pages visible at a time:

[image: Two Pages in a ViewPager on Android 4.0.3]

Figure 623: Two Pages in a ViewPager on Android 4.0.3
It is probably also a good idea to call setOffscreenPageLimit()
on the ViewPager, as we did in onCreate(). By default (and at minimum),
ViewPager will
cache three pages: the one presently visible, and one on either
side. However, if you are showing more than one at a time, you should
bump the limit to be 3 times the number of simultaneous pages.
For a page width of 0.5f — meaning two pages at a time –
you would want to call setOffscreenPageLimit(6), to make sure that
you had enough pages cached for both the current visible contents
and one full swipe to either side.
ViewPager even handles “partial swipes” — a careful swipe can
slide the right-hand page into the left-hand position and slide in
a new right-hand page. And ViewPager stops when you run out of pages,
so the last page will always be on the right, no matter how many
pages at a time and how many total pages you happen to have.
The biggest downside to this approach is that it will not work well
with the current crop of indicators. PagerTitleStrip and
PagerTabStrip assume that there is a
single selected page. While the indicator will adjust properly,
the visual representation shows that the left-hand page is the one
selected (e.g., the tab with the highlight), even though two or more
pages are visible. You can probably overcome this with a custom
indicator (e.g., highlight the selected tab and the one to its right).
Also note that this approach collides a bit with setPageMargin()
on ViewPager. setPageMargin() indicates an amount of whitespace
that should go in a gutter between pages. In principle, this would work
great with showing multiple simultaneous pages in a ViewPager. However,
ViewPager does not take the gutter into account when interpreting
the getPageWidth() value. For example, suppose getPageWidth()
returns 0.5f and we setPageMargin(20). On a 480-pixel-wide
ViewPager, we will actually use 500 pixels: 240 for the left page,
240 for the right page, and 20 for the gutter. As a result, 20 pixels
of our right-hand page are off the edge of the pager. Ideally, ViewPager
would subtract out the page margin before applying the page width.
One workaround is for you to derive the right getPageWidth()
value based upon the ViewPager size and gutter yourself, rather than
hard-coding a value. Or, build in your gutter into your page
contents (e.g., using android:layout_marginLeft and
android:layout_marginRight) and skip setPageMargin() entirely.
Columns or Pages
Another pattern — using pages for smaller screens and having the “pages”
side-by-side in columns for larger screens — will be explored
later in the book.
The Grid Pattern
Yet another approach for taking advantage of larger screen sizes is to
always show a full-size master and a full-size detail — perhaps using different
activities — but to use a grid rather than a list for the master. This works
well when the data being shown in the grid can be represented as “cards”, often
dominated by some photo or other image.
The basic approach is to use fewer grid columns (e.g., 1 or 2) on smaller screen sizes
and more grid columns (e.g., 3 or 4) on larger screen sizes. This way, the application
flow is identical across screen sizes, yet the screen usage on larger screens is
more effective. This is particularly true if you use on of the “staggered” grid widgets
available from third parties, like
Etsy’s AndroidStaggeredGrid
or Maurycy Wojtowicz’s StaggeredGridView:

[image: StaggeredGridView Demo (image courtesy of Maurycy Wojtowicz)]

Figure 624: StaggeredGridView Demo (image courtesy of Maurycy Wojtowicz)
Columns for Large, Pages for Small
In some cases, you can take better advantage of larger screens by using ViewPager
more judiciously. In a previous chapter, we explored having
ViewPager itself display more than one page at a time. A variation on that
same theme is to only use a ViewPager on screen sizes where you lack sufficient room
for everything, and to put those same pages on the screen at the same time when you
have room for all of them.
For example, a Twitter client for Android could use the columns-or-pages support for
displaying various streams of tweets: your timeline, your @ mentions, hashtags you
follow, etc. Each stream is represented by a typical ListView, with one row per tweet. On a
phone, since screen space is at a premium, those ListView widgets are set up in
a ViewPager, with one list per page. Users can swipe between the lists, or use tabs
to navigate the available lists.
However, tablets offer more room, so the app could show three ListView widgets side-by-side
in landscape mode, so you can take in three sets of content without further
interaction with the screen.
The
ViewPager/Columns1
sample project will demonstrate how you can accomplish the same basic approach in your
own app… with some limitations.
The Layouts
Our main activity layout — cunningly named main — has a ViewPager-based definition
in res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager android:id="@+id/pager"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v4.view.PagerTabStrip
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"/>

</android.support.v4.view.ViewPager>

(from ViewPager/Columns1/app/src/main/res/layout/main.xml)
However, in res/layout-large/, for 5-inch devices on up, we have a horizontal LinearLayout
with three FrameLayout containers, each representing an equal-sized slot for one
of our “pages”:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:baselineAligned="false"
 android:orientation="horizontal">

 <FrameLayout
 android:id="@+id/editor1"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"/>

 <FrameLayout
 android:id="@+id/editor2"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"/>

 <FrameLayout
 android:id="@+id/editor3"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"/>

</LinearLayout>

(from ViewPager/Columns1/app/src/main/res/layout-large/main.xml)
Android will automatically inflate the proper layout when we call
setContentView(R.layout.main).
The Activity
However, while Android handles the inflation for us, we obviously need to populate
the contents a bit differently. In this sample, though, we are relying upon the fact
that screen size will not change on the fly. Hence, an instance of our application
will either show a ViewPager or show the horizontal LinearLayout, and not have
to switch between those at runtime.
Our SampleAdapter, therefore, can remain unchanged, except for reducing the page
count to 3:

package com.commonsware.android.pagercolumns;

import android.content.Context;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;

public class SampleAdapter extends FragmentPagerAdapter {
 Context ctxt=null;

 public SampleAdapter(Context ctxt, FragmentManager mgr) {
 super(mgr);
 this.ctxt=ctxt;
 }

 @Override
 public int getCount() {
 return(3);
 }

 @Override
 public Fragment getItem(int position) {
 return(EditorFragment.newInstance(position));
 }

 @Override
 public String getPageTitle(int position) {
 return(EditorFragment.getTitle(ctxt, position));
 }
}

(from ViewPager/Columns1/app/src/main/java/com/commonsware/android/pagercolumns/SampleAdapter.java)
Our MainActivity will still use the SampleAdapter, and if we have a ViewPager,
it will use it the same way as before. However, if we do not have a ViewPager, we
must be showing three panes of content side by side, in which case we just execute a
FragmentTransaction to populate the three FrameLayout containers with the three
items created by the SampleAdapter:

package com.commonsware.android.pagercolumns;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
import android.support.v4.app.FragmentPagerAdapter;
import android.support.v4.view.ViewPager;

public class MainActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ViewPager pager=findViewById(R.id.pager);

 if (pager==null) {
 if (getSupportFragmentManager().findFragmentById(R.id.editor1)==null) {
 FragmentPagerAdapter adapter=buildAdapter();

 getSupportFragmentManager().beginTransaction()
 .add(R.id.editor1,
 adapter.getItem(0))
 .add(R.id.editor2,
 adapter.getItem(1))
 .add(R.id.editor3,
 adapter.getItem(2)).commit();
 }
 }
 else {
 pager.setAdapter(buildAdapter());
 }
 }

 private FragmentPagerAdapter buildAdapter() {
 return(new SampleAdapter(this, getSupportFragmentManager()));
 }
}

(from ViewPager/Columns1/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java)
Of course, we skip the FragmentTransaction if the fragments already exist, such as
due to a screen rotation configuration change.
The Results
On a phone, the ViewPager-based layout looks pretty much as it did before:

[image: A ViewPager. Again.]

Figure 625: A ViewPager. Again.
However, on a tablet, we get our three editors side-by-side:

[image: Same App, Large-Screen Layout with Side-By-Side Editors]

Figure 626: Same App, Large-Screen Layout with Side-By-Side Editors
The Limitations
The simplified large-screen layout does not contain any indicators above the three
editors. This could be added by simple changes to the res/layout-large/main.xml
layout resource, if desired.
The bigger limitation is that this only works if you want the same look in all
configurations except screen size, and if the screen size never changes.
However, it is eminently possible that you will want to have a different mix
than that, such as using the three-column approach only on large-screen landscape
layouts, using ViewPager everywhere else. In that case, our approach breaks
down, as we will have different fragments inside the pager and outside the pager,
meaning that we will lose our data on a configuration change. Addressing this issue
is covered in the next two sections.
Focus Management and Accessibility
As developers, we are very used to creating apps that are designed to be
navigated by touch, with users tapping on widgets and related windows to supply
input.
However, not all Android devices have touchscreens, and not all Android users
use touchscreens.
Internationalization (i18n) and localization (L10n) give you opportunities
to expand your user base to audiences beyond your initial set, based on language.
Similarly, you can expand your user base by offering support for non-touchscreen
input and output. Long-term, the largest user base of these features may be
those with televisions augmented by Android, whether via Android TV, OUYA consoles,
or whatever. Short-term, the largest user base of these features may be those
for whom touchscreens are rarely a great option, such as the blind. Supporting
those with unusual requirements for input and output is called accessibility
(a11y), and represents a powerful way for you to help your app distinguish itself
from competitors.
In this chapter, we will first examine how to better handle focus management,
and then segue into examining what else, beyond supporting keyboard-based input,
can be done in the area of accessibility.
Prerequisites
Understanding this chapter requires that you have read the core chapters and
are familiar with the concept of widgets having focus for user input.
Prepping for Testing
To test focus management, you will need an environment that supports “arrow key”
navigation. Here, “arrow key” also includes things like D-pads or trackballs –
basically, anything that navigates by key events instead of by touch events.
Examples include:

	The Android emulator, with the DPad support hardware property set to yes

	Phones that have actual D-pads, trackballs, arrow keys, or the like

	Television-based Android environments, such as Android TV or the OUYA console

	Devices that have dedicated keyboard accessories, such as the keyboard
“slice” available for the ASUS Transfomer series of tablets

	A standard Android device accessed via a Bluetooth keyboard, gamepad, or
similar sort of pointing device

Hence, even if the emulator will be insufficient for your needs, you should be
able to set up a hardware test environment relatively inexpensively. Most modern
Android devices support Bluetooth keyboards, and such keyboards frequently can
be obtained at low relative cost.
For accessibility beyond merely focus control, you will certainly want to
enable TalkBack, via the Accessibility area of the Settings app. This will
cause Android to verbally announce what is on the screen, by means of its
text-to-speech engine.
On Android 4.0 and higher devices, enabling Talkback will also optionally
enable “Explore by Touch”. This allows users to tap on items (e.g., icons in a
GridView) to have them read aloud via TalkBack, with a double-tap to actually
perform what ordinarily would require a single-tap without “Explore by Touch”.
Controlling the Focus
Android tries its best to have intelligent focus management “out of the box”,
without developer involvement. Many times, what it offers is sufficient for
your needs. Other times, though, the decisions Android makes are inappropriate:

	Trying to navigate in a certain direction (e.g., right) moves focus to a
widget that is not logically what should have the focus

	Focus has other side effects, like showing the soft keyboard on an EditText
widget, that is not desirable

Hence, if you feel that you need to take more control over how focus management
is handled, you have many means of doing so, covered in this section.
Establishing Focus
In order for a widget to get the focus, it has to be focusable.
You might think that the above sentence was just a chance for the author to be
witty. It was… a bit. But there are actually two types of “focusable” when it
comes to Android apps:

	Is it focusable when somebody is using a pointing device or the keyboard?

	Is it focusable in touch mode?

There are three major patterns for the default state of a widget:

	Some are initially focusable in both cases (e.g., EditText)

	Some are focusable in non-touch mode but are not focusable in touch
mode (e.g., Button)

	Some are not focusable in either mode (e.g., TextView)

So, when a Button is not focusable in touch mode, that means that while
the button will take the focus when the user navigates to it (e.g., via keys),
the button will not take the focus when the user simply taps on it.
You can control the focus semantics of a given widget in four ways:

	You can use android:focusable and android:focusableInTouchMode in
a layout

	You can use setFocusable() and setFocusableInTouchMode() in Java

We will see examples of these shortly.
Requesting (or Abandoning) Focus
By default, the focus will be granted to the first focusable widget in
the activity, starting from the upper left. Often times, this is a fine solution.
If you want to have some other widget get the focus (assuming that the widget
is focusable, per the section above), you have two choices:

	Call requestFocus() on the widget in question

	You can give the widget’s layout element a child element,
named [requestFocus /], to stipulate that this widget should be the one
to get the focus

Note that this is a child element, not an attribute, as you might ordinarily
expect.
For example, let’s look at the
Focus/Sampler
sample project, which we will use to illustrate various focus-related topics.
Our main activity, creatively named MainActivity, loads a layout named
request_focus.xml, and demonstrates the [requestFocus /] element:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/a_button"/>

 <EditText
 android:id="@+id/editText1"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:contentDescription="@string/first_field"
 android:hint="@string/str_1st_field"
 android:inputType="text"/>

 <EditText
 android:id="@+id/editText2"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:contentDescription="@string/second_field"
 android:hint="@string/str_2nd_field"
 android:inputType="text">

 <requestFocus/>
 </EditText>

</LinearLayout>

(from Focus/Sampler/app/src/main/res/layout/request_focus.xml)
Here, we have three widgets in a horizontal LinearLayout: a Button, and
two EditText widgets. The second EditText widget has the [requestFocus /]
child element, and so it gets the focus when we display our launcher activity:

[image: Focus Sampler, Showing Requested Focus]

Figure 627: Focus Sampler, Showing Requested Focus
If we had skipped the [requestFocus /] element, the focus would have wound
up on the first EditText… assuming that we are working in touch mode.
If the activity had been launched via the pointing device or keyboard, then
the Button would have the focus, because the Button is focusable in
non-touch mode by default.
Calling requestFocus() from Java code gets a bit trickier. There are a few
flavors of the requestFocus() method on View, of which two will be the
most popular:

	An ordinary zero-argument requestFocus()

	A one-argument requestFocus(), with the argument being the direction
in which the focus should theoretically be coming from

You might look at the description of the second flavor and decide that the
zero-argument requestFocus() looks a lot easier. And, sometimes it will
work. However, sometimes it will not, as is the case with our second
activity, RequestFocusActivity.
In this activity, our layout (focusable_button) is a bit different:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <EditText
 android:id="@+id/editText1"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:contentDescription="@string/first_field"
 android:hint="@string/str_1st_field"
 android:inputType="text"/>

 <EditText
 android:id="@+id/editText2"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:contentDescription="@string/second_field"
 android:hint="@string/str_2nd_field"
 android:inputType="text">
 </EditText>

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:focusableInTouchMode="true"
 android:text="@string/a_button"/>

</LinearLayout>

(from Focus/Sampler/app/src/main/res/layout/focusable_button.xml)
Here, we put the Button last instead of first. We have no [requestFocus /]
element anywhere, which would put the default focus on the first EditText
widget. And, our Button has android:focusableInTouchMode="true", so it
will be focusable regardless of whether we are in touch mode or not.
In onCreate() of our activity, we use the one-parameter version of
requestFocus() to give the Button the focus:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.focusable_button);
 initActionBar();

 button=findViewById(R.id.button1);
 button.requestFocus(View.FOCUS_RIGHT);
 button.setOnClickListener(this);
 }

(from Focus/Sampler/app/src/main/java/com/commonsware/android/focus/RequestFocusActivity.java)
If there were only the one EditText before the Button, the zero-argument
requestFocus() works. However, with a widget between the default focus
and our Button, the zero-argument requestFocus() does not work, but using
requestFocus(View.FOCUS_RIGHT) does. This tells Android that we want the focus,
and it should be as if the user is moving to the right from where the focus
currently lies.
All of our activities inherit from a BaseActivity that manages our action
bar, with an overflow menu to get to the samples and the app icon to
get to the original activity.
So, if you run the app and choose “Request Focus” from the overflow menu, you
will see:

[image: Focus Sampler, Showing Manually-Requested Focus]

Figure 628: Focus Sampler, Showing Manually-Requested Focus
We also wire up the Button to the activity for click events, and in
onClick(), we call clearFocus() to abandon the focus:

 @Override
 public void onClick(View v) {
 button.clearFocus();
 }

(from Focus/Sampler/app/src/main/java/com/commonsware/android/focus/RequestFocusActivity.java)
What clearFocus() will do is return to the original default focus for this
activity, in our case the first EditText:

[image: Focus Sampler, After Clearing the Focus]

Figure 629: Focus Sampler, After Clearing the Focus
Focus Ordering
Beyond manually placing the focus on a widget (or manually clearing that
focus), you can also override the focus order that Android determines
automatically. While Android’s decisions usually are OK, they may not be
optimal.
A widget can use android:nextFocus... attributes in the layout file to indicate
the widget that should get control on a focus change in the direction indicated
by the ... part. So, android:nextFocusDown, applied to Widget A, indicates
which widget should receive the focus if, when the focus is on Widget A, the
user “moves down” (e.g., presses a DOWN key, presses the down direction on a
D-pad). The same logic holds true for the other three directions
(android:nextFocusLeft, android:nextFocusRight, and android:nextFocusUp).
For example, the res/layout/table.xml resource in the FocusSampler
project is based on the
TableLayout sample from early in this book, with a bit more focus control:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1">

 <TableRow>

 <TextView android:text="@string/url"/>

 <EditText
 android:id="@+id/entry"
 android:layout_span="3"
 android:inputType="text"
 android:nextFocusRight="@+id/ok"/>
 </TableRow>

 <TableRow>

 <Button
 android:id="@+id/cancel"
 android:layout_column="2"
 android:text="@string/cancel"/>

 <Button
 android:id="@+id/ok"
 android:text="@string/ok"/>
 </TableRow>

</TableLayout>

(from Focus/Sampler/app/src/main/res/layout/table.xml)
In the original TableLayout sample, by default,
pressing either RIGHT or DOWN while the EditText has the focus
will move the focus to the “Cancel” button. This certainly works. However, it
does mean that there is no single-key means of moving from the EditText to
the “OK” button, and it would be nice to offer that, so those using the
pointing device or keyboard can quickly move to either button.
This is a matter of overriding the default focus-change behavior of the
EditText widget. In our case, we use android:nextFocusRight="@+id/ok"
to indicate that the “OK” button should get the focus if the user presses
RIGHT from the EditText. This gives RIGHT and DOWN different behavior, to
reach both buttons.
Scrolling and Focusing Do Not Mix
Let’s suppose that you have a UI design with a fixed bar of widgets at the
top (e.g., action bar), a ListView dominating the activity, and a panel
of widgets at the bottom (e.g., a Toolbar). This is a common UI pattern
on iOS, though it is relatively uncommon on Android nowadays. You used
to see it with the so-called “split action bar”, which is now officially
deprecated as a pattern:

[image: Split Action Bar]

Figure 630: Split Action Bar
However, this UI pattern does not work well for those using pointing
devices or keyboards for navigation. In order to get to the bottom panel of
widgets, they will have to scroll through the entire list first, because scrolling
trumps focus changes. So while this is easy to navigate via a touchscreen,
it is a major problem to navigate for those not using a touchscreen.
Similarly, if the user has scrolled down the list, and now wishes to get to the
action bar at the top, the user would have to scroll all the way to the top of the list
first.
Workarounds include:

	Overriding focus control such that left and right navigation from the list
moves you to the action bar or bottom Toolbar (e.g., left moves you to the action
bar, right moves you to the Toolbar)

	In a television setup, having the “action bar” be vertical down the left,
and the tools be vertical down the right, so you automatically get
the left/right navigation to move between these “zones”

	Eliminating the Toolbar entirely, moving those items instead to the action
bar, or perhaps an action mode (a.k.a., contextual action bar)
if the items are only relevant if the user checks one or more items in the
list

	Offer a hotkey, separate from navigation, that repositions the focus
(e.g., Ctrl-A to jump to the action bar), if you believe that users will read
your documentation to discover this key combination

Accessibility and Focus
People suffering from impaired vision, including the blind, have had to rely
heavily on proper keyboard navigation for their use of Android apps, at least
prior to Android 4.0 and “Explore by Touch”. These users need focus to be
sensible, so that they can find their way through your app, with TalkBack
supplying prompts for what has the focus. Having widgets that are unreachable
in practice will eliminate features from your app for this audience, simply
because they cannot get to them.
“Explore by Touch” provides accessibility assistance without reliance upon
proper focus. However:

	“Explore by Touch” is new to Android 4.0, and a few visually-impaired users
will be using older devices

	“Explore by Touch” is less reliable than keyboard-based navigation, insofar as
users have to remember specific screen locations (and get to them without
seeing those locations), rather than simply memorizing certain key combinations

	“Explore by Touch”, by requiring additional taps (e.g., double-tap to tap
a Button), may cause some challenges when the UI itself requires additional
taps (e.g., a double-tap on a widget to perform an action — is this now a
triple-tap in “Explore by Touch” mode?)

	“Explore by Touch” is mostly for the visually impaired, and does not help
others that might benefit from key-based navigation (e.g., people with
limited motor control)

So, even though “Explore by Touch” will help people use apps that cannot be
navigated purely through key events, the better you can support keyboards, the
better off your users will be.
Accessibility Beyond Focus
While getting focus management correct goes a long way towards making your
application easier to use, it is not the only thing to consider for making
your application truly accessible by all possible users. This section covers
a number of other things that you should consider as part of your accessibility
initiatives.
Content Descriptions
For TalkBack to work, it needs to have something useful to read aloud to the
user. By default, for most widgets, all it can say is the type of widget that
has the focus (e.g., “a checkbox”). That does not help the TalkBack-reliant user
very much.
Please consider adding android:contentDescription attributes to most of your
widgets, pointing to a string resource that briefly describes the widget
(e.g., “the Enabled checkbox”). This will be used in place of the basic type of
widget by TalkBack.
Classes that inherit from TextView will use the text caption of the widget
by default, so your Button widgets may not need android:contentDescription
if their captions will make sense to TalkBack users.
However, with an EditText, since the text will be what the user types in,
the text is not indicative of the widget itself. Android will first use your
android:hint value, if available, falling back to android:contentDescription
if android:hint is not supplied.
Also, bear in mind that if the widget changes purpose, you need to change
your android:contentDescription to match. For example, suppose you have a
media player app with an ImageButton that you toggle between “play” and “pause”
modes by changing its image. When you change the image, you also need to change
the android:contentDescription as well, lest sighted users think the button
will now “pause” while blind users think that the button will now “play”.
Labels
Sometimes, we have TextView widgets that serve as on-screen labels for some
adjacent other widget, such as an EditText. In those cases, you can associate
the two by using android:labelFor on the TextView, supplying the ID of the
widget for which the TextView is a label. This will help accessibility tools
properly announce the widgets, as otherwise those tools do not know that these
widgets are related.
Custom Widgets and Accessibility Events
The engine behind TalkBack is an accessibility service. Android ships with some,
like TalkBack, and third parties can create other such services.
Stock Android widgets generate relevant accessibility events to feed data into
these accessibility services. That is how android:contentDescription gets used,
for example — on a focus change, stock Android widgets will announce the widget
that just received the focus.
If you are creating custom widgets, you may need to raise your own accessibility
events. This is particularly true for custom widgets that draw to the Canvas
and process raw touch events (rather than custom widgets that merely aggregate
existing widgets).
The Android developer documentation provides
instructions for when and how to supply these sorts of events.
Announcing Events
Sometimes, your app will change something about its visual state in ways that do
not get picked up very well by any traditional accessibility events.
For example, you might use GestureDetector to handle some defined library of
gestures and change state in your app. Those state changes may have visual impacts,
but GestureDetector will not know what those are and therefore cannot supply
any sort of accessibility event about them.
To help with this, API Level 16 added announceForAccessibility() as a method
on View. Just pass it a string and that will be sent out as an “announcement”
style of AccessibilityEvent. Your code leveraging GestureDetector, for example,
could use this to explain the results of having applied the gesture.
Font Selection and Size
For users with limited vision, being able to change the font size is a big
benefit. Android 4.0 finally allows this, via the Settings app, so users
can choose between small, normal, large, and huge font sizes. Any place
where text is rendered and is measured in sp will adapt.
The key, of course, is the sp part.
sp is perhaps the most confusing of the available dimension units in Android.
px is obvious, and dp (or dip) is understandable once you recognize
the impacts of screen density. Similarly, in, mm, and pt are fairly simple,
at least once you remember that pt is 1/72nd of an inch.
If the user has the font scale set to “normal”, sp equates to dp, so a
dimension of 30sp and 30dp will be the same size. However, values in
dp do not change based on font scale; values in sp will increase or
decrease in physical size based upon the user’s changes to the font scale.
We can see how this works in the
Accessibility/FontScale
sample project.
In our layout (res/layout/activity_main.xml), we have six pieces of text:
two each (regular and bold) measured at 30px, 30dp, and 30sp:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/LinearLayout1"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 android:text="@string/normal_30px"
 android:textSize="30px"
 tools:context=".MainActivity"/>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/bold_30px"
 android:textSize="30px"
 android:textStyle="bold"
 tools:context=".MainActivity"/>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 android:text="@string/normal_30dp"
 android:textSize="30dp"
 tools:context=".MainActivity"/>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/bold_30dp"
 android:textSize="30dp"
 android:textStyle="bold"
 tools:context=".MainActivity"/>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 android:text="@string/normal_30sp"
 android:textSize="30sp"
 tools:context=".MainActivity"/>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/bold_30sp"
 android:textSize="30sp"
 android:textStyle="bold"
 tools:context=".MainActivity"/>

</LinearLayout>

(from Accessibility/FontScale/app/src/main/res/layout/activity_main.xml)
You will be able to see the differences between 30px and 30dp on any
Android OS release, simply by running the app on devices with different
densities. To see the changes between 30dp and 30sp, you will need to
run the app on an Android 4.0+ device or emulator and change the font scale
from the Settings app (typically in the Display section).
Here is what the text looks like with a normal font scale:

[image: Fonts at Normal Scale]

Figure 631: Fonts at Normal Scale
As you can see, 30dp and 30sp are equivalent.
If we raise the font scale to “large”, the 30sp text grows to match:

[image: Fonts at Large Scale]

Figure 632: Fonts at Large Scale
Moving to “huge” scale increases the 30sp text size further:

[image: Fonts at Huge Scale]

Figure 633: Fonts at Huge Scale
In the other direction, some users may elect to drop their font size to
“small”, with a corresponding impact on the 30sp text:

[image: Fonts at Small Scale]

Figure 634: Fonts at Small Scale
As a developer, your initial reaction may be to run away from sp, because
you do not control it. However, just as Web developers should deal with
changing font scale in Web browsers, Android developers should deal with
changing font scale in Android apps. Remember: the user is changing the
font scale because the user feels that the revised scale is easier for them
to use. Blocking such changes in your app, by avoiding sp, will not be met
with love and adoration from your user base.
Also, bear in mind that changes to the font scale represent a configuration
change. If your app is in memory at the time the user goes into Settings and
changes the scale, if the user returns to your app, each activity that comes to
the foreground will undergo the configuration change, just as if the user had
rotated the screen or put the device into a car dock or something.
Widget Size
Users with ordinary sight already have trouble with tiny widgets, as they are
difficult to tap upon.
Users trying to use the Explore by Touch facility added in Android 4.1 have it
worse, as they cannot even see (or see well) the tiny target you are expecting
them to tap upon. They need to be able to reliably find your widget based on
its relative position on the screen, and their ability to do so will be tied,
in part, on widget size.
The Android design guidelines recommend
7-10mm per side minimum sizes for
tappable widgets. In particular, they recommend 48dp per side, which results in
a size of about 9mm per side.
You also need to consider how closely packed your widgets are. The closer the
tap targets lie, the more likely it is that all users — whether using
Explore by Touch or not — will accidentally tap on the wrong thing. Google
recommends 8dp or more of margin between widgets. Also note that the key is
margins, as while increasing padding might visually separate the widgets, the
padding is included as part of the widget from the standpoint of touch events.
While padding may help users with ordinary sight, margins provide similar help
while also being of better benefit to those using Explore by Touch.
Gestures and Taps
If you employ gestures, be careful when employing the same gesture in
different spots for different roles, particularly within the same activity.
For example, you might use a horizontal swipe to the right to switch pages
in a ViewPager in some places and remove items from a ListView in others.
While there may be visual cues to help explain this to users with ordinary sight,
it may be far less obvious what is going on for TalkBack users. This is even
more true if you are somehow combining these things (e.g., the ListView in
question is in a page of the ViewPager).
Also, be a bit careful as you “go outside the box” for tap events. You might
decide that a double-tap, or a two-finger tap, has special meaning on some
widgets. Make sure that this still works when users use Explore by Touch,
considering that the first tap will be “consumed” by Explore by Touch to announce
the widget being tapped upon.
Enhanced Keyboard Support
All else being equal, users seeking accessibility assistance will tend to use
keyboards when available. For users with limited (or no) sight, tactile keyboards
are simply easier to use than touchscreens. For users with limited motor control,
external devices that interface as keyboards may allow them to use devices that
otherwise they could not.
Of course, plenty of users will use keyboards outside of accessibility as well.
For example, devices like the ASUS Transformer series form perfectly good
“netbook”-style devices when paired with their keyboards.
Hence, consider adding hotkey support, to assist in the navigation of your app.
Some hotkeys may be automatically handled (e.g., Ctrl-C for copy in an EditText).
However, in other cases you may wish to add those yourself (e.g., Ctrl-C for
“copy” with respect to a checklist and its selected rows, in addition to a “copy”
action mode item).
API Level 11 adds KeyEvent support for methods like isCtrlPressed() to detect
meta keys used in combination with regular keys.
Audio and Haptics
Of course, another way to make your app more accessible is to provide alternative
modes of input and output, beyond the visual.
Audio is popular in this regard:

	Using tones or clicks to reinforce input choices

	Integrating your own text-to-speech to augment TalkBack

	Integrating speech recognition for simple commands

However, bear in mind that deaf users will be unable to hear your audio. You
are better served using both auditory and visual output, not just one or the
other.
In some cases, haptics can be helpful for input feedback, by using the Vibrator
system service to power the vibration motor. While most users will be able
to feel vibrations, the limitation here is whether the device is capable of
vibrating:

	Some tablets lack a vibration motor

	Television-based Android environment may or may not have some sort of vibration
output (e.g., remote controls probably will not, but game controllers might)

	Devices not held in one’s hand, such as those in a dock, will make haptics
less noticeable

So, audio and vibration can help augment visual input and output, though they
should not be considered complete replacements except in rare occurrences.
Color and Color Blindness
Approximately 8% of men (and 0.5% of women)
in the world are colorblind, meaning
that they cannot distinguish certain close colors:

…It’s not that colorblind people (in most cases) are incapable or perceiving “green,” instead they merely distinguish fewer shades of green than you do. So where you see three similar shades of green, a colorblind user might only see one shade of green.

(from “Tips for Designing for Colorblind Users”)
Hence, relying solely on colors to distinguish different items, particularly
when required for user input, is not a wise move.
Make sure that there is something more to distinguish two pieces of your UI
than purely a shift in color, such as:

	Labels or icons

	Textures (e.g., solid vs. striped)

	Borders (e.g., drop shadow)

Accessibility Beyond Impairment
Accessibility is often tied to impaired users: ones with limited (or no) sight,
ones with limited (or no) hearing, ones with limited motor control, etc.
In reality, accessibility is for situations where users may have limitations.
For example, a user who might not normally think of himself as “impaired” has
limited sight, hearing, and motor control when those facilities are already in
use, such as while driving.
Hence, offering features that help with accessibility can benefit all your
users, not just ones you think of as “impaired”. For example:

	Offer a UI mode with an eye towards use in low-visibility situations that
can either be manually invoked (e.g., via a preference) or automatically invoked
(e.g., via a car dock)

	Offer voice input (commands) and output (text-to-speech) — iOS’s Siri is not
just for the blind, after all

	Offer hotkeys, not only to help those requiring a keyboard as their primary
mode of input (e.g., blind users minimizing touchscreen use), but to help those
who opt into using it for input (e.g., using a keyboard with an Android tablet
in lieu of a traditional notebook or netbook)

Miscellaneous UI Tricks
While well-written GUI frameworks are better organized than
XKCD’s take on home organization, there are always a
handful of tidbits that do, indeed, get categorized as “miscellaneous”.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book. Having an appreciation for XKCD is welcome, but optional.
Full-Screen and Lights-Out Modes
Full-screen mode, in Android parlance, means removing any system-supplied “bars”
from the screen: title bar, action bar, status bar, system bar, navigation
bar, etc. You might use this for games, video players, digital book readers,
or other places where the time spent in an activity is great enough to warrant
removing some of the normal accouterments to free up space for whatever the
activity itself is doing.
Lights-out mode, in Android parlance, is where you take the system bar or
navigation bar and dim the widgets inside of them, such that the bar is still
usable, but is less visually distracting. This is a new concept added in Android
3.0 and has no direct analogue in Android 1.x or 2.x.
Android 1.x/2.x
To have an activity be in full-screen mode, you have two choices:

	Having the activity use a theme of Theme.NoTitleBar.Fullscreen (or some
custom theme that inherits from Theme.NoTitleBar.Fullscreen)

	Execute the following statements in onCreate() of your activity
before calling setContentView():

requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

The first statement removes the title bar or action bar.
The second statement indicates that you
want the activity to run in full-screen mode, hiding the status bar.
Android 4.0+
Things got significantly more messy once we started adding in the system bar
(and, later, the navigation bar as the replacement for the system bar).
Since these bars provide the user access to HOME, BACK, etc., it is usually
important for them to be available. Android’s behavior, therefore, varies in
how you ask for something to happen and what then happens, based upon whether
the device is a phone or a tablet.
The
Activities/FullScreen
sample project tries to enumerate some of the possibilities. On an Android
4.0 device, we have three RadioButtons:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <RadioGroup
 android:id="@+id/screenStyle"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <RadioButton
 android:id="@+id/normal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="@string/display_normal"/>

 <RadioButton
 android:id="@+id/lowProfile"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/display_low_profile"/>

 <RadioButton
 android:id="@+id/hideNav"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/display_hide_navigation"/>
 </RadioGroup>

 <Button
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="@string/something_at_the_bottom"/>

</RelativeLayout>

(from Activities/FullScreen/app/src/main/res/layout/main.xml)

[image: Sample UI, As Initially Launched on Android 4.0]

Figure 635: Sample UI, As Initially Launched on Android 4.0
…while on Android 4.1 or higher, we have another two possibilities:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <RadioGroup
 android:id="@+id/screenStyle"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <RadioButton
 android:id="@+id/normal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="@string/display_normal"/>

 <RadioButton
 android:id="@+id/lowProfile"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/display_low_profile"/>

 <RadioButton
 android:id="@+id/hideNav"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/display_hide_navigation"/>

 <RadioButton
 android:id="@+id/hideStatusBar"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hide_status_bar"/>

 <RadioButton
 android:id="@+id/fullScreen"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/display_full_screen"/>
 </RadioGroup>

 <Button
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="@string/something_at_the_bottom"/>

</RelativeLayout>

(from Activities/FullScreen/app/src/main/res/layout-v16/main.xml)

[image: Sample UI, As Initially Launched on a Nexus 4/Android 4.2]

Figure 636: Sample UI, As Initially Launched on a Nexus 4/Android 4.2
Controlling the full-screen and lights-out modes is managed via a call to
setSystemUiVisibility(), a method on View. You pass in a value made up
of an OR’d (|) set of flags indicating what you want the visibility to be,
with the default being normal operation. Hence, in the screenshot above, you
see a Nexus 4 in normal mode. Here is the same UI on a Nexus 10 in normal mode:

[image: Sample UI, As Initially Launched on a Nexus 10/Android 4.2]

Figure 637: Sample UI, As Initially Launched on a Nexus 10/Android 4.2
Lights-out, or low-profile mode, is achieved by calling setSystemUiVisibility()
with the View.SYSTEM_UI_FLAG_LOW_PROFILE flag. This will dim the navigation
or system bar, so the bar is there and the buttons are still active, but that
they are less visually intrusive:

[image: Sample UI, Lights-Out Mode, Nexus 4/Android 4.2]

Figure 638: Sample UI, Lights-Out Mode, Nexus 4/Android 4.2

[image: Sample UI, Lights-Out Mode, Nexus 10/Android 4.2]

Figure 639: Sample UI, Lights-Out Mode, Nexus 10/Android 4.2
You can temporarily hide the navigation bar (or system bar) by passing
View.SYSTEM_UI_FLAG_HIDE_NAVIGATION to setSystemUiVisibility(). The bar
will disappear, until the user touches the UI, in which case the bar
reappears:

[image: Sample UI, Hidden-Navigation Mode, Nexus 4/Android 4.2]

Figure 640: Sample UI, Hidden-Navigation Mode, Nexus 4/Android 4.2

[image: Sample UI, Hidden-Navigation Mode, Nexus 10/Android 4.2]

Figure 641: Sample UI, Hidden-Navigation Mode, Nexus 10/Android 4.2
Similarly, you can hide the status bar by passing
View.SYSTEM_UI_FLAG_FULLSCREEN to setSystemUiVisibility(). However,
despite this flag’s name, it does not affect the navigation or system bar:

[image: Sample UI, Full-Screen Mode, Nexus 4/Android 4.2]

Figure 642: Sample UI, “Full-Screen” Mode, Nexus 4/Android 4.2

[image: Sample UI, Full-Screen Mode, Nexus 10/Android 4.2]

Figure 643: Sample UI, “Full-Screen” Mode, Nexus 10/Android 4.2
Hence, to hide both the status bar and the navigation or system bar, you
need to pass both flags
(View.SYSTEM_UI_FLAG_FULLSCREEN | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION):

[image: Sample UI, True Full-Screen Mode, Nexus 4/Android 4.2]

Figure 644: Sample UI, True Full-Screen Mode, Nexus 4/Android 4.2

[image: Sample UI, True Full-Screen Mode, Nexus 10/Android 4.2]

Figure 645: Sample UI, True Full-Screen Mode, Nexus 10/Android 4.2
Note that showing and hiding the ActionBar is also possible, via calls
to show() and hide(), respectively.
Offering a Delayed Timeout
Android makes it easy for activities to keep the screen on while the
activity is in the foreground, by means of android:keepScreenOn
and setKeepScreenOn().
However, these are very blunt instruments, and too many developers
simply ask to keep the screen on constantly, even when that is not
needed and can cause excessive battery drain. That is because it
is very easy to always keeps the screen on.
Say, for example, you are playing a game. Keeping the screen on while
the game is being played is probably a good thing, particularly if the
game does not require constant interaction with the screen. However, if
you press the
in-game pause button, the game might keep the screen on while the game is paused.
This might lead you to press pause, put down your tablet (expecting
it to fall asleep in a normal period of time), and then have the
tablet keep going and going and going… until the battery runs dead.
Whether you use setKeepScreenOn() or directly use a WakeLock,
it is useful to think of three tiers of user interaction.
The first tier is when your app is doing its “one big thing”: playing
the game, playing the video, displaying the digital book, etc. If
you expect that there will be periods of time when the user is actively
engaged with your app, but is not interacting with the screen, keep
the screen on.
The second tier is when your app is delivering something to the user
that probably would get used without interaction in the short term,
but not indefinitely. For example, a game might reasonably expect
that 15 seconds could be too short to have the screen time out, but
if the user has not done anything in 5-10 minutes, most likely they
are not in front of the game. Similarly, a digital book reader
should not try to keep the screen on for an hour without user interaction.
The third tier is when your app is doing anything other than the main
content, where normal device behavior should resume. A video player
might keep the screen on while the video is playing, but if the video
ends, normal behavior should resume. After all, if the person who had
been watching the video fell asleep, they will not be in position to
press a power button.
The first and third tiers are fairly easy from a programming standpoint.
Just acquire() and release() the WakeLock, or toggle
setKeepScreenOn() between true and false.
The second tier — where you are willing to have a screen timeout, just
not too quickly — requires you to add a bit more smarts to your app.
A simple, low-overhead way of addressing this is to have a postDelayed()
loop, to get a Runnable control every 5-10 seconds. Each time the user
interacts with your app, update a lastInteraction timestamp. The
Runnable compares lastInteraction with the current time, and if
it exceeds some threshold, release the WakeLock or call
setKeepScreenOn(false). When the user interacts again, though, you
will need to re-acquire the WakeLock or call setKeepScreenOn(true).
Basically, you have your own inactivity timing mechanism to control
when you are inhibiting normal inactivity behavior or not.
To see the second tier in action, take a look at the
MiscUI/DelayedTimeout
sample project.
The UI is a simple button. We want to keep the screen awake while the user
is using the button, but let it fall asleep after a period of inactivity that
we control. To accomplish this, we will use a postDelayed() loop, to get
control every 15 seconds to see if there has been user activity:

package com.commonsware.android.timeout;

import android.app.Activity;
import android.os.Bundle;
import android.os.SystemClock;
import android.view.View;

public class MainActivity extends Activity implements Runnable {
 private static int TIMEOUT_POLL_PERIOD=15000; // 15 seconds
 private static int TIMEOUT_PERIOD=300000; // 5 minutes
 private View content=null;
 private long lastActivity=SystemClock.uptimeMillis();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 content=findViewById(android.R.id.content);
 content.setKeepScreenOn(true);
 run();
 }

 @Override
 public void onDestroy() {
 content.removeCallbacks(this);

 super.onDestroy();
 }

 @Override
 public void run() {
 if ((SystemClock.uptimeMillis() - lastActivity) > TIMEOUT_PERIOD) {
 content.setKeepScreenOn(false);
 }

 content.postDelayed(this, TIMEOUT_POLL_PERIOD);
 }

 public void onClick(View v) {
 lastActivity=SystemClock.uptimeMillis();
 }
}

(from MiscUI/DelayedTimeout/app/src/main/java/com/commonsware/android/timeout/MainActivity.java)
In onCreate(), we call setKeepScreenOn(true) to keep the screen on, regardless
of what the user’s default timeout is. Then, we call the run() method from
our Runnable interface (implemented on the activity itself). run() sees
if 5 minutes has elapsed since the last bit of user activity (initially set
to be the time the activity launches). If 5 minutes has elapsed, we revert
to normal screen-timeout behavior with setKeepScreenOn(false). We also
schedule ourselves, as a Runnable, to get control again in 15 seconds, to see
if 5 minutes has elapsed since the last-seen activity. Our button’s onClick()
method simply updates the last-seen timestamp, and onDestroy() cleans up
our postDelayed() loop by calling removeCallbacks() to stop invoking our
Runnable.
The net is that the device’s screen will remain on for 5 minutes since the last
time the user taps the button, even if the user’s default screen timeout is set
to shorter than 5 minutes. Yet, at the same time, we do not keep the screen
on forever, causing unnecessary battery drain.
Note that to test this, you will probably need to unplug your USB cable
after installing the app on the device (since many developers have it set up
to keep the screen on while plugged in). Also, you will need to set your
device’s screen timeout to be under 5 minutes, if it is not set that way already.
This is a primitive implementation, missing lots of stuff that you would want
in production code (e.g., it never calls setKeepScreenOn(true) if we flipped
it to false but then tap the button). And the complexity of determining
if the user interacted with the screen will be tied to the complexity of your
UI.
That being said, by having a more intelligent use of WakeLock and setKeepScreenOn(),
you can deliver value to the user while not accidentally causing
excessive battery drain. Users do not always remember to press the
power button, so you need to make sure that just because the user made
a mistake, that you do not make it worse.
Event Bus Alternatives
Earlier in the book, we covered the concept of an event bus as a
way of communicating between portions of our app, focusing on one event bus
implementation: greenrobot’s EventBus. Later, in the chapter on broadcast
Intent objects, we briefly covered LocalBroadcastManager.
However, those are not the only event buses available for Android, and others may fit
your needs better. In this chapter, we will explore these and other event bus implementations,
to compare and contrast.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, particularly the chapters on
basic event bus usage, broadcast Intents,
AlarmManager and the scheduled service pattern, and Notifications.
A Brief Note About the Sample Apps
The sample apps in this chapter are generally designed to run forever.
It is unlikely that you really want them to run forever, though. Hence,
please uninstall each sample after experimenting with it, particularly
if you are testing on hardware, such as your personal phone. Your battery
will appreciate it.
Standard Intents as Event Bus
You can think of the standard Intent and <intent-filter> system as a three-channel
event bus:

	One channel is used for starting activities

	One channel is used for starting or binding to services

	One channel is used for more ad-hoc “broadcast” events

The component starting an activity does not need to communicate directly with
code for that activity — in fact, often times this is impossible, as they are
separate apps running in separate processes. Instead, the component starting
an activity sends an event indicating the particular operation to be performed
(e.g., view this URL), and Android and the user determine which of candidate
consumers is the one to process that event.
However, broadcast Intent objects are a closer analogue to a real “event bus”, in that
an event produced by somebody can be consumed by zero, one, or several subscribed
consumers, based upon the filtering provided by <intent-filter> elements in
the manifest or IntentFilter objects for use with registerReceiver().
In theory, you could use broadcast Intent objects as the backbone for a fairly flexible
event bus within your app. In practice, this is not usually a good idea:

	Each broadcast involves inter-process communication (IPC), even if the event
producer and consumer(s) are in the same process. This adds overhead.

	Because broadcasts are intrinsically IPC, you have to take security into account,
to ensure only authorized producers can publish events that the consumers
pick up.

However, if you specifically need a cross-process event bus, such as between
a suite of related apps, using a broadcast Intent is a very likely choice.
LocalBroadcastManager as Event Bus
As was briefly noted earlier in the book, the Android
Support package offers a LocalBroadcastManager. This is designed to offer an
event bus with a feel very similar to classic broadcast Intent objects, but local to
your process. Not only does this avoid IPC overhead, but it improves security,
as other apps have no means of spying on your internal communications.
LocalBroadcastManager is supplied by both the support-v4 and
support-v13 libraries. Generally speaking, if your minSdkVersion
is less than 13, you probably should choose support-v4.
A Simple LocalBroadcastManager Sample
Let’s see LocalBroadcastManager in action via the
Intents/Local
sample project.
Here, our LocalActivity sends a command to a NoticeService from
onCreate():

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 notice=(TextView)findViewById(R.id.notice);
 startService(new Intent(this, NoticeService.class));
 }

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java)
The NoticeService simply delays five seconds, then sends a local
broadcast using LocalBroadcastManager:

package com.commonsware.android.localcast;

import android.app.IntentService;
import android.content.Intent;
import android.os.SystemClock;
import android.support.v4.content.LocalBroadcastManager;

public class NoticeService extends IntentService {
 public static final String BROADCAST=
 "com.commonsware.android.localcast.NoticeService.BROADCAST";
 private static Intent broadcast=new Intent(BROADCAST);

 public NoticeService() {
 super("NoticeService");
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 SystemClock.sleep(5000);
 LocalBroadcastManager.getInstance(this).sendBroadcast(broadcast);
 }
}

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/NoticeService.java)
Specifically, you get at your process’ singleton instance of
LocalBroadcastManager by calling getInstance() on the
LocalBroadcastManager class.
Our LocalActivity registers for this local broadcast in
onStart(), once again using getInstance() on
LocalBroadcastManager:

 @Override
 public void onStart() {
 super.onStart();

 IntentFilter filter=new IntentFilter(NoticeService.BROADCAST);

 LocalBroadcastManager.getInstance(this).registerReceiver(onNotice,
 filter);
 }

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java)
LocalActivity unregisters for this broadcast in onStop():

 @Override
 public void onStop() {
 super.onStop();

 LocalBroadcastManager.getInstance(this).unregisterReceiver(onNotice);
 }

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java)
The BroadcastReceiver simply updates a TextView with the current
date and time:

 private BroadcastReceiver onNotice=new BroadcastReceiver() {
 public void onReceive(Context ctxt, Intent i) {
 notice.setText(new Date().toString());
 }
 };

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java)
If you start up this activity, you will see a “(waiting...)” bit of
placeholder text for about five seconds, before having that be
replaced by the current date and time.
The BroadcastReceiver, the IntentFilter, and the Intent being
broadcast are the same as we would use with full broadcasts. It is
merely how we are using them — via LocalBroadcastManager
– that dictates they are local to our process versus the
standard device-wide broadcasts.
A More Elaborate Sample
That sample is not terribly realistic, but it is simple.
A somewhat more realistic sample is the one using AlarmManager and JobIntentService from
elsewhere in the book. However, that app is also fairly unrealistic,
at least in terms of its output, as LogCat is not very useful to users. A more typical
approach for a background service like this is to notify a foreground Activity, if there
is one, about work that was accomplished, and otherwise display a Notification.
We described that pattern in the chapter on Notifications.
In the
EventBus/LocalBroadcastManager
sample project, we blend:

	Having a service wake up every so often to do some work

	Arranging to let the user know of background accomplishments via an Activity or a Notification

	Using LocalBroadcastManager to keep the communications in-process

The Activity
The EventDemoActivity that is our app’s entry point is a bit similar to the one used in the
AlarmManager demo, in that it calls scheduleAlarms() on PollReceiver to set up the
AlarmManager schedule:

package com.commonsware.android.eventbus.lbm;

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;

public class EventDemoActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new EventLogFragment()).commit();

 PollReceiver.scheduleAlarms(this);
 }
 }
}

(from EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/EventDemoActivity.java)
However, we also put an EventLogFragment on the screen, if it is not already there, via
a FragmentTransaction. This is where we will display events coming from the service, while
our activity is in the foreground. We will examine EventLogFragment and how it participates
in the event bus shortly.
The PollReceiver
PollReceiver is largely unchanged from its AlarmManager demo original edition. This
BroadcastReceiver will be used both for getting control at boot time (to reschedule the alarms,
wiped on the reboot) and for sending the work to the ScheduledService for processing:

package com.commonsware.android.eventbus.lbm;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;

public class PollReceiver extends BroadcastReceiver {
 private static final int PERIOD=60000; // 1 minute
 private static final int INITIAL_DELAY=5000; // 5 seconds

 @Override
 public void onReceive(Context ctxt, Intent i) {
 if (i.getAction() == null) {
 ScheduledService.enqueueWork(ctxt);
 }
 else {
 scheduleAlarms(ctxt);
 }
 }

 static void scheduleAlarms(Context ctxt) {
 AlarmManager mgr=
 (AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
 Intent i=new Intent(ctxt, PollReceiver.class);
 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

 mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime() + INITIAL_DELAY,
 PERIOD, pi);

 }
}

(from EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/PollReceiver.java)
ScheduledService and Sending Events
Before, our ScheduledService just dumped a message to LogCat. This was crude but effective
for what that demo required. Now, we want our service to let the UI layer know about
some work that was accomplished, or to raise a Notification.
In this case, the “work” is generating a random number.

package com.commonsware.android.eventbus.lbm;

import android.app.Notification;
import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;
import android.os.Build;
import android.support.v4.app.JobIntentService;
import android.support.v4.app.NotificationCompat;
import android.support.v4.content.LocalBroadcastManager;
import java.util.Calendar;
import java.util.Random;

public class ScheduledService extends JobIntentService {
 private static int NOTIFY_ID=1337;
 private static final int UNIQUE_JOB_ID=1337;
 private static final String CHANNEL_WHATEVER="channel_whatever";
 private Random rng=new Random();

 static void enqueueWork(Context ctxt) {
 enqueueWork(ctxt, ScheduledService.class, UNIQUE_JOB_ID,
 new Intent(ctxt, ScheduledService.class));
 }

 @Override
 public void onHandleWork(Intent i) {
 Intent event=new Intent(EventLogFragment.ACTION_EVENT);
 long now=Calendar.getInstance().getTimeInMillis();
 int random=rng.nextInt();

 event.putExtra(EventLogFragment.EXTRA_RANDOM, random);
 event.putExtra(EventLogFragment.EXTRA_TIME, now);

 if (!LocalBroadcastManager.getInstance(this).sendBroadcast(event)) {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder b=new NotificationCompat.Builder(this, CHANNEL_WHATEVER);
 Intent ui=new Intent(this, EventDemoActivity.class);

 b.setAutoCancel(true).setDefaults(Notification.DEFAULT_SOUND)
 .setContentTitle(getString(R.string.notif_title))
 .setContentText(Integer.toHexString(random))
 .setSmallIcon(android.R.drawable.stat_notify_more)
 .setTicker(getString(R.string.notif_title))
 .setContentIntent(PendingIntent.getActivity(this, 0, ui, 0));

 mgr.notify(NOTIFY_ID, b.build());
 }
 }
}

(from EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/ScheduledService.java)
LocalBroadcastManager, as we have seen, uses the same Intent and IntentFilter and
BroadcastReceiver structures as are used with regular broadcasts, just via a singleton
message bus (LocalBroadcastManager.getInstance()) instead of the framework’s IPC engine.
Hence, we need an Intent that represents the message, so we create one, using an action
string published by the EventLogFragment. We also attach two extras to this Intent, using
keys published by EventLogFragment: the random number, plus the time of this event.
We then call sendBroadcast() on the singleton LocalBroadcastManager. This returns a
boolean value, true indicating that one or more locally-registered receivers were delivered
the Intent, false otherwise. Hence, if sendBroadcast() returns true, we can assume
that somebody in the UI layer picked up our message and is now responsible for displaying
these results to the user.
Conversely, if sendBroadcast() returns false, we must assume that the UI layer did
not receive the message, and so the service should inform the user directly, in this case
via a Notification, showing the random number as the text in the notification drawer.
EventLogFragment and Receiving Events
EventLogFragment, therefore, is responsible for:

	Registering (and unregistering) to receive the broadcasts to be sent locally by
the service

	Doing something with those events to inform the user about the all-important random numbers

In this case, we use a retained ListFragment with a ListView set into transcript mode,
meaning that entries are added at the bottom, and older entries scroll off the top, like a
chat transcript:

package com.commonsware.android.eventbus.lbm;

import android.annotation.SuppressLint;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.v4.app.ListFragment;
import android.support.v4.content.LocalBroadcastManager;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.Locale;

public class EventLogFragment extends ListFragment {
 static final String EXTRA_RANDOM="r";
 static final String EXTRA_TIME="t";
 static final String ACTION_EVENT="e";
 private EventLogAdapter adapter=null;

 @Override
 public void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);
 }

 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 getListView().setTranscriptMode(ListView.TRANSCRIPT_MODE_NORMAL);

 if (adapter == null) {
 adapter=new EventLogAdapter();
 }

 setListAdapter(adapter);
 }

 @Override
 public void onStart() {
 super.onStart();

 IntentFilter filter=new IntentFilter(ACTION_EVENT);

 LocalBroadcastManager.getInstance(getActivity())
 .registerReceiver(onEvent, filter);
 }

 @Override
 public void onStop() {
 LocalBroadcastManager.getInstance(getActivity())
 .unregisterReceiver(onEvent);

 super.onStop();
 }

 class EventLogAdapter extends ArrayAdapter<Intent> {
 DateFormat fmt=new SimpleDateFormat("HH:mm:ss", Locale.US);

 public EventLogAdapter() {
 super(getActivity(), android.R.layout.simple_list_item_1,
 new ArrayList<Intent>());
 }

 @SuppressLint("DefaultLocale")
 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 TextView row=
 (TextView)super.getView(position, convertView, parent);
 Intent event=getItem(position);
 Date date=new Date(event.getLongExtra(EXTRA_TIME, 0));

 row.setText(String.format("%s = %x", fmt.format(date),
 event.getIntExtra(EXTRA_RANDOM, -1)));

 return(row);
 }
 }

 private BroadcastReceiver onEvent=new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 adapter.add(intent);
 }
 };
}

(from EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/EventLogFragment.java)
The ListAdapter for the ListView is an EventLogAdapter, an ArrayAdapter
for Intent objects, where in getView() we populate the list rows with the time and random
value.
In onStart() and onStop(), we register for (and unregister from) the desired broadcast,
pointing to an onEvent BroadcastReceiver that adds the incoming Intent to the
EventLogAdapter. That, in turn, updates the ListView.
The result is that while the activity is in the foreground, the events will be displayed
to the user directly:

[image: LocalBroadcastManager as Event Bus, Demo Activity]

Figure 646: LocalBroadcastManager as Event Bus, Demo Activity
Whereas if events are processed while the activity is not in the foreground, a
Notification will be shown with the last results:

[image: LocalBroadcastManager as Event Bus, Demo Notification]

Figure 647: LocalBroadcastManager as Event Bus, Demo Notification
Reference, Not Value
When you send a “real” broadcast Intent, your Intent is converted
into a byte array (courtesy of the Parcelable interface) and
transmitted to other processes. This occurs even if the recipient of
the Intent is within your own process — that is what makes
LocalBroadcastManager faster, as it avoids the inter-process
communication.
However, since LocalBroadcastManager does not need to send your
Intent between processes, that means it does not turn your Intent
into a byte array. Instead, it just passes the Intent along to any
registered BroadcastReceiver with a matching IntentFilter. In
effect, while “real” broadcasts are pass-by-value, local broadcasts
are pass-by-reference.
This can have subtle side effects.
For example, there are a few ways that you can put a collection into
an Intent extra, such as putStringArrayListExtra(). This takes an
ArrayList as a parameter. With a real broadcast, once you send the
broadcast, it does not matter what happens to the original
ArrayList — the rest of the system is working off of a copy.
With a local broadcast, though, the Intent holds onto the
ArrayList you supplied via the setter. If you change that
ArrayList elsewhere (e.g., clear it for reuse), the recipient of
the Intent will see those changes.
Similarly, if you put a Parcelable object in an extra, the Intent
holds onto the actual object while it is being broadcast locally,
whereas a real broadcast would have resulted in a copy. If you change
the object while the broadcast is in progress, the recipient of the
broadcast will see those changes.
This can be a feature, not a bug, when used properly. But,
regardless, it is a non-trivial difference, one that you will need to
keep in mind.
Limitations of Local
While LocalBroadcastManager is certainly useful, it has some
serious limitations.
The biggest is that it is purely local. While traditional broadcasts
can either be internal (via setPackage()) or device-wide,
LocalBroadcastManager only handles the local case. Hence, anything
that might involve other processes, such as a PendingIntent, will
not use LocalBroadcastManager. For example, you cannot register a
receiver through LocalBroadcastManager, then use a getBroadcast()
PendingIntent to try to reach that BroadcastReceiver. The
PendingIntent will use the regular broadcast Intent mechanism,
which the local-only receiver will not respond to.
Similarly, since a manifest-registered BroadcastReceiver is spawned
via the operating system upon receipt of a matching true broadcast,
you cannot use such receivers with LocalBroadcastManager. Only a
BroadcastReceiver registered via registerReceiver() on the
LocalBroadcastManager will use the LocalBroadcastManager.
Also, LocalBroadcastManager does not offer ordered or sticky
broadcasts.
greenrobot’s EventBus 3.x
LocalBroadcastManager has two major advantages:

	It is part of the Android Support package, and therefore it is part
of the officially-supported corner of the Android ecosystem

	It works like traditional broadcasts, which will make it easier for
some developers to “wrap their heads around” it

However, that same dependency on the Intent and IntentFilter structure
adds bulk and limits flexibility. Hence, it is not surprising that there
are alternative event buses to LocalBroadcastManager.
Java, outside of Android, has had a few event bus implementations. One
of the more popular ones in recent years has been the event bus that is
part of Google’s Guava family of libraries.
However, while a Java event bus perhaps can be used on Android, it may
not be optimal for Android. Hence, a few projects have started with
Guava’s event bus implementation and have extended it to be a bit
more Android-aware, or perhaps even Android-centric.
greenrobot’s EventBus is one such event bus.
NOTE: For the purposes of this chapter, “greenrobot’s EventBus”
refers to the library, and “EventBus”" refers to the EventBus Java
class in that library.
Basic Usage and Sample App
With LocalBroadcastManager, you work with a singleton instance, calling methods
like registerReceiver() and sendBroadcast() upon it to subscribe to and raise
events, respectively.
With greenrobot’s EventBus, you work with an EventBus instance, calling methods like
register() and post() upon it to subscribe to and raise
events, respectively. Usually, we use the singleton instance of EventBus
that we get by calling getDefault() on the EventBus class, but you
are welcome to have different EventBus objects, representing distinct
communications channels, if you wish.
Hence, at the core, greenrobot’s EventBus behaves much like LocalBroadcastManager. What
differs is in the nature of the events and the subscribers.
With LocalBroadcastManager,
events are Intent objects. With greenrobot’s EventBus, an event can be whatever data type you like.
Hence, you can create your own ...Event classes, holding whatever bits of
data, in whatever data types suit you — you are not restricted to things that
can go in an Intent extra. However, as has been noted on occasion,
“with great power comes great responsibility”,
and so you will need to ensure that you use this carefully and do not
wind up creating some sort of memory leak as a result. For example,
do not pass something from an Activity to a Service via a custom
event, where the Service will hold onto that information for a long
time, if that “something” holds a reference back to the Activity.
With LocalBroadcastManager, subscribers are BroadcastReceivers, who use
an IntentFilter to identify which events they are interested in. With greenrobot’s EventBus,
subscribers are any class you want. A special @Subscribe annotation is used
to both indicate what sorts of events the subscriber is interested in
(based on the parameter to the annotated method) and what method should be
invoked when a matching event is raised (the annotated method itself).
Hence, not only do you use custom event classes to allow you to carry
along custom data, but you use them as a filtering mechanism, much like
you would use custom action strings with LocalBroadcastManager.
To see how this works, take a look at the
EventBus/GreenRobot3
sample project, which is a clone of the EventBus/LocalBroadcastManager demo,
but one where we substitute in greenrobot’s EventBus as a replacement for LocalBroadcastManager.
Our activity and PollReceiver are unchanged: they did not directly interact
with LocalBroadcastManager and do not need to interact with greenrobot’s EventBus. The
changes are isolated in our ScheduledService and EventLogFragment.
ScheduledService and Sending Events
We will need an EventBus instance, one that serves the same basic
role as does the singleton LocalBroadcastManager retrieved by getInstance().
As noted above, you can call getDefault() on EventBus to get a
singleton EventBus instance, and this suffices in most cases.
When it comes time for us to send a message, we can call post() on
the EventBus, supplying whatever sort of event object that we want:

 EventBus.getDefault().post(randomEvent);

(from EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/ScheduledService.java)
Here, we are posting an instance of a RandomEvent:

package com.commonsware.android.eventbus.greenrobot;

import java.util.Calendar;
import java.util.Date;

public class RandomEvent {
 Date when=Calendar.getInstance().getTime();
 int value;

 RandomEvent(int value) {
 this.value=value;
 }
}

(from EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/RandomEvent.java)
EventLogFragment and Receiving Events
Over in our EventLogFragment, rather than register and unregister a
BroadcastReceiver in onStart() and onStop(), we register and unregister
the fragment itself with the EventBus:

 @Override
 public void onStart() {
 super.onStart();

 EventBus.getDefault().register(this);
 }

 @Override
 public void onStop() {
 EventBus.getDefault().unregister(this);

 super.onStop();
 }

(from EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/EventLogFragment.java)
Now, we can use the @Subscribe annotation to arrange to receive any event
we want that is delivered via this EventBus, based on event class. Since we want
to receive RandomEvent messages, we merely need to have a public void
method, taking a RandomEvent parameter, marked with the @Subscribe annotation,
such as onRandomEvent():

 @Subscribe(threadMode = ThreadMode.MAIN)
 public void onRandomEvent(final RandomEvent event) {
 adapter.add(event);
 }

(from EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/EventLogFragment.java)
Note that the method name can be anything we want, as it is the annotation,
not the method name, that identifies this as being an event handling method.
Since Java annotations can take key-value pairs for configuration,
EventBus 3.x uses that to configure the behavior of @Subscribe. Here,
we use @Subscribe(threadMode = ThreadMode.MAIN), to indicate that we want
this event to be delivered to this method on the main application thread.
In this method, we can do what we need to with our RandomEvent. In our case,
EventLogAdapter has been modified to be an ArrayAdapter of RandomEvent,
as opposed to being an ArrayAdapter of Intent as in the earlier sample.
What we want to do is append the new RandomEvent to the end of the adapter.
Handling the “Nobody’s Home” Scenario
What is missing, though, is the logic we used in LocalBroadcastManager to
determine if somebody received our message, where we raised a Notification
if that is not the case.
The solution for this with greenrobot’s EventBus is to call
hasSubscriberForEvent(), with the Java Class object of the event that we would
like to post(). If this returns true, we have a current subscriber; otherwise,
we do not.
So, the full onHandleWork() implementation uses hasSubscriberForEvent() and
either uses post() to raise the event or displays a Notification itself:

 @Override
 public void onHandleWork(Intent i) {
 RandomEvent randomEvent=new RandomEvent(rng.nextInt());

 if (EventBus.getDefault().hasSubscriberForEvent(randomEvent.getClass())) {
 EventBus.getDefault().post(randomEvent);
 }
 else {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder b=new NotificationCompat.Builder(this, CHANNEL_WHATEVER);
 Intent ui=new Intent(this, EventDemoActivity.class);

 b.setAutoCancel(true).setDefaults(Notification.DEFAULT_SOUND)
 .setContentTitle(getString(R.string.notif_title))
 .setContentText(Integer.toHexString(randomEvent.value))
 .setSmallIcon(android.R.drawable.stat_notify_more)
 .setTicker(getString(R.string.notif_title))
 .setContentIntent(PendingIntent.getActivity(this, 0, ui, 0));

 mgr.notify(NOTIFY_ID, b.build());
 }
 }

(from EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/ScheduledService.java)
There is a race condition, though. Since our hasSubscriberForEvent() call
is happening on a background thread, it is possible that between the
hasSubscriberForEvent() call and the post() call that the subscriber
unsubscribes. This is an unlikely occurrence here, but it is worth keeping in mind.
Other Notable Capabilities
In addition to the threading features, greenrobot’s EventBus has a few
other noteworthy bells and whistles:

	Other thread modes are available, including ThreadMode.POSTING
(events are delivered on the same thread they are posted from)
and ThreadMode.BACKGROUND (events are delivered on a background
thread, with EventBus using its own thread if the event was
posted from the main application thread).

	
postSticky() and registerSticky() allow you to have sticky events,
much like sticky broadcasts with the classic broadcast Intent system.

	Ordered event processing as an option, akin to ordered broadcasts. You
accomplish this by assigning a priority to the event handling method
(e.g., @Subscribe(priority = 1)). If a higher-priority handler
wants to consume the event, it can call cancelEventDelivery() on
the EventBus, passing in the event object.

Hey, What About Otto?
For a few years, a third major event bus implementation was popular:
Square’s Otto. Like greenrobot’s EventBus, Otto was based off of Guava’s
EventBus class and was tuned towards Android app development. It shared
some characteristics with greenrobot’s EventBus, owing to the shared
heritage. On the whole, greenrobot’s EventBus was a bit more complex to
use but offered greater flexibility.
Square has since discontinued work on Otto, so unless you have existing
legacy code that uses Otto, you should use some other event bus
implementation.
Tasks
One of the most confusing aspects of Android to deal with is the concept
of tasks. Fortunately, the automatic management of tasks is almost
enough to get by, without you having to do much customization. However,
some developers will need to tailor how their app interacts with the
task system. Understanding what is possible and how to do it is
not easy. It is made even more complicated by changes to Android, from
both engineering and design perspectives, over the years.
This chapter will attempt to untie the knot of knowledge surrounding
Android’s task system, explaining why things are the way they are.
However, there will be a few places where the knot turns a
bit Gordian, and we will
have to settle for more about “how” and less about “why” the task system
works as it does.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
One sample app makes heavy use of
the PackageManager system service and refers in a few
places to the Launchalot sample app profiled in that chapter.
First, Some Terminology
It will be useful to establish some common definitions of terms
that you will encounter, both in this chapter and in other materials
that describe the task system.
Task
So, what exactly is a “task”?
The Android developer documentation
describes it as:

A task is a collection of activities that users interact with when performing a certain job. The activities are arranged in a stack (the back stack), in the order in which each activity is opened.

In that sense, a task is reminiscent of a tab in a tabbed browser.
As the user navigates, clicking links and submitting forms, the user
advances into other Web pages. Those pages could be on the same site
as they started or could be on different sites. The browser BACK button
is supposed to reverse the navigation, allowing the user to return
from whence they came.
Back Stack
The user perceives tasks mostly in the form of pressing the BACK button,
using this to return to previous “screens” that they had been on previously.
Sometimes, BACK button processing is handled within a single activity,
such as when you put a dynamic fragment onto the “back stack” via
addToBackStack() on a FragmentTransaction. Or, the activity could
override onBackPressed() and do special stuff in certain scenarios.
Those are part of the user experience of pressing BACK. From the standpoint
of the task system, though, internal consumption of the BACK button presses
do not affect the task.
At the task level, the “back stack” refers to a chain of activities.
This matches the behavior of Web sites, where while pressing the browser
BACK button might trigger in-page behavior, usually it returns you to
the previous page. Similarly, while pressing BACK on an Android device
might trigger in-activity behavior, usually it triggers a call to
finish() on the foreground activity and returns control to whatever
had preceded it on the back stack.
Recent Tasks
In a tabbed Web browser, if we have several tabs open, we think of all
of them as being “running”. Frequently, we do not really even think about
the concept, any more than we might think about the state of tabs in
an IDE other than the one that we are working in right now. However,
if you have ever had some browser tab all of a sudden start playing audio,
such as from a reloaded page pulling in an audio-enabled ad banner, you
are well aware that tabs are “running”, while you are also “running” to
try to figure out what tab is playing the audio so you can get rid of
it.
However, that is the behavior on a desktop Web browser. A desktop Web
browser is not subject to heap size limitations the way Android apps are.
And, historically, mobile devices had less system RAM than did their
desktop and notebook counterparts, though that is rapidly changing.
In Android, therefore, developers are used to the notion that their
processes may be terminated, while in the background, to free up memory
for other processes. This is being done to allow for more apps to deliver
more value in less system RAM.
However, from a multitasking standpoint, having apps just up and vanish
is awkward. Hence, Android has the notion of “recent tasks”. These are tasks,
with their corresponding back stacks, that the user has been in “recently”.
How far back “recently” goes depends a bit on the version of Android
– there could be as few as eight items. These “recent tasks” may or may
not have a currently-running process associated with them. However,
if the user chooses to return to one of those recent tasks, and there
is no process for it, Android will seamlessly fork a fresh process, to be
able to not only start up those apps, but return the user to where they
were, in terms of UI contents (e.g., saved instance state Bundle)
and in terms of back stack contents (e.g., where the user goes if the
user now presses BACK).
Overview Screen
In a tabbed Web browser, you can navigate between different tabs in
some browser-specific way. Some tabs may have the actual “tab” visible
around the address bar. Some tabs might only be reachable via some
sort of scrolling operation, or via a drop-down list, for people
who have lots and lots of tabs open. Regardless, there is some UI means
to pick the tab that you want to be viewing in the main browser area.
In Android, the “overview screen” is where the user can view the recent
tasks and choose to return to one of them.
Many people, including this author, refer to this as the “recent
tasks list”, but apparently
the official term is “overview screen”.
The way the overview screen has looked and worked has changed over the
years.
Android 1.x/2.x
In the early days of Android, long-pressing the HOME button would bring
up the overview screen, with up to eight recent tasks:

[image: Overview Screen, from Android 2.3.3]

Figure 648: Overview Screen, from Android 2.3.3
And… that was pretty much it.
Android 3.x/4.x
The overall move to the holographic theme for Android brought with us
a new icon, for a dedicated way to get to the overview screen:

[image: Overview Screen/Recent Tasks Navigation Bar Icon, from Android 4.3]

Figure 649: Overview Screen/Recent Tasks Navigation Bar Icon, from Android 4.3
Devices that offered a navigation bar at the bottom would have this
button. Devices that chose to have off-screen affordances for BACK and
HOME might have a similar button for the overview screen. For those that
neither had a navigation bar nor a dedicated off-screen button for the
overview screen, long-pressing HOME would bring up the overview screen.
The overview screen could have more apps (15 or so) before old tasks
would be dropped:

[image: Overview Screen, from Android 4.3]

Figure 650: Overview Screen, from Android 4.3
The overview screen also added more improvements:

	Thumbnails of the top activity in each task’s back stack, except
for those activities that used FLAG_SECURE
to block this, and except
on some emulator images

	Swiping an entry off the list would remove that recent task

Android 5.x
Functionally, the Android 5.x overview screen functions much like
its 4.x counterpart, with the ability to see previews of tasks and
remove tasks from the screen.
However, there are some differences, starting with the navigation
bar icon used to bring up the overview screen:

[image: Overview Screen/Recent Tasks Navigation Bar Icon, from Android 5.0]

Figure 651: Overview Screen/Recent Tasks Navigation Bar Icon, from Android 5.0
Also, the previews are larger and stacked like cards, more so than being
a classically vertically-scrolling list:

[image: Overview Screen, from Android 5.0]

Figure 652: Overview Screen, from Android 5.0
More importantly:

	The roster of recent tasks will be restored after a reboot, and

	If there is a limit on how many entries can appear in the list, the
author has not run into it yet

Running Tasks
A running task is a task that has running process(es) associated with
it. Recent tasks may or may not be running.
And Now, a Bit About Task Killers
In October 2008, the first Android device was publicly released
(the T-Mobile G1, a.k.a., HTC Dream).
Around December of 2008, the first task killers appeared on the
Android Market (now the Play Store).
While the techniques used in 2008 to kill tasks were removed in later
releases, some amount of task management behavior still exists in Android.
Having a task killer is useful for understanding how tasks (and their
killers) behave on Android. In particular, it is useful to have a way
to emulate an app’s process being terminated due to low memory conditions…
which is exactly what modern task killers do.
So, in this section, we will explore the concept of task killers, including
how to implement one, before using this tool to help us explore the overall
Android task system.
What Do Task Killers Do?
Despite the name, task killers do not kill tasks.
Rather, task killers terminate background processes. This does not
impact the task, insofar as it will still be in the recent tasks roster
and will still show up on the overview screen. However, the process
for the app associated with the task will shut down.
Task killers can only request to terminate background processes. If your
app is in the foreground (i.e., has the foreground activity), it cannot
be terminated by a task killer.
To terminate background processes, task killers need to hold the
KILL_BACKGROUND_PROCESSES permission, via a <uses-permission>
element in their manifests. That enables them to be able to call
the killBackgroundProcesses() method on ActivityManager. Supplied
an application ID, killBackgroundProcesses() will terminate any
background process(es) associated with that application. Normally, there
will only be one such process, but if the app in question is using
the android:process attribute in the manifest to have multiple
processes, then all the app’s processes will be terminated.
This termination is done using the same internal mechanism that is used
by the “out-of-memory killer”, which is responsible for freeing up
system RAM due to low memory conditions.
Killing vs. Force-Stopping
For ordinary users, there are a few options for terminating background
processes. Using a task killer, or swiping the task off the overview
screen on Android 4.0+, will terminate background processes. Both use
killBackgroundProcesses() (or internal equivalents).
However, users can also go into the Settings app, find the app in the
list of installed apps, and click a “Force Stop” button associated with
that app. On the surface, this has a similar effect to the above
techniques, as the background process is terminated. However, force-stopping
the app also unschedules any AlarmManager or JobScheduler events
for that app, plus moves the app back into the “stopped state”, blocking
manifest-registered broadcast receivers. Hence, force-stopping an app
has a much larger impact than does merely using a task killer.
A few devices have manufacturer-supplied task managers (a.k.a., task killers),
where stopping an app from those apps actually does a force stop behind
the scenes, rather than killBackgroundProcesses(). This is not a good
idea, as force-stopping an app has the aforementioned side effects.
Fortunately, third-party task killers cannot force-stop apps, barring
any security flaws in Android that might make this possible.
Why Use One?
Nowadays, normally, users do not need task killers. Occasionally one
can be useful, to stop a background process for a poorly-written app
(e.g., one that powers on GPS but fails to let go of GPS when the app
moves to the background). On most modern Android devices, swiping the
app off the overview screen usually suffices, and so task killers are
not nearly as crucial as they were in Android 1.x/2.x, where there was
no such built-in background process management solution.
For developers, the problem with swiping an app off the overview screen
is that it not only terminates background processes, but it also removes
the task entirely. This makes it difficult to see what the behavior is
when apps’ processes terminate for more conventional reasons (e.g.,
out-of-memory killer) and how tasks tie into that. While developers have
the ability to stop processes through development tools (e.g., the process
list in DDMS), that just terminates the process, and it may do so
slightly differently than does the out-of-memory killer. Hence, having
a task killer around can be useful for experimentation purposes.
And, since getting a task killer on an emulator can be challenging
(since emulators do not have access to the Play Store), having the source
code for a simple task killer is useful for developers. So, let’s look
at how to implement a task killer.
A Canary for the Task’s Coal Mine
In order to see some of the effects of fussing with our tasks, we need
an app where we can see when our saved instance state comes and goes.
To that end, we have the
Tasks/TaskCanary
sample application. It consists of a single activity, with a UI that
is merely a full-screen EditText. In addition to the automatic
saving of the EditText contents in the saved instance state Bundle,
we also keep track of the time we first worked with that Bundle,
in a data member named creationTime, backed by a STATE_CREATION_TIME
entry in the Bundle itself:

package com.commonsware.android.task.canary;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.provider.Settings;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;

public class MainActivity extends Activity {
 private static final String STATE_CREATION_TIME="creationTime";
 private long creationTime=-1L;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.activity_main);
 }

 @Override
 protected void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);

 dumpBundleToLog("restore", savedInstanceState);
 creationTime=savedInstanceState.getLong(STATE_CREATION_TIME, -1L);
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putLong(STATE_CREATION_TIME, getCreationTime());
 dumpBundleToLog("save", outState);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.settings) {
 startActivity(new Intent(Settings.ACTION_DATE_SETTINGS));
 }
 else if (item.getItemId()==R.id.other) {
 startActivity(new Intent(this, OtherActivity.class));
 }

 return(super.onOptionsItemSelected(item));
 }

 private long getCreationTime() {
 if (creationTime==-1L) {
 creationTime=System.currentTimeMillis();
 }

 return(creationTime);
 }

 // inspired by http://stackoverflow.com/a/14948713/115145

 private void dumpBundleToLog(String msg, Bundle b) {
 Log.d(getClass().getSimpleName(),
 String.format("Task ID #%d", getTaskId()));

 for (String key: b.keySet()) {
 Log.d(getClass().getSimpleName(),
 String.format("(%s) %s: %s", msg, key, b.get(key)));
 }
 }
}

(from Tasks/TaskCanary/app/src/main/java/com/commonsware/android/task/canary/MainActivity.java)
Each time we save and restore the instance state, we dump the Bundle
to Logcat, so we can see what is in that Bundle. We wind up with lines
like:

D/MainActivity: (save) android:viewHierarchyState: Bundle[...]
D/MainActivity: (save) creationTime: 1427032894794
D/MainActivity: (restore) android:viewHierarchyState: Bundle[...]
D/MainActivity: (restore) creationTime: 1427032894794

(where the ... is a bit long to reproduce in the book and is not
essential for the sample)
This way, both in the UI and in the logs, we can confirm that
our state is being saved and restored as expected… or perhaps
not as expected, in some cases.
You will notice that we have a pair of action bar items. One will
bring up a screen from the Settings app, which we will use to
see how this affects our task. The other one will bring up
another activity from our app, which we will use to explore
how to start a clean task.
The Default User Experience
With all that behind us, let’s start talking about tasks, focusing
first on what behavior the developer gets “out of the box”, with no
task-specific logic in the app. In other words, what is the default
user experience for an ordinary Android app?
NOTE: if you wish to reproduce the results described here, you will
want to have the Task Canary installed on your device
or emulator.
Starting from the Home Screen
Assume that we are “starting from scratch”. For example, the user
has installed your app (or bought a device with your app pre-installed)
but has never run your app before. Or, perhaps the overview screen is
cleared of all tasks.
If the user taps your home screen launcher icon, not only is a process
forked to run your app, but a new task is created, and your app’s task
will appear in the overview screen.
(see! that wasn’t so hard!)
To reproduce this behavior:

	Clear the overview screen of all tasks, by swiping them off the screen.
Note that this may take some time on an Android 5.x device that is
really being used (versus just being some test device), as there may be
a lot of tasks to clear.

	Run your app, from the home screen or IDE.

Resuming from the Overview Screen
Eventually, the user wanders away from your app. Then, later on, the
user returns to your app, by finding the task associated with your app
in the overview screen and tapping upon it.
In the end, you wind up in the same state as before: you have a process
for your app, and your task is still in the overview screen.
How we get there depends a bit on what happened with your process,
in between when you had been in the foreground and when the user taps
on your task in the overview screen.
If your app’s process was still running, nothing much happens of note,
other than you return to the foreground. From a state standpoint, your
app would be called with onSaveInstanceState() when the user left
your app, but you will not be called with onRestoreInstanceState(),
because your activity was not destroyed yet. Note that this assumes that
you did not undergo a configuration change (e.g., user originally was in
your app in portrait, then returned to you from the overview screen while
the device was in landscape). In the case of a configuration change, your
activity would be destroyed and recreated by default, and you would
be called with onRestoreInstanceState(), but that would be due to the
configuration change more so than the use of the task and the overview
screen.
To reproduce the above behavior, given that your device was in the
state after the “Starting from the Home Screen” section above:

	Press HOME to move your app to the background, and notice the
“(saved)” entries being reported to Logcat.

	Quickly press RECENTS (or, if you have no such option, long-press HOME)
to bring up the overview, and tap on your task there.

However, it is entirely possible that while your task is around that your
process is terminated to free up memory for other processes. If the
user returns to your app via the overview screen, a fresh process will
be forked for your app. This would trigger a call to onRestoreInstanceState(),
because your old activity no longer exists, because its process no longer
exists.
Note that if you leave a task for an extended period of time — say, 30
minutes or so — the task may be “cleared” when you return to it. This
means that you are taken back to whatever the “root” activity of the task
is, where by “root” we mean the original activity put into the task.
Starting Another App
Some apps only start up other activities within the same app. However,
many apps start up activities from other apps, either directly via
startActivity() or indirectly (e.g., clicking on links in a WebView).
For example, the Task Canary app has an item in the action bar
overflow that, when clicked, brings up the Settings screen for adjusting
date and time settings.
You might think that when the user taps on this overflow item, and
Task Canary calls startActivity(), that a new task is created. After
all, the Settings app is a completely separate app from the Task Canary
app.
However, try this:

	Clear the overview screen

	Launch Task Canary

	Choose the Settings action bar overflow item to bring up the
date-and-time Settings screen

	Press HOME to bring up the home screen

	Press RECENTS or otherwise bring up the overview screen

You will see one entry in the overview screen, for Task Canary, rather
than two. Furthermore, particularly on Android 5.x devices, you will see the Settings
screen as the top-most activity within the Task Canary task:

[image: The Task Canary Task, on Android 5.1]

Figure 653: The Task Canary Task, on Android 5.1
However, suppose that instead of using ACTION_DATE_SETTINGS for the
Intent, we used ACTION_APN_SETTINGS instead, to allow the user to
view mobile access point names and such. You might think, given the
above flow, that we would wind up with just one task, as we did with
ACTION_DATE_SETTINGS. In reality, you will see two tasks, instead of
just one:

[image: Two Tasks on Android 5.1]

Figure 654: Two Tasks on Android 5.1
This is where things start to get a bit confusing.
Explaining the Default Behavior
With the user experience as background, let’s now dive into what is really
going on with these operations.
When Tasks are Created
A task is not created just because an activity is started. Otherwise,
even individual apps would have lots of tasks, one per activity.
A task is not created just because a task from a different app is
started. Otherwise, the two Settings scenarios above would have both
resulted in a new task.
Instead, tasks are created when somebody asks for a task to be created.
That “somebody” could be the author of the app calling startActivity()
or the author of the activity being started.
There are three major approaches for indicating that a new task should
be started: flags on the Intent used with startActivity(), task affinity
values, and launch modes. We will get into launch modes
later in this chapter, as the normally-used
launch modes have no impact on tasks. Instead, we will focus on the other
two approaches here.
Task-Management Intent Flags
If you want to start an activity, and ensure that the activity starts
in a new task, add Intent.FLAG_ACTIVITY_NEW_TASK to the flags on the
Intent being used with startActivity():

startActivity(new Intent(SOME_ACTION_STRING)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK))

What will happen, when you call startActivity() with FLAG_ACTIVITY_NEW_TASK,
is that Android will see if there is a task that already has this
activity in it. If there is, that task will be brought to the foreground,
and the user will see whatever is on the top of that task’s stack.
Otherwise, if there
is no task with this activity in it, Android will create a new task and
associate a new instance of the activity with this task.
This is what home screen launchers do. When you tap on a home screen launcher
icon, if there is a task that has a copy of your home screen activity in it,
that task is brought back to the foreground. Otherwise, a new task is
started.
If you also add Intent.FLAG_ACTIVITY_MULTIPLE_TASK, then Android skips
the search for existing tasks and unconditionally launches the activity into
a new task. This is generally not a good idea, as the user can wind up
with many copies of this activity, not know which one is which, and perhaps
have difficulty getting back to the right one.
Task Affinities
By default, if Android needs to create a new task as a result of
FLAG_ACTIVITY_NEW_TASK, it just creates a task. And, if there is no
such flag on the Intent, Android will put the activity into the
task of whoever called startActivity().
If, however, the activity has an android:taskAffinity attribute in
its <activity> element in the manifest, then Android will specifically
start this activity in a certain task, identified by the string value
of the attribute. Other activities with the same task affinity will also
go into this task.
The reason why the two Settings screens behave differently is that
the ACTION_APN_SETTINGS activity has a certain task affinity value,
while ACTION_DATE_SETTINGS does not. The task affinity of
the ACTION_APN_SETTINGS activity is shared by many, though not all,
activities within the Settings app. Those activities, when started, will
always go into the task identified by the affinity. Hence, when we start
ACTION_DATE_SETTINGS, it goes in our task (because that activity
has no affinity and we did not include FLAG_ACTIVITY_NEW_TASK), but
when we start the ACTION_APN_SETTINGS activity, it goes into a Settings-specific
task.
Note that you can also have the android:taskAffinity value defined
on the <application> element, to provide a default task affinity for
all activities. The overall default is "", or no affinity.
When Tasks are Removed
On Android 3.0 and higher, the user can get rid of a task by swiping the
task off of the overview screen.
Otherwise, prior to Android 5.0, a task would automatically go away after
some amount of user activity, as there were only so many “slots” available
for tasks.
On Android 5.0+, though, it is unclear if there is an upper bound to how
many tasks can exist. Beyond that, tasks survive a reboot, as information
about those tasks is persisted. We will get more into the ramifications
of this, and how you can take advantage of it,
later in this chapter.
When Tasks (and Processes) are Resumed
A task will be resumed and brought back to the foreground in several
situations, including:

	the user manually requests it via the overview screen, by clicking
on one of the recent tasks

	if FLAG_ACTIVITY_NEW_TASK is added (without FLAG_ACTIVITY_MULTIPLE_TASK)
to the Intent used to start an activity, and there is a task containing
the activity in question

	if the taskAffinity for the activity being started ties it to another
task

	if the launch mode for the activity being started
ties it to another task

However, just because the task exists does not mean that the process(es)
exist for the activities in the task. As needed, Android will fork fresh
processes, to be able to load in the app’s code and start the necessary
activities. Android will deliver to the newly-created activities the
same Intent that was used to create the original incarnation of the
activity (via getIntent()) and the saved instance state Bundle.
What Happens to Services
In theory, services are immune to task behavior. Tasks can come and go,
and services are usually oblivious to this.
A service should be called with onTaskStopped() if a task associated
with one or more of the app’s activities is removed. The service might
use that as a signal that it too should shut itself down.
There appears to be
a quasi-documented android:stopWithTask attribute
on the
<service> element in the manifest. The default is false, but if you
override it to be true on your <service>, then onTaskStopped()
will not be called, and Android will simply destroy your service when
the task is removed.
However, as of Android 4.4, there are many reports that services may
be destroyed when a task is removed, even without android:stopWithTask="true",
though on a slight delay. Developers concerned about this should keep an
eye on this issue
and this issue,
both for various hacky workarounds and for any signs that this is being
permanently addressed.
What’s Up with onDestroy()?
If the user swipes away the task using the overview screen, onDestroy()
will be called on all outstanding activities. If a “task killer” terminates
your background process, your onDestroy() methods will not be called when your process
is terminated by those apps.
So, removing a task is a graceful exit, and Android calls onDestroy(),
but an explicit termination of your process by another is a not-so-graceful
exit, and Android skips onDestroy().
As a result, as previously advised in this book and elsewhere, you cannot
count on your onDestroy() methods being called, and you need to take this
into account in terms of what sorts of code you put in them.
Basic Scenarios for Changing the Behavior
In many cases, the default behavior of tasks is just fine. However,
there are many scenarios in which we may want to override the default
behavior, routing activities to specific tasks, to have a better flow
for the user.
Reusing an Activity
By default, each time you call startActivity(), a new
instance of the activity is created. Depending upon the user flow, that
may not be a bad approach. For example, it may be that the only logical
path out of the started activity will be to press BACK and destroy it.
However, there will be plenty of cases where we will not want to keep
creating new activity instances. For example, if you elect to have
several activities reachable via a nav drawer, you
do not want to create fresh instances of activities that the user has
already visited via that drawer. Otherwise, they will keep piling up,
continuing to consume heap space. Instead, it would be better to try
to reuse an existing activity instance, if one is available, creating
a fresh one only if needed.
The most flexible approach for accomplishing this involves using
a flag on the Intent used to start the activity:
Intent.FLAG_ACTIVITY_REORDER_TO_FRONT. This tells Android to bring
an existing activity matching our Intent to the foreground, if one
already exists in our task. If there is no such activity, then go ahead
and create a new instance.
The
Tasks/RoundRobin
sample application demonstrates this. It consists of two activities
(FirstActivity and SecondActivity), each of whose UI consists of one
really big button. Clicking the button should start the other activity,
so clicking the button in FirstActivity should start an instance
of SecondActivity. But, we want to reuse activity instances where
available, and confirm that indeed we are reusing those instances.
FirstActivity accomplishes that by adding FLAG_ACTIVITY_REORDER_TO_FRONT
to the Intent used to start SecondActivity when the button is clicked:

package com.commonsware.android.tasks.roundrobin;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

public class FirstActivity extends Activity implements View.OnClickListener {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.first);
 findViewById(R.id.button).setOnClickListener(this);

 Log.d(getClass().getSimpleName(),
 String.format("onCreate for %x", hashCode()));
 }

 @Override
 protected void onResume() {
 super.onResume();

 Log.d(getClass().getSimpleName(),
 String.format("onResume for %x", hashCode()));
 }

 @Override
 protected void onDestroy() {
 Log.d(getClass().getSimpleName(),
 String.format("onDestroy for %x", hashCode()));

 super.onDestroy();
 }

 @Override
 public void onClick(View view) {
 startActivity(new Intent(this, SecondActivity.class)
 .addFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT));
 }
}

(from Tasks/RoundRobin/app/src/main/java/com/commonsware/android/tasks/roundrobin/FirstActivity.java)
SecondActivity has a nearly identical implementation, just routing back
to FirstActivity.
If you run the app, the user’s perspective is that clicking the button
“ping-pongs” the user between the two activities. Looking at Logcat, you
will see new instances created the first time the user visits an activity,
courtesy of the Log.d() call in onCreate(). But, if the user returns
to an existing instance via the button click, you will see that onCreate()
is not called, and that the hashCode() reported in onResume() matches
the hashCode() of the previously-created instance of this activity:

D/FirstActivity: onCreate for b31b9430
D/FirstActivity: onResume for b31b9430
D/SecondActivity: onCreate for b31eb8a8
D/SecondActivity: onResume for b31eb8a8
D/FirstActivity: onResume for b31b9430
D/SecondActivity: onResume for b31eb8a8

Note that launch modes offer another way to
control this behavior, having the activity being started indicate that
its instance should always be reused. However, this is a specialty case,
one that most apps will not require.
Forcing a Clean Task
Let’s suppose that you have an app that requires in-app authentication,
via some form of login screen. For example, your app’s data is held
in SQLCipher for Android, and so you need the user
to supply a passphrase for the database.
In the beginning, when your app is launched from the home screen, your
LAUNCHER activity appears. If that is your login screen, all is good.
You collect the passphrase, create your singleton instance of the
SQLCipher-enabled SQLiteOpenHelper, and you can access the database.
Eventually, the user presses HOME, and time passes. Android terminates
your process to free up system RAM. The user then tries returning to
your existing task, such as via the overview screen. Android creates a
fresh process for you and takes you to the activity on the top of that
task’s back stack. But at this point, your singleton SQLiteOpenHelper
is gone, and you need to collect a passphrase again.
You might think that this is purely a UI issue. Rather than collecting
the passphrase in an activity, you collect it in a fragment, one that
your LAUNCHER activity uses directly, and one that other activities
can use via a DialogFragment. This way, you can arrange for every
activity to be able to complete the re-initialization of your process and
give you access to the encrypted database again.
Another approach would be to say that you want to wipe out this task
and start over, routing the user back to the LAUNCHER activity for
authentication.
There are two main approaches for implementing this: setting Intent
flags or using android:clearTaskOnLaunch in the manifest.
Starting a Cleared Task Yourself
One way to do that is to have each activity check to see if a new
task is needed (e.g., “is the SQLiteOpenHelper singleton null?”).
When that situation is detected, you call startActivity() for
your LAUNCHER activity, with two flags: FLAG_ACTIVITY_NEW_TASK
and FLAG_ACTIVITY_CLEAR_TASK.
For example, the
Tasks/Tasksalot
sample application is a straight-up clone of Launchalot with only one
change of substance: using FLAG_ACTIVITY_CLEAR_TASK instead
of FLAG_ACTIVITY_RESET_TASK_IF_NEEDED:

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 ResolveInfo launchable=adapter.getItem(position);
 ActivityInfo activity=launchable.activityInfo;
 ComponentName name=new ComponentName(activity.applicationInfo.packageName,
 activity.name);
 Intent i=new Intent(Intent.ACTION_MAIN);

 i.addCategory(Intent.CATEGORY_LAUNCHER);
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_CLEAR_TASK);
 i.setComponent(name);

 startActivity(i);
 }

(from Tasks/Tasksalot/app/src/main/java/com/commonsware/android/tasksalot/MainActivity.java)
To see this in action:

	Run the TaskCanary sample app and use the overflow to bring
up OtherActivity

	Press HOME

	Run Tasksalot

	Click on the “Task Canary” entry in Tasksalot

At this point, you will see the TaskCanary sample app return to the screen.
From the logs in Logcat, you will see it is the same task ID as before.
Yet, you are seeing the FirstActivity. OtherActivity was removed from
the task as part of FLAG_ACTIVITY_CLEAR_TASK processing.
This differs from what you see in a home screen, with FLAG_ACTIVITY_RESET_TASK_IF_NEEDED.
If you run the same test, but rather than use Tasksalot, you tap on
the “Task Canary” icon in the home screen launcher, the task will return
to the foreground, but you will be taken to OtherActivity.
FLAG_ACTIVITY_CLEAR_TASK always clears the task and makes the activity
that you are starting up be the root of the newly-cleared task.
Always Starting a Cleared Task
Perhaps you always want to start with a cleared task, whenever the
user returns to the task after having left it previously. In other words,
you always want to start back at whatever your task’s root activity
is, which is typically your launcher activity.
To do this, simply have android:clearTaskOnLaunch="true" on that
launcher activity. Then, for any task where that activity is the root,
when the user returns to the task, any other activities in the task
are reparented (if applicable) or dropped.
Note, though, that this does not mean that you get a new process.
Hence, any singletons you had before may or may not still be there.
So, in the authentication scenario described above, using
android:clearTaskOnLaunch="true" would take the user back to your
initial activity, where you can perform the authentication. However,
if you detect that the SQLiteOpenHelper still exists, and therefore
you do not need the user to log in again, you could switch over to
showing your initial content (e.g., run a FragmentTransaction).
This is far simpler than having the detect-the-null-singleton-on-each-activity
approach. However, the downside is that the user loses context. If they
were six activities deep into your app, and they get interrupted by a phone
call, when they come back to your app, they are back at the beginning.
Launching an App Into a New Task
A home screen launcher app, when it invokes the user’s selected
activity, will use code something like this from the Launchalot
sample:

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 ResolveInfo launchable=adapter.getItem(position);
 ActivityInfo activity=launchable.activityInfo;
 ComponentName name=new ComponentName(activity.applicationInfo.packageName,
 activity.name);
 Intent i=new Intent(Intent.ACTION_MAIN);

 i.addCategory(Intent.CATEGORY_LAUNCHER);
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
 i.setComponent(name);

 startActivity(i);
 }

(from Introspection/Launchalot/app/src/main/java/com/commonsware/android/launchalot/Launchalot.java)
Here, we:

	Create a ComponentName identifying the specific activity in the specific
app to be started (in this case, based on the ResolveInfo that
the user chose)

	Create an Intent for the MAIN action and the LAUNCHER category

	Set the FLAG_ACTIVITY_NEW_TASK and the FLAG_ACTIVITY_RESET_TASK_IF_NEEDED
flags in the Intent

	Attach the ComponentName to the Intent, to convert it from an implicit
Intent into an explicit Intent

	Start the activity using the Intent

FLAG_ACTIVITY_NEW_TASK indicates that we want the activity being started
to be the root of a new task. If there is no outstanding task for this app,
a new task will be created, a new activity instance will be created,
and that activity will be the root of the task. Here, “root” means that
if the user presses BACK and destroys the activity, the task itself is
removed and the user returns to the home screen.
However, despite its name, FLAG_ACTIVITY_NEW_TASK does not necessarily
create a new task. If there is an existing task for this app containing
this activity, that task is brought back to the foreground and is left
intact. The activity we request is not created, let alone brought to the
foreground.
That is where FLAG_ACTIVITY_RESET_TASK_IF_NEEDED comes in. It ensures
that the task that is brought to the foreground is showing the requested
activity. This may involve reparenting activities
as well.
Another possibility, instead of FLAG_ACTIVITY_RESET_TASK_IF_NEEDED,
is FLAG_ACTIVITY_MULTIPLE_TASK. This always starts a fresh task,
with a fresh instance of the requested activity in the root of that task.
However, this now may mean that the user has multiple tasks for the same
app, which may be confusing in some circumstances. However, this also
lies at the core of Android 5.0’s documents-as-tasks support
and therefore may become more familiar to users over time.
The Invisible Activity
Several sample apps in this book use an “invisible activity”, one with
the theme set to Theme.Translucent.NoTitleBar. These are useful in cases where
something outside your app needs an activity, but you do not really
have a UI that you want to display. In the case of the book samples, having
a LAUNCHER activity makes it much easier for readers like you to
simply run the samples from the IDE.
However, those sample apps usually do not have any other activities.
The invisible activity is just there to kick-start something else, such
as AlarmManager events.
However, if you have a mix of invisible and regular activities in an
app, your invisible activities still wind up potentially having a visible
impact.
For example, suppose that we have an ordinary Android app, with regular
activities. However, we want a home screen shortcut icon to allow the
user to start something in the background, such as playing music. While
an app widget would allow us to control what happens when the user
taps on an icon in that app widget, a home screen shortcut icon always
launches an activity. So, we make the start-the-music activity invisible
via Theme.Translucent.NoTitleBar.
If the user taps on that shortcut, and none of our other activities are
part of a task, things proceed as expected: the music starts and the
user sees nothing (other than perhaps a Toast that we show to let
the user know that we are responding to their request).
But, if one or more of our activities are in some task, launching
the invisible activity brings the task back to the foreground. While
our invisible activity is still invisible, the user now sees whatever
other activity of ours they had last been in. It is possible that this
is a feature, and not a bug, for some apps. But, in other cases, we might
want the invisible activity to not have this effect.
The solution: task affinity.
Your ordinary activities can use the default task affinity, or have
other task affinities as needs dictate. Your invisible activity, though,
would have an android:taskAffinity value that is distinct from all
others, to force it into its own task. That way, when the user taps on the
shortcut, the invisible activity routes to its own task. That task will
not yet exist, so the invisible activity causes the task to be created.
When the invisible activity calls finish() to destroy itself after kicking
off the background work, the task is now empty and is removed. Since
this was a new task, no existing UI would be brought back to the foreground,
and since the task is removed in the end, we are “reset” for the next
time the user taps on the shortcut.
Reparenting Tasks
One of the more unusual features of Android’s task system is the ability
for activities to be “reparented”, or moved from one task to another. On
the surface, this feels a bit odd, as if a Web page on one browser tab
might magically show up in a separate browser tab, just via navigation.
And, in truth, it is a specialized use case, but one that could conceivably
apply to your app.
Suppose that you were writing an SMS client. You have an activity
that is your message composer, where the user can type in a text message
to send to somebody. You export that activity, with Intent actions
like ACTION_SEND and ACTION_SENDTO. A third-party app, using one
of those Intent actions, starts up your message composer activity.
In the absence of a taskAffinity to stipulate otherwise, by default,
your message composer activity will be in the task of the third-party app.
Now, suppose that the user fails to actually send a message, such as by
pressing HOME from the third-party app’s task. Some time later, the user
taps on your app’s home screen launcher icon. At this point, there are
two possibilities as to what happens:

	You may decide that you want to have the already-running message
composer activity appear, to remind the user that they were in the middle
of composing a text message and failed to either send it or explicitly
BACK out of the activity.

	You may decide that you do not care, and you are willing to ignore
that outstanding message composer activity instance.

The default is option #2. If, instead, you want to offer option #1, that
is where task reparenting comes into play.
On your <activity> (or on <application> to set an app-wide default),
you can have android:allowTaskReparenting="true". This indicates
to Android that the message composing activity, that is on some other
app’s task, can move to your app’s task when that task is created.
The trigger for this “reparenting” is the task affinity. If you do not
specify a task affinity for an activity, the default affinity is for
a task rooted in one of your app’s activities, typically the launcher
activity. In some circumstances, when a task for your app is created,
Android will search through other tasks to see if there is any activity,
in another task, that has an affinity for your task and allows reparenting.
If there is a match, that activity is brought into your task.
The “some circumstances” mentioned in the preceding paragraph is something
using two Intent flags when calling startActivity():

	
FLAG_ACTIVITY_NEW_TASK, to create a new task if one is needed, and

	
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED, to clear out the task if it already
has contents and reparent any activities in other tasks to this one
if appropriate

As it turns out, home screen launchers are supposed to use this pair of
flags when they respond to the user tapping on a home screen launcher
icon.
The
Tasks/ReparentDemo
sample Android Studio project contains a pair of applications as modules
that demonstrate this effect, based on David Wasser’s
epic Stack Overflow answer.
One module, app/, contains an application with two activities, where
the second activity (ReparentableActivity) has android:allowTaskReparenting="true":

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.tasks.reparent">

 <application
 android:allowBackup="true"
 android:label="@string/app_name"
 android:icon="@drawable/ic_launcher">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity
 android:name=".ReparentableActivity"
 android:allowTaskReparenting="true">
 <intent-filter>
 <action android:name="com.commonsware.android.tasks.reparent.WHEEEEE"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

(from Tasks/ReparentDemo/app/src/main/AndroidManifest.xml)
The two activities just display static messages, indicating which of those
two activities you are seeing in the foreground. They also log process
and task IDs to Logcat. MainActivity does that in onCreate():

package com.commonsware.android.tasks.reparent;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 Log.d(getApplicationInfo().loadLabel(getPackageManager()).toString(),
 String.format("Process ID %d, Task ID %d",
 android.os.Process.myPid(), getTaskId()));
 }
}

(from Tasks/ReparentDemo/app/src/main/java/com/commonsware/android/tasks/reparent/MainActivity.java)
ReparentableActivity logs the same information in onResume():

package com.commonsware.android.tasks.reparent;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class ReparentableActivity extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.reparent);
 }

 @Override
 public void onResume() {
 super.onResume();

 Log.d(getClass().getSimpleName(),
 String.format("Process ID %d, Task ID %d",
 android.os.Process.myPid(), getTaskId()));
 }
}

(from Tasks/ReparentDemo/app/src/main/java/com/commonsware/android/tasks/reparent/ReparentableActivity.java)
The other module, app2/, contains an application with one activity, whose
UI consists of one really big button. Clicking that button triggers a
launch() method that calls startActivity() on an Intent
identifying the ReparentableActivity from the first app:

package com.commonsware.android.tasks.reparent.app2;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 Log.d(getApplicationInfo().loadLabel(getPackageManager()).toString(),
 String.format("Process ID %d, Task ID %d",
 android.os.Process.myPid(), getTaskId()));
 }

 public void launch(View v) {
 startActivity(new Intent("com.commonsware.android.tasks.reparent.WHEEEEE"));
 }
}

(from Tasks/ReparentDemo/app2/src/main/java/com/commonsware/android/tasks/reparent/app2/MainActivity.java)
To see this behavior in action, install both apps. If you run them straight
from your IDE, you will want to clear out all relevant tasks, either
by swiping them off the recent-tasks list (or by rebooting the device or
emulator, if it runs Android 4.4 or lower).
Then, start up the “Reparent Demo Aux” app (from the app2/ module). Click
the button, and you will see the ReparentableActivity appear. If you
press HOME, bring up the recent-tasks list, and go back to this
task, you will see the same ReparentableActivity. The task, however,
is for “Reparent Demo Aux”.
Now, press HOME, then start up the “Reparent Demo” app (from the app/ module).
Rather than seeing the MainActivity from that app, you see
the ReparentableActivity instance from before. The logs will illustrate
that your process ID has not changed, but that the task ID for this
activity has changed, from the task ID used by the app2/ app to the
task ID created for app/. The activity has been reparented.
The use of FLAG_ACTIVITY_RESET_TASK_IF_NEEDED may sound a lot like
FLAG_ACTIVITY_CLEAR_TASK. The “if needed” part comes into play in
two cases:

	If a new task is being created, the “reset” work is really the reparenting
described above

	If an existing task is being brought back to the foreground,
then get rid of resettable activities

Here, by “resettable activities”, we mean:

	Activities launched with the FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET
flag

	Any activities that are higher on the back stack than other explicitly
resettable activities

So, if our back stack consists of activities A-B-C-D, and C was started
with FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET, and we start up one of
these activities (say, A) with FLAG_ACTIVITY_RESET_TASK_IF_NEEDED,
and this existing task is coming back to the foreground, C and D
will be cleared from the task. The user ordinarily would be taken to
activity D, but instead will be taken to activity B, because C is
explicitly resettable and D is higher on the back stack.
The Self-Destructing Activity
Sometimes, you only want an activity around while it is in the foreground
and the user can see it. Once the user leaves the app, you no
longer want that activity to exist. For example, a bank app showing
bank account details might want this behavior, so that highly-sensitive
information like this does not hang around. Or, you might want this for
certain activities that are memory-intensive, so they release their
heap space and reduce the odds of an OutOfMemoryError.
You could attempt to manage this yourself, via timely calls to finish(), but
catching all the cases when finish() is needed could get troublesome.
Instead, Android has a pair of options to have no-history activities:
activities that automatically finish when the user leaves them:

	An activity can decide for itself that it should be removed upon
a task switch via the android:noHistory attribute on the <activity>
in the manifest

	You can decide ad-hoc to have activities exhibit this behavior
by adding Intent.FLAG_ACTIVITY_NO_HISTORY on the Intent used
to start those activities

You can see these in action in the
Tasks/NoHistory
sample application. This is a near-clone of a simple two-activity
app that we saw back when we first learned about
how to have multiple activities.
There are only two real differences in this version of the sample app.
First, the launcher activity (MainActivity) has android:noHistory="true"
on its <activity> element:

 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:noHistory="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

(from Tasks/NoHistory/app/src/main/AndroidManifest.xml)
Second, when that activity goes to start OtherActivity, it adds
FLAG_ACTIVITY_NO_HISTORY to the Intent used with startActivity():

 public void showOther(View v) {
 Intent other=new Intent(this, OtherActivity.class);

 other.putExtra(OtherActivity.EXTRA_MESSAGE,
 getString(R.string.other));
 other.addFlags(Intent.FLAG_ACTIVITY_NO_HISTORY);

 startActivity(other);
 }

(from Tasks/NoHistory/app/src/main/java/com/commonsware/android/tasks/nohistory/MainActivity.java)
Both of these inherit from the original sample’s LifecycleLoggingActivity,
which just logs messages to Logcat on the major lifecycle methods. If you
run the app, click the big button to go from MainActivity to
OtherActivity, then switch to some other app (via the overview screen,
via the home screen launcher, etc.), you will see that both activities
are destroyed, even though we do not press BACK, call finish(), or do
anything else ourselves to destroy them.
This has a key side-effect: you cannot combine no-history with
startActivityForResult() especially well. If the activity that
calls startActivityForResult() has no-history enabled (via the
manifest attribute or the Intent flag), it will simply not be called
with onActivityResult().
A related attribute is android:finishOnTaskLaunch. If set to true,
and if the user leaves the task and returns to it, the activity
is destroyed. Whereas android:noHistory removes the activity when
the user leaves the activity, android:finishOnTaskLaunch only
removes the activity when the user leaves the task and returns to it.
The Hidden Task
Perhaps you have a use case where you want your entire task to be hidden
from the overview screen.
To do that, you can indicate that the activity that is the root of the
task (e.g., your launcher activity) is to be “excluded from recents”.
To do that, you can:

	Add android:excludeFromRecents="true" to the appropriate
<activity> element in your manifest, or

	Add Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS to the Intent
used to start up the activity and its task

Note that this only matters if the activity in question is the task
root (i.e., the one that started the task). Having this setting on
other activities higher in the back stack will have no effect on
the visibility of the task.
Also, please note that this does not eliminate the task itself. It merely
hides it from the overview screen. So, for example, suppose you were to:

	Add
android:excludeFromRecents="true" to MainActivity in the TaskCanary
sample

	Run the sample app

	Press HOME and note the task ID that shows up in Logcat

	Press RECENTS and note that the task does not show up there

	Return to the home screen, find TaskCanary in the launcher, and
tap on the launcher icon

	Press HOME again and note the task ID that shows up in Logcat

You will see that those task IDs are the same. So, the task is there,
and we can return to that task, but the task is merely suppressed from the
listing shown in the overview screen.
Dealing with the Persistent Tasks
As noted previously in this chapter, on Android 5.0+, tasks live forever,
insofar as they survive a reboot. That, coupled with a seemingly-infinite
roster of recent tasks — compared with rather finite lists in earlier
versions of Android — means that your app usually will be brought back
from an existing task on Android 5.0+.
However, there are a few key differences.
The State of Your State
For normal process termination, in between device reboots, the
Bundle that we get in onSaveInstanceState() is held onto in RAM by
some core OS process. Of course, on a reboot, that process is terminated
along with everything else. And a Bundle can hold onto objects
that, while perhaps Parcelable, are not designed to be persisted.
The default behavior is that when your task is brought back to the
foreground after a reboot, only the task’s root activity is created, and
that is the only activity in the task. This effectively mimics the
behavior of pre-Android 5.0 versions of Android.
However, if you want to, you can control a bit more how your task
behaves on a reboot.
Your <activity> element in the manifest can have
a largely-undocumented android:persistableMode attribute.
If you set this to persistAcrossReboots on the activity that serves
as the root of your task (e.g., your launcher activity), then you will
be able to override three additional methods on your Activity:

	onCreate()

	onSaveInstanceState()

	onRestoreInstanceState()

Right now, you may think that the author of this book is drunk, as we
covered those methods already, far earlier in the book.
However, what API Level 21 adds, for persistAcrossReboots activities,
are flavors of those methods that take two parameters: a Bundle (as
normal) and a PersistableBundle. Values that you store in the latter
parameter will be delivered to you when your activity is re-created
as part of your task coming back to the foreground, even after a reboot.
Note that all of the above requires that you set your compileSdkVersion
to 21 or higher.
PersistableBundle allows you to save int, long, double, and String
values, along with arrays of each. On Android 5.1+, you can also save
boolean and arrays of boolean values. Notably, you cannot put a
Parcelable (or, strangely, a Serializable) in a PersistableBundle.
If your activity has persistAcrossReboots set — as does MainActivity
in the
Tasks/PersistentCanary
sample application — you will be called both with the single-parameter
and dual-parameter versions of those methods, in that order. Unless
your app has a minSdkVersion of 21 or higher, you will probably wind
up overriding both versions of each method, where you put stuff in
the Bundle in the single-parameter method and you put stuff in the
PersistableBundle in the dual-parameter method. Since versions of
Android prior to 5.0 do not know about PersistableBundle or methods
that take one, only the single-parameter versions of those methods will
be called on those devices. If your minSdkVersion is 21 or higher,
though, you could just override the dual-parameter versions of the
methods and work with both Bundle and PersistableBundle as needed.
Where You Return To
Normally, if your task is in the overview screen, and the user returns
to it, the user will be taken to whatever activity was at the top of the
back stack.
However, if the device reboots, and the user returns to your task, what
happens depends on that semi-documented persistableMode value:

	If the value for the root activity of the task is persistNever,
the task is not persisted across reboots

	If the value for the root activity of the task is persistRootOnly,
the task will be persisted, but only for that root activity; other
activities higher on the back stack are discarded

	If the value for the root activity of the task is persistAcrossReboots,
then not only is the task persisted for the root activity, but other
activities on the back stack are also persisted if they too
have persistAcrossReboots (and were not launched with
the FLAG_CLEAR_TASK_WHEN_RESET flag)

So, in the case of PersistentCanary, even if you use the overflow
to bring up the date-and-time Settings screen, since that activity
has the default persistRootOnly value for persistableMode, only
the MainActivity will be in the task after a reboot.
Documents As Tasks
Tasks used to be relatively app-centric. By and large, each app had its
own task, and just one task.
Android 5.0 extended the task system to support the notion of “documents”
as tasks. Now, an app may be in several tasks, with different tasks focused
on different “documents” or other specific contexts.
The vision is that this would be used by:

	Web browsers, where different browser tabs would be represented as
separate tasks

	Editors, where different editing sessions on different content could
be represented as separate tasks

	And so on

The benefit to the user is a standard way to switch between these
different contexts, by means of the overview screen. The risk is that
the overview screen becomes unwieldy, choked with too many entries
to sift through.
When You Should Do This
An app should open a new “document” based on some specific explicit
“open” operation by the user. So, for example:

	If the user asks to open a new “tab” in a browser, that could start
a new document

	If the user asks to open a new file into an editor, that might
start a new document, if you feel that the user understands that there
are N other documents out there already opened in this editor

	If the user launches one of your activities from outside of the
home screen, such as by clicking on a link in a Web browser, that
might start a new document, to keep that work separate from any
past work that might be part of other active tasks

Conversely, an app should not open a new document based on pure
navigation operations:

	Swiping to a new page in a ViewPager should not open a new
document

	Choosing an item in a nav drawer should not open a new document

	Tapping on an action bar item on its own should not open a new document,
though it might lead the user down a path to open a new document

Adding a Document
You have a few options for launching an activity as a new document,
indicating that it should have a separate entry on the Android 5.0+
overview screen.
android:documentLaunchMode
If you always want this activity to form the basis of a new document,
add android:documentLaunchMode="always" to the <activity> element
of your manifest, and you are done. Every time you start up an instance,
you will get a new document.
This can be seen in the
Tasks/Docs
sample application, which has an EditorActivity with the aforementioned
attribute:

 <activity
 android:name=".EditorActivity"
 android:documentLaunchMode="always"
 android:maxRecents="3"
 android:autoRemoveFromRecents="true"/>

(from Tasks/Docs/app/src/main/AndroidManifest.xml)
(we will cover those other new attributes shortly)
There are four possible values for android:documentLaunchMode:

	
always, as noted, always starts a new document

	
intoExisting, which looks for an existing document, where the
root activity is the same class and the Intent is for the same Uri, and
brings it back to the foreground, or starts a new document if a match
cannot be found

	
never prevents this activity from ever being launched as a new
document

	
none, which is the default, indicates that the activity will only
be launched as a new document if Intent flags indicate that it
should, as will be explained shortly

Since intoExisting depends upon Uri matches, you only want to use
intoExisting if you are passing Uri values into the activity when
starting it. Otherwise, use always.
FLAG_ACTIVITY_NEW_DOCUMENT
To conditionally launch an activity as a new document, have its
android:documentLaunchMode set to none (or missing, since that is
the default), and add Intent.FLAG_ACTIVITY_NEW_DOCUMENT to the Intent
that is used to start up the activity that would represent a new
document. This will have the behavior akin to intoExisting for
android:documentLaunchMode, meaning that Android will search for a
matching document and bring it back to the foreground if the match
is available.
To replicate always functionality, add both
Intent.FLAG_ACTIVITY_NEW_DOCUMENT and Intent.FLAG_ACTIVITY_MULTIPLE_TASK
to the Intent.
Capping the Number of Documents
By default, you can launch as many documents as you want. However,
unless you get rid of the document (as will be described below),
or the user gets rid of the document (by swiping it off the overview
screen), your roster of documents can keep piling up. Users may get
frustrated if their overview screen is flooded by entries for your app.
You can employ an automatic least-recently-used (LRU) algorithm here
by adding android:maxRecents to the <activity> that is the root
of the task for the document. This indicates the maximum number of
entries there should be in the overview screen for that activity, where
Android will remove older tasks to make way for new ones if needed.
So, in the Docs sample, android:maxRecents="3" limits the number
of EditorActivity tasks to 3; if the user tries opening more than this,
older ones are quietly removed.
Note that the default value for android:maxRecents is 16. Also, there
is a cap, ranging from 25 to 50, depending on device RAM — you will be
unable to set it higher than this.
Removing and Retaining Documents
Android’s default behavior is that the document will exist forever, or
until the user swipes it off the overview screen.
It is rather unlikely that this is really the behavior that you or your
users will want. Hence, you are going to want to take some steps to
ensure that your documents will go away from the overview screen when they
are no longer needed.
The simplest solution is to add android:autoRemoveFromRecents="true".
This indicates that once the root activity is finished (e.g., the user
presses BACK), the document is removed. By default, pressing BACK does
not remove the document, so you need to opt into this behavior.
However, that approach assumes that it is fairly easy for the user to get
back to the task’s root activity and press BACK. If you have a complex
navigation of activities within the “document”, it may not be easy for the
user to trigger document removal this way.
You can also forcibly get rid of the document by calling
finishAndRemoveTask() yourself on an activity in the task.
For example, in a tabbed Web browser,
if you have a “close tab” UI element (e.g., action bar item), that could
call finishAndRemoveTask() to get rid of the “document”.
Other Task-Related Activity Properties
There are other attributes that you can place on your <activity>
element in the manifest that have impacts on how that activity
participates with the task system.
launchMode
Occasionally, particular techniques become much too popular in Android
development, courtesy of some blog posts or other resources touting them
as “quick hacks” to address certain issues. The android:launchMode
attribute is one of those. Most Android apps should have no need to
change launchMode off of its default value of standard, or
occasionally singleTop. Yet, because
the Android task system is rather confusing, some developers latch onto
other launch modes and use them in places where there are better,
more fine-grained solutions.
That being said, let’s explore the launch modes, with the
help from the fine people at Novoda.
The Novoda developers released
an app on the Play Store,
and an accompanying GitHub repo
that helps to illustrate the launch modes.
That app has four activities, one for each of the four launch modes:

	standard

	singleTop

	singleTask

	singleInstance

The launcher activity is the standard activity. Each activity has four
buttons, to start up that activity via startActivity(), by default
with no particular Intent flags (though there’s a legacy options menu
that allows you to play with those as well). The color-coded
UI for each activity
also shows a unique identifier of the activity, the task ID of the task
that the activity is in, the lifecycle methods that were invoked on that
instance, and a set of stacked bars designed to illustrate what should
be on the back stack for that task (using some techniques of dubious
reliability, but the sort of thing that should be OK for a demo app
like this).
So, when we launch the app, we get a green UI for a standard activity:

[image: Novoda Demo App, As Initially Launched]

Figure 655: Novoda Demo App, As Initially Launched
singleTop
Using singleTop for the launchMode has one effect: controlling whether
a new instance of the activity is created. Normally, calling startActivity()
will create a new instance of the activity, unless Intent flags
dictate otherwise. With singleTop, if the activity being started is
already at the top of its stack, that existing instance is simply called
with onNewIntent(). Otherwise, singleTop behaves as does standard.
So, if we tap the button to launch a singleTop method in the Novoda
demo app, from our earlier state, we get a blue singleTop activity:

[image: Novoda Demo App, After Starting singleTop Activity]

Figure 656: Novoda Demo App, After Starting singleTop Activity
That worked just like standard. But, if we tap the same button again,
we do not get a new instance of the activity. However, the transcript
of lifecycle methods shows that onNewIntent() was called:

[image: Novoda Demo App, After Starting singleTop Activity Again]

Figure 657: Novoda Demo App, After Starting singleTop Activity Again
Note that you can get a similar result by including
Intent.FLAG_ACTIVITY_SINGLE_TOP on a startActivity() call. Using
launchMode says you always want single-top behavior; using
FLAG_ACTIVITY_SINGLE_TOP says that this time you want single-top behavior.
Pressing BACK returns you to the original green standard activity,
with the blue singleTop activity having been destroyed.
singleTask
A launchMode of singleTask says that this activity must always
be the root activity of a task.
If the task does not have that activity, a new task is created. So,
if we tap the button to launch the singleTask activity in the Novoda
demo app, we get a new task (ID 978, compared to the previous 977), with an
instance of the yellow singleTask activity as its root:

[image: Novoda Demo App, After Starting singleTask Activity]

Figure 658: Novoda Demo App, After Starting singleTask Activity
However, if the activity in question is already there as the root of the
task, all other activities on the back stack are cleared, and we are
taken to the singleTask activity again.
So, in the Novoda demo app, if after we start the singleTask activity,
we tap the button to launch a standard activity or two:

[image: Novoda Demo App, Two standard Activities After singleTask Activity]

Figure 659: Novoda Demo App, Two standard Activities After singleTask Activity
…then
tap the button to launch the singleTask activity, we get largely the
same screen as before, just with a few more lifecycle methods logged:

[image: Novoda Demo App, After Starting singleTask Activity Again]

Figure 660: Novoda Demo App, After Starting singleTask Activity Again
It is the same task and the same instance, but with the other activities
removed.
singleInstance
singleInstance works much like singleTask, except that the task
will only ever hold this one activity. No other activities will be placed
into the task.
So, tapping the button to start a singleInstance activity in the Novoda
demo app brings up the red singleInstance UI:

[image: Novoda Demo App, After Starting singleInstance Activity]

Figure 661: Novoda Demo App, After Starting singleInstance Activity
Tapping the same button again just triggers onNewIntent() and other
lifecycle methods on the same activity in the same task. If, however, you
try tapping on the button for the standard activity, your activity
will go to another task. Depending on when and how you try the Novoda
demo app, this could be a prior task associated with our app (e.g., one
you used for earlier standard tests), or it could be a new task (if you
do not have any other ones). This is based on the taskAffinity
of the activity being started.
In general, singleTask and singleInstance are for unusual use cases,
and ordinary Android apps should have little reason to use them. Google
specifically urges you not to use them:

…standard is the default mode and is appropriate for most types of activities. SingleTop is also a common and useful launch mode for many types of activities. The other modes — singleTask and singleInstance — are not appropriate for most applications, since they result in an interaction model that is likely to be unfamiliar to users and is very different from most other applications.

alwaysRetainTaskState
As noted earlier in the chapter, tasks may be cleared by Android if the
user has not been in the task for some time (e.g., 30+ minutes). In these
cases, the user is taken back to the root activity.
If, however, the root activity has android:alwaysRetainTaskState="true"
in its manifest entry, then Android will not apply this timeout rule. So
long as the task exists, its entire state will be retained and used when
the user returns to the task. This is useful for tasks where there is
a lot of state that the user might regret losing.
Other Task-Related Activity Methods
There are a handful of other task-related methods and such floating
around the Activity class:
finishAffinity()
This calls finish() not only on the current activity, but on all
activities immediately behind it on the back stack for this task
that have the same
taskAffinity as does the current activity. Much of the time, the
activities on the stack will all share an affinity, and therefore this
will frequently finish all activities in the task. If the task
has a mixed set of affinities (e.g., a mix of explicitly-named affinities
and other activities using the default affinity), this method would only
wipe out those behind the current with a specific match.
This method is not commonly used.
finishAndRemoveTask()
This calls finish() on all activities in the task and removes the
task outright.
For example, a “logout” operation might call finishAndRemoveTask()
to flush the current task, then call startActivity() to launch the
login activity. That login activity will wind up in a fresh task (since
the current one will be removed), and the old activity instances will
go away, so the user cannot somehow stumble into them when they are not
yet logged in.
getTaskId()
Returns a unique integer that identifies the task the activity
resides in.
This method is not commonly used.
isTaskRoot()
isTaskRoot() is a method on Activity. It will return true if this
activity instance is at the root of a task, meaning that pressing BACK
should remove the task and return the user to the home screen.
moveTaskToBack()
This method moves the current task to the background. What comes
to the foreground is undocumented but generally seems to be the task
for the home screen. Some apps use this to offer a “minimize” or
“go to background” option within the app, though this is superfluous,
as the task will move to the background naturally as the user navigates
their device.
setTaskDescription()
For Android 5.0+, setTaskDescription() allows you to associate an
ActivityManager.TaskDescription instance with your task. Here you can
provide values that help drive what the task looks like on the overview
screen. Specifically, you can provide the icon, title, and background color
to use for the title bar over your thumbnail on the overview screen.
The Assist API (“Now On Tap”)
Android 6.0 introduced the concept of the device “assistant”. The
assistant can be triggered by a long-press of the HOME button or via
a spoken phrase (if the user has always-on keyphrase detection)
enabled. An assistant is a special app that has
access to the content of the foreground activity
and other visible windows, much like an accessibility service does.
For the vast majority of users of Google Play ecosystem devices
running Android 6.0 or higher, the “assistant” is known as Now On Tap.
On some devices, such as the Google Pixel series, this assistant
is known simply as the “Google Assistant”.
This is marketed as an extension of the Google Now UI, where
Now On Tap/Google Assistant
will take the data from the foreground activity and use that to find
other relevant things for the user to do based upon that data.
(for the purposes of this chapter, this Google-supplied assistant
will be referred to as “Now On Tap”, to distinguish Google’s
assistant from assistants that others might write using these APIs)
For example, suppose the
user receives a text message, suggesting dinner at a particular
restaurant. The restaurant is merely named — no URL — and so the
text messaging client would just display the name of the restaurant
as part of the message. If the user invokes Now On Tap, Google will
take the contents of this message (and anything else on the screen),
and presumably send it to Google’s servers, sending back things like
details about the restaurant (e.g., URL to Web site, Google’s scanned
reviews of the restaurant, link to Google Maps for driving directions).
Google’s search engine technology would scan the data from the app,
recognize that the restaurant name appears to be something significant,
and give Now On Tap details of what to offer the user.
As with many things from Google, Now On Tap is very compelling and very much
a privacy problem. Now On Tap is automatically installed and enabled
on Android 6.0 devices — users have to go through some work to
disable it. Users and app developers have limited ability to control
Now On Tap, in terms of what data it collects and what it does with that
data. On the other hand, certain apps (for which there are no privacy
considerations) might wish to provide more data to Now On Tap, beyond
what is visible in widgets, to help provide more context for Now On Tap
to help users.
In this chapter, we will explore the Assist API, in terms of:

	what data gets collected

	how apps can add to that data

	how apps can block sensitive information from the assistant

	how to write your own assistant, as a Now On Tap replacement

Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
What Data Gets Disclosed
Quite a bit of data is made available to Now On Tap or other assistants
through the Assist API alone, as will be explored in this section.
Assistants are welcome to use other APIs
as well, subject to standard Android permissions and such. So, for example,
an app might not show the device’s location, and therefore an assistant
could not get the location from the Assist API, but the assistant could
use LocationManager or the Play Services location API to find out the
device’s location.
There is also a risk of pre-installed assistants using undocumented means
of getting at data beyond what the normal Android SDK would allow.
All that being said, assistants will get a lot of information about the
currently-visible UI, just from what the Assist API provides.
Screenshot
Assistants can get a screenshot of the current screen contents — minus
the status bar — when the user activated the assistant (e.g., long-pressed
HOME). Developers can block this
for select activities or other windows. Hence, an assistant cannot assume
that it will get a screenshot, though frequently it will.
Presumably, the “vision” here is to use computer vision and other image
recognition techniques on the screenshot to find things of interest.
For example, the user might bring up Now On Tap for some activity that is
showing a photo of a monument. The activity might not be showing any other
details about the monument, such as its name. However, Google’s servers
might well recognize what monument it is and therefore give the user
links to Wikipedia pages about the monument, a map of where the monument
is located, etc.
View Structure
By far the largest dump of data that the assistant gets comes in the
form of the view structure. This is represented by a tree
of AssistStructure.ViewNode objects, one per widget or container within
a window. These provide similar information as to what one gets from
the accessibility APIs. For most assistants, the key data is the
text or content description in the widget. In the case of text, this
is available as a CharSequence and so may contain additional information
(e.g., hyperlinks represented in URLSpan objects) beyond the words
visible to the user.
Developers can restrict what widgets and containers are disclosed,
but that is something developers have to do explicitly. In other words,
making data available to assistants is something a developer has to
opt out of, not opt into.
Other Data
In addition to the view structure and a largely-undocumented Bundle,
the other piece of data supplied to the assistant is the AssistContent.
Here is where an app can provide some additional context about
the foreground activity.
Specifically, the app can provide:

	an Intent that represents the activity, replacing the Intent
that was used to start the activity, if there is a better one for
long-term use (e.g., the activity was started via a Notification
action and you want to route the user through a different Intent
for other scenarios)

	a Uri that points to some Web page of relevance for this activity

	a string of “structured data”, designed to be populated by a snippet
of JSON using the schema.org specification,
to provide details of the book, song, video, or whatever happens to be
in the activity at the moment

	another undocumented Bundle

	an undocumented ClipData

Assistants can use this directly (e.g., offer a link to the Uri
supplied in this content) or indirectly (e.g., using the schema.org
JSON to find places where the user can purchase related content).
Adding to the Data
You may wish to provide some additional information to Now On Tap
or other assistants, such as the Intent or JSON described above.
Or, you may just generally want to ensure that your app provides
the maximum amount of information to these assistants, without necessarily
trying to invent new data to provide.
There are a few options for accomplishing this.
Accessibility
The big one is to ensure that your app provides text or content descriptions
for everything visible. This will not only help these assistants,
but this will make your app far more accessible to those using
TalkBack or other accessibility services.
Mostly, this is a matter of ensuring that your ImageView widgets
and other non-textual widgets have a content description, whether
set via android:contentDescription attributes or by
setContentDescription() in Java. TextView and its subclasses
automatically use their text as the content description; EditText
will use the hint if there is no text in the field at the moment.
More advice regarding accessibility can be found in
the chapter on accessibility and focus management.
Assist-Specific Data
Beyond that, you can contribute to the AssistContent (where the
Intent, Uri, and JSON live) and other assist-related information
for a given invocation of the assistant by the user.
You have a few options of where to place this logic: in one spot
globally, on a per-activity basis, and, for custom views, on a per-view
basis.
Globally
You can call registerOnProvideAssistDataListener() on the global
Application object (retrieved by calling getApplicationContext()
on some other Context, like your Activity). This takes an
OnProvideAssistDataListener implementation, which in turn provides
an onProvideAssistData() implementation, that will be called when
the assistant is requested. You are passed the Activity of yours
that is in the foreground, along with a Bundle that you can fill in.
However, the documentation only says that the Bundle will go into
the EXTRA_ASSIST_CONTEXT extra on the Intent that invokes
the assistant. What that Bundle is supposed to contain is undocumented.
Per-Activity
Your primary hooks for customizing the assist data come in the form of
two callbacks on your Activity subclasses: onProvideAssistData()
and onProvideAssistContent().
onProvideAssistData() is given the same Bundle that is given to
the OnProvideAssistDataListener on a global basis. However, it is
unclear what goes in that Bundle, and the contents of that Bundle
do not appear to make it to the assistant, at least through the documented
Assist API.
onProvideAssistContent(), though, is more relevant.
The
Assist/MoAssist
sample project is another version of the ViewPager-of-editors sample seen elsewhere
in the book.
The clone overrides
onProvideAssistData() and onProvideAssistContent():

 @Override
 public void onProvideAssistData(Bundle data) {
 super.onProvideAssistData(data);

 data.putInt("random-value", new SecureRandom().nextInt());
 }

 @TargetApi(23)
 @Override
 public void onProvideAssistContent(AssistContent outContent) {
 super.onProvideAssistContent(outContent);

 outContent.setWebUri(Uri.parse("https://commonsware.com"));

 try {
 JSONObject json=new JSONObject()
 .put("@type", "Book")
 .put("author", "https://commonsware.com/mmurphy")
 .put("publisher", "CommonsWare, LLC")
 .put("name", "The Busy Coder's Guide to Android Development");

 outContent.setStructuredData(json.toString());
 }
 catch (JSONException e) {
 Log.e(getClass().getSimpleName(),
 "Um, what happened here?", e);
 }
 }

(from Assist/MoAssist/app/src/main/java/com/commonsware/android/assist/mo/MainActivity.java)
The onProvideAssistData() simply puts a random number into the
Bundle. That random number does not appear anywhere in
the data collected by an assistant.
onProvideAssistContent() fills in two items in the AssistContent:

	a Web URL of relevance to the activity, in this case the home
page of the book’s publisher

	a bit of JSON, following
the published schema.org Book structure,
with metadata about this book

This information is supplied to assistants and can be used by them
to do something useful, such as offer links for the user to click on
to visit the sites.
Per-View
If you are implementing your own custom views, particularly those
that render their own text using low-level Canvas APIs, you may
wish to override onProvideStructure() and/or
onProvideVirtualStructure(). These will be called on your widgets
to provide the AssistStructure.ViewNode details to be passed to the
assistant.
However, in all likelihood, you would want to instead work with the
accessibility APIs to publish data to be used by accessibility services,
such as the text that you are rendering. If you do that, the default
implementations of onProvideStructure() and
onProvideVirtualStructure() should suffice.
Removing from the Data
While some developers may embrace Now On Tap, others may specifically
want to prevent Now On Tap or other assistants from “spying” on
application data. You have a few options for controlling what is provided
to assistants; however, all require work and some have side effects.
For example, there is nothing in the manifest that you can specify
to make your activities opt out of providing assist data.
FLAG_SECURE
The standard approach for making private activities really private
is to use FLAG_SECURE:

public class FlagSecureTestActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 getWindow().setFlags(LayoutParams.FLAG_SECURE,
 LayoutParams.FLAG_SECURE);

 setContentView(R.layout.main);
 }
}

Call setFlags() before setContentView(), in this case setting
FLAG_SECURE.
The classic effect of FLAG_SECURE is to block screenshots, both
user-initiated ones and system-initiated ones (e.g., the screenshots
used in the overview/recent-tasks screen on Android 4.0+).
If the user triggers an assistant for a secure activity, the assistant
will not get the full view structure (i.e., no widgets and no text)
and will not get a screenshot.
Password Fields
An EditText that is set up as a password field will have its text
blocked from the view structure. The widget will be listed, but its
text will be null.
Presumably, this relies on the EditText using a PasswordTransformationMethod,
as that is Android’s typical approach for determining whether or not
an EditText is deemed to be secure. If you have implemented your
own TransformationMethod (e.g., with a different approach for shrouding
the user input), either have it extend PasswordTransformationMethod
or use other approaches to prevent this field’s contents from being
published to assistants.
NoAssistFrameLayout
The apparently-official way to block a widget or container from
participating in the assist API is to create a subclass of it
and override dispatchProvideStructure(). The stock implementation
of this triggers the calls to onProvideStructure() and
onProvideVirtualStructure(). Plus, for a ViewGroup, it will
iterate over the children and call dispatchProvideStructure() on each
of them.
If you are creating your own custom view, and you want it eliminated
from the view structure, just override dispatchProvideStructure()
and have it do nothing.
Or, you can create a container that is there solely to block the
assist data collection. The
Assist/NoAssist
sample project does this, in the form of a NoAssistFrameLayout:

package com.commonsware.android.assist.no;

import android.annotation.TargetApi;
import android.content.Context;
import android.os.Build;
import android.util.AttributeSet;
import android.view.ViewStructure;
import android.widget.FrameLayout;

public class NoAssistFrameLayout extends FrameLayout {
 public NoAssistFrameLayout(Context context) {
 super(context);
 }

 public NoAssistFrameLayout(Context context,
 AttributeSet attrs) {
 super(context, attrs);
 }

 public NoAssistFrameLayout(Context context,
 AttributeSet attrs,
 int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 }

 @TargetApi(Build.VERSION_CODES.LOLLIPOP)
 public NoAssistFrameLayout(Context context,
 AttributeSet attrs,
 int defStyleAttr,
 int defStyleRes) {
 super(context, attrs, defStyleAttr, defStyleRes);
 }

 @Override
 public void dispatchProvideStructure(ViewStructure structure) {
 // no, thanks
 }
}

(from Assist/NoAssist/app/src/main/java/com/commonsware/android/assist/no/NoAssistFrameLayout.java)
EditorFragment — responsible for showing a large multi-line EditText
for the user to type into — will conditionally use a NoAssistFrameLayout,
specifically on the third tab (a ViewPager position of 2):

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 int position=getArguments().getInt(KEY_POSITION, -1);
 View result;

 if (position==2) {
 ViewGroup doctorNo=new NoAssistFrameLayout(getActivity());
 inflater.inflate(R.layout.editor, doctorNo);
 result=doctorNo;
 }
 else {
 result=inflater.inflate(R.layout.editor, container, false);
 }

 EditText editor=result.findViewById(R.id.editor);

 editor.setHint(getTitle(getActivity(), position));

 if (position==1) {
 editor.
 setTransformationMethod(PasswordTransformationMethod.
 getInstance());
 }

 return(result);
 }

(from Assist/NoAssist/app/src/main/java/com/commonsware/android/assist/no/EditorFragment.java)
If we are on the third tab, we create a NoAssistFrameLayout and inflate
our EditText into it. Otherwise, we inflate the layout normally.
Note that this sample also applies a PasswordTransformationMethod for
the second page of the ViewPager (a position of 1), to illustrate
the null text that will be recorded as a result.
Blocking Assist as a User
It is possible that your reaction to all of this is that you want to
opt out of Now On Tap as a user. Or, perhaps you want to provide some
instructions to your users on how to opt out of Now On Tap.
Go to Settings > Apps. There should be an option for advanced app
configuration actions (on Nexus-series devices, this is a gear icon
in the action bar). Tap that, then choose “Default Apps” to bring
up categories of default apps for various actions:

[image: Android 6.0 Default Apps Screen in Settings]

Figure 662: Android 6.0 Default Apps Screen in Settings
In there, tap on “Assist & voice input”. By default, you should
see “Google App” as the chosen option, which means that Now On Tap is
active:

[image: Android 6.0 Assist & Voice Input Screen in Settings]

Figure 663: Android 6.0 Assist & Voice Input Screen in Settings
Tapping on that entry will bring up a list of available options,
including “None”:

[image: Android 6.0 Assist & Voice Input Options in Settings]

Figure 664: Android 6.0 Assist & Voice Input Options in Settings
Implementing Your Own Assistant
While Now On Tap is pre-installed and pre-activated, and while users
can disable Now On Tap, another option for users is to activate some
other assistant. Any app that implements the proper pieces of the
Assist API will appear in the roster of available assistants for the user
to choose from, as described in the previous section.
The
Assist/AssistLogger
sample project represents one such app.
Primarily, this app is for diagnostic purposes, showing you exactly what
your activity is “leaking” to assistants. It was essential in figuring
out how the APIs shown in earlier examples in this chapter worked, for
instance. However, it also serves as
a demonstration of the minimum requirements to implement an assistant
in general.
Creating an assistant is technically part of a larger bit of work
on handling voice interactions in Android. However, if all you want
is an assistant, you can ignore the voice-related bits.
A Stub VoiceInteractionService
Some of what is needed to set up an assistant is some boilerplate.
For example, the entry point for assistants and voice interactions
is a custom subclass of VoiceInteractionService. If you only are concerned
with implementing an assistant, your VoiceInteractionService can be
empty:

package com.commonsware.android.assist.logger;

import android.service.voice.VoiceInteractionService;

public class AssistLoggerService extends VoiceInteractionService {
}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerService.java)
However, it needs to exist, and in particular it needs to have its
<service> entry in your manifest:

 <service
 android:name=".AssistLoggerService"
 android:permission="android.permission.BIND_VOICE_INTERACTION">
 <meta-data
 android:name="android.voice_interaction"
 android:resource="@xml/assist_service"/>
 <intent-filter>
 <action android:name="android.service.voice.VoiceInteractionService"/>
 </intent-filter>
 </service>

(from Assist/AssistLogger/app/src/main/AndroidManifest.xml)
The keys to the manifest entry are:

	It needs to have the android:permission attribute, limiting it
clients that hold the BIND_VOICE_INTERACTION permission, which should
limit clients to those that are part of the device firmware

	It needs to have the <intent-filter> advertising that it supports the
android.service.voice.VoiceInteractionService action string

	It needs an android.voice_interaction <meta-data> element, pointing
to an XML resource that further configures the voice interaction/assistant
implementation

The sample project has that metadata in res/xml/assist_service.xml:

<voice-interaction-service
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:recognitionService="com.commonsware.android.assist.logger.AssistLoggerService"
 android:sessionService="com.commonsware.android.assist.logger.AssistLoggerSessionService"
 android:supportsAssist="true"/>

<!--
 android:settingsActivity="com.android.test.voiceinteraction.SettingsActivity"
-->

(from Assist/AssistLogger/app/src/main/res/xml/assist_service.xml)
There are three attributes required on the <voice-interaction-service>
root element to enable an assistant:

	
android:recognitionService points back to your VoiceInteractionService
subclass

	
android:sessionService points to a subclass of VoiceInteractionSessionService
(we will examine the project’s implementation shortly)

	
android:supportsAssist should be true

If you want, you can also have an android:settingsActivity attribute,
shown in this XML as a commented-out snippet at the end of the file.
This can point to an activity in your app. If you have this, a gear icon
will appear on the “Assist & voice input” Settings screen that, when tapped,
will bring up this activity, to configure the behavior of your assistant.
The sample app skips this.
A Trivial VoiceInteractionSessionService
The service pointed to by android:sessionService in the metadata needs
to be a subclass of VoiceInteractionSessionService. The only method
that you need to override is onNewSession(), where you can return
an instance of a VoiceInteractionSession:

package com.commonsware.android.assist.logger;

import android.os.Bundle;
import android.service.voice.VoiceInteractionSession;
import android.service.voice.VoiceInteractionSessionService;

public class AssistLoggerSessionService extends
 VoiceInteractionSessionService {
 @Override
 public VoiceInteractionSession onNewSession(Bundle args) {
 return(new AssistLoggerSession(this));
 }
}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSessionService.java)
Here, we return an instance of AssistLoggerSession, which is where
all of our real business logic resides for our assistant.
Note that this service also should use
android:permission to limit clients to those that hold the
android.permission.BIND_VOICE_INTERACTION permission:

 <service
 android:name=".AssistLoggerSessionService"
 android:permission="android.permission.BIND_VOICE_INTERACTION"/>

(from Assist/AssistLogger/app/src/main/AndroidManifest.xml)
The VoiceInteractionSession
VoiceInteractionSession has a lot of methods that you can override,
both for voice interactions and for assistant invocations. The sample
app overrides the minimum required for an assistant, as its mission
simply is to log all of the data received by our assistant to files
on external storage, for diagnostic purposes.
NOTE: Running this sample app on hardware that is actually used
with private data is stupid beyond words. Any app can then read the
files on external storage and see what information is published by whatever
apps are in the foreground at the times when you invoke the assistant.
Please use this only on test environments.
Basic Setup
Akin to components, a VoiceInteractionSession has an onCreate() method,
called as part of setting up the session. In there, AssistLoggerSession
sets up an output directory for logging the results, assuming that external
storage is available:

 @Override
 public void onCreate() {
 super.onCreate();

 if (Environment.MEDIA_MOUNTED
 .equals(Environment.getExternalStorageState())) {
 String logDirName=
 "assistlogger_"+
 new SimpleDateFormat("yyyyMMdd'-'HHmmss").format(new Date());

 logDir=
 new File(getContext().getExternalCacheDir(), logDirName);
 logDir.mkdirs();
 }
 }

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java)
onHandleScreenshot()
If the user invokes your assistant, you will be called with onHandleScreenshot().
Usually, you will be passed a Bitmap that contains the screenshot.
However, if the foreground activity is using FLAG_SECURE, the Bitmap
that is passed to you will be null, so make sure you check it before
doing anything with it.
The AssistLoggerSession forks a ScreenshotThread to save this screenshot
in the background:

 @Override
 public void onHandleScreenshot(Bitmap screenshot) {
 super.onHandleScreenshot(screenshot);

 if (screenshot!=null) {
 new ScreenshotThread(getContext(), logDir, screenshot).start();
 }
 }

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java)
ScreenshotThread, in turn, just uses compress() on Bitmap
to write the image out as a PNG to the directory that we are using for
logging:

 private static class ScreenshotThread extends Thread {
 private final File logDir;
 private final Bitmap screenshot;
 private final Context ctxt;

 ScreenshotThread(Context ctxt, File logDir, Bitmap screenshot) {
 this.ctxt=ctxt.getApplicationContext();
 this.logDir=logDir;
 this.screenshot=screenshot;
 }

 @Override
 public void run() {
 if (logDir!=null) {
 try {
 File f=new File(logDir, "screenshot.png");
 FileOutputStream fos=new FileOutputStream(f);

 screenshot.compress(Bitmap.CompressFormat.PNG, 100, fos);
 fos.flush();
 fos.getFD().sync();
 fos.close();

 MediaScannerConnection
 .scanFile(ctxt,
 new String[] {f.getAbsolutePath()},
 new String[] {"image/png"}, null);

 Log.d(getClass().getSimpleName(),
 "screenshot written to: "+f.getAbsolutePath());
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception writing out screenshot", e);
 }
 }
 else {
 Log.d(getClass().getSimpleName(),
 String.format("onHandleScreenshot: %dx%d",
 screenshot.getWidth(), screenshot.getHeight()));
 }
 }
 }

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java)
onHandleAssist()
onHandleAssist() is your other main assistant callback. Here is where you
get:

	a Bundle of undocumented stuff

	the AssistStructure outlining the contents of the windows, including
the view hierarchy

	the AssistContent with the Intent, Web Uri, JSON, and so on

AssistLoggerSession kicks off an AssistDumpThread to record this data
in the background:

 @Override
 public void onHandleAssist(Bundle data,
 AssistStructure structure,
 AssistContent content) {
 super.onHandleAssist(data, structure, content);

 new AssistDumpThread(getContext(), logDir, data, structure,
 content).start();
 }

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java)
AssistDumpThread itself is a long class that generates
a JSON file containing the information found in the parameters to
onHandleAssist():

package com.commonsware.android.assist.logger;

import android.app.assist.AssistContent;
import android.app.assist.AssistStructure;
import android.content.Context;
import android.content.Intent;
import android.media.MediaScannerConnection;
import android.os.Bundle;
import android.util.Log;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Set;

class AssistDumpThread extends Thread {
 private final File logDir;
 private final Bundle data;
 private final AssistStructure structure;
 private final AssistContent content;
 private final Context ctxt;

 AssistDumpThread(Context ctxt, File logDir, Bundle data,
 AssistStructure structure,
 AssistContent content) {
 this.ctxt=ctxt.getApplicationContext();
 this.logDir=logDir;
 this.data=data;
 this.structure=structure;
 this.content=content;
 }

 @Override
 public void run() {
 if (logDir!=null) {
 JSONObject json=new JSONObject();

 try {
 json.put("data", dumpBundle(data, new JSONObject()));
 }
 catch (JSONException e) {
 Log.e(getClass().getSimpleName(),
 "Exception saving data", e);
 }

 try {
 json.put("content", dumpContent(new JSONObject()));
 }
 catch (JSONException e) {
 Log.e(getClass().getSimpleName(),
 "Exception saving content", e);
 }

 try {
 json.put("structure", dumpStructure(new JSONObject()));
 }
 catch (JSONException e) {
 Log.e(getClass().getSimpleName(),
 "Exception saving structure", e);
 }

 File f=new File(logDir, "assist.json");

 try {
 FileOutputStream fos=new FileOutputStream(f);
 OutputStreamWriter osw=new OutputStreamWriter(fos);
 PrintWriter pw=new PrintWriter(osw);

 pw.print(json.toString(2));
 pw.flush();
 fos.getFD().sync();
 fos.close();

 MediaScannerConnection
 .scanFile(ctxt,
 new String[] {f.getAbsolutePath()},
 new String[] {"application/json"}, null);

 Log.d(getClass().getSimpleName(),
 "assist data written to: "+f.getAbsolutePath());
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception writing out assist data", e);
 }
 }
 else {
 Log.d(getClass().getSimpleName(), "onHandleAssist");
 }
 }

 JSONObject dumpBundle(Bundle b, JSONObject json)
 throws JSONException {
 Set<String> keys=b.keySet();

 for (String key : keys) {
 json.put(key, wrap(b.get(key)));
 }

 return (json);
 }

 private JSONObject dumpContent(JSONObject json)
 throws JSONException {
 JSONObject extras=new JSONObject();

 if (content.getExtras()!=null) {
 json.put("extras", extras);
 dumpBundle(content.getExtras(), extras);
 }

 if (content.getIntent()!=null) {
 json.put("intent",
 content.getIntent().toUri(Intent.URI_INTENT_SCHEME));
 }

 json.put("structuredData",
 wrap(content.getStructuredData()));
 json.put("webUri", wrap(content.getWebUri()));

 return (json);
 }

 private JSONObject dumpStructure(JSONObject json)
 throws JSONException {
 return (json.put("windows",
 dumpStructureWindows(new JSONArray())));
 }

 private JSONArray dumpStructureWindows(JSONArray windows)
 throws JSONException {
 for (int i=0; i<structure.getWindowNodeCount(); i++) {
 windows.put(
 dumpStructureWindow(structure.getWindowNodeAt(i),
 new JSONObject()));
 }

 return (windows);
 }

 private JSONObject dumpStructureWindow(
 AssistStructure.WindowNode window,
 JSONObject json)
 throws JSONException {
 json.put("displayId", wrap(window.getDisplayId()));
 json.put("height", wrap(window.getHeight()));
 json.put("left", wrap(window.getLeft()));
 json.put("title", wrap(window.getTitle()));
 json.put("top", wrap(window.getTop()));
 json.put("width", wrap(window.getWidth()));
 json.put("root",
 dumpStructureNode(window.getRootViewNode(),
 new JSONObject()));

 return (json);
 }

 private JSONObject dumpStructureNode(
 AssistStructure.ViewNode node,
 JSONObject json)
 throws JSONException {
 json.put("accessibilityFocused",
 wrap(node.isAccessibilityFocused()));
 json.put("activated", wrap(node.isActivated()));
 json.put("alpha", wrap(node.getAlpha()));
 json.put("assistBlocked", wrap(node.isAssistBlocked()));
 json.put("checkable", wrap(node.isCheckable()));
 json.put("checked", wrap(node.isChecked()));
 json.put("className", wrap(node.getClassName()));
 json.put("clickable", wrap(node.isClickable()));
 json.put("contentDescription",
 wrap(node.getContentDescription()));
 json.put("contextClickable",
 wrap(node.isContextClickable()));
 json.put("elevation", wrap(node.getElevation()));
 json.put("enabled", wrap(node.isEnabled()));

 if (node.getExtras()!=null) {
 json.put("extras", dumpBundle(node.getExtras(),
 new JSONObject()));
 }

 json.put("focusable", wrap(node.isFocusable()));
 json.put("focused", wrap(node.isFocused()));
 json.put("height", wrap(node.getHeight()));
 json.put("hint", wrap(node.getHint()));
 json.put("id", wrap(node.getId()));
 json.put("idEntry", wrap(node.getIdEntry()));
 json.put("idPackage", wrap(node.getIdPackage()));
 json.put("idType", wrap(node.getIdType()));
 json.put("left", wrap(node.getLeft()));
 json.put("longClickable", wrap(node.isLongClickable()));
 json.put("scrollX", wrap(node.getScrollX()));
 json.put("scrollY", wrap(node.getScrollY()));
 json.put("isSelected", wrap(node.isSelected()));
 json.put("text", wrap(node.getText()));
 json.put("textBackgroundColor",
 wrap(node.getTextBackgroundColor()));
 json.put("textColor", wrap(node.getTextColor()));
 json.put("textLineBaselines",
 wrap(node.getTextLineBaselines()));
 json.put("textLineCharOffsets",
 wrap(node.getTextLineCharOffsets()));
 json.put("textSelectionEnd",
 wrap(node.getTextSelectionEnd()));
 json.put("textSelectionStart",
 wrap(node.getTextSelectionStart()));
 json.put("textSize", wrap(node.getTextSize()));
 json.put("textStyle", wrap(node.getTextStyle()));
 json.put("top", wrap(node.getTop()));
 json.put("transformation",
 wrap(node.getTransformation()));
 json.put("visibility", wrap(node.getVisibility()));
 json.put("width", wrap(node.getWidth()));

 json.put("children",
 dumpStructureNodes(node, new JSONArray()));

 return (json);
 }

 private JSONArray dumpStructureNodes(
 AssistStructure.ViewNode node,
 JSONArray children) throws JSONException {
 for (int i=0; i<node.getChildCount(); i++) {
 children.put(dumpStructureNode(node.getChildAt(i),
 new JSONObject()));
 }

 return (children);
 }

 private Object wrap(Object thingy) {
 if (thingy instanceof CharSequence) {
 return (JSONObject.wrap(thingy.toString()));
 }

 return (JSONObject.wrap(thingy));
 }
}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistDumpThread.java)
Making a Real Assistant
AssistLogger is a faithful implementation of an assistant, but it does
not really assist the user, except in seeing what sorts of information
Google gets via Now On Tap.
If you wanted to make an actual assistant that is a true replacement
for Now On Tap, you would also need to implement methods like:

	
onCreateContentView(), where you can inflate a layout or otherwise
assemble the basic UI to be shown to the user when your assistant
is invoked

	
onShow(), where you can populate that UI with the details for this
particular assist request

	
onHide(), called when your UI is no longer visible to the user

…and so on.
Determining the Active Assistant
If you elect to create your own assistant, you might be interested in
knowing whether or not your app has been chosen as the user’s assistant.
Unfortunately, there is no documented and supported means of doing this.
So, here is the undocumented and unsupported approach that works on
Android 6.0.
WARNING: this code may not work on all Android 6.0 devices,
let alone on future versions of Android, as it relies a bit on internal
implementation that could be changed by device manufacturers or custom
ROM authors. Please use this very carefully and do not be shocked
if it stops working.
Settings.Secure holds the details of the currently-chosen assistant.
However, the key under which those details are stored is a hidden
entry in Settings.Secure, and so it does not show up in the Android
SDK. The key is "voice_interaction_service". The value is the
ComponentName of the assistant, serialized (or “flattened”) into a
String. So, to get the ComponentName of the assistant, you can use:

String assistant=
 Settings.Secure.getString(getContentResolver(),
 "voice_interaction_service");

boolean areWeGood=false;

if (assistant!=null) {
 ComponentName cn=ComponentName.unflattenFromString(assistant);
}

cn will then hold the ComponentName.
Leading the User to Make an Assistant Change
If you implement your own assistant, and at the moment you are not
the user’s chosen assistant, you might have the need to lead the user
over to the spot in the Settings app where they can change this. Once
again, this is not explicitly documented.
However, for Android 6.0, Settings.ACTION_VOICE_INPUT_SETTINGS
contains the action string that opens up the screen where the user
can choose their assistant implementation. So, you could call:

startActivity(new Intent(Settings.ACTION_VOICE_INPUT_SETTINGS));

to lead the user to that screen, plus use a Toast or something to
remind the user to tap on the “Assist app” entry to choose the assistant.
However:

	Since Settings.ACTION_VOICE_INPUT_SETTINGS is not guaranteed to
be on all devices, please wrap the startActivity() call in an
ActivityNotFoundException try/catch block and deal with the
missing action accordingly

	There is no guarantee that Settings.ACTION_VOICE_INPUT_SETTINGS
will lead the user to the correct screen on all Android 6.0+ devices,
as the Settings app might be altered by the device manufacturer or
custom ROM author

The Autofill API
Many Web browsers, such as Chrome, offer “autofill”. The browser remembers
things that you have typed into certain fields, like addresses, and offers
to fill those back in when you go to fill in the same form again… or even
a different form with similar fields.
Android 8.0 adds autofill capability to Android via the Autofill Framework.
Values that users enter into
your forms will be remembered and offered again when the user returns to your
form, or to other forms that they encounter in other apps on the device. This
all happens without any changes to your code… in theory. In practice,
you may need some changes to your code.
However, Android itself does not store the form data, nor offer it as suggestions
for autofilling in a form. Android is merely serving as a conduit between
your app and a third-party autofill service. It is the service that is responsible
for determining what could be autofilled in your form and saving prior
entries. As with the Assist API, the user can choose an autofill
service, and none ship by default with the O Developer Preview. In all likelihood,
a Google-branded autofill implementation will be part of the production rollout
of Android 8.0, but the user could choose other autofill apps… or perhaps none
at all, for privacy reasons.
In this chapter, we will explore the AutoFill API, in terms of:

	what data gets collected

	how apps can block sensitive information from autofill

	how apps can better integrate with autofill

NOTE: O Developer Preview 2 renamed many of the Autofill Framework classes
and methods to make the f in Autofill lowercase. So, for example,
AutoFillService became AutofillService. Materials written based on O
Developer Preview 1 (blog posts, Stack Overflow answers, etc.) will
have a capital F instead.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
There are commonalities between autofill and the Assist API,
and so this chapter will refer back to that one from time to time.
The Pieces of the Puzzle
Android 8.0 provides a framework for apps with a UI to participate in autofill,
by denoting roles that some of those widgets have (e.g., “this is the field
for the username”). However, Android itself does not save any user input
for later use with autofill, nor does Android itself decide what values are
candidates for autofill. Instead, Android delegates that work to a separate
autofill service. This works akin to how accessibility services and input
method editors work:

	Android provides the conduit for apps and pluggable service implementations
to communicate

	Android provides a UI in Settings for the user to choose which service
implementation(s) to use for a particular role

	App developers provide the actual service implementations

Hence, with autofill, there are three pieces: the app with the UI, Android itself,
and the autofill service:

[image: Pieces of Autofill]

Figure 665: Pieces of Autofill
Here, onFillRequest() and onSuccess() are part of the API for autofill
service implementations.
The User Experience
Before we get into the implementation, let’s see how this looks from the
standpoint of the user.
NOTE: These screenshots and explanations are from the O Developer
Preview 4. It is possible that this flow will change by the time Android O
ships in final form, or even in future developer previews.
While Completing a Form
If an autofill service is activated, and the user visits a screen with a form
to be filled in, the user may get a drop-down list from the form, indicating
possible “datasets” to use to complete the form:

[image: Autofill Datasets for User to Choose From]

Figure 666: Autofill Datasets for User to Choose From
The actual presentation here (“dataset-2”) comes from the autofill service.
It is actually a RemoteViews, not just some text, and so different autofill
services will use different formats here.
After Completing a Form
After the user has completed a form, with data not represented in one of those
datasets, once the activity containing the form is destroyed, the user gets a
“bottom sheet” panel asking if the data should be saved for later
autofill use:

[image: Autofill Save Prompt]

Figure 667: Autofill Save Prompt
This works akin to the pop-up dialog a desktop Web browser might use to ask
if certain data should be saved (e.g., authentication credentials) for future
visits to that page.
What Data Gets Disclosed
The Assist API discloses quite a bit of data to the user’s
chosen assistant app.
The autofill API discloses a bit less. Mostly, it is the view hierarchy,
in the form of a ViewStructure.
An autofill service gets information about what is in the UI at
two points:

	When it is time to determine if there is anything that could be autofilled-in

	When it is time to save data for future autofill requests

Here is what
an autofill service might see from a small form with username, password,
and cc fields (the latter for a credit card number), along with related
labels and a “save” button, when it is time to determine if there is anything that could be autofilled-in:

{
 "data": {
 "logDirName": "\/storage\/emulated\/0\/Android\/data\/com.commonsware.android.autofill.logger\/cache\/autofilllogger_20170613-132934"
 },
 "structures": [
 {
 "windows": [
 {
 "displayId": 0,
 "height": 1920,
 "left": 0,
 "title": "com.commonsware.android.autofill.client\/com.commonsware.android.autofill.client.MainActivity",
 "top": 0,
 "width": 1080,
 "root": {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": null,
 "autofillOptions": null,
 "autofillType": 0,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.FrameLayout",
 "clickable": false,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": false,
 "focused": false,
 "height": 1920,
 "hint": null,
 "htmlInfo": null,
 "id": -1,
 "idEntry": null,
 "idPackage": null,
 "idType": null,
 "inputType": 0,
 "left": 0,
 "longClickable": false,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": true,
 "text": null,
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 0,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 1080,
 "children": [
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": [
 "username"
],
 "autofillOptions": null,
 "autofillType": 1,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.EditText",
 "clickable": true,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": true,
 "focused": true,
 "height": 118,
 "hint": "Username",
 "htmlInfo": null,
 "id": 2131165193,
 "idEntry": "username",
 "idPackage": "com.commonsware.android.autofill.client",
 "idType": "id",
 "inputType": 97,
 "left": 21,
 "longClickable": true,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 231,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 1038,
 "children": []
 },
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": [
 "password"
],
 "autofillOptions": null,
 "autofillType": 1,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.EditText",
 "clickable": true,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": true,
 "focused": false,
 "height": 118,
 "hint": "Passphrase",
 "htmlInfo": null,
 "id": 2131165194,
 "idEntry": "passphrase",
 "idPackage": "com.commonsware.android.autofill.client",
 "idType": "id",
 "inputType": 129,
 "left": 21,
 "longClickable": true,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 370,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 1038,
 "children": []
 },
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": [
 "creditCardNumber"
],
 "autofillOptions": null,
 "autofillType": 1,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.EditText",
 "clickable": true,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": true,
 "focused": false,
 "height": 118,
 "hint": "Credit card number",
 "htmlInfo": null,
 "id": 2131165195,
 "idEntry": "cc",
 "idPackage": "com.commonsware.android.autofill.client",
 "idType": "id",
 "inputType": 97,
 "left": 21,
 "longClickable": true,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 509,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 1038,
 "children": []
 },
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": null,
 "autofillOptions": null,
 "autofillType": 0,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.Button",
 "clickable": true,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": true,
 "focused": false,
 "height": 126,
 "hint": null,
 "htmlInfo": null,
 "id": 2131165196,
 "idEntry": "save",
 "idPackage": "com.commonsware.android.autofill.client",
 "idType": "id",
 "inputType": 0,
 "left": 828,
 "longClickable": false,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "Save",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 648,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 231,
 "children": []
 },
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": null,
 "autofillOptions": null,
 "autofillType": 0,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.TextView",
 "clickable": false,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": false,
 "focused": false,
 "height": 71,
 "hint": null,
 "htmlInfo": null,
 "id": -1,
 "idEntry": null,
 "idPackage": null,
 "idType": null,
 "inputType": 0,
 "left": 42,
 "longClickable": false,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 101,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 202,
 "children": []
 }
]
 }
 }
]
 }
]
}

Here is the data that the autofill service sees, from the same form, when it
is time to save what the user filled in for later autofill reuse:

{
 "data": {
 "logDirName": "\/storage\/emulated\/0\/Android\/data\/com.commonsware.android.autofill.logger\/cache\/autofilllogger_20170613-132934"
 },
 "contexts": [
 {
 "windows": [
 {
 "displayId": 0,
 "height": 1920,
 "left": 0,
 "title": "com.commonsware.android.autofill.client\/com.commonsware.android.autofill.client.MainActivity",
 "top": 0,
 "width": 1080,
 "root": {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": null,
 "autofillOptions": null,
 "autofillType": 0,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.FrameLayout",
 "clickable": false,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": false,
 "focused": false,
 "height": 1920,
 "hint": null,
 "htmlInfo": null,
 "id": -1,
 "idEntry": null,
 "idPackage": null,
 "idType": null,
 "inputType": 0,
 "left": 0,
 "longClickable": false,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": true,
 "text": null,
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 0,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 1080,
 "children": [
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": [
 "username"
],
 "autofillOptions": null,
 "autofillType": 1,
 "checkable": false,
 "checked": false,
 "className": "android.widget.EditText",
 "clickable": true,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": true,
 "focused": true,
 "height": 118,
 "hint": "Username",
 "htmlInfo": null,
 "id": 2131165193,
 "idEntry": "username",
 "idPackage": "com.commonsware.android.autofill.client",
 "idType": "id",
 "inputType": 97,
 "left": 21,
 "longClickable": true,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "foo",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 231,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 1038,
 "children": []
 },
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": [
 "password"
],
 "autofillOptions": null,
 "autofillType": 1,
 "checkable": false,
 "checked": false,
 "className": "android.widget.EditText",
 "clickable": true,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": true,
 "focused": false,
 "height": 118,
 "hint": "Passphrase",
 "htmlInfo": null,
 "id": 2131165194,
 "idEntry": "passphrase",
 "idPackage": "com.commonsware.android.autofill.client",
 "idType": "id",
 "inputType": 129,
 "left": 21,
 "longClickable": true,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "password",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 370,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 1038,
 "children": []
 },
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": [
 "creditCardNumber"
],
 "autofillOptions": null,
 "autofillType": 1,
 "checkable": false,
 "checked": false,
 "className": "android.widget.EditText",
 "clickable": true,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": true,
 "focused": false,
 "height": 118,
 "hint": "Credit card number",
 "htmlInfo": null,
 "id": 2131165195,
 "idEntry": "cc",
 "idPackage": "com.commonsware.android.autofill.client",
 "idType": "id",
 "inputType": 97,
 "left": 21,
 "longClickable": true,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "123",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 509,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 1038,
 "children": []
 },
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": null,
 "autofillOptions": null,
 "autofillType": 0,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.Button",
 "clickable": true,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": true,
 "focused": false,
 "height": 126,
 "hint": null,
 "htmlInfo": null,
 "id": 2131165196,
 "idEntry": "save",
 "idPackage": "com.commonsware.android.autofill.client",
 "idType": "id",
 "inputType": 0,
 "left": 828,
 "longClickable": false,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "Save",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 648,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 231,
 "children": []
 },
 {
 "accessibilityFocused": false,
 "activated": false,
 "alpha": 1,
 "assistBlocked": false,
 "autofillHints": null,
 "autofillOptions": null,
 "autofillType": 0,
 "autofillValue": null,
 "checkable": false,
 "checked": false,
 "className": "android.widget.TextView",
 "clickable": false,
 "contentDescription": null,
 "contextClickable": false,
 "elevation": 0,
 "enabled": true,
 "focusable": false,
 "focused": false,
 "height": 71,
 "hint": null,
 "htmlInfo": null,
 "id": -1,
 "idEntry": null,
 "idPackage": null,
 "idType": null,
 "inputType": 0,
 "left": 42,
 "longClickable": false,
 "scrollX": 0,
 "scrollY": 0,
 "isSelected": false,
 "isOpaque": false,
 "text": "AFClient",
 "textBackgroundColor": 1,
 "textColor": 1,
 "textLineBaselines": null,
 "textLineCharOffsets": null,
 "textSelectionEnd": -1,
 "textSelectionStart": -1,
 "textSize": 0,
 "textStyle": 0,
 "top": 101,
 "transformation": null,
 "visibility": 0,
 "webDomain": null,
 "width": 202,
 "children": []
 }
]
 }
 }
]
 }
]
}

Roughly speaking, you get all the same information that an accessibility service
might. Most of this information is likely to be useless to an autofill service,
but a few elements, such as idEntry (the widget ID) and text (the contents
of a TextView or things inheriting from TextView) will be of importance.
Blocking Autofill as a User
The O Developer Preview 3 ships with an “Autofill with Google” autofill service,
pre-installed and pre-enabled. Presumably,
many devices that ship with Android 8.0 will ship with an autofill service
pre-installed, whether that is one from Google, from the device manufacturer,
or from another party.
If you, as a user, do not trust the autofill service, you can disable it
or switch to a different one via the Settings app. Specifically,
Settings > System > Languages & input > Advanced has an
“Autofill service” preference:

[image: Advanced Languages & input in Settings, Showing Autofill service]

Figure 668: Advanced “Languages & input” in Settings, Showing “Autofill service”
Tapping the gear icon next to the configured autofill service (if there is one)
will allow you to configure the service. Tapping the rest of the list row brings
up a dialog for you to choose an autofill service from the available candidates,
or “None” to opt out of autofill entirely:

[image: Autofill service Selection in Settings]

Figure 669: “Autofill service” Selection in Settings
Supporting Autofill with Standard Widgets
The documentation suggests that apps do not need to be modified to work with
the Autofill Framework. That is incorrect, at least in general. Layouts
do need some modification to work with autofill services, to help those autofill
services identify the roles of those widgets and how those roles tie into saved
data that could be autofilled-in.
The thing to bear in mind about autofill is that we have three parties to the
content negotiation:

	Your app

	The Android Autofill Framework

	The autofill service implementation

This requires some common ground, as otherwise the autofill service will not know
what is and is not to be considered candidates for autofill.
Identifying Roles via Hints
The primary thing that you need to do is to identify the roles of various widgets
in your form. After all, a field containing a user ID might be called userid,
userId, uid, username, user_name, login, or anything else. An autofill
service needs to know that your EditText with an android:id of
@+id/snicklefritz represents a user ID, for example.
To do this, use android:autofillHints in a layout resource, or setAutofillHints()
from Java. These indicate, for the particular View you are configuring
what role or role(s) the View holds within the world of autofill.
Autofill hint values are strings. Typically, a given widget only needs one hint,
and so you can set the hints to that particular string. If, for whatever reason,
a widget qualifies for more than one hint, use a comma-delimited list as the
value for android:autofillHints, or pass multiple strings to setAutofillHints()
via varargs.
The roster of possible hints, by name and Java View constant, are:

 	Value
 	
View Constant

 	creditCardExpirationDate
 	AUTOFILL_HINT_CREDIT_CARD_EXPIRATION_DATE

 	creditCardExpirationDay
 	AUTOFILL_HINT_CREDIT_CARD_EXPIRATION_DAY

 	creditCardExpirationMonth
 	AUTOFILL_HINT_CREDIT_CARD_EXPIRATION_MONTH

 	creditCardExpirationYear
 	AUTOFILL_HINT_CREDIT_CARD_EXPIRATION_YEAR

 	creditCardNumber
 	AUTOFILL_HINT_CREDIT_CARD_NUMBER

 	creditCardSecurityCode
 	AUTOFILL_HINT_CREDIT_CARD_SECURITY_CODE

 	emailAddress
 	AUTOFILL_HINT_EMAIL_ADDRESS

 	name
 	AUTOFILL_HINT_NAME

 	password
 	AUTOFILL_HINT_PASSWORD

 	phone
 	AUTOFILL_HINT_PHONE

 	postalAddress
 	AUTOFILL_HINT_POSTAL_ADDRESS

 	postalCode
 	AUTOFILL_HINT_POSTAL_CODE

 	username
 	AUTOFILL_HINT_USERNAME

Here, name is for a real name (e.g., “Mark Murphy”), whereas username is
for something more like a login value (e.g., “commonsguy”).
Since these are strings, and since the Android Autofill Framework (probably) does
not care about the specific values, it is theoretically possible for autofill
services to document additional hints that they honor (e.g., birthDate).
Indicating Importance
Independent from the hint system is android:importantForAutofill and
the corresponding setImportantForAutofill() method. These indicate whether
you, as the developer of the UI, think that certain widgets should or should not
be considered for autofill purposes. For example, you might have a form that
a user might fill out repeatedly and might want autofill capability, but some
fields do not fit specific roles governed by the hint system, and so the autofill
service might ignore them by default.
The default importance is auto, meaning that the autofill service will make
its own guess, probably based on whether there is an autofill hint or not. This
maps to IMPORTANT_FOR_AUTOFILL_AUTO in setImportantForAutofill().
There are four alternatives:

 	XML Attribute Value
 	Java Constant
 	Role

 	no
 	IMPORTANT_FOR_AUTOFILL_NO
 	widget should be ignored from an autofill standpoint

 	noExcludeDescendants
 	IMPORTANT_FOR_AUTOFILL_NO_EXCLUDE_DESCENDANTS
 	widget and all its children should be ignored

 	yes
 	IMPORTANT_FOR_AUTOFILL_YES
 	widget should always be considered for autofill

 	yesExcludeDescendants
 	IMPORTANT_FOR_AUTOFILL_YES_EXCLUDE_DESCENDANTS
 	widget and all its children should be considered

For example:

	To block autofill from seeing the value of a sensitive widget, use
android:importantForAutofill="no" or setImportantForAutofill(View.IMPORTANT_FOR_AUTOFILL_NO)
on the affected View

	To block autofill for an entire activity, use this in onCreate() of the
activity:

getWindow()
 .getDecorView()
 .setImportantForAutofill(View.IMPORTANT_FOR_AUTOFILL_NO_EXCLUDE_DESCENDANTS);

Supporting Autofill with Custom Widgets
Other than having identifiable roles via hints, standard widgets are handled
automatically via the Autofill Framework. However, the framework has no idea
how to handle custom views of your own design, particularly those that use
low-level drawing APIs like Canvas to render their contents.
The O Developer Preview documentation has some instructions,
for developers of custom views to follow, if and where those views should
be participating in autofill.
Dealing with Dynamic Changes
Sometimes, the form content changes significantly on the fly as the user is
interacting with it. For example, you might dynamically add some widgets based
on user input (e.g., tapping a “+” icon to add a row to a table). Hence, there
may be cases when you need to tell the Autofill Framework more explicitly when it
should do (or re-do) its work.
There is an AutofillManager system service that is your gateway to the
Autofill Framework. You can obtain an instance from getSystemService(AutofillManager.class)
called on a convenient Context, such as your activity.
Then:

	If you need to tell the Autofill Framework to discard any existing autofill
logic applied to the current form (e.g., the user did something to reset the form
contents), call cancel() on the AutofillManager

	If you want to ask the Autofill Framework specifically to re-apply the autofill
logic for the current form, call requestAutofill() on the AutofillManager

	If you want to do something differently depending upon whether or not autofill
is enabled, call isEnabled() on the AutofillManager

	If you want the Autofill Framework to complete its processing of the current
form contents, without waiting for the activity to be destroyed, call commit()
on the AutofillManager

So, for example, if you want to bail out of your activity right away if
autofill is enabled — for example, you are concerned that you cannot adequately
defend the privacy of your users — you could have the following code snippet
in onCreate() of the activity:

if (getSystemService(android.view.autofill.AutofillManager.class).isEnabled()) {
 Toast.makeText(this, "Ick!", Toast.LENGTH_LONG).show();
 finish();
}

(where you would replace the Toast with something else to explain the situation
to the user)
Or, if you wanted to ensure that the contents of your form were not submitted
to the autofill service — again, with privacy in mind — you can cancel()
the autofill operation in onBackPressed(), or perhaps in other lifecycle
methods:

@Override
public void onBackPressed() {
 getSystemService(android.view.autofill.AutofillManager.class).cancel();

 super.onBackPressed();
}

Security Requirements of Autofill Services

Of course, a poorly written autofill provider can leak sensitive data.

That quote is from a comment
on a security issue
regarding a security flaw in Android 8.0’s autofill implementation. While
those links may not work for you, as the issue is still locked as of February 2019, it contains
a long chain of comments about this flaw and how Google expects the Android ecosystem
to deal with the flaw.
First, the Flaw
Autofill will fill in widgets that the user cannot see, because:

	The widget is marked as invisible (android:visibility="invisible")

	The widget has no size (width and height of 0dp) or is impossibly tiny (width and height of 1dp)

	The widget has negative margins that cause it to display off-screen

	The widget is behind some other opaque widget (on the Z axis), and so
the widget cannot be seen

There may be other similar scenarios. For example some discussion on the issue
suggests that autofill will supply data for a widget that does not exist at all
in the view hierarchy, but rather is faked by the activity as part of how it
populates the ViewStructure of information that goes to the autofill service.
Given this flaw, a malicious activity could obtain data that the user does not
realize will go to that activity. For example, the activity might have a field
for the user to confirm their postal code and have hidden widgets that collect
other data, such as the rest of the address, credit card details, usernames/passphrases,
etc.
This flaw can be demonstrated using
Google’s own sample autofill service,
though in the future that sample should be updated to show a more secure
implementation.
A copy of the flawed autofill service sample, along with a client demonstrating
how malicious activities can obtain data covertly from the autofill service,
can be found in this GitHub repo.
Instructions for reproducing the problem can be found there as well.
Google’s Response
Google’s engineers on
the security issue admit that the flaw exists and that it would be difficult,
if not impossible, to defend against malicious activities.
As such, Google is taking the approach of dumping this issue on the laps of
the developers of autofill services. That is the context for the quote at the
top; Google believes that well-crafted autofill services will resolve this issue.
In the issue, Google has stated that their own autofill service implementation that ships
pre-installed and pre-enabled on Android 8.0 will be well-crafted.
There are two problems:

	At present, there is little documentation or sample code on what a well-crafted
autofill service looks and works like, so many other developers looking to implement
autofill services are left in the dark

	Their advice will not resolve the problem completely, though it will reduce the scope

What Secure Autofill Services Need To Do
Unfortunately, the documentation for writing autofill services is limited and
does not address very well the issue of how to write a secure autofill service.
Instead, Google “work<s> closely with most major autofill providers”, focusing
on that instead of documentation, sample code, and public test suites. This approach
is difficult to defend, given that there may be entire markets for which Google’s
efforts have no impact (e.g., China, if none of the “major autofill providers”
distribute their apps there).
So, what is it that Google is expecting autofill service developers to do?
Partition the Dataset
The one bit of advice that Google has published publicly (as of the time this
was written) was to partition the dataset. This involves two steps:

	Cluster the possible requested autofill hints into partitions (e.g., address/phone
versus credit card versus username/password)

	Only hand back the data for one partition at a time, based on what
widget has the focus at the time the autofill request is made of the service

So, for example, suppose the form has fields for address, phone number, and
the typical batch of credit card details (number, name, expiration date, etc.)
A poorly-crafted autofill service provides autofill data for all of that when
Android asks for it… despite the fact that this is what the API would appear
to expect the autofill service to do. Instead, you need to:

	Identify which widget has the focus

	Determine which partition (address/phone or credit card) that widget belongs
to

	Only supply autofill data for that partition on this request

Later on, if the user puts the focus on a field that is eligible for autofill
but for which you did not provide the data previously, you will get a second
chance at the same form, where you repeat the process, only supplying autofill
data for the partition associated with the now-focused partition.
See the “Data Partitioning” section in
the AutofillService JavaDocs
for complete details.
Only Give Data Back to the App That Supplied It
Another bit of advice: only give data back
to the app that supplied it, for anything that you or the user might consider
to be sensitive.
On the Web, some autofill works across all domains. Data that you fill into a form
on one Web site can be captured by the browser and offered up as candidate
responses on other sites, including ones that you have never visited before.
If the user fills in an email address for Site A, that email address is available
to supply via autofill to Site B.
The equivalent behavior with Android’s autofill would be for the autofill
service to have a single pool of data that could be autofilled-in for any app.
If the user fills in an email address for App A, that email address is available
to supply via autofill to App B.
Google feels that this is fine, so long as the data is not something that the
user would consider to be sensitive. In particular, they recommend that usernames
and passwords be locked to an individual app and not pooled, which makes perfect
sense. For such sensitive content, an autofill service must only provide data back to the specific app
that supplied it, via a combination of the applicationId (“package”)
of the app and the public signing key of that app:

An autofill provider must verify the package+signature to prevent phishing - this guarantees that even if a sideloaded app uses another app’s package name and mimics its UI cannot get access to sensitive data associated with it.

At the present time, this “only give data back
to the app that supplied it” requirement is undocumented, outside of the
aforementioned security issue. According to the developers, it will be documented
sometime in the future.
Hint to the User What Data Is Being Autofilled In
The autofill service API has support for the service to require authentication
before actually providing the autofill data. In a nutshell, the service creates
a PendingIntent pointing to the authentication activity associated with the
autofill service and includes that PendingIntent in its response to an autofill
request. If the user elects to proceed, the PendingIntent is used to display
the authentication activity. If the user successfully authenticates, the user
is returned to the activity they had been on previously, but now the secured
autofill data should now be available for use.
For anything that is deemed sensitive, Google not only recommends that autofill
services use this authentication flow, but that the authentication activity
display details of exactly what data will be released. This way, for whatever
autofill request triggered the authentication, the user will be informed about
all fields that would be filled in… including those that the user cannot see.
This requirement is also undocumented at this time.
What Google’s Advice Does Not Solve
There are gaps in Google’s advice.
First, there is no real enforcement that any autofill service follow the advice.
This might be checked manually for the Play Store:

However, we’ll have a manual procedure in place to verify such compliance for apps that want to be list as an Autofill service option in the “Add Autofill Service” Play Store page that is launched from Settings.

How well this works, and whether any other app distribution channel will implement
similar checks, remains to be seen. Similarly, whether any security firms or
other independent parties offer some sort of compliance check remains to be seen.
Second, the “only give data back to the app that supplied it” rule will fail
for apps for whom the form and the data come from outside the app… such as
for Web browsers. There, the app is the browser, not the Web site. The autofill
service has no obvious means of distinguishing one site from another, or even that
there is a concept of “site” that needs to be taken into account.
Third, what the user considers to be sensitive data, what Google considers to
be sensitive data, and what autofill service developers consider to be sensitive
may differ. For example, the user might be rather concerned about their address
being made available. But if the autofill service developers do not consider
that to be sensitive data, Google’s recommendations may be ignored. In particular,
if you implement the partitioning, but do not limit data sharing between apps,
a malicious activity can still steal data within a single partition, such as
obtaining all the credit card details when just asking visibly for the
expiration year.
Fourth, the hint-when-authenticating approach helps, but a malicious activity
can defeat simple implementations, by requesting multiple partitions and setting
the focus such that an innocuous partition is requested first. For example, the
malicious activity’s form might have visible fields for email address and postal
code, followed by invisible fields for the rest of the address. Putting the email
address field first and giving it the focus will cause any authentication to happen
for the email partition. If the authentication activity only hints to the user
about fields that will be autofilled in from that one partition, the user will
only be told about the visible email address field. Authentication should not be
required when the user advances to the postal code field, as the user just
authenticated, and so the user might not receive the hint about the hidden
address fields after the postal code field.
The Data Binding Framework
To quote Rudyard Kipling:

East is East and West is West, and never the twain shall meet

In many programming environments, including classical Android development,
one could paraphrase Kipling as “models are models and views are views, and never
the twain shall meet, except by means of some controller or presenter or
something”. The result is a fair amount of code that populates views with
model-supplied data and updates those models as the user alters the data
in the views (e.g., types something in an EditText widget).
Data binding, in general, refers to frameworks or libraries designed
to help simplify some of this data migration, where the definitions of
the models and views can be used to automatically “bind” them without
as much custom controller- or presenter-style logic.
Interest in data binding spiked in 2015, when
Google released the first beta editions of data binding support via
Android Studio, the Android Gradle Plugin, and a new data-binding
support library.
This chapter explores Google’s data binding support and how to use it
to simplify your Android app development.
Prerequisites
This chapter requires that you have read the core chapters of this book.
In particular, the sample apps are based off of samples from
the chapter on Internet access. Also, some samples
use RecyclerView.
The What, Now?
In this book, we have examined a few variations of a
sample app that retrieved the latest android questions from Stack
Overflow and displayed them in a ListView. Our QuestionsFragment
would populate a ListView or RecyclerView with the questions. For
example, here is a getView() implementation that uses Picasso to populate
a question:

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 Item item=getItem(position);
 ImageView icon=row.findViewById(R.id.icon);

 Picasso.with(getActivity()).load(item.owner.profileImage)
 .fit().centerCrop()
 .placeholder(R.drawable.owner_placeholder)
 .error(R.drawable.owner_error).into(icon);

 TextView title=row.findViewById(R.id.title);

 title.setText(Html.fromHtml(getItem(position).title));

 return(row);
 }

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java)
Some parts of this are clearly distinct for this application,
notably using Picasso to download the question asker’s avatar and
using Html.fromHtml() to handle HTML-style entities in the title.
However, the general process used here is fairly rote:

	Get the widget out of the row

	Stuff the data into the widget for the row

	Do the above for each widget needing to be updated as part of binding
data to the row (a.k.a., “lather, rinse, repeat”)

Data binding, as a general technique, aims to reduce that rote coding
by declaratively telling a framework how to pull data from model
objects (e.g., instances of Item) and pour that data into widgets
(e.g., ImageView and TextView).
The Basic Steps
With that in mind, let’s examine what it takes to convert this sample
over to using Google’s data binding system.
The code samples shown in this section come from the
DataBinding/Basic
sample project.
Setting Up the Toolchain
Data binding only really works well with up-to-date versions of
Android Studio (1.3 or higher) and the Android Gradle Plugin
(1.5.0 or higher recommended).
The data binding system consists of two pieces: another plugin for
Gradle, and a library that gets bundled with our app. However,
we do not need to set those up manually. Instead, we simply tell
the Android Gradle Plugin that we want data binding, and it adds
the requisite plugin and library for us.
All we need is a small dataBinding closure, where we set the
enabled property to true:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.squareup.retrofit2:converter-gson:2.3.0'
 implementation 'com.android.support:support-fragment:27.1.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 versionCode 1
 versionName "1.0"
 }

 dataBinding {
 enabled = true
 }
}

(from DataBinding/Basic/app/build.gradle)
Once you do this, future times that you open this project in Android
Studio may result in you getting a
“Source folders generated at incorrect location” message:

[image: Data Binding Gradle Sync Message]

Figure 670: Data Binding Gradle Sync Message
This is due to a bug
that, in the fullness of time, may get fixed. However, the messages
appear to be benign, and they should not cause any problems with your app.
Augmenting the Layout… and the Model
The real fun begins with the layout for our ListView row. The original
edition of this layout resource was a typical LinearLayout with
an ImageView and TextView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"/>

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:layout_gravity="left|center_vertical"/>

</LinearLayout>

(from HTTP/Picasso/app/src/main/res/layout/row.xml)
We need to make some changes to that in order to leverage data binding:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android">

 <data>

 <variable
 name="item"
 type="com.commonsware.android.databind.basic.Item"/>
 </data>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"/>

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="left|center_vertical"
 android:text="@{item.title}"
 android:textSize="20sp"/>

 </LinearLayout>
</layout>

(from DataBinding/Basic/app/src/main/res/layout/row.xml)
First, the entire resource file gets wrapped in a <layout> element, on
which we can place the android namespace declaration.
That <layout> element then has two children. The second child is our
LinearLayout, representing the root View or ViewGroup for the resource.
The first child is a <data> element, and that is where we configure
how data binding should proceed when this layout resource gets used.
Specifically, the <variable> element indicates that we want to bind
data from an Item object into widgets defined in this layout.
Then, if you look at the TextView, you will see that it now has an
android:text attribute that the original layout resource lacked. More
importantly, the value for android:text is unusual: @{item.title}.
The @{} syntax indicates that rather than interpreting the value as a
plain string, or even a reference to a string resource, that the value
is really an expression, in a data binding expression language, that
should be computed at runtime to get the value to assign to the text of
the TextView.
In this case, the expression is item.value. item is the name given
to the Item object in the <variable> element. Any place where we
want to pull data from that Item object, we can use dot notation to
reference things on the item expression language variable.
item.value means “get the value from the item”. At runtime, the
data binding library will attempt to get this value either from a public
getter method (getValue()) or a public field (value) on the Item
class. The original project had a value field, but it was not public,
so the revised project marks the Item fields as public, so we can
use them in data binding:

package com.commonsware.android.databind.basic;

public class Item {
 public String title;
 public Owner owner;
 public String link;

 @Override
 public String toString() {
 return(title);
 }
}

(from DataBinding/Basic/app/src/main/java/com/commonsware/android/databind/basic/Item.java)
As we will see in this chapter, the expression language used here is
much more complex than simply referencing JavaBean-style properties on
objects, but for now, this will suffice.
Applying the Binding
The layout configures one side of the binding: pulling data into widgets.
We still need to do some work to configure the other side of the binding:
supplying the source of that data. In the case of this example, we need
to provide the Item object for this layout resource.
That is handled via some modifications to the getView() method of
the ItemsAdapter from its original version:

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 RowBinding rowBinding=
 DataBindingUtil.getBinding(convertView);

 if (rowBinding==null) {
 rowBinding=
 RowBinding.inflate(getActivity().getLayoutInflater(),
 parent, false);
 }

 Item item=getItem(position);
 ImageView icon=rowBinding.icon;

 rowBinding.setItem(item);

 Picasso.with(getActivity()).load(item.owner.profileImage)
 .fit().centerCrop()
 .placeholder(R.drawable.owner_placeholder)
 .error(R.drawable.owner_error).into(icon);

 return(rowBinding.getRoot());
 }

(from DataBinding/Basic/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
There are four changes here: we create the binding, provide the model
(Item) to the binding, retrieve other widgets from the binding, and
retrieve the root view of the layout.
Creating the Binding
When we use <layout> in a layout resource and set up the layout side
of the data binding system, the build system code-generates a Java
class associated with that layout file. The class name is derived from
the layout name, where names_like_this get converted into
NamesLikeThis and have Binding appended. So, since our layout resource
was row.xml, we get RowBinding. This is code-generated into a
databinding Java sub-package of the package name from the manifest.
Hence, the fully-qualified import statement for this class is:

import com.commonsware.android.databind.basic.databinding.RowBinding;

This is a subclass of ViewDataBinding, supplied by the databinding
library that is added to your project by enabling data binding in
your build.gradle file.
Creating an instance of the binding also inflates the associated layout.
Your binding class has a number of factory methods for inflating the layout
and creating the binding. These mirror other methods that you have used
elsewhere:

	
setContentView(), taking an Activity and the layout resource ID
as parameters, inflates the layout, passes the result to setContentView()
on the Activity, and creates the binding

	
inflate(), with a variety of parameter list options, just inflates
the layout using a LayoutInflater, and creates the binding

Here, we use the three-parameter flavor of inflate(), which takes
a LayoutInflater (obtained from the hosting activity), the parent
container, and false. This mirrors the inflate() one would use
on LayoutInflater itself, except that it also gives us our binding.
Of course, this is a ListView, and so we have to deal with the
possibility that rows get recycled. The DataBindingUtil class has
a getBinding() method that returns the binding for a given root view
from the inflated layout — in this case, our convertView. So,
we try to get the existing binding first, then fall back to inflating
a new one if and only if that is necessary. Since getBinding()
properly handles null values for convertView, we do not need to check
for null ourselves explicitly.
Pouring the Model into the Binding
The generated binding class will have setters for each <variable> in our
<data> element in the layout. Setter names are generated from the variable
names using standard JavaBean conventions, so our item variable becomes
setItem(). When we call setItem(), the data binding system will
use that Item object to populate our TextView, applying the binding
expression from our android:text attribute.
Retrieving Widgets from the Binding
However, we did not do anything related to data binding for the ImageView
widget in the layout (though we will, later in this chapter). Hence, we
still need to manage that manually, getting Picasso to fetch the
avatar asynchronously and put it in the ImageView.
However, that implies that we have the ImageView. Normally, we would
call findViewById() on the inflated layout’s root View to obtain that.
However, our binding class has code-generated public fields on it
for each widget in the layout resource that has an android:id value
(at least for @id/... and @+id/... values). Our ImageView
has an android:id value of @+id/icon, and so the RowBinding
class has an icon field that holds our ImageView. We can simply
reference it, rather than doing the findViewById() lookup ourselves.
Getting the Actual View
Since getView() is supposed to return the inflated layout’s root view,
we need some way to get that from the binding. Fortunately, ViewDataBinding
has a getRoot() method that our generated class inherits, so we can just
call that to get the value to return from getView().
Results
Visually, this app is the same as before (though this version uses
Theme.Material on compatible devices). Functionally, the app is the
same as before. And, from a code complexity standpoint, the app is probably
worse than before, as we went through a lot of work just to avoid
calling findViewById() a couple of times and setText() once.
Hence, while the data binding system is nice, it really only adds value
to larger projects, particularly those with complex layouts. By the end
of this chapter, you should have a better sense for when data binding
is useful and when it is overkill.
The Extended Layout Resource
As we saw in the preceding example, much of the knowledge that we impart
into our app to power the data binding comes in the form of an extended
layout resource syntax. The last child of the root <layout> element
is what our layout resources used to hold: the View or ViewGroup
at the root of the view hierarchy of this layout. Other children of
<layout> configure the data binding behavior (and perhaps other features
in the future).
With that in mind, let’s explore a bit more about what you can do with
elements in the <layout>.
Imports and Statics
The preceding example lost one feature with respect to the sample app
that served as its starting point: handling HTML in titles. While Stack
Overflow does not serve HTML tags in question titles, it does serve
HTML entities in question titles. A question title of “Foo & Bar” would
come to us in the JSON as “Foo & Bar”. The examples in the chapter
on Internet access handle that via Html.fromHtml(). However, we do not
have that in our data binding.
One way to address this is to
add a getter-style method to Item that returns the title after
passing through Html.fromHtml(). For example, we could have a
getInterpretedTitle() or getTitleWithEntitiesFixed() or
getTitleAfterHavingRunItThroughHtmlFromHtml(). We would then refer
to that method in our android:text expression (e.g.,
@{item.interpretedTitle}).
However, this blurs
the line dividing the responsibilities of model objects and the UI
layer. The model itself does not care that the title has HTML entities
in it, and some ways of using that model data (e.g., displaying in a
WebView) might specifically need those HTML entities. The fact
that we need to convert those HTML entities is a UI responsibility, because
the UI chose to use a TextView, which does not handle
those entities automatically.
A fairly easy way to get our Html.fromHtml() logic back in would be
to apply it in the layout resource itself. It would be cool if we could
have our expression be @{Html.fromHtml(item.title)}, for example.
The good news is: that is eminently possible.
However, if you just used that syntax without other changes, the data
binding framework would complain that it does not know what Html
is. In effect, we need to teach the layout resource where to import
Html from.
To do that, we need to add [import type="android.text.Html"/] into
the <data> element of our layout resource. Now, the generated code
will contain that import statement and our references to Html
will resolve.
You can see that in the
DataBinding/Static
sample project. This is a clone of DataBinding/Basic with the two
changes (expression and <import> applied), giving us the following
layout resource:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android">

 <data>

 <import type="android.text.Html"/>

 <variable
 name="item"
 type="com.commonsware.android.databind.basic.Item"/>
 </data>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"/>

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="left|center_vertical"
 android:text="@{Html.fromHtml(item.title)}"
 android:textSize="20sp"/>

 </LinearLayout>
</layout>

(from DataBinding/Static/app/src/main/res/layout/row.xml)
If you run this version of the app, and it so happens that there is
a Stack Overflow question with an HTML entity in its title among the
recent questions, you will see that entity show up properly in the
ListView. On the other hand, if you run the previous sample, the HTML
entity will show up in HTML source form (e.g., & instead of &).
The rules for imports here are reminiscent of those of regular Java:

	Do not have conflicting imports (e.g., android.view.Menu and
com.myrestaurant.Menu)

	Do not try to import classes that are automatically imported
(e.g., java.lang.String)

Variables
As we saw in the preceding samples, you can have <variable> elements
representing objects that can be referenced by binding expressions.
The type attribute for the <variable> element can be:

	a fully-qualified class name, as seen in the item variable from the
examples

	the name of a class that you added via an <import> element

	the name of any class automatically imported into all Java classes
(e.g., Integer)

So, for example, instead of:

 <data>
 <variable
 name="item"
 type="com.commonsware.android.databind.basic.Item"/>
 </data>

we could have:

 <data>
 <import type="com.commonsware.android.databind.basic.Item"/>

 <variable
 name="item"
 type="Item"/>
 </data>

If you have different versions of the same layout in different resource
sets for different configurations (e.g., res/layout/ and res/layout-land/),
your <layout> element needs to be compatible between them. This
particularly holds true with respect to variables. If you define a
variable foo as a String in one version of the resource, you cannot
define foo to be a Restaurant in another version of the resource.
There is one binding class created for each layout resource, spanning
all of the different versions of that resource, and that class cannot
have two separate, conflicting definitions for the same variable.
The Binding Expression Language
To a basic approximation, the binding expression language that you
can use in layout resources works just like its Java counterpart. If you
can include it in a Java expression, you can include it in a binding
expression. This not only covers your typical mathematical, logical,
and string concatenation operations, but also:

	Casts

	Using parentheses for grouping (e.g., @{((Location)(restaurant.location)).latitude})

	Calling methods, both on objects in the expression and static methods on imported
classes

	Accessing fields by name, both on objects and on static classes
that you have imported

	Accessing array contents using square-bracket notation, including using other
variables as the index (e.g., @{movie.actor<index>.fullName})

	Using the ternary operator for inline if-style branching
(e.g., @{movie.isNew ? View.VISIBLE : View.GONE})

Stuff You Won’t Find in Java
The expression language contains a few conveniences that go beyond what
you will see in standard Java.
One of these has already been mentioned: JavaBean-style accessor usage.
So, foo.bar will try to find a field named bar on the foo object.
If that is not found, foo.bar will try to find a getBar() method
on the foo object. This allows the model object to decide whether
or not to expose the data via a field or getter method; the binding
expression works with either.
If you have a variable that is a Map, you can use square-bracket
notation to
access the map by key, instead of having to call get().
If you try accessing a field or calling a method on null, you normally
would get a NullPointerException. The expression evaluator tries
to mitigate that:

	If the field or method is designed to return some primitive, the result
of accessing the field or calling the method on null returns whatever
the default primitive value is (e.g., int and long values are 0)

	Otherwise, if the field or method returns some object, the result of
accessing the field or calling the method on null returns null

Another way of working with null values is the ?? “null coalescing
operator”. In the expression foo ?? bar, the result is:

	
foo, if foo is not null

	
bar, if foo is null

This is useful when you want to replace some optional value with a default
when the optional value is null. For example, you might use
sub.expirationDate ?? @string/not_yet_subscribed to either show
the expiration date of some subscription, or pull in the value of a
string resource to use if there is no expiration date.
That example demonstrates yet another feature of the expression language:
references to resources. In general, you reference them just as you would
without the data binding system. So, these are equivalent:

	android:text="@string/foo"

	android:text="@{@string/foo}"

Of course, the power comes in when using those resources in actual
expressions, such as using a boolean resource with the ternary operator
(e.g., @{@boolean/i_can_haz_foo ? foo : bar}).
Note that a few resource types use different names in the binding
expressions, as the expression evaluator needs to know the data
type. So, for example, you normally reference array resources as
simply @array/name. In binding expressions, you replace @array with
a different symbol to indicate the type, such as @stringArray or
@intArray.
Caveats
Of course, if all of this were simple, it wouldn’t be Android…
Handling String Literals
Numeric literals and null can be used in expressions easily enough.
String literals get interesting, as the standard Java " quotation
system runs afoul of the default XML " quotation system for attribute
values. Your options are:

	Use single quotes for the XML attribute, so you can use double quotes
for the string literal (e.g., android:text='@{foo["bar"]}')

	Use backticks for the string delimiter instead of double quotes

	Use HTML-style " entities for the string delimiter
(e.g., android:text="@{foo["bar"]}")

Of the three, the latter one is your worst choice, in terms of readability.
Watch Out For Mis-Interpreted Integers
Suppose that you want to have the android:text attribute of a TextView
hold a numeric value, pulled from a variable. You might try using something
like android:text="@{question.score}", where score is an int.
When you try it, you will crash at runtime, with an error indicating that
there is no resource with the ID of some hex value, where that hex value
happens to be your score.
That is because android:text supports strings or string resources.
The integer value for score will be interpreted as a reference to a
string resource, not converted into a string itself.
You then might try android:text="@{question.score.toString()}".
That fails to compile, if score is an int, as Java primitives do not
support methods, let alone toString().
The right solution is to use static methods on Integer to convert
the int into a string: android:text="@{Integer.toString(question.score)}"
Other Caveats
Because this stuff appears in plain XML, you will need to escape any
[or] signs used in the expressions as < and >,
respectively, which is aggravating.
You cannot use the new operator to create objects. However, you are
welcome to call methods that happen to create new objects. So, in a pinch,
create yourself a factory method somewhere to create the object that
you were trying to instantiate via new. All things considered, though,
the more object instantiation you do in layout binding, the slower that
binding can become, particularly for oft-inflated layouts like rows in a
rapidly-scrolling list.
You do not have access to this or super, as these would be with
reference to the generated binding class itself.
Observables and Updating the Binding
Variables, and the fields or method results that you access on them,
can populate View properties, as we have seen so far in this chapter.
This is interesting, but it may not “move the needle” for you in terms
of adopting data binding. While there may be some minor code maintenance
benefit, it hardly seems worth it.
Where data binding really shines, though, is when the variables,
and the fields or method results that you access on them, are observable
objects (i.e., ones implementing android.databinding.Observable).
Then, not only do the expressions update your View properties when
the layout resources are inflated,
but also when the data changes. If you have observable models,
simply updating those model objects automatically propagates those
changes to any live View objects looking at those models.
For example, suppose that you are writing a to-do sort of checklist.
The user can tap a CheckBox widget to indicate that the particular task
is completed, and at that point you want to change the rendering of the
task overall in its RecyclerView row in addition to updating the model
object representing the task. Since the CheckBox is part
of that same row, bound to the model for the row, handling both the UI
updates and the model updates in the same OnClickListener may be
easy. However, what happens if you do not want to update the rendering
until the model change has been saved to the database or the network?
Now, some arbitrary number of milliseconds after OnClickListener
returns, you need to update some row of the RecyclerView… if there
happens to be a row pointing at this model object. After all, the user
might have scrolled, or even left this RecyclerView entirely, in which
case the original row should not be changed.
The obvious tradeoff is defining your model objects to use Observable.
The less-obvious tradeoff is in reorganizing your code to have
durable model objects, where operations like Web service calls update
those model objects in place, rather than replace those model objects
with brand-new instances. The latter approach breaks data binding in
general, but it is a much bigger problem when trying to update
your UI from those models.
Observable Primitives
The entire model object itself does not have to be Observable. Whatever
your binding expressions use, in terms of data, has to be
Observable. That could be individual fields, if you are willing
to publish those fields as Observable objects, such as by having
them be public final.
An easy way to make a field be Observable, if the field is a primitive
value (e.g., int), is to replace the field with the equivalent
Observable... class (e.g., ObservableInt):

public final ObservableInt score=new ObservableInt();

Your code can use get() and set() methods on the Observable...
primitive wrappers to get and set the primitive value itself. Calling
set() also notifies all registered observers that the data has changed,
and the data binding system uses that to find out that it needs to update
your UI.
While this may sound a bit clunky, Java developers have used this pattern
in other places. A common example are the Atomic... classes (e.g.,
AtomicInteger), that make modifying a primitive be guaranteed to be
atomic, when that value might be get and set on multiple parallel threads.
ObservableField
For non-primitive values, but where the entire value changes in unison,
you can use the generic ObservableField approach. In particular,
a String is not a primitive, yet it is immutable, so changing the
value means replacing the old String object with a new String
object. ObservableField lets you set up observable strings:

 public final ObservableField<String> title=
 new ObservableField<String>();

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Question.java)
This only works when you are replacing the entire object with a new
object. So, for example, wrapping a Location in an ObservableField
only works if you change the location by replacing the Location, instead
of calling setLatitude() and setLongitude() on the existing
Location. Replacing the Location outright triggers ObservableField
to tell observers about the change. In contrast, ObservableField has
no way to know that you called a method on the wrapped object that changes
its state in a way that observers need to know about.
ObservableArrayList and ObservableArrayMap
The data binding system ships with two Observable classes that are
collections.
One, ObservableArrayList, is fairly straightforward: it
lets you add and remove members of the list, and it informs observers
about those changes. Once again, it has no means of knowing if you
change the state of a given list member, only if you change the state
of the list itself.
The other is ObservableArrayMap. Android added the ArrayMap
class in API Level 19. Functionally, ArrayMap works like a HashMap,
as a collection of values accessed via keys, albeit with some additional
APIs for working with the contents by numerical index, as you see with
ArrayList. The implementation, though, trades off CPU time for memory
efficiency. ObservableArrayMap adds Observable characteristics, such
that changes to the contents of the ArrayMap are reported to observers.
Custom Observables
You can create your own class implementing the Observable interface.
Most likely, you would do that by extending BaseObservable.
On the one hand, this does not have to be too complicated. For example,
here is the implementation of ObservableBoolean from the data binding
support library:

/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package android.databinding;
import android.os.Parcel;
import android.os.Parcelable;
import java.io.Serializable;
/**
 * An observable class that holds a primitive boolean.
 * <p>
 * Observable field classes may be used instead of creating an Observable object:
 * <pre><code>public class MyDataObject {
 * public final ObservableBoolean isAdult = new ObservableBoolean();
 * }</code></pre>
 * Fields of this type should be declared final because bindings only detect changes in the
 * field's value, not of the field itself.
 * <p>
 * This class is parcelable and serializable but callbacks are ignored when the object is
 * parcelled / serialized. Unless you add custom callbacks, this will not be an issue because
 * data binding framework always re-registers callbacks when the view is bound.
 */
public class ObservableBoolean extends BaseObservable implements Parcelable, Serializable {
 static final long serialVersionUID = 1L;
 private boolean mValue;
 /**
 * Creates an ObservableBoolean with the given initial value.
 *
 * @param value the initial value for the ObservableBoolean
 */
 public ObservableBoolean(boolean value) {
 mValue = value;
 }
 /**
 * Creates an ObservableBoolean with the initial value of <code>false</code>.
 */
 public ObservableBoolean() {
 }
 /**
 * @return the stored value.
 */
 public boolean get() {
 return mValue;
 }
 /**
 * Set the stored value.
 */
 public void set(boolean value) {
 if (value != mValue) {
 mValue = value;
 notifyChange();
 }
 }
 @Override
 public int describeContents() {
 return 0;
 }
 @Override
 public void writeToParcel(Parcel dest, int flags) {
 dest.writeInt(mValue ? 1 : 0);
 }
 public static final Parcelable.Creator<ObservableBoolean> CREATOR
 = new Parcelable.Creator<ObservableBoolean>() {
 @Override
 public ObservableBoolean createFromParcel(Parcel source) {
 return new ObservableBoolean(source.readInt() == 1);
 }
 @Override
 public ObservableBoolean[] newArray(int size) {
 return new ObservableBoolean[size];
 }
 };
}

A lot of that code is dealing with making ObservableBoolean
be Parcelable. The key, from the standpoint of
BaseObservable, is the call to notifyChange() in the set() method.
This tells BaseObservable to tell all observers that stuff inside
this Observable changed, and if they are tied to this Observable,
they should go do something. Usually, “do something” will be to re-evaluate
a binding expression and update a property of a View, such as updating
the text of a TextView where a binding expression was used in
the android:text attribute.
However, creating more complex custom observables is not especially
well documented, and so we will explore that more
later in this chapter.
An Observable Example
With all that behind us, let’s look at another rendition of the
Stack Overflow sample.
There are lots of values that are published for questions via the
Stack Exchange API, beyond the ones used so far. One is the score,
representing the net of upvotes and downvotes on the question. Of
the question properties that we had been using before, only the
title has a chance of changing in real time, and that does not happen
very often. On the other hand, scores are far more likely to change
on the fly.
So, the
DataBinding/Scored
sample project starts from the DataBinding/Static project and adds
in support for the score property. It also makes the title and score
Observable and adds a refresh action bar item. Tapping that item will
update the data for the questions loaded in the app; any changes to titles
or scores will be reflected directly, without additional code, by updating
the models.
Of course, this sample app was not written with data binding in mind.
While the previous two samples added on bits of data binding without
significantly changing the app, this time we will have to take a chainsaw
to our code to get what we want.
The Limitations of Earlier Examples
The specific problem we have to work around is the nature of our data model.
The previous versions of this sample would request the model objects
via Retrofit and then slap them into an adapter to show in the ListView.
From that point onward, the models were static — no code existed to
add new questions, modify existing questions, etc.
However, Retrofit is designed to create new model objects on every call
to a Web service interface. So, if we call once to get the latest questions,
and then make another call to get updated versions of those questions,
we wind up with two separate collections of model objects.
If we were not trying to use data binding, we could take a “caveman”
approach: just replace the contents of the adapter with the new model
collection. This would work, albeit with some impacts on the user experience
(e.g., perhaps scrolling the list back to the top).
However, with data binding, we are effectively tying our original data
model objects to our views more tightly. This means that when we get
a new set of model objects from Retrofit, we cannot use them directly.
Instead, we have to use them as a source of data, to be poured into
our original model objects. Through the Observable mechanism, we can
update the original models and not worry about the ListView rows, as data
binding will take care of that for us. But this does mean that we need
to have one “magic” set of model objects that represent the bound data,
distinct from any model objects representing updates to that data.
Questions vs. Items
We could address the above problem by giving Item the ability to
update its state from another Item. Our original query to get the most
recent questions would create a collection of Item objects that would
be our “durable” model, the one that we bind our UI to. Later updates
that create new Item objects would be used solely to update the original
durable Item objects’ contents, not replace those objects.
But now we run into another problem: the Observable requirements
of the data binding system may run counter to requirements imposed elsewhere.
In the case of this sample, Item is being populated by Gson, after
Retrofit receives the JSON response from the server. Gson does not
know anything about ObservableField, ObservableInt, or any such things.
There are two main approaches for dealing with this problem:

	Use Gson’s system of type adapters to try to teach Gson how to
take JSON properties and update corresponding ObservableField,
ObservableInt, etc. fields in the model. Most likely, this is the
right direction for long-term use, though it is conceivable that something
about Gson has irreconcilable differences with something about
observable elements.

	Have separate “model” objects. One represents the result of the
Web service call (and gets populated by Gson), while the other represents
the durable model (and has observable properties).

This revised edition of the sample takes the second approach. There is
a new model class, Question, which models a Stack Overflow question.
Our data binding will be applied to Question. Item is still there,
but it represents the response from the Stack Exchange Web service call.
Keeping Score (and the ID)
Beyond dealing with the duality of Question and Item, we have two
more JSON properties from the Web service response that we need to track.
One is the score, as mentioned earlier. The other is the
question_id, a unique ID for the question. We need this in order
to be able to update an existing Question with data from a new Item,
when we retrieve updates for our models.
The easy part is getting the new data from Retrofit and Gson. We just
need to add two more fields to Item, for the score and question ID:

package com.commonsware.android.databind.basic;

import com.google.gson.annotations.SerializedName;

public class Item {
 String title;
 Owner owner;
 String link;
 int score;
 @SerializedName("question_id") String id;
}

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Item.java)
In the case of the question ID, the JSON property is question_id.
In Java, we will use id instead, using Gson’s @SerializedName
annotation to teach Gson to fill question_id properties into the
id field.
We now also have a Question class that will be our observable, durable
data model:

package com.commonsware.android.databind.basic;

import android.databinding.ObservableField;
import android.databinding.ObservableInt;

public class Question {
 public final ObservableField<String> title=
 new ObservableField<String>();
 public final Owner owner;
 public final String link;
 public final ObservableInt score=new ObservableInt();
 public final String id;

 Question(Item item) {
 updateFromItem(item);
 owner=item.owner;
 link=item.link;
 id=item.id;
 }

 void updateFromItem(Item item) {
 title.set(item.title);
 score.set(item.score);
 }
}

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Question.java)
It holds the same five values as does Item, except that title
and score are now Observable, via ObservableField and
ObservableInt, respectively. The owner, link, and id values
should be immutable, and we are not binding on them anyway, so keeping
them as ordinary fields is fine.
Question has a constructor and an updateFromItem() method that both
copy data from a Item into the Question. updateFromItem() handles
the two Observable fields, and we will use this when we eventually fetch
updates to the question. The constructor calls updateFromItem() plus
populates the three final non-observable fields.
QuestionsFragment now has a more apropos name, as we will have it
show the list of Question objects. Among other things, this requires
changes to QuestionsAdapter, to work off of Question objects instead
of Item objects:

 class QuestionsAdapter extends ArrayAdapter<Question> {
 QuestionsAdapter(List<Question> items) {
 super(getActivity(), R.layout.row, R.id.title, items);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 RowBinding rowBinding=
 DataBindingUtil.getBinding(convertView);

 if (rowBinding==null) {
 rowBinding=
 RowBinding.inflate(getActivity().getLayoutInflater(),
 parent, false);
 }

 Question question=getItem(position);
 ImageView icon=rowBinding.icon;

 rowBinding.setQuestion(question);

 Picasso.with(getActivity()).load(question.owner.profileImage)
 .fit().centerCrop()
 .placeholder(R.drawable.owner_placeholder)
 .error(R.drawable.owner_error).into(icon);

 return(rowBinding.getRoot());
 }
 }

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
Similarly, the <variable> in row.xml needs to be a Question now:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android">

 <data>

 <import type="android.text.Html"/>

 <variable
 name="question"
 type="com.commonsware.android.databind.basic.Question"/>
 </data>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"/>

 <TextView
 android:id="@+id/title"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_gravity="left|center_vertical"
 android:layout_weight="1"
 android:text="@{Html.fromHtml(question.title)}"
 android:textSize="20sp"/>

 <TextView
 android:id="@+id/score"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:text="@{Integer.toString(question.score)}"
 android:textSize="40sp"
 android:textStyle="bold"/>

 </LinearLayout>
</layout>

(from DataBinding/Scored/app/src/main/res/layout/row.xml)
You will note that the binding expression for the score
TextView is @{Integer.toString(question.score)}. That is because
the score field on Question is an int, and by default, the data
binding system will think that is a reference to a string resource. We
have to convert the score into a String to get the results that we want.
We will see this more later in this chapter.
Refreshing the Data
Of course, having a QuestionsAdapter that adapts Question object
only works if we have Question objects.
QuestionsFragment now holds onto two collections of Question objects:
an ArrayList in the order that we get them from the Web service API,
and a HashMap to find a Question object given its ID:

 private ArrayList<Question> questions
 =new ArrayList<Question>();
 private HashMap<String, Question> questionMap=
 new HashMap<String, Question>();

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
Our call to the questions() method on our StackOverflowInterface
still returns a collection of Item objects. In onCreateView(), where
we call questions(), we arrange to use those Item objects to create
the corresponding group of Question objects:

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=
 super.onCreateView(inflater, container,
 savedInstanceState);

 so.questions("android").enqueue(new Callback<SOQuestions>() {
 @Override
 public void onResponse(Call<SOQuestions> call,
 Response<SOQuestions> response) {
 for (Item item : response.body().items) {
 Question question=new Question(item);

 questions.add(question);
 questionMap.put(question.id, question);
 }

 setListAdapter(new QuestionsAdapter(questions));
 }

 @Override
 public void onFailure(Call<SOQuestions> call, Throwable t) {
 onError(t);
 }
 });

 return(result);
 }

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
That is sufficient to get our app to run again, showing the scores along
with the question titles and asker avatars:

[image: Stack Overflow Questions with Scores]

Figure 671: Stack Overflow Questions with Scores
However, we wanted to allow the user to refresh the data for these questions,
so we can see a score being updated in real time via the data binding
system. That requires a different call to the Stack Exchange API. It is
still /2.1/questions, but now we have an additional path segment, one
that takes a semi-colon-delimited list of question IDs. So, we add a new
@GET method to StackOverflowInterface for this:

package com.commonsware.android.databind.basic;

import retrofit2.Call;
import retrofit2.http.GET;
import retrofit2.http.Path;
import retrofit2.http.Query;

public interface StackOverflowInterface {
 @GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
 Call<SOQuestions> questions(@Query("tagged") String tags);

 @GET("/2.1/questions/{ids}?site=stackoverflow")
 Call<SOQuestions> update(@Path("ids") String tags);
}

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/StackOverflowInterface.java)
Note the use of @Path("ids") on the first parameter, corresponding
to the {ids} placeholder in the path expressed in the @GET annotation.
@Path("ids") says “the following parameter can be injected as a path
segment into the URL”, and {ids} indicates specifically where that
parameter’s value should go. Note, though, that it is a String, not a
String array or ArrayList of strings. That is because we do not have
a way to teach Retrofit how to concatenate a collection of strings into
a single path segment.
In addition, this sample now has a menu resource directory, with an
actions.xml resource in it, defining a single “refresh” menu item. The
QuestionsFragment opts into participating in the action bar and,
in onCreateOptionsMenu(), applies the actions menu resource. In
onOptionsItemSelected(), if the user chose our refresh menu item,
we call a private updateQuestions() method. This method needs to use
the new update() method on StackOverflowInterface to update our
collection of questions:

 private void updateQuestions() {
 ArrayList<String> idList=new ArrayList<String>();

 for (Question question : questions) {
 idList.add(question.id);
 }

 String ids=TextUtils.join(";", idList);

 so.update(ids).enqueue(new Callback<SOQuestions>() {
 @Override
 public void onResponse(Call<SOQuestions> call,
 Response<SOQuestions> response) {
 for (Item item : response.body().items) {
 Question question=questionMap.get(item.id);

 if (question!=null) {
 question.updateFromItem(item);
 }
 }
 }

 @Override
 public void onFailure(Call<SOQuestions> call, Throwable t) {
 onError(t);
 }
 });
 }

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
We collect all of the question IDs, then use TextUtils.join() to give
us a single String with all the question IDs concatenated with
semicolons. That, in turn, is passed to update(). For each returned
Item, we find the corresponding Question in the HashMap and
update it with the new data from the Item.
What we do not do is touch our UI.
However, if you run the app, choose a good question out of the list
of questions, upvote the question, and refresh the list, you will see
the new score appear immediately after the refresh. The data binding
system handled that for us, without additional manual intervention on
our part.
Two-Way Binding
So far, the focus has been on getting data from models into views.
That is the most common scenario, as usually a subset of views
accept user input, and plenty of user interfaces are read-only.
Plus, the original version of the data binding system only handled
populating views from models.
But, in 2016, the data binding system was updated with “two-way binding”,
where views can populate models, in addition to having models populate
views. While this feature is presently undocumented,
we have some limited information on how to make it work.
The change to the layout resources is very simple: use @= instead
of @: android:checked="@={question.expanded}".
This configures the attribute (the checked state of a CompoundButton)
with the initial value of the expanded property on a question
variable. It also updates the property if the user checks or unchecks
the CompoundButton.
To make this work, you cannot use a simple public field for the property.
It needs to either have a setter method (e.g., setExpanded()) or
be a public Observable field.
For example, the
DataBinding/TwoWay
sample project is a clone of the DataBinding/Scored sample
project from earlier in this chapter. However, now the Question will
track some local state, information not obtained from the Stack Exchange
API. Specifically, it will track a boolean value named expanded:

package com.commonsware.android.databind.basic;

import android.databinding.ObservableBoolean;
import android.databinding.ObservableField;
import android.databinding.ObservableInt;

public class Question {
 public final ObservableField<String> title=
 new ObservableField<String>();
 public final Owner owner;
 public final String link;
 public final ObservableInt score=new ObservableInt();
 public final String id;
 public ObservableBoolean expanded=new ObservableBoolean(true);

 Question(Item item) {
 updateFromItem(item);
 owner=item.owner;
 link=item.link;
 id=item.id;
 }

 void updateFromItem(Item item) {
 title.set(item.title);
 score.set(item.score);
 }
}

(from DataBinding/TwoWay/app/src/main/java/com/commonsware/android/databind/basic/Question.java)
Our row layout resource now has a Switch widget, bound to the
expanded property using the @= syntax shown above:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <data>

 <import type="android.text.Html" />

 <variable
 name="question"
 type="com.commonsware.android.databind.basic.Question" />

 <variable
 name="controller"
 type="com.commonsware.android.databind.basic.QuestionController" />
 </data>

 <android.support.v7.widget.CardView xmlns:cardview="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 cardview:cardCornerRadius="4dp">

 <LinearLayout
 android:id="@+id/row_content"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="?android:attr/selectableItemBackground"
 android:gravity="center_vertical"
 android:onClick="@{()->controller.showQuestion(question)}"
 android:onTouch="@{(v,event)->controller.onTouch(v,event)}"
 android:orientation="horizontal">

 <Switch
 android:id="@+id/expanded"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="@={question.expanded}" />

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"
 app:error="@{@drawable/owner_error}"
 app:imageUrl="@{question.owner.profileImage}"
 app:placeholder="@{@drawable/owner_placeholder}" />

 <TextView
 android:id="@+id/title"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_gravity="left|center_vertical"
 android:layout_weight="1"
 android:text="@{Html.fromHtml(question.title)}"
 android:textSize="20sp" />

 <TextView
 android:id="@+id/score"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:text="@{Integer.toString(question.score)}"
 android:textSize="40sp"
 android:textStyle="bold" />

 </LinearLayout>
 </android.support.v7.widget.CardView>
</layout>

(from DataBinding/TwoWay/app/src/main/res/layout/row.xml)
If you run the sample project, all of the switches will be checked at
the outset, as we are defaulting expanded to true. If you uncheck
some of them, and scroll around, you will see that the checked/unchecked
state is handled properly, even though rows are being recycled along
the way. And we did not have to add any Java code, other than the new
property — in particular, neither our ViewHolder nor our Adapter
need to worry about the Switch.
Other Features of Note
There are a number of other “bells and whistles” that you can utilize
in the data binding system.
Obtaining Views via the Binding Class
The sample apps have been retrieving the ImageView widget for the
row from the RowBinding. Any View in the layout file that has an
android:id value will have a corresponding field in the ...Binding
generated class. So, for cases like the Picasso scenario, where we
cannot use data binding to populate the ImageView and have to resort
to classic bind-it-in-the-adapter logic, we do not have to do the
findViewById() call ourselves. Instead, we just access the field
in the binding class.
Manipulating Variables in the Binding
We have seen using a setter method to bind an object to a layout via
the generated binding class. In the sample apps, we have been calling
setItem() or setQuestion() to provide the model object to use
in binding expressions. If needed, though, there is also a corresponding
getter method (getItem(), getQuestion()) to retrieve the last-set
value.
Views, Setters, and Binding
We have seen the use of android:text with a binding expression, to
set the text for a TextView.
What really is going on is:

	The binding system evaluates the expression. This not only gives us
the value to be bound, but also determines the data type of that value
(e.g., String, int).

	The data binding system looks for a setter named set...(), where the
... part is based on the name of the attribute (minus any namespace),
where the data type matches the data type of the expression result.
So, in the case where the binding expression generates a String
for an android:text attribute, the data binding system will look
for setText(String) on the widget, in our case a TextView.
If the binding expression were to return an int, instead, the data
binding system would look for setText(int). In the case of TextView,
that exists, and it is expecting the int to be a string resource.
That is why, in the Scored sample app, we needed to convert
the int to a String.

Of course, this is just the simple scenario.
Synthetic Properties
The data binding system maps attribute names to setters. But, what happens
if you use an attribute name that does not actually exist?
Like the honey badger,
the data binding system don’t care.
All the data binding system is doing is using the attribute name to try
to find an associated setter method. The fact that the attribute name
is not actually part of the LayoutInflater-supported XML structure
is irrelevant.
This means that you can use any attribute that maps to a setter method.
For example, ViewPager has no XML attributes of its own, beyond those it
inherits from View or ViewGroup. But, you are welcome to use
attributes like app:currentItem or app:pageMargin in your data binding-enhanced
layout resources (where app points to a custom namespace of yours).
LayoutInflater will parse them, but ViewPager will ignore them.
However, the data binding system will happily let you bind values to
them, triggering calls to setCurrentItem() and setPageMargin(),
respectively.
Hence, do not feel that you are limited to only those attributes that
are officially supported by LayoutInflater and the widgets. If
the data binding system can find a setter, you can use it.
However, there is one key limitation with these synthetic properties:
the value has to be a binding expression. That is true even if you
are not really evaluating much of an expression.
For example, this will not work:

<ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"
 app:error="@drawable/owner_error"
 app:imageUrl="@{question.owner.profileImage}"
 app:placeholder="@drawable/owner_placeholder"/>

Here, we have three synthetic properties, app:error, app:imageUrl,
and app:placeholder. Only app:imageUrl is using a binding
expression, and its use of one makes sense, as we are pulling in
data from a variable (question). The other two refer to drawables.
Ideally, this would work. In practice, it does not work, as the binding
system ignores the properties, and then Android complains that the
attribute is not recognized.
This, however, works:

<ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"
 app:error="@{@drawable/owner_error}"
 app:imageUrl="@{question.owner.profileImage}"
 app:placeholder="@{@drawable/owner_placeholder}"/>

Now, app:error and app:placeholder use binding expressions… that
happen to just return a drawable resource reference. This works, if
one of two things are true:

	There are setter methods for those properties (e.g., setError())
on ImageView, which in this case, there isn’t, or

	We use other techniques to tell the data binding system that those
attributes get routed elsewhere, as will be seen in the next two sections

Using Different Methods
Of course, finding a setter may be a challenge. Frequently, the attribute
name and the setter name follow the described convention (android:foo
maps to setFoo()). Every now and then, though, the attribute name
and setter name differ.
For example, View has an android:fadeScrollbars attribute, used
to determine whether or not the scrollbars for a scrollable widget
should automatically fade out after a stable period when the widget
is not scrolling. However, the associated setter method is not
setFadeScrollbars(), but instead setScrollbarFadingEnabled().
By default, in theory,
the data binding system will not find the appropriate
setter for android:fadeScrollbars.
In practice, the documentation suggests that Google has already fixed
up all of the standard attributes from Android framework classes.
However, there may still be gaps, particularly in Android Support-supplied
classes, let alone third-party widgets.
To overcome the mis-matched attribute/setter pair, you can teach
the data binding system how to find the setter for the attribute.
To do this, you are supposed to be able to define a class-level
@BindingMethods annotation, containing one or more @BindingMethod
annotations, which in turn map an attribute on a type to a setter
method name:

@BindingMethods({
 @BindingMethod(type = "android.view.View",
 attribute = "android:fadeScrollbars",
 method = "setScrollbarFadingEnabled"),
})

BindingAdapters, and the Picasso Scenario
Sometimes, even that is insufficient. Perhaps the setter method takes
additional parameters, even though in your case they could be simply
hard-coded or pulled from elsewhere in the widget. Perhaps the
“setter method” is not really setting a property, but arranging to do
some work related to the property.
For example, so far, we have not been able to use data binding with
the ImageView. While the URL to the image is related to the
android:src attribute, android:src does not take a URL, and we want
to use Picasso to retrieve the image asynchronously anyway. Hence, we
have been stuck with configuring the ImageView “the old-fashioned way”
in getView(), by retrieving the ImageView and then telling Picasso
how to populate it.
However, the data binding system can handle this too, by defining a custom
@BindingAdapter.
Let’s take a look at the
DataBinding/Picasso
sample project. This starts with the Scored sample from before,
but now uses the data binding system to update the ImageView.
The ImageView XML from a little bit ago appears in our revised row.xml
layout resource:

<?xml version="1.0" encoding="utf-8"?>
<layout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <data>

 <import type="android.text.Html"/>

 <variable
 name="question"
 type="com.commonsware.android.databind.basic.Question"/>
 </data>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"
 app:error="@{@drawable/owner_error}"
 app:imageUrl="@{question.owner.profileImage}"
 app:placeholder="@{@drawable/owner_placeholder}"/>

 <TextView
 android:id="@+id/title"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_gravity="left|center_vertical"
 android:layout_weight="1"
 android:text="@{Html.fromHtml(question.title)}"
 android:textSize="20sp"/>

 <TextView
 android:id="@+id/score"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:text="@{Integer.toString(question.score)}"
 android:textSize="40sp"
 android:textStyle="bold"/>

 </LinearLayout>
</layout>

(from DataBinding/Picasso/app/src/main/res/layout/row.xml)
Here, we have three synthetic properties: attributes that are not really
part of ImageView, but that we are using with the help of the data
binding system.
To make that work, the data binding system has to know what to do with
those three values. ImageView lacks setters for those, and so in the
absence of anything else, the data binding system will trigger a compilation
error, complaining that it does not know what to do with the values we
have in the layout.
To make this work, we need a static method somewhere, with the
@BindingAdapter annotation. In this case, we have it defined on
QuestionsFragment:

 @BindingAdapter({"app:imageUrl", "app:placeholder", "app:error"})
 public static void bindImageView(ImageView iv,
 String url,
 Drawable placeholder,
 Drawable error) {
 Picasso.with(iv.getContext())
 .load(url)
 .fit()
 .centerCrop()
 .placeholder(placeholder)
 .error(error)
 .into(iv);
 }

(from DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
The method name does not matter, so call it whatever will help remind
you of its role. It needs to return void, and take as parameters:

	the View type that the synthetic properties will appear on (in
this case, ImageView)

	the values of those properties, in the order that they appear in the
list of strings in the @BindingAdapter annotation

In our case, app:placeholder and app:error are resolving to
Drawable resources, while app:imageUrl is resolving to a String.
This declaration teaches the data binding framework to call this method
any time it finds a View of the designated type (ImageView) with the
list of synthetic properties, instead of trying to find setter methods
for those properties. Since the <ImageView> element in our layout file
meets those criteria, the bindImageView() method will be called.
In that method, it is our job to do whatever it is that we need to do
to consume those synthetic property values and apply their results to the
supplied View. In this case, we have the snippet of Picasso code formerly
found in the getView() method. However, before, the values of the
drawables (placeholder and error) were hard-coded in Java. Now, they are
in the layout XML file, which is a bit more flexible, particularly if
we are using different layout resources for different configurations.
This means we can junk the last of the manual binding code from getView(),
leaving behind only the connection from our ArrayAdapter to the RowBinding:

 class QuestionsAdapter extends ArrayAdapter<Question> {
 QuestionsAdapter(List<Question> items) {
 super(getActivity(), R.layout.row, R.id.title, items);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 RowBinding rowBinding=
 DataBindingUtil.getBinding(convertView);

 if (rowBinding==null) {
 rowBinding=
 RowBinding.inflate(getActivity().getLayoutInflater(),
 parent, false);
 }

 rowBinding.setQuestion(getItem(position));

 return(rowBinding.getRoot());
 }
 }

(from DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
Note, though, that to make this sample work, we needed to make one other
change. app:imageUrl refers to the profileImage field on the Owner
class. Formerly, that was package-private, which means that the data
binding generated code could not access it. Instead, we had to make
it public:

package com.commonsware.android.databind.basic;

import com.google.gson.annotations.SerializedName;

public class Owner {
 public @SerializedName("profile_image") String profileImage;
}

(from DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/Owner.java)
As an additional feature, a binding adapter can receive not only the new
values for the properties, but the old ones as well (i.e., what had been
used for a previous binding). To make that work, you double up all of the
parameters, other than the View itself. First come the parameters that
will be the old values, then come the parameters that will be the new values.
If we wanted to use that in the sample shown in this section, we would have
needed seven total parameters:

 @BindingAdapter({"app:imageUrl", "app:placeholder", "app:error"})
 public static void bindImageView(ImageView iv,
 String oldUrl,
 Drawable oldPlaceholder,
 Drawable oldError,
 String newUrl,
 Drawable newPlaceholder,
 Drawable newError) {
 // do good stuff here
 }

For another example,
the chapter on advanced keyboard and mouse support demonstrates
a BindingAdapter to add a focusMode option
to layouts, for a more flexible alternative to the [requestFocus/] XML
element for controlling the widget that gets the focus.
Two-Way Binding and InverseBindingAdapter
Two-way binding works well in cases where the
way you store the data in the models lines up well with the getters
and setters of the associated widget. In the two-way binding example
presented earlier, a boolean field in the model
works well with the checked property
of a CompoundButton like a Switch, as CompoundButton has
an isChecked() method returning a boolean and a setChecked()
accepting a boolean.
A BindingAdapter allows you to create other mappings between data
types and properties, but only for the classic model->view binding.
To accomplish the same thing in the reverse direction, you wind up
creating an InverseBindingAdapter. As the name suggests, this serves
the same basic role as a BindingAdapter, but in the inverse direction,
taking data from the widget and preparing it for the model using custom
code. Here, the “preparing it for the model” means converting it into
a suitable data type for a setter, Observable field, etc. for your
model.
This is fairly unusual.
The example used in some places is “what if I
want to tie a float to an EditText?”. The InverseBindingAdapter
would look something like this:

@InverseBindingAdapter(attribute = "android:text")
public static float getFloat(EditText et) {
 try {
 return(Float.parseFloat(et.getText().toString()));
 }
 catch (NumberFormatException e) {
 return(0.0f); // because, um, what else can we do?
 }
}

The problem is if the user types in something that is not a valid
floating-point number, like snicklefritz. parseFloat() will fail
with a NumberFormatException. You should let the user know that their
data entry was invalid. However, two-way data binding does not support
this, with a default value (e.g., 0.0f) being handed to the model
instead.
Event Handling
So far, we have focused on binding expressions returning data that
populates widgets, specifically by configuring how that widget looks.
But what about configuring how that widget behaves?
Whether this is a good idea is up for debate. On the one hand,
it reduces the amount of boilerplate Java code necessary to wire up
widgets. On the other hand, some might worry about a blurring of the
lines separating views from things like controllers or presenters.
A 2016 update to the data binding system made it easier to set up
these sorts of connections, though at the present time, this
feature is undocumented.
Thinking Back to android:onClick
In the beginning, there was android:onClick, and it was good.
You could add the android:onClick attribute to a view in your layout
resource XML, with a value of a method name in the activity that used
the layout. That method needed to be public, return void, and take
a View as a parameter — the same basic method signature as onClick()
of an OnClickListener. When the user clicked the view, the method
named in android:onClick would be called, without having to call
setOnClickListener() in Java with an OnClickListener implementation.
Over time, android:onClick faded in utility, as other things, such as
fragments, started being where we wanted the click events to go.
android:onClick could only call a method on the hosting activity,
not a method on an arbitrary other class. No other attributes were created
for other event handlers (long-click, touch, etc.), suggesting that this
was a one-off experiment that would fade into oblivion.
And it did fade… until 2016, when the data binding system brought back
the concept.
Tying Events to Methods Directly
For most events that you will care about with views, you can use a data
binding expression to identify a method, on one of your variables, that
will be called when the event is raised. Because this ties back to your
variables, the method can be on any object that you inject into the
binding, not just the activity.
It does make the syntax a bit more verbose. Instead of
android:onClick="doSomething", it becomes
android:onClick="@{controller::doSomething}",
where controller is some object that you want to respond to the
event (e.g., an MVC-style controller, an MVP-style presenter).
The methods referenced this way must have the same basic signature
as the corresponding listener methods, just implemented on a custom
class and with a custom name. So, for example, onLongClick() of
an OnLongClickListener needs to return a boolean, indicating whether
the event is consumed. If you use android:onLongClick to route
that event to some custom method, that method must also return a boolean.
Overall:

	The method must be public

	The method must take the same parameters as does the corresponding
method on the regular listener class for this event

	The method must have the same return type as does the corresponding
method on the regular listener class for this event

Tying Events to Methods via Lambda Expressions
Those restrictions on the methods tied in via data binding expressions
can be a pain. In particular, you have no way of passing additional
information from bound variables into the method, since those would
not be part of the standard event handling method parameters.
However, the data binding system has another option for tying in
event handlers: Java 8-style lambda expressions. So, you can have
android:onClick="@{()->controller::doSomething(thing)}",
where thing is some variable in your layout resource, or a view
(based on its android:id value), or the magic name context to provide
a Context. It could also involve expressions using any of those
as part of calculations (e.g., concatenating two strings).
You can also blend in parameters that are normally available to the
event, such as android:onClick="@{(v)->controller::doSomething(v, thing)}".
However, the argument list in the lambda function (the left-hand set
of parentheses) either needs to be:

	empty, or

	have one entry for every parameter to the event handling method, even
if you do not want all of those objects

For example, the onCheckedChanged() method on OnCheckedChangeListener
for a CompoundButton takes two parameters: the View whose state
changed, and a boolean indicating the new state. You cannot have
android:onCheckedChanged="@{(state)->controller::heyNow(state, thing)}"
or
android:onCheckedChanged="@{(view)->controller::heyNow(view, thing)}".
Instead, if you want either of those, you need to declare both, then
just ignore the one that you do not need, such as
android:onCheckedChanged="@{(v, state)->controller::heyNow(state, thing)}".
Also, the method that you call still has to be public and still
has to return the proper return type based on the event (e.g., void
for onClick, boolean for onLongClick()).
With that in mind, the
DataBinding/RecyclerView
sample project demonstrates how this can work, along with how to use
the data binding system to populate a RecyclerView instead of an
AdapterView.
Converting to a RecyclerView/CardView UI
First, independent of data binding, we need to migrate the app over to
use RecyclerView. Along the way, we can also add in support for
CardView, to make the individual elements of the vertically-scrolling
list look like cards, complete with rounded corners, drop shadows, and
the like.
To that end, we add recyclerview-v7 and cardview-v7 to our roster
of dependencies in build.gradle:

dependencies {
 implementation 'org.greenrobot:eventbus:3.1.1'
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.squareup.retrofit2:converter-gson:2.3.0'
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 implementation 'com.android.support:cardview-v7:27.1.1'
 implementation 'com.android.support:support-v4:27.1.1'

(from DataBinding/RecyclerView/app/build.gradle)
Our previous samples had used ListFragment. We do not have a
RecyclerViewFragment given to us by the recyclerview-v7 library.
But, we can have our own, copied from one of the RecyclerView
sample projects:

package com.commonsware.android.databind.basic;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.support.v7.widget.RecyclerView;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class RecyclerViewFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 RecyclerView rv=new RecyclerView(getActivity());

 rv.setHasFixedSize(true);

 return(rv);
 }

 public void setAdapter(RecyclerView.Adapter adapter) {
 getRecyclerView().setAdapter(adapter);
 }

 public RecyclerView.Adapter getAdapter() {
 return(getRecyclerView().getAdapter());
 }

 public void setLayoutManager(RecyclerView.LayoutManager mgr) {
 getRecyclerView().setLayoutManager(mgr);
 }

 public RecyclerView getRecyclerView() {
 return((RecyclerView)getView());
 }
}

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/RecyclerViewFragment.java)
All this does is manage a RecyclerView on our behalf, including
allowing us to manipulate the adapter and the layout manager.
The revised QuestionsFragment now inherits from that
RecyclerViewFragment. We configure the RecyclerView in
onViewCreated(), mostly just using the code from before,
except that we also need to call setLayoutManager() to indicate
how we want the items to be laid out — in this case, opting for a
vertically-scrolling list:

 @Override
 public void onViewCreated(View view,
 Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 setLayoutManager(new LinearLayoutManager(getActivity()));

 so.questions("android").enqueue(new Callback<SOQuestions>() {
 @Override
 public void onResponse(Call<SOQuestions> call,
 Response<SOQuestions> response) {
 for (Item item : response.body().items) {
 Question question=new Question(item);

 questions.add(question);
 questionMap.put(question.id, question);
 }

 setAdapter(new QuestionsAdapter(questions));
 }

 @Override
 public void onFailure(Call<SOQuestions> call, Throwable t) {
 onError(t);
 }
 });
 }

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
Our QuestionsAdapter also has to change, to be a RecyclerView.Adapter,
instead of an ArrayAdapter:

 class QuestionsAdapter
 extends RecyclerView.Adapter<QuestionController> {
 private final ArrayList<Question> questions;

 QuestionsAdapter(ArrayList<Question> questions) {
 this.questions=questions;
 }

 @Override
 public QuestionController onCreateViewHolder(ViewGroup parent,
 int viewType) {
 RowBinding rowBinding=
 RowBinding.inflate(getActivity().getLayoutInflater(),
 parent, false);

 return(new QuestionController(rowBinding));
 }

 @Override
 public void onBindViewHolder(QuestionController holder,
 int position) {
 holder.bindModel(getItem(position));
 }

 @Override
 public int getItemCount() {
 return(questions.size());
 }

 Question getItem(int position) {
 return(questions.get(position));
 }
 }

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
We take in the roster of questions in the constructor and stash that
for later use. getItemCount() and getItem() simply access that
roster of questions. Data binding takes places in onCreateViewHolder(),
where we create the RowBinding and use that to set up a
QuestionController. QuestionController is a subclass of
RecyclerView.ViewHolder and serves as the local controller for the row
in our list — we will look at QuestionController in greater detail
shortly. onBindViewHolder() simply tells the QuestionController
to bind to the supplied Question model object.
RecyclerView.ViewHolder requires the root View for the row be supplied
to its constructor. So, in the QuestionController constructor, we call
getRoot() to get that View from the RowBinding and supply that,
along with stashing the RowBinding in a field:

 private final RowBinding rowBinding;

 public QuestionController(RowBinding rowBinding) {
 super(rowBinding.getRoot());

 this.rowBinding=rowBinding;
 }

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java)
And, in bindModel(), we use the RowBinding to bind our Question,
so the binding expressions will pull the title, score, and so forth into
our views:

 void bindModel(Question question) {
 rowBinding.setQuestion(question);
 rowBinding.setController(this);
 rowBinding.executePendingBindings();
 }

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java)
In a 2016 Google I|O presentation on data binding, Google engineers
recommend that if you use RecyclerView, as part of onBindViewHolder()
processing, that you call executePendingBindings() on the binding
(e.g., RowBinding in the case of this example). This forces the
data binding framework to get all of the bindings set up immediately,
rather than waiting until the natural time to do it.
In our case, we just tuck that call into the bindModel() method of
QuestionController, shown above.
You will notice that we also call a setController() method on the
RowBinding. This is in support of our event handling binding work, as
you will see next.
What About the Event Listeners?
QuestionController has two event-related methods. One is onTouch(),
for handling the ripple effect on Android 5.0+:

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
 v
 .findViewById(R.id.row_content)
 .getBackground()
 .setHotspot(event.getX(), event.getY());
 }

 return(false);
 }

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java)
The other is showQuestion(), which, surprisingly enough, will be
called when we want to show the actual question:

 public void showQuestion(Question question) {
 EventBus.getDefault().post(new QuestionClickedEvent(question));
 }

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java)
It contains the EventBus logic to tell somebody to go show some
specified Question.
Those are tied into our app via the data binding framework:

 <LinearLayout
 android:id="@+id/row_content"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="?android:attr/selectableItemBackground"
 android:onClick="@{()->controller.showQuestion(question)}"
 android:onTouch="@{controller::onTouch}"
 android:orientation="horizontal">

(from DataBinding/RecyclerView/app/src/main/res/layout/row.xml)
For android:onTouch, we use the method-reference approach, asking
the data binding framework to call onTouch() on our controller.
For android:onClick, we use the lambda expression approach,
calling showQuestion() on our controller, passing in the question
variable, so we have our Question to go show.
And that’s it. No other changes are needed to tie in these events, either
in the QuestionController or in the QuestionsAdapter.
Type Converters
The result of a binding expression gets cast to the data type expected
by the setter, field, or binding adapter that the data binding system
identified as being the one to use.
Hopefully, this works.
However, it is possible that you will need to change your binding
expression, such as in the case cited earlier in this chapter,
where android:text can accept an integer, but you wanted that integer
to be shown as text, not be a reference to a string resource.
In other cases, there may not be a clear match. Google’s documentation
cites the case where your binding expression returns the ID of a
color resource, but the setter takes a Drawable, such as is the case
with setBackground() on View.
One way of addressing this disparity is via a @BindingMethod. This
teaches the data binding system to use a different method for the
setter (e.g., setBackgroundColor()). However, this is always used
for that particular widget class and attribute combination. In the
particular case of the android:background attribute, there are a variety
of possible setters:

	setBackground(Drawable)

	
setBackgroundColor(int) (taking the actual color, not a color resource)

	
setBackgroundDrawable(Drawable) (as setBackground(Drawable) is new to API Level 16)

	setBackgroundResource(int)

You may not be in position to use one of these for android:background
exclusively.
Hence, another approach is to teach the data binding system how to convert
data from one type to another, using a @BindingConversion-annotated
static method:

@BindingConversion
public static ColorDrawable colorToDrawable(int color) {
 return new ColorDrawable(color);
}

As with binding adapters, the name of the method does not matter. What
matters is that it takes an int as input and returns a ColorDrawable.
The data binding system will take this into account and use it if it
has a case where the binding expression returned an int and it needs
a ColorDrawable… or a Drawable.
Here, though, we start to run into problems with Google’s insistence on
using int values everywhere. This colorToDrawable() conversion
method takes an int. That int could be a color. It could be a
color resource ID, or a string resource ID, or a layout resource ID,
or the score of a Stack Overflow question, or countless other things.
The depicted @BindingConversion, therefore, may not be especially
useful.
Another scenario for @BindingConversion is to be able to extract something
from deep inside a model without exposing the whole model structure as
public. For example,
the
DataBinding/Conversion
sample project uses a @BindingConversion to allow an Owner to be
turned into a String, by means of returning the profileImage value:

 @BindingConversion
 public static String ownerToString(Owner owner) {
 return(owner.profileImage);
 }

(from DataBinding/Conversion/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)
Once again, the method name does not matter; what matters is that this
conversion knows how to handle taking an Owner and returning a String.
Now, the app:imageUrl attribute in the ImageView in the layout can
refer to question.owner instead of question.owner.profileImage:

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"
 app:error="@{@drawable/owner_error}"
 app:imageUrl="@{question.owner}"
 app:placeholder="@{@drawable/owner_placeholder}"/>

(from DataBinding/Conversion/app/src/main/res/layout/row.xml)
Chained Expressions
The original edition of the data binding system allowed you to create
expressions based on variables and static methods. An update to data
binding in 2016 added in “chained expressions”, where expressions can
refer to attributes of other widgets in the same layout resource.
While this feature is presently undocumented,
the basics are straightforward enough: just refer to the widgets
by ID.
For example, the
DataBinding/Chained
sample project is a clone of the DataBinding/TwoWay sample project
from earlier in the chapter. There, we added a Switch widget tied
to an expanded property on the Question model objects. The reason
for the name “expanded” was in preparation for the DataBinding/Chained
sample, where the visibility of the avatar icon and the score would be
toggled based on the Switch status.
The Switch has an android:id of expanded:

 <Switch
 android:id="@+id/expanded"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="@={question.expanded}" />

(from DataBinding/Chained/app/src/main/res/layout/row.xml)
The android:visibility of the icon ImageView now is set based
on a data binding expression, checking the checked state of the
expanded widget, using a ternary operator to convert that into
appropriate View values:

 <ImageView
 android:id="@+id/icon"
 android:layout_width="@dimen/icon"
 android:layout_height="@dimen/icon"
 android:layout_gravity="center_vertical"
 android:contentDescription="@string/icon"
 android:padding="8dip"
 android:visibility="@{expanded.checked ? View.VISIBLE : View.GONE}"
 app:error="@{@drawable/owner_error}"
 app:imageUrl="@{question.owner.profileImage}"
 app:placeholder="@{@drawable/owner_placeholder}" />

(from DataBinding/Chained/app/src/main/res/layout/row.xml)
Note that this requires us to import View, to be able to reference
View.VISIBLE and View.GONE:

 <import type="android.view.View" />

(from DataBinding/Chained/app/src/main/res/layout/row.xml)
The score TextView could use the exact same expression as was used
for the icon ImageView. However, in this case, the visibility
of score depends upon the visibility of icon:

 <TextView
 android:id="@+id/score"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:layout_marginLeft="8dp"
 android:layout_marginRight="8dp"
 android:text="@{Integer.toString(question.score)}"
 android:textSize="40sp"
 android:textStyle="bold"
 android:visibility="@{icon.visibility}" />

(from DataBinding/Chained/app/src/main/res/layout/row.xml)
This way, if the rules for how we derive the visibility change,
all we need to do is change icon, leaving score alone.
Now, as the user toggles the Switch, the visibility of the icon
and the score toggles with it.
Custom Binding Class Names
As noted earlier in this chapter, the binding class name for a layout
resource is determined automatically by default. The layout filename
is converted into a “Pascal case” rendition, then has Binding
appended (e.g., res/layout/foo_bar.xml becomes FooBarBinding).
This class goes in the .databinding sub-package under the base Java package
for your app, as defined in the package attribute in your <manifest>.
However, this may result in awkward Java class names. Or, perhaps you want
to have the classes be generated in some other Java package, for some reason.
You can use the class attribute on the <data> element to control
the actual Java class name used for the binding class.
This can come in one of three forms:

	
class="Foo" will name the binding class Foo and will place it
in the standard .databinding sub-package

	
class=".Foo" will name the binding class Foo, but will place it
in the base package for your app (as defined in the package attribute),
instead of in the separate .databinding sub-package

	
class="this.is.fully.qualified.Foo" will name the binding
class Foo and place it in the designated Java package

Extended Include Syntax
Android has supported <include> as a tag in layout resources since
Android 1.0. The tag takes a layout attribute, pointing to a layout
resource. The contents of the pointed-to layout resource are inserted
into the view hierarchy of the original resource. So, if we have:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <include layout="@layout/foo"/>

 <!-- other widgets go here -->

</LinearLayout>

… then whatever is in the foo layout resource will be added to the
LinearLayout, ahead of any other widgets in that LinearLayout.
With the data binding system, you can pass variables from the outer
layout to the included one, without having to somehow bind the variable
yourself in the included layout from Java code:

<layout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:bind="http://schemas.android.com/apk/res-auto">
 <data>
 <variable name="foo" type="com.thingy.Foo"/>
 </data>

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <include layout="@layout/foo" bind:bar="@{foo}"/>

 <!-- other widgets go here -->

 </LinearLayout>
</layout>

Here, if the foo layout resource has a variable named bar, it
will be populated by evaluating the @{foo} binding expression, so
the foo resource can refer to bar in its own binding expressions.
Custom Observables
What you want may not fit any of these patterns. In that case, you are going
to have to roll your own Observable implementation. The simplest way
to do that is to extend BaseObservable, which handles all of the
observer registration logic for you.
There are two types of changes for which you can notify observers:

	Changes to properties, which can be handled by the individual property
observers described above, such as ObservableField

	Changes to other intrinsic aspects of the model itself, that cannot
be captured in a simple Observable wrapper on some property

For example, you might have a Person class that has birthDate field,
of type Date, representing the date on which the person was born.
If you wanted to use that date in a binding expression, you could have
birthDate be public, or have a getBirthDate() that returned it.
If you wanted a binding expression to be updated when the birth date
changed (e.g., correcting a typo), you could have birthDate
be an ObservableField wrapped around a Date.
However, suppose what you really want to use in the binding expression
is the person’s age. It is easy enough for Person to calculate that,
based on the current date and birthDate. However, this would be awkward
to publish via an ObservableField, since there should not be an age
field — age is a derived value, not a stored value.
Instead, you could say that your getAge() method
publishes a simple int, and you will handle notifying observers whenever
the age changes, either due to a change in birthDate, or if the date
changed and it is now the person’s birthday.
Bindable Properties
On a BaseObserverable, you can annotate getter-style methods with
@Bindable. This tells the data binding framework that those methods
represent values that can be bound. Because BaseObservable implements
Observable, the data binding framework can call
addOnPropertyChangedCallback() to register an OnPropertyChangedCallback
to find out when @Bindable properties are changed.
To make that work, BaseObservable supplies a notifyPropertyChanged()
method. You can call this from the setter method or other place where
you are changing the value of the property, to let BaseObservable
know that the property changed. This, in turn, will let all
OnPropertyChangedCallback instances know about the change, which will
trigger the data binding framework to re-evaluate any binding expressions
tied to that property.
Unfortunately, this is broken in the 1.5.1 build of Android Studio and
the 1.5.0 edition of the Android Gradle Plugin.
For example, here is a revised version of the Question model class
that has it use BaseObservable and notifyPropertyChanged():

package com.commonsware.android.databind.basic;

import android.databinding.BaseObservable;
import android.databinding.Bindable;
import com.commonsware.android.databind.basic.BR;

public class Question extends BaseObservable {
 private String title;
 private final Owner owner;
 private final String link;
 private int score;
 private final String id;

 Question(Item item) {
 updateFromItem(item);
 owner=item.owner;
 link=item.link;
 id=item.id;
 }

 @Bindable
 public String getTitle() {
 return(title);
 }

 @Bindable
 public Owner getOwner() {
 return(owner);
 }

 @Bindable
 public String getLink() {
 return(link);
 }

 @Bindable
 public int getScore() {
 return(score);
 }

 @Bindable
 public String getId() {
 return(id);
 }

 void updateFromItem(Item item) {
 this.title=item.title;
 this.score=item.score;

 notifyPropertyChanged(BR.title);
 notifyPropertyChanged(BR.score);
 }
}

Here, BR is a generated class. According to the documentation:

The Bindable annotation generates an entry in the BR class file during compilation. The BR class file will be generated in the module package.

Unfortunately, while this is all true, Android Studio does not recognize
any of the generated fields, and so while you can import BR,
BR.title and BR.score — the int values identifying those properties –
are not recognized and result in compile errors.
Notifying About Intrinsic Changes
If the BaseObservable itself is what is used in the binding expression,
or if you want to use bindable properties and need to work around the BR
issue mentioned above, BaseObservable also offers notifyChange(),
indicating that all binding expressions tied to the BaseObservable
instance should be re-evaluated.
The
DataBinding/Observable
sample project is another variation of the sample project that we have
been analyzing in this chapter. This one has Question extend
BaseObservable. However, unlike the code snippet above, where we tried
using BR and notifyPropertyChanged(), here we just settle for
notifyChange():

package com.commonsware.android.databind.basic;

import android.databinding.BaseObservable;
import android.databinding.Bindable;
import android.databinding.ObservableField;
import android.databinding.ObservableInt;
import com.commonsware.android.databind.basic.BR;

public class Question extends BaseObservable {
 private String title;
 private final Owner owner;
 private final String link;
 private int score;
 private final String id;

 Question(Item item) {
 updateFromItem(item);
 owner=item.owner;
 link=item.link;
 id=item.id;
 }

 @Bindable
 public String getTitle() {
 return(title);
 }

 @Bindable
 public Owner getOwner() {
 return(owner);
 }

 @Bindable
 public String getLink() {
 return(link);
 }

 @Bindable
 public int getScore() {
 return(score);
 }

 @Bindable
 public String getId() {
 return(id);
 }

 void updateFromItem(Item item) {
 this.title=item.title;
 this.score=item.score;

 notifyChange();
 }
}

(from DataBinding/Observable/app/src/main/java/com/commonsware/android/databind/basic/Question.java)
Even though we are storing title as a simple String and
score as a simple int, we can use them in binding expressions, because
their getters are @Bindable and we are notifying BaseObservable
when their values change.
Thinking Outside the Box
Data binding will usually be used for things like the text of a TextView,
or the image shown in an ImageView. However, you are welcome to have
other things vary based upon binding expressions. For example, perhaps
you want a certain background color or color bar on a row in a list, based
upon some category associated with the model objects. You could use
data binding to set that color.
Lisa Wray pointed out
another inventive use of data binding: custom fonts.
Historically, using a custom Typeface required Java code. That Java
code might be fairly limited, if you only need to update one TextView.
Or, that Java code might pull in a library like
Calligraphy to be able to
apply arbitrary fonts to arbitrary widgets from within layout files.
The data binding framework can handle that for you, if you create
a custom BindingAdapter for some synthetic property (e.g., wray:font).
In your layout, you would have wray:font attributes that name the
typeface that you want on relevant widgets (e.g., TextView):

<TextView
 wray:font="@{`MgOpenCosmetica.ttf`}"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

The BindingAdapter would retrieve the Typeface
for that font name, then apply it to the associated widget:

@BindingAdapter({"wray:font"})
public static void setFont(TextView tv, String font){
 String assetPath="fonts/" + font;
 Typeface type=Typeface.createFromAsset(tv.getContext().getAssets(), assetPath);

 tv.setTypeface(type);
}

This particular implementation has performance issues, as it creates a
new Typeface object on every binding, which is inefficient. Lisa has
a complete sample app
that demonstrates caching the Typeface objects to reduce the performance
overhead.
It is likely that the Android community will come up with other interesting
tricks for simplifying code using fancy data binding adapters, converters,
and the like.
Drag and Drop
Desktop applications have long offered drag-and-drop,
both within and between applications.
Android has supported this for quite some time, but you could only
drag and drop within a single activity. As a result, this was not
especially popular.
However, starting in Android 7.0, you can drag and drop between applications,
so long as their windows are visible in a multi-window environment.
Not only does this make drag-and-drop more compelling in general, but
in a freeform multi-window environment, users will expect Android apps
to behave like their desktop counterparts. Hence, users will expect
drag-and-drop capabilities where it makes sense.
In this chapter, we will explore Android’s drag-and-drop facility, including
how to perform it between separate applications.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, as well as the chapter on the clipboard.
One example uses RecyclerView, so reviewing
that chapter is a good idea. Similarly, one sample
uses StreamProvider, so you may wish to read the section on it
as well.
The Scope of Drag and Drop
Since the term “drag-and-drop” means different things to different people –
including different developers used to different platforms — it will help
if we understand exactly what Android’s definition of “drag-and-drop” is.
What Are We Dragging and Dropping?
In Android, the focus is on dragging and dropping content, meaning some
information identified by a Uri and an associated MIME type. We
are using the drag-and-drop process to select some piece of content
and inform something else about that content. Specifically, the
content that we are dragging and dropping is represented by a ClipData
object, the same as we could use with the clipboard.
Technically, the ClipData does not have to represent content. The
clipboard supports plain text ClipData items, and nothing is stopping
you from using drag and drop for plain text as a result. When dragging
and dropping between apps, this may cause some compatibility issues,
though the drag-and-drop framework takes steps to help deal with this.
Within an app, options like plain text allow you to “cheat” to an extent,
allowing drag-and-drop to support anything you want, so long as you can
identify the specific “anything you want” by a string ID or key.
From the user’s standpoint, the user is dragging some visual representation
of this content. That can be whatever bitmap you want, and you will have
a few options for specifying what this bitmap is. This bitmap is referred
to as the “shadow”.
Where Are We Dragging From?
You will need to provide some UI that triggers a drag-and-drop operation,
not only allowing the user to say “let’s drag this somewhere” but also
“here is what ‘this’ I want to drag”.
A typical trigger for this is a long-click. So, for example, a long-click
on a list row might trigger a drag-and-drop of the content identified
by that row.
Usually, the trigger is tied to some view, as drag-and-drop intrinsically
is a visual operation. Technically, this is not required, if you can find
some other approach that users will understand and appreciate.
Where Are We Dropping To?
You will need to identify possible drop targets, in the form of views.
A view can be registered as a potential drop target, then stipulate whether
it is a candidate for a specific drag-and-drop operation when that
operation begins. For example, if you have two lists, and you want the user
to drag items between the lists, both are potential drop targets. However,
you might elect to say that the user cannot drag from a list back into
that same list, so if the content being dragged originated from the list,
that list is not a candidate for that specific drag-and-drop operation.
The Pieces of Drag-and-Drop
As noted above, what we are really dragging and dropping is a ClipData,
which can represent whatever we want, so long as the recipient of that
ClipData knows how to work with whatever the provider of that ClipData
put in it.
However, there are a few other pieces to the drag-and-drop process.
The Drag Shadow
The drag shadow is the visual representation of what the user is dragging
and dropping. Programmatically, the shadow is defined as an instance
of View.DragShadowBuilder (which, despite the name, does not implement
a builder-style API).
You have two main choices for creating this shadow: use a View, or
use a Canvas.
…From a View
You can create a View.DragShadowBuilder via the constructor that takes
a View as a parameter. This tells View.DragShadowBuilder that the
drag shadow should be a translucent copy of whatever the View
is showing at the time we start the drag-and-drop operation.
This is very easy to implement, and it works well if you have a View
that makes for a likely visual representation of what is being dragged
and dropped.
On the other hand, it will not handle all scenarios. Suppose that you
want to allow the user to drag from a list. Furthermore, suppose that
you want the user to be able to multi-select items in the list and drag the
entire selection. Now you no longer have a single View that you can
use as the basis for the drag shadow.
Also, keep the drag shadow relatively small. It needs to be big enough
that the user can see it despite a finger potentially being in the way.
However, it also needs to be small enough to make it clear where the
user is dropping it. This is another reason why the multi-select list
scenario does not work well with creating a View.DragShadowBuilder
from a View — even if you chose the ListView or RecyclerView as
being the View from which to create the drag shadow, odds are that
the list will be far too large.
…From a Canvas
For cases where using a View as the basis of your drag shadow will
not work, you can create your own subclass of View.DragShadowBuilder
and define the drag shadow however you want.
To do this, you will override two methods. One is onProvideShadowMetrics(),
where you fill in a pair of Point objects. The first represents
the size of the drag shadow in pixels. The other represents the point
within the drag shadow where the touch point will be — in other words,
where is the drag shadow with respect to where the finger is touching
the screen.
The other method is onDragShadow(), where you are given an appropriately-sized
Canvas and you can draw whatever you want into that Canvas to serve
as the drag shadow. For example, you might draw a Bitmap in onDragShadow()
using the dimensions of the Bitmap and its center point in
onProvideShadowMetrics().
Technically, you can combine the two approaches. You create the
View.DragShadowBuilder using a View but then override one or both
of the aforementioned View.DragShadowBuilder methods to alter the
default behavior a bit. For example, by default, the touch point will
be the center of the View, but you might want the touch point to
be offset towards one corner — you could handle this by overriding
onProvideShadowMetrics(), chaining to the superclass, then updating
the second Point object as you see fit.
The Drag Event Listener
To react to drag events in a drop target View, you can call
setOnDragListener(), supplying an implementation of View.OnDragListener.
This interface has a single method, onDrag(), that you will need
to implement.
The sample apps in this chapter implement View.OnDragListener on the
activity that has the drop targets. Typically, you will implement
View.OnDragListener on whatever object in your UI handles events raised
by the widgets (e.g., a controller or presenter).
The Drag Events
onDrag() of your View.OnDragListener is passed two objects:
the View that you called setOnDragListener() on, and a DragEvent
representing what is happening with respect to the drag-and-drop process.
The DragEvent contains an action int value, representing what the
state change is in the drag-and-drop operation. Depending on the action,
other aspects of the DragEvent may be available to you as well.
ACTION_DRAG_STARTED
When the user begins a drag-and-drop operation, and your window is
visible (e.g., the user started the drag-and-drop within your own
activity), you will receive a DragEvent whose action is
ACTION_DRAG_STARTED.
Your primary job is to return true from onDrag() if you wish to be considered
a drop target for this drag-and-drop operation. Prior to Android 7.0,
you might always return true, since you are certain to be in control
over both the drag and the drop. Starting with Android 7.0, you might
conditionally return true, if the drag-and-drop operation looks like
it might be one that you can handle. Unfortunately, your primary
means of determining this is via getClipDescription() on the DragEvent,
which gives you a ClipDescription describing the ClipData that is the
content. This does not give you much to go on, as we will see in
upcoming samples.
If you are a valid drop target, you might also consider adjusting the
look and feel of this View to indicate to the user that this is a valid
drop target. Android does not do anything on its own for this. You might
tint the View, or add an outline, or something, to help clue the user
in that dropping over your View might have a positive result.
If you return true, you will be notified about the progress of the drag-and-drop
event through the other event actions listed below. If you return false,
you are indicating that this drag-and-drop operation does not concern
you, and you will not be given any further DragEvents for it.
ACTION_DRAG_ENTERED
You will receive a DragEvent with this action once it is possible
for the user to drop in your View. This will come when the drag
shadow enters the bounding box of the View (not necessarily only
where pixels are drawn for the view).
If you are still interested in this drag-and-drop operation, you should:

	Return true from onDrag(), and

	Alter the widget’s appearance yet again, to reflect the fact that if the
user lifts her finger, the content will be dropped into this widget

If precise placement within the widget is important for the drag-and-drop
operation (e.g., you wish to highlight some specific cell in a grid),
you can call getX() and getY() on the DragEvent to try to determine
where the drop point is. Unfortunately, it is not documented whether
getX() and getY() are relative to your widget, the screen, or something
else.
ACTION_DRAG_LOCATION
If you return true from the ACTION_DRAG_ENTERED DragEvent, you
may receive additional DragEvents with ACTION_DRAG_LOCATION actions,
indicating that the user has moved within the bounding box of your
widget. If you are using getX() and getY() to deal with the highlighting,
these values will have changed, and so you will want to update the
highlighting to match.
ACTION_DRAG_EXITED
If you return true from the ACTION_DRAG_ENTERED DragEvent, you
may receive a DragEvent for ACTION_DRAG_EXITED. This indicates
that the user dragged the item outside of your widget without dropping
it. Any state changes to your widget, such as a highlight, that you
applied in ACTION_DRAG_ENTERED or ACTION_DRAG_LOCATION should be
reverted. However, the drag-and-drop operation is still proceeding, so
any highlight you use for that (e.g., in ACTION_DRAG_STARTED) should
still be used.
ACTION_DROP
Of course, the fun action is ACTION_DROP, which means that the user
dropped the content over this widget as the drop target. You can call
getClipData() to get at the ClipData for this content, along
with final getX() and getY() values.
If you return true in onDrag(),
this indicates that you handled the drop request.
However, you may not be able to handle the drop request. For example,
suppose you are looking to have a Uri pointing to a video be dropped
into your app. All you can determine from the ClipDescription, in your
ACTION_DRAG_STARTED processing, is that the ClipData has a Uri.
So, you have to return true from onDrag() in your ACTION_DRAG_STARTED
logic. But, then, in ACTION_DROP processing, when you get the real Uri,
you find out that it has a different MIME type (e.g., text/html,
instead of video/*). You will need to return false from onDrag()
in your ACTION_DROP logic. Unfortunately, what happens from this
point forward is undocumented.
ACTION_DRAG_ENDED
If you returned true from the ACTION_DRAG_STARTED DragEvent, you
should receive a DragEvent when the drag-and-drop operation is over,
with ACTION_DRAG_ENDED as the action. Any state change you made to
your widget in ACTION_DRAG_STARTED should be reverted here. If
it matters to you whether the user did a valid drop or not, call
getResult() on the DragEvent to find out
.
Drag-and-Drop, within an Activity
The classic drag-and-drop scenario, prior to Android 7.0, was to drag-and-drop
between widgets in a single activity.
The
DragDrop/Simple
sample project demonstrates this scenario. It is based on the
RecyclerView/VideoList sample app from the chapter on RecyclerView.
The Landscape Layout
On smaller screens, we just have the RecyclerView as before. However,
on larger screens (e.g., 9" tablets in landscape), we put a VideoView
and an ImageView alongside the RecyclerView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">

 <android.support.v7.widget.RecyclerView android:id="@+id/video_list"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1" />

 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:orientation="vertical">

 <FrameLayout
 android:id="@+id/video_frame"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_marginBottom="4dp"
 android:layout_weight="1"
 android:padding="4dp">

 <VideoView
 android:id="@+id/player"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="center" />
 </FrameLayout>

 <FrameLayout
 android:id="@+id/thumbnail_frame"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:padding="4dp">

 <ImageView
 android:id="@+id/thumbnail_large"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerInside" />
 </FrameLayout>
 </LinearLayout>
</LinearLayout>

(from DragDrop/Simple/app/src/main/res/layout-w800dp/main.xml)
The idea is that the user will be able to drag from the RecyclerView
into the other two widgets, which will play the video or show a larger
rendition of the thumbnail, respectively.
The VideoView and the ImageView are each wrapped in a FrameLayout.
Mostly, that is to give us a place to render a border around the widgets,
indicating that they are drop targets. We have a pair of <shape>
drawables for this. One is a red dashed line indicating a potential drop
target:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <stroke
 android:width="2dp"
 android:dashGap="8dp"
 android:dashWidth="8dp"
 android:color="#ff0000" >
 </stroke>
</shape>

(from DragDrop/Simple/app/src/main/res/drawable-nodpi/droppable.xml)
The other is a solid green line indicating a “live” drop target, used
to indicate that dropping the content here should work:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <stroke
 android:width="4dp"
 android:color="#2e7d32" >
 </stroke>
</shape>

(from DragDrop/Simple/app/src/main/res/drawable-nodpi/drop.xml)
Registering as Drop Targets
This version of the sample app avoids the RecyclerViewActivity used
in the RecyclerView/VideoList sample app. Instead, MainActivity manages
all of its widgets directly, including the RecyclerView.
In onCreate(), after inflating the layout, we attempt to retrieve the
VideoView and ImageView. If we find them, we call setOnDragListener(),
supplying our MainActivity instance itself as the OnDragListener
implementation:

 player=findViewById(R.id.player);

 if (player!=null) {
 player.setOnDragListener(this);
 }

 thumbnailLarge=findViewById(R.id.thumbnail_large);

 if (thumbnailLarge!=null) {
 thumbnailLarge.setOnDragListener(this);
 }

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
We will examine the onDrag() method that OnDragListener requires shortly.
Starting to Drag
This app supports a long-click on a row in our RecyclerView to enter
drag-and-drop mode, as we call setOnLongClickListener() on the row
itself, in RowController (our RecyclerView.ViewHolder for our list rows):

 RowController(View row) {
 super(row);

 title=(TextView)row.findViewById(android.R.id.text1);
 thumbnail=(ImageView)row.findViewById(R.id.thumbnail);

 row.setOnClickListener(this);
 row.setOnLongClickListener(this);
 }

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/RowController.java)
In onLongClick(), we:

	Create a ClipData based on the Uri obtained from MediaStore
for the video, plus its caption (pulled from the title TextView)

	Create a drag shadow, using View.DragShadowBuilder, with the
thumbnail ImageView as the basis

	Call startDrag() on the row itself, accessed via the itemView
field on the ViewHolder base class

 @Override
 public boolean onLongClick(View v) {
 ClipData clip=ClipData.newRawUri(title.getText(), videoUri);
 View.DragShadowBuilder shadow=new View.DragShadowBuilder(thumbnail);

 itemView.startDrag(clip, shadow, Boolean.TRUE, 0);

 return(true);
 }

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/RowController.java)
Besides the ClipData and View.DragShadowBuilder, startDrag()
takes two other parameters:

	An arbitrary Object referred to as the “local state”, which can
provide additional information between the drag source and the drop
target, but only when both are in the same window (usually meaning the same
activity)

	A set of flags (here unused, so set to 0)

For the local state, we are using Boolean.TRUE. That is a fairly
arbitrary choice, but it is a good idea to pass a non-null value here,
for reasons that we will get into
later in this chapter.
Reacting to Drag Events
Our onDrag() method in MainActivity will handle all of the events
related to our registered drop targets:

 @Override
 public boolean onDrag(View v, DragEvent event) {
 boolean result=true;

 switch (event.getAction()) {
 case DragEvent.ACTION_DRAG_STARTED:
 if (event.getLocalState()==null) {
 result=false;
 }
 else {
 applyDropHint(v, R.drawable.droppable);
 }
 break;

 case DragEvent.ACTION_DRAG_ENTERED:
 applyDropHint(v, R.drawable.drop);
 break;

 case DragEvent.ACTION_DRAG_EXITED:
 applyDropHint(v, R.drawable.droppable);
 break;

 case DragEvent.ACTION_DRAG_ENDED:
 applyDropHint(v, -1);
 break;

 case DragEvent.ACTION_DROP:
 ClipData.Item clip=event.getClipData().getItemAt(0);
 Uri videoUri=clip.getUri();

 if (v==player) {
 player.setVideoURI(videoUri);
 player.start();
 }
 else {
 Picasso.with(thumbnailLarge.getContext())
 .load(videoUri.toString())
 .fit().centerCrop()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(thumbnailLarge);
 }

 break;
 }

 return(result);
 }

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
For most of the actions, we apply (or remove) a drawable from the
FrameLayout containers wrapping our VideoView and ImageView widgets,
via an applyDropHint() utility method:

 private void applyDropHint(View v, int drawableId) {
 View parent=(View)v.getParent();

 if (drawableId>-1) {
 parent.setBackgroundResource(drawableId);
 }
 else {
 parent.setBackground(null);
 }
 }

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
Here, we use -1 as the “ID” of a resource meaning to remove any previous
background.
In onDrag(), we ignore ACTION_DRAG_LOCATION events, as we are not
using getX() and getY() and so do not care if those values change.
However, we do handle two actions a bit differently:

	
ACTION_DRAG_STARTED examines the local state and rejects any DragEvent
where that state is null, for reasons that we will get into
later in this chapter

	
ACTION_DROP retrieves the
ClipData.Item for the ClipData we set as the drag content, retrieves
the Uri of the video from the ClipData.Item, then either plays the
video or shows the thumbnail, depending on which widget the user
dropped the content into

The Result
If you run the sample app on a large-enough device with a roster of videos,
you will get the list of videos on one side, and the empty VideoView
and ImageView on the other side:

[image: Simple Drag-and-Drop Demo, As Initially Launched]

Figure 672: Simple Drag-and-Drop Demo, As Initially Launched
Once the user long-taps on a list row, a shadow based on the thumbnail
appears under the user’s finger, and the two drop targets show their
red dashed outlines:

[image: Simple Drag-and-Drop Demo, After Drag Started]

Figure 673: Simple Drag-and-Drop Demo, After Drag Started
If the user drags the drop shadow over one of the drop targets, it
gets the ACTION_DRAG_ENTERED event and changes its outline to
the green solid line:

[image: Simple Drag-and-Drop Demo, After Drag Enters Drop Target]

Figure 674: Simple Drag-and-Drop Demo, After Drag Enters Drop Target
Finally, if the user drops the item in one of the drop targets, it
receives the ACTION_DROP event and can actually use the content:

[image: Simple Drag-and-Drop Demo, After Drop]

Figure 675: Simple Drag-and-Drop Demo, After Drop
Note that both widgets no longer show an outline, as they each received
ACTION_DROP_ENDED, where they removed their outlines.
The Android 9.0 Bug
Simply put, the local state does not work on Android 9.0.
getLocalState() always returns null. Reportedly, this is fixed for a future
version of Android, but it is unlikely that this fix will ever make it to
Android 9.0 devices.
As a result, you will need an alternative to the local state, at least for
Android 9.0 devices.
Drag-and-Drop, Between Apps
Android 7.0’s multi-window capability ushers in a new era for drag-and-drop,
where users drag-and-drop between apps. In theory, very little has to
change to support drag-and-drop between apps.
However, there are challenges, the biggest one being permissions.
The app with the drop target needs permission to work with whatever
content is represented in the drag-and-drop operation. If that
content is simply some plain text or something else that can be
stuffed into a ClipData, permissions are part of drag-and-drop
processing, as only the drop target selected by the user gets the
ACTION_DROP event and can access that ClipData.
However, if the ClipData contains one or more Uri values, the app
with the drop target needs access to that underlying content, just as it
needs it for the clipboard or any other situation where a Uri is passed
between apps.
The
DragDrop/Permissions
sample project demonstrates dragging and dropping between apps. This
project has two app modules: drag and drop. As you might imagine, drag
contains an activity that allows the user to drag something (in this case,
an image), while drop contains an activity that accepts an image Uri
and displays it.
Because cross-app drag-and-drop requires Android 7.0, both modules are set
up with 7.0-compatible build settings in build.gradle — we will see
the drag/build.gradle file shortly.
The Drag App
The drag app has a very simple UI: a single ImageView, set to
fill the available space:

<?xml version="1.0" encoding="utf-8"?>
<ImageView android:id="@+id/asset"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="fitCenter" />

(from DragDrop/Permissions/drag/src/main/res/layout/main.xml)
The idea is that the user will long-click the ImageView to start the
drag-and-drop operation. Hence, this is reminiscent of the DragDrop/Simple
app, just with a single image, rather than one per row in a list.
The Custom Shadow
One problem with using the ImageView as the way to start the drag-and-drop
operation comes with the drag shadow. In DragDrop/Simple, we used the
image as the drag shadow. This worked well, because the image was a
thumbnail, which usually is a good size for a drag shadow. In the drag
app in DragDrop/Permissions, though, the ImageView is huge, far too
large to use as the drag shadow. As a result, we cannot use the ImageView
directly as before, but instead need to create a custom View.DragShadowBuilder
subclass, named ThumbDragShadow:

 private class ThumbDragShadow extends View.DragShadowBuilder {
 @Override
 public void onProvideShadowMetrics(Point shadowSize,
 Point shadowTouchPoint) {
 shadowSize.set(iv.getWidth()/8, iv.getHeight()/8);
 shadowTouchPoint.set(shadowSize.x/2, shadowSize.y/2);
 }

 @Override
 public void onDrawShadow(Canvas canvas) {
 iv.draw(canvas);
 }
 }

(from DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
This is a nested class inside MainActivity, and so it has access to the
fields of MainActivity, such as our ImageView, named iv.
In onProvideShadowMetrics(), we set the size of the shadow to be 1/8th
of the size of the ImageView. This is a sloppy approach and may wind
up with too small of an image on smaller-screen devices. However, it does
keep the aspect ratio of the ImageView. In addition, we set the
touch point to be in the middle of the image — based on
some Google sample code,
it appears that this is a reasonable algorithm.
In onDrawShadow(), we need to draw something on the supplied Canvas
that represents the drag shadow. In this case, we ask the ImageView
to draw itself into that Canvas. This results in a cropped image,
as the ImageView is much larger than our Canvas, which is sized
based on the Point values we populated in onProvideShadowMetrics().
A better implementation would work with a Bitmap and scale it so the
entire image would be seen in the drag shadow; this approach is used here
for simplicity.
The StreamProvider
The image itself is stored in assets/. The photo is of
One World Trade Center
(a.k.a., “Freedom Tower”) in New York City.
The reason for storing it in assets/ is that not only do we need
the image, but we need to provide other apps with access to the image.
In this app, we will handle that using StreamProvider, from the author’s
CWAC-Provider library, as described in
one of the chapters on the ContentProvider component.
To that end, we include the cwac-provider artifact in our drag/build.gradle
file:

apply plugin: 'com.android.application'

dependencies {
 compile 'com.android.support:recyclerview-v7:25.3.1'
 compile 'com.squareup.picasso:picasso:2.5.2'
}

android {
 compileSdkVersion 24
 buildToolsVersion '26.0.2'

 defaultConfig {
 applicationId "com.commonsware.android.dragdrop.drag"
 minSdkVersion 24
 targetSdkVersion 24
 }

 aaptOptions {
 noCompress 'jpg'
 }
}

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 compile 'com.commonsware.cwac:provider:0.4.0'
}

(from DragDrop/Permissions/drag/build.gradle)
Also note that we take steps to ensure that the build tools do not try to compress
the JPEG further, by excluding jpg files from aapt compression
via noCompress in aaptOptions
The manifest contains a <provider> element for our StreamProvider:

 <provider
 android:name="com.commonsware.cwac.provider.StreamProvider"
 android:authorities="${applicationId}.provider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="com.commonsware.cwac.provider.STREAM_PROVIDER_PATHS"
 android:resource="@xml/provider"/>
 <meta-data
 android:name="com.commonsware.cwac.provider.USE_LEGACY_CURSOR_WRAPPER"
 android:value="true"/>
 </provider>

(from DragDrop/Permissions/drag/src/main/AndroidManifest.xml)
That sets up the authority string to be the application ID with
.provider appended. It also points StreamProvider to some
XML metadata in res/xml/provider.xml:

<?xml version="1.0" encoding="utf-8"?>
<paths>

 <asset name="assets" />

</paths>

(from DragDrop/Permissions/drag/src/main/res/xml/provider.xml)
Here, we say that we are willing to serve anything from assets/.
The Drag Request
In onCreate(), we use Picasso to load the image out of assets/ and
display it. However, we also register a Callback to find out when
that has been completed:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 iv=(ImageView)findViewById(R.id.asset);

 Picasso.with(this)
 .load("file:///android_asset/FreedomTower-Morning.jpg")
 .fit().centerCrop()
 .into(iv, new Callback() {
 @Override
 public void onSuccess() {
 iv.setOnLongClickListener(MainActivity.this);
 }

 @Override
 public void onError() {
 // TODO
 }
 });
 }

(from DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
We only call setOnLongClickListener() once the image has been loaded
successfully, as until then, the user would not know what she is dragging
and dropping.
Then, in onLongClick(), we start the drag-and-drop operation:

 @Override
 public boolean onLongClick(View view) {
 Uri uri=PROVIDER
 .buildUpon()
 .appendEncodedPath(StreamProvider.getUriPrefix(AUTHORITY))
 .appendEncodedPath("assets/FreedomTower-Morning.jpg")
 .build();

 ClipData clip=ClipData.newRawUri(getString(R.string.msg_photo), uri);
 View.DragShadowBuilder shadow=new ThumbDragShadow();

 iv.startDragAndDrop(clip, shadow, Boolean.TRUE,
 View.DRAG_FLAG_GLOBAL|View.DRAG_FLAG_GLOBAL_URI_READ|
 View.DRAG_FLAG_GLOBAL_PERSISTABLE_URI_PERMISSION);

 return(true);
 }

(from DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
First, we need a Uri pointing to our asset. We build such a Uri
from:

	A static PROVIDER Uri, which incorporates our authority string:

 private static final String AUTHORITY=
 BuildConfig.APPLICATION_ID+".provider";
 private static final Uri PROVIDER=
 Uri.parse("content://"+AUTHORITY);

(from DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

	The unique prefix used for this app by StreamProvider (via getUriPrefix())

	The path to our asset

We then build a ClipData from that Uri, plus a string pulled from
a resource. Note that it is unclear where this string is used, though
accessibility options is one likely candidate.
The drag shadow is an instance of the ThumbDragShadow shown above.
To start the drag-and-drop operation, we call startDragAndDrop().
This is simply a new name for the startDrag() method. startDrag() is
marked as deprecated in Android 7.0, replaced with startDragAndDrop().
However, for older, in-app drag-and-drop, feel free to use startDrag(),
as it is your only option for Android 6.0 and older devices.
This time, we pass in some flags:

	
DRAG_FLAG_GLOBAL indicates that we want the drag-and-drop operation
to work between apps. If we left the flags as 0, the drag-and-drop would
be limited only to this app. In this respect, a drag is local by default,
with cross-app drag-and-drop being something you have to explicitly
opt into.

	
DRAG_FLAG_GLOBAL_URI_READ indicates that we want the other app to be
able to read the content identified by the Uri that we are putting
into the ClipData. Without this, any app receiving the DragEvent
would be unable to display the image. Note that there is an equivalent
DRAG_FLAG_GLOBAL_URI_WRITE if you want to offer write access.

	
DRAG_FLAG_GLOBAL_PERSISTABLE_URI_PERMISSION indicates that we want
to grant the recipient app durable rights to the content identified by
the Uri that we are putting into the ClipData. The term
“persistable”, and the documentation for this flag, suggests that this
access survives reboots. That may be excessive here. We will explore
why we are using this flag when we look at the drop app.

The Drop App
The drop app is a version of the drop logic from
DragDrop/Simple, reduced to just handling the drop in an ImageView.
However, it does have a few wrinkles, both related to drag-and-drop
(permissions) and related to general Android development (configuration
change support).
The Layout
The revised layout is simply the ImageView, wrapped in the FrameLayout
for the drop hint drawables:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout android:id="@+id/thumbnail_frame"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="4dp"
 android:padding="4dp">

 <ImageView
 android:id="@+id/thumbnail_large"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerInside" />
</FrameLayout>

(from DragDrop/Permissions/drop/src/main/res/layout/main.xml)
In onCreate() and onSaveInstanceState(), we load that layout, get
the ImageView, and populate it (via the same showThumbnail() as before)
if we have a thumbnailUri from our saved instance state Bundle:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 image=(ImageView)findViewById(R.id.thumbnail_large);
 image.setOnDragListener(this);

 if (state!=null) {
 imageUri=state.getParcelable(STATE_IMAGE_URI);

 if (imageUri!=null) {
 showThumbnail();
 }
 }
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putParcelable(STATE_IMAGE_URI, imageUri);
 }

(from DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
The Drag Event
The onDrag() method is the same as before, except for two events:
ACTION_DRAG_STARTED and ACTION_DROP.
We are expecting to get a Uri pointing to an image from the outside
app via a drag-and-drop operation. Ideally, we would validate that
in ACTION_DRAG_STARTED, returning false if the content is something
else:

 @Override
 public boolean onDrag(View v, DragEvent event) {
 boolean result=true;

 switch (event.getAction()) {
 case DragEvent.ACTION_DRAG_STARTED:
 if (event
 .getClipDescription()
 .hasMimeType(ClipDescription.MIMETYPE_TEXT_URILIST)) {
 applyDropHint(v, R.drawable.droppable);
 }
 else {
 result=false;
 }

 break;

 case DragEvent.ACTION_DRAG_ENTERED:
 applyDropHint(v, R.drawable.drop);
 break;

 case DragEvent.ACTION_DRAG_EXITED:
 applyDropHint(v, R.drawable.droppable);
 break;

 case DragEvent.ACTION_DRAG_ENDED:
 applyDropHint(v, -1);
 break;

 case DragEvent.ACTION_DROP:
 requestDragAndDropPermissions(event);

 ClipData.Item clip=event.getClipData().getItemAt(0);

 imageUri=clip.getUri();
 showThumbnail();
 break;
 }

 return(result);
 }

(from DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
Unfortunately, all we can do is determine that we are getting some
Uri. The MIME type in our ClipDescription is not the MIME type of
the content underlying our Uri, but rather will be
ClipDescription.MIMETYPE_TEXT_URILIST. This is because a ClipData
can have several items, each with Uri values. We have no way, given
just the ClipDescription to determine if we actually have an image
Uri. So, as long as we are getting a Uri value, we assume that the
drop might be meaningful and return true.
For ACTION_DROP, we first call requestDragAndDropPermissions(), to
grant our app the rights offered to us by whatever app initiated the
drag-and-drop operation:

 case DragEvent.ACTION_DROP:
 requestDragAndDropPermissions(event);

 ClipData.Item clip=event.getClipData().getItemAt(0);

 imageUri=clip.getUri();
 showThumbnail();
 break;

(from DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
The requestDragAndDropPermissions() method returns a DragAndDropPermissions
object. The JavaDocs for this class point out the lifetime of our
permissions:

The life cycle of the permissions is bound to the activity used to call requestDragAndDropPermissions(). The permissions are revoked when this activity is destroyed, or when release() is called, whichever occurs first.

However, the user could destroy your activity at any point in time,
via a configuration change. As a result, you have three main options here:

	Make a local copy of the content as soon as you get the Uri, hopefully
before your activity gets destroyed via a configuration change

	Opt out of the automatic destroy-and-recreate cycle for configuration
changes for any activity that has drop targets, via android:configChanges
in the manifest, and deal with all the problems that technique raises

	Ignore the issue and hope that the app that started the drag-and-drop
operation included DRAG_FLAG_GLOBAL_PERSISTABLE_URI_PERMISSION in
its startDragAndDrop() call

But, after the requestDragAndDropPermissions() call, we grab the
first Uri out of the ClipData, store that in the imageUri field,
and have showThumbnail() display that image via Picasso. A better
approach would examine each possible Uri in the ClipItem for one
that represents an image (showing that one), and returning false
from onDrag() if no such Uri is found, so the drag-and-drop operation
remains active.
The Results
If you run both apps, and have them both visible in a multi-window
environment (e.g., split-screen mode on a phone or tablet), you will
be able to drag and drop between them:

[image: Cross-App Drag-And-Drop, Showing Both Activities As Initially Launched]

Figure 676: Cross-App Drag-And-Drop, Showing Both Activities As Initially Launched

[image: Cross-App Drag-And-Drop, Showing Drag Shadow]

Figure 677: Cross-App Drag-And-Drop, Showing Drag Shadow

[image: Cross-App Drag-And-Drop, Showing Result of Drag-and-Drop]

Figure 678: Cross-App Drag-And-Drop, Showing Result of Drag-and-Drop
Detecting Cross-App Drag Events
In the DragDrop/Permissions sample,
there is nothing in our onDrag() method, or anywhere else, that indicates
that we want to allow drag events from third-party apps. That happens
by default, and there is no way to stop it. Hence, any app
implementing official drag-and-drop support has to support arbitrary
apps passing in content. With luck,
this too will get changed.
We were given this recipe
for detecting cross-app drag-and-drop:

	Fill in a non-null value for the local state in the call to startDragAndDrop()

	Check in ACTION_DRAG_STARTED to see if the local state is null, in which
case, the drag-and-drop must have started from some other app

However, this does not work well.
The local state is local to a window, not an app or process. As a result,
if your app is visible in more than one window — for example, you
used FLAG_ACTIVITY_LAUNCH_ADJACENT to start up another activity in another
window — then you will lose the local state even for in-app drag-and-drop
across these windows.
In the Simple drag-and-drop sample from earlier,
we check to see if the local state is null and reject the drag event
if it is. There, we are not expecting to have activities in multiple
windows, so all drag-and-drop work should be local.
Conversely, we do not check the local state in the Permissions
sample, where we specifically want cross-app drag-and-drop.
Intra-App Cross-Window Drag-and-Drop
Drag-and-drop not only works between apps with Android 7.0’s multi-window
feature — it also works for two windows within the same app.
The
DragDrop/SplitScreen
sample project is a clone of the DragDrop/Permissions project. However,
both the drag activity (MainActivity) and the drop activity
(DropActivity) are in the same app module (app/).
Also, MainActivity now has an action bar with a “launch” item that,
when tapped, will bring up the DropActivity in an adjacent window:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.launch) {
 startActivity(new Intent(this, DropActivity.class)
 .setFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT |
 Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_MULTIPLE_TASK));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from DragDrop/SplitScreen/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
Launching MainActivity, entering multi-window mode, and launching
DropActivity gives you those two activities in separate windows,
such as in split-screen mode:

[image: Split-Screen Drag Demo, With Both Activities Showing]

Figure 679: Split-Screen Drag Demo, With Both Activities Showing
And, as in the cross-app scenario, you can drag from one window into
the other:

[image: Split-Screen Drag Demo, Part-Way Through a Drag]

Figure 680: Split-Screen Drag Demo, Part-Way Through a Drag

[image: Split-Screen Drag Demo, After Drag-and-Drop]

Figure 681: Split-Screen Drag Demo, After Drag-and-Drop
However, as was noted above, the local state data is lost in these
cross-window drag-and-drop operations, making them indistinguishable from
cross-app drag-and-drop operations.
Pondering Legacy Multi-Window
In principle, cross-app drag-and-drop could work with Samsung’s
legacy multi-window support. However, calling
startDrag() (the pre-Android 7.0 equivalent of startDragAndDrop())
will not grant permissions to the other app to use the content
associated with any Uri. The only way to make this work would be
if the content identified by the Uri was readable by all apps, which
is not great from a security standpoint.
LG’s legacy multi-window support does not seem to support cross-app
drag-and-drop.
Also, Chrome OS does not support cross-app drag-and-drop as of
the August 2016 round of developer previews.
Dragging and Dropping Simple Stuff
This chapter focuses on drag-and-drop of content, represented by a Uri.
That is not your only option, just as that is not your only option for
putting stuff onto, or removing stuff from, the clipboard.
A ClipData object contains one or more ClipData.Item objects.
These can be of three main forms:

	Text, in the form of a CharSequence, including support for any standard
Android spans

	An Intent, usually designed for creating some sort of shortcut to
be able to launch an activity identified by the Intent

	A Uri

Outside of specialized cases (e.g., home screens), if you are not using
Uri, probably you are using text.
If you are implementing a drop target, and all you know how to do is
handle text, you can call coerceToText() on a ClipData.Item object
to get the best text representation of whatever it is. For Uri values
pointing to text content, coerceToText() will read in the content
and return it. For anything else, you get back toString() on the content,
more or less.
Multi-Action Drag-and-Drop
The previous section brings up home screens as an example of drag-and-drop.
On many Android home screen implementations, if you long-click on an icon
in the launcher, you can drag-and-drop that icon into the home screen itself,
thereby creating a shortcut. However, in addition to that, many home screens
also offer special drop targets tied to specific actions, such as “Uninstall”.
If the user drops the icon over the home screen area, a shortcut gets created;
if the user drops the icon over a special drop target, the action
for that target is performed.
You can do this too.
Mostly, it is a matter of arranging to show those special drop targets
only during a drag-and-drop operation, then handling those drops specifically.
However, due to the nature of Android’s view hierarchy and the drag-and-drop
framework, you need to ensure that you show the special drop target’s view
before you start the drag-and-drop operation. Otherwise, the special
drop target’s view will never receive ACTION_DRAG_ENTERED or ACTION_DROP
events.
We can see how this works in practice in the
DragDrop/Action
sample project. This is a clone of the DragDrop/Simple app from earlier
in this chapter, except that we have added a special “Video Info” drop
target.
The Layout
The -w800dp layout is mostly as it was in the original app, except
that we have added an info TextView above the RecyclerView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">

 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:orientation="vertical">

 <TextView
 android:id="@+id/info"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_margin="8dp"
 android:padding="8dp"
 android:text="@string/label_video_info"
 android:textAppearance="?android:textAppearanceLarge"
 android:visibility="gone" />

 <android.support.v7.widget.RecyclerView
 android:id="@+id/video_list"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 </LinearLayout>

 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:orientation="vertical">

 <FrameLayout
 android:id="@+id/video_frame"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_marginBottom="4dp"
 android:layout_weight="1"
 android:padding="4dp">

 <VideoView
 android:id="@+id/player"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="center" />
 </FrameLayout>

 <FrameLayout
 android:id="@+id/thumbnail_frame"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:padding="4dp">

 <ImageView
 android:id="@+id/thumbnail_large"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerInside" />
 </FrameLayout>
 </LinearLayout>
</LinearLayout>

(from DragDrop/Action/app/src/main/res/layout-w800dp/main.xml)
However, this TextView has a visibility of gone at the outset, so
it will not show up for users.
Showing and Hiding the Action
onCreate() initializes an info field with the TextView, much as
it initializes the fields for the VideoView and ImageView:

 player=findViewById(R.id.player);

 if (player!=null) {
 player.setOnDragListener(this);
 }

 thumbnailLarge=findViewById(R.id.thumbnail_large);

 if (thumbnailLarge!=null) {
 thumbnailLarge.setOnDragListener(this);
 }

 info=findViewById(R.id.info);

 if (info!=null) {
 info.setOnDragListener(this);
 }

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
However, since info is gone, the user cannot drag anything over it.
We need to arrange to make it visible.
You might try making it visible in onDrag(), when we get the ACTION_DRAG_STARTED
event. After all, this would seem to describe what we want: when the
drag begins, show the special drop target as an option for the user.
Unfortunately, this does not work: while the user can see the info
TextView, that TextView does not get any further onDrag() events.
Instead, we are forced to arrange to make the info view visible before
starting the drag-and-drop operation. As a side effect, that requirement means
that we cannot use this technique for cross-app drag-and-drop, since we
have no idea when some other app starts the drag-and-drop operation.
In fact, it is even a bit awkward to handle in this app, as it is the
RowController that initiates the drag-and-drop operation. The RowController
knows nothing about the info view, nor should it. Instead, we need
to have the RowController let the MainActivity know that a drag-and-drop
operation is about to start, so the activity can show the view.
To that end, RowController defines an OnStartDragListener interface. It
expects to get such a listener as a constructor parameter, storing it in
a field for later use:

class RowController extends RecyclerView.ViewHolder
 implements View.OnClickListener, View.OnLongClickListener {
 interface OnStartDragListener {
 void onStartDrag();
 }

 final private TextView title;
 final private ImageView thumbnail;
 private Uri videoUri=null;
 private String videoMimeType=null;
 final private OnStartDragListener listener;

 RowController(View row, OnStartDragListener listener) {
 super(row);

 this.listener=listener;
 title=(TextView)row.findViewById(android.R.id.text1);
 thumbnail=(ImageView)row.findViewById(R.id.thumbnail);

 row.setOnClickListener(this);
 row.setOnLongClickListener(this);
 }

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/RowController.java)
Then, in onLongClick(), if we have a listener, we call onStartDrag()
on it, to indicate that we are about to start a drag-and-drop operation:

 @Override
 public boolean onLongClick(View v) {
 if (listener!=null) {
 listener.onStartDrag();
 }

 ClipData clip=ClipData.newRawUri(title.getText(), videoUri);
 View.DragShadowBuilder shadow=new View.DragShadowBuilder(thumbnail);

 itemView.startDrag(clip, shadow, Boolean.TRUE, 0);

 return(true);
 }

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/RowController.java)
The RowController instances are created by the VideoAdapter. Fortunately,
VideoAdapter is a nested class inside of MainActivity. So, we implement
OnStartDragListener on MainActivity and pass the activity instance
to the RowController constructor:

 @Override
 public RowController onCreateViewHolder(ViewGroup parent,
 int viewType) {
 return(new RowController(getLayoutInflater()
 .inflate(R.layout.row, parent, false), MainActivity.this));
 }

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
All the onStartDrag() method does is make the info view visible:

 public void onStartDrag() {
 info.setVisibility(View.VISIBLE);
 }

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
If we make it visible, clearly we need to hide it again at some
future point. That would be when the drag-and-drop operation has completed,
and it is safe for us to mark info as GONE in our handling of
ACTION_DRAG_ENDED in onDrag():

 case DragEvent.ACTION_DRAG_ENDED:
 applyDropHint(v, -1);
 info.setVisibility(View.GONE);
 break;

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
Handling Drag Events
We still want to show the drop hint backgrounds, but in this case, we
apply them directly to the TextView, rather than going with a wrapping
FrameLayout. So, we adjust applyDropHint() to only work with the
parent of the view if this is not the info view:

 private void applyDropHint(View v, int drawableId) {
 if (v!=info) {
 v=(View)v.getParent();
 }

 if (drawableId>-1) {
 v.setBackgroundResource(drawableId);
 }
 else {
 v.setBackground(null);
 }
 }

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
And, in ACTION_DROP processing, if the user dropped the content over
the info view, we simply show a Toast with the text of the Uri:

 case DragEvent.ACTION_DROP:
 ClipData.Item clip=event.getClipData().getItemAt(0);
 Uri videoUri=clip.getUri();

 if (v==player) {
 player.setVideoURI(videoUri);
 player.start();
 }
 else if (v==info) {
 Toast
 .makeText(this, videoUri.toString(), Toast.LENGTH_SHORT)
 .show();
 }
 else {
 Picasso.with(thumbnailLarge.getContext())
 .load(videoUri.toString())
 .fit().centerCrop()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(thumbnailLarge);
 }

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
The Result
Now, when you run the app on a sufficiently-wide screen, and you start
a drag-and-drop operation, the “Video Info” TextView appears and
serves as a drop target:

[image: Drag-And-Drop, Showing Special Drop Target]

Figure 682: Drag-And-Drop, Showing Special Drop Target
Nested Drop Targets
You may have a need for nested drop targets,
where you are listening for drag
events both on some container and on some view inside of that container.
For example, if you are using the drag-and-drop APIs to support reordering
items in a LinearLayout or RecyclerView, there is a good chance that
you will need to have listeners both on that container and on existing
items in the container (e.g., to animate them out of the way to allow
the user to drop in the newly-vacant spot).
Alas, this is an area that has some undocumented behavior changes
in Android 7.0, as Dan Lew uncovered in August 2016.
The
DragDrop/Nougat
sample project illustrates the old and new behavior, plus some code
to get Android 7.0 to behave more like the older versions of Android.
The behavior change is triggered by nested drop targets, which means
we need a nested layout, such as this one:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout android:id="@+id/outer_container"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@color/outer_normal"
 android:padding="48dp">

 <FrameLayout
 android:id="@+id/inner_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@color/inner_normal"
 android:padding="48dp">

 <ImageView
 android:id="@+id/thumbnail_large"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@color/image_normal"
 android:contentDescription="@string/icon"
 android:scaleType="centerInside" />
 </FrameLayout>

</FrameLayout>

(from DragDrop/Nougat/app/src/main/res/layout/bug.xml)
Here, we have a FrameLayout holding onto another FrameLayout, which
holds onto an ImageView, each with a different background color:

[image: Garish Background Colors]

Figure 683: Garish Background Colors
Further, suppose that we are interested in drag events for all three of these,
so we call setOnDragListener() for each of them. In the code, we set
the background of a drop target to green when we get an ACTION_DRAG_ENTERED
event for the target, and we revert to the original background in
ACTION_DRAG_EXITED, ACTION_DRAG_ENDED, and ACTION_DROP.
The Behavior Prior to Android 7.0
On Android 6.0 and earlier, drag events are inclusive. In other words,
if the user has dragged an item into the inner FrameLayout, this
is also considered to be inside the outer FrameLayout. From an event
standpoint, the outer FrameLayout only gets an ACTION_DRAG_EXITED
event when the dragged item leaves its outer boundaries.
So, as the user drags an item into our nested drop targets, outer
targets remain green, even as the item enters inner targets:

[image: Dragging Over Outer Drop Target on Android 6.0]

Figure 684: Dragging Over Outer Drop Target on Android 6.0

[image: Dragging Over Inner Drop Target on Android 6.0]

Figure 685: Dragging Over Inner Drop Target on Android 6.0

[image: Dragging Over ImageView Drop Target on Android 6.0]

Figure 686: Dragging Over ImageView Drop Target on Android 6.0
Android 7.0 Behavior
However, on Android 7.0, drag events are exclusive. If the user drags
an item into the inner FrameLayout, the item will exit the outer
FrameLayout from a drag-and-drop perspective. So, as the user drags
the item towards the inner-most drop target, the user exits the outer
drop targets, and we restore the backgrounds along the way:

[image: Dragging Over Outer Drop Target on Android 7.0]

Figure 687: Dragging Over Outer Drop Target on Android 7.0

[image: Dragging Over Inner Drop Target on Android 7.0]

Figure 688: Dragging Over Inner Drop Target on Android 7.0

[image: Dragging Over ImageView Drop Target on Android 7.0]

Figure 689: Dragging Over ImageView Drop Target on Android 7.0
Getting Inclusive on Android 7.0
Which approach is “correct” is somewhat immaterial, as we need consistency
across Android OS versions.
The sample app offers one workaround for the discrepancy: a DropTarget
class that provides inclusive behavior on Android 7.0. Basically, it
serves as a composite OnDragListener, forwarding onDrag() calls
to widgets as appropriate. This includes forwarding events to parents
of widgets, if those parents are part of the DropTarget coverage:

package com.commonsware.android.dragdrop;

import android.os.Build;
import android.view.DragEvent;
import android.view.View;
import android.view.ViewParent;
import java.util.ArrayList;

public class DropTarget implements View.OnDragListener {
 private ArrayList<View> views=new ArrayList<>();
 private View.OnDragListener listener;

 public DropTarget on(View... views) {
 for (View v : views) {
 this.views.add(v);
 v.setOnDragListener(this);
 }

 return(this);
 }

 public void to(View.OnDragListener listener) {
 this.listener=listener;
 }

 @Override
 public boolean onDrag(View view, DragEvent dragEvent) {
 if (Build.VERSION.SDK_INT<Build.VERSION_CODES.N) {
 return(listener.onDrag(view, dragEvent));
 }

 boolean result=listener.onDrag(view, dragEvent);
 ViewParent parent=view.getParent();

 while (parent!=null && parent instanceof View) {
 View parentView=(View)parent;

 if (views.contains(parentView)) {
 listener.onDrag(parentView, dragEvent);
 }

 parent=parentView.getParent();
 }

 return(result);
 }
}

(from DragDrop/Nougat/app/src/main/java/com/commonsware/android/dragdrop/DropTarget.java)
For each of the views that DropTarget is set to monitor, the
DropTarget sets itself up as the OnDragListener. In onDrag(),
if we are on a pre-7.0 version of Android, DropTarget just
forwards the event along normally. If, however, we are on Android 7.0
or higher, onDrag():

	Calls onDrag() for the listener attached to the DropTarget,
using the View originally passed into onDrag(), and holding
onto the result boolean

	Walks the chain of parents, calling onDrag() on the listener
for each of those that are part of our monitored set of views

	Returns the value from the original (inner-most) onDrag() call
on the listener

Then, instead of registering the activity as the OnDragListener
like this:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 image=(ImageView)findViewById(R.id.thumbnail_large);
 image.setOnDragListener(this);
 findViewById(R.id.outer_container).setOnDragListener(this);
 findViewById(R.id.inner_container).setOnDragListener(this);
 }

(from DragDrop/Nougat/app/src/main/java/com/commonsware/android/dragdrop/BugActivity.java)
we can use DropTarget:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 image=(ImageView)findViewById(R.id.thumbnail_large);

 new DropTarget()
 .on(image,
 findViewById(R.id.outer_container),
 findViewById(R.id.inner_container))
 .to(this);
 }

(from DragDrop/Nougat/app/src/main/java/com/commonsware/android/dragdrop/InclusiveActivity.java)
The result is more inclusive behavior. In the case of this sample app,
it happens to be sufficient to allow Android 7.0 to behave as does
Android 6.0 and earlier. More sophisticated drag-and-drop implementations
may need a more sophisticated approach than DropTarget to achieve
a similar workaround.
The State of the Bugs
Both bugs filed by Dan Lew have been marked as “FutureRelease”, with a comment
on one indicating that the new exclusive behavior would be restricted
to apps with a targetSdkVersion of 24 or higher. It is unclear exactly
when this change will be released. And, since many apps will have a
targetSdkVersion of 24 or higher to avoid warning messages in Android 7.0+
multi-window, the proposed fixes may not help much.
Pondering Standards
Framework-supplied drag-and-drop has not been all that popular to date.
As a result, there are no common conventions for how to designate
drop targets for the user. Similarly, as of mid-2016, there appears
to be no recommendations for this in the Material Design guidelines from
Google.
Eventually, the Android development community will start to coalesce around
certain patterns, with or without Google’s assistance. Experiment now,
but watch for conventions to emerge, then adopt those conventions, where
they make sense for your app.
Pondering Accessibility
Drag-and-drop is not particularly accessible. Visually-impaired users
may have difficulty discerning where one can drag from and where one can
drag to. Motor-impaired users may have difficulty doing the gesture
to initiate drag-and-drop or in dragging the shadow to the desired
location.
As a result, while drag-and-drop is a worthy feature, ensure that it
is not the only option for performing some action. There should be
some other way to do that action, and perhaps more than one other way
to do that action, such as:

	Keyboard shortcuts

	Copy-and-paste, perhaps using action modes

	Direct manipulation (e.g., use drag-and-drop on overview screens with
lists, plus offer an action bar item or other affordances on detail
screens to perform the same action)

Keyboard and Mouse Input
More and more Android users are starting to use external keyboards and mice
with their devices. Sometimes, the device is designed for such use,
such as the Jide Remix Mini or all-on-one
units like the HP Slate 21.
Some people use Android devices designed for use with a TV
as quasi-desktops. And, starting in 2016, we have Android available on
some Chrome OS devices, most of which rely on keyboard and mouse/trackpad
input.
Over time, more and more Android users are going to be expecting Android
apps to behave like desktop apps with respect to keyboards and mice.
Some of this capability will be built into Android. Some of this capability
will need to be handled by apps or libraries.
In this chapter, we will explore various techniques for making your
Android app more friendly to keyboards and mice.
Prerequisites
Understanding this chapter requires that you have read the core chapters.
Many of the examples use RecyclerView, so you may wish to review
that chapter if you have not used RecyclerView
very much. Also, some of the examples are based on drag-and-drop samples
covered elsewhere in the book.
Offering Keyboard Shortcuts
One thing that users will expect from desktop-style apps is the ability
to use keyboard shortcuts. Basic keyboard navigation comes “for free”
for a lot of Android use cases, though in some situations you will
need to add in your own keyboard smarts, such as for
navigating a RecyclerView. And some keyboard
shortcuts will come automatically, such as Ctrl-C and Ctrl-V for copy
and paste within an EditText.
Anything beyond that, though, you would have to provide yourself.
Action Bar Item Shortcuts
The simplest way to add keyboard shortcuts is to use android:alphabeticShortcut
or android:numericShortcut on your <item> elements in a <menu> resource
that you use to populate an action bar. Android will automatically support
those in concert with the Ctrl key. So, for example, if you had:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/play_video"
 android:alphabeticShortcut="p"
 android:icon="@drawable/ic_movie_white_24dp"
 android:showAsAction="always"
 android:title="@string/menu_video" />
 <item
 android:id="@+id/show_thumbnail"
 android:alphabeticShortcut="t"
 android:icon="@drawable/ic_insert_photo_white_24dp"
 android:showAsAction="always"
 android:title="@string/menu_thumbnail" />
</menu>

(from KBMouse/HotkeysN/app/src/main/res/menu/actions.xml)
then your onOptionsItemSelected() method would be called not only if the
user taps on the action bar items on-screen, but also if the user pressed
Ctrl-P or Ctrl-T on the keyboard.
As the names suggest, android:alphabeticShortcut takes a letter and
android:numericShortcut takes a number. However, try to avoid overriding
existing shortcuts with unrelated logic. For example, you might consider
using android:alphabeticShortcut="v" for a “play video” action, but
that would conflict with the Ctrl-V shortcut used for paste. You would
be better off going with android:alphabeticShortcut="p" to avoid the conflict.
In Android 8.0+, in Java, we can call variations on setAlphabeticShortcut(),
setNumericShortcut(), and setShortcuts() that allow us to change the modifier
keys from the default. There are equivalent android:alphabeticModifiers and
android:numericModifiers attributes for <item> elements in a menu resource,
to indicate the modifier keys to be used with alphabetic and numeric shortcuts.
Arbitrary Hotkeys
You may find that the action bar approach is insufficient:

	It may not make sense to have action bar items for the particular operations
that you want to offer keyboard shortcuts for

	You may want to support key combinations other than Ctrl and a letter
or number

You are welcome to make anything be a keyboard shortcut or “hotkey”, by
overriding the appropriate KeyEvent methods in an Activity or View.
The
KBMouse/Hotkeys
sample project is a clone of the DragDrop/Simple sample app from
the chapter on supporting drag-and-drop. As with the original app, we
show a list of available videos on the device, which the user can play or
view a larger thumbnail from the video. However, in addition to drag-and-drop
as a way of doing those things, this sample app also supports keyboard shortcuts:

	Alt-Right to play the video

	Ctrl-Right to view the large thumbnail

However, these keyboard shortcuts imply that the user has chosen a video
to play. So, this sample app blends in the keyboard-enabled RecyclerView
code from the corresponding section in the RecyclerView chapter.
So, as the user presses the Down and Up arrow keys, the chosen
row is highlighted. That will be the video that we work with, if the user
then goes and presses Alt-Right or Ctrl-Right.
This means that we need our play-the-video and show-the-large-thumbnail
code to be accessible from multiple entry points, so we pull those out
into dedicated playVideo() and showLargeThumbnail() methods that
take the video Uri as input:

 private void playVideo(Uri videoUri) {
 player.setVideoURI(videoUri);
 player.start();
 }

 private void showLargeThumbnail(Uri videoUri) {
 Picasso.with(thumbnailLarge.getContext())
 .load(videoUri.toString())
 .fit().centerCrop()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(thumbnailLarge);
 }

(from KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
We then use those from the ACTION_DROP processing, for when the user drops
the video into either the VideoView (referenced in the player field) or
the ImageView:

 case DragEvent.ACTION_DROP:
 ClipData.Item clip=event.getClipData().getItemAt(0);
 Uri videoUri=clip.getUri();

 if (v==player) {
 playVideo(videoUri);
 }
 else {
 showLargeThumbnail(videoUri);
 }

 break;

(from KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
Handling the keyboard shortcuts is relatively straightforward, courtesy
of the onKeyDown() callback that we override:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode==KeyEvent.KEYCODE_DPAD_RIGHT && event.getRepeatCount()==0) {
 int position=adapter.getCheckedPosition();

 if (position>=0) {
 Uri videoUri=adapter.getVideoUri(position);

 if (event.isAltPressed()) {
 playVideo(videoUri);
 }
 else if (event.isCtrlPressed()) {
 showLargeThumbnail(videoUri);
 }

 return(true);
 }
 }

 return(super.onKeyDown(keyCode, event));
 }

(from KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
We are passed an int keycode (keyCode) and the full KeyEvent for whatever
key that the user pressed. If the main key was Right
(identified as KEYCODE_DPAD_RIGHT for historical reasons, and to support
D-pad directional navigation options), we find out which row in the RecyclerView
is checked, if any. If we have a checked row, we find out what the Uri
is of the video, then call isAltPressed() and isCtrlPressed() on the
KeyEvent to find out which modifier key was pressed in conjunction with
Right, if any. If we have a match, we call the associated playVideo()
or showLargeThumbnail() method.
onKeyDown() tends to model user expectations, in that the user expects
the event to occur when the key is pressed. However, if the user continues
holding down the key, we will get a stream of onKeyDown() calls. That is
why we also check getRepeatCount(), to ignore the repeated keypresses,
so we only try playing the video or showing the large thumbnail once if the
user holds down Alt-Right or Ctrl-Right.
Android 7.0 Keyboard Shortcuts Helper
The next challenge is letting the user know what keyboard shortcuts
are available. Historically, our primary option would be to hope
that the user reads the app’s documentation.
(you can stop laughing now)
Android 7.0 recognizes this and provides a system-wide keyboard shortcuts
helper. The user can invoke this using one keyboard shortcut that (hopefully)
the user will remember: Meta-/. On a Windows-centric keyboard, the Meta
key is the one with the Windows logo on it.
On pre-N devices, you could offer your own keyboard shortcut mapped to
Alt-/ and pop up your own keyboard shortcut dialog. Since / is neither
a letter or a number, and since having a keyboard shortcut action bar item
might not make sense, you would do this using the onKeyDown() technique
profiled in the previous section.
In the
KBMouse/HotkeysN
sample project, we will see how to:

	Add our own information to the keyboard shortcuts helper

	Show our own keyboard shortcuts helper on pre-N devices

	Use action bar item alphabetic shortcuts

Mostly, the project is a clone of the hotkey sample shown above, with
the build.gradle file updated to build for Android 7.0:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.android.support:support-fragment:27.1.1'
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 implementation 'com.squareup.picasso:picasso:2.5.2'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 applicationId "com.commonsware.android.kbmouse.hotkeys.n"
 minSdkVersion 23
 targetSdkVersion 27
 }
}

(from KBMouse/HotkeysN/app/build.gradle)
We have a menu resource now for our action bar, which happens to be the
one shown towards the start of this chapter:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/play_video"
 android:alphabeticShortcut="p"
 android:icon="@drawable/ic_movie_white_24dp"
 android:showAsAction="always"
 android:title="@string/menu_video" />
 <item
 android:id="@+id/show_thumbnail"
 android:alphabeticShortcut="t"
 android:icon="@drawable/ic_insert_photo_white_24dp"
 android:showAsAction="always"
 android:title="@string/menu_thumbnail" />
</menu>

(from KBMouse/HotkeysN/app/src/main/res/menu/actions.xml)
We inflate that menu resource in onCreateOptionsMenu() using the typical
recipe:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);

 return(super.onCreateOptionsMenu(menu));
 }

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
In onOptionsItemSelected(), we need to confirm that the user has selected
a row in the RecyclerView using the keyboard. If that is the case, we can
play the video or show the thumbnail, depending upon which action bar item
the user used. Otherwise, we show a Toast to point out the problem:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 int position=adapter.getCheckedPosition();

 if (item.getItemId()==R.id.play_video) {
 if (position>=0) {
 playVideo(adapter.getVideoUri(position));
 }
 else {
 Toast.makeText(this, R.string.msg_choose,
 Toast.LENGTH_LONG).show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.show_thumbnail) {
 if (position>=0) {
 showLargeThumbnail(adapter.getVideoUri(position));
 }
 else {
 Toast.makeText(this, R.string.msg_choose,
 Toast.LENGTH_LONG).show();
 }

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
Alternatively, you might elect to disable or hide those action
bar items until the user selects a row with the keyboard.
We do not need to do anything special in our code to handle the alphabetic
shortcuts — those are applied by Android automatically, routing to the
same onOptionsItemSelected(). In other words, whether the user chooses
the action bar item via a keyboard, mouse, or touchscreen, our same code runs.
The user will find out about those shortcuts through a keyboard shortcuts
helper. On Android 7.0 and higher, the system will provide one for us. Note
that this helper is implemented as a system-supplied dialog-themed activity.
As such, our activity is paused (as we no longer get input) but not stopped
(as the helper dialog is not full-screen).
We do not need to do anything special in our code to enable the keyboard
shortcuts helper on Android 7.0. However, that helper only knows about our
action bar item alphabetic shortcuts, plus system-wide shortcuts. It does
not know anything about the Alt-Right and Ctrl-Right shortcuts that
we are handling ourselves. However, we can override onProvideKeyboardShortcuts()
in our activity to add information to this dialog about our custom shortcuts:

 @TargetApi(Build.VERSION_CODES.N)
 @Override
 public void onProvideKeyboardShortcuts(
 List<KeyboardShortcutGroup> data, Menu menu, int deviceId) {
 super.onProvideKeyboardShortcuts(data, menu, deviceId);

 List<KeyboardShortcutInfo> shortcuts=new ArrayList<>();
 String caption=getString(R.string.menu_video);

 shortcuts.add(new KeyboardShortcutInfo(caption,
 KeyEvent.KEYCODE_DPAD_RIGHT, KeyEvent.META_ALT_ON));

 caption=getString(R.string.menu_thumbnail);
 shortcuts.add(new KeyboardShortcutInfo(caption,
 KeyEvent.KEYCODE_DPAD_RIGHT, KeyEvent.META_CTRL_ON));
 data.add(new KeyboardShortcutGroup(getString(R.string.msg_custom),
 shortcuts));
 }

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
This is not especially well documented at this point. What seems to work
is:

	Create a new List of KeyboardShortcutInfo objects

	Add one of those for each custom shortcut, via the KeyboardShortcutInfo
constructor, where you provide a description, the primary key, and the modifier
(e.g., META_ALT_ON) for the shortcut

	Wrap the List of KeyboardShortcutInfo objects in a KeyboardShortcutGroup,
with your own caption for the group

	Add that KeyboardShortcutGroup to the passed-in List

This gives us:

[image: Android 7.0 Keyboard Shortcuts Helper, With Custom Info]

Figure 690: Android 7.0 Keyboard Shortcuts Helper, With Custom Info
The alphabetic shortcuts from the menu appear in a group whose name matches
our activity’s label. That is followed by our “Custom App Hotkeys” group.
Ideally, these two groups would be merged, since both lists are fairly short
and both pertain to this app. While we might be able to retrieve the existing
group from the supplied list of KeyboardShortcutGroup objects and modify
it, since that is not documented, that is not safe.
This shortcut helper dialog is only available on Android 7.0. For consistency,
it might be nice to offer a similar helper on older devices. To do that, we
need to find out when the user presses Meta-/ on those older devices,
which we handle in onKeyDown():

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (event.getRepeatCount()==0) {
 if (keyCode==KeyEvent.KEYCODE_DPAD_RIGHT) {
 int position=adapter.getCheckedPosition();

 if (position>=0) {
 Uri videoUri=adapter.getVideoUri(position);

 if (event.isAltPressed()) {
 playVideo(videoUri);
 }
 else if (event.isCtrlPressed()) {
 showLargeThumbnail(videoUri);
 }

 return(true);
 }
 }
 else if (keyCode==KeyEvent.KEYCODE_SLASH &&
 event.isMetaPressed() &&
 Build.VERSION.SDK_INT<Build.VERSION_CODES.N) {
 new ShortcutDialogFragment().show(getSupportFragmentManager(),
 "shortcuts");

 return(true);
 }
 }

 return(super.onKeyDown(keyCode, event));
 }

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
On those devices, we show a ShortcutDialogFragment, which just displays
an AlertDialog with some simple text about our shortcuts:

package com.commonsware.android.kbmouse.hotkeys;

import android.annotation.TargetApi;
import android.app.AlertDialog;
import android.app.Dialog;
import android.os.Build;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
public class ShortcutDialogFragment extends DialogFragment {
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 AlertDialog.Builder builder=new AlertDialog.Builder(getActivity());
 Dialog dlg=builder
 .setTitle(R.string.title_shortcuts)
 .setMessage(R.string.msg_shortcuts)
 .setPositiveButton(android.R.string.ok, null)
 .create();

 return(dlg);
 }
}

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/ShortcutDialogFragment.java)
Not every device will have a Meta key — the Pixel C’s keyboard dock,
for example, lacks this key. However, we have no good way of determining
if a given hardware keyboard has a Meta key. Our options would be:

	To offer keyboard shortcuts help using a different key combination,
even if that is non-standard with respect to Android 7.0

	Ignore the problem, not offering keyboard shortcuts help on such devices,
until such time as there is an official solution

Custom Copy-and-Paste
Since the alphabetic shortcuts for action bar items are triggered via
the Ctrl key, one can have action bar items for Ctrl-C and Ctrl-V,
offering custom copy and paste shortcuts for your activity. This is
particularly important for accessibility, when your app is reliant upon
something else to get content from one point to another. For example,
custom copy and paste options could be used as alternatives to
drag and drop, including Android 7.0’s cross-app drag-and-drop.
The
KBMouse/CopyPaste
sample project is a clone of
the cross-app drag-and-drop sample, with
two app modules: drag/ and drop/. This time, though, we are also
going to allow the photo to be copied to the clipboard in drag/ and
pasted from the clipboard in drop/, as a more accessible alternative.
As a side benefit, this will work even on single-window environments,
whereas cross-app drag-and-drop assumes that both apps are visible at
the same time.
The drag/ app has a menu resource that contains our copy item,
with android:alphabeticShortcut set to c:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/copy"
 android:alphabeticShortcut="c"
 android:icon="@drawable/ic_content_copy_white_24dp"
 android:showAsAction="ifRoom"
 android:title="@android:string/copy" />
</menu>

(from KBMouse/CopyPaste/drag/src/main/res/menu/actions.xml)
We load that resource in onCreateOptionsMenu() as normal. In
onOptionsItemSelected(), we implement the copy by getting the
ClipboardManager system service and calling setPrimaryClip() to
populate the clipboard:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.copy) {
 getSystemService(ClipboardManager.class)
 .setPrimaryClip(buildClip());
 Toast
 .makeText(this, R.string.msg_copy, Toast.LENGTH_SHORT)
 .show();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from KBMouse/CopyPaste/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
Note that we use the API Level 23+ edition of getSystemService(),
the one that takes the Java class object for the system service as a
parameter (instead of a service name) and returns to us the system
service already in the proper data type.
What we put on the clipboard is the result of buildClip(), which creates
a ClipData around a Uri to the photo that we are publishing from this app:

 private ClipData buildClip() {
 Uri uri=PROVIDER
 .buildUpon()
 .appendEncodedPath(StreamProvider.getUriPrefix(AUTHORITY))
 .appendEncodedPath("assets/FreedomTower-Morning.jpg")
 .build();

 return(ClipData.newRawUri(getString(R.string.msg_photo), uri));
 }

(from KBMouse/CopyPaste/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
We happen to be using StreamProvider
to serve the photo straight from assets, and so we are building up
a Uri pointing to that asset.
The drop/ app also has a menu resource, this one set up for a paste
action tied to Ctrl-V:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/paste"
 android:alphabeticShortcut="v"
 android:icon="@drawable/ic_content_paste_white_24dp"
 android:showAsAction="ifRoom"
 android:title="@android:string/paste" />
</menu>

(from KBMouse/CopyPaste/drop/src/main/res/menu/actions.xml)
And here, onOptionsItemSelected() handles the paste request by getting
the Uri off the clipboard and using that, in much the same way that
we use the Uri dropped on our UI:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.paste) {
 boolean handled=false;

 ClipData clip=
 getSystemService(ClipboardManager.class)
 .getPrimaryClip();

 if (clip!=null) {
 ClipData.Item clipItem=clip.getItemAt(0);

 if (clipItem!=null) {
 imageUri=clipItem.getUri();

 if (imageUri!=null) {
 showThumbnail();
 handled=true;
 }
 }
 }

 if (!handled) {
 Toast
 .makeText(this, "Could not paste an image!", Toast.LENGTH_LONG)
 .show();
 }

 return(handled);
 }

 return(super.onOptionsItemSelected(item));
 }

(from KBMouse/CopyPaste/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
Note that we do not do any MIME type checking to see if the Uri points
to an image that we can use. We are relying on Picasso to show an error
image if it is unable to use the Uri, as part of the showThumbnail()
processing:

 private void showThumbnail() {
 Picasso.with(this)
 .load(imageUri)
 .fit().centerCrop()
 .placeholder(R.drawable.ic_photo_size_select_actual_black_24dp)
 .error(R.drawable.ic_error_black_24dp)
 .into(image);
 }

(from KBMouse/CopyPaste/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)
A more sophisticated app might check to see if the MIME type associated
with the Uri made sense, using either ContentResolver or DocumentFile.
That way, we could offer a custom error message if the user attempted
to copy something else.
However, we do have crude logic to handle:

	an empty clipboard

	a ClipData with no items

	a ClipData without a Uri (e.g., plain text copied to the clipboard)

Physical Keyboards and Focusing
In an article complaining about Android’s tablet support,
Ars Technica’s Ron Amodeo pointed out an interesting problem for
devices with physical keyboards: setting the focus properly when
an activity starts up. This can be addressed in a number of ways;
this section shows how you can use
a custom BindingAdapter and the data binding framework
to help manage this problem.
The Problem
Suppose that you have a form that has a mix of widgets in it, including
one or more EditText widgets. In particular, suppose that one of the
EditText widgets is near the beginning of the activity’s layout.
If you allow that widget to get the focus when the activity starts up,
and the device does not have a physical keyboard, the input method editor
(IME, a.k.a., “soft keyboard”) appears immediately. This can be annoying to users,
as perhaps they do not want to type anything into that EditText. Depending
on the orientation of the phone and other settings, either the IME
ties up a bunch of screen space that could be used for
other things, or the user cannot see anything other than the full-screen
landscape IME.
To save the user having to keep dismissing the IME, you might elect to
give some other widget the focus at the outset.
However, for devices with a physical keyboard, no IME will appear.
And, for users who do want to start typing right away, having the
focus lie elsewhere is aggravating.
It would be cool if Android offered a android:requestFocus attribute that took a
few possible values:

	
true, meaning this widget always got the focus (replacing the
[requestFocus/] child element used for this today)

	
false, the default

	
ifHardKeyboard, meaning this widget should get the focus for
devices with a physical keyboard

	
ifNoHardKeyboard, meaning this widget should get the focus for
devices without a physical keyboard

Layouts might then use android:requestFocus on two widgets, one
with ifHardKeyboard and one with ifNoHardKeyboard, to designate
which widget should get the focus in either case.
Alas, this attribute does not exist. However, with a bit of work,
and the assistance of the data binding framework,
we can implement something fairly close to it, as is demonstrated
in the
DataBinding/Focus
sample project.
A requestFocus BindingAdapter
To invent new View attributes, like the proposed requestFocus attribute,
we need a BindingAdapter. The @BindingAdapter annotation can be applied
to a static method that takes a View (or some subclass, if it only applies
to certain view types) and a parameter indicating what sort of attribute
value it expects. Then, it is up to the method to actually update the
View as needed.
So, the RequestFocusActivity that demonstrates this feature has
a bindRequestFocus() @BindingAdapter method:

 @BindingAdapter("app:requestFocus")
 public static void bindRequestFocus(View v, String focusMode) {
 Configuration cfg=v.getResources().getConfiguration();
 boolean hasNoKeyboard=
 cfg.keyboard==Configuration.KEYBOARD_NOKEYS;
 boolean keyboardHidden=
 cfg.hardKeyboardHidden==Configuration.HARDKEYBOARDHIDDEN_YES;
 boolean result=false;

 if (TRUE.equals(focusMode)) {
 result=true;
 }
 else if (IF_HARD_KEYBOARD.equals(focusMode)) {
 if (!hasNoKeyboard && !keyboardHidden) {
 result=true;
 }
 }
 else if (IF_NO_HARD_KEYBOARD.equals(focusMode)) {
 if (hasNoKeyboard || keyboardHidden) {
 result=true;
 if (hasNoKeyboard) v.setFocusableInTouchMode(true);
 }
 }
 else {
 throw new IllegalArgumentException("Unexpected focusMode value: "+focusMode);
 }

 if (result) {
 v.setFocusable(true);
 v.requestFocus();
 }
 }

(from DataBinding/Focus/app/src/main/java/com/commonsware/android/focusbinding/RequestFocusActivity.java)
Unfortunately, there is no obvious way to constrain a BindingAdapter to
some custom enumerated roster of values. So, we have bindRequestFocus()
accept a String, and we throw an IllegalArgumentException if the
attribute value is not true, if the attribute is not one of three recognized
values:

 private static final String TRUE="true";
 private static final String IF_HARD_KEYBOARD="ifHardKeyboard";
 private static final String IF_NO_HARD_KEYBOARD="ifNoHardKeyboard";

(from DataBinding/Focus/app/src/main/java/com/commonsware/android/focusbinding/RequestFocusActivity.java)
(false is skipped as a potential value, but you could easily extend
this to accept and ignore that value)
The key portion of this method is determining whether or not the user
has access to a physical keyboard. This has two components:

	Does the device have a physical keyboard?

	Is the physical keyboard presently available?

The latter might be “no” for devices with a sliding keyboard, where
the keyboard exists but is not presently exposed.
Using a Configuration object, we set up hasNoKeyboard and
keyboardHidden boolean values for those two components. Then,
we will call setFocusable(true) and requestFocus() on the View
if:

	the attribute value is true, or

	the attribute value is ifHardKeyboard and the device has a physical
keyboard and the keyboard is not hidden, or

	the attribute value is ifNoHardKeyboard and either the device lacks
a physical keyboard or the physical keyboard is hidden

We also call setFocusableInTouchMode(true) if the device has no
physical keyboard, to ensure that the widget in question can be focused
in touch mode before we try setting its focus.
Using the BindingAdapter
The syntax for our attributes is a bit different than what we aimed
for:

	We use the app prefix rather than android

	The value has to be a binding expression, otherwise the data binding
framework ignores it, so we cannot just use a simple string, but instead
have to wrap it in an expression (e.g., @{"ifNoHardKeyboard"})

But, we can use app:requestFocus as needed, such as in this layout:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/a_button"
 app:requestFocus='@{"ifNoHardKeyboard"}' />

 <EditText
 android:id="@+id/editText1"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:hint="@string/str_1st_field"
 android:inputType="text"
 app:requestFocus='@{"ifHardKeyboard"}' />

 <EditText
 android:id="@+id/editText2"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:hint="@string/str_2nd_field"
 android:inputType="text" />

 </LinearLayout>
</layout>

(from DataBinding/Focus/app/src/main/res/layout/request_focus.xml)
Here, if the device has an available physical keyboard, we put the focus on the
first EditText widget, so that the user can start typing right away.
But, if the device lacks an available physical keyboard, we put the focus
on the Button, to avoid the IME appearing right away.
Offering Mouse Context Menus
One thing that users of mice and trackpads are used to having are context
menus, typically displayed as the result of a right-mouse click. More
specifically, they are used to a popup menu appearing adjacent to the
mouse pointer when they click the right-mouse button.
Android has had its own context menu system since API Level 1. However,
it does not look a lot like what desktop users are used to. We can create
such a menu ourselves, but it takes a little work, due to bugs and limitations
in Android.
Ideally, we would use PopupMenu. This does pretty much what the class
name implies: displays a popup window containing a menu, driven by a menu
resource. However, that popup window will appear to drop down from some
anchor View that we specify, and there is no way in the public API to
adjust its position to be closer to the mouse pointer. Hence, for larger
widgets — such as rows in a ListView or RecyclerView — PopupMenu
will result in a menu that can appear fairly far away from the mouse
pointer, which will be aggravating.
PopupWindow and ListPopupWindow both allow for fine-grained positioning,
which make them better candidates for our purposes. Of the two, ListPopupWindow
handles the notion of a scrolling list, which may be useful for longer
menus. And, we can populate its contents from a simple ListAdapter, like
an ArrayAdapter. The
KBMouse/Context
sample project is a clone of the KBMouse/Hotkeys sample app that
adds in a ListPopupWindow for a mouse-driven context menu… but it takes
a bit of work.
First, we need to define what goes in the list of the ListPopupWindow.
A simple solution for that is to use a string-array resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="popup">
 <item>@string/menu_video</item>
 <item>@string/menu_thumbnail</item>
 </string-array>
</resources>

(from KBMouse/Context/app/src/main/res/values/arrays.xml)
Here, the two items are references to string resources, for internationalization
purposes (in theory, at least).
All of our business logic for adding the context menu lies in the
RowController — just as it handles clicks (to play the video in a standalone
player) and long-clicks (to initiate a drag-and-drop), it can now handle
context menus.
First, in the RowController constructor, we register the RowController
as handling touch events for the row, via setOnTouchListener():

 RowController(View row, ChoiceCapableAdapter<?> adapter) {
 super(row);
 this.adapter=adapter;

 title=(TextView)row.findViewById(android.R.id.text1);
 thumbnail=(ImageView)row.findViewById(R.id.thumbnail);

 row.setOnClickListener(this);
 row.setOnLongClickListener(this);
 row.setOnTouchListener(this);
 }

(from KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java)
That requires RowController to implement the View.OnTouchListener
interface, and therefore requires RowController to override onTouch():

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 if ((event.getButtonState() & MotionEvent.BUTTON_SECONDARY)!=0 &&
 event.getAction()==MotionEvent.ACTION_DOWN) {
 adapter.onChecked(position, true, true);

 String[] items=
 itemView
 .getContext()
 .getResources()
 .getStringArray(R.array.popup);
 ArrayAdapter<String> adapter=
 new ArrayAdapter<>(itemView.getContext(),
 android.R.layout.simple_list_item_1,
 items);
 final ListPopupWindow popup=
 new ListPopupWindow(itemView.getContext());

 popup.setAnchorView(itemView);
 popup.setHorizontalOffset((int)event.getX());
 popup.setVerticalOffset((int)event.getY()-itemView.getHeight());
 popup.setAdapter(adapter);
 popup.setWidth(measureContentWidth(itemView.getContext(), adapter));

 popup.setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long id) {
 if (position==0) {
 ((MainActivity)itemView.getContext())
 .playVideo(videoUri);
 }
 else {
 ((MainActivity)itemView.getContext())
 .showLargeThumbnail(videoUri);
 }

 popup.dismiss();
 }
 });

 popup.show();

 return(true);
 }

 return(false);
 }

(from KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java)
To determine if a given MotionEvent is a trigger for the context menu,
we check two things:

	Is the BUTTON_SECONDARY pressed?

	Is this a “down” event (ACTION_DOWN)?

If yes, we tell our ChoiceCapableAdapter to check this row, so it is clear
to the user what they have right-clicked over.
Then, we load in the string array from the resources and wrap that in
a standard ArrayAdapter. At that point, we can begin configuring the
ListPopupWindow.
The constructor for the ListPopupWindow takes a Context. We grab
the Context from the itemView field of this ViewHolder, which represents
our row.
We then call five configuration methods to set up the look-and-feel
of the ListPopupWindow. The first four are fairly straightforward:

	
setAnchorView() specifies the View that this popup is anchored to.
In this case, we use the row itself (itemView).

	
setHorizontalOffset() and setVerticalOffset() indicate, from the
upper-left corner of the anchor view, where to place the upper-left
corner of the ListPopupView. We want the ListPopupView to be adjacent
to the mouse pointer, and the getX() and getY() values of the
MotionEvent tell us where inside the itemView the user clicked. However,
the default position of the ListPopupWindow is to be anchored to
the lower left corner of the anchor view, not the upper left corner.
To adjust the horizontal position, we can simply use getX(), since
both getX() and the default horizontal position of the ListPopupWindow
are on the left. However, the offset for the vertical position needs to
be a negative value, as we want to raise the ListPopupWindow to where
the mouse pointer is. That value is the difference between the Y
coordinate of the mouse pointer (getY()) and the height of the row
(itemView.getHeight()).

	
setAdapter() provides the ArrayAdapter to populate the list in the
ListPopupWindow.

The fifth method — setWidth() — is more complex than it should be,
due to a bug. Ideally, we would call setWidth(ListPopupWindow.WRAP_CONTENT).
According to the documentation, this will set the width of the ListPopupWindow
to be the width of the content of the adapter. Unfortunately,
this does not work.
And, since that bug has been outstanding since 2013, it is unlikely
that it will ever work.
The workaround — as documented in Stack Overflow –
is to calculate the maximum width of our adapter rows ourselves, then
call setWidth() with that pixel value. This is isolated in a
measureContentWidth() method:

 // based on http://stackoverflow.com/a/26814964/115145

 private int measureContentWidth(Context ctxt, ListAdapter listAdapter) {
 ViewGroup mMeasureParent = null;
 int maxWidth = 0;
 View itemView = null;
 int itemType = 0;

 final ListAdapter adapter = listAdapter;
 final int widthMeasureSpec =
 View.MeasureSpec.makeMeasureSpec(0, View.MeasureSpec.UNSPECIFIED);
 final int heightMeasureSpec =
 View.MeasureSpec.makeMeasureSpec(0, View.MeasureSpec.UNSPECIFIED);
 final int count = adapter.getCount();
 for (int i = 0; i < count; i++) {
 final int positionType = adapter.getItemViewType(i);
 if (positionType != itemType) {
 itemType = positionType;
 itemView = null;
 }

 if (mMeasureParent == null) {
 mMeasureParent = new FrameLayout(ctxt);
 }

 itemView = adapter.getView(i, itemView, mMeasureParent);
 itemView.measure(widthMeasureSpec, heightMeasureSpec);

 final int itemWidth = itemView.getMeasuredWidth();

 if (itemWidth > maxWidth) {
 maxWidth = itemWidth;
 }
 }

 return maxWidth;
 }

(from KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java)
This implementation iterates over the items in the adapter, has the adapter
create row views for each row (using a bit of light caching to try to recycle
row views in simple adapters), then determines the measured width of those
rows. The longest measured width is then used as the result. This works for
simple rows and short lists, which is all we really need here anyway.
Then, we call setOnItemClickListener() to register a listener to find out
when rows in the list in the ListPopupWindow are clicked. This works the
same as with a ListView. In our case, we look at the passed-in position,
and route to the activity’s playVideo() or showLargeThumbnail() methods
according to which list item the user clicked upon. We then dismiss()
the ListPopupWindow, so it goes away after the user clicked on one of the
list items.
Finally, we can show() the ListPopupWindow, so it displays its list
to the user.
From the user’s perspective, right-clicking over one of the videos in the
list offers the context menu:

[image: Right-Mouse Context Menu]

Figure 691: Right-Mouse Context Menu
What is missing is the ability for the user to dismiss the context menu.
If the user clicks outside the ListPopupWindow, it goes away as expected.
However, the underlying click event is still processed. So, if the
user clicks over the VideoView or large thumbnail ImageView, everything
looks fine. If the user clicks over one of the RecyclerView rows… the
clicked-upon video starts playing back in a standalone video player, rather
than just dismissing the ListPopupWindow. This will be addressed in a future
edition of this sample app.
Also note that API Level 23 offers setOnContextClickListener() on View.
This works like setOnClickListener() and setOnLongClickListener(),
letting you know via an OnContextClickListener that the view was
“context-clicked”. However, you do not get details of the touch event,
and so you have no good means of positioning the popup to be near
where it should go.
Offering Tooltips
Users of desktop operating systems, and even Web apps, are used to having
tooltips available on key UI elements (e.g., buttons).
In a mouse-driven environment,
these usually appear after the mouse has hovered over the UI element for
a short while.
Touchscreens can also offer similar contextual help. For example,
if the user long-presses on an action bar item’s icon, a Toast will
appear with the item’s title.
So, there are two pieces to the puzzle of offering tooltips:

	How do you decide when to show a tooltip?

	What is the UI for the tooltip itself?

As with many things in Android, there are two options, depending on what
version of Android you are running on.
Android 7.1 and Older
This section will focus on the first piece — how you decide when to show a
toolip — using a simple Toast
for the tooltip UI. There are
many Android libraries for tooltip UIs,
which you may wish to investigate.
Hover Events
API Level 14 added setOnHoverListener() to View. This, and
the corresponding OnHoverListener interface, allow developers to find
out when the user is “hovering” over a widget. This can be triggered
by a mouse or by some styluses.
The onHover() method of your OnHoverListener will be called
when a change in the state of hovering occurs. You are given the
affected View, along with the MotionEvent that triggered the
state change. The MotionEvent should have one of three actions:

	
ACTION_HOVER_ENTER, meaning that the user has begun hovering
over the view

	
ACTION_HOVER_MOVE, meaning that the user was already hovering
over the view, but has moved the mouse pointer, so the hover position
within the view bounds has changed

	
ACTION_HOVER_EXIT, meaning that the user is no longer hovering
over the view

The
KBMouse/Tooltip
sample project is a clone of the KBMouse/Hotkeys sample app that
adds in tooltip support for long-clicks and hovers. MainActivity
now implements the OnLongClickListener and OnHoverListener
interfaces, so we can register those listeners on
our VideoView and large thumbnail ImageView:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 player=findViewById(R.id.player);

 if (player!=null) {
 player.setOnDragListener(this);
 player.setOnHoverListener(this);
 player.setOnLongClickListener(this);
 }

 thumbnailLarge=findViewById(R.id.thumbnail_large);

 if (thumbnailLarge!=null) {
 thumbnailLarge.setOnDragListener(this);
 thumbnailLarge.setOnHoverListener(this);
 thumbnailLarge.setOnLongClickListener(this);
 }

 setLayoutManager(new LinearLayoutManager(this));
 adapter=new VideoAdapter(getRecyclerView());
 setAdapter(adapter);
 getRecyclerView().requestFocus();

 if (state!=null) {
 isInPermission=
 state.getBoolean(STATE_IN_PERMISSION, false);
 }

 if (hasFilesPermission()) {
 loadVideos();
 }
 else if (!isInPermission) {
 isInPermission=true;

 ActivityCompat.requestPermissions(this,
 new String[] {Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_PERMS);
 }
 }

(from KBMouse/Tooltip/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
We will see why we are not registering for events on the RecyclerView
a bit later in this chapter.
The onLongClick() method for the OnLongClickListener forwards
the event to a showTooltip() method, providing a string resource
with the particular message to show:

 @Override
 public boolean onLongClick(View v) {
 if (v==thumbnailLarge) {
 showTooltip(R.string.tooltip_thumbnail);
 }
 else if (v==player) {
 showTooltip(R.string.tooltip_player);
 }
 else {
 return(false);
 }

 return(true);
 }

(from KBMouse/Tooltip/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
showTooltip() shows a Toast… with a slight wrinkle:

 private void showTooltip(@StringRes int message) {
 if (tooltip!=null) {
 tooltip.cancel();
 }

 tooltip=Toast.makeText(this, message, Toast.LENGTH_LONG);
 tooltip.show();
 }

(from KBMouse/Tooltip/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
If, while a tooltip Toast is showing, the user long-clicks on a
different widget, we want to show that tooltip immediately. By default,
we would have to wait until the first Toast completed its duration.
Toast has a cancel() method that does one of three things:

	If the Toast has not yet been shown, it removes the Toast from
the roster of pending Toasts

	If the Toast is presently showing, it gets rid of the Toast

	If the Toast was shown previously, it does nothing, as nothing is
needed

So, we hold onto the most-recent tooltip Toast in a field named tooltip,
and we cancel() it before showing the next tooltip.
The onHover() method for the OnHoverListener forwards the event
to a private onHover(), where we supply the string resource of the
tooltip message:

 @Override
 public boolean onHover(View v, MotionEvent event) {
 if (v==player) {
 onHover(event, R.string.tooltip_player, player);
 }
 else if (v==thumbnailLarge) {
 onHover(event, R.string.tooltip_thumbnail, thumbnailLarge);
 }
 else {
 return(false);
 }

 return(true);
 }

(from KBMouse/Tooltip/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
And that is where things start to get complicated.
Detecting a Long-Enough Hover
The problem is that while we can find out when the user starts and stops
hovering over a view, we need additional code to determine when some
time has elapsed between those two events. So, for example, if you want
to show a tooltip one second after the user begins hovering over a view,
you need to:

	Arrange to find out when one second has elapsed after the user starts
hovering over the view

	Cancel that work if the user stops hovering over that view, either
preventing the tooltip from appearing (if it has not done so yet) or
perhaps causing the tooltip to vanish immediately (if it is presently being
displayed)

postDelayed() provides a nice cheap way of handling this. We can
schedule a Runnable to be invoked after our one-second delay, and we
can use removeCallbacks() to cancel the Runnable if the user stops
hovering over that widget.
However, we do not know the exact sequence of hover events. It may be
that we are given an ACTION_HOVER_ENTER event for a new widget prior to
ACTION_HOVER_EXIT of the previous widget. Hence, we need to track per-widget
state.
In this case, the sample app holds onto a Runnable per widget for which
we are displaying tooltips, in a SparseArray object:

 private SparseArray<Runnable> hoverTimers=
 new SparseArray<>();

(from KBMouse/Tooltip/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
A SparseArray is a data structure that allows ArrayList-style indexed
access to objects, but it does not assume that the index values are
consecutive. Basically, it replaces a HashMap of Integer objects.
The SparseArray allows us to use widget IDs as the index values, so
as long as each of our tooltip-enabled widgets have unique IDs, we can
track their state in the SparseArray.
Our private edition of onHover() uses this SparseArray:

 private void onHover(MotionEvent event, @StringRes final int message,
 final View anchor) {
 Runnable hover=hoverTimers.get(anchor.getId());

 if (hover==null &&
 (event.getAction()==MotionEvent.ACTION_HOVER_ENTER ||
 event.getAction()==MotionEvent.ACTION_HOVER_MOVE)) {

 hover=new Runnable() {
 @Override
 public void run() {
 showTooltip(message);
 }
 };

 hoverTimers.put(anchor.getId(), hover);
 thumbnailLarge.postDelayed(hover, TOOLTIP_DELAY);
 }
 else if (hover!=null &&
 event.getAction()==MotionEvent.ACTION_HOVER_EXIT) {
 thumbnailLarge.removeCallbacks(hover);
 hoverTimers.remove(anchor.getId());
 }
 }

(from KBMouse/Tooltip/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
There are two scenarios that we care about:

	The user starts hovering over a widget, and we have not yet set up the
timer Runnable, as it does not exist in the SparseArray. So, we create
the Runnable to show our tooltip (via showTooltip()), stuff it in
the SparseArray, and use postDelayed() to trigger the Runnable
after a second.

	The user stops hovering over a widget, and we already have the
timer Runnable. In this case, we call removeCallbacks() to ensure
that this Runnable is not run (if it has not run already), plus remove
it from the SparseArray.

The net effect is that our Runnable will be invoked if one second
elapses after the user starts hovering over a widget and the user
has not stopped hovering over that same widget.
showTooltip() raises a Toast to serve as a crude tooltip:

 private void showTooltip(@StringRes int message) {
 if (tooltip!=null) {
 tooltip.cancel();
 }

 tooltip=Toast.makeText(this, message, Toast.LENGTH_LONG);
 tooltip.show();
 }

(from KBMouse/Tooltip/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)
However, it is possible that the user displays one tooltip, then quickly
hovers over another widget, and that our one-second delay is shorter
than the Toast display duration. So, we hold onto each Toast that we
display, and we cancel() it before showing the next one. That way,
if one Toast is outstanding when we need to show a different Toast,
we can make the switch immediately, rather than having to wait for the
rest of the first Toast display duration to elapse before showing the
next one.
What We Are Missing
However, the tooltip for the VideoView will not display. VideoView
is an odd widget, consuming a lot of touch events for no really good reason.
Most likely, for a sophisticated Android app, you will want to skip
VideoView and use something else, such as a MediaPlayer tied to your
own SurfaceView or TextureView.
This sample app does not attempt to provide tooltips for the rows
in the RecyclerView. Even though we are set up to show a tooltip for
the RecyclerView overall, the hover events are for the rows, not
the RecyclerView, as the RecyclerView itself is not visible. If you
wanted tooltips here, your choices are:

	Have the tooltip for the whole RecyclerView, forwarding hover events
from rows up to your tooltip-management logic

	Have tooltips per row, using some
different system than our SparseArray, as the row widget IDs will all
be the same by default

Android 8.0+
Android has had the occasional tooltip-like feature, such as the
tooltip that you get on action bar items when long-pressing them.
Android 8.0 extends this to all widgets. Simply provide the desired text
via android:tooltipText or setTooltipText(). A tooltip will then appear
when either the user long-presses the widget or if the user hovers over the
widget. In both cases, though, if the long-press or hover event is consumed
by something else, the tooltip is not shown.
The KBMouse/TooltipO
sample project is a clone of the preceding sample app, where we switch to using the tooltip
implementation in Android 8.0+.
Specifically, our large-screen layout has tooltips for the VideoView
and ImageView widgets, using android:tooltipText:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">

 <android.support.v7.widget.RecyclerView android:id="@+id/video_list"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1" />

 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:orientation="vertical">

 <FrameLayout
 android:id="@+id/video_frame"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_marginBottom="4dp"
 android:layout_weight="1"
 android:padding="4dp">

 <VideoView
 android:id="@+id/player"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="center"
 android:tooltipText="@string/tooltip_player" />
 </FrameLayout>

 <FrameLayout
 android:id="@+id/thumbnail_frame"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:padding="4dp">

 <ImageView
 android:id="@+id/thumbnail_large"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerInside"
 android:tooltipText="@string/tooltip_thumbnail" />
 </FrameLayout>
 </LinearLayout>
</LinearLayout>

(from KBMouse/TooltipO/app/src/main/res/layout-w800dp/main.xml)
The result are tooltips reminiscent of those from the original sample:

[image: Tooltip From Long-Press of ImageView]

Figure 692: Tooltip From Long-Press of ImageView
Hovering over either widget, or long-pressing either widget, will bring up the tooltip.
Pointer Capture
On a desktop operating system, the “pointer” refers to the mouse cursor. This
feature is normally handled by the operating system.
“Pointer capture” refers to when a widget blocks the normal mouse cursor,
typically because it is going to use the mouse in some way for which the
normal pointer would be inappropriate.
In Android 8.0+, you can call requestPointerCapture() and releasePointerCapture()
to have a widget operate in pointer-capture mode or not.
The vast majority of Android apps should not need this.
Viewing PDFs
The Portable Document Format — better known as PDF — has been
around for over two decades, and it is still going strong today. As
a result, we often have a need to show PDF files to users, whether
those files are:

	Shipped with the app, such as documentation

	Downloaded by the app, such as email attachments for the mail client
that you are writing

	Otherwise managed by the app, such as with PDF files held in cloud
storage that your app is managing on behalf of the user

	And so on

This is another one of those topics that seems fairly simple on the surface,
but can get complicated based on your requirements. In particular, if
you want to try to present the PDF to the user in your app, as opposed
to launching some external PDF viewing app, while you have a few options,
they all have their issues.
In this chapter, we will review several ways of displaying a PDF to
the user, so you can choose what approach (or approaches) are the best
fit for your requirements.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
The Criteria
If there are several ways of displaying a PDF, we need some criteria by which
to evaluate those options and make our choice. Here are some likely criteria
to use, though you may have others that are more specific to your app’s
requirements.
Where is the PDF?
Most of the PDF-viewing options assume that the PDF is on the device
already. However, even within that, there are a few possibilities as
to where the PDF might be:

	Internal storage (e.g., getFilesDir()) of your app

	External storage (e.g., getExternalFilesDir()) associated with your app

	Common locations on external storage, such as the standard Documents directory

	Some Uri that you obtained via ACTION_GET_CONTENT or ACTION_OPEN_DOCUMENT

	An asset or raw resource within your app

And, occasionally, developers get boxed into a corner, with a requirement to
show a PDF without downloading the PDF.
Does It Work Offline?
The opposite problem is the offline viewing experience. If the PDF is on
the device already, ideally, the PDF-viewing technology can show that PDF
without having to have an active Internet connection. After all, many users
do not have continuous Internet access.
How Complex is the PDF?
While the PDF file format has been around for years and years, it has
expanded over that time. In the beginning, PDF did not offer things like
form fields, annotations, and the like. The more feature-rich your PDF
is, the more likely it is that some PDF viewers may be incapable of handling
all of those features.
This is not restricted to in-app viewing solutions. PDF viewing apps vary
in capability, and there will be some that either do not support your
desired features (e.g., allow the user to fill in forms) or only will
if the user unlocks the feature through some purchase.
How Stable is the Solution?
Many PDF-viewing apps are continuously updated. If the user happens to choose
one that is not, that is the user’s fault, not yours.
However, when you build in PDF viewing into your app, now you need to ensure
that your solution is up to date and likely to stay stable for the duration
of your app’s use.
How Private is the PDF?
The big one, in terms of the major options for viewing the PDF, is the degree
of privacy that is tied to that PDF.
If the document comes from the user — for example, it came in an email attachment
to the user’s inbox that you are managing — you should assume a modest level
of privacy. Do not ship that PDF to other servers without the user’s approval.
However, if the user wants to view the PDF, you should not be afraid of allowing
the user to do so using the user’s chosen PDF viewing app.
If the document is more tightly controlled by your app — for example, it came
as an attachment to some secure messaging client that you are writing — you
may be nervous about granting other apps access to that PDF. After all, you
do not necessarily know what those other apps might do with the PDF.
Where things get very messy is when the developers think that they “own” the
PDF, and therefore are trying to restrict that PDF’s access, much as how a DRM
solution tries to restrict access to videos. Many PDF-viewing apps offer printing,
sharing, and other things that the user might want, but that the developers
do not want. In truth, it is rather likely that the user can get to the PDF anyway,
whether the developers like it or not, by various means (e.g., extracting PDFs
packaged in the APK using an ordinary ZIP file utility). But, this seems to be
the #1 reason why some developers are trying to view PDF files within their own
app: treating the user as the enemy.
The Classic Solution: ACTION_VIEW
The quintessential solution — and the one that you should focus on first — is
to use startActivity() with an ACTION_VIEW Intent, where the Uri in that
Intent points to your PDF file:

startActivity(new Intent(Intent.ACTION_VIEW, uriToThePdf));

This is quick, easy, and gives the user control over how the PDF is rendered, as
they can (usually) choose the PDF viewer to use.
However, this is not a universal solution:

	Android itself does not ship with a PDF viewer app, and therefore some devices
will not ship with a PDF viewer app. You wind up with an ActivityNotFoundException
from your startActivity() call, and then you need to guide the user to install
a PDF viewer app.

	The user may not be able to install such an app, due to limitations imposed
by device owner APIs or because the user is using the device on a secondary
user account that lacks app-installation capability.

	For maximum compatibility, you will need to set up a FileProvider (or the
equivalent) and serve your PDF through it, particularly on Android 7.0+ devices,
where the file scheme for Uri values is banned, in effect.

If you are concerned that the user might choose a PDF viewer app that is malware,
or is one that has features that you dislike, you could use PackageManager
and queryIntentActivities() to find all activities that support ACTION_VIEW
for your PDF file. From there, you can find out the apps associated with those
activities, and filter that based on a whitelist (or blacklist) of PDF viewer
apps. Then, present your own “chooser”-style UI to allow the user to choose
from among the valid options.
The Really Bad Idea: Google Docs
Some developers, though, try desperately to avoid using external PDF viewer apps.
The approach that many of those developers try is the worst available option:
have Google Docs render the PDF in a WebView, using code reminiscent of:

WebView webview=(WebView)findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
webview.loadUrl("http://drive.google.com/viewerng/viewer?embedded=true&url=" + urlToYourPdf);

This has many poor characteristics:

	It requires that the PDF be available publicly on the Web, for Google Docs
to be able to access it. From a security standpoint, many more attackers can access
the PDF online than can on an Android device.

	If the PDF is not already available publicly on the Web, you would need to
run a server, or employ some cloud storage or similar service, to host that
PDF, adding to your complexity.

	If the PDF needs to be uploaded, now you are consuming lots of extra bandwidth.
Not only did you (probably) download the PDF from somewhere, but now you have
to re-upload it somewhere, then download whatever bits and bytes the WebView
winds up using to display it, as served from Google Docs.

	There is no requirement that Google keep this Google Drive view-an-arbitrary-PDF
URL working. As soon as they change it, your app breaks. As soon as they discontinue
it, this approach has to be replaced anyway.

	This approach requires a live Internet connection. There is no offline option.

Pretty much anything else will be better than this solution.
The Built-In Option: PdfRenderer
Routinely, developers are astonished that Android does not ship with some
sort of PDF-viewing app, the way that desktop operating systems do.
The closest thing that Android has to a built-in PDF viewer is PdfRenderer.
This class was added in API Level 21 (Android 5.0), and it allows you to render
pages of a PDF to Bitmap objects. In turn, you can then use those Bitmap
objects to present the pages to the user, by one means or another.
This solution has severe limitations:

	As noted, it requires Android 5.0, leaving out older devices.

	It requires a seekable stream on the content, in the form of a ParcelFileDescriptor.
The net effect of this is that you can only reliably render something backed
by a file. Conversely, you cannot render something backed by a pipe. This means
that you cannot render assets, raw resources, a PDF that you decrypt into a memory
buffer, and so on.

	It chokes on complex PDF files. For example, the author of this book started
testing it with this short research paper,
only to determine (eventually) that PdfRenderer simply cannot render that
PDF. PdfRenderer was added with an eye towards print preview, and so its
implementation may be focused on the sorts of PDFs that you can generate for
printing, as opposed to arbitrary PDFs.

	It only gives you Bitmap objects. You still have to implement a UI to
present those Bitmap objects to the user.

The
PDF/PdfRenderer
sample project illustrates the use of PdfRenderer.
The RecyclerView
We need to present pages to the user. In a typical PDF viewer, the user can
scroll or swipe to move between pages. One could use a ViewPager for
that role. However, large Bitmap objects really should be reused, and
ViewPager does not make it easy to reuse objects. A RecyclerView
would be a better choice.
The chapter on advanced RecyclerView uses demonstrates setting
up a RecyclerView as a replacement for ViewPager for page-at-a-time
presentations. The PdfRenderer sample app uses one of those techniques,
involving SnapHelper, for presenting the pages to the user.
Hence, our UI is a RecyclerView with a light gray background:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.RecyclerView android:id="@+id/pager"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="#CCCCCCCC"
 android:clipToPadding="false" />

(from PDF/PdfRenderer/app/src/main/res/layout/main.xml)
In onCreate(), our MainActivity sets up that RecyclerView with a
LinearLayoutManager, along with a PagerSnapHelper named snapperCarr:

 pager.setLayoutManager(new LinearLayoutManager(this,
 LinearLayoutManager.HORIZONTAL, false));
 snapperCarr.attachToRecyclerView(pager);

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/MainActivity.java)
Eventually, we will tie in a RecyclerView.Adapter and RecyclerView.ViewHolder
classes, named PageAdapter and PageController. However, there is nothing
to render at the outset, as we do not have a PDF to use.
Getting the PDF
Later samples in this chapter happen to use PDF rendering technologies that
can work with ordinary streams. In those cases, we can package some PDFs as
assets, to provide sample behavior without the user having to rummage around and
find a PDF.
Alas, that is not an option with PdfRenderer. So, we need to let the user find
a PDF on external or removable storage.
To do that, we have an action bar item named “Open” that leads to an open()
method on MainActivity:

 Intent i=new Intent()
 .setType("application/pdf")
 .setAction(Intent.ACTION_OPEN_DOCUMENT)
 .addCategory(Intent.CATEGORY_OPENABLE);

 startActivityForResult(i, REQUEST_OPEN);
 }

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/MainActivity.java)
Here, we use the Storage Access Framework, invoking an ACTION_OPEN_DOCUMENT
Intent, requesting PDF files.
We get control again in onActivityResult():

 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (resultCode==Activity.RESULT_OK) {
 pickedDocument=data.getData();
 show(pickedDocument);
 }
 }

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/MainActivity.java)
If the user chose a PDF, we stuff its Uri into a pickedDocument field, plus
call a private show() method:

 try {
 adapter=new PageAdapter(getLayoutInflater(),
 getContentResolver().openFileDescriptor(uri, "r"));
 pager.setAdapter(adapter);
 }
 catch (java.io.IOException e) {
 Log.e("PdfRenderer", getString(R.string.toast_open), e);
 Toast.makeText(this, R.string.toast_open, Toast.LENGTH_LONG).show();
 }
 }

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/MainActivity.java)
show() creates a PageAdapter, giving it a LayoutInflater and a ParcelFileDescriptor
on the Uri, obtained by calling openFileDescriptor() on a ContentResolver.
We then attach PageAdapter to our pager-style RecyclerView.
To handle configuration changes, we hold onto pickedDocument in the saved
instance state Bundle:

 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putParcelable(STATE_PICKED, pickedDocument);
 }

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/MainActivity.java)
…and restore it in onCreate():

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 pager=(RecyclerView)findViewById(R.id.pager);
 pager.setLayoutManager(new LinearLayoutManager(this,
 LinearLayoutManager.HORIZONTAL, false));
 snapperCarr.attachToRecyclerView(pager);

 if (savedInstanceState!=null) {
 pickedDocument=savedInstanceState.getParcelable(STATE_PICKED);

 if (pickedDocument!=null) {
 show(pickedDocument);
 }
 }
 }

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/MainActivity.java)
In onDestroy(), we call a close() method on PageAdapter — we will see the
role of close() shortly:

 protected void onDestroy() {
 if (adapter!=null) {
 adapter.close();
 }

 super.onDestroy();
 }

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/MainActivity.java)
Adding the PdfRenderer
PageAdapter is surprisingly short and mostly is focused on implementing
the RecyclerView.Adapter API:

package com.commonsware.android.pdfrenderer;

import android.graphics.pdf.PdfRenderer;
import android.os.ParcelFileDescriptor;
import android.support.v7.widget.RecyclerView;
import android.view.LayoutInflater;
import android.view.ViewGroup;
import java.io.IOException;

class PageAdapter extends RecyclerView.Adapter<PageController> {
 private final LayoutInflater inflater;
 private final PdfRenderer renderer;

 PageAdapter(LayoutInflater inflater, ParcelFileDescriptor pfd)
 throws IOException {
 this.inflater=inflater;
 renderer=new PdfRenderer(pfd);
 }

 @Override
 public PageController onCreateViewHolder(ViewGroup parent, int viewType) {
 return(new PageController(inflater.inflate(R.layout.page, parent, false)));
 }

 @Override
 public void onBindViewHolder(PageController holder, int position) {
 PdfRenderer.Page page=renderer.openPage(position);

 holder.setPage(page);
 page.close();
 }

 @Override
 public int getItemCount() {
 return(renderer.getPageCount());
 }

 void close() {
 renderer.close();
 }
}

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/PageAdapter.java)
In the constructor, we create an instance of a PdfRenderer, passing in the
ParcelFileDescriptor on our PDF file.
In onCreateViewHolder(), we create an instance of a PageController, passing
it an inflated layout representing the page contents — we will examine this
in greater detail shortly.
In onBindViewHolder(), we ask the PdfRenderer to give us a PdfRenderer.Page
for the page identified by our position, via an openPage() method. We
then pass that to the PageController via a setPage() method, before we close()
the Page. It is the responsibility of PageController to ensure that it does
everything that it needs to do with that page before returning from setPage().
getItemCount() returns the number of pages in the PDF, as determined by
getPageCount().
Finally, close() calls close() on the PdfRenderer, to let it release
any resources that it is holding onto, such as that ParcelFileDescriptor.
Showing the Pages
The real fun, of course, is in PageController, for rendering a page of the PDF
into a Bitmap to be shown in a page of our pager-style RecyclerView.
To allow for pinch-to-zoom functionality, the PdfRenderer sample app uses
Dave Morrissey’s SubsamplingScaleImageView:

<com.davemorrissey.labs.subscaleview.SubsamplingScaleImageView
 android:id="@+id/page"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="16dp" />

(from PDF/PdfRenderer/app/src/main/res/layout/page.xml)
This has a 16dp margin on all four sides, causing each page of the PDF to
appear to be floating over the light gray background of the RecyclerView
itself. Android’s PdfRenderer does not put any frame around its rendered page,
leaving that up to you.
PageController grabs the SubsamplingScaleImageView in the constructor,
then uses PdfRenderer.Page and a Bitmap to populate it in setPage():

package com.commonsware.android.pdfrenderer;

import android.graphics.Bitmap;
import android.graphics.pdf.PdfRenderer;
import android.os.Environment;
import android.support.v7.widget.RecyclerView;
import android.view.View;
import android.widget.ImageView;
import com.davemorrissey.labs.subscaleview.ImageSource;
import com.davemorrissey.labs.subscaleview.SubsamplingScaleImageView;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;

class PageController extends RecyclerView.ViewHolder {
 private final SubsamplingScaleImageView iv;
 private Bitmap bitmap;

 PageController(View itemView) {
 super(itemView);

 iv=(SubsamplingScaleImageView)itemView.findViewById(R.id.page);
 }

 void setPage(PdfRenderer.Page page) {
 if (bitmap==null) {
 int height=2000;
 int width=height * page.getWidth() / page.getHeight();

 bitmap=Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
 }

 bitmap.eraseColor(0xFFFFFFFF);
 page.render(bitmap, null, null, PdfRenderer.Page.RENDER_MODE_FOR_DISPLAY);
 iv.resetScaleAndCenter();
 iv.setImage(ImageSource.cachedBitmap(bitmap));
 }
}

(from PDF/PdfRenderer/app/src/main/java/com/commonsware/android/pdfrenderer/PageController.java)
In setPage(), we lazy-create a Bitmap, set to 2000 pixels high and whatever
width would be appropriate based on the aspect ratio of the page. This is a
simple implementation, suitable for a PDF where all pages have the same aspect
ratio. A more sophisticated sample would use some form of object pool for
Bitmap objects based on aspect ratio.
Note that the Bitmap needs to be ARGB_8888, exacerbating its memory usage.
Attempts to use RGB_565 — thereby cutting memory usage in half per page — fail
with an error from PdfRenderer.
Actually rendering the page to the Bitmap is performed by the render()
method on the Page. It takes the Bitmap, an optional Rect indicating a subset
of the page to be rendered, an optional Matrix to be applied to transform
the rendering, and a “render mode” to indicate if this is for use on a screen
or (somehow) on a printed page.
However, render() does not do anything to the Bitmap other than render
the page’s contents. In particular, it does not clear the Bitmap ahead of
time. Since we are reusing the Bitmap objects, by default, as those Bitmap
objects get reused, they would accumulate page contents, which is not what
we want. Also, render() does not assume any particular background color for
pages, if such a color was not specified in the PDF. Instead, it just renders
the “ink” on top of the Bitmap, with everything else left alone. So, we use
eraseColor() to reset the Bitmap to white before we call render(), so we
clear out any previous page’s content, and so we have a solid white background
for our pages.
Not only are we reusing the Bitmap, but we are reusing the SubsamplingScaleImageView.
If the user used pinch-to-zoom and panned around a previous page,
the SubsamplingScaleImageView will retain those settings. So, we call
resetScaleAndCenter() to switch back to the starting point, then
call setImage() to hand the SubsamplingScaleImageView the page to render.
setImage() takes an ImageSource, and in this case we need to use
cachedBitmap(), to indicate both that the image is in the form of an existing
Bitmap and that we are caching the Bitmap ourselves (so the SubsamplingScaleImageView
should not attempt to recycle() the Bitmap).
The result is a PDF viewer, where we can pick a PDF from the “Open” action bar
item, then swipe through the pages:

[image: PdfRenderer Sample App]

Figure 693: PdfRenderer Sample App
The Thunder Lizard Choice: PDF.js
PdfRenderer has many limitations, none bigger than the fact that it fails
to render complex PDFs.
If you have used the Firefox Web browser on your desktop or notebook in the past
few years, you may have noticed that its built-in PDF viewer is actually
written in JavaScript, in the form of PDF.js.
This is designed to handle more complex PDF files, and so it is a more complete
solution than is PdfRenderer.
However, PDF.js requires a fairly robust Web rendering engine to work. On Android,
that means we are limited to Android 4.4+, when the original WebView was replaced
by the “Android System WebView” app’s implementation, which shares more of its
guts with Chromium.
The
PDF/PdfJS
sample project demonstrates the use of PDF.js.
PDF.js needs a WebView, so we put one in our layout file:

<?xml version="1.0" encoding="utf-8"?>
<WebView android:id="@+id/webview"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

(from PDF/PdfJS/app/src/main/res/layout/activity_main.xml)
Not surprisingly, it needs JavaScript to be enabled
for that WebView. However, we also need to give JavaScript the ability to
read from arbitrary URLs when we load the JavaScript itself from a file URL, as
our PDF might come from somewhere else (e.g., content scheme for a document
opened via ACTION_OPEN_DOCUMENT):

 wv=(WebView)findViewById(R.id.webview);
 wv.getSettings().setJavaScriptEnabled(true);
 wv.getSettings().setAllowUniversalAccessFromFileURLs(true);

(from PDF/PdfJS/app/src/main/java/com/commonsware/android/pdfjs/MainActivity.java)
PDF.js itself is stored in assets/pdfjs/ in our main source set. This
consists of the JavaScript library (build/ directory) and the stock Web-based
viewer wrapped around that library (web/ directory). Combined, these two
directories represent 4.6MB of material. While some of that could be stripped out
or tweaked for mobile use, this highlights one of the problems with the PDF.js
solution: it is large. Those assets will compress somewhat — expect
about 2MB added to your APK file.
This sample app now gives the “Open” action bar item a submenu, where the
user can choose from two pre-packaged PDFs as assets (a set of presentation slides
and the infamous 1040(A) tax form from the United States Internal Revenue Service)
or to pick one from the filesystem:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/pdfs"
 android:icon="@drawable/ic_folder_open_white_24dp"
 android:showAsAction="always"
 android:title="@string/menu_pdf_files">
 <menu>
 <item android:id="@+id/preso" android:title="@string/menu_presentation"/>
 <item android:id="@+id/taxes" android:title="@string/menu_taxes" />
 <item android:id="@+id/open" android:title="@string/menu_open" />
 </menu>
 </item>
</menu>

(from PDF/PdfJS/app/src/main/res/menu/pdf.xml)
In onOptionsItemSelected() of MainActivity, we route to loadPdf() methods
for the two assets and the open() method for the “Pick” option:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.preso) {
 loadPdf("MultiWindowAndYourApp.pdf");
 return(true);
 }
 else if (item.getItemId()==R.id.taxes) {
 loadPdf("f1040a.pdf");
 return(true);
 }
 else if (item.getItemId()==R.id.open) {
 open();
 }

 return(super.onOptionsItemSelected(item));
 }

(from PDF/PdfJS/app/src/main/java/com/commonsware/android/pdfjs/MainActivity.java)
open() still uses ACTION_OPEN_DOCUMENT to allow the user to pick a PDF
file. onActivityResult() still saves the Uri in the pickedDocument field
but then calls a loadPdfUri() method with the string representation of that Uri:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (resultCode==Activity.RESULT_OK) {
 pickedDocument=data.getData();
 loadPdfUri(pickedDocument.toString());
 }
 }

(from PDF/PdfJS/app/src/main/java/com/commonsware/android/pdfjs/MainActivity.java)
Similarly, the loadPdf() method used by onOptionsItemSelected() for the assets
stores the chosen asset name in a chosenAsset field, then calls loadPdfUri()
with the proper file:///android_asset/ URL:

 private void loadPdf(String name) {
 chosenAsset=name;
 loadPdfUri("file:///android_asset/"+name);
 }

(from PDF/PdfJS/app/src/main/java/com/commonsware/android/pdfjs/MainActivity.java)
loadPdfUri() then uses loadUrl() to load up the Web-based PDF viewer in assets,
supplying the URL to the PDF in the file query parameter:

 private void loadPdfUri(String uri) {
 try {
 wv.loadUrl("file:///android_asset/pdfjs/web/viewer.html?file="+
 URLEncoder.encode(uri, "UTF-8"));
 }
 catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }

(from PDF/PdfJS/app/src/main/java/com/commonsware/android/pdfjs/MainActivity.java)
This works “out of the box” for the assets, as both the Web viewer and the PDFs
come from file URLs. To get the content scheme to work, you have to add
file:// to HOSTED_VIEWER_ORIGINS in web/viewer.js, to tell the Web viewer
that file:// is a valid origin for the viewer and that any reachable URL should
be tried:

 var HOSTED_VIEWER_ORIGINS = [
 'null',
 'http://mozilla.github.io',
 'https://mozilla.github.io',
 'file://'
];

(from PDF/PdfJS/app/src/main/assets/pdfjs/web/viewer.js)
We also need to hold onto chosenAsset in our saved instance state:

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putString(STATE_ASSET, chosenAsset);
 outState.putParcelable(STATE_PICKED, pickedDocument);
 }

(from PDF/PdfJS/app/src/main/java/com/commonsware/android/pdfjs/MainActivity.java)
And we restore the PDF in onCreate():

 @SuppressLint("SetJavaScriptEnabled")
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 wv=(WebView)findViewById(R.id.webview);
 wv.getSettings().setJavaScriptEnabled(true);
 wv.getSettings().setAllowUniversalAccessFromFileURLs(true);

 if (savedInstanceState!=null) {
 chosenAsset=savedInstanceState.getString(STATE_ASSET);

 if (chosenAsset==null) {
 pickedDocument=savedInstanceState.getParcelable(STATE_PICKED);

 if (pickedDocument!=null) {
 loadPdfUri(pickedDocument.toString());
 }
 }
 else {
 loadPdf(chosenAsset);
 }
 }
 }

(from PDF/PdfJS/app/src/main/java/com/commonsware/android/pdfjs/MainActivity.java)
The result is PDF.js’s stock PDF viewer, in our WebView, where the user can
scroll vertically to browse all the pages in the PDF:

[image: PDF.js Rendering IRS 1040 Form]

Figure 694: PDF.js Rendering IRS 1040 Form
The Native Approach: Pdfium
The major downside to both PdfRenderer and PDF.js as in-process PDF viewing
solutions is the required API level. Both work with Android 5.0+, and PDF.js
works with Android 4.4. However, you may have a minSdkVersion below 19. One
approach would be to use an external PDF viewer for those older devices, but if
that were an option, you may be better off using that for all Android versions,
not just older ones.
Your remaining options involve using some C/C++ code for rendering PDFs.
One popular native code base for PDF rendering is Pdfium,
from Google, used in Chromium and Chrome. Roughly speaking, it fills the same
role there as PDF.js does with Firefox.
Bartosz Schiller’s AndroidPdfViewer library
wraps Pdfium in a View that handles rendering and standard gestures (e.g.,
horizontal swipes to move between pages).
On the plus side, Pdfium works well on older Android versions. The author of this
book tested it back to Android 4.1 (API Level 16) and had no problems, and the library itself
claims to support back to API Level 11.
However, there is a cost: APK size. By default, AndroidPdfViewer gives you NDK
binaries that support the major CPU architectures: 32- and 64-bit ARM and x86, plus
MIPS. As a result, the native binaries take up 30MB of space in your APK. Dropping
support for CPU architectures that are less important to you (e.g., ARM) can help,
and you can drop the per-APK cost to ~5MB if you use ABI splits
and ship separate
APKs per supported CPU architecture (on distribution channels where that is an option).
The
PDF/Pdfium
sample project demonstrates the use of AndroidPdfViewer and Pdfium. It is very
similar to the PDF.js sample.
However, we need to pull in the AndroidPdfViewer library:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 25
 buildToolsVersion '26.0.2'

 defaultConfig {
 applicationId "com.commonsware.android.pdfium"
 minSdkVersion 16
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"
 }
}

dependencies {
 implementation 'com.github.barteksc:android-pdf-viewer:2.3.0'
}

(from PDF/Pdfium/app/build.gradle)
Our layout now uses a PDFView widget, instead of a RecyclerView or WebView:

<?xml version="1.0" encoding="utf-8"?>
<com.github.barteksc.pdfviewer.PDFView android:id="@+id/viewer"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

(from PDF/Pdfium/app/src/main/res/layout/activity_main.xml)
We also need open() to support ACTION_GET_CONTENT, since ACTION_OPEN_DOCUMENT
is not supported prior to API Level 19:

 private void open() {
 if (Build.VERSION.SDK_INT<Build.VERSION_CODES.KITKAT) {
 Intent i=
 new Intent()
 .setType("application/pdf")
 .setAction(Intent.ACTION_GET_CONTENT)
 .addCategory(Intent.CATEGORY_OPENABLE);

 startActivityForResult(i, REQUEST_GET);
 }
 else {
 Intent i=
 new Intent()
 .setType("application/pdf")
 .setAction(Intent.ACTION_OPEN_DOCUMENT)
 .addCategory(Intent.CATEGORY_OPENABLE);

 startActivityForResult(i, REQUEST_OPEN);
 }
 }

(from PDF/Pdfium/app/src/main/java/com/commonsware/android/pdfium/MainActivity.java)
Then, instead of loadPdf() or loadPdfUri() methods, we use a configureViewer()
method. That method takes a PDFView.Configurator object, which we get by calling
fromUri() on the PDFView itself, such as from our onActivityResult() method:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (resultCode==Activity.RESULT_OK) {
 pickedDocument=data.getData();
 chosenAsset=null;
 configureViewer(viewer.fromUri(pickedDocument));
 }
 }

(from PDF/Pdfium/app/src/main/java/com/commonsware/android/pdfium/MainActivity.java)
configureViewer() then teaches the PDFView how we want to render this
document:

 private void configureViewer(PDFView.Configurator configurator) {
 configurator
 .enableSwipe(true)
 .swipeHorizontal(true)
 .enableDoubletap(true)
 .scrollHandle(new DefaultScrollHandle(this))
 .load();
 }

(from PDF/Pdfium/app/src/main/java/com/commonsware/android/pdfium/MainActivity.java)
Here, we:

	Enable horizontal swiping to move between pages

	Enable a scroll handle as an alternative for moving between pages

	Enable a double-tap gesture for toggling between a few different zoom levels

The result is similar to the PDF.js result, since Pdfium can handle similarly-complex
PDF files:

[image: Pdfium Sample App Showing IRS 1040 Form]

Figure 695: Pdfium Sample App Showing IRS 1040 Form
What To Choose?
So, what do you choose?

 	Option
 	Location Flexibility
 	Offline-Capable
 	PDF Complexity
 	Stability
 	Privacy
 	APK Size
 	minSdkVersion

 	External Viewer
 	good
 	good
 	varies
 	varies
 	poor
 	great
 	1

 	Google Docs
 	poor
 	poor
 	good
 	poor
 	poor
 	great
 	1

 	PdfRenderer
 	good
 	good
 	poor
 	good
 	great
 	great
 	21

 	PDF.js
 	good
 	good
 	good
 	good
 	great
 	meh
 	19

 	Pdfium
 	good
 	good
 	good
 	good
 	great
 	poor
 	11

For most apps, for most situations, using an external PDF viewer is the simplest
solution. Use one that already exists, and be in position to suggest one to the
user if there is no PDF viewer app available.
If you are certain that you need to keep the PDFs within your own app, and
your minSdkVersion is 19 or higher, PDF.js offers the best rendering with
a modest increase in app size. If, however, you need to support older devices
than that, Pdfium will be a solid choice… but be prepared for some distribution
complexity as you deal with the ABI splits to keep your APK size down to a reasonable
level.
Home Screen App Widgets
App widgets are live elements that the user can add to her home screen.
Android ships with a variety of app widgets, such as a music player, and
device manufacturers frequently add more. However,
developers can add their own — in this chapter, we will see how
this is done.
For the purposes of this book, “app widgets” will refer to these
items that go on the home screen. Other uses of the term “widget”
will be reserved for the UI widgets, subclasses of View, usually
found in the android.widget Java package.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on:

	basic widgets

	broadcast Intents

	services

App Widgets and Security
Creating app widgets looks little like creating an activity. That
is because the home screen is showing your app widget, whereas your
own app shows your own activities. Having a third-party app (a home
screen) show a UI from your app has some security ramifications.
Android’s security model is based heavily on Linux user, file, and
process security. Each application is (normally) associated with a
unique user ID. All of its files are owned by that user, and its
process(es) run as that user. This prevents one application from
modifying the files of another or otherwise injecting their own code
into another running process. It would be
dangerous for the home screen to run arbitrary code itself or somehow
allow its UI to be directly manipulated by another process.
The app widget architecture, therefore, is set up to keep the home
screen application independent from any code that puts app widgets on
that home screen, so bugs in one cannot harm the other.
The Big Picture for a Small App Widget
The way Android pulls off this bit of security is through the use of
RemoteViews.
The application component that supplies the UI for an app widget is
not an Activity, but rather a BroadcastReceiver (often in tandem
with a Service). The BroadcastReceiver, in turn, does not inflate
a normal View hierarchy, like an Activity would, but instead
inflates a layout into a RemoteViews object.
RemoteViews encapsulates a limited edition of normal widgets, in
such a fashion that the RemoteViews can be “easily” transported
across process boundaries. You configure the RemoteViews via your
BroadcastReceiver and make those RemoteViews available to
Android. Android in turn delivers the RemoteViews to the app widget
host (usually the home screen), which renders them to the screen
itself.
This architectural choice has many impacts:

	You do not have access to the full range of widgets and containers.
You can use FrameLayout, LinearLayout, and RelativeLayout for
containers, and AnalogClock, Button, Chronometer,
ImageButton, ImageView, ProgressBar, and TextView for widgets.
And, on API Level 11 and higher, you can use some AdapterView-based
widgets, like ListView, as we will examine
in the next chapter. And, as of API Level 16
(Android 4.1), you can use GridLayout… but
not its backport on earlier devices.

	The only user input you can get is clicks of the Button and
ImageButton widgets. In particular, there is no EditText for text
input.

	Because the app widgets are rendered in another process, you cannot
simply register an OnClickListener to get button clicks; rather,
you tell RemoteViews a PendingIntent to invoke when a given
button is clicked.

	You do not hold onto the RemoteViews and reuse them yourself.
Rather, you create and send out a
brand-new RemoteViews whenever you want to change the contents of
the app widget. This, coupled with having to transport the
RemoteViews across process boundaries, means that updating the app
widget is expensive in terms of CPU time, memory, and battery
life, when compared to equivalent UI updates of one of your own
activities.

	Because the component handling the updates is a
BroadcastReceiver, you have to be quick (lest you take too long and
Android consider you to have timed out), you cannot use background
threads, and your component itself is lost once the request has been
completed. Hence, if your update might take a while, you will
probably want to have the BroadcastReceiver start a Service and
have the Service do the long-running task and eventual app widget
update.

Crafting App Widgets
This will become somewhat easier to understand in the context of some
sample code. In the
AppWidget/PairOfDice
project, you will find an
app widget that displays a roll of a pair of dice. Clicking on the
app widget re-rolls, in case you want a better result.
The Manifest
First, we need to register our BroadcastReceiver implementation in
our AndroidManifest.xml file, along with a few extra features:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.appwidget.dice"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"/>

 <uses-feature
 android:name="android.software.app_widgets"
 android:required="true"/>

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <receiver
 android:name=".AppWidget"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>
 </intent-filter>

 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider"/>
 </receiver>

 <activity
 android:name="PairOfDiceActivity"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from AppWidget/PairOfDice/app/src/main/AndroidManifest.xml)
Here, along with a do-nothing activity, we have a <receiver>. Of note:

	Our <receiver> has android:label and android:icon
attributes, which are not normally needed on BroadcastReceiver
declarations. However, in this case, those are used for the entry
that goes in the roster of available widgets to add to the home screen.
Hence, you will probably want to supply values for both of those, and
use appropriate resources in case you want translations for other
languages.

	Our <receiver> has an <intent-filter] for the
android.appwidget.action.APPWIDGET_UPDATE action. This means we
will get control whenever Android wants us to update the content of
our app widget. There may be other actions we want to monitor —
more on this in a later section.

	Our <receiver> also has a <meta-data] element, indicating that
its android.appwidget.provider details can be found in the
res/xml/widget_provider.xml file. This metadata is described in
greater detail shortly.

The uses-feature Element
If the central point of your application is to provide an app widget,
you should strongly consider adding a <uses-feature> element to advertise
this fact to markets like the Play Store:

<uses-feature android:name="android.software.app_widgets" android:required="true" />

In principle, having this element means that markets should
block the installation of your app on devices
where there is no app-widget-capable home screen or other known places
for supporting app widgets.
If, however, your app has an app widget, but it is an adjunct to
other forms of UI (typically a launcher activity), then you may wish to
leave off this <uses-feature> element, or set it to
android:required="false".
The Metadata
Next, we need to define the app widget provider metadata. This has to
reside at the location indicated in the manifest — in this
case, in res/xml/widget_provider.xml:

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="144dip"
 android:minHeight="72dip"
 android:updatePeriodMillis="900000"
 android:initialLayout="@layout/widget"
/>

(from AppWidget/PairOfDice/app/src/main/res/xml/widget_provider.xml)
Here, we provide a few pieces of information:

	The minimum width and height of the app widget (android:minWidth
and android:minHeight). These are approximate — the app
widget host (e.g., home screen) will tend to convert these values
into “cells” based upon the overall layout of the UI where the app
widgets will reside. However, they should be no smaller than the
minimums cited here. Also, ideally, you use dip instead of px for
the dimensions, so the number of cells will remain constant
regardless of screen density.

	The frequency in which Android should request an update of the
widget’s contents (android:updatePeriodMillis). This is expressed
in terms of milliseconds, so a value of 3600000 is a 60-minute
update cycle. Note that the minimum value for this attribute is 30
minutes — values less than that will be “rounded up” to 30
minutes. Hence our 15-minute (900000 millisecond) request will
actually result in an update every 30 minutes.

	The initial layout to use for the app widget, for the time between
when the user requests the app widget and when onUpdate() of our
AppWidgetProvider gets control.

Note that the calculations for determining the number of cells for an
app widget varies. The dip dimension value for an N-cell dimension
was (74 * N) - 2 (e.g., a 2x3 cell app widget would request a width
of 146dip and a height of 220dip). The value as of API Level 14
(a.k.a., Ice Cream Sandwich) is now (70 * N) - 30 (e.g., a 2x3 cell
app widget would request a width of 110dip and a height of
180dip). To have your app widgets maintain a consistent number of
cells, you will need two versions of your app widget metadata XML,
one in res/xml-v14/ (with the API Level 14 calculation) and one in
res/xml/ (for prior versions of Android).
The Layout
Eventually, you are going to need a layout that describes what the
app widget looks like. You need to stick to the widget and
container classes noted above; otherwise, this layout works like any
other layout in your project.
For example, here is the layout for the PairOfDice app widget:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/background"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/widget_frame"
 >
 <ImageView android:id="@+id/left_die"
 android:layout_centerVertical="true"
 android:layout_alignParentLeft="true"
 android:src="@drawable/die_5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="7dip"
 />
 <ImageView android:id="@+id/right_die"
 android:layout_centerVertical="true"
 android:layout_alignParentRight="true"
 android:src="@drawable/die_2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginRight="7dip"
 />
</RelativeLayout>

(from AppWidget/PairOfDice/app/src/main/res/layout/widget.xml)
All we have is a pair of ImageView widgets (one for each die),
inside of a RelativeLayout. The RelativeLayout has a background,
specified as a nine-patch PNG file. This allows the
RelativeLayout to have guaranteed contrast with whatever wallpaper
is behind it, so the user can tell the actual app widget bounds.
The BroadcastReceiver
Next, we need a BroadcastReceiver that can get control when Android
wants us to update our RemoteViews for our app widget. To simplify
this, Android supplies an AppWidgetProvider class we can extend,
instead of the normal BroadcastReceiver. This simply looks at the
received Intent and calls out to an appropriate lifecycle method
based on the requested action.
The one method that frequently needs to be implemented on the
provider is onUpdate(). Other lifecycle methods may be of interest
and are discussed later in this chapter.
For example, here is the implementation of the
AppWidgetProvider for PairOfDice:

package com.commonsware.android.appwidget.dice;

import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.widget.RemoteViews;

public class AppWidget extends AppWidgetProvider {
 private static final int[] IMAGES={R.drawable.die_1,R.drawable.die_2,
 R.drawable.die_3,R.drawable.die_4,
 R.drawable.die_5,R.drawable.die_6};

 @Override
 public void onUpdate(Context ctxt, AppWidgetManager mgr,
 int[] appWidgetIds) {
 ComponentName me=new ComponentName(ctxt, AppWidget.class);

 mgr.updateAppWidget(me, buildUpdate(ctxt, appWidgetIds));
 }

 private RemoteViews buildUpdate(Context ctxt, int[] appWidgetIds) {
 RemoteViews updateViews=new RemoteViews(ctxt.getPackageName(),
 R.layout.widget);

 Intent i=new Intent(ctxt, AppWidget.class);

 i.setAction(AppWidgetManager.ACTION_APPWIDGET_UPDATE);
 i.putExtra(AppWidgetManager.EXTRA_APPWIDGET_IDS, appWidgetIds);

 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0 , i,
 PendingIntent.FLAG_UPDATE_CURRENT);

 updateViews.setImageViewResource(R.id.left_die,
 IMAGES[(int)(Math.random()*6)]);
 updateViews.setOnClickPendingIntent(R.id.left_die, pi);
 updateViews.setImageViewResource(R.id.right_die,
 IMAGES[(int)(Math.random()*6)]);
 updateViews.setOnClickPendingIntent(R.id.right_die, pi);
 updateViews.setOnClickPendingIntent(R.id.background, pi);

 return updateViews;
 }
}

(from AppWidget/PairOfDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java)
To update the RemoteViews for our app widget, we need to build
those RemoteViews (delegated to a buildUpdate() helper method)
and tell an AppWidgetManager to update the widget via
updateAppWidget(). In this case, we use a version of
updateAppWidget() that takes a ComponentName as the identifier of
the widget to be updated. Note that this means that we will update
all instances of this app widget presently in use — the concept
of multiple app widget instances is covered in greater detail
later in this chapter.
Working with RemoteViews is a bit like trying to tie your shoes
while wearing mittens — it may be possible, but it is a bit
clumsy. In this case, rather than using methods like findViewById()
and then calling methods on individual widgets, we need to call
methods on RemoteViews itself, providing the identifier of the
widget we wish to modify. This is so our requests for changes can be
serialized for transport to the home screen process. It does,
however, mean that our view-updating code looks a fair bit different
than it would if this were the main View of an activity or row of a
ListView.
To create the RemoteViews, we use a constructor that takes our
package name and the identifier of our layout. This gives us a
RemoteViews that contains all of the widgets we declared in that
layout, just as if we inflated the layout using a LayoutInflater.
The difference, of course, is that we have a RemoteViews object,
not a View, as the result.
We then use methods like:

	
setImageViewResource() to set the image for each of our
ImageView widgets, in this case a randomly chosen die face (using
graphics created from a set of SVG files from the
OpenClipArt site)

	
setOnClickPendingIntent() to provide a PendingIntent that
should get fired off when a die, or the overall app widget
background, is clicked

We then supply that RemoteViews to the AppWidgetManager, which
pushes the RemoteViews structure to the home screen, which renders
our new app widget UI.
The Result
If you compile and install all of this, you will have a new app widget
entry available. How you add app widgets to the home screen varies based
upon Android version and the home screen implementation, and there are too
many possibilities to try to list here.
No matter how you add the Pair of Dice, the app widget will appear on the home
screen:

[image: Pair of Dice, In Action]

Figure 696: Pair of Dice, In Action
Another and Another
As indicated above, you can have multiple instances of the same app
widget outstanding at any one time. For example, one might have
multiple picture frames, or multiple “show-me-the-latest-RSS-entry”
app widgets, one per feed. You will distinguish between these in your
code via the identifier supplied in the relevant AppWidgetProvider
callbacks (e.g., onUpdate()).
If you want to support separate app widget instances, you will need
to store your state on a per-app-widget-identifier basis. You will
also need to use an appropriate version of updateAppWidget() on
AppWidgetManager when you update the app widgets, one that takes
app widget identifiers as the first parameter, so you update the
proper app widget instances.
Conversely, there is nothing requiring you to support multiple
instances as independent entities. For example, if you add more than
one PairOfDice app widget to your home screen, nothing blows up
– they just show the same roll. That is because PairOfDice
uses a version of updateAppWidget() that does not take any app
widget IDs, and therefore updates all app widgets simultaneously.
App Widgets: Their Life and Times
There are three other lifecycle methods that AppWidgetProvider
offers that you may be interested in:

	
onEnabled() will be called when the first widget instance is
created for this particular widget provider, so if there is anything
you need to do once for all supported widgets, you can implement that
logic here

	
onDeleted() will be called when a widget instance is removed
from the home screen, in case there is any data you need to clean up
specific to that instance

	
onDisabled() will be called when the last widget instance for
this provider is removed from the home screen, so you can clean up
anything related to all such widgets

You will need to add appropriate action strings to your <intent-filter>
for each of these events, such as ACTION_APPWIDGET_ENABLED to be
notified about enabled events via onEnabled().
Controlling Your (App Widget’s) Destiny
As PairOfDice illustrates, you are not limited to updating your app
widget only based on the timetable specified in your metadata. That
timetable is useful if you can get by with a fixed schedule. However,
there are cases in which that will not work very well:

	If you want the user to be able to configure the polling period
(the metadata is baked into your APK and therefore cannot be modified
at runtime)

	If you want the app widget to be updated based on external
factors, such as a change in location

The recipe shown in PairOfDice will let you use AlarmManager
(described in another chapter) or proximity alerts or
whatever to trigger updates. All you need to do is:

	Arrange for something to broadcast an Intent that will be picked
up by the BroadcastReceiver you are using for your app widget
provider

	Have the provider process that Intent directly or pass it along
to a Service (such as an IntentService)

Also, note that the updatePeriodMillis setting not only tells the
app widget to update every so often, it will even wake up the phone
if it is asleep so the widget can perform its update. On the plus
side, this means you can easily keep your widgets up to date
regardless of the state of the device. On the minus side, this will
tend to drain the battery, particularly if the period is too fast. If
you want to avoid this wakeup behavior, set updatePeriodMillis to
0 and use AlarmManager to control the timing and behavior of your
widget updates.
Note that if there are multiple instances of your app widget on the
user’s home screen, they will all update approximately simultaneously
if you are using updatePeriodMillis. If you elect to set up your
own update schedule, you can control which app widgets get updated
when, if you choose.
One Size May Not Fit All
It may be that you want to offer multiple app widget sizes to your
users. Some might only want a small app widget. Some might really
like what you have to offer and want to give you more home screen
space to work in.
Android 1.x/2.x
The good news: this is easy to do.
The bad news: it requires you, in effect, to have one app widget per
size.
The size of an app widget is determined by the app widget metadata
XML file. That XML file is tied to a <receiver> element in the
manifest representing one app widget. Hence, to have multiple sizes,
you need multiple metadata files and multiple <receiver> elements.
This also means your app widgets will show up multiple times in the
app widget selection list, when the user goes to add an app widget to
their home screen. Hence, supporting many sizes will become annoying
to the user, if they perceive you are “spamming” the app widget list.
Try to keep the number of app widget sizes to a reasonable number
(say, one or two sizes).
Android 3.0+
As of API Level 11, it is possible to have a resizeable app widget.
To do this, you can have an android:resizeMode attribute in your
widget metadata, with a value of horizontal, vertical, or both
(e.g., horizontal|vertical). When the user long-taps on an existing
widget, they should see handles to allow the widget to be resized:

[image: API Demos App Widget, Resizing]

Figure 697: API Demos App Widget, Resizing
You can also have android:minResizeWidth and android:minResizeHeight
attributes, measured in dp, that indicate the approximate smallest size
that your app widget can support. These values will be interpreted in
terms of “cells”, as with the android:minWidth and android:minHeight
attributes, and so the dp values you supply will not be used precisely.
However, for Android 3.x and 4.0 (API Level 11-15), your code would not be
informed about being resized. You had to simply ensure that your
layout would intelligently use any extra space automatically. Hence,
resizing tended to be used primarily with adapter-driven app widgets,
as will be discussed in the next chapter.
Starting with API Level 16, though, you can find out when the user
resizes your app widget, so you can perhaps use a different layout for
a different size, or otherwise adapt to the available space. Finding
out about resize events takes a bit more work, as is illustrated in the
AppWidget/Resize
sample project.
This app widget project is similar to PairOfDice, described earlier in
this chapter. However, our layout skips the dice, replacing them with a
TextView widget in the RelativeLayout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/background"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/widget_frame"
 android:orientation="horizontal">

 <TextView
 android:id="@+id/size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:textColor="@android:color/white"
 android:textAppearance="?android:attr/textAppearanceMedium">

 </TextView>

</RelativeLayout>

(from AppWidget/Resize/app/src/main/res/layout/widget.xml)
Our widget_provider.xml resource stipulates our desired android:resizeMode
and minimum resize dimensions:

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="180dip"
 android:minHeight="110dip"
 android:minResizeWidth="110dip"
 android:minResizeHeight="40dip"
 android:initialLayout="@layout/widget"
 android:resizeMode="horizontal|vertical"
/>

(from AppWidget/Resize/app/src/main/res/xml/widget_provider.xml)
Finding out about app widget resizing is a different event than finding out
about app widget updates. Hence, we need to add a new <action> element
to the <intent-filter> of our <receiver> in the manifest, indicating
that we want APPWIDGET_OPTIONS_CHANGED as well as ACTION_UPDATE:

 <receiver
 android:name="AppWidget"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>
 <action android:name="android.appwidget.action.APPWIDGET_OPTIONS_CHANGED"/>
 </intent-filter>

 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider"/>
 </receiver>

(from AppWidget/Resize/app/src/main/AndroidManifest.xml)
Then, our app widget implementation can override an onAppWidgetOptionsChanged()
method:

 @Override
 public void onAppWidgetOptionsChanged(Context ctxt,
 AppWidgetManager mgr,
 int appWidgetId,
 Bundle newOptions) {
 RemoteViews updateViews=
 new RemoteViews(ctxt.getPackageName(), R.layout.widget);
 String msg=
 String.format(Locale.getDefault(),
 "[%d-%d] x [%d-%d]",
 newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MIN_WIDTH),
 newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MAX_WIDTH),
 newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MIN_HEIGHT),
 newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MAX_HEIGHT));

 updateViews.setTextViewText(R.id.size, msg);

 mgr.updateAppWidget(appWidgetId, updateViews);
 }

(from AppWidget/Resize/app/src/main/java/com/commonsware/android/appwidget/resize/AppWidget.java)
You will notice that we skip onUpdate(). We will be called with
onAppWidgetOptionsChanged() when the app widget is added and resized. Hence,
in the case of this app widget, we can define what the app widget looks
like from onAppWidgetOptionsChanged(), avoiding onUpdate(). That being said,
more typical app widgets will wind up implementing both methods, especially
if they are supporting lower API levels than 16, where onAppWidgetOptionsChanged()
will not be called.
Also remember that your process may well be terminated in between calls to
app widget lifecycle methods like onUpdate() and onAppWidgetOptionsChanged().
Hence, if there is data from one method that you want in the other, be sure
to persist that data somewhere.
In the AppWidget implementation of onAppWidgetOptionsChanged(), we can find
out about our new app widget size by means of the Bundle supplied to our
method. What we cannot find out is our exact size. Rather, we are provided
minimum and maximum dimensions of our app widget via four values in the Bundle:

	AppWidgetManager.OPTION_APPWIDGET_MIN_WIDTH

	AppWidgetManager.OPTION_APPWIDGET_MAX_WIDTH

	AppWidgetManager.OPTION_APPWIDGET_MIN_HEIGHT

	AppWidgetManager.OPTION_APPWIDGET_MAX_HEIGHT

In our case, we grab these int values and pour them into a String template,
using that to fill in the TextView of the app widget’s contents.
When our app widget is initially launched, we show our initial size ranges:

[image: Resize Widget, As Initially Added]

Figure 698: Resize Widget, As Initially Added
When the user resizes our app widget, we show the new size ranges:

[image: Resize Widget, During Resize Operation]

Figure 699: Resize Widget, During Resize Operation
However, not all home screen implementations will necessarily send the
APPWIDGET_OPTIONS_CHANGED when an app widget is added to the home screen,
only when the user resizes it later. For example, while the emulator’s home
screen for Android 4.1 broadcasts APPWIDGET_OPTIONS_CHANGED, it does not for
4.2 or 4.3. Hence, you may want to also examine the size information in
onUpdate() as well, so that you react to the initial size as well as
any future sizes. One way to do this is to simply iterate over the supplied
app widget IDs and invoke your own onAppWidgetOptionsChanged() method:

 // based on http://stackoverflow.com/a/18552461/115145

 @Override
 public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 super.onUpdate(context, appWidgetManager, appWidgetIds);

 for (int appWidgetId : appWidgetIds) {
 Bundle options=appWidgetManager.getAppWidgetOptions(appWidgetId);

 onAppWidgetOptionsChanged(context, appWidgetManager, appWidgetId,
 options);
 }
 }

(from AppWidget/Resize/app/src/main/java/com/commonsware/android/appwidget/resize/AppWidget.java)
Lockscreen Widgets
Android’s lockscreen (a.k.a., the keyguard) had long been unmodifiable by developers.
This led to a number of developers creating so-called “replacement lockscreens”,
which generally reduce device security, as they can be readily bypassed. However,
on Android 4.2 through 4.4, developers can create app widgets that the user
can deploy to the lockscreen, helping to eliminate the need for “replacement
lockscreens”.
However, note that this capability was dropped with Android 5.0. As a result,
this particular app widget feature may not be something that you want to worry
about. That being said, it is available for those versions, and you are
welcome to support it for those versions.
Declaring that an app widget supports being on the lockscreen instead of
(or in addition to) the home screen is very easy. All you must do is add an
android:widgetCategory attribute to your app widget metadata resource.
That attribute should have a value of either keyguard (for the lockscreen),
home_screen, or both (e.g., keyguard|home_screen), depending upon where you
want the app widget to be eligible. By default, if this attribute is missing,
Android assumes a default value of home_screen.
Users cannot resize the lockscreen widgets at this time. However, you still
will want to specify an android:resizeMode attribute in your app widget
metadata, as whether or not you include vertical resizing will affect the
height of your app widget. Lockscreen widgets without vertical will have a fixed
small height on tablets, while lockscreen widgets with vertical will fill the
available height. Lockscreen widgets on phones will always be small (to fit
above the PIN/password entry area), and lockscreen widgets on all devices
will stretch to fill available space horizontally.
You can also specify a different starting layout to use when your app is added
to the lockscreen, as opposed to being added to the home screen. To do this,
just add an android:initialKeyguardLayout attribute to your app widget
metadata, pointing to the lockscreen-specific layout to use.
To see this in action, take a look at the
AppWidget/TwoOrThreeDice
sample project. This is a revised clone of the PairOfDice sample, allowing
the dice to be added to the lockscreen, and showing three dice on the lockscreen
instead of the two on the home screen.
Our app widget metadata now contains the lockscreen-related attributes:
android:widgetCategory and android:initialKeyguardLayout:

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="144dip"
 android:minHeight="72dip"
 android:updatePeriodMillis="900000"
 android:initialLayout="@layout/widget"
 android:initialKeyguardLayout="@layout/lockscreen"
 android:widgetCategory="keyguard|home_screen"
/>

(from AppWidget/TwoOrThreeDice/app/src/main/res/xml/widget_provider.xml)
Our lockscreen layout simply adds a third die, middle_die:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/background"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/widget_frame"
 >
 <ImageView android:id="@+id/left_die"
 android:layout_centerVertical="true"
 android:layout_alignParentLeft="true"
 android:src="@drawable/die_3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="7dip"
 />
 <ImageView android:id="@+id/middle_die"
 android:layout_centerInParent="true"
 android:src="@drawable/die_2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="7dip"
 android:layout_marginRight="7dip"
 />
 <ImageView android:id="@+id/right_die"
 android:layout_centerVertical="true"
 android:layout_alignParentRight="true"
 android:src="@drawable/die_2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginRight="7dip"
 />
</RelativeLayout>

(from AppWidget/TwoOrThreeDice/app/src/main/res/layout/lockscreen.xml)
However, by specifying a different layout for the lockscreen widget, we have a problem.
We need to know, in our Java code, what layout to use for the RemoteViews and
how many dice need to be updated. And, ideally, we would handle this in a
backwards-compatible fashion, so our app widget will have its original functionality
on older Android devices. Plus, supporting the lockscreen makes it that much more
likely that the user will have more than one instance of our app widget (e.g., one
on the lockscreen and one on the homescreen), so we should do a better job than
PairOfDice did about handling multiple app widget instances.
To deal with the latter point, our new onUpdate() method iterates over each
of the app widget IDs supplied to it and calls a private updateWidget() method
for each, so we can better support multiple instances:

 @Override
 public void onUpdate(Context ctxt, AppWidgetManager mgr,
 int[] appWidgetIds) {
 for (int appWidgetId : appWidgetIds) {
 updateWidget(ctxt, mgr, appWidgetId);
 }
 }

(from AppWidget/TwoOrThreeDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java)
The updateWidget() method is a bit more complicated than the PairOfDice
equivalent code:

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
 private void updateWidget(Context ctxt, AppWidgetManager mgr,
 int appWidgetId) {
 int layout=R.layout.widget;

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
 int category=
 mgr.getAppWidgetOptions(appWidgetId)
 .getInt(AppWidgetManager.OPTION_APPWIDGET_HOST_CATEGORY,
 -1);

 layout=
 (category == AppWidgetProviderInfo.WIDGET_CATEGORY_KEYGUARD)
 ? R.layout.lockscreen : R.layout.widget;
 }

 RemoteViews updateViews=
 new RemoteViews(ctxt.getPackageName(), layout);
 Intent i=new Intent(ctxt, AppWidget.class);

 i.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);

 PendingIntent pi=
 PendingIntent.getBroadcast(ctxt, appWidgetId, i,
 PendingIntent.FLAG_UPDATE_CURRENT);

 updateViews.setImageViewResource(R.id.left_die,
 IMAGES[(int)(Math.random() * 6)]);
 updateViews.setOnClickPendingIntent(R.id.left_die, pi);
 updateViews.setImageViewResource(R.id.right_die,
 IMAGES[(int)(Math.random() * 6)]);
 updateViews.setOnClickPendingIntent(R.id.right_die, pi);
 updateViews.setOnClickPendingIntent(R.id.background, pi);

 if (layout == R.layout.lockscreen) {
 updateViews.setImageViewResource(R.id.middle_die,
 IMAGES[(int)(Math.random() * 6)]);
 updateViews.setOnClickPendingIntent(R.id.middle_die, pi);
 }

 mgr.updateAppWidget(appWidgetId, updateViews);
 }

(from AppWidget/TwoOrThreeDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java)
First, we need to choose which layout we are working with. We assume that we are
to use the original R.layout.widget resource by default. But, if we are on API
Level 17 or higher, we can call getAppWidgetOptions() on the AppWidgetManager,
to get the Bundle of options — the same options that we could be delivered in
onAppWidgetOptionsUpdate() as described
in the previous section. One value that will be in this
Bundle is AppWidgetManager.OPTION_APPWIDGET_HOST_CATEGORY, which will be an
int with a value of AppWidgetProviderInfo.WIDGET_CATEGORY_KEYGUARD if our app
widget is on the lockscreen. In that case, we switch to using R.layout.lockscreen.
In addition, we know then we need to update the middle_die when we are updating
the other dice.
There is also a subtle change in our getBroadcast() call to PendingIntent: we
pass in the app widget ID as the second parameter, whereas in PairOfDice we passed
0. PendingIntent objects are cached in our process, and by default we will get
the same PendingIntent when we call getBroadcast() for the same Intent. However,
in our case, we may want two or more different PendingIntent objects for the
same Intent, with differing extras (EXTRA_APPWIDGET_ID). Since extras are not
considered when evaluating equivalence of Intent objects, just having different
extras is insufficient to get different PendingIntent objects for those Intent
objects. The second parameter to getBroadcast() (and getActivity() and
getService()) on PendingIntent is a unique identifier, to differentiate between
two otherwise equivalent Intent objects, forcing PendingIntent to give us distinct
PendingIntent objects. This way, we can support two or more app widget instances,
each having their own PendingIntent objects for their click events.
On an Android 4.2+ lockscreen, you should be able to swipe to one side (e.g., a bezel
swipe from left to right), to expose an option to add an app widget:

[image: Lockscreen Add-A-Widget Panel, On a 4.2 Emulator]

Figure 700: Lockscreen Add-A-Widget Panel, On a 4.2 Emulator
Tapping the “+” indicator (and, if needed, entering your device PIN or password),
brings up an app widget chooser:

[image: Lockscreen Widget Selection List, On a 4.2 Emulator]

Figure 701: Lockscreen Widget Selection List, On a 4.2 Emulator
Choosing TwoOrThreeDice will then add the app widget to the lockscreen, with three
dice, not two:

[image: Lockscreen with TwoOrThreeDice, On a 4.2 Emulator]

Figure 702: Lockscreen with TwoOrThreeDice, On a 4.2 Emulator
Preview Images
App widgets can have preview images attached. Preview images are
drawable resources representing a preview of what the app widget
might look like on the screen. On tablets, this will be used as part
of an app widget gallery, replacing the simple context menu
presentation you used to see on Android 1.x and 2.x phones:

[image: App Widget Gallery, on Android 5.0]

Figure 703: App Widget Gallery, on Android 5.0
To create the preview image itself, the Android 3.0+ emulator images contain
a Widget Preview application that lets you run an app widget in its
own container, outside of the home screen:

[image: The Widget Preview application, showing a preview of the Analog Clock app widget]

Figure 704: The Widget Preview application, showing a preview of the Analog Clock app widget
From here, you can take a snapshot and save it to external storage,
copy it to your project’s res/drawable-nodpi/ directory (indicating
that there is no intrinsic density assumed for this image), and
reference it in your app widget metadata via an
android:previewImage attribute. We will see an example of such an
attribute in the chapter on advanced app widgets.
Being a Good Host
In addition to creating your own app widgets, it is possible to host
app widgets. This is mostly aimed for those creating alternative home
screen applications, so they can take advantage of the same app
widget framework and all the app widgets being built for it.
This is not very well documented, but it
involves the AppWidgetHost and AppWidgetHostView classes. The
latter is a View and so should be able to reside in an app widget
host’s UI like any other ordinary widget.
Adapter-Based App Widgets
API Level 11 introduced a few new capabilities for app widgets, to
make them more interactive and more powerful than before. The
documentation lags a bit, though, so determining how to use these
features takes a bit of exploring. Fortunately for you, the author
did some of that exploring on your behalf, to save you some trouble.
Prerequisites
Understanding this chapter requires that you have read
the preceding chapter and all of its prerequisites.
AdapterViews for App Widgets
In addition to the classic widgets available for use in app widgets
and RemoteViews, five more were added for API Level 11:

	GridView

	ListView

	StackView

	ViewFlipper

	AdapterViewFlipper

Three of these (GridView, ListView, ViewFlipper) are widgets
that existed in Android since the outset. StackView was added in API Level 11
to provide a “stack of cards” UI:

[image: The Google Books app widget, showing a StackView]

Figure 705: The Google Books app widget, showing a StackView
AdapterViewFlipper works like a ViewFlipper, allowing you to
toggle between various children with only one visible at a time.
However, whereas with ViewFlipper all children are
fully-instantiated View objects held by the ViewFlipper parent,
AdapterViewFlipper uses the Adapter model, so only a small number
of actual View objects are held in memory, no matter how many
potential children there are.
With the exception of ViewFlipper, the other four all require the
use of an Adapter. This might seem odd, as there is no way to
provide an Adapter to a RemoteViews. That is true, but API Level 11
added new ways for Adapter-like communication between the app
widget host (e.g., home screen) and your application. We will take an
in-depth look at that in an upcoming section.
Building Adapter-Based App Widgets
In an activity, if you put a ListView or GridView into your
layout, you will also need to hand it an Adapter, providing the
actual row or cell View objects that make up the contents of those
selection widgets.
In an app widget, this becomes a bit more complicated. The host of
the app widget does not have any Adapter class of yours. Hence,
just as we have to send the contents of the app widget’s UI via a
RemoteViews, we will need to provide the rows or cells via
RemoteViews as well. Android, starting with API Level 11, has a
RemoteViewsService and RemoteViewsFactory that you can use for
this purpose. Let’s take a look, in the form of the
AppWidget/LoremWidget
sample project, which will put a ListView
of 25 Latin words into an app widget.
The AppWidgetProvider
At its core, our AppWidgetProvider (named WidgetProvider, in a
stunning display of creativity) still needs to create and configure a
RemoteViews object with the app widget UI, then use
updateAppWidget() to push that RemoteViews to the host via the
AppWidgetManager. However, for an app widget that involves an
AdapterView, like ListView, there are two more key steps:

	You have to tell the RemoteViews the identity of a
RemoteViewsService that will help fill the role that the Adapter
would in an activity

	You have to provide the RemoteViews with a “template”
PendingIntent to be used when the user taps on a row or cell in the
AdapterView, to replace the onListItemClick() or similar method
you might have used in an activity

For example, here is WidgetProvider for our Latin-word app
widget:

package com.commonsware.android.appwidget.lorem;

import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.Context;
import android.content.Intent;
import android.net.Uri;
import android.widget.RemoteViews;

public class WidgetProvider extends AppWidgetProvider {
 public static String EXTRA_WORD=
 "com.commonsware.android.appwidget.lorem.WORD";

 @Override
 public void onUpdate(Context ctxt, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 for (int i=0; i<appWidgetIds.length; i++) {
 Intent svcIntent=new Intent(ctxt, WidgetService.class);

 svcIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetIds[i]);
 svcIntent.setData(Uri.parse(svcIntent.toUri(Intent.URI_INTENT_SCHEME)));

 RemoteViews widget=new RemoteViews(ctxt.getPackageName(),
 R.layout.widget);

 widget.setRemoteAdapter(R.id.words, svcIntent);

 Intent clickIntent=new Intent(ctxt, LoremActivity.class);
 PendingIntent clickPI=PendingIntent
 .getActivity(ctxt, 0,
 clickIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 widget.setPendingIntentTemplate(R.id.words, clickPI);

 appWidgetManager.updateAppWidget(appWidgetIds[i], widget);
 }

 super.onUpdate(ctxt, appWidgetManager, appWidgetIds);
 }
}

(from AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/WidgetProvider.java)
The call to setRemoteAdapter() is where we point the RemoteViews
to our RemoteViewsService for our AdapterView widget. The main
rules for the Intent used to identify the RemoteViewsService are:

	The service must be identified by its data (Uri), so even if you
create the Intent via the Context-and-Class constructor, you
will need to convert that into a Uri via
toUri(Intent.URI_INTENT_SCHEME) and set that as the Uri for the
Intent. Why? While your application has access to your
RemoteViewsService Class object, the app widget host will not, and
so we need something that will work across process boundaries. You
could elect to add your own <intent-filter> to the
RemoteViewsService and use an Intent based on that, but that
would make your service more publicly visible than you might want.

	Any extras that you package on the Intent — such as the
app widget ID in this case — will be on the Intent that is
delivered to the RemoteViewsService when it is invoked by the app
widget host.

Note that there are two flavors of setRemoteAdapter(). An older
deprecated one takes the app widget ID as the first parameter. The
current one does not. The current one, though, is only available
on API Level 14 and higher.
The call to setPendingIntentTemplate() is where we provide a
PendingIntent that will be used as the template for all row or cell
clicks. As we will see in a bit, the underlying Intent in the
PendingIntent will have more data added to it by our
RemoteViewsFactory.
In all other respects, our WidgetProvider is unremarkable compared
to other app widgets. It will need to be registered in the manifest
as a <receiver>, as with any other app widget.
The RemoteViewsService
Android supplies a RemoteViewsService class that you will need to
extend, and this class is the one you must register with the
RemoteViews for an AdapterView widget. For example, here is
WidgetService (once again, a highly creative name) from the
LoremWidget project:

package com.commonsware.android.appwidget.lorem;

import android.content.Intent;
import android.widget.RemoteViewsService;

public class WidgetService extends RemoteViewsService {
 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent) {
 return(new LoremViewsFactory(this.getApplicationContext(),
 intent));
 }
}

(from AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/WidgetService.java)
As you can see, this service is practically trivial. You have to
override one method, onGetViewFactory(), which will return the
RemoteViewsFactory to use for supplying rows or cells for the
AdapterView. You are passed in an Intent, the one used in the
setRemoteAdapter() call. Hence, if you have more than one
AdapterView widget in your app widget, you could elect to have two
RemoteViewsService implementations, or one that discriminates
between the two widgets via something in the Intent (e.g., custom
action string). In our case, we only have one AdapterView, so we
create an instance of a LoremViewFactory and return it. Google
has suggested using getApplicationContext() here to supply the
Context object to RemoteViewsFactory, instead of using the
Service as a Context, though it is unclear why this is.
Another thing different about the RemoteViewsService is how it is
registered in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.appwidget.lorem"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-feature
 android:name="android.software.app_widgets"
 android:required="true"/>

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name="LoremActivity"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <receiver
 android:name="WidgetProvider"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>
 </intent-filter>

 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider"/>
 </receiver>

 <service
 android:name="WidgetService"
 android:permission="android.permission.BIND_REMOTEVIEWS"/>
 </application>

</manifest>

(from AppWidget/LoremWidget/app/src/main/AndroidManifest.xml)
Note the use of android:permission, specifying that whoever sends
an Intent to WidgetService must hold the BIND_REMOTEVIEWS
permission. This can only be held by the operating system. This is a
security measure, so arbitrary applications cannot find out about
your service and attempt to spoof being the OS and cause you to
supply them with RemoteViews for the rows, as this might leak
private data.
The RemoteViewsFactory
A RemoteViewsFactory interface implementation looks and feels a lot
like an Adapter. In fact, one could imagine that the Android
developer community might create CursorRemoteViewsFactory and
ArrayRemoteViewsFactory and such to further simplify writing these
classes.
For example, here is LoremViewsFactory, the one used by the
LoremWidget project:

package com.commonsware.android.appwidget.lorem;

import android.appwidget.AppWidgetManager;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.widget.RemoteViews;
import android.widget.RemoteViewsService;

public class LoremViewsFactory implements
 RemoteViewsService.RemoteViewsFactory {
 private static final String[] items= { "lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante", "porttitor", "sodales",
 "pellentesque", "augue", "purus" };
 private Context ctxt=null;
 private int appWidgetId;

 public LoremViewsFactory(Context ctxt, Intent intent) {
 this.ctxt=ctxt;
 appWidgetId=
 intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }

 @Override
 public void onCreate() {
 // no-op
 }

 @Override
 public void onDestroy() {
 // no-op
 }

 @Override
 public int getCount() {
 return(items.length);
 }

 @Override
 public RemoteViews getViewAt(int position) {
 RemoteViews row=
 new RemoteViews(ctxt.getPackageName(), R.layout.row);

 row.setTextViewText(android.R.id.text1, items[position]);

 Intent i=new Intent();
 Bundle extras=new Bundle();

 extras.putString(WidgetProvider.EXTRA_WORD, items[position]);
 extras.putInt(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
 i.putExtras(extras);
 row.setOnClickFillInIntent(android.R.id.text1, i);

 return(row);
 }

 @Override
 public RemoteViews getLoadingView() {
 return(null);
 }

 @Override
 public int getViewTypeCount() {
 return(1);
 }

 @Override
 public long getItemId(int position) {
 return(position);
 }

 @Override
 public boolean hasStableIds() {
 return(true);
 }

 @Override
 public void onDataSetChanged() {
 // no-op
 }
}

(from AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/LoremViewsFactory.java)
You need to implement a handful of methods that have the same roles
in a RemoteViewsFactory as they do in an Adapter, including:

	getCount()

	getViewTypeCount()

	getItemId()

	hasStableIds()

In addition, you have onCreate() and onDestroy() methods that you
must implement, even if they do nothing, to satisfy the interface.
You will need to implement getLoadingView(), which will return a
RemoteViews to use as a placeholder while the app widget host is
getting the real contents for the app widget. If you return null,
Android will use a default placeholder.
The bulk of your work will go in getViewAt(). This serves the same
role as getView() does for an Adapter, in that it returns the row
or cell View for a given position in your data set. However:

	You have to return a RemoteViews, instead of a View, just as
you have to use RemoteViews for the main content of the app widget
in your AppWidgetProvider

	There is no recycling, so you do not get a View (or
RemoteViews) back to somehow repopulate, meaning you will create a
new RemoteViews every time

The impact of the latter is that you do not want to put large data
sets into an app widget, as scrolling may get sluggish, just as you
do not want to implement an Adapter without recycling unused View
objects.
In LoremViewsFactory, the getViewAt() implementation creates a
RemoteViews for a custom row layout, cribbed from one in the
Android SDK:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2006 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:gravity="center_vertical"
 android:paddingLeft="8dp"
 android:paddingStart="8dp"
 android:textColor="@android:color/white"
 android:minHeight="?android:attr/listPreferredItemHeight"
/>

(from AppWidget/LoremWidget/app/src/main/res/layout/row.xml)
Then, getViewAt() pours in a word from the static String array of
Latin words into that RemoteViews for the TextView inside it.
It also creates an Intent and puts the Latin word in as an
EXTRA_WORD extra, then provides that Intent to
setOnClickFillInIntent(). In addition, it adds the app widget instance ID
as an extra, reusing the framework’s own AppWidgetManager.EXTRA_APPWIDGET_ID
as the key. The contents of the “fill-in” Intent
are merged into the “template” PendingIntent from
setPendingIntentTemplate(), and the resulting PendingIntent is
what is invoked when the user taps on an item in the AdapterView.
The fully-configured RemoteViews is then returned.
The Rest of the Story
The app widget metadata needs no changes related to Adapter-based
app widget contents. However, LoremWidget does add the
android:previewImage attribute:

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="146dip"
 android:minHeight="146dip"
 android:updatePeriodMillis="0"
 android:initialLayout="@layout/widget"
 android:autoAdvanceViewId="@+id/words"
 android:previewImage="@drawable/preview"
 android:resizeMode="vertical"
/>

(from AppWidget/LoremWidget/app/src/main/res/xml/widget_provider.xml)
This points to the res/drawable-nodpi/preview.png file that
represents a “widgetshot” of the app widget in isolation, obtained
from the Widget Preview application:

[image: The preview of LoremWidget]

Figure 706: The preview of LoremWidget
Also, the metadata specifies android:resizeMode="vertical". This
attribute is new to Android 3.1, and allows the app widget to be
resized by the user (in this case, only in the vertical direction, to
show more rows). Older versions of Android will ignore this
attribute, and the app widget will remain in your requested size. You
can use vertical, horizontal, or both (via the pipe operator) as
values for android:resizeMode.
When the user taps on an item in the list, our PendingIntent is set
to bring up LoremActivity. This activity has
android:theme="@android:style/Theme.Translucent.NoTitleBar" set in the manifest,
meaning that it will not have its own user interface. Rather, it will
extract our EXTRA_WORD — and the app widget ID — out of the Intent
used to launch the
activity and displays it in a Toast before finishing:

package com.commonsware.android.appwidget.lorem;

import android.app.Activity;
import android.appwidget.AppWidgetManager;
import android.os.Bundle;
import android.widget.Toast;

public class LoremActivity extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 String word=getIntent().getStringExtra(WidgetProvider.EXTRA_WORD);

 if (word == null) {
 word="We did not get a word!";
 }

 Toast.makeText(this,
 String.format("#%d: %s",
 getIntent().getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID),
 word), Toast.LENGTH_LONG).show();

 finish();
 }
}

(from AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/LoremActivity.java)
The Results
When you compile and install the application, nothing new shows up in
the home screen launcher, because we have no activity defined to
respond to ACTION_MAIN and CATEGORY_HOME. This would be unusual
for an application distributed through the Play Store, as users
often get confused if they install something and then do not know how
to start it. However, for the purposes of this example, we should be
fine, as readers of programming books never get confused about such
things.
However, if you bring up the app widget gallery (e.g., long-tap on
the home screen of an Android 6.0 device or emulator), you will see LoremWidget
there, complete with preview image. You can drag it into one of the
home screen panes and position it. When done, the app widget appears
as expected:

[image: LoremWidget on Android Home Screen]

Figure 707: LoremWidget on Android Home Screen
The ListView is live and can be scrolled. Tapping an entry brings
up the corresponding Toast.
If the user long-taps on the app widget, they will be able to
reposition it. On Android 3.1 and beyond, when they lift their finger
after the long-tap, the app widget will show resize handles on the
sides designated by your android:resizeMode attribute:

[image: LoremWidget on Android Home Screen, with Resize Handles]

Figure 708: LoremWidget on Android Home Screen, with Resize Handles
The user can then drag those handles to expand or shrink the app
widget in the specified dimensions:

[image: Resized LoremWidget on Android Home Screen]

Figure 709: Resized LoremWidget on Android Home Screen
Publishing Slices
In 2018, Google introduced the concept of slices, as a way for apps to publish
information to be embedded in the UI of other apps. Google is expected to make
a major push for apps to publish slices. This chapter explores how this is
done.
What’s a Slice?
What a slice actually is depends on your perspective.
From the user’s standpoint, when they are in another app — such as Google Assistant –
as part of their use of that app, they see data and UI elements that are tied
to your app. So, for example, if your app helps users book hotel rooms, and the
user asks the Assistant about a particular city, the Assistant might ask your app
for a slice, to show the user hotel options in that city.
From the standpoint of your app, a slice is structured data, roughly analogous to
publishing JSON from a Web service. While you get to specify text and images, and
while you get to suggest particular types of user interactions (e.g., “allow the
user to toggle this value between on and off”), the actual UI is rendered by
another app. In some respects, this is reminiscent of app widgets,
but RemoteViews give you much more direct control over the actual UI than
do slices.
What Slices Contain
The data that makes up a slice is a combination of a generic UI structure and
the user-facing elements (e.g., text, images) that should go into that UI structure.
So, for example, you can create a list or grid, by saying that you
want a series of rows and providing the text and images to go into those rows.
Elements in that UI structure can also be associated with PendingIntent
objects to let you know when the user interacts with them, from simple clicks
on image buttons, to being notified when the user changes values of toggles
and sliders.
However, while you indicate in your code that you want a grid, the actual details
of what that grid really looks like (margins, padding, colors, etc.) is up to the
app that displays your slice. You do not get a vote.
Where Slices Get Used
In many respects, this is the big mystery at the moment.
Google has indicated that some of their products — Search and Assistant — will
support slices. Google has also published code to allow other apps to display
slices. However, as with Google’s code for allowing apps to host app widgets,
the code is largely undocumented. It remains to be seen how widespread slices
become. They could be huge, or they could be a little-used feature — only time will tell.
A Tale of Two Slices
There are two implementations of the slice API: the one that you will use, and
the other one.
The one that you will use is in the AndroidX family of libraries. This works
back to API Level 19 (Android 4.4), covering the vast majority of Android devices
in use today.
The other one is native to Android 9.0. It is not completely clear why this exists,
given that there is a library version, and given that Google has been trending
away from having duplicate implementations of things (see the deprecated native
implementations of fragments and loaders). Regardless, until your minSdkVersion
rises to 28 or higher, you will want to use the AndroidX slice API.
As a result, this chapter focuses on the AndroidX slice API.
Slice Sizes
When another app (the “hosting app”) elects to show a slice from your app, in principle, that
slice will show up in one of three sizes.
It could show up in what amounts to a shortcut-style icon:

[image: Slice, Shortcut Rendering]

Figure 710: Slice, “Shortcut” Rendering
It could show up as a single “row”:

[image: Slice, Small Rendering]

Figure 711: Slice, “Small” Rendering
It could show up as a list of rows:

[image: Slice, Large Rendering]

Figure 712: Slice, “Large” Rendering
You do not really have control over which size the hosting app uses. You simply
provide the data for the slice, and the hosting app decides how to render it.
As a result, the slice API is designed to allow you to define the “large” rendering
with a series of built-in fallbacks for how that is displayed in the “small”
or “shortcut” sizes.
In theory, all hosting apps will render slices the same way. In practice,
you should make no assumptions about how your slices
will be rendered.
Setting Up a Slice
In theory, Android Studio 3.2 offers a wizard for setting up the code to allow
your app to publish slices. In practice, as of Android Studio 3.2 Canary 15,
that wizard is rather buggy, and it will be better if you avoid it for now.
What you need are:

	The dependencies and other Gradle settings to allow you to use the AndroidX
slice API

	A SliceProvider implementation

	The <provider> element for that SliceProvider

The Gradle Settings
The AndroidX slice API has dependencies on some things that are only a part
of Android 9.0. As a result, you need to have compileSdkVersion 28 at
the moment in order to be able to use either slice API (native or AndroidX).
Also, the AndroidX family of libraries does not play nicely with the previous
set of artifacts from the Android Support Library and related areas (e.g., the
Architecture Components). You will need to:

	Use the androidx artifacts yourself

	Avoid any third-party libraries that depend upon the Android Support Library
artifacts (until such time as the promised Jetifier tool starts to work)

For example, the
Slices/SamplerX
sample project has this app/build.gradle file:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 'android-P'

 defaultConfig {
 applicationId "com.commonsware.android.slice.sampler"
 minSdkVersion 21
 targetSdkVersion 27
 versionCode 1
 versionName "1.0"
 }
}

dependencies {
 implementation 'androidx.appcompat:appcompat:1.0.0-beta01'
 implementation 'androidx.slice:slice-builders:1.0.0-beta01'
}

(from Slices/SamplerX/app/build.gradle)
Here, in addition to compileSdkVersion 28, we have two androidx
dependencies:

	
androidx.slice:slice-builders, which will be your typical dependency for
using the AndroidX slice API

	
androidx.appcompat:appcompat, which is the AndroidX edition of appcompat-v7,
which your app will need to use, for reasons that will become clearer later
in this chapter

The SliceProvider
Your code that defines the slice will go in a subclass of SliceProvider. SliceProvider
is supplied by the slice API. As its name suggests, it is a subclass of ContentProvider,
but one where the API that you implement is tied to slices.
The method that you will almost always implement is onBindSlice(), where your
job is to return the Slice to be shown:

 @Override
 public Slice onBindSlice(Uri sliceUri) {
 Context ctxt=getContext();

 if (ctxt==null) {
 return null;
 }

 ListBuilder builder=new ListBuilder(ctxt, sliceUri, ListBuilder.INFINITY)
 .setAccentColor(ctxt.getResources().getColor(R.color.colorAccent))
 .addAction(buildIconAction(ctxt, "Top-level Action",
 R.drawable.ic_looks_two_black_24dp));

 builder
 .setHeader(buildHeader(ctxt))
 .addRow(buildSimpleRow(ctxt))
 .addInputRange(buildRangeRow(ctxt));

 return builder.build();
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
We will explore this code in greater detail shortly.
The other required method is onCreateSliceProvider(), where you can perform
any up-front one-time initialization that you might need. Return true when
this work — if any — is done:

 @Override
 public boolean onCreateSliceProvider() {
 return true;
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
The Manifest Entry
Since a SliceProvider is a ContentProvider, you will need a corresponding
<provider> element in the manifest:

 <provider
 android:name=".SamplerSliceProvider"
 android:authorities="${applicationId}.provider"
 android:exported="true" />

(from Slices/SamplerX/app/src/main/AndroidManifest.xml)
As with every <provider>, the android:authorities must hold one or more
unique values. Here, we use manifest merging placeholders to
base our authority string off of the applicationId that we are defining in Gradle.
The <provider> must also be exported, via android:exported="true" and not
have any permission-related attributes (e.g., android:permission). Normally,
from a security standpoint, this is really bad, as it means that any app at any
time can work with this provider, without user involvement. As it turns out,
the slice API has its own permission system “baked into” the SliceProvider
implementation.
The Activity That You Didn’t Write
Part of that permission system comes in the form of an activity that is automatically
added to your manifest. If you open the manifest for your slice-enabled
project and look at the “Merged Manifest” tab, you will see an <actiivty> element
for an activity that you did not write, named androidx.slice.compat.SlicePermissionActivity:

[image: Manifest Merger Tab, Showing Added Activity]

Figure 713: Manifest Merger Tab, Showing Added Activity
By default, this activity will use the theme that you have established in
your <application> element. Since SlicePermissionActivity uses appcompat,
your theme would need to be based on Theme.AppCompat, or else this activity
will crash when started. If the rest of your app is not using appcompat, you
will need to use the manifest merger process to override
the android:theme attribute for this added <activity>, pointing to a theme
that does inherit from Theme.AppCompat:

<activity
 android:name="androidx.slice.compat.SlicePermissionActivity"
 android:theme="@style/YourAppCompatTheme" />

We will see where this activity gets used later in this chapter.
Binding a Slice
The bulk of your business logic for your slice will either be in your onBindSlice()
method or called from that method:

 @Override
 public Slice onBindSlice(Uri sliceUri) {
 Context ctxt=getContext();

 if (ctxt==null) {
 return null;
 }

 ListBuilder builder=new ListBuilder(ctxt, sliceUri, ListBuilder.INFINITY)
 .setAccentColor(ctxt.getResources().getColor(R.color.colorAccent))
 .addAction(buildIconAction(ctxt, "Top-level Action",
 R.drawable.ic_looks_two_black_24dp));

 builder
 .setHeader(buildHeader(ctxt))
 .addRow(buildSimpleRow(ctxt))
 .addInputRange(buildRangeRow(ctxt));

 return builder.build();
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
The first thing that all of Google’s examples do is check to see if getContext()
returns null. In theory, this should never happen in a ContentProvider, and so
it is unclear why they are doing this check. However, the check is cheap, and there
is a chance that there is something odd about SliceProvider and onBindSlice()
that causes getContext() to return null in some scenarios. So, just check it,
and return null from onBindSlice() if getContext() returns null.
For simple providers, you can then start building your slice. Complex providers,
though, might want to return different slices in different scenarios. A slice
for showing the weather might want to show different results based on a location
(e.g., weather in New York City versus weather in Chennai). You can examine the path
portion of the Uri that is supplied to onBindSlice(), examine its path segments,
and create different slices for different values (e.g., /weather/cities/newyork
might return a different slice than does /weather/cities/chennai). In this
case, though, you will need to decide what you are going to do if you get a Uri
that is unexpected (e.g., no path segments, unrecognized city name).
Most slices will be constructed based on a ListBuilder. The ListBuilder
allows you to build a list of rows that form the “large” representation of your
slice. One of those rows will be designated the “header”, and that will be what
forms the “small” representation of your slice. Also, you can associate an
action with the ListBuilder itself, and that action’s icon will be what shows
up for the “shortcut” representation of your slice.
To create a ListBuilder, use the three-parameter constructor that takes:

	a Context, which you get from getContext() in your SliceProvider

	the Uri associated with this slice

	the “time to live” for the data in this slice, expressed in milliseconds

The “time to live” would appear to be used to trigger automatic refreshes of your
slice, though it is unclear how this will be handled in hosting apps. If your
slice data is not particularly time-sensitive, pass ListBuilder.INFINITY for
the third parameter to the ListBuilder constructor.
The two methods that you will want to call for your initial ListBuilder
setup are:

	
setAccentColor(), to teach the ListBuilder how to tint the icons and
widgets when your slice is rendered, and

	
addAction(), to supply a SliceAction

This particular SliceAction is made up of three things:

	A message to be displayed, when relevant (e.g., as a content description for
accessbility)

	An icon, using IconCompat, which usually comes from a bitmap or resource

	A PendingIntent to identify what should happen if the user triggers this
action (e.g., taps on the shortcut icon)

Here, we use our own buildIconAction() method to create the SliceAction:

 SliceAction buildIconAction(Context ctxt, String msg, @DrawableRes int iconRes) {
 return SliceAction.create(buildActionPI(ctxt, msg, iconRes),
 buildIcon(ctxt, iconRes), ListBuilder.ICON_IMAGE, msg);
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
That, in turn, uses buildActionPI() and buildIcon() methods:

 PendingIntent buildActionPI(Context ctxt, String msg, int id) {
 Intent i=new Intent(ctxt, SliceActionReceiver.class)
 .putExtra(SliceActionReceiver.EXTRA_MSG, msg);

 return PendingIntent.getBroadcast(ctxt, id, i, PendingIntent.FLAG_UPDATE_CURRENT);
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
We use a broadcast PendingIntent, pointing to a SliceActionReceiver, which
will just display a Toast with the text of our message, packaged into the Intent
as EXTRA_MSG:

package com.commonsware.android.slice.sampler;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.widget.Toast;

public class SliceActionReceiver extends BroadcastReceiver {
 static final String EXTRA_MSG="msg";

 @Override
 public void onReceive(Context context, Intent intent) {
 Toast
 .makeText(context, intent.getStringExtra(EXTRA_MSG), Toast.LENGTH_LONG)
 .show();
 }
}

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SliceActionReceiver.java)
A SliceAction can be configured in a few different ways — we will examine
the details later in the chapter.
In truth, our ListBuilder does have rows, which we add via setHeader(), addRow(),
and addInputRange() methods. We will examine those
later in the chapter. For the moment, take it on faith
that they add three rows to our list of rows, the first of which is our header.
Trying a Slice
A slice is a data structure. What a hosting app will show is a rendered
edition of that data structure. However, the rendering code is not in your
slice-publishing app — that is in the hosting app. You have no built-in means
of showing your slice.
To that end, Google has an open source Slice Viewer utility
that you can use for testing your slice.
Installing the Slice Viewer
Visit the Releases area of the Slice Viewer GitHub repo
and find the latest release. There should be an APK file associated with that
release. Download it and install it on your test device or emulator. For
example, you could download the APK with your development machine’s Web
browser, then install the app via adb:

adb install /path/to/slice-viewer.apk

Running Your Slice in the Viewer
The simplest way to get your slice into the Slice Viewer is by setting up a custom
run configuration in Android Studio. To do this:

	Choose Run > Edit Configurations from the Android Studio main menu

	Click the + icon and choose to add an Android App run configuration

	Give the run configuration an obvious name (e.g., run-slice)

	Choose the appropriate module from the “Module” drop-down (e.g., app)

	Change the “Launch” drop-down in the “Launch Options” group to be “URL”

	Fill in slice-content://... in the “URL” field in the “Launch Options”
group, where the ... is replaced by your provider’s authority string and,
if applicable, any path that you wish to receive in your Uri

[image: Run Configuration for Use with the Slice Viewer]

Figure 714: Run Configuration for Use with the Slice Viewer

	Change anything else in the run configuration that you might normally change,
if anything

	Click “OK” to save the run configuration

	Run that run configuration on a device or emulator that already has the Slice
Viewer app installed

This will cause the Slice Viewer to display your slice… or, at least, display
a permission request:

[image: Slice Viewer, Showing Permission Note]

Figure 715: Slice Viewer, Showing Permission Note
The User Flow
When the user is first presented with a slice from your app, the slice will
not show any actual information. Instead, for “small” and “large” representations,
it will show a message indicating that the hosting app wants to show a slice
from your app. In the “shortcut” representation, the user just sees the icon.
When the user taps on the slice’s UI, the SlicePermissionActivity will
be displayed, asking the user to grant permission for the hosting app to
show slices from your app:

[image: SlicePermissionActivity, Asking for Permission]

Figure 716: SlicePermissionActivity, Asking for Permission
If the user clicks “Allow”, then the user will be taken back to the hosting app,
which should now show the actual slice, instead of the permission-request
placeholder.
Hence, if the slice system works as designed, the hosting app should not
have access to any data from your app unless the user allows such access via
that permission request.
However, bear in mind that this is not a system-level permission grant. While
the dialog is styled to look a bit like system security dialogs, it is really
coming from your app, by way of the slice API.
The SliceAction
The rows in your slice can contain SliceAction objects. We saw an example
of this earlier, defining a SliceAction to be attached to the ListBuilder.
Many row types (“templates”) can have a primary action. This usually will control
what happens when the user taps on the body of the row…
though that is not always the case.
Some row types take additional actions that will appear in the rows themselves.
These actions come in one of two forms:

	Actions with an associated icon, where tapping the icon triggers the PendingIntent

	Actions that are tied to a Switch widget (or similar sort of “toggle”),
where toggling the Switch on or off triggers the PendingIntent

In the latter case, the Intent inside of your PendingIntent will be augmented
with a Slice.EXTRA_TOGGLE_STATE boolean extra, containing the checked
state of the Switch. So, for example, if your PendingIntent is a broadcast,
your BroadcastReceiver will receive an Intent that is set up as you have it
in the PendingIntent, plus it will contain the Slice.EXTRA_TOGGLE_STATE extra.
The Slice Item Templates
The bulk of the content of a slice comes in the form of rows that you hand
to the ListBuilder.
Those rows are defined using a fixed roster of “templates”. You describe
the basic type of row (e.g., a simple row, a row showing a series of grid cells)
and the data that should go into that row. The hosting app — typically in conjunction
with some Google-supplied rendering code — will use that information to render
your slice in the hosting app’s UI. As a result, you do not have pixel-level
control over what the rows look like. You control some icons, the accent color,
and the text to be displayed, and perhaps some actions, and that’s about it.
There are five row templates:
“simple rows”, headers, range rows, input range rows, and grid rows.
Simple Rows
A simple row is defined using a ListBuilder.RowBuilder and added to a ListBuilder
via its addRow() method.
Simple rows offer:

	A title and subtitle, as simple text

	A primary action, in the form of a SliceAction

	A start (“title”) item and one or more end items, each of which is either an icon, a
SliceAction, or a timestamp

All of these are optional, though if you supply none of them, your row does
not show up in the rendered output.
In the sample app, we are setting the title, subtitle, and primary action, along
with one end item:

 RowBuilder buildSimpleRow(Context ctxt) {
 return new RowBuilder()
 .setTitle("Simple Row Title")
 .setSubtitle("This is the subtitle")
 .setPrimaryAction(buildIconAction(ctxt, "Simple Row Primary Action",
 R.drawable.ic_looks_4_black_24dp))
 .addEndItem(buildToggleAction(ctxt, "Simple Row End Item", R.id.toggle));
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
The end item is a Switch, created via SliceAction.createToggle():

 SliceAction buildToggleAction(Context ctxt, String msg, int id) {
 return SliceAction.createToggle(buildActionPI(ctxt, msg, id), msg, false);
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
In principle, our PendingIntent could point to something
that will use the Slice.EXTRA_TOGGLE_STATE extra to react to the now-current
Switch state; in this app, that extra is ignored.
Headers
A header row is created using a ListBuilder.HeaderBuilder and is attached
to the ListBuilder via its setHeader() method. As the name suggests, a list-based
slice has only one header, whereas it can have several of the other row templates.
In addition to the same sort of title and subtitle support as is seen in simple rows,
HeaderBuilder has a
setSummary() method, which provides text that may be used in circumstances
where the entire list is not displayed:

 ListBuilder.HeaderBuilder buildHeader(Context ctxt) {
 return new ListBuilder.HeaderBuilder()
 .setTitle("Header Title")
 .setSubtitle("This is the subtitle")
 .setSummary("This is the summary", false)
 .setPrimaryAction(buildIconAction(ctxt, "Header Primary Action",
 R.drawable.ic_looks_one_black_24dp));
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
In “small” mode, the summary is shown in place of the subtitle.
Headers can have actions. Those added via addAction() are simply shown in the
header. The “primary action” behaves differently
depending on circumstances, as was the case with simple
rows. All actions on headers will
appear at the end, after the title and subtitle.
Range Rows and Input Range Rows
“Range rows” show value on a numerical scale, by default using a ProgressBar
or similar widget. An “input range row” uses a SeekBar or similar widget, to allow
the user to choose something within the numerical range.
Despite the similar names, these are independent constructs:

	Use a ListBuilder.RangeBuilder to add a range row to a ListBuilder, via
its addRange() method

	Use a ListBuilder.InputRangeBuilder to add an input range row to a ListBuilder,
via its addInputRange() method

The builders have a similar API:

	
setTitle(), setSubtitle(), and setPrimaryAction() akin to simple rows

	
setValue() and setMax() to set the current value and the maximum value
for the range (where the minimum is 0)

ListBuilder.InputRangeBuilder additionally has an
oddly-named setInputAction() method, where you supply a PendingIntent
to be sent when the user changes the SeekBar position. Your component responding
to the PendingIntent will have access to a Slice.EXTRA_RANGE_VALUE extra
with the new value of the Seekbar. Note that setInputAction() is required;
you will crash at runtime if you fail to supply a PendingIntent via this method.
The SamplerX sample app offers an input range row:

 ListBuilder.InputRangeBuilder buildRangeRow(Context ctxt) {
 return new ListBuilder.InputRangeBuilder()
 .setTitle("Range Title")
 .setSubtitle("This is the subtitle")
 .setMax(10)
 .setValue(5)
 .setPrimaryAction(buildIconAction(ctxt, "Range Primary Action",
 R.drawable.ic_looks_5_black_24dp))
 .setInputAction(buildActionPI(ctxt, "Range Selection Changed", R.id.range));
 }

(from Slices/SamplerX/app/src/main/java/com/commonsware/android/slice/sampler/SamplerSliceProvider.java)
We will see an example of a range row later in this chapter.
Grid Rows
A slice can also have a “grid row”. This template uses a series of cells
for the content. Each cell is created by a ListBuilder.GridRowBuilder.CellBuilder,
where the row overall is created by a ListBuilder.GridRowBuilder. The resulting
row is added to the ListBuilder via its addGridRow() method.
Unlike the other row types, a grid row has no title, subtitle, or actions (other
than a primary action). It simply has cells. Each cell can have some mix of:

	“title text” (which might be rendered in bold)

	text

	images

You can have up to two pieces of text and one image, but they can appear in
whatever order you want. They will be vertically stacked within the cell,
with the roster of cells laid out horizontally within the row.
The row might
be horizontally scrollable. If there is not enough room to show all of your
cells, your “see more” data (setSeeMoreAction() or setSeeMoreCell()) will
be used to allow the user to do something to see the rest of the data, such as
launch one of your activities.
We will see a grid row later in this chapter.
Hey, What About…?
You cannot invent your own row templates, insofar as the slice API does not
have an extensible API for this. Bear in mind that any custom templates would
have to be honored both by slice publishers and slice hosting apps, which
limits the utility of any “home-grown” row templates.
However, it is likely that Google will add more row templates to the slice API
over time. There are already hints that they will allow for text input, akin
to how that is offered in notifications.
Actions and Sizes
Given those templates, plus the API of ListBuilder, it would seem that the
rules for actions would be simple:

	Actions defined on the rows are used on those rows

	Actions defined on the ListBuilder would be used in other situations, such
as shortcut mode, where there are no rows

Unfortunately, that is not how it works.
Shortcut Mode
When your slice is rendered as a shortcut, the primary action of the first row
is used for the shortcut. It is that primary action’s icon that is displayed, and
it is that primary action’s PendingIntent that is invoked when the user taps on that
shortcut.
Actions defined on the ListBuilder, elsewhere on the first row, or on other rows,
are ignored in this mode.
Small and Large Modes
When your slice is rendered in “small” mode, the first row of your list is what
is shown. Typically, that will be the header row, but a header row is optional –
whatever the first row is that you hand to the ListBuilder will be used.
When your slice is rendered in “large” mode, more of your rows are shown, though
the exact number may depend on the amount of screen space allocated to the slice.
Actions that you define on the ListBuilder will show up as “end items” on the
first row. The row’s primary action controls what happens if the user clicks on
the body of the row itself, but the primary action’s icon is not used.
The primary action on the second and subsequent rows in “large” mode is simply used for
handling the clicks on the row body. The icon for such actions is ignored.
Asynchronous Slices
The SamplerX project demonstrates the basics of showing a slice and illustrates
how to use some common row templates. However, on the whole, it is not very realistic.
Usually, there will be some application data that you wish to display in the slice,
whether from a database, file, Web service, or other source.
In an ideal world, getting this data would be instantaneous. As Android developers
know all too well, any form of I/O is slow, some slower than others.
In a nice-if-not-ideal world, the slice API would have a built-in system for
allowing us to load data asynchronously, in a reliable fashion. Alas, it does
not. In fact, onBuildSlice() is a blocking call — we need to return from
it very quickly, or else the slice hosting app may freeze up or otherwise offer
a poor user experience.
While we might offer an optimized path in onBuildSlice() for creating the “real”
slice using data that is cached, we cannot assume that the data that we need will
be cached in memory. It is likely that we have no process at all prior to the
request for our slice leading to the onBuildSlice() call. As a result, we need
to handle both the “we have the data” case and the “we need to load the data” case,
which gets a bit complicated.
If you want to include images that come from the network, things get even more
complicated. For privacy and security reasons — plus simplicity, most likely –
you cannot put a URL to some hosted image in a slice. Instead, you need to create
an IconCompat based on the Bitmap that you get from downloading the image identified
by the URL. That, in turn, gets a bit interesting, because most of the popular
image-loading libraries are designed for asynchronous use. Here, asynchronous APIs
are not an option: we need the Bitmap to load into the slice, before onBindSlice()
returns.
The
Slices/WeatherSlice
sample project will attempt to demonstrate all of this, though the details of asynchronously
loading your app’s data will vary widely by app. This particular app will
show the weather forecast for New York City, pulled from the US National Weather
Service’s Web service API.
Dealing with No Data
If you have no data, you need to still return a slice from onBindSlice(). However,
there is no requirement that the slice resemble the “real” slice that you would
return when you do have your data. You are welcome to use whatever sort of row
structure that you want to let the user know that you are busily fetching the data
for their slice.
In WeatherSliceProvider - the WeatherSlice sample’s SliceProvider subclass –
when we have no data, we return a slice with a range bar that theoretically
shows download progress:

package com.commonsware.android.slice.weather;

import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;
import android.net.Uri;
import org.threeten.bp.OffsetDateTime;
import org.threeten.bp.format.DateTimeFormatter;
import org.threeten.bp.format.FormatStyle;
import androidx.annotation.DrawableRes;
import androidx.core.graphics.drawable.IconCompat;
import androidx.slice.Slice;
import androidx.slice.SliceProvider;
import androidx.slice.builders.GridRowBuilder;
import androidx.slice.builders.ListBuilder;
import androidx.slice.builders.SliceAction;
import static androidx.slice.builders.ListBuilder.LARGE_IMAGE;

public class WeatherSliceProvider extends SliceProvider {
 static final Uri NYC_FORECAST=
 Uri.parse(
 "https://forecast.weather.gov/MapClick.php?lat=40.7146&lon=-74.0071");
 static final DateTimeFormatter FORMATTER=
 DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT);
 static final Uri ME=new Uri.Builder()
 .scheme("content")
 .authority(BuildConfig.APPLICATION_ID+".provider")
 .build();

 @Override
 public boolean onCreateSliceProvider() {
 return true;
 }

 public Slice onBindSlice(Uri sliceUri) {
 Context ctxt=getContext();

 if (ctxt==null) {
 return null;
 }

 ListBuilder builder=new ListBuilder(ctxt, sliceUri, ListBuilder.INFINITY)
 .setAccentColor(ctxt.getResources().getColor(R.color.colorAccent));

 builder.setHeader(buildHeader(ctxt));

 WeatherResponse weather=Forecaster.LATEST;

 if (weather==null) {
 Forecaster.enqueueWork(getContext());

 builder.addRange(new ListBuilder.RangeBuilder()
 .setTitle(ctxt.getString(R.string.downloading)));
 }
 else {
 builder.addGridRow(buildGridRow());
 }

 return builder.build();
 }

 ListBuilder.HeaderBuilder buildHeader(Context ctxt) {
 return new ListBuilder.HeaderBuilder()
 .setTitle(ctxt.getString(R.string.header_title))
 .setPrimaryAction(
 buildIconAction(ctxt, ctxt.getString(R.string.msg_forecast),
 R.drawable.ic_wb_sunny_black_24dp));
 }

 GridRowBuilder buildGridRow() {
 GridRowBuilder row=new GridRowBuilder();

 for (int i=0; i<Forecaster.COUNT; i++) {
 WeatherResponse.Period period=Forecaster.LATEST.properties.periods.get(i);
 OffsetDateTime odt=OffsetDateTime.parse(period.startTime);

 row.addCell(new GridRowBuilder.CellBuilder()
 .addTitleText(odt.format(FORMATTER))
 .addImage(IconCompat.createWithBitmap(period.iconBitmap), LARGE_IMAGE)
 .addText(
 String.format("%d%s", period.temperature, period.temperatureUnit)));
 }

 return row;
 }

 SliceAction buildIconAction(Context ctxt, String msg,
 @DrawableRes int iconRes) {
 return SliceAction.create(buildActionPI(ctxt, iconRes),
 buildIcon(ctxt, iconRes), ListBuilder.ICON_IMAGE, msg);
 }

 PendingIntent buildActionPI(Context ctxt, int id) {
 Intent i=new Intent(Intent.ACTION_VIEW, NYC_FORECAST);

 return PendingIntent.getActivity(ctxt, id, i,
 PendingIntent.FLAG_UPDATE_CURRENT);
 }

 IconCompat buildIcon(Context ctxt, @DrawableRes int iconRes) {
 return IconCompat.createWithResource(ctxt, iconRes);
 }
}

(from Slices/WeatherSlice/app/src/main/java/com/commonsware/android/slice/weather/WeatherSliceProvider.java)
We will explore what a WeatherResponse is and what a Forecaster is later.
For the moment, we are focusing on the case where Forecaster.LATEST is null,
in which case our slice has a header row plus the range row. When the slice
is first run, we have not had a chance to download a weather forecast, so
the range bar shows up:

[image: Slice Viewer App, Showing WeatherSlice, Without a Forecast]

Figure 717: Slice Viewer App, Showing WeatherSlice, Without a Forecast
Loading the Data
We cannot load our data in onBindSlice(), because it may take a while.
In this sample, we offload that work to a Forecaster class. Forecaster is
a JobIntentService, and its responsibility is to use Retrofit to download
the weather forecast.
WeatherResponse and some related classes contain the forecast itself:

package com.commonsware.android.slice.weather;

import android.graphics.Bitmap;
import java.util.List;

public class WeatherResponse {
 public final Properties properties=null;

 public static class Properties {
 public final List<Period> periods=null;
 }

 public static class Period {
 public final String startTime=null;
 public final int temperature;
 public final String temperatureUnit=null;
 public final String icon=null;
 public Bitmap iconBitmap;

 public Period() {
 temperature=0;
 }
 }
}

(from Slices/WeatherSlice/app/src/main/java/com/commonsware/android/slice/weather/WeatherResponse.java)
This is structured
as the National Weather Service Web API returns it… with one slight difference.
The Web service API returns a URL to an icon representing a forecast in the
icon field of the Period class. However, for our slice, we need the
actual image itself.
Hence, the onHandleWork() method of Forecaster not only uses Retrofit
to retrieve the Web service response, but it also uses OkHttp to download
the image for a given forecast Period and uses BitmapFactory to decode that image into a Bitmap:

package com.commonsware.android.slice.weather;

import android.content.Context;
import android.content.Intent;
import android.graphics.BitmapFactory;
import android.util.Log;
import androidx.annotation.NonNull;
import androidx.core.app.JobIntentService;
import okhttp3.OkHttpClient;
import okhttp3.Request;
import okhttp3.ResponseBody;
import retrofit2.Retrofit;
import retrofit2.converter.gson.GsonConverterFactory;

public class Forecaster extends JobIntentService {
 static WeatherResponse LATEST=null;
 static final int COUNT=4;
 private static final double NYC_LATITUDE=40.730610;
 private static final double NYC_LONGITUDE=-73.935242;
 private static final int UNIQUE_JOB_ID=1337;

 static void enqueueWork(Context ctxt) {
 enqueueWork(ctxt, Forecaster.class, UNIQUE_JOB_ID,
 new Intent(ctxt, Forecaster.class));
 }

 @Override
 public void onHandleWork(@NonNull Intent intent) {
 OkHttpClient ok=new OkHttpClient.Builder().build();
 Retrofit retrofit=
 new Retrofit.Builder()
 .client(ok)
 .baseUrl("https://api.weather.gov")
 .addConverterFactory(GsonConverterFactory.create())
 .build();
 NWSInterface nws=retrofit.create(NWSInterface.class);
 double roundedLat=(double)Math.round(NYC_LATITUDE*10000d)/10000d;
 double roundedLon=(double)Math.round(NYC_LONGITUDE*10000d)/10000d;

 try {
 WeatherResponse response=
 nws.getForecast(roundedLat, roundedLon).execute().body();

 for (int i=0;i<COUNT;i++) {
 WeatherResponse.Period period=response.properties.periods.get(i);
 ResponseBody body=ok
 .newCall(new Request.Builder().url(period.icon).build())
 .execute()
 .body();

 period.iconBitmap=BitmapFactory.decodeStream(body.byteStream());
 }

 LATEST=response;
 getContentResolver().notifyChange(WeatherSliceProvider.ME, null);
 }
 catch (Throwable t) {
 Log.e(getClass().getSimpleName(),
 "Exception from Retrofit request to National Weather Service", t);
 }
 }
}

(from Slices/WeatherSlice/app/src/main/java/com/commonsware/android/slice/weather/Forecaster.java)
Once we have our data, we need to let the slice hosting app know to reload
the slice. To do that, we use notifyChange() on a ContentResolver, telling
it that the data at our provider’s Uri has changed. Through either a ContentObserver
or JobScheduler, the slice hosting app will find out about our data change and
will reload our slice, triggering a fresh call to onBindSlice() in WeatherSliceProvider.
Using the Data
This time, onBindSlice() will see that Forecaster.LATEST has data,
and it builds a slice with two rows: a header and a grid row:

 ListBuilder.HeaderBuilder buildHeader(Context ctxt) {
 return new ListBuilder.HeaderBuilder()
 .setTitle(ctxt.getString(R.string.header_title))
 .setPrimaryAction(
 buildIconAction(ctxt, ctxt.getString(R.string.msg_forecast),
 R.drawable.ic_wb_sunny_black_24dp));
 }

 GridRowBuilder buildGridRow() {
 GridRowBuilder row=new GridRowBuilder();

 for (int i=0; i<Forecaster.COUNT; i++) {
 WeatherResponse.Period period=Forecaster.LATEST.properties.periods.get(i);
 OffsetDateTime odt=OffsetDateTime.parse(period.startTime);

 row.addCell(new GridRowBuilder.CellBuilder()
 .addTitleText(odt.format(FORMATTER))
 .addImage(IconCompat.createWithBitmap(period.iconBitmap), LARGE_IMAGE)
 .addText(
 String.format("%d%s", period.temperature, period.temperatureUnit)));
 }

 return row;
 }

(from Slices/WeatherSlice/app/src/main/java/com/commonsware/android/slice/weather/WeatherSliceProvider.java)
We have one cell per forecast period, where Forecaster is only downloading
the icons for COUNT periods (defined as 4 in the current code). Each
cell contains:

	the date and time for the forecast period,

	the image of the forecast, from the downloaded Bitmap, and

	the forecasted temperature

The date and time come from the National Weather Service API in ISO-8601 format.
This app uses Jake Wharton’s ThreeTenABP library,
which offers a set of Java classes that mimic the Java 8 java.time classes.
We use OffsetDateTime to parse the ISO-8601 string, then use a static
DateTimeFormatter to create a better-formatted bit of text to show the user.
For each cell, we use a GridRowBuilder.CellBuilder to create the cell, add
it to the row via addCell(), and add the overall GridRowBuilder to the
ListBuilder via addGridRow().
For the image portion of the cells,
we pass in LARGE_IMAGE as a flag, indicating that we want the image to be as
large as possible. Alternatives are ICON_IMAGE (rendered small and tinted with
your accent color) and SMALL_IMAGE (rendered small but not tinted).
Note that we add a primary action to the header. Slices require a
primary action; otherwise the slice-building code will crash:

java.lang.IllegalStateException: A slice requires a primary action; ensure one of your builders has called #setPrimaryAction with a valid SliceAction.
 at androidx.slice.builders.impl.ListBuilderV1Impl.build(ListBuilderV1Impl.java:142)
 at androidx.slice.builders.ListBuilder.build(ListBuilder.java:235)
 at com.commonsware.android.slice.weather.WeatherSliceProvider.onBindSlice(WeatherSliceProvider.java:73)
 at androidx.slice.compat.SliceProviderWrapperContainer$SliceProviderWrapper.onBindSlice(SliceProviderWrapperContainer.java:73)
 at android.app.slice.SliceProvider.onBindSliceStrict(SliceProvider.java:545)
 at android.app.slice.SliceProvider.handleBindSlice(SliceProvider.java:459)
 at android.app.slice.SliceProvider.call(SliceProvider.java:365)
 at android.content.ContentProvider$Transport.call(ContentProvider.java:401)
 at android.content.ContentProviderNative.onTransact(ContentProviderNative.java:272)
 at android.os.Binder.execTransact(Binder.java:731)

In this case, the primary action brings up a Web browser to view a weather
forecast for New York City.
Warning: Make No Rendering Assumptions
With an Android app’s own UI, given sufficient work, you can have pixel-perfect
control. When an Android app contributes to other UI — such as a Notification –
you lose that level of control. Slices work the same way, in that you provide
the data to be displayed but do not have absolute control over the way it looks.
That lack of control will be visible in most, if not all, slice hosting apps.
In part, this is due to screen space, as the host gets to decide how much
space to allocate to the slice, which in turn steers the design towards a particular
rendering mode (e.g., “small” or “shortcut” for smaller areas).
However, while many slice hosts will just use the rendered output from Google’s
supplied slice rendering code, other slice hosts will make changes to that
View hierarchy or even process the slices themselves. In these cases, the
look of your slice may vary radically from the normal output that you see in
apps like the Slice Viewer.
All that you get to do is supply the data and related hints as to how you want
things to be rendered, and the slice host decides what to do. So, for example,
if your slice has lots of rows, the rendered slice may or may not support scrolling
to view all of those rows. You can, if you wish, call setSeeMoreAction() to
supply a SliceAction that the slice host can attach to some form of “see more”
button. Or, you can call setSeeMoreRow() to provide a simple row that will
be displayed when scrolling is disabled, where you can have actions that help
the user to get to an activity or something that will show them all of the data.
For example, here is the output from the WeatherSlice sample, showing a forecast:

[image: WeatherSlice, As Rendered by Slice Viewer App]

Figure 718: WeatherSlice, As Rendered by Slice Viewer App
We supplied the text and image. However, we do not control the actual formatting,
such as:

	How many cells to show (we supplied 4, but only 3 are rendered)

	What size font is used for the text

	How large the ImageView is for the forecast

	What aspect ratio is used for the ImageView

	How the vertical whitespace is allocated

	And so on

Other Slice Viewer Features
On the screen that appears in the Slice Viewer when you run your slice via
your custom run configuration, an action bar item will allow you to switch
between the three rendering modes (shortcut, small, large), so you can see
what your slice looks like in all three modes.
If you launch the Slice Viewer directly from the home screen or other launcher,
you will be presented with a list of all slices that you have run previously:

[image: Slice Viewer Launcher Activity, Showing Two Slices]

Figure 719: Slice Viewer Launcher Activity, Showing Two Slices
This screen has the same action bar option for switching between the three
rendering modes. The action bar also has a SearchView (or something similar)
where you can type in the ContentProvider Uri for a slice (e.g.,
content://com.commonsware.android.slice.sampler.provider), to load a slice that
way. The arrow icons next to each Uri take you to the same screen that is
displayed when you run your slice via the run configuration, showing just that
one slice.
Hosting Slices
For a SliceProvider to be useful, something need to be able to request and
display a slice served by that provider. In this chapter, we will explore what
it takes to do just that: display in your app a slice obtained from some other app’s
SliceProvider.
What You Need to Know
Hosting slices is tied very closely to LiveData from the Architecture Components.
In a nutshell, LiveData is a way for you to subscribe to updates to some source
of data, akin to subscribing to an RxJava Observable. LiveData has the
added benefit of being aware of the Android lifecycle, so it can cleanly
unsubscribe from the data source when the hosting activity or fragment is
destroyed. You can learn more about LiveData from CommonsWare’s book,
Android’s Architecture Components.
The
Slices/Inspector
sample project
shown in this chapter happens to be written in Kotlin.
If you are not familiar with Kotlin, focus less on the syntax shown in the examples
and more on the concepts outlined in the prose.
Why?
Just because somebody needs to host slices does not mean that you have to host
slices in your app. So, why would you bother writing code to display other apps’
slices?

	Perhaps you are not interested in hosting slices from arbitrary apps, but
instead wish to host slices from other apps in your app suite, as a form
of integration.

	Perhaps you are interested in integrating slices from specific slice providers,
if they happen to be installed on the device. For example, someday, the Wikipedia
app might offer slices tied to search terms, where the slice might have a sentence
about the topic and perhaps an image. That slice could lead users over to the Wikipedia
app to learn more. You might be interested in displaying their slices, rather than
hooking up to some Wikipedia-specific API, to help users learn more about specific
terms that they encounter in your app.

	Perhaps you maintain a home screen/launcher app, and you want to offer slices
as another form of interactive content, alongside classic Android app widgets.

	Perhaps a firm like Amazon might offer slices based on products, where your
request for their slice can include a referral code. Users who purchase products
from your app (and your hosted Amazon slices) trigger you to earn referral fees,
as another income source.

Depending on how the slice ecosystem evolves, there could be many good reasons to
host slices. And, the good news is that for simple scenarios, hosting slices is
not very difficult.
How?
You have two main approaches for hosting a slice. Most developers will take the
simple approach, using some Google-supplied library code to display and update
the slice. If needed, though, you can get at the raw information about the slice
and build your own custom rendered edition of that information.
In both cases, for the moment, we will assume that we know the Uri of the
SliceProvider. In the Inspector sample app, to keep it simple, this value
is hard-coded in gradle.properties to be the SamplerX example from
the chapter on publishing slices:

SLICE_URI=content://com.commonsware.android.slice.dice.provider

(from Slices/Inspector/gradle.properties)
You can test using the Inspector with any other slice provider simply
by changing that line to provide the Uri that you wish to test. That
Uri is then hoisted into BuildConfig via a buildConfigField statement
in app/build.gradle:

 buildConfigField "String", "SLICE_URI", '"' + SLICE_URI + '"'

(from Slices/Inspector/app/build.gradle)
So, the app’s code can identify our SliceProvider via BuildConfig.SLICE_URI.
The Simple Way: SliceView
Only two classes are really needed to render a slice given the Uri:

	
SliceView, which is a widget that knows how to display a slice, and

	
SliceLiveData, which is a LiveData that knows how to communicate with
a SliceProvider, given its Uri, and push slice data to a SliceView

The sample app has a ViewPager with four tabs. The first three tabs each
show a slice from the provider identified by SLICE_URI. Those tabs
each use a SliceView, centered inside of a ConstraintLayout:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/darker_gray">

 <androidx.slice.widget.SliceView
 android:id="@+id/slice"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="8dp"
 android:background="@android:color/white"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from Slices/Inspector/app/src/main/res/layout/fragment_slice.xml)
A SliceView has no intrinsic background. If you do nothing else, it will render
text and images with no background. In this layout, we set the ConstraintLayout
to have a gray background and the SliceView to have a white background, so
you can see the bounds the SliceView.
The sample app has a TabAdapter serving as our PagerAdapter for the ViewPager.
For those first three tabs, it creates instances of a SliceFragment:

package com.commonsware.android.slice.inspector

import androidx.fragment.app.Fragment
import androidx.fragment.app.FragmentManager
import androidx.fragment.app.FragmentPagerAdapter
import androidx.slice.widget.SliceView

class TabAdapter(fm: FragmentManager, private val titles: Array<String>) : FragmentPagerAdapter(fm) {
 override fun getCount() = 4

 override fun getPageTitle(position: Int) = titles[position]

 override fun getItem(position: Int): Fragment =
 when (position) {
 0 -> SliceFragment.newInstance(SliceView.MODE_SHORTCUT)
 1 -> SliceFragment.newInstance(SliceView.MODE_SMALL)
 2 -> SliceFragment.newInstance(SliceView.MODE_LARGE)
 else -> InspectorFragment()
 }
}

(from Slices/Inspector/app/src/main/java/com/commonsware/android/slice/inspector/TabAdapter.kt)
The newInstance() factory method on SliceFragment takes a SliceView
“mode” value, indicating whether we want a shortcut, a small view, or a large
view. These modes were describe in the chapter on publishing slices.
In onCreateView(), the SliceFragment fills the mode into the SliceView via setMode()
(via the mode property syntax in Kotlin), defaulting to large mode if
for some reason we did not get a mode provided to us:

package com.commonsware.android.slice.inspector

import android.net.Uri
import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment
import androidx.slice.widget.SliceLiveData
import androidx.slice.widget.SliceView

private const val ARG_MODE = "mode"

class SliceFragment : Fragment() {
 companion object {
 fun newInstance(mode: Int) =
 SliceFragment().apply {
 arguments = Bundle().apply { putInt(ARG_MODE, mode) }
 }
 }

 override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?, state: Bundle?): View? {
 val result = inflater.inflate(R.layout.fragment_slice, container, false)
 val sliceView = result.findViewById<SliceView>(R.id.slice)

 sliceView.mode = arguments?.getInt(ARG_MODE, SliceView.MODE_LARGE) ?: SliceView.MODE_LARGE

 SliceLiveData
 .fromUri(activity!!, Uri.parse(BuildConfig.SLICE_URI))
 .observe(this, sliceView)

 return result
 }
}

(from Slices/Inspector/app/src/main/java/com/commonsware/android/slice/inspector/SliceFragment.kt)
Then, we:

	Parse SLICE_URI into an actual Uri

	Pass that, along with our activity, to SliceLiveData.fromUri(), to get a
SliceLiveData that is configured to pull slice data from the identified provider

	
observe() that SliceLiveData, having its slice data be fed into the SliceView

And… that’s it.
At this point, SliceLiveData and SliceView take over to render the slice in
the requested mode:

[image: Slice Inspector, Showing Shortcut Mode]

Figure 720: Slice Inspector, Showing Shortcut Mode

[image: Slice Inspector, Showing Small Mode]

Figure 721: Slice Inspector, Showing Small Mode

[image: Slice Inspector, Showing Large Mode]

Figure 722: Slice Inspector, Showing Large Mode
All of the actions included in the slice are handled by SliceView. In this case,
all of the SamplerX actions work, each showing a Toast with the appropriate
message.
Also, so long as you SliceLiveData has an active observer, it will receive updates
to the slice content if the SliceProvider publishes updates. So, for example,
if you inspect a slice that needs to perform network I/O — such as the weather
slice profiled in the chapter on publishing slices — you will
first get whatever the “loading” slice content is, then you will get the real
content. SliceLiveData simply pushes new slices to the SliceView, which updates
its content accordingly.
The Fully-Custom Way: Slice
You do not need a SliceView to display the contents of a slice, if you want
to decide how to display those contents yourself. Instead, have the SliceLiveData
route to your own code. It will hand you Slice objects, which you can inspect
and use for setting up your own UI.
Unfortunately, this is largely undocumented.
The fourth tab in the Slice Inspector brings up a graph showing the various
pieces of a slice:

[image: Slice Inspector, Showing Graph of Slice Elements]

Figure 723: Slice Inspector, Showing Graph of Slice Elements
This is handled by a separate InspectorFragment, using a TreeView from
this library.
A Slice is a tree structure, created using the various builders inside of
the SliceProvider.
The root Slice will contain one or more SliceItem objects, obtained via
the getItems() method (or the items property in Kotlin). Each SliceItem
has a getFormat() method indicating what sort of item it is and what it contains:

	
FORMAT_TEXT contains some text to render, which you can get via getText()
on the SliceItem

	
FORMAT_IMAGE contains an image to render, which you can get via getIcon()
on the SliceItem

	
FORMAT_SLICE contains a nested Slice in the tree, which you can get via
getSlice() and can then traverse as desired

	And so on

The sample app’s graph simply puts the format value into each of the nodes,
since formats happen to be human-readable strings. A app that wanted to do
its own rendering of a slice — such as a screen reader wanting to use
text-to-speech — would need to make sense of what is all in these slices
and how to use them.
Most such apps will leverage SliceMetadata to help. You can wrap a Slice in
a SliceMetadata via the SliceMetadata.from() method. SliceMetadata will
give you higher-order information about an individual slice, such as:

	The actions, toggles, and similar elements that may be a part of the slice

	The title, subtitle, summary, and other text that is part of the slice

	A isPermissionSlice(), which attempts to tell you if this slice is really
a request for the user to grant permissions, instead of containing actual
content

	And so on

The Catch: Discovering Slices
The Slice Inspector sample app cheats. It already knows the Uri of the slice
provider, courtesy of that SLICE_URI value in gradle.properties.
In some cases, your app will be able to cheat as well. If you want to show slices
from some particular app, you can “bake” the Uri to its provider into your
code by one means or another. You can use PackageManager and queryContentProviders()
to determine if that provider exists, and if it does, you can arrange to display
its slices.
But what if you do not know what slice providers to use?
Eventually, the slice ecosystem will work out options for discovering slice
providers. There is already a partial mechanism in place, involving Intent
objects, but it is largely undocumented as of July 2018. Plus, it is fairly
abstract, moving the discovery question from “how do I get the Uri?” to
“how do I create the correct Intent?”.
Slices… from the Web?
Most of the focus on slices assume that the Uri in question is tied to a
SliceProvider.
However, there is code in Google’s Slice Viewer app
that supports slice Uri values having http or https as a scheme, instead
of content. This implies that slices might come directly from Web servers,
in addition to from local slice providers.
A slice host will not really care
about the difference, other than perhaps needing the INTERNET permission where
it might not be required otherwise. SliceLiveData is already asynchronous, so
whether the slice data is coming from another app on the device or is coming
from a server is an implementation detail for SliceLiveData, not for the hosting app.
Right now, there is no documentation for how one would do this. It is entirely
possible that this bit of code was from some experiments that will never be
fully supported by the slice libraries. However, if you are implementing a slice
host, you may wish to watch for any signs that slices are being served by Web
sites — if nothing else, they would represent additional scenarios for your
app’s test suite.
Advanced Permissions
Adding basic permissions to your app to allow it to, say,
access the Internet, is fairly easy. However, the full permissions
system has many capabilities beyond simply asking the user to let
you do something. This chapter explores other uses of permissions,
from securing your own components to using signature-level
permissions (your own or Android’s).
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on permissions and
the chapter on signing your app.
One of the sample apps uses RxJava and RxAndroid, which are
introduced elsewhere in the book.
Securing Yourself
Principally, at least initially, permissions are there to allow
the user to secure their device. They have to agree to allow
you to do certain things, such as reading contacts, that they might
not appreciate.
The other side of the coin, of course, is to secure your own
application. If your application is mostly activities, security may be
just an “outbound” thing, where you request the right to use
resources of other applications. If, on the other hand, you put content
providers or services in your application, you will want to implement
“inbound” security to control which applications can do what with
the data.
Note that the issue here is less about whether other applications might
“mess up” your data, but rather about privacy of the user’s
information or use of services that might incur expense. That is where
the stock permissions for built-in Android applications are focused
– can you read or modify contacts, can you send SMS, etc. If your
application does not store information that might be considered
private, security is less an issue. If, on the other hand, your
application stores private data, such as medical information, security
is much more important.
The first step to securing your own application using permissions is to
declare said permissions, once again in the AndroidManifest.xml file.
In this case, instead of uses-permission, you add permission
elements. Once again, you can have zero or more permission elements,
all as direct children of the root manifest element.
Declaring a permission is slightly more complicated than using a
permission. There are three pieces of information you need to supply:

	The symbolic name of the permission. To keep your permissions from
colliding with those from other applications, you should use your
application’s Java namespace as a prefix

	A label for the permission: something short that would be
understandable by users

	A description for the permission: something a wee bit longer that is
understandable by your users

<permission
 android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
 android:label="@string/see_sekrits_label"
 android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a
possible permission; your application must still flag security
violations as they occur.
Enforcing Permissions via the Manifest
There are two ways for your application to enforce permissions,
dictating where and under what circumstances they are required. The
easier one is to indicate in the manifest where permissions are
required.
Activities, services, and receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is
required to access those items:

<activity
 android:name=".SekritApp"
 android:label="Top Sekrit"
 android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER"
/>
 </intent-filter>
</activity>

Only applications that have requested your indicated permission will be
able to access the secured component. In this case, “access” means:

	Activities cannot be started without the permission

	Services cannot be started, stopped, or bound to an activity without
the permission

	Intent receivers ignore messages sent via sendBroadcast() unless
the sender has the permission

Enforcing Permissions Elsewhere
In your code, you have two additional ways to enforce permissions.
Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION_GRANTED or
PERMISSION_DENIED depending on whether the caller has the permission
you specified. For example, if your service implements separate read
and write methods, you could require separate read versus write
permissions in code by checking those methods for the permissions you
need from Java.
Also, you can include a permission when you call sendBroadcast().
This means that eligible broadcast receivers must hold that permission;
those without the permission are ineligible to receive it. We will
examine sendBroadcast() in greater detail elsewhere in this book.
Requiring Standard System Permissions
While normally you require your own custom permissions using
the techniques described above, there is nothing stopping you from
reusing a standard system permission, if it would fit your needs.
For example, suppose that you are writing YATC (Yet Another Twitter
Client). You decide that in addition to YATC having its own UI, you
will design YATC to be a “Twitter engine” for use by third party
apps:

	Send timeline updates via broadcast Intents

	Publish the timeline, the user’s own tweets, @-mentions, and the like
via a ContentProvider

	Offer a command-based service interface for posting updates to the
timeline

	And so on

You could, and perhaps should, implement your own custom permission.
However, since any app can get to Twitter just by having the INTERNET
permission, one could argue that a third-party app should just need
that same INTERNET permission to use your API (rather than integrating
JTwitter or another third-party JAR).
Signature Permissions
Each permission in Android is assigned a protection level, via an
android:protectionLevel attribute on the <permission> element.
By default,
permissions are at a normal level, but they can also be flagged as
dangerous, signatureOrSystem, or signature. In the latter two cases,
“signature” means that the app requesting the permission and the app
requiring the permission should have be signed by the same signing key.
In the case of signatureOrSystem — only used by the firmware –
the app requesting the permission either needs to be signed by the
firmware’s signing key or reside on the system partition (e.g., come
pre-installed with the device).
Firmware-Only Permissions
Most of Android’s permissions mentioned in this book are ones that
any SDK application can hold, if they ask for them and the user grants
them. INTERNET, READ_CONTACTS, ACCESS_FINE_LOCATION, and kin
all are normal permissions.
BRICK is not.
There was a permission in Android, named BRICK, that, in theory, allows
an application to render a phone inoperable (a.k.a., “brick” the phone).
While there is no brickMe() method in the Android SDK tied to this
permission, presumably there might be something deep in the firmware
that was protected by this permission. Though, since Android 6.0
removed the BRICK permission from the SDK, it is clearly not something
Google expects us to use.
The BRICK permission could not be held by ordinary Android SDK applications.
You could request it all you want, and it will not be granted.
However, applications that are signed with the same signing key that
signed the firmware could hold the BRICK permission.
That is because
the system’s own manifest
used to have the following <permission> element:

<permission android:name="android.permission.BRICK"
 android:label="@string/permlab_brick"
 android:description="@string/permdesc_brick"
 android:protectionLevel="signature" />

Your Own Signature Permissions
You too can require signature-level permissions. That will
restrict the holders of that permission to be other apps signed
by your signing key. This is particularly useful for inter-process
communication between apps in a suite — by using signature permissions,
you ensure that only your apps will be able to participate in those
communications.
One nice thing about these sorts of signature-level permissions is that
the user is not bothered with them. It is assumed that the user will agree
to the communication between the apps signed by the same signing key. Hence,
the user will not see signature-level permissions at install or
upgrade time.
Since in some cases, you may not be sure which app will be installed first,
it is best to have all apps in the suite include the same <permission>
element, in addition to the corresponding <uses-permission> element. That
way, no matter which app is installed first, it can declare the permission
that all will share.
Though, that has its own problems, as you will see in the next section.
The Custom Permission Vulnerability
(NOTE: Some of the material in this section originally appeared in material hosted
in the CWAC-Security project repository.
In addition, the author would like to thank Mark Carter and “Justin Case”
for their contributions in this topic area).
Unfortunately, custom permissions have some undocumented limitations
that make them intrinsically risky. Specifically, custom permissions
can be defined by anyone, at any time, and “first one in wins”, which
opens up the possibility of unexpected behavior.
Here, we will walk through some
scenarios and show where the problems arise, plus discuss how to
mitigate them as best we can.
Scenarios
All of the following scenarios focus on three major app profiles.
App A is an app that defines a custom permission in its manifest,
such as:

<permission
 android:name="com.commonsware.cwac.security.demo.OMG"
 android:description="@string/perm_desc"
 android:label="@string/perm_label"
 android:protectionLevel="normal"/>

App A also defends a component using the android:permission
attribute, referencing the custom permission:

<provider
 android:name="FileProvider"
 android:authorities="com.commonsware.cwac.security.demo.files"
 android:exported="true"
 android:grantUriPermissions="false"
 android:permission="com.commonsware.cwac.security.demo.OMG">
 <grant-uri-permission android:path="/test.pdf"/>
</provider>

App B has a <uses-permission> element to declare to the user that
it wishes to access components defended by that permission:

<uses-permission android:name="com.commonsware.cwac.security.demo.OMG"/>

App C has the same <uses-permission> element. The difference is
that App B also has the <permission> element, just as App A
does, albeit with different descriptive information (e.g.,
android:description) and, at times, a different protection level.
All three apps are signed with different signing keys, because
in the real world they would be from different developers.
So, to recap:

	A defines a permission and uses it for defense

	B defines the same permission and requests to hold it

	C just requests to hold this permission

With all that in mind, let’s walk through some possible scenarios,
focusing on two questions:

	What is the user told, when the app is installed through
normal methods (i.e., not via adb), regarding this
permission?

	What access, if any, does App B or App C have to the ContentProvider
from App A?

The Application SDK Case (A, Then C)
Suppose the reason why App A has defined a custom permission is because
it wants third-party apps to have the ability to access its secured
components… but only with user approval. By defining a custom
permission, and having third-party apps request that permission,
the user should be informed about the requested permission and can
make an informed decision.
Conversely, if an app tries to access a secured component but
has not requested the permission, the access attempt should fail.
App C has requested the custom permission via the <uses-permission>
element. If the permission — defined by App A — has an
android:protectionLevel of normal or dangerous, the user
will be informed about the requested permission at install time. If
the user continues with the installation, App C can access the
secured component.
If, however, the android:protectionLevel is signature, the user
is not informed about the requested permission at install time, as
the system can determine on its own whether or not the permission
should be granted. In this case, App A and App C are signed with
different signing keys, so Android silently ignores the permission
request. If the user continues with installation, then App C tries
to access App A’s secured component, App C crashes with a
SecurityException.
In other words, this all works as expected.
The Application SDK Problem Case (C, Then A)
However, in many cases, there is nothing forcing the user to install
App A before App C. This is particularly true for publicly-distributed
apps on common markets, like the Play Store.
When the user installs App C, the user is not informed about the
request for the custom permission, presumably because that permission has not
yet been defined. If the user later installs App A, App C is not
retroactively granted the permission, and so App C’s attempts
to use the secured component fail.
This works as expected, though it puts a bit of a damper on custom
permissions. One way to work around this would be for the user to
uninstall App C, then install it again (with App A already installed).
This returns us to the original scenario from the preceding section.
However, if the user has data in App C, losing that data may be a problem
(as in a “let’s give App C, or perhaps App A, one-star ratings on
the Play Store” sort of problem).
The Peer Apps Case, Part One (A, Then B)
Suppose now we augment our SDK-consuming app (formerly App C) to
declare the same permission that App A does, in an attempt to allow
the two apps to be installed in either order. That is what App B is:
the same app as App C, but where it has the same <permission>
element as does App A in its manifest.
This scenario is particularly important where both apps could be
of roughly equal importance to the user. In cases where App C is
some sort of plugin for App A, it is not unreasonable for the
author of App A to require App A to be installed first. But, if
Twitter and Facebook wanted to access components of each others’ apps,
it would be unreasonable for either of those firms to mandate that
their app must be installed first. After all, if Twitter wants to
be installed first, and Facebook wants to be installed first, one
will be disappointed.
If the user installs App A (the app defending a component with
the custom permission) before App B, the user will be notified at
install time about App B’s request for this permission. Notably,
the information shown on the installation security screen will
contain App A’s description of the permission. And, if the user goes
ahead and installs App B, App B can indeed access App A’s secured
component, since it was granted permission by the user.
Once again, everything is working as expected. Going back to the
two questions:

	The user is informed when App B or App C requests the permission
defined by App A.

	App B and App C can hold that permission if and only if they meet the
requirements of the protection level

The Peer Apps Case, Part Two (B, Then A)
What happens if we reverse the order of installation? After all, if
App A and App B are peers, from the standpoint of the user, there
is roughly a 50% chance that the user will install App B before
App A.
Here is where things go off the rails.
The user is not informed about App B’s request for the custom permission.
The user will be informed about any platform permissions that the
app requests via other <uses-permission> elements. If there are none,
the user is told that App B requests no permissions… despite the
fact that it does.
When the user installs App A, the same thing occurs. Of course, since
App A does not have a <uses-permission> element, this is not all
that surprising.
However, at this point, even though the user was not informed, App B
holds the custom permission and can access the secured component.
This is bad enough when both parties are ethical. App B could be
a piece of malware, though, designed to copy the data from App A,
ideally without the user’s knowledge. And, if App B is installed before
App A, that would happen.
So, going to the two questions:

	The user is not informed about App B’s request for the permission…

	…but App B gets it anyway and can access the secured component

The Downgraded-Level Malware Case (B, Then A, Again)
You might think that the preceding problem would only be for
normal or dangerous protection levels. If App A defines
a permission as requiring a matching signature, and App A marks a
component as being defended by that permission, Android must require
the signature match, right?
Wrong.
The behavior is identical to the preceding case. Android does
not use the defender’s protection level. It uses the definer’s
protection level, meaning the protection level of whoever was installed
first and had the <permission> element.
So, if App A has the custom permission defined as signature, and
App B has the custom permission defined as normal, if App B is
installed first, the behavior is as shown in the preceding section:

	The user is not informed about App B’s request for the permission…

	…but App B gets it anyway and can access the secured component,
despite the signatures not matching

The Peer Apps Case With a Side Order of C
What happens if we add App C back into the mix? Specifically, what
if App B is installed first, then App A, then App C?
When App C eventually gets installed, the user is prompted for the
custom permission that App C requests via <uses-permission>.
However, the description that the user sees is from App B, the one
that first defined the custom <permission>. Moreover, the
protection level is whatever App B defined it to be. So if App B
downgraded the protection level from App A’s intended signature
to be normal, App C can hold that permission and access the
secured App A component, even if it is signed by another signing key.
Not surprisingly, the same results occur if you install App B,
then App C, then App A.
Behavior Analysis
The behavior exhibited in these scenarios is consistent with
two presumed implementation “features” of Android’s permission system:

	First one in wins. In other words, the first app (or framework,
in the case of the OS’s platform permissions) that defines a
<permission> for a given android:name gets to determine what
the description is and what the protection level is.

	The user is only prompted to confirm a permission if the
app being installed has a <uses-permission> element, the
permission was already defined by some other app, and the
protection level is not signature.

Risk Assessment
The “first one in wins” rule is a blessing and a curse. It is a
curse, insofar as it opens up the possibility for malware to hold
a custom permission without the user’s awareness of that, and even
to downgrade a signature-level permission to normal. However,
it is a blessing, in that the malware would have to be installed first;
if it is installed second, either its request to hold the permission
will be seen by the user (normal or dangerous) or the request to
hold the permission will be rejected (signature).
This makes it somewhat unlikely for a piece of malware to try to
sneakily make off with data. Eventually, if enough users start to
ask publicly why App B needs access to App A’s data (for cases where
App A was installed first and the user knows about the permission
request), somebody in authority may eventually realize that this
is a malware attack. Of course, “eventually” may be a rather long time.
However, there are some situations where Android’s custom permission
behavior presents risk even greater than that. If the attacker has
a means of being sure that their app was installed first, they can
hold any permission from any third-party app they want to that was
known at install time.
For example:

	Somebody could sell a used Android device, and the buyer could
neglect to factory-reset it, and the malware could be installed
by the seller

	Somebody could sell a used Android device with a ROM mod
preinstalled, based on a normal ROM mod (e.g., CyanogenMod), but
with an additional bit of malware installed, to prevent a factory
reset from foiling the attack’

	Somebody could distribute devices to users who might think the device
is “factory clean” and not laden with malware (e.g., devices given
as gifts)

	Somebody could distribute devices to users who might think that
the pre-installed malware is actually a legitimate app (e.g.,
devices given to employees by an employer wishing to monitor usage
by examining protected data from third-party apps)

Android 5.0’s “Fix”
Android 5.0 now prevents two apps from defining the same <permission>
(“same” based on android:name) unless they are signed by the same
signing key. First one in wins; the second app installation will fail.
On the plus side:

	This solves the security problem, as an attacker (B) cannot get at
a defender’s (A’s) data by virtue of having been installed first, as
A simply cannot be installed in this case.

	This has no impact on developers using signature-level <permission>
elements for their own app suite.

However, it does pose significant limitations on legitimate public
uses of custom <permission> elements. Only the defender should have
the <permission> element now. Some client of the defender’s app
(C) should not have the <permission> element and should simply rely
upon the fact that the defender should be installed first. If the
client were to define the <permission>, then either the client or
the defender cannot be installed, which is pointless.
This has usability issues:

	A client should check, on first run of their app, if an expected
defender (and its <permission> element) exists. If not, the client
should alert the user to this fact and perhaps stop the app from
proceeding further. The user would have to uninstall the client,
install the defender, then reinstall the client, to get everything
working properly, and the more the user uses the client app, the more
painful the uninstall might be.

	It is impossible for two apps to be clients of each other. By
definition, one app has to be installed first and the other second,
which means only the first-to-be-installed app can have a custom
<permission>. If Facebook wanted to hold a custom Twitter permission,
and Twitter wanted to hold a custom Facebook permission, one of them
is out of luck — if Facebook is installed first, it cannot request
Twitter’s permission (as it does not yet exist) nor can it define
Twitter’s permission (as if it does, Twitter cannot be installed).
This might be able to be overcome for apps that are pre-loaded as
part of a ROM mod or other custom Android build.

And, of course, this fix is only for Android 5.0 and above.
Mitigation Using PermissionUtils
The “first one in wins” rule also leads us to a mitigation strategy:
On first run of our app, see if any other app has defined permissions
that we have defined. If that has happened, then we are at risk, and
take appropriate steps. If, however, no other app has defined our
custom permissions, then the Android permission system should work
for us, and we can proceed as normal.
The CWAC-Security library
provides some helper code, in the form of the PermissionUtils class, to detect
other apps defining the same custom permissions that you define.
The idea is that you call checkCustomPermissions() — a static method
on PermissionUtils — on the first run of your app. It will return details
about what other apps have already defined custom permissions that your app
defines. If checkCustomPermissions() returns nothing, you know that everything
is fine, and you can move ahead. Otherwise, you can:

	Check to see if the offending app is on some whitelist, or otherwise
meets criteria that suggests that it is OK

	Alert the user, indicating that these already-installed apps will have
access to your app secured components

	Upload details about the offending apps to your server, so you can try to
track down whether they are legitimate users of some API that you are exposing
or are malware

	Whatever else you feel is necessary

Custom Dangerous Permissions, and Android 6.0
Android 6.0 introduced the concept of runtime permissions, where dangerous
permissions need to be requested at runtime in addition to being requested
in the manifest. This is covered back in the introductory chapter on permissions.
However, what happens if you define a custom dangerous permission?
The good news is that it works. However, you will want to test it, in part to
see what it looks like to users, so you can get the phrasing of your permission-related
string resources correct.
The
Permissions/CustomDangerous
sample project contains two application modules:

	
app is an app that defends an activity using a custom dangerous permission

	
client is an app that wishes to request that permission and start that
protected activity

The <permission> element is unremarkable, other than the protectionLevel
being set to dangerous:

 <permission
 android:name="com.commonsware.android.perm.custdanger.SOMETHING"
 android:description="@string/perm_desc"
 android:label="@string/perm_label"
 android:protectionLevel="dangerous" />

(from Permissions/CustomDangerous/app/src/main/AndroidManifest.xml)
The label and description come from string resources:

 <string name="perm_label">Custom Dangerous Permission</string>
 <string name="perm_desc">This is a description. No, really.</string>

(from Permissions/CustomDangerous/app/src/main/res/values/strings.xml)
The client module uses the same AbstractPermissionActivity seen elsewhere
in this book to request that com.commonsware.android.perm.custdanger.SOMETHING
permission at runtime.
If you install the app application, then install and run the client application,
what you see is the description, not the label, appear in the runtime permission
dialog:

[image: Custom Dangerous Permission, As Shown In Runtime Permission Dialog, on Android 6.0.1]

Figure 724: Custom Dangerous Permission, As Shown In Runtime Permission Dialog, on Android 6.0.1
If you go into Settings > Apps > Custom Dangerous Client > Permissions, the
custom dangerous permission does not show up immediately, due to a poorly-designed
UI:

[image: App Permissions in Settings, Showing Nothing Useful]

Figure 725: App Permissions in Settings, Showing Nothing Useful
Instead, the user needs to tap on the “Additional permissions” row to have
that be replaced by the custom dangerous permission:

[image: App Permissions in Settings, Showing Custom Dangerous Permission]

Figure 726: App Permissions in Settings, Showing Custom Dangerous Permission
Here, the label is what shows up, not the description.
Hence, you will want to tailor your phrasing of these string resources to make
sense in their respective use cases.
Finding the Available Permissions
On the one hand, developers should try to stick to documented permissions.
On the other hand, documentation is sometimes lacking. This is particularly
true for permissions other than those defined by the OS itself, ones
that come from other apps that change more frequently, including the
Play Services SDK and framework.
You might find that you need to determine what permissions have been
defined on a given device. Perhaps that need is at runtime — if you
request a permission that does not exist, you cannot actually get it,
and that may lead to problems in the future. Perhaps that need is
just during development itself, to inspect some device and determine
what it does and does not have in terms of permissions.
PackageManager offers methods to allow you to examine the device’s
permissions and permission groups. The
Permissions/PermissionReporter
sample app uses these methods to build up a tabbed UI listing
the defined permissions, broken down by protection level.
getAllPermissionGroups() on PackageManager will return a list of
PermissionGroupInfo objects. This method takes an int value;
0 generally will be fine for your use cases.
On its own, PermissionGroupInfo is
not especially useful. However, you can turn around and call
queryPermissionsByGroup() on PackageManager, passing in the
name from the PermissionGroupInfo, to get all of the permissions in that group.
This method also takes an int value as the second parameter, where
once again 0 will be fine.
queryPermissionsByGroup() returns a List of PermissionInfo
objects. PermissionInfo has a few interesting values:

	
name, which is the fully-qualified name of the permission

	
descriptionRes, which is the string resource ID from the permission’s
android:description attribute

	
protectionLevel, which is a set of flags indicating the nature of the
permission’s security

Note that to get the actual text of the description, there is a
loadDescription() method on PermissionInfo that will do all the work
to find the actual string for the description, based upon the app that
defined the permission and the current locale.
To get the details of all the permissions defined on a device, we will
have to call queryPermissionsByGroup() for each permission group. Each
of those calls will involve IPC, and so this might be slow enough to
warrant its own thread.
With that in mind, MainActivity in the PermissionReporter sample app has a
PermissionSource that collects information about the permissions
on the system. That information is aggregated in a PermissionRoster, which
the data emitted by this Observable:

 private static class PermissionSource implements ObservableOnSubscribe<PermissionRoster> {
 private Context ctxt;

 private PermissionSource(Context ctxt) {
 this.ctxt=ctxt.getApplicationContext();
 }

 @Override
 public void subscribe(ObservableEmitter<PermissionRoster> emitter)
 throws Exception {
 PackageManager pm=ctxt.getPackageManager();
 final PermissionRoster result=new PermissionRoster();

 addPermissionsFromGroup(pm, null, result);

 for (PermissionGroupInfo group :
 pm.getAllPermissionGroups(0)) {
 addPermissionsFromGroup(pm, group.name, result);
 }

 emitter.onNext(result);
 emitter.onComplete();
 }

 private void addPermissionsFromGroup(PackageManager pm,
 String groupName,
 PermissionRoster result)
 throws PackageManager.NameNotFoundException {
 for (PermissionInfo info :
 pm.queryPermissionsByGroup(groupName, 0)) {
 int coreBits=
 info.protectionLevel &
 PermissionInfo.PROTECTION_MASK_BASE;

 switch (coreBits) {
 case PermissionInfo.PROTECTION_NORMAL:
 result.add(PermissionType.NORMAL, info);
 break;

 case PermissionInfo.PROTECTION_DANGEROUS:
 result.add(PermissionType.DANGEROUS, info);
 break;

 case PermissionInfo.PROTECTION_SIGNATURE:
 result.add(PermissionType.SIGNATURE, info);
 break;

 default:
 result.add(PermissionType.OTHER, info);
 break;
 }
 }
 }
 }

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/MainActivity.java)
The subscribe() method loops over the permission groups:

 for (PermissionGroupInfo group :
 pm.getAllPermissionGroups(0)) {
 addPermissionsFromGroup(pm, group.name, result);
 }

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/MainActivity.java)
As it turns out, not all permissions are part of a group. To find out
the details of these un-grouped permissions, you need to call
queryPermissionsByGroup() with a null permission group name.
For each permission group (plus the magic null group), we call
a private addPermissionsFromGroup() method (shown above) to collect the details
of the permissions in that group.
The protectionLevel field on a PermissionInfo contains a number
of different sorts of flags. The PROTECTION_MASK_BASE is a bitmask that
restricts the bits we are looking at to the ones for basic protections.
We then divide the permissions into four groups based on protection level:

	normal

	dangerous

	signature

	other (which, on older devices, will include system or signatureOrSystem permissions)

Those PermissionInfo objects are then poured into the PermissionRoster
object:

package com.commonsware.android.permreporter;

import android.content.pm.PermissionInfo;
import android.os.Parcel;
import android.os.Parcelable;
import java.util.ArrayList;
import java.util.HashMap;

class PermissionRoster {
 private HashMap<PermissionType, ArrayList<PermissionInfo>> roster=
 new HashMap<PermissionType, ArrayList<PermissionInfo>>();

 void add(PermissionType type, PermissionInfo info) {
 ArrayList<PermissionInfo> list=roster.get(type);

 if (list==null) {
 list=new ArrayList<>();
 roster.put(type, list);
 }

 list.add(info);
 }

 ArrayList<PermissionInfo> getListForType(PermissionType type) {
 return(roster.get(type));
 }
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionRoster.java)
PermissionType is an enum defined by this project for the four groups
and includes some Java shenanigans for being able to convert back and
forth between integer values and the enum values:

package com.commonsware.android.permreporter;

import android.util.SparseArray;

enum PermissionType {
 NORMAL(0),
 DANGEROUS(1),
 SIGNATURE(2),
 OTHER(3);

 private static final SparseArray<PermissionType> BY_VALUE=
 new SparseArray<PermissionType>(4);

 static {
 for (PermissionType type : PermissionType.values()) {
 BY_VALUE.put(type.value, type);
 }
 }

 private final int value;

 PermissionType(int value) {
 this.value=value;
 }

 static PermissionType forValue(int value) {
 return(BY_VALUE.get(value));
 }
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionType.java)
Restricted Profiles and UserManager
Android 4.2 introduced the concept of having multiple distinct users
of a tablet. Each user would get their own portion of internal and
external storage, as if they each had their own tablet.
Android 4.3 extends this a bit further, with the notion of setting
up restricted profiles. As the name suggests, a restricted profile
is restricted, in terms of what it can do on the device. Some
restrictions will be device-wide (e.g., can the user install apps?),
and some restrictions will be per-app. You can elect to allow your
app to be restricted, where you define the possible ways in which
your app can be restricted, and the one setting up the restricted
profile can then configure the desired options for some specific
profile.
This chapter will explain how users set up these restricted profiles,
what you can learn about the device-wide restrictions, and how you
can offer your own restrictions for your own app.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, particularly the chapter on files and its
section on multiple user accounts.
Android Tablets and Multiple User Accounts
The theory is that tablets are likely to be shared, whether among
family members, among team members in a business, or similar sorts of
group settings. There are three levels of “user” in an Android 4.3+
tablet that we will need to consider.
Primary User
The primary user is whoever first set up the tablet after initial
purchase. In a family, this is probably a parent; in a corporate setting,
this might be an IT administrator.
Prior to Android 4.2, there was only one user per device, and that user
could (generally) do anything. In Android 4.2+, the primary user holds
this role.
One thing that the primary user can do is set up other users, via the
Users option in the Settings app:

[image: Users Screen in Settings]

Figure 727: Users Screen in Settings
Tapping the “Add user or profile” entry allows the primary user to
set up another user or restricted profile:

[image: Add Dialog in Users Screen in Settings]

Figure 728: Add Dialog in Users Screen in Settings
Secondary User
Choosing “User” from the Add dialog will define a secondary user of the
device. This user has much of the same control as the primary user, in terms
of being able to install and run whatever apps are desired.

[image: Add New User Warning Dialog in Users Screen in Settings]

Figure 729: Add New User Warning Dialog in Users Screen in Settings
Restricted Profile
A restricted profile is akin to a secondary user, in that it gets its own
separate portion of internal and external storage. Beyond that, though, the
primary user can further configure what the restricted profile can access:

[image: Restricted Profile Configuration Screen in Settings]

Figure 730: Restricted Profile Configuration Screen in Settings
The bulk of the restricted profile configuration screen is a list of apps,
with Switch widgets to allow the primary user to allow or deny access
to each app.
Some apps will have the “settings” icon to the left of the Switch. Tapping
that will either bring up a dedicated activity for restricting operations
within that app, or it will add new rows to the list with individual
restriction options for that app. For example, tapping the settings icon for
the Settings app adds a row where the primary user can block location
sharing:

[image: Location Sharing Restrictions]

Figure 731: Location Sharing Restrictions
The “settings” icon in the first row, for the profile itself, will allow
the primary user to control things for the entire profile, notably its
name.
Switching to the restricted profile (e.g., via the lockscreen) will show the
constrained set of available apps:

[image: Apps in a Restricted Profile]

Figure 732: Apps in a Restricted Profile
Determining What the User Can Do
Your app can find out what device-level restrictions were placed on the
current user by means of the UserManager system service. Specifically,
as you can see in MainActivity of the
RestrictedProfiles/Device
sample project, all you need to do is:

	Acquire an instance of a UserManager by calling getSystemService() on
a Context, passing in USER_SERVICE as the service’s name

	Calling getUserRestrictions() on the UserManager:

package com.commonsware.android.profile.device;

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;
import android.os.UserManager;
import android.widget.Toast;

public class MainActivity extends FragmentActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 UserManager mgr=(UserManager)getSystemService(USER_SERVICE);
 Bundle restrictions=mgr.getUserRestrictions();

 if (restrictions.keySet().size() > 0) {
 setContentView(R.layout.activity_main);

 RestrictionsFragment f=
 (RestrictionsFragment)getSupportFragmentManager().findFragmentById(R.id.contents);

 f.showRestrictions(restrictions);
 }
 else {
 Toast.makeText(this, R.string.no_restrictions, Toast.LENGTH_LONG)
 .show();
 finish();
 }
 }
}

(from RestrictedProfiles/Device/app/src/main/java/com/commonsware/android/profile/device/MainActivity.java)
getUserRestrictions() returns a Bundle, whose keys are documented
on UserManager for various device-level restrictions that theoretically
can be placed on the user. Here, “theoretically” means that while UserManager
documents several DISALLOW_* constants, only two seem to be directly accessible
to the primary user for configuration via Settings:

	
DISALLOW_MODIFY_ACCOUNTS, to prevent a restricted profile from, among other
things, modifying restricted profiles

	
DISALLOW_SHARE_LOCATION, to prevent the apps run in this restricted profile
from gathering location data

MainActivity examines the Bundle and, if it is empty, just displays a Toast
and exits via finish(). This is the behavior you will see if you run this sample
app on a non-restricted profile, such as the primary user. If, however, the
Bundle has one or more keys, we inflate an activity_main layout that
contains a RestrictionsFragment in a <fragment> element:

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/contents"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.commonsware.android.profile.device.RestrictionsFragment"/>

(from RestrictedProfiles/Device/app/src/main/res/layout/activity_main.xml)
We then retrieve the RestrictionsFragment from the FragmentManager and call
showRestrictions() on it, passing in the Bundle.
RestrictionsFragment is a ListFragment employing a custom RestrictionsAdapter.
The RestrictionsAdapter wraps around the Bundle and an ArrayList of its
keys. The RestrictionsAdapter constructor creates the ArrayList by sorting
the keySet() of the Bundle. getView() on RestrictionsAdapter lets
the superclass handle inflating the row (android.R.layout.simple_list_item_1),
then puts an icon on the right side by using
setCompoundDrawablesWithIntrinsicBounds(), which can tuck a drawable resource
onto any of the four sides of a TextView.
The resulting list will show green icons for keys where the Bundle has stored
a true Boolean value, and a red icon for false:

[image: Default Device Restrictions, on a Nexus 7 (2013)]

Figure 733: Default Device Restrictions, on a Nexus 7 (2013)
Since the keys are negative in tone (e.g., DISALLOW_MODIFY_ACCOUNTS), true
means that the restriction is enforced and the underlying operation (e.g., modifying
accounts) cannot be done.
Impacts of Device-Level Restrictions
Your app’s functionality may be limited by these device-level restrictions.
This section outlines some of the results you should expect from a
restricted profile.
Restricting Location Access
If a restricted profile is prevented from sharing the device’s location with
apps, those apps simply will not receive location updates. There is no good
way to detect this via the location API (e.g., isProviderEnabled() returns
true), so you will have to detect this via getUserRestrictions() on
UserManager as noted above.
Uninstalling Apps
Even without specific configuration, the restricted profile can only uninstall
apps that they are available to that profile. However, since apps are really
shared between profiles, this only removes that app from the restricted profile;
it does not actually uninstall the app from the device as a whole.
Enabling Custom Restrictions
As noted earlier, the list of apps that is shown on the restricted profile
configuration screen in Settings can have “settings” icons. The Settings app
itself will have a settings icon, to allow the primary user to configure
device-level restrictions.
But, what if you want your app to have such a settings icon? Maybe it makes
sense for your app to allow the primary user to restrain restricted profiles
from doing certain things within your app:

	Block in-app purchases

	Only show certain categories of content, not the full roster

	Only allow operation during certain times of the day

The means by which the Settings app restricts profiles is also available
to you. You can declare to Android what aspects of your app can be restricted.
Android will then collect that restriction data for you. Your app, at runtime,
can then determine what restrictions are in place (if any) and take appropriate
steps.
All of this will be illustrated using the
RestrictedProfiles/App
sample project.
Stating Your Restrictions
The biggest thing that you need to do to restrict your app is teach Android
how to collect restrictions. In other words, you need to tell Android what
to do when the user taps that settings icon in the restricted profile entry
for your app.
You have two major options:

	Provide a list of the restrictions that Android should render and collect
itself, or

	Provide an Intent that can be used to start up an activity of your own
design where you collect those restrictions

Either approach will require you to set up a manifest-registered
BroadcastReceiver, set to respond to the
android.intent.action.GET_RESTRICTION_ENTRIES action:

 <receiver android:name="RestrictionEntriesReceiver">
 <intent-filter>
 <action android:name="android.intent.action.GET_RESTRICTION_ENTRIES"/>
 </intent-filter>
 </receiver>

(from RestrictedProfiles/App/app/src/main/AndroidManifest.xml)
That BroadcastReceiver will be called with sendOrderedBroadcast(),
not so much to affect ordering, but to allow the BroadcastReceiver
to send back a result via its setResultExtras() method. This provides a
Bundle that the broadcaster can eventually retrieve, in this case providing
details of what restrictions we wish to collect from the primary user to restrict
the profile.
Option #1: RestrictionEntry List
To collect restrictions the way the Settings app does — with restriction
rows appearing below your app in the restricted profile screen in Settings –
your BroadcastReceiver will need to put an entry into the return
Bundle, under the key of EXTRA_RESTRICTIONS_LIST (a constant defined
on the Intent class). The value needs to be an ArrayList of
RestrictionEntry objects, with each RestrictionEntry describing one
restriction to collect.
Another thing that the RestrictionEntry objects contain is their
current value. Android itself retains these values and supplies them to
your BroadcastReceiver via an EXTRA_RESTRICTIONS_BUNDLE extra on
the incoming Intent. Your app needs to use those current values when
constructing its list of RestrictionEntry objects to return.
So, let’s take a look at RestrictionEntriesReceiver, the receiver
we have set up to handle the android.intent.action.GET_RESTRICTION_ENTRIES
action for this sample app.
The entry point for RestrictionEntriesReceiver is onReceive(), as it is
for any basic BroadcastReceiver:

 @Override
 public void onReceive(Context ctxt, Intent intent) {
 Bundle current=
 (Bundle)intent.getParcelableExtra(Intent.EXTRA_RESTRICTIONS_BUNDLE);
 ArrayList<RestrictionEntry> restrictions=
 new ArrayList<RestrictionEntry>();

 restrictions.add(buildBooleanRestriction(ctxt, current));
 restrictions.add(buildChoiceRestriction(ctxt, current));
 restrictions.add(buildMultiSelectRestriction(ctxt, current));

 Bundle result=new Bundle();

 result.putParcelableArrayList(Intent.EXTRA_RESTRICTIONS_LIST,
 restrictions);

 setResultExtras(result);
 }

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java)
In onReceive(), RestrictionEntriesReceiver pulls out the Bundle
of current restrictions, by retrieving the EXTRA_RESTRICTIONS_BUNDLE extra
from the Intent passed into onReceive(). Note that this Bundle could
very well be empty, if this is the first time we are being asked for restrictions.
RestrictionEntriesReceiver creates an empty ArrayList of
RestrictionEntry objects, then calls a series of builder methods to create
a total of three such RestrictionEntry objects, adding each to the list.
onReceive() goes on to create a Bundle representing the results to be
returned, packages the ArrayList in that Bundle under the
EXTRA_RESTRICTIONS_LIST key, and returns that Bundle to the caller by
means of setResultExtras().
The three builder methods are each responsible for defining a single
RestrictionEntry, including populating it with the current value from the
current Bundle.
There are three types of RestrictionEntry, for boolean, single-selection lists
(“choice”), and multi-selection lists. The RestrictionEntry constructor
takes two parameters:

	The String key under which we will later retrieve this restriction value

	The current value of the restriction

The current value is:

	A boolean for boolean restrictions

	A String for choice restrictions

	A String array for multi-select restrictions

Our first builder, buildBooleanRestriction(), populates and returns a
RestrictionEntry designed to collect a boolean value from the primary user, via a
CheckBox:

 private RestrictionEntry buildBooleanRestriction(Context ctxt,
 Bundle current) {
 RestrictionEntry entry=
 new RestrictionEntry(RESTRICTION_BOOLEAN,
 current.getBoolean(RESTRICTION_BOOLEAN,
 false));

 entry.setTitle(ctxt.getString(R.string.boolean_restriction_title));
 entry.setDescription(ctxt.getString(R.string.boolean_restriction_desc));

 return(entry);
 }

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java)
buildBooleanRestriction() retrieves the current value from current Bundle
to use with the RestrictionEntry constructor. In this case, if there is no such
entry in the Bundle, the overall default value is false.
Each RestrictionEntry can have a title (setTitle()), supplying a string
which will be displayed to describe what this restriction is. A boolean
restriction can also have a description (setDescription()), containing another
string with a bit more text. Note that, at the present time, the other
two types of restrictions will ignore any description that you include.
Also note that the values supplied to setTitle() and setDescription()
need to be strings, and so if you wish to use a string resource, you will need
to get the actual string value yourself via getString().
The remaining two builder methods have a similar structure:

 private RestrictionEntry buildChoiceRestriction(Context ctxt,
 Bundle current) {
 RestrictionEntry entry=
 new RestrictionEntry(RESTRICTION_CHOICE,
 current.getString(RESTRICTION_CHOICE));

 entry.setTitle(ctxt.getString(R.string.choice_restriction_title));
 entry.setChoiceEntries(ctxt, R.array.display_values);
 entry.setChoiceValues(ctxt, R.array.restriction_values);

 return(entry);
 }

 private RestrictionEntry buildMultiSelectRestriction(Context ctxt,
 Bundle current) {
 RestrictionEntry entry=
 new RestrictionEntry(RESTRICTION_MULTI,
 current.getStringArray(RESTRICTION_MULTI));

 entry.setTitle("A Multi-Select Restriction");
 entry.setChoiceEntries(ctxt, R.array.display_values);
 entry.setChoiceValues(ctxt, R.array.restriction_values);

 return(entry);
 }

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java)
As with a ListPreference, you provide two string arrays to the
RestrictionEntry, representing the values the primary user sees
(setChoiceEntries()) and the corresponding values to be supplied to your
app based upon the choice(s) (setChoiceValues()). You can supply these either
as Java string arrays or as <string-array> resources –
RestrictionEntriesReceiver goes with the latter approach.
Option #2: Custom Restriction Activity
It may be that what you want to collect, in terms of restrictions, cannot
readily be represented in the form of Switch widgets and list dialogs.
For example, to restrict use of your app based on time, it would be nice
to use a TimePickerDialog or the equivalent.
The alternative to returning an EXTRA_RESTRICTIONS_LIST roster of
RestrictionEntry objects from your BroadcastReceiver is to have the
result Bundle contain EXTRA_RESTRICTIONS_INTENT. This key should point
to an Intent that identifies the activity that you want to start up
when the user taps the settings icon. Android will call
startActivityForResult() on that Intent when the user taps on the
settings icon.
Your job is to collect the restrictions from the user, using the
EXTRA_RESTRICTIONS_BUNDLE from the incoming Intent to pre-populate
your activity, if desired. When the user is done, you should call
setResult(), passing in an Intent that contains another
EXTRA_RESTRICTIONS_BUNDLE with the revised data, or optionally a
EXTRA_RESTRICTIONS_LIST (with the RestrictionEntry objects containing
the values to be used).
What the Primary User Sees
Given the RestrictionEntriesReceiver described above, when the primary user
goes to configure a restricted profile, your app will appear with a
settings icon next to it:

[image: Restricted Profile, Showing App Settings Icon]

Figure 734: Restricted Profile, Showing App Settings Icon
Tapping that settings icon will “unfold” and display the restrictions
that you configured via the RestrictionEntry objects:

[image: Restricted Profile, Showing App Restrictions]

Figure 735: Restricted Profile, Showing App Restrictions
The primary user can then interact with your restrictions, toggling
checkboxes and popping up the list dialogs:

[image: Restricted Profile, Showing Choice Restriction]

Figure 736: Restricted Profile, Showing Choice Restriction

[image: Restricted Profile, Showing Multi-Select Restriction]

Figure 737: Restricted Profile, Showing Multi-Select Restriction
Finding Out the Current Restrictions
Now, the rest of your app needs to find out what restrictions are placed
upon it, so behavior can be tailored accordingly. To do this, call
getApplicationRestrictions() on UserManager, passing in your package name,
as seen here in MainActivity:

package com.commonsware.android.profile.app;

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;
import android.os.UserManager;
import android.widget.Toast;

public class MainActivity extends FragmentActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 UserManager mgr=(UserManager)getSystemService(USER_SERVICE);
 Bundle restrictions=
 mgr.getApplicationRestrictions(getPackageName());

 if (restrictions.keySet().size() > 0) {
 setContentView(R.layout.activity_main);

 RestrictionsFragment f=
 (RestrictionsFragment)getSupportFragmentManager().findFragmentById(R.id.contents);

 f.showRestrictions(restrictions);
 }
 else {
 Toast.makeText(this, R.string.no_restrictions, Toast.LENGTH_LONG)
 .show();
 finish();
 }
 }
}

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/MainActivity.java)
This Bundle could be empty, or it could have values specified by the
primary user to restrict the profile that is running your app.
In the case of this sample, we once again set up a RestrictionsAdapter
to show the results, if the Bundle is not empty. However, our adapter is a bit
more complicated, as there are more than boolean restrictions now. getView()
has been updated to handle all three possible restrictions, showing
the icon for the boolean restriction, and showing the value(s) from the lists
in the other restrictions:

package com.commonsware.android.profile.app;

import android.support.v4.app.ListFragment;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.TextView;
import java.util.ArrayList;
import java.util.Collections;

public class RestrictionsFragment extends ListFragment {
 public void showRestrictions(Bundle restrictions) {
 setListAdapter(new RestrictionsAdapter(restrictions));
 }

 class RestrictionsAdapter extends ArrayAdapter<String> {
 Bundle restrictions;

 RestrictionsAdapter(Bundle restrictions) {
 super(getActivity(), android.R.layout.simple_list_item_1,
 new ArrayList<String>());

 ArrayList<String> keys=
 new ArrayList<String>(restrictions.keySet());

 Collections.sort(keys);
 addAll(keys);

 this.restrictions=restrictions;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 TextView row=
 (TextView)super.getView(position, convertView, parent);
 String key=getItem(position);

 if (RestrictionEntriesReceiver.RESTRICTION_BOOLEAN.equals(key)) {
 int icon=
 restrictions.getBoolean(key) ? R.drawable.ic_true
 : R.drawable.ic_false;

 row.setCompoundDrawablesWithIntrinsicBounds(0, 0, icon, 0);
 }
 else if (RestrictionEntriesReceiver.RESTRICTION_CHOICE.equals(key)) {
 row.setText(String.format("%s (%s)", key,
 restrictions.getString(key)));
 }
 else {
 String value=
 TextUtils.join(" | ", restrictions.getStringArray(key));

 row.setText(String.format("%s (%s)", key, value));
 }

 return(row);
 }
 }
}

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionsFragment.java)
The result, when run on a restricted profile with restrictions placed upon our
app, is to show those restrictions:

[image: App Restrictions Demo, on a Restricted Profile]

Figure 738: App Restrictions Demo, on a Restricted Profile
Implicit Intents May Go “Boom”
The primary user of a tablet, when setting up a restricted profile, can control
what apps are available to that profile. In many cases, if the user is setting
up a restricted profile in the first place, the list of apps available to that
profile will be fairly limited, such as only allowing a young child to access
a few games and educational apps.
startActivity() always has the chance of throwing an ActivityNotFoundException.
However, for certain Intent actions, we often ignore this possibility,
because we are certain that there will be an app that can handle our request:

	All Android devices have Web browsers, right?

	All Android devices have some sort of mapping application, right?

	All Android devices let you pick a contact, right?

Now, with restricted profiles, you will need to deal with the
ActivityNotFoundException case all of the time. You have three basic
approaches for this:

	Wrap all startActivity() and startActivityForResult() calls in
a try/catch block that catches ActivityNotFoundException and
intelligently handle the problem

	Use PackageManager and resolveActivity() before trying to start
the activity, where if resolveActivity() returns null, you know that
there is no activity available to handle your desired operation

	Switch out some of your startActivity() and startActivityForResult() calls
for implementations in your app (e.g., embed Maps V2 rather than
try to launch a potentially-nonexistent activity)

You might consider implementing a safeStartActivity() utility method
that wraps up your particular plan, so you can debug it once.
Device Authentication
Android devices have supported device authentication since the beginning. Users
could lock their devices with a PIN, passphrase, or “pattern”, to help deter
unauthorize use. Nowadays, fingerprint sensors are available on some Android
devices as another authentication option.
For the vast majority of apps, none of this matters.
Some apps have sensitive content (e.g., password manager) or offer sensitive
services (e.g., banking app). These apps may want to tie more tightly into
the device authentication options, to ensure that the person working with the
app right now is the device’s authorized user.
In this chapter, we will look at how to perform this sort of integration.
Prerequisites
One of the examples in this chapter makes use of RxJava.
Is the Device Secure?
You cannot validate the identity of the user on a device that is not secured by
something (PIN, passphrase, pattern, fingerprint, etc.). So, one of the first
things you may wish to determine is whether or not such a lock has been applied
to the device.
Android has two separate ways of accomplishing this, with slightly different
feature sets.
The DevicePolicyManager Approach
In the chapter on device administration, we cover a number
of APIs for managing the lock quality. In particular, DevicePolicyManager
has the concept of “password quality”. Any app — not just designated device
admin apps — can call getPasswordQuality() on a DevicePolicyManager instance
to find out the designated minimum required quality. A value of PASSWORD_QUALITY_UNSPECIFIED
indicates that “anything goes”. PASSWORD_QUALITY_SOMETHING indicates that
the device needs some form of authentication, but does not establish any
criteria beyond that. Other values start to put restrictions on the
authentication option, such as PASSWORD_QUALITY_ALPHABETIC, indicating that
the authentication cannot be in the form of a simple PIN.
Other methods let you get minimum required password lengths, minimum required
characters of certain classes (e.g., symbols), and so forth.
It is fairly likely that the current authentication option in force adheres to
the password criteria exposed by those methods.
The KeyguardManager Approach
The KeyguardManager system service has a simpler API… with a couple of
wrinkles.

	
isDeviceSecure() returns true if the device is secured with a PIN,
pattern, or password. However, this method is new to API Level 23.

	
isKeyguardSecure() returns true if the device is secured with a PIN,
pattern, password, or SIM card lock. A “SIM card lock” amounts to a PIN associated
with the SIM card, one that follows the SIM card around if you move it between
devices. Conversely, a device that is secured solely by a SIM card lock can
be accessed simply by removing the SIM card. This method is available on API Level
16 and higher devices.

Since SIM card locks do not seem very common, the two methods will tend to return
the same result. However, since SIM card lock security is fairly weak, on
Android 6.0+, use isDeviceSecure(), so SIM card locks are not taken into account
with the result.
The
DeviceAuth/SecureCheck
sample application demonstrates the use of these methods (and of a few others that
we will see shortly).
Our activity’s UI consists of two big icons with those two KeyguardManager
method names as captions.

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.commonsware.android.auth.check.MainActivity">

 <TextView
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:text="@string/label_device"
 android:textAlignment="viewStart"
 android:textAppearance="?android:textAppearanceLarge"
 android:typeface="monospace"
 app:layout_constraintBottom_toBottomOf="@id/device"
 app:layout_constraintLeft_toRightOf="@id/device"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="@id/device" />

 <ImageView
 android:id="@+id/device"
 android:layout_width="64dp"
 android:layout_height="64dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:text="@string/label_keyguard"
 android:textAlignment="viewStart"
 android:textAppearance="?android:textAppearanceLarge"
 android:typeface="monospace"
 app:layout_constraintBottom_toBottomOf="@id/keyguard"
 app:layout_constraintLeft_toRightOf="@id/keyguard"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="@id/keyguard" />

 <ImageView
 android:id="@+id/keyguard"
 android:layout_width="64dp"
 android:layout_height="64dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/device" />

</android.support.constraint.ConstraintLayout>

(from DeviceAuth/SecureCheck/app/src/main/res/layout/activity_main.xml)
In onCreate(), we retrieve a KeyguardManager system service and set the
images on those icons based on the KeyguardManager results:

	If the method returns true, we show a locked icon

	If the method returns false, we show an unlocked icon

	If the method cannot be called (isDeviceSecure() on pre-Android 6.0 devices),
we show a question mark icon, indicating that we do not know the result

 private KeyguardManager mgr;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mgr=(KeyguardManager)getSystemService(KEYGUARD_SERVICE);

 ImageView device=findViewById(R.id.device);
 ImageView keyguard=findViewById(R.id.keyguard);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 if (mgr.isDeviceSecure()) {
 device.setImageResource(R.drawable.ic_lock_black_24dp);
 }
 else {
 device.setImageResource(R.drawable.ic_lock_open_black_24dp);
 }
 }
 else {
 device.setImageResource(R.drawable.ic_help_black_24dp);
 }

 if (mgr.isKeyguardSecure()) {
 keyguard.setImageResource(R.drawable.ic_lock_black_24dp);
 }
 else {
 keyguard.setImageResource(R.drawable.ic_lock_open_black_24dp);
 }
 }

(from DeviceAuth/SecureCheck/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
Running the app will show the results of those calls:

[image: Secure Check, As Run On Secure Android 5.0 Device]

Figure 739: Secure Check, As Run On Secure Android 5.0 Device

[image: Secure Check, As Run On Insecure Android 6.0 Device]

Figure 740: Secure Check, As Run On Insecure Android 6.0 Device
Reconfirming the User
Those methods are interesting, but they do not tell you much about the current
user. Obviously, if the device is not secure, you have no idea who the current
user is. However, even if the device has a PIN/password/pattern lock, it is possible
that the real user unlocked device, but somebody else now has that unlocked device.
Some apps will want a way to re-authenticate the user, to confirm that the
person working with the device right now is the real user, not somebody else
who has their hands on the unlocked device.
KeyguardManager has a createConfirmDeviceCredentialIntent() method that
helps with this. This method returns an Intent that can be used
with startActivityForResult(). What then appears is a system-supplied
activity that requires the user to re-authenticate the device. In onActivityResult(),
a RESULT_OK result means that the user successfully re-authenticated. Anything
else means that the user failed to re-authenticate and eventually pressed BACK
to return to your app.
The SecureCheck sample app has an action bar icon that, when tapped,
invokes an authenticate() method, one that uses createConfirmDeviceCredentialIntent():

 @TargetApi(Build.VERSION_CODES.LOLLIPOP)
 private void authenticate() {
 Intent i=mgr.createConfirmDeviceCredentialIntent("title", "description");

 if (i==null) {
 Toast.makeText(this, "No authentication required!", Toast.LENGTH_SHORT).show();
 }
 else {
 startActivityForResult(i, REQUEST_CODE);
 }
 }

(from DeviceAuth/SecureCheck/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
createConfirmDeviceCredentialIntent() takes two parameters: a title and a
description. In principle, these should appear on the authentication activity,
to provide context to the user as to why this screen appeared. In reality,
the description may or may not appear, so do not assume that the user will be
able to see whatever you put there.
Since this Intent is designed for use with startActivityForResult(), we
cannot directly put it into a PendingIntent or anything. If for some reason
you needed to re-authenticate from a Notification or app widget or something,
you can use a Theme.Translucent.NoTitleBar-themed activity for the PendingIntent,
as such activities are effectively invisible. That activity, in turn, can call
startActivityForResult() with the Intent from createConfirmDeviceCredentialIntent().
Here, we just call startActivityForResult() directly, showing a Toast in
onActivityResult() based upon the user’s response:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==REQUEST_CODE) {
 if (resultCode==RESULT_OK) {
 Toast.makeText(this, "Authenticated!", Toast.LENGTH_SHORT).show();
 }
 else {
 Toast.makeText(this, "WE ARE UNDER ATTACK!", Toast.LENGTH_SHORT).show();
 }
 }
 }

(from DeviceAuth/SecureCheck/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
On some devices (e.g., Nexus 5X running Android 8.1), the authentication activity
uses FLAG_SECURE and cannot be captured in a screenshot. Other devices have
no such restriction:

[image: Re-Authentication Activity on a Samsung Galaxy Note 3]

Figure 741: Re-Authentication Activity on a Samsung Galaxy Note 3
Note that only the title appears here; on the Nexus 5X with Android 8.1, both
the title and the description appear.
createConfirmDeviceCredentialIntent() has a significant limitation: the Intent
that you create always triggers authentication when started. Sometimes, this
is a feature, if you absolutely want to ensure that the user is authenticated
before proceeding. Sometimes, this is a bug, if your flow keeps forcing the
user to re-authenticate. There is a way to use createConfirmDeviceCredentialIntent()
to have an authentication timeout, so a successful authentication skips future
authentication for some amount of time. This is a bit complex to set up, as
it requires custom use of the keystore, and so we will explore it in greater
detail in the next chapter.
Fingerprints
Android 6.0 added APIs for fingerprint sensors. For most users, and for most
apps, fingerprints are just another aspect of unlocking a device. However,
apps can more deeply integrate with the fingerprint sensor if desired.
Note that the libraries and classes related to fingerprints are only supported
on API Level 23 and higher.
Authenticating the User
One obvious use of the fingerprint sensor is to authenticate the current user,
ensuring that the person holding the device is who we think it is.
There are a few options for doing this, with varying levels of complexity.
Via KeyguardManager
The simplest solution is to not worry about fingerprints, but instead to use
the techniques shown earlier in this chapter to authenticate the user.
When a user sets up a fingerprint to use for unlocking a device, that is an
adjunct to a more traditional PIN or passphrase. When you start the
activity identified by the Intent returned by createConfirmDeviceCredentialIntent(),
you are requesting that the user authenticate by whatever means is appropriate.
If a fingerprint is an option, the user will be able to use a fingerprint
to authenticate.
This is cheap and easy, but it does not require that the user use a fingerprint.
The user could type in their PIN or passphrase instead.
Using RxFingerprint
It is possible that you will want to use a fingerprint specifically. For example,
perhaps you are using fingerprints as part of a multi-factor authentication
system, where the user needs to provide some sort of passphrase for your app
and authenticate with a fingerprint.
The simplest way to do this is to use one of the
many third-party libraries that exist to simplify Android’s fingerprint API.
For example, the
DeviceAuth/FingerCheck
sample application uses RxFingerprint,
which offers an RxJava-compatible API for authenticating a user via a registered
fingerprint.
The first requirement for working with fingerprints explicitly is to request
the USE_FINGERPRINT permission:

 <uses-permission android:name="android.permission.USE_FINGERPRINT" />

(from DeviceAuth/FingerCheck/app/src/main/AndroidManifest.xml)
This is not a dangerous permission, so you do not need to request it at
runtime using requestPermissions(). But, you have to have it, so that users
that investigate the full slate of permissions requested by your app will know
that you wish to work with fingerprints.
Android 9.0 introduced a new permission, USE_BIOMETRIC, to better reflect the
migration from simple fingerprints to more biometric authentication options
(e.g., iris scan). You may wish to request both USE_FINGERPRINT and
USE_BIOMETRIC, knowing that the latter will be ignored on pre-Android 9.0 devices.
RxFingerprint itself is just another artifact to request as part of
your dependencies:

dependencies {
 implementation 'com.android.support:support-vector-drawable:27.0.2'
 implementation 'com.android.support.constraint:constraint-layout:1.0.2'
 implementation 'io.reactivex.rxjava2:rxjava:2.1.7'
 implementation 'io.reactivex.rxjava2:rxandroid:2.0.1'
 implementation 'com.mtramin:rxfingerprint:2.2.1'
}

(from DeviceAuth/FingerCheck/app/build.gradle)
When you want to authenticate the user, you can use isAvailable()
and authenticate() static methods on the RxFingerprint class:

if (RxFingerprint.isAvailable(this)) {
 disposable=RxFingerprint.authenticate(this)
 .subscribe(this::onAuthResult,
 t -> {
 Log.e(getClass().getSimpleName(), "Exception authenticating", t);
 });
}
else {
 Toast.makeText(this, R.string.msg_not_available, Toast.LENGTH_LONG).show();
}

You need to call isAvailable() first. If this returns false, you cannot
authenticate using a fingerprint, for any number of reasons, including:

	The device is running on less than API Level 23, which you can validate
yourself using Build.VERSION.SDK_INT

	The device does not have a fingerprint sensor — you can also check
this by calling hasSystemFeature(PackageManager.FEATURE_FINGERPRINT) on
a PackageManager and seeing if it returns true or false

	The user has not registered a fingerprint

Assuming that there is a fingerprint eligible for authentication, authenticate()
turns on the fingerprint sensor. There is no visible indication of this, and so
you will need to do something in your app to let the user know that it is time
for them to scan their fingerprint.
There are four possible outcomes. The unexpected one is some sort of crash.
In that case, your RxJava stream will contain a Throwable representing
the crash. In the code shown above, subscribe() routes that Throwable to
some code that logs the message to LogCat (and, ideally, should do other things
as well, to let the user know that something went wrong).
Everything else routes through a FingerprintAuthenticationResult object
that is the output of the RxJava stream set up by isAvailable(). You
can call getResult() on that to get an enum value that indicates what
happened:

 private void onAuthResult(FingerprintAuthenticationResult authResult) {
 String msg=getString(R.string.msg_not_possible);

 switch (authResult.getResult()) {
 case FAILED:
 msg=getString(R.string.msg_failed);
 button.setImageDrawable(off);
 unsub();
 break;
 case HELP:
 msg=authResult.getMessage();
 break;
 case AUTHENTICATED:
 msg=getString(R.string.msg_authenticated);
 button.setImageDrawable(off);
 unsub();
 break;
 }

 Toast.makeText(this, msg, Toast.LENGTH_LONG).show();
 }

(from DeviceAuth/FingerCheck/app/src/main/java/com/commonsware/android/auth/finger/MainActivity.java)
If we get a HELP event, the user
can try to scan their fingerprint again. The getMessage() method on the
FingerprintAuthenticationResult provides a message to show the user to
hint at what they might do to get a better scan.
Otherwise, AUTHENTICATED means that the user successfully authenticated using
a fingerprint, and FAILED means that the user failed authentication.
In all three cases, the fingerprint sensor is still active, and will remain
so until we dispose() of the Disposable representing this RxJava subscription,
handled here by the unsub() method:

 private void unsub() {
 if (disposable!=null) {
 disposable.dispose();
 disposable=null;
 }
 }

(from DeviceAuth/FingerCheck/app/src/main/java/com/commonsware/android/auth/finger/MainActivity.java)
In this sample app, the layout consists of a single ImageButton, showing
a vector drawable of a stylized fingerprint. That fingerprint will show up
in one of two colors: black normally, but blue when the fingerprint sensor
is active. In onCreate(), we set up tinted editions of the vector drawable,
plus hook up an authenticate() method to the button:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 off=DrawableCompat.wrap(VectorDrawableCompat.create(getResources(),
 R.drawable.ic_fingerprint_black_24dp, null));
 off.setTint(getResources().getColor(android.R.color.black, null));

 on=DrawableCompat.wrap(VectorDrawableCompat.create(getResources(),
 R.drawable.ic_fingerprint_black_24dp, null));
 on.setTint(getResources().getColor(R.color.primary, null));

 button=findViewById(R.id.fingerprint);
 button.setImageDrawable(off);
 button.setOnClickListener(view -> authenticate());
 }

(from DeviceAuth/FingerCheck/app/src/main/java/com/commonsware/android/auth/finger/MainActivity.java)
authenicate() contains the RxFingerprint calls from earlier, but
with some additional manipulation of the button drawable, to toggle it blue
while the scan is going on and toggle it black if an exception occurs:

 private void authenticate() {
 unsub();

 if (RxFingerprint.isAvailable(this)) {
 button.setImageDrawable(on);
 disposable=RxFingerprint.authenticate(this)
 .subscribe(this::onAuthResult,
 t -> {
 Log.e(getClass().getSimpleName(), "Exception authenticating", t);
 button.setImageDrawable(off);
 });
 }
 else {
 Toast.makeText(this, R.string.msg_not_available, Toast.LENGTH_LONG).show();
 }
 }

(from DeviceAuth/FingerCheck/app/src/main/java/com/commonsware/android/auth/finger/MainActivity.java)
The layout sets the ImageButton to be approximately one inch square:

[image: Finger Check Sample, As Initially Launched]

Figure 742: Finger Check Sample, As Initially Launched
When you tap that button, the fingerprint turns blue:

[image: Finger Check Sample, As Initially Launched]

Figure 743: Finger Check Sample, As Initially Launched
From there, what happens depends on the user, but ideally involves a successful
authentication:

[image: Finger Check Sample, As Initially Launched]

Figure 744: Finger Check Sample, As Initially Launched
Directly
The FingerprintManager system service is the Android gateway to the
fingerprint-specific APIs. It has only three methods, at least as of Android 8.1.
Two of these simply indicate whether or not you can bother using the third
method:

	
isHardwareDetected() returns true if the device has a fingerprint sensor
that is set up for use by the Android SDK, false otherwise

	
hasEnrolledFingerprints() returns true if the user has set up one
or more fingerprints in Settings, false otherwise

If either of those methods return false, you cannot authenticate the user
by fingerprint.
If they both return true, though, you can use the third method — authenticate() –
to authenticate the user with a fingerprint.
authenticate() takes five parameters:

	A CryptoObject, which for simple authentication can be null

	A CancellationSignal object that you can use to cancel the attempt to
authenticate

	Some currently-unused flags (pass in 0 for now)

	A callback object, to find out what is happening with the authentication attempt

	A Handler, if you want the callback methods to be called on some other
thread (otherwise, pass null to be called back on the main application thread)

Your AuthenticationCallback implementation can be called with four methods:

	
onAuthenticationSucceeded(), if the user did indeed pass the authentication

	
onAuthenticationFailed(), if the sensor detected a fingerprint, but it
was not one of the registered fingerprints (e.g., from some other person)

	
onAuthenticationHelp(), when there was a problem in scanning the fingerprint,
but the user can try again (e.g., the finger moved too much)

	
onAuthenticationError(), when something goes wrong that does not represent
a failure (i.e., mismatched fingerprint) and is not recoverable

RxFingerprint simply wraps all of this in an RxJava-friendly API.
Encrypting Data Using Fingerprints and Libraries
The CryptoObject that you can pass into authenticate() is tied to the
device keystore for use with digitally signing and encrypting
data securely. You do not have to use FingerprintManager to work with the
keystore, but it is one option. However, as we will see in
the chapter on the keystore, working with the keystore is
a bit complex.
RxFingerprint
RxFingerprint offers simple encrypt() and decrypt() methods. Each
return an Observable for you to be able to react to the results of the
cryptography.
Both methods have three parameters in common:

	An EncryptionMethod enum value, which is either AES (for AES-256
symmetric key encryption) or RSA (for public-key encryption)

	The Activity requesting this work

	A “key name”, which must be unique within your app, to identify the
encryption key(s) that are generated and securely stored as part of this
work

The advantage of RSA is that the user only needs to scan their fingerprint
when data is decrypted. Encryption can occur at any time without a fingerprint.
With AES, a fingerprint is needed for both encryption and decryption. However,
AES should be a bit faster, particularly for larger amounts of data.
The encrypt() method takes a fourth parameter, which is a String representing
the data to be encrypted. It is your job to marshal your data into a String by
one means or another. What you get, reactively, from the encrypt() process
is another String, representing the encrypted value. It is your job to save
this somewhere, such as in a file.
The decrypt() method then works in reverse:

	Its fourth parameter is the encrypted String

	The result of the decryption is the original “plaintext” value that you
supplied to encrypt() originally

the
DeviceAuth/FingerKey
sample application illustrates the use of these two methods.
The value that we are saving is a randomly-generated passphrase, for reasons that will become
clearer later in this chapter. Specifically, it is 128
characters of random alphanumeric values, generated via a SecureRandom instance:

 private char[] generatePassphrase() {
 char[] result=new char[128];

 for (int i=0; i<result.length; i++) {
 result[i]=BASE36_SYMBOLS.charAt(rng.nextInt(BASE36_SYMBOLS.length()));
 }

 return result;
 }

(from DeviceAuth/FingerKey/app/src/main/java/com/commonsware/android/key/MainActivity.java)
Here, BASE36_SYMBOLS is simply a String of the candidate characters to
use in the random passphrase:

 private static final String BASE36_SYMBOLS="abcdefghijklmnopqrstuvwxyz0123456789";

(from DeviceAuth/FingerKey/app/src/main/java/com/commonsware/android/key/MainActivity.java)
rng is a SecureRandom instance:

 private final SecureRandom rng=new SecureRandom();

(from DeviceAuth/FingerKey/app/src/main/java/com/commonsware/android/key/MainActivity.java)
That passphrase is generated as part of starting up the activity and is held
onto in a passphrase field.
The UI is the same as in the FingerAuth sample shown above, with a large
fingerprint button. This time, when the user taps the button, we will
encrypt the passphrase using RSA encryption, then turn around and decrypt
the value. The decryption will require the user to scan their fingerprint.
The button is now tied to a doTheWork method, which confirms that we have
fingerprint access, then calls encrypt() on the RxFingerprint instance:

 private void doTheWork() {
 unsub();

 if (RxFingerprint.isAvailable(this)) {
 disposable=RxFingerprint.encrypt(EncryptionMethod.RSA, this, KEY_NAME,
 new String(passphrase))
 .subscribe(this::onEncResult,
 t -> {
 Log.e(getClass().getSimpleName(), "Exception authenticating", t);
 button.setImageDrawable(off);
 });
 }
 else {
 Toast.makeText(this, R.string.msg_not_available, Toast.LENGTH_LONG).show();
 }
 }

(from DeviceAuth/FingerKey/app/src/main/java/com/commonsware/android/key/MainActivity.java)
Here, KEY_NAME is just a simple constant. The passphrase is held onto
as a char array, so we need to convert that to a String before passing it to
encrypt() as the value to be encrypted.
The subscribe() call on the Observable routes control to an onEncResult()
method in normal cases, or logs an Exception to LogCat in case of a serious
failure.
There are three possible outcomes from onEncResult()… in theory. In reality,
it will depend on the encryption algorithm. AES requires fingerprint authentication
for both encryption and decryption, and so there is a chance that the user
fails the fingerprint authentication step. RSA — which this sample app uses –
does not require fingerprint authentication for encryption. This means
that everything should succeed (a result of AUTHENTICATED, or we should get a Throwable.
So, if we are AUTHENTICATED, our data has been encrypted, and so we can
get that encrypted value via getEncrypted() on the FingerprintEncryptionResult.
In a real app, you would save this somewhere for long-term use. Here, we just
turn right around and:

	Show the “on” state for the ImageButton, with a blue fingerprint

	Clean up the previous subscription via unsub()

	Pass the getEncrypted() value to RxFingerprint.decrypt() to decrypt
this value

 private void onEncResult(FingerprintEncryptionResult encResult) {
 if (encResult.getResult()==FingerprintResult.AUTHENTICATED) {
 button.setImageDrawable(on);
 unsub();

 String encryptedValue=encResult.getEncrypted();

 disposable=RxFingerprint.decrypt(EncryptionMethod.RSA, this, KEY_NAME,
 encryptedValue)
 .subscribe(this::onDecResult,
 t -> {
 Log.e(getClass().getSimpleName(), "Exception decrypting", t);
 button.setImageDrawable(off);
 });
 }
 else {
 Toast.makeText(this, "This was unexpected...", Toast.LENGTH_LONG).show();
 }
 }

(from DeviceAuth/FingerKey/app/src/main/java/com/commonsware/android/key/MainActivity.java)
decrypt() takes the same first three parameters as does encrypt():

	The EncryptionMethod enum value corresponding with how you encrypted
the value

	The Activity requesting this work

	The same “key name” that you used with encrypt()

The fourth parameter is the encrypted data to be decrypted.
decrypt() returns an Observable of FingerprintDecryptionResult. We
use the same pattern as before, routing the normal case to an onDecResult()
method and logging any exceptions to LogCat.
onDecResult() will need to deal with all three possible fingerprint scan outcomes
(FAILED, HELP, and AUTHENTICATED), since any decryption requires a
fingerprint scan. The first two of those scenarios we handle the same as
in FingerAuth; the third one just confirms that our decrypted data matches
the plaintext that we supplied to encrypt() back in the beginning:

 private void onDecResult(FingerprintDecryptionResult decResult) {
 String msg=getString(R.string.msg_not_possible);

 switch (decResult.getResult()) {
 case FAILED:
 msg=getString(R.string.msg_failed);
 button.setImageDrawable(off);
 unsub();
 break;
 case HELP:
 msg=decResult.getMessage();
 break;
 case AUTHENTICATED:
 button.setImageDrawable(off);
 unsub();

 if (decResult.getDecrypted().equals(new String(passphrase))) {
 msg=getString(R.string.msg_match);
 }
 else {
 msg=getString(R.string.msg_mismatch);
 }

 break;
 }

 Toast.makeText(this, msg, Toast.LENGTH_LONG).show();
 }

(from DeviceAuth/FingerKey/app/src/main/java/com/commonsware/android/key/MainActivity.java)
In a real app, of course, you would use this decrypted data for something useful.
Whorlwind
Square — authors of a seemingly-infinite number of open source Android
libraries — has their take on fingerprints and encryption, in
the Whorlwind library.
This is simpler to use than RxFingerprint, if you do not need control
over the encryption algorithm that is used or the storage location
for the encrypted data. That is handled for you by Whorlwind. It uses
the RSA algorithm, which avoids the need for fingerprint authentication
for encrypting the data. And, it provides a Storage abstraction for
persisting the encrypted data in a key-value store. Whorlwind ships
with a SharedPreferencesStorage, or you can create another implementation
of the Storage interface that meets your needs.
OK, So What Was That All About?
Encrypting a random string seems to be a bit esoteric. Developers are used
to encrypting things of value, and a random string would not appear to be
of value.
On its own, a random string is useless.
However, there are encrypted data stores for Android that rely on a passphrase,
such as SQLCipher for Android. Those data stores have no
means of integrating with a fingerprint scanner directly.
The encrypted random string, therefore, serves as a bridge between the fingerprint
authentication — or, as we will see, the keystore — and
the passphrase-based data store:

	We generate the long random string

	We use that string as the passphrase with the data store

	We encrypt that string using RxFingerprint, Whorlwind, etc.

	We save that encrypted string somewhere (inside a Whorlwind Storage,
in a file, in SharedPreferences, etc.)

Later on, to access the passphrase-based data store, we:

	Load the encrypted string

	Decrypt it, which will involve user authentication

	Use the decrypted random string as our passphrase

The net result is an encrypted data store (e.g., SQLCipher for Android) with
device-based authentication, instead of (or in addition to) a user-entered
passphrase.
We will explore this pattern in greater detail in the next chapter.
Limitations of Fingerprint-Based Encryption
Under the covers, all of this winds up using the keystore
for handling the encryption securely. Using the keystore has many benefits,
but it also has some limitations, particularly when it comes to changes to
the lockscreen. The next chapter has a section that reviews these limitations.
Keys and the Keystore
The Java Cryptography Architecture (JCA) has been available in Java since
Java 1.1, though it has expanded over the years. It gives us KeyStore
objects that can manage cryptographic keys for a variety of symmetric
and asymmetric ciphers. You can create keys, then use those keys to encrypt,
decrypt, sign, and validate data. The actual algorithms that implement the
cryptography come from service provider implementations (SPIs) that plug into
the JCA. You do not need to know all of the details of the cryptography –
you treat the algorithms mostly as a black box.
Android extends JCA by offering a KeyStore that is integrated into the
Android architecture. In particular, on some Android 7.0+ devices, the keys
can be tied to hardware, as part of the so-called Trusted Execution Environment
(TEE, presumably named by a golfer). This dramatically reduces the likelihood
of your keys somehow getting leaked to some malicious actor. The Android-supplied
KeyStore also offers hooks to tie keys to device authentication, where
you can require the user to authenticate the device before you can use the key
to decrypt the data.
In this chapter, we will explore the basics of using this Android-specific
KeyStore. The important word in the preceding sentence is “basics”, as this is
not a complete treatment of how to use the JCA. The JCA is part of standard
Java; other educational resources can show you how to implement effective
cryptography using the JCA.
Also note that many of the Android-specific APIs shown in this chapter have
a minSdkVersion of 23.
Prerequisites
To understand this chapter, please read the preceding chapter on device authentication
first. Also, the examples in this chapter make extensive use of RxJava.
Terminology
First, let’s review some…ummmm… “key” terms that will be used in this chapter.
Keys
To encrypt, decrypt, sign, or validate some data, you need a key and a corresponding
algorithm.
From a javax.crypto standpoint, the Java class that we use to represent
keys is SecretKey. Whether this is the “real” key, or is merely an identifier
to “key material” held elsewhere (e.g., in hardware), depends on the SPI and KeyStore
implementation.
KeyStore
A KeyStore, as the name suggests, is a storage location for keys. There are
several implementations of KeyStore, based on the storage location and format
of the keys in the store.
In Android, we are particularly interested in one known as AndroidKeyStore. It
offers two benefits:

	The “key material” — the actual bytes representing the key — never make
it into our application process. Instead, the cryptography is performed by a
system process. The APIs that we use make it appear that everything is local,
but in reality IPC is occurring under the covers to pass our data and key
identifier to this system process. The benefit here is that even if our process
gets attacked, the attacker cannot get the “key material” to be able to decrypt
encrypted data away from this device.

	On supported devices, and for supported key/algorithm combinations,
the key material may “bound” to the device itself. This
means that even the system process that normally does the cryptography does not
have the bytes representing the key itself. Instead, the cryptography is
performed by dedicated hardware, as part of the TEE. The key material held in
the AndroidKeyStore needs to be blended with secure data held in hardware
to get the real key to use with the cryptography. As a result, even if an
attacker is able to hack core system processes, the attacker will not be able
to retrieve a key that can be used outside of this device.

KeyChain
If you rummage around the Android SDK, you will also see a separate KeyChain
class. This offers a stripped down system similar to the KeyStore. However,
the KeyChain is for device-wide keys, and as such is usually not what developers of an
individual app need.
Getting a KeyStore
The AndroidKeyStore is merely the name of a JCA KeyStore that you obtain
using standard javax.crypto APIs:

ks=KeyStore.getInstance("AndroidKeyStore");
ks.load(null);

The static getInstance() method returns an instance of the KeyStore, and load()
is used to populate it. With traditional JCA KeyStore implementations, load()
is used to load the keys from a file. The AndroidKeyStore does not need this,
and so we can pass null into the load() method.
Note that these methods throw a variety of checked exceptions, and so you will
need to be in position to catch those and do something useful. In practice,
nothing should go wrong, as those checked exceptions are mostly for cases where:

	You provide an invalid KeyStore type name (e.g., KeyStore.getInstance("this does not exist")))

	There are problems loading the keys from a file (file not found, file corrupt,
etc.)

Creating a Key
Android has a dedicated KeyGenParameterSpec class, with a corresponding
Builder, that is used to create secret keys for symmetric encryption, stored
in the AndroidKeyStore:

KeyGenParameterSpec spec=
 new KeyGenParameterSpec.Builder("thisIsMyKey",
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .build();

KeyGenerator keygen=
 KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore");

keygen.init(spec);
SecretKey secretKey=keygen.generateKey();

Grafting the Android-specific AndroidKeyStore onto the JCA base results in
a few oddities. For example, we do not need to do anything to save this key
in the AndroidKeyStore — saving it is a side effect of creating the key
using a KeyGenerator backed by the AndroidKeyStore (via the getInstance()
static method).
Each of your app’s keys has a name ("thisIsMyKey" in the above example).
You will use this name to reference the key later on. This name needs to be unique
for your app, though it does not need to be unique for the entire device.
Most of the methods on the KeyGenParameterSpec.Builder are tied to the
JCA, such as the block modes, encryption paddings, and so forth. The above configuration –
when coupled with KEY_ALGORITHM_AES when creating the KeyGenerator –
is for AES/CBC/PKCS7Padding, which is a fairly typical symmetric key setup.
Most of the details of setting up the Builder, therefore, are tied to the
specific form of encrypting or digital signature that you wish to employ. The
details of this are well out of scope for this book and are best left to
educational resources dedicated to Java cryptography.
The JCA KeyStore is designed around symmetric keys (e.g., SecretKey)
classes, though asymmetric encryption has been grafted onto the original
KeyStore API, so RSA-style public-key encryption can also be performed
using the AndroidKeyStore.
Tying the Key to Device Authentication
Part of the reason for an Android-specific KeyGenParameterSpec class is to be
able to offer Android-specific features to extend the JCA. A prominent example
of this is tying a generated key to device authentication, such that your app
can only use the key if the user is currently authenticated.
The two primary Builder methods for this are:

	
setUserAuthenticationRequired(true), to indicate that the key being generated
requires user authentication

	
setUserAuthenticationValidityDurationSeconds(), to indicate how long we have,
after user authentication, to be able to use the key, before the user needs
to re-authenticate

The default validity period is, in effect, zero seconds. Every use of the key
requires an immediately-preceding authentication. This may be excessive, and
you will want to consider whether setting a longer validity period (e.g.,
one minute) is more appropriate for your situation.
So, in this sample, we generate a key with user authentication required, with
a 60-second timeout:

KeyGenParameterSpec spec=
 new KeyGenParameterSpec.Builder("thisIsMyKey",
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .setUserAuthenticationRequired(true)
 .setUserAuthenticationValidityDurationSeconds(60)
 .build();

KeyGenerator keygen=
 KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore");

keygen.init(spec);
SecretKey secretKey=keygen.generateKey();

Later on, when we try to use the key for encryption, decryption, etc., we may
get a UserNotAuthenticatedException. This means that the user has not
authenticated against the device within the timeout period, and so we need
to re-authenticate the user (e.g., createConfirmDeviceCredentialIntent())
before trying the cryptographic operation again. The preceding chapter
outlines how to use createConfirmDeviceCredentialIntent() to authenticate the
user.
Learning More About Your Key
For keys created in the AndroidKeyStore, you can use a somewhat clunky set
of APIs to find out more details about the key, in particular whether the key
is backed by any sort of hardware security (e.g., the TEE). This information
is available through an Android-specific KeyInfo class. Unfortunately, you
have to get one of those by means of a SecretKeyFactory and a cast, as shown
below:

SecretKey key=(SecretKey)ks.getKey(keyName, null);
KeyInfo info=
 (KeyInfo)SecretKeyFactory.getInstance(key.getAlgorithm(), "AndroidKeyStore")
 .getKeySpec(key, KeyInfo.class);

if (info.isInsideSecureHardware()) {
 Toast.makeText(this, "Key is inside secure hardware", Toast.LENGTH_LONG).show();
}
else {
 Toast.makeText(this, "Key is only secured by software", Toast.LENGTH_LONG).show();
}

Given the SecretKey, you can get the associated SecretKeyFactory, based on
the algorithm and keystore name. That SecretKeyFactory has a getKeySpec()
method, which takes the SecretKey and the spec class (KeyInfo.class in this
case). That needs to be cast to a KeyInfo, this JCA code probably pre-dates
Java’s support for generics.
The sample code shown above checks one specific characteristic of the key: does
the key reside inside of secure hardware. You get that from a call to
isInsideSecureHardware().
Encrypting Data
So, with all of that as background, let’s look at actually encrypting some
data using all of this stuff.
The
DeviceAuth/SecureNote
sample application has a single activity with a really big EditText widget,
for you to type in a note. We will store that note in an encrypted form,
using a key that requires device authentication.
And to do that, we will spend some time in a bodega.
Introducing RxKeyBodega
The RxKeyBodega class in this project implements a small RxJava-based
API wrapped around the relevant javax.crypto and android.security.keystore
classes. The idea is to isolate most of the “hard core” encryption logic
in this class, but allow for composability, so that the calling app can
control things like:

	Where the encrypted data comes from, and what happens to it after it is decrypted

	Where the encrypted data goes, after it is encrypted

	What thread is used for all of this

The only aspect that RxKeyBodega cannot handle itself is device authentication,
since that involves a UI.
(this is far smaller than a key “store”; hence, a key “bodega”)
Encrypting the Note
First, let’s look at the encryption path. Our MainActivity not only has the
really big EditText, but it has a “save” action bar item that, when clicked,
will save the contents of the EditText in an encrypted form.
RxKeyBodega Client
That action bar item is tied to a save() method on MainActivity, which
uses RxKeyBodega to set up an RxJava chain to process our encryption:

 private void save() {
 final Context app=getApplicationContext();
 byte[] toEncrypt=note.getText().toString().getBytes(UTF8);

 RxKeyBodega.encrypt(toEncrypt, KEY_NAME, TIMEOUT_SECONDS)
 .subscribeOn(Schedulers.io())
 .map(result -> {
 File f=new File(app.getFilesDir(), FILENAME);

 RxKeyBodega.save(f, result);

 return f;
 })
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(
 file -> Toast.makeText(MainActivity.this, R.string.saved, Toast.LENGTH_SHORT).show(),
 t -> {
 if (t instanceof UserNotAuthenticatedException) {
 requestAuth(REQUEST_SAVE);
 }
 else {
 Toast.makeText(MainActivity.this, t.getMessage(), Toast.LENGTH_LONG).show();
 Log.e(getString(R.string.app_name), "Exception saving encrypted file", t);
 }
 });
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
We will take a look at RxKeyBodega.encrypt() in the next section, but it
returns an Observable of an EncryptionResult object, which itself is part
of RxKeyBodega. We supply the data to be encrypted as a byte array, which
we encode using UTF8 from the Editable returned by the EditText and its
getText() method. We pass that, along with a unique name for the encryption
key to use and how long the device authentication timeout should be. That
encryption key will be lazy-created if it does not already exist.
After routing this work to the io() thread, we use map() to process
the EncryptionResult. We create a File pointing to where we want the encrypted
data to be stored on internal storage, then call RxKeyBodega.save() to save
the EncryptionResult to that file. This File is then supplied downstream
to our subscriber lambda, which:

	Shows a Toast if everything seems OK

	Calls requestAuth() if we got a UserNotAuthenticatedException, indicating
that we need the user to re-authenticate with the device before we can encrypt

	Shows an error Toast if something else went wrong

requestAuth() takes a request code as a parameter and kicks off device
authentication using createConfirmDeviceCredentialIntent():

 private void requestAuth(int requestCode) {
 Intent i=
 mgr.createConfirmDeviceCredentialIntent("title", "description");

 if (i==null) {
 Toast.makeText(this, "No authentication required?!?",
 Toast.LENGTH_SHORT).show();
 }
 else {
 startActivityForResult(i, requestCode);
 }
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
In onActivityResult(), if the user authenticated, we try save() again:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (resultCode==RESULT_OK) {
 if (requestCode==REQUEST_SAVE) {
 save();
 }
 else if (requestCode==REQUEST_LOAD) {
 load();
 }
 }
 else {
 Toast.makeText(this, R.string.sorry, Toast.LENGTH_SHORT).show();
 finish();
 }
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
If the user declined to authenticate, we show a Toast and finish() the
activity, since there is nothing useful that we can do.
RxKeyBodega Implementation
Overall, RxKeyBodega follows the implementation approach used by RxFingerprint,
profiled in the previous chapter. So, for example, the encrypt()
method on RxKeyBodega does not encrypt anything itself, but rather creates
an Observable — named EncryptObservable — that will handle the encryption work
itself:

 static Observable<EncryptionResult> encrypt(byte[] toEncrypt, String keyName,
 int timeout) {
 return Observable.create(new EncryptObservable(keyName, timeout, toEncrypt));
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
This way, the consumer of RxKeyBodega can control the thread on which the
encryption work is performed.
EncryptObservable extends a BodegaObservable class. It lazy-initializes
a KeyStore, where KEYSTORE is "AndroidKeyStore", so we get access to the
(potentially) hardware-backed keystore:

 private abstract static class BodegaObservable {
 KeyStore ks;
 Exception initException;

 BodegaObservable() {
 try {
 ks=KeyStore.getInstance(KEYSTORE);
 ks.load(null);
 }
 catch (Exception e) {
 initException=e;
 }
 }
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
Nothing should go wrong in that initialization, but getInstance() and load()
throw some checked exceptions. If one occurs, it is held onto in an initException
field.
EncryptObservable implements the ObservableOnSubscribe interface, so the
bulk of its logic goes into the subscribe() method, called when something
eventually subscribes to this Observable:

 @Override
 public void subscribe(ObservableEmitter<EncryptionResult> emitter)
 throws Exception {
 if (initException==null) {
 createKey(keyName, timeout);

 SecretKey secretKey=(SecretKey)ks.getKey(keyName, null);
 Cipher cipher=Cipher.getInstance("AES/CBC/PKCS7Padding");
 SecureRandom rand=new SecureRandom();
 byte[] iv=new byte[BLOCK_SIZE];

 rand.nextBytes(iv);

 IvParameterSpec ivParams=new IvParameterSpec(iv);

 cipher.init(Cipher.ENCRYPT_MODE, secretKey, ivParams);
 emitter.onNext(new EncryptionResult(ivParams.getIV(), cipher.doFinal(toEncrypt)));
 }
 else {
 throw initException;
 }
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
If initException is not null, we throw it here, so that the exception
works its way through the RxJava chain and can be picked up by a Throwable
handler in MainActivity.
If initException is null, though, we start of by lazy-creating our
key, in a createKey() method:

 private void createKey(String keyName, int timeout) throws Exception {
 KeyStore.Entry entry=ks.getEntry(keyName, null);

 if (entry==null) {
 KeyGenParameterSpec spec=
 new KeyGenParameterSpec.Builder(keyName,
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .setUserAuthenticationRequired(true)
 .setUserAuthenticationValidityDurationSeconds(timeout)
 .setRandomizedEncryptionRequired(false)
 .build();

 KeyGenerator keygen=
 KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES, KEYSTORE);

 keygen.init(spec);
 keygen.generateKey();
 }
 }
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
This uses the approach outlined earlier in this chapter, creating an
AES/CBC/PKCS7Padding key. In particular, it is tied to device authentication,
so the user will have had to entered their PIN, passcode, fingerprint, etc. within
the timeout period, or else the encryption cannot be performed.
Once we are sure that we have a key, subscribe() creates a Cipher for that
key, uses doFinal() to pass along the data to be encrypted, and passes
that doFinal() response, along with an “initialization vector”, to
an EncryptionResult constructor. The EncryptionResult is what gets emitted
by this Observable and is what is picked up by MainActivity in the first
step of its RxJava chain.
The save() utility method on RxKeyBodega, used by MainActivity, writes
the initialization vector data and the encrypted data to the supplied file:

 static void save(File f, EncryptionResult result)
 throws IOException {
 BufferedSink sink=Okio.buffer(Okio.sink(f));

 sink.write(result.iv);
 sink.write(result.encrypted);
 sink.close();
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
Some Quick Initialization Vector Notes
Some encryption schemes use an initialization vector (IV). This is a series of random
bytes that serves as the initial input into the encryption algorithm. The
bytes do not have to be secret, which is why it is safe for us to save them
as part of the encrypted data, as we did in the subscribe() method
of EncryptObservable above.
However, the bytes do have to be random. This has been a problem with Android.
Early versions of Android had a hard-coded default IV value, rather than
randomly generating a value. This is bad, and it forced developers to have
to create their own IV using SecureRandom.
Google apparently has fixed the default IV behavior. In fact, to use your own
IV, you have to call setRandomizedEncryptionRequired() on the
KeyGenParameterSpec.Builder, as part of creating your key in the
AndroidKeyStore. If you fail to do this, when you go to supply your own IV
bytes for encryption, you crash, with an exception whose message reads:
“Caller-provided IV not permitted when encrypting”.
So, as of API Level 23, Google wants you to use their random IV implementation,
rather than supply your own IV bytes. But, on older Android devices, you cannot
rely on Google’s implementation.
So, now what?
The safest course of action is to do what we are doing in the SecureNote
sample: provide a random IV and tell Android that we intend to do this,
via the setRandomizedEncryptionRequired(). This way, even if some device
manufacturer screws something up and their device winds up with non-random
default IV values, you are covered.
Escaping If Device Is Insecure
Lazy-creating that key — in fact, this entire app — only makes sense if the
device has a secure keyguard. Otherwise, we cannot have the key be tied
to device authentication.
So, part of what we do in onCreate() is get a KeyguardManager and see
if the keyguard is secure, using the techniques outlined in
the preceding chapter:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mgr=(KeyguardManager)getSystemService(KEYGUARD_SERVICE);

 if (mgr.isKeyguardSecure()) {
 note=findViewById(R.id.note);
 load();
 }
 else {
 Toast.makeText(this, R.string.insecure, Toast.LENGTH_LONG).show();
 finish();
 }
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
If it is not secure, we show a Toast and finish() our activity to leave the
app.
Starting Decryption in onCreate()
If we do have a secure keyguard, we call a load() method, which will kick off
loading the encrypted data and decrypting it.
You might wonder why we do not take a similar approach for encrypting and saving
the note. Rather than force the user to click a “save” action bar item, we could
call save() from onDestroy(), or perhaps from onStop().
The problem is that we may need the user to re-authenticate, if they have not
authenticated since before the timeout window. That requires us to start
an activity and get a result. However, that is not safe to do once our
activity is destroyed. So what happens is that the user presses BACK to exit
the app, we determine that we need to authenticate the user, and then:

	We have to fail to save the note, possibly with an error message, or

	We can try to show the authentication activity, get a result, and then save
the note, but that is quite likely to fail, given that our activity will be
destroyed along the way

As a result, while we can automatically decrypt the note, we cannot automatically
encrypt it.
Decrypting the Note
Now, let’s turn our attention to the load() method.
RxKeyBodega Client
load() implements another RxJava Observable chain, to take what we wrote
to the file, decrypt it, and show the results in the EditText for possible
changes by the user:

 private void load() {
 Observable.just(new File(getFilesDir(), FILENAME))
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .filter(File::exists)
 .map(RxKeyBodega::load)
 .flatMap(toDecrypt -> RxKeyBodega.decrypt(toDecrypt, KEY_NAME))
 .subscribe(bytes -> note.setText(new String(bytes, UTF8)),
 t -> {
 if (t instanceof UserNotAuthenticatedException) {
 requestAuth(REQUEST_LOAD);
 }
 else {
 Toast.makeText(MainActivity.this, t.getMessage(), Toast.LENGTH_LONG).show();
 Log.e(getString(R.string.app_name), "Exception loading encrypted file", t);
 }
 });
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
The Observable starts out with a File pointing to where the note is saved
on internal storage. We then use the filter() operator to only continue
if the file exists — if it doesn’t, that means we have no notes to load,
and so the empty EditText is a fine starting point.
We then use a static load() method on RxKeyBodega to do the file I/O to
read in the file. We pass the result from load() to the RxKeyBodega.decrypt()
method, supplying the same KEY_NAME that we will want to use for encryption.
At that point, there are three possibilities:

	Everything succeeds, in which case we get the decrypted bytes, so we can turn
them into a String (using the UTF8 charset) and apply that to the EditText

	We get a UserNotAuthenticatedException, in which case we request that the
user authenticate, and if that succeeds, onActivityResult() will try the load()
again

	We get some other exception, in which case we just show a Toast and log
the exception

RxKeyBodega Implementation
The load() method on RxKeyBodega simply reads in the data that we wrote out:

 static EncryptionResult load(File f) throws Exception {
 BufferedSource source=Okio.buffer(Okio.source(f));
 byte[] iv=source.readByteArray(BLOCK_SIZE);
 byte[] encrypted=source.readByteArray();

 source.close();

 return new EncryptionResult(iv, encrypted);
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
To read in the initialization vector, we need to know how many bytes it should
be. That is based on the choice of encryption cipher, but the value is a constant
for any given cipher. So, we get that in a static initialization block, and pray
to the high heavens that JCA does not thrown an unexpected exception:

 private static final int BLOCK_SIZE;

 static {
 int blockSize=-1;

 try {
 blockSize=Cipher.getInstance("AES/CBC/PKCS7Padding").getBlockSize();
 }
 catch (Exception e) {
 Log.e("RxKeyBodega", "Could not get AES/CBC/PKCS7Padding cipher", e);
 }

 BLOCK_SIZE=blockSize;
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
(a production-grade app would do something with the exception besides logging
it to LogCat)
load() then wraps the initialization vector and encrypted data in an EncryptionResult,
which becomes input for the decrypt() method, which turns around and hands it
to a DecryptObserverable:

 static Observable<byte[]> decrypt(EncryptionResult toDecrypt, String keyName) {
 return Observable.create(new DecryptObservable(keyName, toDecrypt));
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
DecryptObservable then uses JCA to decrypt the encrypted data, using the
chosen Cipher and initialization vector, emitting the decrypted data:

 private static class DecryptObservable extends BodegaObservable implements
 ObservableOnSubscribe<byte[]> {
 final private String keyName;
 final private EncryptionResult toDecrypt;

 private DecryptObservable(String keyName, EncryptionResult toDecrypt) {
 this.keyName=keyName;
 this.toDecrypt=toDecrypt;
 }

 @Override
 public void subscribe(ObservableEmitter<byte[]> emitter)
 throws Exception {
 if (initException==null) {
 SecretKey secretKey=(SecretKey)ks.getKey(keyName, null);
 Cipher cipher=Cipher.getInstance("AES/CBC/PKCS7Padding");

 cipher.init(Cipher.DECRYPT_MODE, secretKey, new IvParameterSpec(toDecrypt.iv));
 emitter.onNext(cipher.doFinal(toDecrypt.encrypted));
 }
 else {
 throw initException;
 }
 }
 }

(from DeviceAuth/SecureNote/app/src/main/java/com/commonsware/android/auth/note/RxKeyBodega.java)
Time-Limited Device Authentication
In the previous chapter, we saw the use of createConfirmDeviceCredentialIntent()
to force the user to re-authenticate before proceeding with something in your
app. As noted then, the problem is that createConfirmDeviceCredentialIntent()
always forces re-authentication, even if the user authenticated just moments ago
(e.g., just unlocked their device).
However, for working with AndroidKeyStore-backed keys, we can require
device authentication… but with a timeout. That way, the user only needs to
re-authenticate if they have not authenticated recently, for whatever value of
“recently” we want when setting up the key.
So, if you want to use createConfirmDeviceCredentialIntent(), but you want a timeout,
one solution is silly, but works: encrypt something with a timeout-enabled,
authenticated key. What you encrypt does not matter — you can throw away the
results of the encryption. You are simply leveraging the timeout facility to
let you know whether authentication is really needed or not.
The
DeviceAuth/SecureTimeout
sample application demonstrates this. It is based on the SecureCheck sample
from the preceding chapter, but now uses the encryption technique outlined above.
In onCreate(), we set up the AndroidKeyStore:

 try {
 ks=KeyStore.getInstance(KEYSTORE);
 ks.load(null);
 }
 catch (Exception e) {
 Toast.makeText(this, "Ummm... this shouldn't happen", Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(), "Exception initializing keystore", e);
 }

(from DeviceAuth/SecureTimeout/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
We only enable the authentication action bar item if we have a secure keyguard,
as otherwise we cannot set up the key that we want to use:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);
 menu.findItem(R.id.auth).setEnabled(mgr.isKeyguardSecure());

 return super.onCreateOptionsMenu(menu);
 }

(from DeviceAuth/SecureTimeout/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
As before, tapping that action bar item invokes an authenticate() method.
Before, that just blindly called createConfirmDeviceCredentialIntent() and
forced authentication. Now… it’s a bit different:

 private void authenticate() {
 try {
 createKeyForTimeout();
 }
 catch (Exception e) {
 Toast.makeText(this, "Could not create the key", Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(), "Exception creating key", e);
 return;
 }

 if (needsAuth(false)) {
 Intent i=
 mgr.createConfirmDeviceCredentialIntent("title", "description");

 if (i==null) {
 Toast.makeText(this, "No authentication required!",
 Toast.LENGTH_SHORT).show();
 }
 else {
 startActivityForResult(i, REQUEST_CODE);
 }
 }
 }

(from DeviceAuth/SecureTimeout/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
We start by invoking the same sort of lazy-create-the-key logic that we used
in SecureNote, this time in a createKeyForTimeout() method:

 private void createKeyForTimeout() throws Exception {
 KeyStore.Entry entry=ks.getEntry(KEY_NAME, null);

 if (entry==null) {
 KeyGenParameterSpec spec=
 new KeyGenParameterSpec.Builder(KEY_NAME,
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .setUserAuthenticationRequired(true)
 .setUserAuthenticationValidityDurationSeconds(TIMEOUT_SECONDS)
 .build();

 KeyGenerator keygen=
 KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES, KEYSTORE);

 keygen.init(spec);
 keygen.generateKey();
 }
 }

(from DeviceAuth/SecureTimeout/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
If that works, we call a needsAuth() method to see if we need authentication or not:

 private boolean needsAuth(boolean isRecheck) {
 boolean result=false;

 try {
 SecretKey secretKey=(SecretKey)ks.getKey(KEY_NAME, null);
 Cipher cipher=Cipher.getInstance("AES/CBC/PKCS7Padding");

 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 cipher.doFinal(POINTLESS_DATA);

 if (!isRecheck) {
 Toast.makeText(this, "Already authenticated!", Toast.LENGTH_LONG).show();
 }
 }
 catch (UserNotAuthenticatedException e) {
 result=true;
 }
 catch (KeyPermanentlyInvalidatedException e) {
 Toast.makeText(this, "You reset the lock screen!",
 Toast.LENGTH_LONG).show();
 }
 catch (Exception e) {
 Toast.makeText(this, "Could not validate the key", Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(), "Exception validating key", e);
 }

 return result;
 }

(from DeviceAuth/SecureTimeout/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
This just encrypts a pointless bit of data:

 private static final byte[] POINTLESS_DATA=new byte[] {1, 2, 3};

(from DeviceAuth/SecureTimeout/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
There are several possible outcomes of this. The biggest one is that
we could catch a UserNotAuthenticatedException, meaning that the user has
not authenticated within our timeout. In that case, needsAuth() returns true,
and authenticate() uses createConfirmDeviceCredentialIntent() to trigger
authentication. onActivityResult() then calls needsAuth() again, to confirm
that we did successfully authenticate the user:

 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==REQUEST_CODE) {
 if (resultCode==RESULT_OK) {
 if (needsAuth(true)) {
 Toast.makeText(this, "Good authentication... but still needs auth?",
 Toast.LENGTH_SHORT).show();
 }
 else {
 Toast.makeText(this, "Authenticated!", Toast.LENGTH_SHORT).show();
 }
 }
 else {
 Toast.makeText(this, "WE ARE UNDER ATTACK!", Toast.LENGTH_SHORT).show();
 }
 }
 }

(from DeviceAuth/SecureTimeout/app/src/main/java/com/commonsware/android/auth/check/MainActivity.java)
The boolean parameter to needsAuth() simply indicates whether we are checking
on the first or second pass. If we can successfully encrypt
the pointless data, we know that the user has authenticated within our timeout
period. If it’s the first pass through needsAuth(), we show a Toast here,
otherwise we show it in onActivityResult().
This sample specifically checks for KeyPermanentlyInvalidatedException. This
will be thrown if we had a key from before, but the user reset their lock
screen, and that key is now no longer valid. If there was data encrypted
using that key… the user is now in big trouble. From a JCA standpoint, you
should be able to use deleteEntry() on the KeyStore to remove the old
key under your key name and create a new one, if desired.
Encrypting Passphrases
The AndroidKeyStore is good for some scenarios, such as your own encrypted
files. However, other things will need passphrases and do not integrate with the
JCA. A prominent example is SQLCipher for Android. SQLCipher is an extension
to SQLite, and SQLite is not tied to Android. Hence, SQLCipher is not
tied to Android, and the SQLCipher for Android distribution is focused more
on providing a near-clone of the Android SQLite classes (e.g., SQLiteDatabase).
However, you can integrate anything that takes a passphrase with the AndroidKeyStore –
and, by extension, with fingerprint-based device authentication — by generating
the passphrase and encrypting it. This works akin to encrypting notes, as seen
in the earlier example, in that you are encrypting and decrypting from files.
However, rather than the files being the actual data, they are merely the keys with
which to access that actual data, which has its own security solution.
The
DeviceAuth/CipherNote
sample application is a clone of the SecureNote sample. There, the note was
encrypted and saved as a file. In this sample, the note is saved in SQLCipher
for Android, with a generated passphrase being encrypted and saved as a file.
In this case, this approach is overkill. However, there are plenty of scenarios
where you need a SQLite-like solution for querying and such, but you also want
to give the user the option of tying their security to device authentication, instead
of having to type in a passphrase themselves.
From a UI standpoint, CipherNote works the same as SecureNote:

	The existing content is decrypted when the activity starts up, if that
content exists, and possibly involving device authentication if needed

	When the user taps the “save” action bar item, the content is saved in an
encrypted form

A NoteRepository
We start off with a simple SQLiteOpenHelper subclass named DatabaseHelper:

package com.commonsware.android.auth.note;

import android.content.Context;
import net.sqlcipher.database.SQLiteDatabase;
import net.sqlcipher.database.SQLiteOpenHelper;

public class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="note.db";
 private static final int SCHEMA=1;

 DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA);

 SQLiteDatabase.loadLibs(context);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE note (_id INTEGER PRIMARY KEY AUTOINCREMENT, content TEXT);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 throw new RuntimeException("How did we get here?");
 }
}

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/DatabaseHelper.java)
This sets up a trivial table (note) with a primary key and the content. It
also initializes SQLCipher for Android, by means of SQLiteDatabase.loadLibs(context).
That is then wrapped in a NoteRepository, which provides us with an RxJava-based
API for loading and saving notes from the encrypted database, given a passphrase.
As with many repository-style classes — and as with many things that work
with SQLite or SQLCipher for Android — NoteRepository is a singleton. Its
sole instance is lazy-created, as it needs a Context for use with DatabaseHelper:

 private static volatile NoteRepository INSTANCE;
 private SQLiteDatabase db;

 private synchronized static NoteRepository init(Context ctxt, char[] passphrase) {
 if (INSTANCE==null) {
 INSTANCE=new NoteRepository(ctxt.getApplicationContext(), passphrase);
 }

 return INSTANCE;
 }

 private synchronized static NoteRepository get() {
 return INSTANCE;
 }

 private NoteRepository(Context ctxt, char[] passphrase) {
 DatabaseHelper helper=new DatabaseHelper(ctxt);

 db=helper.getWritableDatabase(passphrase);
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/NoteRepository.java)
The NoteRepository holds onto the SQLiteDatabase opened from the DatabaseHelper.
More importantly, it does not hold onto the passphrase. Ideally, that passphrase
should be cleared out of memory after the database is opened, as SQLCipher for
Android no longer needs it, and the longer the passphrase is in memory, the more
likely it is that somebody is going to find a way to extract it.
Our model object representing the note is named Note:

 static class Note {
 final long id;
 final String content;

 private Note(long id, String content) {
 this.id=id;
 this.content=content;
 }
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/NoteRepository.java)
Loading the Note is reactive. We have a static load() method that
returns an Observable based on a LoadObservable:

 static Observable<Note> load(Context ctxt, char[] passphrase) {
 return Observable.create(new LoadObservable(ctxt, passphrase));
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/NoteRepository.java)
LoadObservable does as its name suggests: it loads the note from the database:

 private static class LoadObservable implements ObservableOnSubscribe<Note> {
 private final Context app;
 private final char[] passphrase;

 LoadObservable(Context ctxt, char[] passphrase) {
 this.app=ctxt.getApplicationContext();
 this.passphrase=passphrase;
 }

 @Override
 public void subscribe(ObservableEmitter<Note> e) throws Exception {
 Cursor c=NoteRepository.init(app, passphrase).db
 .rawQuery("SELECT _id, content FROM note", null);

 if (c.isAfterLast()) {
 e.onNext(EMPTY);
 }
 else {
 c.moveToFirst();
 e.onNext(new Note(c.getLong(0), c.getString(1)));
 Arrays.fill(passphrase, '\u0000');
 }

 c.close();
 }
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/NoteRepository.java)
While LoadObservable holds onto the passphrase, it does not make its own copy.
Instead, it uses Arrays.fill() to clear out that char array as part of loading
the note.
If there are no rows in the database, that means this was the first run of the
app (or the user cleared the app’s data). RxJava does not like an
ObservableEmitter emitting a null value, so we have a magic EMPTY constant
Note to use that signifies that we had no note:

 private static final Note EMPTY=new Note(-1, null);

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/NoteRepository.java)
Otherwise, this code is unremarkable: it queries the database, gets the values
out of the Cursor to create a Note, and emits the Note.
There is a corresponding save() method. It is not reactive, but instead is designed
to be added to some external RxJava chain. It takes the existing Note and
the revised content from the EditText, either inserts or updates the database
with the content, and returns a fresh Note instance:

 static Note save(Note note, String content) {
 ContentValues cv=new ContentValues(1);

 cv.put("content", content);

 if (note==EMPTY) {
 long id=NoteRepository.get().db.insert("note", null, cv);

 return new Note(id, content);
 }
 else {
 NoteRepository.get().db.update("note", cv, "_id=?",
 new String[]{String.valueOf(note.id)});

 return new Note(note.id, content);
 }
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/NoteRepository.java)
This way, clients can blindly request a save(), and the repository can determine
if that requires an insert or an update, based on whether we are starting with
the EMPTY note or not.
RxPassphrase
This sample modifies RxKeyBodega from earlier into RxPassphrase. Here, we
have a reactive API to get our passphrase for use with our SQLCipher for Android
database… including lazy-creating (and encrypting) that passphrase if it does
not already exist.
The public API is a simple static get() method. It takes the file to use
for storing the passphrase, the key name for our key in the AndroidKeyStore,
and our desired authentication timeout as parameters. It just creates a
PassphraseObservable to do the real work:

 static Observable<char[]> get(File encryptedFile, String keyName, int timeout) {
 return Observable.create(new RxPassphrase.PassphraseObservable(encryptedFile, keyName, timeout));
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/RxPassphrase.java)
subscribe() initializes our KeyStore, then sees if the encrypted passphrase
file exists, branching to load() or create() methods accordingly:

 @Override
 public void subscribe(ObservableEmitter<char[]> emitter) throws Exception {
 KeyStore ks=KeyStore.getInstance(KEYSTORE);

 ks.load(null);

 if (encryptedFile.exists()) {
 load(ks, emitter);
 }
 else {
 create(ks, emitter);
 }
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/RxPassphrase.java)
create() first creates a 128-character passphrase, using the same base36 algorithm
used in an example from the preceding chapter:

 private void create(KeyStore ks, ObservableEmitter<char[]> emitter)
 throws Exception {
 SecureRandom rand=new SecureRandom();
 char[] passphrase=new char[128];

 for (int i=0; i<passphrase.length; i++) {
 passphrase[i]=BASE36_SYMBOLS.charAt(rand.nextInt(BASE36_SYMBOLS.length()));
 }

 createKey(ks, keyName, timeout);

 SecretKey secretKey=(SecretKey)ks.getKey(keyName, null);
 Cipher cipher=Cipher.getInstance("AES/CBC/PKCS7Padding");
 byte[] iv=new byte[BLOCK_SIZE];

 rand.nextBytes(iv);

 IvParameterSpec ivParams=new IvParameterSpec(iv);

 cipher.init(Cipher.ENCRYPT_MODE, secretKey, ivParams);

 byte[] toEncrypt=toBytes(passphrase);
 byte[] encrypted=cipher.doFinal(toEncrypt);

 BufferedSink sink=Okio.buffer(Okio.sink(encryptedFile));

 sink.write(iv);
 sink.write(encrypted);
 sink.close();

 emitter.onNext(passphrase);
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/RxPassphrase.java)
create() then lazy-creates our key in our KeyStore, using the same createKey()
method as was used previously:

 private void createKey(KeyStore ks, String keyName, int timeout)
 throws Exception {
 KeyStore.Entry entry=ks.getEntry(keyName, null);

 if (entry==null) {
 KeyGenParameterSpec spec=
 new KeyGenParameterSpec.Builder(keyName,
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .setUserAuthenticationRequired(true)
 .setUserAuthenticationValidityDurationSeconds(timeout)
 .setRandomizedEncryptionRequired(false)
 .build();

 KeyGenerator keygen=
 KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES, KEYSTORE);

 keygen.init(spec);
 keygen.generateKey();
 }
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/RxPassphrase.java)
We then create a random initialization vector, and use that to help create our
Cipher for encryption. We encrypt the passphrase and IV bytes, writing the results
to the designated file, before returning the cleartext passphrase. That passphrase
can then be passed to the NoteRepository for the purposes of creating our
encrypted database.
Note that encryption might throw a UserNotAuthenticatedException, which the client
needs to catch and route through the createConfirmDeviceCredentialIntent()-based
UI for authenticating the user.
If our encrypted passphrase file already exists, we can just open and decrypt it:

 private void load(KeyStore ks, ObservableEmitter<char[]> emitter)
 throws Exception {
 BufferedSource source=Okio.buffer(Okio.source(encryptedFile));
 byte[] iv=source.readByteArray(BLOCK_SIZE);
 byte[] encrypted=source.readByteArray();

 source.close();

 SecretKey secretKey=(SecretKey)ks.getKey(keyName, null);
 Cipher cipher=Cipher.getInstance("AES/CBC/PKCS7Padding");

 cipher.init(Cipher.DECRYPT_MODE, secretKey, new IvParameterSpec(iv));

 byte[] decrypted=cipher.doFinal(encrypted);
 char[] passphrase=toChars(decrypted);

 emitter.onNext(passphrase);
 }
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/RxPassphrase.java)
We do not use createKey() here, as by definition our key should already exist,
as we used it to encrypt the file. If for some reason our key is lost, then
our data is lost, and we have to start over from scratch anyway.
Using the NoteRepository and RxPassphrase
The overall flow of MainActivity has not changed: we still call load()
from onCreate() and still call save() from the action bar item click. Merely
their implementations have changed, to blend NoteRepository and
RxPassphrase.
load() starts an RxJava chain by asking RxPassphrase to get() the
passphrase:

 private void load() {
 final Context app=getApplicationContext();
 File encryptedFile=new File(getFilesDir(), FILENAME);

 RxPassphrase.get(encryptedFile, KEY_NAME, TIMEOUT_SECONDS)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .flatMap(chars -> NoteRepository.load(app, chars))
 .subscribe(this::onNoteReady,
 t -> {
 if (t instanceof UserNotAuthenticatedException) {
 requestAuth(REQUEST_LOAD);
 }
 else {
 Toast.makeText(MainActivity.this, t.getMessage(), Toast.LENGTH_LONG).show();
 Log.e(getString(R.string.app_name), "Exception loading encrypted file", t);
 }
 });
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
That passphrase is then used with NoteRepository.load() to get the
note from the encrypted database, using flatMap() to attach the Observable
from NoteRepository.load() onto the existing chain. Then, if everything
succeeds, we call onNoteReady() to hold onto the Note object and populate the
EditText:

 private void onNoteReady(NoteRepository.Note note) {
 this.note=note;
 textarea.setText(note.content);
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
If we get a UserNotAuthenticatedException, we go through the same
requestAuth() as before, triggering authentication. In onActivityResult(),
we call load() again to try to get the Note, now that the user has authenticated.
The passphrase is stored on internal storage, in getFilesDir()
(new File(getFilesDir(), FILENAME)). Hence, in
principle, it will only get deleted if the database itself gets deleted, such
as the user choosing “Clear Data” for our app in Settings. This is important,
as our data will be lost if either the database or the encrypted passphrase
file are lost.
save() does not need to use RxPassphrase, as NoteRepository should already
have the open database. So, we can just use NoteRepository.save() to persist
the note:

 private void save() {
 Observable.just(textarea.getText().toString())
 .map(content -> NoteRepository.save(note, content))
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(this::onNoteSaved,
 t -> {
 if (t instanceof UserNotAuthenticatedException) {
 requestAuth(REQUEST_LOAD);
 }
 else {
 Toast.makeText(MainActivity.this, t.getMessage(), Toast.LENGTH_LONG).show();
 Log.e(getString(R.string.app_name), "Exception loading encrypted file", t);
 }
 });
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
Here, onNoteSaved() just shows the “Saved!” Toast, plus calls onNoteReady()
to ensure that we have the Note for any subsequent save() call:

 private void onNoteSaved(NoteRepository.Note note) {
 Toast.makeText(this, R.string.saved, Toast.LENGTH_LONG).show();
 onNoteReady(note);
 }

(from DeviceAuth/CipherNote/app/src/main/java/com/commonsware/android/auth/note/MainActivity.java)
A Key(Store) Limitation
The keys in the AndroidKeyStore are tied to a secure keyguard. That is why
these samples check for a secure keyguard before proceeding.
But what if the user had a secure keyguard, then downgrades to merely swipe-to-unlock?
When they downgrade, they should get a system warning that they will lose
some information. In particular, on fingerprint-enabled devices, they should
get a note about losing stored fingerprints. However, the system warning may
not be a sufficient deterrent, and the user may downgrade their keyguard security
anyway.
If that happens, your keys in the AndroidKeyStore get wiped out. Even if the
user turns right around and sets up a secure keyguard again, whatever had been
in the AndroidKeyStore is gone, and anything encrypted with one of those
keys will be unrecoverable.
Changing between different types of security — such
as switching between a PIN and a passphrase — is fine and will not affect
the AndroidKeyStore.
Miscellaneous Security Techniques
This chapter outlines some additional security measures that you can consider
for your applications that do not necessarily warrant a full chapter on their
own at this time.
In other words, it’s just a pile of interesting security stuff.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book. In addition, you should review the app signing chapter
if you are unfamiliar with the signing process.
Public Key Validation
We sign our apps with signing keys all the time. By default, we are signing with
a so-called “debug signing key”, created automatically by the build tools. For production,
we sign with a different signing key. The primary use of that signing key is to
determine equivalence of authorship:

	Is this APK, representing an upgrade to an already-installed app, signed by the
same signing key that signed that app?

	Is this APK, that requests firmware-defined signature-level permissions, signed
by the same signing key that signed the firmware?

However, as it turns out, information about the public key that signed an APK is visible
to us, for our own APK as well as for any other APK on the device. We can leverage
that to help determine whether a given APK was signed by something we recognize.
This goes above and beyond using Android’s built-in signature-based defenses (e.g., using
a custom signature-level permission).
Scenarios
There are several scenarios in which we might imagine that we could employ our own
public key validation. How well the technique will work, though, depends on what we
are checking and the nature of the attack we are defending against.
Checking Yourself
You might consider checking your own app’s public key. After all, if your app is
not signed with your production signing key, something very strange is going on, and
the natural reaction is that “something strange” is unlikely to be a good thing
for you.
However, there are some issues here.
First and foremost, checking your own signing key assumes that whatever caused you to
not be signed by that key did not also modify your validation algorithm. For example,
suppose that you validate your signing key to determine if somebody perhaps reverse-engineered
and modified your app, perhaps to remove some license checks. This will only catch
an attacker that removed the licensing checks and did not also remove your signature
validation, or modify the validation to use the attacker’s signing key. While it is
possible that an attacker will modify one part but not another, it remains unclear how
well this defense will work in practice.
Also, bear in mind that you, as a developer, may be opting into services that intentionally
change your app’s signature. Various providers will “wrap” your app, whether for interstitial
ad banners or for quasi-DRM. There are three possible ways that they wrap your app:

	They sign it with their signing key, which means that your runtime validation of the
key will fail, as your app is now signed by their key, not yours. This is also very risky,
as if for whatever reason you are no longer able to use their service (e.g., they go out
of business), you may have difficulty in upgrading your app, as you will not have the right
key to use.

	They sign it with your signing key, either one that you upload, or one that they generate
for you. In this case, your runtime public key validation logic could still work. On the
other hand, now this other firm is perfectly capable of upgrading your app, or shipping
other apps, signed with your production signing key, and this has its own set of risks.

	They allow you to download the “wrapped” app and have you sign it yourself with your
own signing key. This is the best alternative from a security standpoint, but it is the
most tedious, as now you have additional work to do to publish your app.

Checking Arbitrary Other Apps
What will tend to be more reliable is to check other applications’ public keys. While
they might have been cracked, it is unlikely that the same attacker also attacked your
app, and so you can help detect problems in others.
For example, let us consider a specific scenario: a client-side JAR for integration to a
third-party app.
This book outlines many forms of IPC, from content providers to remote services to broadcast
Intent objects. If you are creating an app that offers such IPC endpoints, you may wish to
consider also shipping a JAR to make using those endpoints a bit easier. You might create
a library that handles all of the details of sending commands to your remote service,
or you might create a library that provides a wrapper around the AIDL-generated Java proxy
classes for remote binding.
Another thing such a JAR could do is check the integrity of your app. The JAR’s code is
in the client’s app, not yours, and while your app might be cracked, the client’s app
might not. You could check the validity of the public key of your own app from the client’s
app, and fail if there is a detected problem.
This might be especially important depending upon the nature of the app and the JAR that
is providing access to it. If the app is an app offering on-device payments (e.g., a Google
Wallet sort of app), and the app offers an API for other apps to do payments, it is fairly
important that those other apps can trust the payment app. By checking the public key,
your JAR can help provide that level of trust… or at least ensure that nobody else has
done something specifically to degrade that trust.
This is particularly important for avoiding device-hosted man-in-the-middle attacks on
your IPC from client apps to your app. In an ideal world, you would only allow IPC
via signature-level permissions, but that will not work in cases where third parties
are writing the clients.
If your IPC is based upon a service (command pattern or binding
pattern), if multiple service implementations all advertise the same <intent-filter>,
Android needs to decide which service will handle the request. First, it will take
into account the android:priority value on the <intent-filter> (even though this
behavior is currently undocumented). For multiple services with the same priority (e.g.,
no priority specified), the first one that was installed will be the one that is chosen.
In either case, the client has
no way to know, short of examining the service’s public key, whether the service that will
respond to the requests for IPC is the legitimate service or something else advertising
that it supports the same Intent action. Even with Android 5.0 blocking your ability
to bind via an implicit Intent, you wind up with the same sorts of problems
when you use resolveService() to try to determine the ComponentName
of the service to make an explicit Intent for it.
The Easy Solution: SignatureUtils
The author of this book has published the CWAC-Security library.
Among other things, this library has a SignatureUtils class that makes it relatively
easy for you to compare the signature of some Android app to a known good value.
All you need to do is call the static getSignatureHash() method, supplying some
Context (any will do) and the package name of the app that you wish to check. This
will return the SHA-256 hash of the signing key of the app, as a set of capitalized,
colon-delimited hex values.
You can get the same sort of hash by running the Java 7 version of keytool.
Hence, if the app you wish to test is another one of yours, perhaps signed
with a different signing key, you can use keytool to get the value to compare
with the result of getSignatureHash(). Or, during development, create a little utility app
that will dump the getSignatureHash() value for the third-party app, and run it
on a device containing a known good version of that app (i.e., one that does not
appear to have been replaced by malware).
Ideally, over time, we will be able to get app developers to publish their SHA-256
hashes on their Web sites, as another means of getting a known value of the hash
to compare at runtime.
If you determine that getSignatureHash() does not return the right value, this
means that the app that is installed on the device is written by somebody other than the
app’s original author. Often times, this will mean the app has malware in it. It
is up to you to determine how you wish to respond to this scenario:

	Alert the user?

	Send data back to your server, or to your analytics collection point, with details
of the bad APK?

	Block usage of your app, or usage of features that depend upon the flawed third
party?

	Something else?

Examining Public Keys
Under the covers, SignatureUtils uses PackageManager
and related classes to examine what they somewhat erroneously refer to as “signatures”. The
MiscSecurity/SigDump
sample project will allow us to browse the list of installed packages, see a decoded public
key on the screen for a package that we select, plus dump the “signature” as a binary file
for later comparison using another app.
The UI Structure
This app has a single activity, whose UI consists of:

	a RecyclerView to show the list of packages, and

	a set of labeled TextView widgets to show details of the last-clicked-upon
package

These are wrapped in a ConstraintLayout, which uses Barrier objects
to organize the TextView widgets into a table:

<layout>

 <data>

 <variable
 name="model"
 type="com.commonsware.android.signature.dump.MainActivity.DetailModel" />
 </data>

 <android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v7.widget.RecyclerView
 android:id="@+id/packages"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_margin="4dp"
 android:background="#11000000"
 app:layout_constraintBottom_toTopOf="@id/selected"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/selected"
 android:text="@{model.selected}"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:textStyle="bold"
 app:layout_constraintBottom_toTopOf="@id/top_row"
 app:layout_constraintStart_toStartOf="parent" />

 <android.support.constraint.Barrier
 android:id="@+id/column"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:barrierDirection="end"
 app:constraint_referenced_ids="subject_caption,issuer_caption,valid_caption" />

 <android.support.constraint.Barrier
 android:id="@+id/top_row"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:barrierDirection="top"
 app:constraint_referenced_ids="subject_caption,subject" />

 <TextView
 android:id="@+id/subject_caption"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:text="@string/subject"
 app:layout_constraintBottom_toTopOf="@id/middle_row"
 app:layout_constraintStart_toStartOf="parent" />

 <TextView
 android:id="@+id/subject"
 android:text="@{model.sigModel.subject}"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 app:layout_constraintBottom_toTopOf="@id/middle_row"
 app:layout_constraintStart_toStartOf="@id/column" />

 <android.support.constraint.Barrier
 android:id="@+id/middle_row"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:barrierDirection="top"
 app:constraint_referenced_ids="issuer_caption,issuer" />

 <TextView
 android:id="@+id/issuer_caption"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:text="@string/issuer"
 app:layout_constraintBottom_toTopOf="@id/bottom_row"
 app:layout_constraintStart_toStartOf="parent" />

 <TextView
 android:id="@+id/issuer"
 android:text="@{model.sigModel.issuer}"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 app:layout_constraintBottom_toTopOf="@id/bottom_row"
 app:layout_constraintStart_toStartOf="@id/column" />

 <android.support.constraint.Barrier
 android:id="@+id/bottom_row"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:barrierDirection="top"
 app:constraint_referenced_ids="valid_caption,valid" />

 <TextView
 android:id="@+id/valid_caption"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 android:text="@string/valid_between"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent" />

 <TextView
 android:id="@+id/valid"
 android:text="@{model.sigModel.validDates}"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="4dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="@id/column" />

 </android.support.constraint.ConstraintLayout>
</layout>

(from MiscSecurity/SigDump/app/src/main/res/layout/activity_main.xml)
The TextView contents use data binding expressions to pull information in
from a DetailModel, which we will examine shortly.
But, given this structure, the job of the activity is to show the list of packages
in the RecyclerView and, when a list item is clicked, update the DetailModel
to fill in the remaining widgets.
Listing the Packages
MainActivity holds a DetailModel object in a field:

 private final DetailModel detailModel=new DetailModel();

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
In onCreate() of MainActivity, we set up the data binding and bind that
data model, plus populate the RecyclerView:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ActivityMainBinding binding=
 DataBindingUtil.setContentView(this, R.layout.activity_main);

 binding.setModel(detailModel);

 binding.packages.setLayoutManager(new LinearLayoutManager(this));
 binding.packages.addItemDecoration(new DividerItemDecoration(this,
 LinearLayoutManager.VERTICAL));
 binding.packages.setAdapter(new PackageAdapter(getLayoutInflater(),
 buildPackageList(), detailModel));
 }

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
The RecyclerView uses a PackageAdapter to fill in its contents:

 private static class PackageAdapter extends RecyclerView.Adapter<RowHolder> {
 private final LayoutInflater inflater;
 private final List<PackageInfo> packages;
 private final DetailModel detailModel;

 private PackageAdapter(LayoutInflater inflater,
 List<PackageInfo> packages,
 DetailModel detailModel) {
 this.inflater=inflater;
 this.packages=packages;
 this.detailModel=detailModel;
 }

 @NonNull
 @Override
 public RowHolder onCreateViewHolder(@NonNull ViewGroup parent,
 int viewType) {
 View row=
 inflater.inflate(android.R.layout.simple_list_item_1, parent, false);

 return new RowHolder(row);
 }

 @Override
 public void onBindViewHolder(@NonNull RowHolder holder,
 int position) {
 holder.bind(packages.get(position), detailModel);
 }

 @Override
 public int getItemCount() {
 return packages.size();
 }
 }

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
This wraps around a List of PackageInfo objects, which we get from PackageManager:

 public List<PackageInfo> buildPackageList() {
 List<PackageInfo> result=
 getPackageManager().getInstalledPackages(PackageManager.GET_SIGNATURES);

 Collections.sort(result, (a, b) -> (a.packageName.compareTo(b.packageName)));

 return result;
 }

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
getPackageList() calls getInstalledPackages()
on PackageManager, specifically requesting to retrieve signature information via the
GET_SIGNATURES flag. The list we get back from getInstalledPackages() can be in any
order, so we sort the results before returning it for display purposes.
Decoding the Key
We need to fill in those TextView widgets, and to do that, we need to have a
DetailModel.
That class just holds onto a pair of ObservableField objects, one for the
“selected” package name (whatever the user last clicked on), and one for a separate
SigModel class:

 public static class DetailModel {
 public final ObservableField<String> selected=new ObservableField<>();
 public final ObservableField<SigModel> sigModel=new ObservableField<>();
 }

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
SigModel holds the formatted data to pour into the TextView widgets, populated
from an X509Certificate object:

 public static class SigModel {
 public final String subject;
 public final String issuer;
 public final String validDates;

 private SigModel(X509Certificate cert) {
 this.subject=cert.getSubjectDN().toString();
 this.issuer=cert.getIssuerDN().toString();
 this.validDates=
 FORMAT.format(cert.getNotBefore())+" to "+
 FORMAT.format(cert.getNotAfter());
 }

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
We are interested in three items from the X509Certificate. The subject is who
the certificate is for and the issuer is who created the certificate. For
a self-signed certificate — what we usually use for Android app development –
the subject and the issuer usually are the same party. We also want to show
the valid date range for the certificate, where we get the getNotBefore()
and getNotAfter() dates and format them using a SimpleDateFormat object:

 private static final DateFormat FORMAT=
 DateFormat.getDateInstance();

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
So now we are left with the glue code: when the user clicks on a package in
the list, we need to get an X509Certificate representing the contents of the
signing key and use that to put a fresh SigModel into the DetailModel, so data
binding can update the TextView widgets.
That is all taken care of by RowHolder, which is the ViewHolder for
our RecyclerView:

 private static class RowHolder extends RecyclerView.ViewHolder {
 private final TextView title;
 private final View row;

 RowHolder(View itemView) {
 super(itemView);

 row=itemView;
 title=itemView.findViewById(android.R.id.text1);
 }

 void bind(final PackageInfo packageInfo, final DetailModel detailModel) {
 title.setText(packageInfo.packageName);

 row.setOnClickListener(v -> {
 detailModel.selected.set(packageInfo.packageName);
 detailModel.sigModel.set(new SigModel(buildCertificate(packageInfo)));
 SigSaver.enqueueWork(title.getContext(), packageInfo);
 });
 }

 private X509Certificate buildCertificate(PackageInfo packageInfo) {
 Signature[] signatures=packageInfo.signatures;
 byte[] raw=signatures[0].toByteArray();
 CertificateFactory certFactory;

 try {
 certFactory=CertificateFactory.getInstance("X509");
 }
 catch (CertificateException e) {
 Log.e(getClass().getSimpleName(),
 "Exception getting CertificateFactory", e);
 return null;
 }

 X509Certificate cert;
 ByteArrayInputStream bin=new ByteArrayInputStream(raw);

 try {
 cert=(X509Certificate)certFactory.generateCertificate(bin);
 }
 catch (CertificateException e) {
 Log.e(getClass().getSimpleName(),
 "Exception getting X509Certificate", e);
 return null;
 }

 return cert;
 }
 }

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
When we bind() a PackageInfo into the row, we also set up an click listener
for the row itself, to find out when the user taps on it. There, we update the
two fields of the DetailModel, using buildCertificate() to get the
X509Certificate for use with SigModel.
The PackageInfo object contains a signatures field with an array of Signature
objects. Despite the name, those each are an encoded representation of an
X509Certificate. Traditionally, Android apps have been signed with just one
key, so we only look at the first element of the array. Then, using Java cryptography
classes, we:

	Get the byte array of the encoded certificate, by calling toByteArray()
on the Signature

	Get a CertificateFactory for the X509 format

	Wrap the bytes in a ByteArrayInputStream

	And ask the CertificateFactory to decode the certificate

Dumping the Key
The click listener we applied to the row also has this line:

 SigSaver.enqueueWork(title.getContext(), packageInfo);

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)
This invokes a SigSaver implementation of a JobIntentService. Its job is to
write this “signature” to a file, so it could be transferred off of the device
and perhaps examined using tools like openssl.
SigSaver uses getPackageInfo() on PackageManager to get the PackageInfo
object for a specific package, then gets the same byte array that buildCertificate() does
and writes it to a file on external storage:

package com.commonsware.android.signature.dump;

import android.content.Context;
import android.content.Intent;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.Signature;
import android.support.annotation.NonNull;
import android.support.v4.app.JobIntentService;
import android.util.Log;
import java.io.File;
import java.io.FileOutputStream;

public class SigSaver extends JobIntentService {
 private static final int UNIQUE_JOB_ID=1337;
 private static final String EXTRA_PACKAGE="package";

 static void enqueueWork(Context ctxt, PackageInfo packageInfo) {
 Intent i=new Intent(ctxt, SigSaver.class)
 .putExtra(EXTRA_PACKAGE, packageInfo.packageName);

 enqueueWork(ctxt, SigSaver.class, UNIQUE_JOB_ID, i);
 }

 @Override
 protected void onHandleWork(@NonNull Intent intent) {
 String packageName=intent.getStringExtra(EXTRA_PACKAGE);

 try {
 PackageInfo packageInfo=getPackageManager().getPackageInfo(packageName,
 PackageManager.GET_SIGNATURES);
 File output=
 new File(getExternalFilesDir(null),
 packageInfo.packageName.replace('.', '_')+".bin");

 if (output.exists()) {
 output.delete();
 }

 Signature[] signatures=packageInfo.signatures;
 byte[] raw=signatures[0].toByteArray();

 try {
 FileOutputStream fos=new FileOutputStream(output.getPath());

 fos.write(raw);
 fos.close();
 }
 catch (java.io.IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception in writing signature file", e);
 }
 }
 catch (PackageManager.NameNotFoundException e) {
 Log.e(getClass().getSimpleName(),
 "Exception loading package info: "+packageName, e);
 }
 }
}

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/SigSaver.java)
The Result
When you run the app, you will get a list of all of the installed packages, which
will include system packages that have no activities (and, therefore, nothing
in the app drawer of your launcher):

[image: SigDump App, As Initially Launched]

Figure 745: SigDump App, As Initially Launched
Scrolling to and clicking on a package will populate the bottom panel with the
details of that package’s signature:

[image: SigDump App, After Clicking on the SigDump Entry]

Figure 746: SigDump App, After Clicking on the SigDump Entry
Also, a copy of the public signing key — as an encoded X.509 certificate — is
written out to a file on external storage.
Choosing Your Signing Keysize
The documentation for app signing
contains a small side note about the -keysize parameter to
keytool, the utility used to generate our signing keys:

The size of each generated key (bits). If not supplied, Keytool uses a default key size of 1024 bits. In general, we recommend using a key size of 2048 bits or higher.

The reason for the 2,048-bit key size recommendation is that
1,024-bit RSA (the keytool default)
has been considered at risk for a few years.
The recent revelations about state-sponsored decryption research should
be hammering this home. Even if today, forging a 1,024-bit digital
signature is still impractical for all but the largest security
agencies, it is well within reason that this will fall within the
reach of large botnets in the not-too-distant future.
Once signing keys can be cracked, apps
will be able to be replaced with hacked editions, without tripping
up the signature check, or signature-level permission checks might
start passing due to forged signatures.
Switching to a larger keysize is not that hard… for new apps. Just
specify -keysize 4096 when creating your production signing key,
and you should be good for a long time, barring a major decryption
breakthrough for RSA signatures.
For existing apps with existing signing keys, though, you cannot
change the key without breaking your ability to update the app.
Create a new, stronger production signing key, as a separate key from whatever
you are using for production. Make note to use that new signing key
for any new apps you create. And, if you have other reasons why you
are migrating an existing user base to a new app (e.g., free app for
which you are now offering a paid-app option), consider using the
new signing key.
If you are a consultant, and you create unique signing keys per
project, just cut over to using a stronger key for new clients and
projects.
And if you are creating apps for which security is paramount,
you might consider whether it is worthwhile to move your user base
to a new version of the app with a new signing key at some point,
just for the added protection.
Avoiding Accidental APIs
One place where developers create their own security problems is with
“accidental APIs”.
An API, of course, is where one code base exposes some interface that
another code base can use. An accidental API is when one code base
does not intend to expose an interface, but does anyway, possibly to
the app’s detriment.
Bear in mind that if your app becomes popular, other developers will
poke and prod at it, to see if they can connect to your app by one
means or another. Perhaps they want to offer features that you have not
gotten to yet. Perhaps they have more nefarious aims. Regardless,
making sure that other code can only work with your app the way that
you intend for such code to work with your app.
Export Only What’s Necessary
A component of your app is only reachable by a third-party app if it
is exported. Otherwise, it is inaccessible to third-party apps.
(Admittedly, content providers have an exception to this rule, which we
will get to shortly)
You normally do not think about exporting components, except when it
comes to content providers. However, your choices for how you implement
your app may lead you to accidentally export things that you did not
realize were exported.
Export Defaults
The official way to declare whether or not a component is exported is
to have an android:exported attribute for that component in the manifest
(e.g., on an <activity> element). However, many times, we do not have
such an attribute, but instead rely on the default export behavior.
Activities, services, and broadcast receivers have a simple rule for
the default: if the component has an <intent-filter>, it is exported by default.
Otherwise, it is not exported by default.
This, in turn, leads to a fairly simple development rule: only use an
<intent-filter> and implicit Intent objects for working with your components
if you also want third party apps to work with those components. Otherwise,
do not use <intent-filter>, and instead communicate with your components
using explicit Intent objects (e.g., the kind that take a Java class as the second
constructor parameter).
For example, the classic MAIN/LAUNCHER <intent-filter> on your launcher
activity is specifically there because you want a third party app — the
launcher — to be able to start your activity. Most, if not all, of your other
activities probably do not need an <intent-filter>, as they are likely to
be private to your app.
The Chooser Bug
Some developers choose to still use an <intent-filter> and implicit
Intent objects for their own private activities, yet then use android:exported to
enforce the privacy.
This is not a good plan.
The rest of the system, notably PackageManager, does not pay much attention
to android:exported until the time when the component is to be used,
such as when the activity is to be started. Then, and only then, does Android
realize that the component is not exported, and it fails the request, usually
with a cryptic SecurityException.
A classic example of where this can cause problem came to light in 2012,
with the UPS Mobile app. The rest of this section is an excerpt from
the author’s blog post on this incident:
The UPS Mobile app
allows you to track packages and do a handful of other things that
you might ordinarily do via the UPS Web site. It generally seems
to be well-regarded, but it has an annoying flaw:
It claims to be Barcode Scanner, and does a lousy job at it.
Barcode Scanner,
from ZXing, is a favorite among
Android developers for its integration possibilities. However, some
people do not like having a dependence upon the Barcode Scanner
app, so they grab the open source code and attempt to blend it
into their own apps. This is neither endorsed nor supported by the
ZXing team, but since it is open source, it is also perfectly
legitimate.
However, UPS (or whoever they hired to build the app) screwed up.
They not only copied the source code, but they copied the manifest
entry for the scanning activity. And, their activity has:

<intent-filter>
 <action android:name="com.google.zxing.client.android.SCAN" />
 <category android:name="android.intent.category.DEFAULT" />
<intent-filter>

This means that on any device that has UPS Mobile installed, they
will be an option for handling Barcode Scanner Intent objects. What
happened was that the person asking the question was manually
invoking startActivityForResult() to bring up Barcode Scanner,
was getting a chooser with UPS Mobile in it, and then was crashing
upon choosing UPS Mobile… because UPS Mobile declared this activity
to be not exported.
There was a bug, in which
Android would display non-exported activities in a chooser, despite
the fact that they could never be successfully used by the user. This appears
to have been fixed as of Android 4.2, despite the issue being declined.
So, what should we learn from this?
First, UPS Mobile should not have used that <intent-filter>.
As Dianne Hackborn has pointed out, your <intent-filter> mix
is effectively part of your app’s API,
and so you need to think long and hard about every <intent-filter>
you publish. UPS Mobile is not Barcode Scanner and should not
be advertising that they handle such Intent objects, despite the activity
being not exported.
Second, UPS Mobile probably should not have had any <intent-filter>
elements for this activity, if they intend to use it purely internally.
They could just as easily use an explicit Intent to identify the
activity and avoid all of this nonsense.
Third, the person who filed the SO question ideally would have
been using ZXing’s IntentIntegrator. As Sean Owen of the ZXing project
noted in a comment on my answer, IntentIntegrator ensures that
only Barcode Scanner or official brethren will handle any scan
requests, so this problem would not have appeared.
Fourth, Android really should not be showing non-exported activities
in a chooser, which means probably that PackageManager should
be filtering out non-exported activities from methods like
queryIntentActivities(), which I presume lies at the heart of
the chooser.
In summary, if your component is truly private, do not have an <intent-filter>
on it, lest you cause yourself, and your users, problems with other
apps.
The ContentProvider Behavior Change
Content providers are a little different… in lots of ways. In the specific
scenarios being covered here, there are two primary differences.
First, third-party apps can still access a provider that has
android:exported="false". However, they can only do so in response to some
operation initiated by your application, using android:grantUriPermissions
and flags like FLAG_GRANT_READ_URI_PERMISSION. A third-party app will
have no independent access to your non-exported provider.
Second, the default value for android:exported not only does not depend
upon <intent-filter> (since few providers use one), but it has changed
over the years:

	For apps with android:minSdkVersion and android:targetSdkVersion
set to 16 or lower, the provider is exported by default

	All other apps, the provider is not exported by default

Lint will complain about your manifest having a <provider> without an
android:exported attribute.
Sanitize Your Input Extras
If you do expose one or more of your components to third-party apps,
and you are supporting certain Intent extras on any Intent objects used to
talk to those components, make sure that the extras’ values make sense.
Even Google makes this error, as was seen in
the PreferenceActivity bug. PreferenceActivity
supports an extra, named :android:show_fragment, to indicate that the
activity should immediately jump to a specific fragment, rather than start
at the top level of the preference navigation. The problem is that
PreferenceActivity did not — and, at the time, could not — validate that
the fragment to be loaded is a fragment that is supposed to be loaded.
This would allow attackers to force apps, like Settings, to load arbitrary
fragments, including those not normally accessible to the current user.
This is the reason why we now need to override isValidFragment() in our
PreferenceActivity implementations, so we can declare whether or not
a particular requested fragment is a legitimate choice or not.
The equivalent behavior for a ContentProvider is to sanitize the inputs
to methods like query(), update(), openFile(), and so on, to make
sure that you do not expose something that you should not. For example,
blindly accepting paths to openFile() could get you in trouble, if
the Uri contains relative paths
(e.g., content://your.authority.here/../databases/your-private.db), perhaps
allowing third parties to get at files that you did not intend for them
to access.
Secure Your Output Extras
Similarly, if you send broadcasts or otherwise use IPC to talk to third-party
apps, bear in mind that others might be able to see some of that interaction,
depending on the IPC in question.
The obvious case is with a broadcast Intent for an implicit Intent. Any
app with a registered receiver will be able to “tune into” that broadcast and
get whatever data is inside the Intent. In cases where you cannot use
permissions to limit the scope of the broadcast, you need to make sure that
there is nothing in the Intent that is private to the user.
Sometimes, though, non-obvious cases will emerge. For a few years, Intent
extras on activities might be viewed by third-party apps that held the
GET_TASKS permission, courtesy of the recent-tasks list. The Intent
used to launch the task is available via ActivityManager and getRecentTasks().
While this specific problem was resolved in Android 4.1.1, there may be
other similar scenarios lurking about.
Other Ways to Expose Data
Sometimes, we expose data to third-party apps by using standard Android APIs.
We focus on the normal publisher and consumer of data using those APIs and
forget about other apps that might be monitoring those communications. Or,
we might not realize that one party in those communications may not have
the user’s best interests at heart. This section outlines some examples.
App Widgets
Any data that is put into the widgets inside of your RemoteViews for
an app widget is visible to the home screen, lockscreen, or other app
widget host. Those apps are the ones actually converting the RemoteViews
into a view hierarchy, and they can inspect those views, reading the
text in your TextViews, and so forth.
As a result, be careful about exposing potentially sensitive data via
an app widget.
Notifications
Custom notifications also use RemoteViews and therefore could suffer from
the same problem.
On the surface, you might not be worried quite so much about this, because
the Notification object goes to the NotificationManager, for display by
the OS itself.
However, as of Android 4.3 (API Level 18), apps can register to listen to
added and removed notifications via a NotificationListenerService. Not
only can such a service read the text from your Notification, but it can
also access your RemoteViews. This includes any RemoteViews that may be
generated for you by the expanded notification classes
(e.g., BigPictureStyle).
As a result, be careful about exposing potentially sensitive data via
a Notification.
Clipboard
Any app can retrieve text off of the clipboard. After all, that’s the point
behind a clipboard.
However, this does mean that you need to be careful what you put on the
clipboard in the first place. The quintessential problem case is a password
manager: putting a password on the clipboard for easy pasting into an app’s
EditText password field will be popular, but it allows that password to
be retrieved by other apps.
You can attempt to help reduce the window of risk by clearing the clipboard
after a period of time. However, bear in mind that your process might be
terminated before that occurs. Also, only clear the clipboard if the clipboard
text is still yours — do not clear the clipboard if another app has already
put its own contents there, lest you confuse and irritate the user in the
middle of some other paste operation.
ServerSocket and Kin
If you open up any sort of server-style socket connection — TCP/IP, Bluetooth,
etc. — bear in mind that the Android security framework may not be able
to help you much. You cannot secure a ServerSocket with an
android:permission attribute, for example. It is up to you to validate whether
a particular request is expected and allowed, or not.
Jacking Attacks
Jacking attacks, in general, refer to cases where what the user thinks
they are interacting with on-screen is not actually what they are
interacting with. Instead, something else has interposed itself between
the user and the activity that the user is trying to use. That
“something else” might be trying to intercept user input (tapjacking,
activity jacking) or confuse the user about what is actually being
interacted with (window jacking).
Classic Tapjacking
Tapjacking refers to another program intercepting and inspecting
touch events that are delivered to your foreground activity (or
related artifacts, such as the input method editor). At its worst,
tapjackers could intercept passwords, PINs, and other private data.
The term “tapjacking” seems to have been coined by Lookout Mobile
Security, in a
blog post
that originally demonstrated this issue.
The Problem
You may recall that there are three axes to consider with Android
user interfaces. The X and Y axes are the ones you typically think
about, as they control the horizontal and vertical positioning of
widgets in an activity. The Z axis — effectively “coming out
the screen towards the user’s eyes” — can be used in
applications for sophisticated techniques, such as a pop-up panel.
Normally, you think of the Z axis within the scope of your activity
and its widgets. However, there are ways to display “system alerts”
– widgets that can float over the top of any activity. A Toast is
the one you are familiar with, most likely. A Toast displays
something on the screen, yet touch events on the Toast itself will
be passed through to the underlying activity. Lookout demonstrated
that it is possible to create a fully-transparent Toast. However,
the lifetime of a Toast is limited (3.5 seconds maximum), which
would limit how long it can try to grab touch events.
However, any application holding the SYSTEM_ALERT_WINDOW permission
can display their own “system alerts” with custom look and custom
duration. By making one that is fully transparent and lives as long
as possible, a tapjacker can obtain touch events for any application
in the system, including lock screens, home screens, and any standard
activity.
On the surface, this might not seem
terribly useful, since the View cannot see what is being tapped upon.
However, a savvy malware author would identify what activity is in
the foreground and log that information along with the tap details
and the screen size, periodically dumping that information to some
server. The malware author can then scan the touch event dumps to see
what interesting applications are showing up. With a minor investment –
and possibly collaboration with other malware authors —
the author can know what touch events correspond to what keys on
various input method editors, including the stock keyboards used by a
variety of devices. Loading a pirated version of the APK on an
emulator can indicate which activity has the password, PIN, or other
secure data. Then, it is merely a matter of identifying the touch
events applied to that activity and matching them up with the soft
keyboard to determine what the user has entered. Over time, the
malware author can perhaps develop a script to help automate this
conversion.
Hence, the on-device tapjacker does not have to be very
sophisticated, other than trying to avoid detection by the user. All
of the real work to leverage the intercepted touch events can be
handled offline.
How to Address This
In principle, Android 4.0.3 fixed this, by preventing touch events
from being delivered to two separate applications. Either the tapjacking
View gets the touch event (and consumes it), or the tapjacking
View does not get the touch event (and therefore does not know about it).
For Android 2.2 and 2.3 devices, you also have the option of
setFilterTouchesWhenObscured(), which will be examined
later in this chapter.
Activity Jacking
In August 2014, a number of media outlets
reported
on a
research paper
and USENIX conference presentation
describing a way by which your users could be tricked into providing confidential
information — passwords, credit card information, and such — to a
piece of malware, rather than to your app. This flew in the face of
conventional wisdom, which said that the tapjacking fixes from Android
4.0.3 cleared up this sort of problem.
The paper points out that there are ways of writing malware such that:

	the malware can pop an activity in front of yours, and

	do so at just the right time, to mimic one of your activities, such that the user
thinks that the malware’s activity is actually yours and enters the confidential
data into the malware activity

The authors describe it as a UI inference attack; to keep with the theme
of this chapter, this section refers to it as “activity jacking”.
The Problem
The details of how to execute the attack are rather esoteric, using
lots of curious approaches to find out when an activity comes onto
the screen and, more specifically, which activity of an app being
attacked it is. Readers
are encouraged to review the paper
if you want details of exactly how to execute this sort of attack their
way.
However, one simpler way of knowing this stuff is to implement an
AccessibilityService. Officially, such services are supposed to help
with accessibility, such as providing TalkBack-style audio announcements
as the user navigates the UI by touch alone. In practice, a lot of
apps use AccessibilityService to be able to monitor user inputs
across the device and, in some cases, modify those inputs. Some password
managers, for example, implement an AccessibilityService to help them
auto-fill login dialogs. As a result, many users install and enable an
AccessibilityService without really thinking about whether they can
trust that service.
Given that you know when a particular activity appears on the screen,
the attack is simple: launch your own activity that looks much like
the original. The user might miss the fact that two activities just
appeared, then go ahead and interact with your activity, thinking that
it is from the real app. For example, you might interpose your own
authentication dialog in front of the one for the banking app, thereby
getting the user’s PIN or passcode.
You can further take steps to try to “cover your tracks” and deal with the
fact that the real activity is waiting for user input:

	If you are using an AccessibiltyService, you can use
performGlobalAction() to initiate a BACK button press, right after
dismissing your own activity, to dismiss the original activity.

	Otherwise, you can pretend that the user input is flawed and needs
to be re-entered. In the case of an authentication dialog, you can
pop up a regular AlertDialog that says that their password was not
recognized. When the user dismisses that dialog, you also finish()
your intercepting activity, returning the user to the real activity, where
they can complete the real authentication.

How to Address This
An activity jack attack has two key weaknesses:

	The attacker cannot see the screen, because on non-buggy devices, the
attacker has no means of silently capturing a screenshot of our activity as it comes
into the foreground. Hence, while the attacker can create an activity that tries
to mimic ours, they can only do so statically, analyzing our activity’s UI
on their development machine and creating their own lookalike.

	We know that our activity has left the foreground, as we are called with
onPause() (and perhaps other lifecycle methods, depending upon the nature
of the attacker).

Hence, one defense can be to include in our activity a secure element that
cannot be mimicked ahead of time, then hide that element (or our whole UI)
when we are no longer in the foreground.
This concept of a secure element is not new. Some financial services Web sites
have taken this approach. As part of the user setting up their online banking
account, the user chooses an image from a collection of clipart. On the Web
page that collects the user’s passphrase, the page also shows this secure element.
The user is taught that if they do not see their chosen image, then the Web
page they are looking at is not really from their bank, and therefore they should
not type in their passphrase.
This is not that hard to implement in Android. You too would allow the user to
choose a piece of clipart, displaying that in an ImageView on your secure
activity in onResume(). In onPause() you would hide that ImageView
via setVisibility(View.INVISIBLE). That way:

	Since the image is chosen by the user, the attacker is unlikely to mimic
the same image

	Since you are hiding the image when you are not in the foreground, the attacker
cannot use a transparent region in their activity to have your image “peek through”
their attacking activity

As a result, if the user is paying attention, the user should see either the
wrong image or no image at all, and the user should realize that they are being
activity jacked and therefore fail to proceed.
You might be tempted to do something else in response to your secure activity
being replaced in the foreground by another app’s activity, such as pop up a
warning dialog. However, there are plenty of valid scenarios when this would
occur, such as an incoming phone call, and you have no reliable means of
whitelisting all possible valid scenarios. There will be a high incidence
of false positives, and that may not help the user. Having this as an user-selectable
option is fine, but I would not go this route by default.
Window Jacking
Sometimes, the objective of the attacker is not to prevent the user from
entering in information, or even to see what the user enters. Sometimes,
the objective is to confuse the user, tricking them into clicking on things
that they might not want to click on.
The Problem
A great example of this comes from Android 6.0’s runtime permission
system.
Apps with targetSdkVersion of 23 or higher will need to call
requestPermissions() at various points, to ask the user to grant
runtime permissions not previously granted (or granted but later
revoked). That brings up a system-supplied dialog-themed activity:

[image: Runtime Permission System Dialog]

Figure 747: Runtime Permission System Dialog
Perhaps the attacker wants the user to agree to the permission but
fears that the user might deny it instead. The attacker could use
SYSTEM_ALERT_WINDOW to put a View on top of the system dialog,
replacing the real permission explanation with something seemingly
benign. The user — who may not have a lot of Android experience –
clicks “Allow”, where if the user were presented with the real
message, the user might have clicked “Deny”.
How to Address This
Quoting the Android documentation:

Sometimes it is essential that an application be able to verify that an action is being performed with the full knowledge and consent of the user, such as granting a permission request, making a purchase or clicking on an advertisement. Unfortunately, a malicious application could try to spoof the user into performing these actions, unaware, by concealing the intended purpose of the view. As a remedy, the framework offers a touch filtering mechanism that can be used to improve the security of views that provide access to sensitive functionality.

To enable touch filtering, call setFilterTouchesWhenObscured(boolean) or set the android:filterTouchesWhenObscured layout attribute to true. When enabled, the framework will discard touches that are received whenever the view’s window is obscured by another visible window. As a result, the view will not receive touches whenever a toast, dialog or other window appears above the view’s window.

For the runtime permission window jacking,
using setFilterTouchesWhenObscured() would prevent the
user from clicking on either the “Allow” or the “Deny” buttons. The
alternative message would be in its own window, floating over the dialog.
Hence, that should cause FLAG_WINDOW_IS_OBSCURED to be set on any
MotionEvents delivered to the dialog, and those touch events would
be dropped.
For example, take a look at the res/layout/main.xml file in the
Tapjacking/RelativeSecure
sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:filterTouchesWhenObscured="true">
 <TextView android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="URL:"
 android:layout_alignBaseline="@+id/entry"
 android:layout_alignParentLeft="true"/>
 <EditText
 android:id="@id/entry"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/label"
 android:layout_alignParentTop="true"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignRight="@id/entry"
 android:text="OK" />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

(from Tapjacking/RelativeSecure/app/src/main/res/layout/main.xml)
Here, we have android:filterTouchesWhenObscured="true" on the
RelativeLayout at the root of the layout resource. This property
cascades to a container’s children, and so if a tapjacker (or Toast
or whatever) is above any of the widgets in the RelativeLayout,
none of the touch events will be processed.
More fine-grained control can be achieved in custom widgets by
overriding onFilterTouchEventForSecurity(), which gets control
before the regular touch event methods. You can determine if a touch
event had been intercepted by looking for the
FLAG_WINDOW_IS_OBSCURED flag in the MotionEvent passed to
onFilterTouchEventForSecurity(), and you can make the decision of
how to handle this on an event-by-event basis.
The Problem with the Solution
According to Iwo Banaś, this approach
may not actually work
due to bugs in Android’s implementation. The filter-when-obscured logic
depends upon a FLAG_WINDOW_IS_OBSCURED value being on the MotionEvent,
and that may be getting lost somewhere along the way.
The author of this book has
not yet attempted to replicate Mr. Banaś’ findings.
Google’s Line of Defense: Obscuring the Foreground
Google’s focus, besides the fixes listed above, is to make it
increasingly difficult for one app to find out when another app is
in the foreground. This is a key component of jacking attacks, as
the jacker needs to know what is behind it. For example, with window
jacking, obscuring the permission message only makes sense when
the permission dialog appears — having some floating message appear
at other points in time will be a giveaway that something is amiss.
As a result, methods on ActivityManager that used to provide details
of all running processes have been neutered, frequently only providing
details about your own process. Similarly, in Android 7.0, attempts
by apps to find out about other processes through Linux-isms, like
/proc, are being locked down.
Using FLAG_SECURE
By default, your activity’s UI contents can be captured for any number
of things:

	the overview screen (a.k.a., recent-tasks list)

	screenshots and screencasts, whether via the
media projection APIs or some other device-supplied
means

	the Assist API, such as Google’s “Now On Tap” feature

However, you may have some activities that should not be captured in
this fashion, due to potential privacy issues.
For that, you can apply FLAG_SECURE to an Activity:

public class FlagSecureTestActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 getWindow().setFlags(LayoutParams.FLAG_SECURE,
 LayoutParams.FLAG_SECURE);

 setContentView(R.layout.main);
 }
}

Call setFlags() before setContentView(), in this case setting
FLAG_SECURE.
In theory, this will prevent any of the aforementioned
capture options from working.
Unfortunatately, the Android framework sometimes creates its own
Window instances, such as the drop-down in a Spinner. Even if you
set FLAG_SECURE on the Window for an activity, the Android framework
does not pass that flag to any other windows created on behalf of that
activity, and those windows show up in:

	Screenshots and screencasts taken by the media projection APIs on Android 5.0+

	The Assist API (e.g., Now On Tap) on Android 6.0+

	Android Studio screen recordings on Android 4.4+

This has been demonstrated to affect:

	AutoCompleteTextView

	
Spinner (both dropdown and dialog modes)

	the overflow menu of the framework-supplied action bar

	ShareActionProvider

	
Dialog and subclasses (e.g., AlertDialog)

	Toast

Of these, only the Dialog offers us access to its Window, on which
we could apply FLAG_SECURE, for developers that realize that this is
required.
Google has officially stated that
all of this is working as intended.
If you are using FLAG_SECURE, you should thoroughly exercise your app’s
UI on Android 4.4+ while recording a screencast — the Android Studio screen recorder
would be a simple tool to use. Then, play back that screencast, see what
windows show up, and identify those that contain sensitive information
that should not appear. Some of the windows that appear will not contain
sensitive information — here, the risk is that you might add
sensitive information to them in the future but forget about this bug.
Then, you have two main courses of action: rewrite your UI to avoid
the UI elements that are leaking this information, or attempt to patch
the problem.
Content Provider Theory
Android publishes data to you via an abstraction known as a “content
provider”. Access to contacts and the call log, for example, are
given to you via a set of content providers. In a few places, Android
expects you to supply a content provider, such as for integrating
your own search suggestions with the Android Quick Search Box. And,
content providers are one way for you to supply data to third party
applications, or to consume information from third party
applications. As such, content providers have the potential to be
something you would encounter frequently, even if in practice they do
not seem used much.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on working with local databases.
Using a Content Provider
Any Uri in Android that begins with the content:// scheme
represents a resource served up by a content provider. Content
providers offer data encapsulation using Uri instances as handles
– you neither know nor care where the data represented by the
Uri comes from, so long as it is available to you when needed. The
data could be stored in a SQLite database, or in flat files, or
retrieved off a device, or be stored on some far-off server accessed
over the Internet.
Given a Uri, you may be able to perform basic CRUD (create, read,
update, delete) operations using a content provider. Uri instances
can represent either collections or individual pieces of content.
Given a collection Uri, you may be able to create new pieces of
content via insert operations. Given an instance Uri, you may be
able to read data represented by the Uri, update that data, or
delete the instance outright. Or, given a Uri, you may be able to
open up a handle to what amounts to a file, that you can read and,
possibly, write to.
These are all phrased as “may” because the content provider system is
a facade. The actual implementation of a content provider dictates
what you can and cannot do, and not all content providers will
support all capabilities.
Pieces of a Uri
A Uri for a ContentProvider is made up of two to four components.
A provider Uri always has a content scheme. So, when represented
as a string, you will see the Uri start with content://.
After the scheme, where in an http:// URL you would find a domain
name or IP address, a provider Uri always has the authority string. This
is unique on the device — only one provider will be tied to a given
authority string.
What comes after the authority string is up to the provider. It is
structured like the path segments of an http:// URL, but what
those path segments mean is up to the provider implementation. The
one approximate rule is that a Uri pointing to an individual
piece of content — such as a row of a table or view in a database –
frequently has the Uri end in a number, where the number indicates
a unique identifier of that content.
Most of the Android APIs expect these to be Uri objects, though in
common discussion, it is simpler to think of them as strings. The
Uri.parse() static method creates a Uri out of the string
representation.
Getting a Handle
So, where do these Uri instances come from?
Some Uri values are part of the framework. For example,
ContactsContract.Contacts.CONTENT_URI is a Uri pointing at the
collection of contacts.
You might also get Uri instances handed to you from other sources,
such as getting Uri handles for contacts via activities
responding to ACTION_PICK or ACTION_GET_CONTENT Intent objects.
You can also hard-wire literal String objects (e.g.,
"content://contacts/people") and convert them into Uri instances
via Uri.parse(). This is not an ideal solution, as the base Uri
values could conceivably change over time. For example, while
you used to access contacts via a Uri like
content://contacts/people, that is no longer the case.
ContactsContract.Contacts.CONTENT_URI is a different value and will
give you better results.
The Database-Style API
Of the two flavors of API that a content provider may support, the
database-style API is more prevalent. Using a ContentResolver, you
can perform standard “CRUD” operations (create, read, update, delete)
using what looks like a SQL interface.
Makin’ Queries
Given a base Uri, you can run a query to return data out of the
content provider related to that Uri. This has much of the feel of
SQL: you specify the “columns” to return, the constraints to
determine which “rows” to return, a sort order, etc. The
difference is that this request is being made of a content provider,
not directly of some database (e.g., SQLite).
You have two main options for running a query:

	Use the query() method on ContentResolver from some sort
of background thread

	Use a CursorLoader, as is discussed
in an upcoming chapter

The standard query() method on ContentResolver takes five parameters:

	The base Uri of the content provider to query, or the instance
Uri of a specific object to query

	An array of properties (think “columns”) from that content provider
that you want returned by the query

	A constraint statement, functioning like a SQL WHERE clause

	An optional set of parameters to bind into the constraint clause,
replacing any ? that appear there

	An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve
the data returned by the query.
This will hopefully make more sense given an example.
This chapter shows some sample bits of code from the
ContentProvider/ConstantsPlus
sample project. This is the same basic
application as was first shown back in the chapter on database access,
but rewritten to
pull the database logic into a content provider, which is then used
by a retained ListFragment.
As before, in onViewCreated(), we kick off a LoadCursorTask if we
do not already have our Cursor, such as via a configuration change:

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 SimpleCursorAdapter adapter=
 new SimpleCursorAdapter(getActivity(), R.layout.row,
 current, new String[] {
 DatabaseHelper.TITLE,
 DatabaseHelper.VALUE },
 new int[] { R.id.title, R.id.value },
 0);

 setListAdapter(adapter);

 if (current==null) {
 task=new LoadCursorTask(getActivity()).execute();
 }
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
LoadCursorTask inherits from a BaseTask. BaseTask and its subclasses
need a ContentResolver to be able to work with our ContentProvider.
So, BaseTask takes a Context in its constructor and uses that to
retrieve a ContentResolver:

 abstract private class BaseTask<T> extends AsyncTask<T, Void, Cursor> {
 final ContentResolver resolver;

 BaseTask(Context ctxt) {
 super();

 resolver=ctxt.getContentResolver();
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
In doInBackground(), LoadCursorTask calls a doQuery() method
inherited from BaseTask, which in turn uses our ContentResolver to query our
ContentProvider:

 protected Cursor doQuery() {
 Cursor result=resolver.query(Provider.Constants.CONTENT_URI,
 PROJECTION, null, null, null);

 result.getCount();

 return(result);
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
In the call to query(), we provide:

	The Uri for our provider (Provider.Constants.CONTENT_URI),
in this case representing the collection of physical constants
managed by the provider

	A list of properties to retrieve

	Three null values, indicating that we do not need a constraint
clause (the Uri represents the instance we need), nor parameters
for the constraint, nor a sort order (we should only get one entry
back)

The biggest “magic” here is the list of properties. The lineup of
what properties are possible for a given provider should be
provided by the documentation (or source code) for the content
provider itself. In this case, we define logical values on the
Provider provider implementation class that represent the
various properties (namely, the unique identifier, the display name
or title, and the value of the constant), and we refer to them
with our PROJECTION:

 private static final String[] PROJECTION=new String[] {
 Provider.Constants._ID, Provider.Constants.TITLE,
 Provider.Constants.VALUE };

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
Adapting to the Circumstances
Now that we have a Cursor via query(), we have access to
the query results and can do whatever we want with them. You might,
for example, manually extract data from the Cursor to populate
widgets or other objects.
In our case, we are using the SimpleCursorAdapter, set up in
onViewCreated(), to render our Cursor. This means that we
need to take the Cursor that doQuery() generates and arrange
to hand that to the SimpleCursorAdapter.
The onPostExecute() method on BaseTask handles this:

 @Override
 public void onPostExecute(Cursor result) {
 ((CursorAdapter)getListAdapter()).changeCursor(result);
 current=result;
 task=null;
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
Give and Take
Of course, content providers would be astonishingly weak if you
couldn’t add or remove data from them, and were instead limited to only
update what is there.
Fortunately, content providers offer these abilities as well.
To insert data into a content provider, you have two options
available on the ContentProvider interface (available through
getContentResolver() to your activity):

	Use insert() with a collection Uri and a ContentValues
structure describing the initial set of data to put in the row

	Use bulkInsert() with a collection Uri and an array of
ContentValues structures to populate several rows at once

The insert() method returns a Uri for you to use for future
operations on that new object. The bulkInsert() method returns the
number of created rows; you would need to do a query to get back at
the data you just inserted.
For example, if the user chooses our “Add” overflow item, we pop
up a dialog to collect a new constant:

 private void add() {
 LayoutInflater inflater=getActivity().getLayoutInflater();
 View addView=inflater.inflate(R.layout.add_edit, null);
 AlertDialog.Builder builder=new AlertDialog.Builder(getActivity());

 builder.setTitle(R.string.add_title).setView(addView)
 .setPositiveButton(R.string.ok, this)
 .setNegativeButton(R.string.cancel, null).show();
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
Then, if the user taps the “OK” button in the dialog, our onClick()
listener is called, where we collect the entered values from the
user, pour them into a ContentValues structure, and pass that to
an InsertTask:

 @Override
 public void onClick(DialogInterface dialog, int which) {
 ContentValues values=new ContentValues(2);
 AlertDialog dlg=(AlertDialog)dialog;
 EditText title=(EditText)dlg.findViewById(R.id.title);
 EditText value=(EditText)dlg.findViewById(R.id.value);

 values.put(DatabaseHelper.TITLE, title.getText().toString());
 values.put(DatabaseHelper.VALUE, value.getText().toString());

 task=new InsertTask(getActivity()).execute(values);
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
InsertTask, in its doInBackground() method, calls insert()
on a ContentResolver to insert this row:

 @Override
 protected Cursor doInBackground(ContentValues... values) {
 resolver.insert(Provider.Constants.CONTENT_URI, values[0]);

 return(doQuery());
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
Notice that we also call doQuery() again. That is because our
Cursor is now out of date, and we need to obtain a fresh Cursor
with fresh results. And, as with LoadTask, InsertTask inherits
from BaseTask, not only providing us with that doQuery() method but
also the onPostExecute() method that puts the Cursor into the
SimpleCursorAdapter.
To delete one or more rows from the content provider, use the
delete() method on ContentResolver. This works akin to a SQL
DELETE statement and takes three parameters:

	A Uri representing the collection (or instance) from which you
wish to delete rows

	A constraint statement, functioning like a SQL WHERE clause, to
determine which rows should be deleted

	An optional set of parameters to bind into the constraint clause,
replacing any ? that appear there

The Streaming API
Sometimes, what you are trying to retrieve does not look like a set
of rows and columns, but rather looks like a stream. For example,
the MediaStore provider manages the index of all music, video,
and image files available on external storage, and you can use
MediaStore to open up a stream to read in the contents of one
of those files. Here, working with the Uri and the provider is much
like working with a URL and a Web server.
Some content providers, like MediaStore, support both the
database-style and streaming APIs — you query to find
media that matches your criteria, then can open some file that
matches. Other content providers might only support the streaming API.
Working with the Stream
Given a Uri that represents some file managed by the content
provider, you can use openInputStream() and openOutputStream() on
a ContentResolver to access an InputStream or OutputStream,
respectively. Note, though, that not all content providers may
support both modes. For example, if you are working with a content
provider that serves files stored inside the application (e.g., assets in the APK file), you
will not be able to get an OutputStream to modify the content.
Also note that openInputStream() and openOutputStream()
work with both file:// and content:// Uri values — you do not
need to manually inspect the Uri and handle files separately
if you do not want to.
Retrieving Metadata
You can call getType() on a ContentResolver, supplying a Uri as
a parameter. This will return the MIME type reported by the ContentProvider
for the data at that Uri. For the streaming API, this will give
you results reminiscent of a Web server — some specific MIME type if
the provider knows it, otherwise probably some generic MIME type
(e.g., application/octet-stream).
You can also call query() on the ContentResolver. Your projection
(the list of columns to return) can include:

	
OpenableColumns.SIZE, which will return the length of the file
being streamed to you for that Uri, and

	
OpenableColumns.DISPLAY_NAME, which should be some name for the file
that the user might recognize

The DATA Anti-Pattern
However, the authors of MediaStore screwed up developer expectations,
due to a legacy convention.
The legacy convention was that a content:// Uri might not be openable
directly using something like openInputStream(). Instead, it pointed
to a database row, retrievable via query(), and you would look in the
DATA column for how to access the actual data. Some providers no
doubt continue to use this pattern, as does MediaStore. The rules for
what the DATA column would be were not well documented, but by
convention they tended to be a path to a file. The problem is that this
runs afoul of Google’s current guidance, as there is no guarantee that
other apps can access such a file.
Do not blindly assume that if you get a content:// Uri that it
is for the DATA pattern. Try to open a stream on the Uri, and if
that fails, then see if the DATA pattern is in play. Or, if you
query() to get the size and/or display name first, also request the
DATA column, and if it exists and is not null, try that if opening
the stream directly does not work.
Building Content Providers
Building a content provider is a very
tedious task. There are many
requirements of a content provider, in terms of methods to implement
and public data members to supply. And, until you try using it, you
have no great way of telling if you did any of it correctly (versus,
say, building an activity and getting validation errors from the
resource compiler).
That being said, building a content provider is of huge importance if
your application wishes to make data available to other applications.
If your application is keeping its data solely to itself, you may be
able to avoid creating a content provider, just accessing the data
directly from your activities. But, if you want your data to possibly
be used by others — for example, you are building a feed reader
and you want other programs to be able to access the feeds you are
downloading and caching — then a content provider is right for you.
First, Some Dissection
The content Uri is the
linchpin behind accessing data inside a content provider. When using
a content provider, all you really need to know is the provider’s
base Uri; from there you can run queries as needed, or construct a
Uri to a specific instance if you know the instance identifier.
When building a content provider, though, you need to know a bit more
about the innards of the content Uri.
A content Uri has two to four pieces, depending on situation:

	It always has a scheme (content://), indicating it is a content
Uri instead of a Uri to a Web resource (http://).

	It always has an authority, which is the first path segment after
the scheme. The authority is a unique string identifying the content
provider that handles the content associated with this Uri.

	It may have a data type path, which is the list of path segments
after the authority and before the instance identifier (if any). The
data type path can be empty, if the content provider only handles one
type of content. It can be a single path segment (foo) or a chain
of path segments (foo/bar/goo) as needed to handle whatever data
access scenarios the content provider requires.

	It may have an instance identifier, which is an integer
identifying a specific piece of content. A content Uri without an
instance identifier refers to the collection of content represented
by the authority (and, where provided, the data path).

For example, a content Uri could be as simple as
content://sekrits, which would refer to the collection of content
held by whatever content provider was tied to the sekrits authority
(e.g., SecretsProvider). Or, it could be as complex as
content://sekrits/card/pin/17, which would refer to a piece of
content (identified as 17) managed by the sekrits content
provider that is of the data type card/pin.
Next, Some Typing
Next, you need to come up with some MIME types corresponding with the
content your content provider will provide. There are three basic
patterns.
For the streaming API, the MIME type that you will use should be
the actual MIME type of the stream itself. Perhaps you already know
the MIME type (e.g., you got it in an HTTP header when you downloaded
the content from a Web server). Perhaps you will use MimeTypeMap to try
to infer a MIME type based on a file extension. That is up to you, just
as it is up to you to ensure that your Web server returns proper MIME
types for streams that it serves up.
For the database-style API, even though the MIME type system is not
really designed for this sort of thing, we still use MIME types. Each
Uri will have an associated MIME type, indicating what is represented
by that Uri. A Uri that points to a collection of content (e.g.,
a database table or view) will use one MIME type structure, while
a Uri that points to an individual piece of content (e.g., a row
in that database table or view) will use a different MIME type
structure.
The collection MIME type should be of the form vnd.X.cursor.dir/Y,
where X is the name of your firm, organization, or project, and Y
is a dot-delimited type name. So, for example, you might use
vnd.tlagency.cursor.dir/sekrits.card.pin as the MIME type for your
collection of secrets.
The instance MIME type, for an individual piece of content,
should be of the form vnd.X.cursor.item/Y,
usually for the same values of X and Y as you used for the
collection MIME type (though that is not strictly required).
Implementing the Database-Style API
Just as an activity and a receiver are both Java classes, so is a
content provider. So, the big step in creating a content provider is
crafting its Java class, with a base class of ContentProvider.
In your subclass of ContentProvider, you are responsible for
implementing six methods that, when combined, perform the services
that a content provider is supposed to offer to activities wishing to
create, read, update, or delete content via the database-style API.
Implement onCreate()
As with an activity, the main entry point to a content provider is
onCreate(). Here, you can do whatever initialization you want. In
particular, here is where you should lazy-initialize your data store.
For example, if you plan on storing your data in such-and-so
directory on external storage, with an XML file serving as a “table of
contents”, you should check and see if that directory and XML file
are there and, if not, create them so the rest of your content
provider knows they are out there and available for use.
Similarly, if you have rewritten your content provider sufficiently
to cause the data store to shift structure, you should check to see
what structure you have now and adjust it if what you have is out of
date.
Implement query()
As one might expect, the query() method is where your content
provider gets details on a query some activity wants to perform. It
is up to you to actually process said query.
The query method gets, as parameters:

	A Uri representing the collection or instance being queried

	A String array representing the list of properties that should be
returned

	A String representing what amounts to a SQL WHERE clause,
constraining which instances should be considered for the query
results

	A String array representing values to “pour into” the WHERE
clause, replacing any ? found there

	A String representing what amounts to a SQL ORDER BY clause

You are responsible for interpreting these parameters however they
make sense and returning a Cursor that can be used to iterate over
and access the data.
As you can imagine, these parameters are aimed towards people using a
SQLite database for storage. You are welcome to ignore some of these
parameters (e.g., you elect not to try to roll your own SQL WHERE
clause parser), but you need to document that fact so activities only
attempt to query you by instance Uri and not by using parameters that you
elect to ignore.
Implement insert()
Your insert() method will receive a Uri representing the collection
and a ContentValues structure with the initial data for the new
instance. You are responsible for creating the new instance, filling
in the supplied data, and returning a Uri to the new instance.
Implement update()
Your update() method gets the Uri of the instance or collection
to change, a ContentValues structure with the new values to apply,
a String for a SQL WHERE clause, and a String array with parameters
to use to replace ? found in the WHERE clause. Your
responsibility is to identify the instance(s) to be modified (based
on the Uri and WHERE clause), then replace those instances’
current property values with the ones supplied.
This will be annoying, unless you are using SQLite for storage. Then,
you can pretty much pass all the parameters you received to the
update() call to the database, though the update() call will vary
slightly depending on whether you are updating one instance or
several.
Implement delete()
As with update(), delete() receives a Uri representing the
instance or collection to work with and a WHERE clause and
parameters. If the activity is deleting a single instance, the Uri
should represent that instance and the WHERE clause may be null.
But, the activity might be requesting to delete an open-ended set of
instances, using the WHERE clause to constrain which ones to delete.
As with update(), though, this is simple if you are using SQLite
for database storage (sense a theme?). You can let it handle the
idiosyncrasies of parsing and applying the WHERE clause — all
you have to do is call delete() on the database.
Implement getType()
The last method you need to implement is getType(). This takes a
Uri and returns the MIME type associated with that Uri. The Uri
could be a collection or an instance Uri; you need to determine
which was provided and return the corresponding MIME type.
Update the Manifest
The glue tying the content provider implementation to the rest of
your application resides in your AndroidManifest.xml file. Simply
add a <provider> element as a child of the <application> element,
such as:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.constants"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-sdk
 android:minSdkVersion="14"
 android:targetSdkVersion="18"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <provider
 android:name=".Provider"
 android:authorities="com.commonsware.android.constants.Provider"
 android:exported="false"/>

 <activity
 android:name=".ConstantsBrowser"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from ContentProvider/ConstantsPlus/app/src/main/AndroidManifest.xml)
The android:name property is the name of the content provider
class, with a leading dot to indicate it is in the stock namespace
for this application’s classes (just like you use with activities).
The android:authorities property should be a semicolon-delimited
list of the authority values supported by the content provider.
Recall, from earlier in this chapter, that each content Uri is made
up of a scheme, authority, data type path, and instance identifier.
Each authority from each CONTENT_URI value should be included in
the android:authorities list.
Now, when Android encounters a content Uri, it can sift through the
providers registered through manifests to find a matching authority.
That tells Android which application and class implements the content
provider, and from there Android can bridge between the calling
activity and the content provider being called.
Several other attributes relate to security:

	
android:exported indicates whether third-party apps are able
to initiate communications with your provider on their own

	
android:readPermission and android:writePermission allow
you to defend your provider with permissions; third-party apps have
to have <uses-permission> elements for those permissions to be able
to work with your provider

	
android:grantUriPermissions indicates whether you are able to
selectively “poke pinholes in the firewall” of your provider security,
to say that for specific IPC operations (e.g., starting a third-party
activity), that third party has limited access to your provider’s content

These will be explored later in this book.
Add Notify-On-Change Support
A feature that your content provider can offer to its clients is
notify-on-change support. This means that your content provider will
let clients know if the data for a given content Uri changes.
For example, suppose you have created a content provider that
retrieves RSS and Atom feeds from the Internet based on the user’s
feed subscriptions (via OPML, perhaps). The content provider offers
read-only access to the contents of the feeds, with an eye towards
several applications on the phone using those feeds versus everyone
implementing their own feed poll-fetch-and-cache system. You have
also implemented a service that will get updates to those feeds
asynchronously, updating the underlying data store. Your content
provider could alert applications using the feeds that such-and-so
feed was updated, so applications using that specific feed can
refresh and get the latest data.
On the content provider side, to do this, call notifyChange() on
your ContentResolver instance (available in your content provider
via getContext().getContentResolver()). This takes two parameters:
the Uri of the piece of content that changed and the
ContentObserver that initiated the change. In many cases, the
latter will be null; a non-null value simply means that the
observer that initiated the change will not be notified of its own
changes.
On the content consumer side, an activity can call
registerContentObserver() on its ContentResolver (via
getContentResolver()). This ties a ContentObserver instance to a
supplied Uri — the observer will be notified whenever
notifyChange() is called for that specific Uri. When the consumer
is done with the Uri, unregisterContentObserver() releases the
connection.
Implementing the Streaming API
If you want to have a ContentProvider support streaming data
via the streaming API, you will still need to set up the
<provider> element, choose an authority, and create a subclass
of ContentProvider as with the database-style API. From there,
whether you are adding the streaming API to an existing
provider or creating a new one, there is some additional work to
be done.
Serving the Stream
If you want consumers of your ContentProvider to be able to call
openInputStream() or openOutputStream() on a Uri, the most
likely approach is to implement the openFile() method.
The openFile() method returns a curious object called a
ParcelFileDescriptor. Given that, the ContentResolver can obtain
the InputStream or OutputStream that was requested. There are
various static methods on ParcelFileDescriptor to create instances
of it, such as an open() method that takes a File object as the
first parameter. Note that this works for both files on external
storage and files within your own project’s app-local file storage
(e.g., getFilesDir()).
openFile() also gets a String parameter that is the “mode” for
opening the file. This can be converted into appropriate flags for
use with ParceFileDescriptor and its open() method. Mostly,
this is for determining whether we are opening the file for read
or write operations.
Serving the Metadata
You should implement the query() method in your provider as well.
If the Uri is pointing to one of your streams, you should create
a one-row MatrixCursor and supply the OpenableColumns as the
columns. OpenableColumns has two values: DISPLAY_NAME (for some
human-readable name of the stream) and SIZE (the length of the stream
in bytes). Based on the projection string array passed into query(),
you can skip columns that the client is not requesting.
You also need to implement getType(). For the database-style API, you
pretty much invent your own MIME types. For the streaming API,
you should be returning MIME types for the Uri values that really represent
the contents of that Uri. In other words, your getType() method should
behave like you would expect a Web server to do with respect to the
Content-Type header. If you know the MIME type for certain (e.g., you
got it yourself in an HTTP or IMAP operation and saved it), use that.
If you do not know the MIME type for certain, you can try the MimeTypeMap
class, which knows how to map common file extensions to their MIME type
counterparts. Worst-case, return application/octet-stream.
The Rest of the Requirements
You also have to implement the following abstract methods:

	onCreate()

	insert()

	update()

	delete()

If you are not supporting the database-style API, you are welcome
to have insert(), update(), and delete() throw some
RuntimeException, to indicate that those operations are not
supported.
Issues with Content Providers
Content providers are not without their issues.
The biggest complaint seems to be the lack of an onDestroy()
companion to the onCreate() method you can implement. Hence, if you
open a database in onCreate(), you close it… never. Sometimes, you
can alleviate this by initializing things on demand and releasing
them immediately, such as opening a database as part of insert()
and closing it within the same method. This does not always work,
however — for example, you cannot close the database you query
in query(), since the Cursor you return would become invalid.
Holding onto an open SQLiteDatabase is not a problem, as all of
your data changes are written to disk as part of committing
transactions. So, many ContentProvider implementations settle
for simply never closing the database.
The fact that ContentProvider is effectively a facade means that a
consumer of a ContentProvider has no idea what to expect. It is up
to documentation to explain what Uri values can be used, what
columns can be returned, what query syntax is supported, and so on.
And, the fact that it is a facade means that much of the richness of
the SQLite interface is lost, such as GROUP BY. To top it off, the
API supported by ContentProvider is rather limited — if what
you want to share does not look like a database and does not look
like a file, it may be difficult to force it into the
ContentProvider API.
Another issue is the client’s dependence upon the provider itself.
If, for whatever reason, the provider’s process is terminated while
the client has an open Cursor on query results, the client’s
process is also terminated. It is unclear if the same effect occurs
when the client has an open stream from a provider through the streaming
API, though it seems likely. Now, in theory, the importance of the provider’s
process should be raised to the highest importance of any of its clients,
though this behavior is not documented and may not occur in practice.
This behavior by Android is rather drastic,
more drastic than what happens to HTTP clients when the Web server they
are connected to crashes. There, the client winds up with some sort
of exception and can move on. The moral of this story is: when working
with a ContentProvider, it behooves you to use the data quickly, particularly
if your app is in the background at the time.
Content Provider Implementation Patterns
The previous chapter focused on the concepts, classes, and methods
behind content providers. This chapter more closely examines some
implementations of content providers, organized into simple patterns.
Prerequisites
Understanding this chapter requires that you have read
the preceding chapter, along with
the chapter on permissions.
The Single-Table Database-Backed Content Provider
The simplest database-backed content provider is one that only
attempts to expose a single table’s worth of data to consumers. The
CallLog content provider works this way, for example.
Step #1: Create a Provider Class
We start off with a custom subclass of ContentProvider, named,
cunningly enough, Provider. Here we need the database-style API
methods: query(), insert(), update(), delete(), and
getType().
onCreate()
Here is the onCreate() method for Provider, from the
ContentProvider/ConstantsPlus
sample application:

 @Override
 public boolean onCreate() {
 db=new DatabaseHelper(getContext());

 return(true);
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)
While that does not seem all that special, the “magic” is in the
private DatabaseHelper object, a fairly conventional
SQLiteOpenHelper implementation:

package com.commonsware.android.constants;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.hardware.SensorManager;

class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="constants.db";
 static final String TITLE="title";
 static final String VALUE="value";

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 Cursor c=db.rawQuery("SELECT name FROM sqlite_master WHERE type='table' AND name='constants'", null);

 try {
 if (c.getCount()==0) {
 db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT, value REAL);");

 ContentValues cv=new ContentValues();

 cv.put(Provider.Constants.TITLE, "Gravity, Death Star I");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Earth");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_EARTH);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Jupiter");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_JUPITER);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Mars");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MARS);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Mercury");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MERCURY);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Moon");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MOON);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Neptune");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_NEPTUNE);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Pluto");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_PLUTO);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Saturn");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SATURN);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Sun");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SUN);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, The Island");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_THE_ISLAND);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Uranus");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_URANUS);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Venus");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_VENUS);
 db.insert("constants", Provider.Constants.TITLE, cv);
 }
 }
 finally {
 c.close();
 }
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 android.util.Log.w("Constants", "Upgrading database, which will destroy all old data");
 db.execSQL("DROP TABLE IF EXISTS constants");
 onCreate(db);
 }
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)
Note that we are creating the DatabaseHelper in onCreate() and
are never closing it. That is because there is no onDestroy() (or
equivalent) method in a ContentProvider. While we might be tempted
to open and close the database on every operation, that will not
work, as we cannot close the database and still hand back a live
Cursor from the database. Hence, we leave it open and assume that
SQLite’s transactional nature will ensure that our database is not
corrupted when Android shuts down the ContentProvider.
query()
For SQLite-backed storage providers like this one, the query()
method implementation should be largely boilerplate. Use a
SQLiteQueryBuilder to convert the various parameters into a single
SQL statement, then use query() on the builder to actually invoke
the query and give you a Cursor back. The Cursor is what your
query() method then returns.
For example, here is query() from Provider:

 @Override
 public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 SQLiteQueryBuilder qb=new SQLiteQueryBuilder();

 qb.setTables(TABLE);

 String orderBy;

 if (TextUtils.isEmpty(sort)) {
 orderBy=Constants.DEFAULT_SORT_ORDER;
 }
 else {
 orderBy=sort;
 }

 Cursor c=
 qb.query(db.getReadableDatabase(), projection, selection,
 selectionArgs, null, null, orderBy);

 c.setNotificationUri(getContext().getContentResolver(), url);

 return(c);
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)
We create a SQLiteQueryBuilder and pour the query details into the
builder, notably the name of the table that we query against and the
sort order (substituting in a default sort if the caller did not
request one). When done, we use the query() method on the builder
to get a Cursor for the results. We also tell the resulting
Cursor what Uri was used to create it, for use with the content
observer system.
insert()
Since this is a SQLite-backed content provider, once again, the
implementation is mostly boilerplate: validate that all required
values were supplied by the activity, merge your own notion of
default values with the supplied data, and call insert() on the
database to actually create the instance.
For example, here is insert() from Provider:

 @Override
 public Uri insert(Uri url, ContentValues initialValues) {
 long rowID=
 db.getWritableDatabase().insert(TABLE, Constants.TITLE,
 initialValues);

 if (rowID > 0) {
 Uri uri=
 ContentUris.withAppendedId(Provider.Constants.CONTENT_URI,
 rowID);
 getContext().getContentResolver().notifyChange(uri, null);

 return(uri);
 }

 throw new SQLException("Failed to insert row into " + url);
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)
The pattern is the same as before: use the provider particulars plus
the data to be inserted to actually do the insertion.
update()
Here is update() from Provider:

 @Override
 public int update(Uri url, ContentValues values, String where,
 String[] whereArgs) {
 int count=
 db.getWritableDatabase()
 .update(TABLE, values, where, whereArgs);

 getContext().getContentResolver().notifyChange(url, null);

 return(count);
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)
In this case, updates are always applied across the entire
collection, though we could have a smarter implementation that
supported updating a single instance via an instance Uri.
delete()
Similarly, here is delete() from Provider:

 @Override
 public int delete(Uri url, String where, String[] whereArgs) {
 int count=db.getWritableDatabase().delete(TABLE, where, whereArgs);

 getContext().getContentResolver().notifyChange(url, null);

 return(count);
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)
This is almost a clone of the update() implementation described
above.
getType()
The last method you need to implement is getType(). This takes a
Uri and returns the MIME type associated with that Uri. The Uri
could be a collection or an instance Uri; you need to determine
which was provided and return the corresponding MIME type.
For example, here is getType() from Provider:

 @Override
 public String getType(Uri url) {
 if (isCollectionUri(url)) {
 return("vnd.android.cursor.dir/constant");
 }

 return("vnd.android.cursor.item/constant");
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)
Step #2: Supply a Uri
You may wish to add a public static member… somewhere, containing
the Uri for each collection your content provider supports, for use
by your own application code. Typically, this is a public static
final Uri put on the content provider class itself:

 public static final Uri CONTENT_URI=
 Uri.parse("content://com.commonsware.android.constants.Provider/constants");

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)
You may wish to use the same namespace for the content Uri that you
use for your Java classes, to reduce the chance of collision with
others.
Bear in mind that if you intend for third parties to access your
content provider, they will not have access to this public static
data member, as your class is not in their project. Hence, you will
need to publish the string representation of this Uri that they can
hard-wire into their application.
Step #3: Declare the “Columns”
Remember those “columns” you referenced when you were using a content
provider, in the previous chapter? Well, you may wish to publish
public static values for those too for your own content provider.
Specifically, you may want a public static class implementing
BaseColumns that contains your available column names, such as this
example from Provider:

 public static final class Constants implements BaseColumns {
 public static final Uri CONTENT_URI=
 Uri.parse("content://com.commonsware.android.constants.Provider/constants");
 public static final String DEFAULT_SORT_ORDER="title";
 public static final String TITLE="title";
 public static final String VALUE="value";
 }

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)
Since we are using SQLite as a data store, the values for the
column name constants should be the corresponding column names in the
table, so you can just pass the projection (array of columns) to
SQLite on a query(), or pass the ContentValues on an insert()
or update().
Note that nothing in here stipulates the types of the properties.
They could be strings, integers, or whatever. The biggest limitation
is what a Cursor can provide access to via its property getters.
The fact that there is nothing in code that enforces type safety
means you should document the property types well, so people
attempting to use your content provider know what they can expect.
Step #4: Update the Manifest
Finally, we need to add the provider to the AndroidManifest.xml
file, by adding a <provider> element as a child of the
<application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.constants"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-sdk
 android:minSdkVersion="14"
 android:targetSdkVersion="18"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <provider
 android:name=".Provider"
 android:authorities="com.commonsware.android.constants.Provider"
 android:exported="false"/>

 <activity
 android:name=".ConstantsBrowser"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from ContentProvider/ConstantsPlus/app/src/main/AndroidManifest.xml)
The Local-File Content Provider
Implementing a content provider that supports serving up files based
on Uri values is similar, and generally simpler, than creating a
content provider for the database-style API. In this section, we will
examine the
ContentProvider/Files
sample project. This project
demonstrates a common use of the filesystem-style API: serving files
from internal storage to third-party applications (who, by default,
cannot read your internally-stored files).
Note that this sample project will only work on devices that have an
application capable of viewing PDF files accessed via content://
Uri values.
The FileProvider Class
Our ContentProvider is named FileProvider. However, most of the
logic is contained in an AbstractFileProvider that will be used for
a handful of sample apps in this chapter. We will look at both of those
classes, focusing first on the FileProvider.
onCreate()
We have an onCreate() method. In many cases, this would not be
needed for this sort of provider. After all, there is no database to
open. In this case, we use onCreate() to copy the file(s) out of
assets into the app-local file store. In principle, this would allow
our application code to modify these files as the user uses the app
(versus the unmodifiable editions in assets/).

 @Override
 public boolean onCreate() {
 File f=new File(getContext().getFilesDir(), "test.pdf");

 if (!f.exists()) {
 AssetManager assets=getContext().getAssets();

 try {
 copy(assets.open("test.pdf"), f);
 }
 catch (IOException e) {
 Log.e("FileProvider", "Exception copying from assets", e);

 return(false);
 }
 }

 return(true);
 }

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)
This uses a static copy() method, inherited from AbstractFileProvider,
that can copy an InputStream from an asset to a local File. We will
take a peek at this later in this chapter.
openFile()
We need to implement openFile(), to return a ParcelFileDescriptor
corresponding to the supplied Uri:

 @Override
 public ParcelFileDescriptor openFile(Uri uri, String mode)
 throws FileNotFoundException {
 File root=getContext().getFilesDir();
 File f=new File(root, uri.getPath()).getAbsoluteFile();

 if (!f.getPath().startsWith(root.getPath())) {
 throw new
 SecurityException("Resolved path jumped beyond root");
 }

 if (f.exists()) {
 return(ParcelFileDescriptor.open(f, parseMode(mode)));
 }

 throw new FileNotFoundException(uri.getPath());
 }

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)
We are passed in a *nix-style string mode, which will be a value like r
for read access, wt for write access (and truncate the file), etc.
In API Level 19+, ParcelFileDescriptor has a convenience method for
converting such modes into the equivalent ParcelFileDescriptor flag
values. For older devices, you can simply use the parseMode() code that
Google added:

 // following is from ParcelFileDescriptor source code
 // Copyright (C) 2006 The Android Open Source Project
 // (even though this method was added much after 2006...)

 private static int parseMode(String mode) {
 final int modeBits;
 if ("r".equals(mode)) {
 modeBits=ParcelFileDescriptor.MODE_READ_ONLY;
 }
 else if ("w".equals(mode) || "wt".equals(mode)) {
 modeBits=
 ParcelFileDescriptor.MODE_WRITE_ONLY
 | ParcelFileDescriptor.MODE_CREATE
 | ParcelFileDescriptor.MODE_TRUNCATE;
 }
 else if ("wa".equals(mode)) {
 modeBits=
 ParcelFileDescriptor.MODE_WRITE_ONLY
 | ParcelFileDescriptor.MODE_CREATE
 | ParcelFileDescriptor.MODE_APPEND;
 }
 else if ("rw".equals(mode)) {
 modeBits=
 ParcelFileDescriptor.MODE_READ_WRITE
 | ParcelFileDescriptor.MODE_CREATE;
 }
 else if ("rwt".equals(mode)) {
 modeBits=
 ParcelFileDescriptor.MODE_READ_WRITE
 | ParcelFileDescriptor.MODE_CREATE
 | ParcelFileDescriptor.MODE_TRUNCATE;
 }
 else {
 throw new IllegalArgumentException("Bad mode '" + mode + "'");
 }
 return modeBits;
 }

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)
Our openFile() method then uses parseMode() in the call to the static
open() method on ParcelFileDescriptor, which opens the file (with the
desired access mode) and gives us our ParcelFileDescriptor back that we can
return. If the file is not found, we can throw a FileNotFoundException
to indicate that.
However, we also check to see that the File that we are trying to access
is inside getFilesDir(), by comparing paths. A Uri can have ..
path segments to move up directory levels. Using that with the File
constructor means that a rogue Uri could move outside of our designated
root directory (getFilesDir()), to perhaps try to access other data
on our internal storage (e.g., databases). getAbsoluteFile() will
net out any path-traversal segments (e.g., ..). If getAbsoluteFile()
lies within getFilesDir(), we go ahead, otherwise we throw a
SecurityException.
getDataLength()
AbstractFileProvider gives us a callback — getDataLength() — where we can
indicate how big a file is, given its Uri. That information will be
made available to clients consuming this stream. The default will
be to indicate that the file size is unknown… and that usually works.
However, if it is easy for you to determine the file size, do so, and
it will increase the compatibility of your app with possible consumers.
In this case, determining the size of a local file is easy:

 @Override
 protected long getDataLength(Uri uri) {
 File f=new File(getContext().getFilesDir(), uri.getPath());

 return(f.length());
 }

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)
The AbstractFileProvider Class
AbstractFileProvider is designed to handle a lot of common boilerplate
for streaming providers like the one provided in this sample.
getType()
Just as our database-style ContentProvider needed to implement getType()
to provide a MIME type given a Uri, so too do our streaming providers.
The difference is that a streaming provider usually wants to use “real” MIME
types, values that third-party apps are likely to recognize. For example,
a PDF file should use a MIME type of application/pdf, as that is what PDF
viewing apps will expect.
Android has some convenience code for determining a likely MIME type.
You can use MimeTypeMap to convert a file extension to a MIME type, or
you can use guessContentTypeFromName() onURLConnection to get a MIME
type for a URL. Both use the same underlying database — the difference is
mostly a matter of whether you have a bare file extension already or not.
So, the default implementation of getType() in AbstractFileProvider
uses guessContentTypeFromName():

 @Override
 public String getType(Uri uri) {
 return(URLConnection.guessContentTypeFromName(uri.toString()));
 }

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)
If you know that your MIME type is unlikely to be recognized by Android
(e.g., you invented your own), a subclass of AbstractFileProvider could handle
those cases, chaining to the superclass for other Uri values.
insert(), update(), and delete()
ContentProvider itself is abstract, requiring us to implement a variety of
methods to satisfy the compiler. Three of them — insert(), update(), and
delete() — have no role in a pure-streaming ContentProvider, so AbstractFileProvider
has stub implementations:

 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 throw new RuntimeException("Operation not supported");
 }

 @Override
 public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs) {
 throw new RuntimeException("Operation not supported");
 }

 @Override
 public int delete(Uri uri, String where, String[] whereArgs) {
 throw new RuntimeException("Operation not supported");
 }

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)
A ContentProvider that supports both the database-style and streaming APIs
will need real implementations of those methods for the database operations,
perhaps throwing an Exception for requests to insert, update, or delete a
Uri that represents a stream.
query() and getFileName()
We also need to implement query(). You can get by with having this be a stub
similar to insert() and kin. However, for better compatibility, you should
have a more robust query() implementation, as it will be used by ContentResolver
to retrieve two pieces of metadata about a Uri:

	What is a valid filename to use to represent this Uri, should we need a
human-readable name? After all, a ContentProvider Uri does not have to
represent a human-readable path, and so the last segment of that Uri could
be a cryptic string of hex digits or something, not a filename.

	What is the length of the data that should be delivered by the stream?

query() will be called with a projection that contains either
OpenableColumns.DISPLAY_NAME, OpenableColumns.SIZE, or both. A streaming
ContentProvider ideally supports returning a Cursor with this data.
The AbstractFileProvider implementation of query() handles this for us:

abstract class AbstractFileProvider extends ContentProvider {
 private final static String[] OPENABLE_PROJECTION= {
 OpenableColumns.DISPLAY_NAME, OpenableColumns.SIZE };

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 if (projection == null) {
 projection=OPENABLE_PROJECTION;
 }

 final MatrixCursor cursor=new MatrixCursor(projection, 1);

 MatrixCursor.RowBuilder b=cursor.newRow();

 for (String col : projection) {
 if (OpenableColumns.DISPLAY_NAME.equals(col)) {
 b.add(getFileName(uri));
 }
 else if (OpenableColumns.SIZE.equals(col)) {
 b.add(getDataLength(uri));
 }
 else { // unknown, so just add null
 b.add(null);
 }
 }

 return(new LegacyCompatCursorWrapper(cursor));
 }

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)
If the supplied projection is null, we assume that the caller wants
the standard OpenableColumns; otherwise, we will use the supplied projection.
Our results will be packaged in a MatrixCursor. This amounts to a Cursor interface
on a two-dimensional array, where you build up the rows in that array via a
MatrixCursor.RowBuilder. In our case, there will only be one such row, for
the relevant values for the file to be streamed in support of the requested Uri.
We iterate over the columns in the projection, calling out to getFileName()
and getDataLength() methods for OpenableColumns.DISPLAY_NAME and
OpenableColumns.SIZE respectively (and using null as the result for anything
else). The default implementations of those methods return the last path segment
of the Uri and AssetFileDescriptor.UNKNOWN_LENGTH, respectively:

 protected String getFileName(Uri uri) {
 return(uri.getLastPathSegment());
 }

 protected long getDataLength(Uri uri) {
 return(AssetFileDescriptor.UNKNOWN_LENGTH);
 }

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)
Subclasses can override those as needed, as we saw with getDataLength() in the
concrete FileProvider class.
However, query() does not return the MatrixCursor directly. Instead,
it wraps it in a LegacyCompatCursorWrapper. This class comes from
the CWAC-Provider project, from the
author of this book. LegacyCompatCursorWrapper is designed to try to
improve compatibility with clients that are expecting query() results
to include a _DATA column, the way that MediaStore does. Poorly-written
clients will crash if this column does not exist. LegacyCompatCursorWrapper
wraps a Cursor and serves up an empty _DATA column for those clients
that need one.
copy()
AbstractFileProvider also has a convenience copy() static method that
copies an InputStream to a File, used from the FileProvider onCreate() method:

 static void copy(InputStream in, File dst)
 throws IOException {
 FileOutputStream out=new FileOutputStream(dst);
 byte[] buf=new byte[1024];
 int len;

 while ((len=in.read(buf)) >= 0) {
 out.write(buf, 0, len);
 }

 in.close();
 out.close();
 }
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)
The Manifest
Finally, we need to add the provider to the AndroidManifest.xml
file, by adding a <provider> element as a child of the
<application> element, as with any other content provider:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.cp.files"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name="FilesCPDemo"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <provider
 android:name=".FileProvider"
 android:authorities="com.commonsware.android.cp.files"
 android:exported="true"/>
 </application>

</manifest>

(from ContentProvider/Files/app/src/main/AndroidManifest.xml)
Note, however, that we have android:exported="true" set in our
<provider> element. This means that this content provider can be
accessed from third-party apps or other external processes (e.g., the
media framework for playing back videos).
Using this Provider
The activity is fairly trivial, simply creating an ACTION_VIEW
Intent on our PDF file and starting up an activity for it, then
finishing itself:

package com.commonsware.android.cp.files;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;

public class FilesCPDemo extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(FileProvider.CONTENT_URI
 + "test.pdf")));
 finish();
 }
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FilesCPDemo.java)
Here, we use a CONTENT_URI published by FileProvider as the basis
for identifying the file:

 public static final Uri CONTENT_URI=
 Uri.parse("content://com.commonsware.android.cp.files/");

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)
The Protected Provider
The problem with the preceding example is that any app on the device, if it
knows the right Uri to ask for, will be able to access the file. This may be
desired, but often times it will not be. Instead, you may want to specifically
indicate which apps, at specific points in time, can view the file.
Particularly if your objective is to start a third-party app to work with that
file, setting up this sort of security is not that difficult. To see how that
works, we will walk through the
ContentProvider/GrantUriPermissions
sample project. This is a clone of the ContentProvider/Files project with
this extra security added on.
The way the defense works is by using Android’s permission system.
We will mark the ContentProvider as being not exported, then selectively
grant that access to a specific Uri to the app that we want to view our file.
Step #1: Mark the Provider as Not Exported
Putting android:exported="false" on the <provider> element indicates
that no app has the ability to make requests of your ContentProvider,
except for specific cases where you authorize it:

 <provider
 android:name="FileProvider"
 android:authorities="com.commonsware.android.cp.files"
 android:exported="false"
 android:grantUriPermissions="false">
 <grant-uri-permission android:path="/test.pdf"/>
 </provider>

(from ContentProvider/GrantUriPermissions/app/src/main/AndroidManifest.xml)
With no other changes, if we tried to use the app, the third-party PDF viewer
would crash when trying to read our PDF file from the Uri.
Step #2: Grant Access to the Uri
To allow third parties to get access only when we specify, we need to make a few
more changes.
This <provider> element also has android:grantUriPermissions="false". That
is the default value for this attribute, shown here purely for illustration
purposes. It also has a <grant-uri-permissions> child element, listing the
local path (within the ContentProvider) to our PDF file.
The <grant-uri-permissions> element (or elements, plural) allow us to override
the permission requirement for certain pieces of content, granting access to that
content on a per-request basis. There are three possibilities:

	If android:grantUriPermissions is true, then we will be able to grant
access to any content within our provider

	If android:grantUriPermissions is false, but we have <grant-uri-permissions>
sub-elements, we can only grant access to the content identified by the Uri
paths specified in those sub-elements

	If android:grantUriPermissions is false, and we have no
<grant-uri-permissions> sub-elements (the default case), we cannot grant access
to any content within our provider

In this case, we specify that we will only grant access to /test.pdf. Since that
is the only content in this provider, we could have the same net effect by
setting android:grantUriPermissions to true.
Then, when we create an Intent used to interact with another component, we
can include a flag indicating what permission we wish to grant:

package com.commonsware.android.cp.perms;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;

public class FilesCPDemo extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 Intent i=new Intent(Intent.ACTION_VIEW, Uri.parse(FileProvider.CONTENT_URI + "test.pdf"));

 i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
 startActivity(i);
 finish();
 }
}

(from ContentProvider/GrantUriPermissions/app/src/main/java/com/commonsware/android/cp/perms/FilesCPDemo.java)
In this revised version of our activity, we add FLAG_GRANT_READ_URI_PERMISSION
to the Intent used with startActivity(). This will grant the activity that
responds to our Intent read access to the specific Uri in the Intent,
overriding the exported status. That is why, when you run this app
on a device, the PDF viewer will still be able to view the file.
There is also FLAG_GRANT_WRITE_URI_PERMISSION for granting write access, not
needed here, as our provider only supports read access.
While this is most commonly used with startActivity() (e.g., allowing a mail
program limited access to your attachments provider), this can also be used
with startService(), bindService(), and the various flavors of sending
broadcasts (e.g., sendBroadcast()).
The Stream Provider
Sometimes, we want a provider that looks like the local-file provider from the
preceding section… but we do not have a file. Instead, we have data in some other
form, such as a byte array, or a String, or an InputStream. Writing that material
to a file may be problematic, or even counterproductive.
For example, imagine an app that stores data on the user’s behalf in an encrypted
fashion. One such file is a PDF, that the user would like to view. There are PDF
viewers that can view files served via content:// Uri values, as the previous
section demonstrated… but that assumes an unencrypted file. While we could decrypt
the file, writing the decrypted results to another file, and serve the decrypted
data to the PDF viewer, now we have a persistent decrypted version of the data.
That opens a window of time when the data might be accessed by people with nefarious
intent, which is something we are trying to avoid by using the encrypted store in
the first place. Rather, it would be nice if we could decrypt the data on the fly
and give that decrypted result to the PDF viewer. Of course, there are security risks
intrinsic to that too — after all, we do not know what the PDF viewer might do with
the unencrypted data — but it is at least an improvement.
The good news is that Android does support streaming options for openFile()-style
ContentProvider implementations. However, as one might expect, they are not the
simplest things to implement.
In this section, we will examine the
ContentProvider/Pipe
sample project. This is a near clone of the ContentProvider/Files sample from
the preceding section. However, rather than simply handing the file to Android to
serve as content, we will stream it in ourselves. In principle, as part of this
streaming, we could be decrypting it from an encrypted state. Since this sample
shares much code with the previous sample, we will focus solely on the changes
here.
Note that this sample was inspired by the sample found at
https://github.com/nandeeshwar/Pfd-Create-Pipe.
The Pipes
Starting with API Level 9, it is possible to create a pipe between two processes,
from the Android SDK, via ParcelFileDescriptor. In the previous section, we saw
how ParcelFileDescriptor could be used to open a local file and make that available
to other processes — the createPipe() method gives us a pipe.
The “pipe” returned by createPipe() is a two-element array of ParcelFileDescriptor
objects. The first element in the array represents the “read” end of the pipe. In our case,
that is the end that should be used by a PDF viewer to read in the file contents.
The second element of the array represents the “write” end of the pipe, which we will
use to supply the file’s contents to the “read” end (and to the PDF viewer by extension).
The Revised openFile()
With that in mind, here is our revised openFile() method:

 @Override
 public ParcelFileDescriptor openFile(Uri uri, String mode)
 throws FileNotFoundException {
 ParcelFileDescriptor[] pipe=null;

 try {
 pipe=ParcelFileDescriptor.createPipe();
 AssetManager assets=getContext().getAssets();

 new TransferThread(assets.open(uri.getLastPathSegment()),
 new AutoCloseOutputStream(pipe[1])).start();
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception opening pipe", e);
 throw new FileNotFoundException("Could not open pipe for: "
 + uri.toString());
 }

 return(pipe[0]);
 }

(from ContentProvider/Pipe/app/src/main/java/com/commonsware/android/cp/pipe/PipeProvider.java)
We create our pipe via createPipe(), then get an InputStream on our PDF file stored
as an asset — unlike the ContentProvider/Files sample, we do not need to copy the
asset to a local file now. We then kick off a background thread, implemented in an inner
class named TransferThread, to actually copy the data from the asset to the write end
of the pipe.
Rather than supply TransferThread with a ParcelFileDescriptor for the write end of
the pipe, we supply an OutputStream. Specifically, we pass in a
ParcelFileDescriptor.AutoCloseOutputStream. This is an OutputStream that knows to
close the ParcelFileDescriptor when we close the stream. Otherwise, it behaves like a
fairly typical OutputStream.
The Transfer
TransferThread is a fairly conventional copy-data-from-stream-to-stream implementation:

 static class TransferThread extends Thread {
 InputStream in;
 OutputStream out;

 TransferThread(InputStream in, OutputStream out) {
 this.in=in;
 this.out=out;
 }

 @Override
 public void run() {
 byte[] buf=new byte[1024];
 int len;

 try {
 while ((len=in.read(buf)) >= 0) {
 out.write(buf, 0, len);
 }

 in.close();
 out.flush();
 out.close();
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception transferring file", e);
 }
 }
 }

(from ContentProvider/Pipe/app/src/main/java/com/commonsware/android/cp/pipe/PipeProvider.java)
Here, we read in data in 1KB blocks from the InputStream (our asset) and write the data
to our OutputStream (obtained from the ParcelFileDescriptor).
The Results
Our activity logic has not substantially changed. We still create an ACTION_VIEW Intent
on the content:// Uri from our provider, pointing to our test.pdf asset. Any PDF
viewer capable of handling content:// Uri values will use a ContentResolver to open
an InputStream for our Uri. In the ContentProvider/Files sample, that InputStream
would receive the contents of the file directly from Android. In this new sample, that
InputStream is reading in bytes off of our pipe, until such time as it has read in all
the streamed data and we have closed the OutputStream.
Not every possible consumer of a Uri will be able to work with our stream, though.
For example, MediaPlayer expects to be able to move forwards and backwards
within the stream, and while that works for file-backed ParcelFileDescriptors, it does not work for
those representing a pipe. Hence, MediaPlayer will crash when trying to use a Uri
to a pipe-based stream, which is certainly unfortunate.
The author would like to thank Reuben Scratton for his assistance in
tracking down this MediaPlayer limitation.
FileProvider
The Android Support package now contains its own implementation of a
FileProvider that greatly simplifies serving files from internal or
external storage to another app.
Here, we will see Google’s FileProvider in action via the
ContentProvider/V4FileProvider
sample project. This is a near clone of the ContentProvider/Pipe sample from
the preceding section, just leveraging FileProvider to help us serve
a file from internal storage.
The Rationale
The documentation for FileProvider
states:

Apps should generally avoid sending raw filesystem paths across process boundaries, since the receiving app may not have the same access as the sender. Instead, apps should send Uri backed by a provider like FileProvider.

This is not just an issue for passing files from internal storage to other
apps. On Android 4.2+ tablets, it could even be an issue for external storage,
as each user account gets its own portion of external storage. There may be
scenarios in which your app (associated with one user) winds up needing to
pass the contents of a file on external storage to another app (associated
with another user). Regular filesystem paths will not work in this case,
as one user account cannot directly access another user account’s files, even
on external storage.
The Sources of Files
Google’s FileProvider offers automatic serving of files from a few root points:

	
getFilesDir() (i.e., the standard portion of internal storage for your app)

	
getCacheDir() (i.e., internal storage, but files that the OS can purge if
needed to free up disk space)

	
Environment.getExternalStorageDirectory() (i.e., the root of external storage)

	
getExternalFilesDir(null) and getExternalCacheDir() (i.e., unique directories
on external storage for your app)

For each of these, you will be able to specify a specific subdirectory’s
worth of files that should be served, if you do not want the entire directory’s
contents published via FileProvider. You will also be able to specify an alias,
which serves as the first path segment (after the authority in the content://
Uri) — FileProvider maps that path segment to a specific location of files
to serve.
The Manifest Entry
The information about what files to serve comes in the form of an XML resource
file. You can name the file whatever you like, but its content needs to be a root
<paths> element, with a series of children for the different directories
you wish to serve. Those directories will be denoted via child elements with
specific names:

	
<files-path> for getFilesDir()

	
<cache-path> for getCacheDir()

	
<external-path> for Environment.getExternalStorageDirectory()

	
<external-files-path> for getExternalFilesDir(null)

	
<external-cache-path> for getExternalCachePath()

Note that the latter two require version 24.2.0 or higher of the support
library, as they are fairly new.
For example, our sample project has a res/xml/provider_paths.xml file with
the following contents:

<?xml version="1.0" encoding="utf-8"?>
<paths>
 <files-path name="stuff" />
</paths>

(from ContentProvider/V4FileProvider/app/src/main/res/xml/provider_paths.xml)
Here, we are saying that we want to serve the contents of getFilesDir(),
using a virtual root path of stuff. With an authority of
com.commonsware.android.cp.v4file, this means that a Uri of
content://com.commonsware.android.cp.v4file/stuff/test.pdf would serve up
a test.pdf file in the getFilesDir() directory.
The optional path attribute of the <files-path>, etc. elements indicates
a particular subdirectory, relative to the element-specific root, that should be
used as the source of files. So, for example, had the provider_paths.xml file
looked like:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <files-path name="stuff" path="help/" />
</paths>

…then content://com.commonsware.android.cp.v4file/stuff/test.pdf would map
to help/test.pdf inside of getFilesDir().
You then point to this XML resource from a <meta-data> element in the
<provider> element in the manifest, teaching FileProvider what to serve.
For example, our <provider> element in this sample app is:

 <provider
 android:name="LegacyCompatFileProvider"
 android:authorities="com.commonsware.android.cp.v4file"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/provider_paths"/>
 </provider>

(from ContentProvider/V4FileProvider/app/src/main/AndroidManifest.xml)
Here, our android:name points to a LegacyCompatFileProvider class that
we will examine shortly. We still
provide the android:authorities value, along with any permission rules that
we want. Beyond that, we have a <meta-data> element, with an android:name
of android.support.FILE_PROVIDER_PATHS, that points to our XML resource with
the path information.
You will also notice that our android:exported attribute is set to false.
As it turns out, FLAG_GRANT_READ_URI_PERMISSION trumps the exported status
of a provider. If you pass a Uri to an activity using
FLAG_GRANT_READ_URI_PERMISSION, the activity will be able to read the contents
of that Uri, even if the provider itself is not exported.
The Legacy Compatibility
LegacyCompatFileProvider is a simple subclass of FileProvider, one that
overrides query() and wraps its Cursor in a LegacyCompatCursorWrapper
to try to improve compability with ill-behaved clients:

package com.commonsware.android.cp.v4file;

import android.database.Cursor;
import android.net.Uri;
import android.support.v4.content.FileProvider;
import com.commonsware.cwac.provider.LegacyCompatCursorWrapper;

public class LegacyCompatFileProvider extends FileProvider {
 @Override
 public Cursor query(Uri uri, String[] projection, String selection, String[] selectionArgs, String sortOrder) {
 return(new LegacyCompatCursorWrapper(super.query(uri, projection, selection, selectionArgs, sortOrder)));
 }
}

(from ContentProvider/V4FileProvider/app/src/main/java/com/commonsware/android/cp/v4file/LegacyCompatFileProvider.java)
The Usage
At this point, the provider is ready for use, insofar as we can specify
Uri values like content://com.commonsware.android.cp.v4file/stuff/test.pdf
and get results. Of course, we actually need to have files in our internal storage,
and we need to use such a Uri.
Hence, our activity combines the unpack-the-file-from-assets logic from our
own providers in earlier samples, plus starts up a PDF viewer on our designated
test.pdf file:

package com.commonsware.android.cp.v4file;

import android.app.Activity;
import android.content.Intent;
import android.content.res.AssetManager;
import android.os.Bundle;
import android.support.v4.content.FileProvider;
import android.util.Log;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;

public class FilesCPDemo extends Activity {
 private static final String AUTHORITY="com.commonsware.android.cp.v4file";

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 File f=new File(getFilesDir(), "test.pdf");

 if (!f.exists()) {
 AssetManager assets=getAssets();

 try {
 copy(assets.open("test.pdf"), f);
 }
 catch (IOException e) {
 Log.e("FileProvider", "Exception copying from assets", e);
 }
 }

 Intent i=
 new Intent(Intent.ACTION_VIEW,
 FileProvider.getUriForFile(this, AUTHORITY, f));

 i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 startActivity(i);
 finish();
 }

 static private void copy(InputStream in, File dst) throws IOException {
 FileOutputStream out=new FileOutputStream(dst);
 byte[] buf=new byte[1024];
 int len;

 while ((len=in.read(buf)) > 0) {
 out.write(buf, 0, len);
 }

 in.close();
 out.close();
 }
}

(from ContentProvider/V4FileProvider/app/src/main/java/com/commonsware/android/cp/v4file/FilesCPDemo.java)
FileProvider offers a handy getUriForFile() static helper method that
will return a Uri for a given file, incorporating our specified content provider
authority.
The result of running this activity is the same as the other file-serving
provider samples from this chapter: a PDF viewer (if one is available) will
display the test.pdf file.
StreamProvider
FileProvider is rather nice: you can serve up typical file-based content
without having to roll your own implementation of ContentProvider and
openFile(). However, it only supports a few sources of data.
The author of this book has written StreamProvider, a fork of FileProvider
that adds support for serving content from assets and raw resources. Plus, through
subclassing, you can readily serve up content from other sources as
well. StreamProvider
can be found in
the CWAC-Provider project.
You can add this library to your Android Studio project much in the
same way as you can other CWAC libraries: add the CWAC repository and
request the dependency:

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.commonsware.cwac:provider:0.5.0'
}

Once you have added the CWAC-Provider dependency to your project,
you use it much the same as you would
use FileProvider:

	Define an XML metadata file with a <paths> root element, containing
one or more elements describing what you want the provider to serve

	Add com.commonsware.cwac.provider.StreamProvider as a <provider>
to your manifest, under your own android:authority, with a
<meta-data> element (with a name of
com.commonsware.cwac.provider.STREAM_PROVIDER_PATHS), pointing to that
XML metadata

<provider
 android:name="com.commonsware.cwac.provider.StreamProvider"
 android:authorities="..."
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="com.commonsware.cwac.provider.STREAM_PROVIDER_PATHS"
 android:resource="@xml/..."/>
 <meta-data
 android:name="com.commonsware.cwac.provider.USE_LEGACY_CURSOR_WRAPPER"
 android:value="true"/>
</provider>

	Consider adding the USE_LEGACY_CURSOR_WRAPPER <meta-data> element,
shown in the above example, to automatically add in LegacyCompatCursorWrapper
support, described elsewhere in this chapter

	Use FLAG_GRANT_READ_URI_PERMISSION and FLAG_GRANT_WRITE_URI_PERMISSION
in Intent objects you use to have third parties use the files
the StreamProvider serves, to allow those apps selective, temporary
access to the file

Exporting and Usage Patterns
If your StreamProvider is exported, all of your streams will be considered
read-only, regardless of any other configuration. Mostly, this mode is here
for cases where you need a streaming provider and cannot grant Uri
permissions (e.g., implementing a ChooserTargetService).
If your StreamProvider is not exported, and it has
android:grantUriPermissions set, then you can control, on a per-Uri
basis, which clients get access to your streams. This works identically
to how FileProvider works. Whether a particular source of streams is
read-only or read-write will depend on whether the stream is a file and
your metadata configuration.
Wherever possible, elect to not export the provider and use
FLAG_GRANT_READ_URI_PERMISSIONS or similar techniques to selectively grant
access to your content.
Note that the exported-and-read-only rule is on a per-provider basis. If
you have some content that needs to be published globally and others that
are not:

	Use StreamProvider and one <provider> element for one set of content,
with one authority and android:exported setting

	Subclass StreamProvider and have a separate <provider> element for the
other set of content, with a separate authority and android:exported setting

Metadata Elements
Google’s FileProvider supports:

	
<files-path> for serving files from your app’s getFilesDir()

	
<external-path> for serving files from
Environment.getExternalStorageDirectory()

	
<cache-path> for serving files from your app’s getCacheDir()

	
<external-files-path> for serving files from getExternalFilesDir()

	
<external-cache-path> for serving files from getExternalCacheDir()

Each of those take a name attribute, indicating the first path segment of the Uri
that should identify this particular source of files. For example, a
name of foo would mean that content://your.authority.here/foo/... would
look for a ... file in that particular element’s source of files.
Each of those optionally take a path attribute, indicating a subdirectory
under the element-defined root to use as the source of files, rather than
the root itself. So, a <files-path> with a path="stuff" attribute would
serve files from the stuff/ subdirectory within getFilesDir(). Note
that path can point to a file as well, to limit access to a single file
rather than a directory. Note that path is required for <files-path>,
so you do not accidentally serve everything under getFilesDir().
Also, each can optionally take a readOnly attribute. If this is set to
true, then the files will be readable, but not writeable.
<external-files-path> also can take an optional dir attribute. If
missing, the files are served from getExternalFilesDir(). If a valid
value of dir is supplied, that value is passed into getExternalFilesDir().
As such, dir is limited to be one of the Environment.DIRECTORY_* constants:

	Alarms

	DCIM

	Documents

	Download

	Movies

	Music

	Notifications

	Pictures

	Podcasts

	Ringtones

However, you cannot have both <external-files-path> with no dir
(indicating that you are serving from getExternalFilesDir(null))
and one or more <external-files-path> elements with dir values,
as they will conflict.
StreamProvider adds support for:

	
<raw-resource> for serving a particular raw resource, where the path
is the name of the raw resource (without file extension)

	
<asset> for serving files from assets/

	
<dir-path>, for serving files from locations identified by getDir()

	
<external-public-path>, for serving files from locations identified by
Environment.getExternalStoragePublicDirectory()

Hence, StreamProvider is especially useful when you want to package
some content — such as a PDF file for online help — that you want to
serve from your app. Just drop the file in assets/ in your project,
set up StreamProvider to serve up assets, and use an appropriate Intent
with startActivity() to view that file.
In the case of <dir-path>, two attributes are required:

	
dir, which indicates what directory to serve (this is passed into getDir())

	
path, which serves its normal role, to determine what to serve from the
directory identified by dir

In the case of <external-public-path>, dir is required. It needs to be
the string value of one of the Environment.DIRECTORY_* constants, listed
above.
Assets and Gradle
For files you are looking
to share from your app’s assets/, you will need to teach the build
system to avoid compressing those files. While annoying, it helps
StreamProvider be more compatible with various client apps.
To do this, add an aaptOptions closure to your android closure
in your module’s build.gradle file. For example, you might have:

android {
 compileSdkVersion 25
 buildToolsVersion "25.0.0"

 aaptOptions {
 noCompress 'pdf', 'mp4', 'ogg'
 }
}

This would tell Gradle and the build system to not compress files ending
in pdf, mp4, and ogg. For your own project, you would choose the
file extensions of relevance for the content that you are looking to
serve out of assets/.
I Can Haz Uri?
FileProvider has the static getUriForFile() convenience method, to build
a Uri pointing to the FileProvider, given the File that you wish
to serve.
StreamProvider has a similar getUriForFile() method, with three key
differences:

	It only takes the authority string and the File; no Context
is necessary

	It only works for files, not assets or raw resources

	Rather than throwing an exception for an unrecognized File (the
way FileProvider does), StreamProvider just returns null, indicating
that the File you requested is not one that the StreamProvider
is configured to serve

So, you can call StreamProvider.getUriForFile(AUTHORITY, f), for
some String for your AUTHORITY and some File (here named f)
to get a Uri pointing to that file, for the purposes of using that
Uri in an Intent, etc.
Uri Prefixes
Activities that support ACTION_SEND through an appropriate
<intent-filter> are likely to have a flaw: they probably do not
validate the Uri being supplied via EXTRA_STREAM. The
“surreptitious sharing” attack
takes advantage of this, tricking the app into sharing
its own content. While the researchers who reported this
flaw focused on file: Uri schemes, content: is also
vulnerable, if your provider’s Uri values are predictable.
To help defeat this attack, StreamProvider automatically
adds a per-install UUID to each Uri. So, instead of:

content://your.authority.here/something/and/a/relative/path.xml

the Uri will be something like:

content://your.authority.here/9b80af30-4507-4f34-956a-3b47e4a7f27f/something/and/a/relative/path.xml

By using a UUID unique for this installation of your app, it
makes your Uri values dependent upon the device. This makes
it more difficult for attackers to hand you a valid Uri to your
own content to send somewhere that you might not want.
On the flip side, this makes constructing your own Uri
values a bit more difficult. For files, you can use the
getUriForFile() method. For assets and raw resources,
you can call the static getUriPrefix() method to get the
prefix that is being used, and add that to your Uri, such
as by using a Uri.Builder:

PROVIDER
 .buildUpon()
 .appendPath(StreamProvider.getUriPrefix(AUTHORITY))
 .appendPath(path)
 .build()

getUriPrefix() takes the authority string of your StreamProvider
and returns the prefix… or null, if by subclassing StreamProvider,
you disabled this prefix.
Extending StreamProvider
You are welcome to create subclasses of StreamProvider, to
extend its capabilities for things that you may want to do in
your app. For example, the instrumentation tests for StreamProvider
demonstrate creating a subclass that supports serving database files,
via a custom <database-path> element in the metadata.
By and large, you just create a subclass of StreamProvider and use
it in your <provider> element. Of importance are the hooks in
StreamProvider to allow subclasses to change critical behavior.
Customizing the Uri Prefix
In your subclass, you have three options for changing the
Uri prefix used by StreamProvider:

	If you want a per-install value, but just not a UUID,
override buildUriPrefix() and return your own generated
String

	If you want a fixed prefix, to be used for all installs of this
provider, override getUriPrefix() and return your constant

	If you do not want a prefix, override getUriPrefix() and
return null

Supporting Other Stream Locations
You may have content located in directories other than what
StreamProvider supports out of the box, such as the path for
SQLite databases. To handle that, you can add support for
new XML elements in the <paths> element (e.g., <database-path]
for serving up databases).
To do this, in your StreamProvider subclass, override
buildStrategy() and return a StreamStrategy implementation
that is configured for your scenario. For files located in unusual
spots, LocalPathStrategy should work.
In the library’s androidTest/ source set, you will find a DatabaseProvider
that, at the time of this writing, looks like this:

public class DatabaseProvider extends StreamProvider {
 private static final String TAG="database-path";

 @Override
 protected StreamStrategy buildStrategy(Context context,
 String tag, String name,
 String path, boolean readOnly,
 HashMap<String, String> attrs)
 throws IOException {
 if (TAG.equals(tag)) {
 return(new LocalPathStrategy(name,
 context.getDatabasePath(path)));
 }

 return(super.buildStrategy(context, tag, name, path, attrs));
 }
}

The parameters to buildStrategy() are:

	a Context, should you need one (though do not assume it is
any particular sort of Context)

	the tag we encountered (e.g., database-path)

	the value of the name attribute, which all of these need to
have, as that is how we determine which StreamStrategy handles
this request

	the value of the path attribute, which can be null

	a HashMap of all attributes, in case you wish to have some
custom ones

Either return your own StreamStrategy instance based off of
this information or chain to the superclass’ implementation, so
StreamProvider can handle the stock tags.
If your provider is intrinsically read-only (i.e., it is impossible to modify
the content), you can ignore the readOnly flag. If, however, your content
could be modified, and you support modification, please honor the readOnly
flag and block modifications/deletions when that is set to true.
Supporting Other Stream Strategies
You may have content located in things that
are not files, such as BLOB columns in a database. In theory,
you can create a custom StreamStrategy implementation
that handles this. However, this has not been tried much, and so
there are likely to be some gaps in the implementation.
That being said, you can examine the built-in strategies
(e.g., AssetStrategy, LocalPathStrategy) and their superclasses
(e.g., AbstractPipeStrategy) to see how to implement strategies.
Adding Columns to query()

You may wish to add other columns in response to a query()
call, beyond the OpenableColumns that StreamProvider handles
itself and the _DATA and MIME_TYPE columns added by
LegacyCompatCursorWrapper.
To do that, override getValueForQueryColumn() in your StreamProvider
subclass. This is supplied the Uri of the content and the name
of the column requested by the client. You can return an Object
suitable for stuffing into a MatrixCursor to send back –
typically, this will be a String, int, or long.
Totally Overhauling Uri Handling
StreamProvider itself holds onto a CompositeStreamStrategy,
delegating all operations to it. If you wish to extend
CompositeStreamStrategy and do things differently, also override
buildCompositeStrategy() on your StreamProvider subclass,
to return the instance of the CompositeStreamStrategy that you
want the StreamProvider to use.
Overriding Standard Methods
You can override standard ContentProvider methods (e.g., getType())
if needed.
Alternatively, you can override the methods on a StreamStrategy,
then use that alternative StreamStrategy implementation in
your buildStrategy() method.
Adding Support for insert() and update()
By default, none of the StreamStrategy implementations support
insert() or update(). However, your custom StreamStrategy
can, whether you are extending one of the stock strategy classes
or are implementing your own from scratch.
First, override canInsert() and/or canUpdate(), returning
true for those operations you do support. Then, you can
override insert() and update(), which have the same method
signatures on StreamStrategy as they do on ContentProvider.
There, you can do what you wish.
The Loader Framework
A perpetual problem in Android app development is getting long-running work
off of the main application thread. In modern times, we have lots of flexible
solutions for this.
Another problem in Android app development is holding onto data across
configuration changes. In modern times, we have lots of flexible solutions
for this as well.
However, back in 2011, we did not have nearly as many options. To try to fill
the gap, Android 3.0 introduced the Loader framework.
A Loader is an abstraction around loading data and retaining it across
configuration changes.
In truth, the Loader framework never became particularly popular. The one
scenario where it is worth exploring is when you are trying to query a
ContentProvider from an activity or fragment. That scenario is what we will
focus on in this chapter.
Prerequisites
Understanding this chapter requires that you have read the chapters on:

	database access

	content provider theory

	content provider implementations

Introducing the Loader Framework
There are three major pieces to the Loader framework:
LoaderManager, LoaderCallbacks, and the Loader itself.
And, for historical reasons, there are two implementations of all three of
these:

	one in the framework classes (e.g., android.app.LoaderManager)

	one in the Support Library (e.g., android.support.v4.app.LoaderManager)

As with the framework implementation of Fragment, the framework implementation
of Loader and kin is deprecated as of Android 9.0. The expectation is that
you are using FragmentActivity (or things that extend from it, like
AppCompatActivity) and therefore can use the library implementation of
Loader.
LoaderManager
LoaderManager is your gateway to the Loader framework. You obtain
one by calling getSupportLoaderManager() on your FragmentActivity
or Fragment. Via the
LoaderManager you can initialize a Loader, restart that Loader
(e.g., if you have a different query to use for loading the data),
etc.
LoaderCallbacks
Much of your interaction with the Loader, though, comes from your
LoaderCallbacks object, such as your activity if that is where you
elect to implement the LoaderCallbacks interface. Here, you will
implement three “lifecycle” methods for consuming a Loader:

	
onCreateLoader() is called when your activity requests that a
LoaderManager initialize a Loader. Here, you will create the
instance of the Loader itself, teaching it whatever it needs to know
to go load your data

	
onLoadFinished() is called when the Loader has actually loaded
the data — you can take those results and pour them into your
UI, such as calling swapCursor() on a CursorAdapter to supply the
fresh Cursor’s worth of data

	
onLoaderReset() is called when you should stop using the data
supplied to you in the last onLoadFinished() call (e.g., the
Cursor is going to be closed), so you can arrange to make that
happen (e.g., call swapCursor(null) on a CursorAdapter)

When you implement the LoaderCallbacks interface, you will need to
provide the data type of whatever it is that your Loader is loading
(e.g., LoaderCallbacks<Cursor>). If you have several loaders
returning different data types, you may wish to consider implementing
LoaderCallbacks on multiple objects (e.g., instances of anonymous
inner classes), so you can take advantage of the type safety offered
by Java generics, rather than implementing LoaderCallbacks<Object>
or something to that effect.
Loader
Then, of course, there is Loader itself.
Consumers of the Loader framework will use some concrete
implementation of the abstract Loader class in their
LoaderCallbacks onCreateLoader() method.
However, there is only one concrete implementation: CursorLoader, designed to perform
queries on a ContentProvider, and described in
a later section.
In theory, the Loader framework was designed to “load” arbitrary stuff,
and while some projects have done that, it is not a particularly popular
technique.
Using CursorLoader
Let’s start off by examining the simplest case: using a
CursorLoader to asynchronously populate and update a Cursor
retrieved from a ContentProvider. This is illustrated in the
Loaders/LoaderRV
sample project, which is the same basic
show-the-list-of-gravity-constants sample application that
we examined previously, updated to use the
Loader framework.
In onViewCreated() of our ConstantsFragment, we ask our LoaderManager to initialize a loader:

 @Override
 public void onViewCreated(View v, Bundle savedInstanceState) {
 super.onViewCreated(v, savedInstanceState);

 RecyclerView rv=v.findViewById(android.R.id.list);

 rv.setLayoutManager(new LinearLayoutManager(getActivity()));
 rv.addItemDecoration(new DividerItemDecoration(getActivity(),
 DividerItemDecoration.VERTICAL));
 rv.setAdapter(adapter);

 getActivity().getSupportLoaderManager().initLoader(0, null, this);
 }

(from Loaders/LoaderRV/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
The initLoader() call on LoaderManager (retrieved via
getLoaderManager()) takes three parameters:

	A locally-unique identifier for this loader

	An optional Bundle of data to supply to the loader

	A LoaderCallbacks implementation to use for the results from this
loader (here set to be the ConstantsFragment itself, as it implements the
LoaderManager.LoaderCallbacks<Cursor> interface)

Shortly thereafter, your
onCreateLoader() method of the LoaderCallbacks will be called.
Here, you need to initialize the Loader to use for this identifier.
You are passed the identifier plus the Bundle (if any was
supplied). In our case, we want to use a CursorLoader:

 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 return(new CursorLoader(getActivity(), Provider.Constants.CONTENT_URI,
 PROJECTION, null, null, null));
 }

(from Loaders/LoaderRV/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
CursorLoader takes a Context plus all of the parameters you would
ordinarily use with query() on a ContentResolver, such as the provider
Uri.
At this point, the CursorLoader will query the provider,
but do so on a background thread, so the main application thread is
not tied up. When the Cursor has been retrieved, it is supplied to
your onLoadFinished() method of your LoaderCallbacks:

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 adapter.changeCursor(cursor);
 }

(from Loaders/LoaderRV/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
We are using a RecyclerView.Adapter named RVCursorAdapter as before, and we
call its changeCursor() method to supply it the Cursor to use to populate
the RecyclerView that is the UI of the fragment.
Your onLoadFinished() method will also be called whenever the data
represented by your Uri changes. That is because the CursorLoader
is registering a ContentObserver, so it will find out about data
changes and will automatically requery the Cursor and supply you
with the updated data.
Eventually, onLoaderReset() will be called. You are passed a
Cursor object that you were supplied previously in
onLoadFinished(). You need to make sure that you are no longer
using that Cursor at this point — in our case, we swap null
back into our RVCursorAdapter:

 public void onLoaderReset(Loader<Cursor> loader) {
 adapter.changeCursor(null);
 }

(from Loaders/LoaderRV/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
And that’s pretty much it, at least for using CursorLoader. Of
course, you need a content provider to make this work, and creating a
content provider involves a bit of work.
What Else Is Missing?
The Loader framework does an excellent job of handling queries in
the background. What it does not do is help us with anything else
that is supposed to be in the background, such as inserts, updates,
deletes, or creating/upgrading the database. It is all too easy to
put those on the main application thread and therefore possibly
encounter issues. Moreover, since the thread(s) used by the Loader
framework are an implementation detail, we cannot use those threads
ourselves necessarily for the other CRUD operations.
What Happens When…?
Here are some common development scenarios and how the Loader
framework addresses them.
… the Data Behind the Loader Changes?
According to
the Loader documentation,
“They monitor the source of their data and deliver new
results when the content changes”.
The documentation is incorrect.
A Loader can “monitor the source of their data and deliver new
results when the content changes”. There is nothing in the framework
that requires this behavior. Moreover, there are some cases where it is
clearly a bad idea to do this — imagine a Loader loading data off
of the Internet, needing to constantly poll some server to look for
changes.
The documentation for a Loader implementation should tell you the
rules. Android’s built-in CursorLoader does deliver new results, by
means of a behind-the-scenes ContentObserver. However, it is not
automatic that a Loader deliver new results, and it may be impractical
for a Loader to deliver new results.
… the Configuration Changes?
Your Loader objects are retained across the configuration change
automatically. Barring bugs in a specific Loader implementation,
your Loader should then hand the new activity instance the data that
was retrieved on behalf of the old activity instance (e.g., the
Cursor).
Hence, you do not have to do anything special for configuration
changes.
… the Activity is Destroyed?
The
Loader framework triggers a reset of the
Loader when the activity is destroyed, which obligates the Loader to release any loaded data.
Writing a Custom Loader
Perhaps, despite the above issues, and despite the author’s assertion
that the Loader framework is a failed abstraction,
you want to implement a custom Loader.
You have two main choices for doing that:

	If the API that you are using is intrinsically asynchronous, you can
extend Loader

	If the API that you are using is synchronous, most likely you should
extend AsyncTaskLoader, which manages an AsyncTask for you, giving you
a background thread for loading the content

If your API can work either way — synchronously or asynchronously –
either option works. In terms of getting the Loader implementation right,
you may want to use AsyncTaskLoader, as it will ensure that everything
is delivered on the right thread. On the other hand, you may have greater
control over the nature of the asynchronous work using the API’s native
asynchronous capability, such as configuring a thread pool.
The
HTTP/RetroLoader
sample project is a clone of the HTTP/Retrofit sample app from
the chapter on Internet access. However, this time, the
Retrofit work to load the most recent android Stack Overflow questions
will be mediated by a QuestionsLoader.
Changing the Retrofit Interface
Retrofit offers both synchronous and asynchronous APIs. For the purposes
of this sample, we will use the synchronous API, to see how one might
implement an AsyncTaskLoader. That, in turn, requires us to modify
StackOverflowInterface, having questions() return the SOQuestions
directly, rather than by using a callback:

package com.commonsware.android.retrofit;

import retrofit2.Call;
import retrofit2.http.GET;
import retrofit2.http.Query;

public interface StackOverflowInterface {
 @GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
 Call<SOQuestions> questions(@Query("tagged") String tags);
}

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/StackOverflowInterface.java)
Otherwise, this is unchanged from the original edition of this sample.
Implementing QuestionsLoader
QuestionsLoader is an implementation of AsyncTaskLoader. The documentation
for Loader and AsyncTaskLoader leave a lot to be desired. QuestionsLoader
is based on “triangulation” between the installed-applications loader
included in the AsyncTaskLoader documentation
and the source code to CursorLoader.
Loader uses Java generics. Its declaration requires the type of
content being loaded by the Loader. So, QuestionsFragment
is a Loader of SOQuestions:

public class QuestionsLoader extends AsyncTaskLoader<SOQuestions> {

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsLoader.java)
The Constructor
A Loader needs to have a constructor that takes a Context as a
parameter. So, QuestionsLoader has one, that chains to the superclass
constructor, plus sets up the StackOverflowInterface using Retrofit:

 public QuestionsLoader(Context context) {
 super(context);

 Retrofit retrofit=
 new Retrofit.Builder()
 .baseUrl("https://api.stackexchange.com")
 .addConverterFactory(GsonConverterFactory.create())
 .build();
 so=retrofit.create(StackOverflowInterface.class);
 }

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsLoader.java)
Loading the Questions
The real work for loading the questions comes in loadInBackground().
Subclasses of AsyncTaskLoader need to implement this to return the
content being loaded. As the name suggests, loadInBackground() is
called on a background thread, so you can take time here.
The key piece of the loadInBackground() of QuestionsFragment is the
call to questions() on the StackOverflowInterface, to retrieve the
desired questions:

 @Override
 synchronized public SOQuestions loadInBackground() {
 if (isLoadInBackgroundCanceled()) {
 throw new OperationCanceledException();
 }

 try {
 return(so.questions("android").execute().body());
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception loading questions", e);
 throw new OperationCanceledException();
 }
 }

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsLoader.java)
However, it is possible that before loadInBackground() is called,
that something cancels the AsyncTask in the AsyncTaskLoader.
A subclass of AsyncTaskLoader needs to check isLoadInBackgroundCanceled()
in loadInBackground(), and throw an OperationCanceledException if
isLoadInBackgroundCanceled() returns true.
Delivering Results
Not only do subclasses of AsyncTaskLoader have to load the content,
they also have to cache the results of the previous load. So, QuestionsLoader
has a lastResult field, holding onto an SOQuestions object.
In deliverResult(), we need to do three things:

	If isReset() returns true, indicating that the Loader was
reset, we need to clean up anything associated with the previous load
results

	We need to cache the new load results, which are passed into
deliverResult() as a parameter

	If the loader is started (isStarted() returns true), we need
to chain to the superclass implementation of deliverResult() to actually
deliver the data to the LoaderCallbacks implementation:

 @Override
 public void deliverResult(SOQuestions data) {
 if (isReset()) {
 // actual cleanup, if any
 }

 lastResult=data;

 if (isStarted()) {
 super.deliverResult(data);
 }
 }

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsLoader.java)
Here, lastResult is just a POJO holding onto other POJOs, so there is
nothing specific for us to do in case the loader was reset. If our results
were a Cursor, a Bitmap, or other objects with clear “close” or
“release” semantics, you might do that work if onReset() returned true.
Starting, Stopping, and Resetting
You also need to implement three additional methods.
First is onStartLoading(). Here is where we use the cached result,
delivering it via deliverResults(). If we do not have a cached result,
we need to call forceLoad() to trigger the AsyncTask which, in turn,
triggers loadInBackground() and the rest of the work to actually
retrieve the results:

 @Override
 protected void onStartLoading() {
 super.onStartLoading();

 if (lastResult!=null) {
 deliverResult(lastResult);
 }
 else {
 forceLoad();
 }
 }

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsLoader.java)
There is a corresponding onStopLoading(), where we need to call
cancelLoad(), to cancel the AsyncTask:

 @Override
 protected void onStopLoading() {
 super.onStopLoading();

 cancelLoad();
 }

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsLoader.java)
Finally, there is onReset(), where we need to call onStopLoading()
(as loading should stop if the Loader is reset), plus do any cleanup
of our cached results as needed:

 @Override
 protected void onReset() {
 super.onReset();

 onStopLoading();
 // plus any actual cleanup
 }

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsLoader.java)
Using QuestionsLoader
You might think that with 70-odd lines of QuestionsLoader code that
we would have a corresponding savings in QuestionsFragment.
Alas, no, though it is a bit shorter.
QuestionsFragment now implements LoaderCallbacks instead of
Retrofit’s Callback interface:

public class QuestionsFragment extends ListFragment implements
 LoaderManager.LoaderCallbacks<SOQuestions> {

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)
In the original QuestionsFragment, we fired off the asynchronous
Retrofit work in onCreateView(), and we processed the results in the
success() and failure() methods.
Now, we just need to call initLoader(), in this case from onViewCreated():

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 getLoaderManager().initLoader(0, null, this);
 }

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)
Then, our LoaderCallbacks methods create the QuestionsLoader and
apply the results:

 @Override
 public Loader<SOQuestions> onCreateLoader(int id, Bundle args) {
 return(new QuestionsLoader(getActivity()));
 }

 @Override
 public void onLoadFinished(Loader<SOQuestions> loader,
 SOQuestions data) {
 setListAdapter(new ItemsAdapter(data.items));
 }

 @Override
 public void onLoaderReset(Loader<SOQuestions> loader) {
 setListAdapter(null);
 }

(from HTTP/RetroLoader/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)
Considering the Loader Contract
As noted earlier in this chapter, there are three key pieces of the
Loader contract: asynchronicity, data retention, and automatic
delivery of updates on content changes.
So, how does QuestionsLoader stack up?

	
AsyncTaskLoader provides the asynchronous operation for us, so we
inherit that

	All loaders are automatically retained by the LoaderManager, so there
is nothing specific that we need to do for that

	However, we are unaware of any changes in our content, such as new
questions being asked, so we are not delivering updated content to
clients of the QuestionsLoader

This is a common gap with loader implementations. Occasionally, we may
be in position to find out when the content changes. More often, we
are not, or the work to find out about content changes has to be handled
by a much larger subsystem, beyond a simple Loader subclass.
For example, if we really wanted to have QuestionsLoader automatically
deliver a fresh SOQuestions object when new Stack Overflow android
questions were asked, we could:
use some sort of timing mechanism (e.g., ScheduledExecutorService)
to poll the Stack Exchange API every so often. However, then we would
need to implement some sort of “diff” algorithm to determine if relevant
data changed in the JSON response, so we knew to deliver a fresh
SOQuestions to clients. However, our polling period would be somewhat
arbitrary. Frequent polling would consume a fair amount of battery and
bandwidth as well.
The ContactsContract and CallLog Providers
One of the more popular stores of data on your average Android device
is the contact list. Ever since Android 2.0, Android tracks contacts
across multiple different
“accounts”, or sources of contacts. Some may come from your Google
account, while others might come from Exchange or other services.
This chapter will walk you through some of the basics for accessing
the contacts on the device. Along the way, we will revisit and expand
upon our knowledge of using a ContentProvider.
First, we will review the contacts APIs, past and
present. We will then demonstrate how you can connect to the contacts
engine to let users pick and view contacts… all
without your application needing to know much of how contacts work.
We will then show how you can query the contacts
provider to obtain contacts and some of their details, like email
addresses and phone numbers. We wrap by showing how you can invoke a
built-in activity to let the user
add a new contact,
possibly including some data supplied
by your application.
In addition, we will take a peek at the CallLog provider, which, as the
name suggests, gives you access to a log of calls made on the device.
Prerequisites
Understanding this chapter requires that you have read these chapters
in addition to the core chapters:

	content provider theory

	content provider implementations

	the Loader framework

Introducing You to Your Contacts
Android makes contacts available to you via a complex
ContentProvider framework, so you can access many facets of a
contact’s data — not just their name, but addresses, phone
numbers, groups, etc. Working with the contacts ContentProvider set
is simple… only if you have an established pattern to work with.
Otherwise, it may prove somewhat daunting.
Organizational Structure
The contacts ContentProvider framework can be found as the set of
ContactsContract classes and interfaces in the android.provider
package. Unfortunately, there is a dizzying array of inner classes to
ContactsContract.
Contacts can be broken down into two types: raw and aggregate. Raw
contacts come from a sync provider or are hand-entered by a user.
Aggregate contacts represent the sum of information about an
individual culled from various raw contacts. For example, if your
Exchange sync provider has a contact with an email address of
jdoe@foo.com, and your Facebook sync provider has a contact with an
email address of jdoe@foo.com, Android may recognize that those two
raw contacts represent the same person and therefore combine those in
the aggregate contact for the user. The classes relating to raw
contacts usually have Raw somewhere in their name, and these
normally would be used only by custom sync providers.
The ContactsContract.Contacts and ContactsContract.Data classes
represent the “entry points” for the ContentProvider, allowing you
to query and obtain information on a wide range of different pieces
of information. What is retrievable from these can be found in the
various ContactsContract.CommonDataKinds series of classes. We will
see examples of these operations later in this chapter.
A Look Back at Android 1.6
Prior to Android 2.0, Android had no contact synchronization built
in. As a result, all contacts were in one large pool, whether they
were hand-entered by users or were added via third-party
applications. The API used for this is the Contacts
ContentProvider.
The Contacts ContentProvider still works, as
it is merely deprecated in Android 2.0.1, not removed. In practice,
it has one big limitation: it will only report contacts added directly
to the device (as opposed to ones synchronized from Microsoft Exchange,
Facebook, or other sources). As a result, modern Android apps should
not be using Contacts in general — use ContactsContract.
Pick a Peck of Pickled People
Back in the chapter on resource sets and configurations,
we saw a series of examples of handling configuration changes.
Those samples allowed the user to pick a contact and view a contact.
There, we focused on the configuration change aspect. Here, let’s examine
the actual pick and view logic a bit more closely.
Picking a Contact
When the user picks a contact, we call startActivityForResult()
with an ACTION_PICK Intent:

 public void pickContact(View v) {
 Intent i=
 new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }

(from ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java)
The Intent has ContactsContract.Contacts.CONTENT_URI as its Uri.
Here, ContactsContract.Contacts.CONTENT_URI is defined by the Android
SDK and points to the contacts “table” inside the ContactsContract
“database”, as it were. Whether there is really a database or a table involved
is up to the implementation of ContactsContract, of course.
When we call startActivityForResult(), Android needs to find an
activity to fulfill this request. However, at the outset, all
it has is an action string and a Uri. There could be all sorts
of activities on the device that advertise that they can pick
from a collection identified by a Uri starting with the content
scheme.
To help refine the request, Android asks the ContactsContract
ContentProvider what the MIME type is for this Uri. Then, Android
knows an action string, a MIME type, and a Uri. It so happens that
the contacts apps that ship on Android have an activity that has an
<intent-filter> that indicates that it can handle ACTION_PICK
of the relevant MIME type from a content Uri. And so that is the
activity that the user sees.
The Uri that we get back in onActivityResult() not only points
to the contact that the user picked, but also gives us
temporary read access to that contact’s personally identifying
information. In effect, it is as if the normal READ_CONTACTS
permission requirement was suspended, for this one Uri, for
our app alone. Once our process terminates, we may no longer
have the ability to get at details about that contact via its
Uri, as this read access is temporary.
Viewing a Contact
As it turns out, the sample app does not take advantage of the
temporary read access. Instead, when the user clicks the “View” button,
the app just brings up an activity to go view that contact:

 public void viewContact(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }

(from ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java)
Once again, Android has an action string (ACTION_VIEW) and a Uri
(the one that we got in response to the ACTION_PICK request). And,
once again, Android asks ContactsContract for the MIME type of the
data associated with this Uri, so that the MIME type can help identify
the right activity to handle this request. The contacts app that comes
on the device should have an activity that complies, and so we can view
the contact.
In truth, the only reason why we as developers can count on these
activities existing is because of Google Play Services and the Play Store.
The Compatibility Definition Document (CDD) that manufacturers must
comply with to get Google’s proprietary Android apps requires that
the device ship with apps that fulfill all of the <intent-filter>
elements supported by the apps in the Android Open Source Project (AOSP).
Hence, for devices that legitimately have the Play Store on them,
there should always be an app that offers activities to allow users to
pick and view contacts. However, on devices that do not legitimately
have the Play Store, those activities might not exist. Manufacturers
who avoid Google’s proprietary apps should still aim to comply with
the CDD as much as possible, if they want third-party apps like yours
to work successfully on those devices. However, there is no contractual
requirement that they do, and so, as the saying goes, your mileage may vary
(YMMV).
Spin Through Your Contacts
The preceding example allows you to work with contacts, yet not
actually have any contact data other than a transient Uri. All else
being equal, it is best to use the contacts system this way, as it
means you do not need any extra permissions that might raise privacy
issues.
Of course, all else is rarely equal.
Your alternative, therefore, is to execute queries against the
contacts ContentProvider to get actual contact detail data back,
such as names, phone numbers, and email addresses. The
Contacts/Spinners
sample application will demonstrate this
technique.
Contact Permissions
Since contacts are privileged data, you need certain permissions to
work with them. Specifically, you need the READ_CONTACTS permission
to query and examine the ContactsContract content and
WRITE_CONTACTS to add, modify, or remove contacts from the system.
This only holds true if your code will have access to personally-identifying
information, which is why the Pick sample above — which just has an
opaque Uri — does not need any permission.
For example, here is the manifest for the Contacts/Spinners sample
application:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.contacts.spinners"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.READ_CONTACTS" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name=".ContactSpinners"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

(from Contacts/Spinners/app/src/main/AndroidManifest.xml)
And, since this app has a targetSdkVersion of 26, we also need to deal
with runtime permissions, as READ_CONTACTS has a protectionLevel of
dangerous, so we need to ask the user for permission at runtime. To that
end, we use the same AbstractPermissionActivity seen elsewhere in the book
as the base class for our ContactSpinners activity, so we can delegate
all of the runtime permission logic to AbstractPermissionActivity.
Pre-Joined Data
While the database underlying the ContactsContract content provider
is private, one can imagine that it has several tables: one for
people, one for their phone numbers, one for their email addresses,
etc. These are tied together by typical database relations, most
likely 1:N, so the phone number and email address tables would have a
foreign key pointing back to the table containing information about
people.
To simplify accessing all of this through the content provider
interface, Android pre-joins queries against some of the tables. For
example, you can query for phone numbers and get the contact name and
other data along with the number — you do not have to do this
join operation yourself.
The UI
The ContactSpinners activity has a RecyclerView
along with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <Spinner
 android:id="@+id/spinner"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true" />

 <android.support.v7.widget.RecyclerView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

(from Contacts/Spinners/app/src/main/res/layout/main.xml)
In onReady() of the activity, we load up the Spinner, plus configure the RecyclerView:

 @Override
 public void onReady() {
 setContentView(R.layout.main);

 Spinner spin=findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 getResources().getStringArray(R.array.options));

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);

 RecyclerView rv=findViewById(android.R.id.list);

 rv.setLayoutManager(new LinearLayoutManager(this));
 rv.addItemDecoration(new DividerItemDecoration(this,
 DividerItemDecoration.VERTICAL));
 adapter=new RVCursorAdapter(getLayoutInflater());
 rv.setAdapter(adapter);
 }

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)
In particular, we populate the Spinner based on a <string-array>
resource from the res/values/arrays.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="options">
 <item>Contact Names</item>
 <item>Contact Names & Numbers</item>
 <item>Contact Names & Email Addresses</item>
 </string-array>
</resources>

(from Contacts/Spinners/app/src/main/res/values/arrays.xml)
Reacting to the Spinner
We set up the activity to be the OnItemSelectedListener for the
Spinner, which means that we have to implement onItemSelected()
and onNothingSelected():

 @Override
 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 getSupportLoaderManager().initLoader(position, null, this);
 }

 @Override
 public void onNothingSelected(AdapterView<?> parent) {
 // ignore
 }

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)
When the user selects something in the Spinner — and for the default
selection — we will use the Loader framework and use a CursorLoader
to query the ContactsContract ContentProvider. In this case, though,
we want three different Cursor values, one for each option in the
Spinner. That will mean that we need three different CursorLoader
objects. To identify which loader we are going to initialize, we pass in
the position of the Spinner to initLoader(), so the 0/1/2 value
that we get as the position forms our loader ID.
Loading the Data
In onCreateLoader() of our LoaderCallbacks, we need to return
a CursorLoader for whichever loaderId was passed in. What varies
is the Uri that we want to query and the “projection” of “columns”
that we want to get back. So, onCreateLoader() uses a switch
statement to decide what Uri and projection to use, then creates
a CursorLoader based upon that:

 @Override
 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 String[] projection;
 Uri uri;

 switch (loaderId) {
 case LOADER_NAMES:
 projection=PROJECTION_NAMES;
 uri=ContactsContract.Contacts.CONTENT_URI;
 break;

 case LOADER_NAMES_NUMBERS:
 projection=PROJECTION_NUMBERS;
 uri=ContactsContract.CommonDataKinds.Phone.CONTENT_URI;
 break;

 default:
 projection=PROJECTION_EMAILS;
 uri=ContactsContract.CommonDataKinds.Email.CONTENT_URI;
 break;
 }

 return new CursorLoader(this, uri, projection, null, null,
 ContactsContract.Contacts.DISPLAY_NAME);
 }

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)
The two case values are just constants tied to the positions from
the Spinner, defined as static data members:

 private static final int LOADER_NAMES=0;
 private static final int LOADER_NAMES_NUMBERS=1;

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)
Similarly, the three projections are defined as static data members:

 private static final String[] PROJECTION_NAMES=new String[]{
 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME,
 };
 private static final String[] PROJECTION_NUMBERS=new String[]{
 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME,
 ContactsContract.CommonDataKinds.Phone.NUMBER
 };
 private static final String[] PROJECTION_EMAILS=new String[]{
 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME,
 ContactsContract.CommonDataKinds.Email.DATA
 };

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)
For the “names” Spinner entry, we are going to retrieve the ID and
display name of the contact, using the standard ContactsContract.Contacts.CONTENT_URI
Uri value.
For the “names and phone numbers” Spinner entry, we still want the
display name of the contact, but we also want phone numbers. Fortunately,
as mentioned earlier, ContactsContract denormalizes its data in
response to queries, so we can get the display name of the contact
even when we are querying the “table” of phone numbers, via
ContactsContract.CommonDataKinds.Phone.CONTENT_URI. The same basic
process holds true for the “names and emails” entry, where we query
ContactsContract.CommonDataKinds.Email.CONTENT_URI. Note that
we will get somewhat redundant information back — if a contact has
two phone numbers, we get two rows in our Cursor, both for the
same contact, and one per phone number.
We can sort by DISPLAY_NAME for all three cases, courtesy of the
aforementioned denormalization of the data.
Showing the Results
We also have to implement onLoadFinished(), to take in the Cursor
that is the result of the query against ContactsContract and put
the results in the RecyclerView. Once again, the rendering will differ
a bit based upon whether we are showing just names or names along
with other data (e.g., phone numbers). So, we have another switch
statement, where we determine what columns we want, what layout ID
to use, and what roster of widgets in that layout map to those
columns:

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 String[] columns;

 switch (loader.getId()) {
 case LOADER_NAMES:
 columns=COLUMNS_NAMES;
 break;

 case LOADER_NAMES_NUMBERS:
 columns=COLUMNS_NUMBERS;
 break;

 default:
 columns=COLUMNS_EMAILS;
 break;
 }

 adapter.changeCursor(c, columns);
 }

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)
The lists of columns and views are defined as static data members and
map positionally (i.e., the first view is for the first column):

 private static final String[] COLUMNS_NAMES=new String[]{
 ContactsContract.Contacts.DISPLAY_NAME
 };
 private static final String[] COLUMNS_NUMBERS=new String[]{
 ContactsContract.Contacts.DISPLAY_NAME,
 ContactsContract.CommonDataKinds.Phone.NUMBER
 };
 private static final String[] COLUMNS_EMAILS=new String[]{
 ContactsContract.Contacts.DISPLAY_NAME,
 ContactsContract.CommonDataKinds.Email.DATA
 };

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)
Then, we update a RecyclerView.Adapter, named RVCursorAdapter, with
the fresh Cursor and column list. That adapter, along with a
RecyclerView.ViewHolder implementation named RowHolder, populate a
framework-supplied simple_list_item_2 widget with the 1 or 2 columns
that we want from the Cursor:

 private static class RVCursorAdapter extends RecyclerView.Adapter<RowHolder> {
 private Cursor cursor;
 private final LayoutInflater inflater;
 private String[] columns;

 private RVCursorAdapter(LayoutInflater inflater) {
 this.inflater=inflater;
 }

 @NonNull
 @Override
 public RowHolder onCreateViewHolder(@NonNull ViewGroup parent,
 int viewType) {
 View row=
 inflater.inflate(android.R.layout.simple_list_item_2, parent, false);

 return new RowHolder(row);
 }

 @Override
 public void onBindViewHolder(@NonNull RowHolder holder,
 int position) {
 cursor.moveToPosition(position);
 holder.bind(cursor, columns);
 }

 @Override
 public int getItemCount() {
 return cursor==null ? 0 : cursor.getCount();
 }

 private void changeCursor(Cursor cursor, String[] columns) {
 if (this.cursor!=null) {
 this.cursor.close();
 }

 this.cursor=cursor;
 this.columns=columns;
 notifyDataSetChanged();
 }

 private void clearCursor() {
 cursor=null;
 notifyDataSetChanged();
 }
 }

 private static class RowHolder extends RecyclerView.ViewHolder {
 private final TextView text1;
 private final TextView text2;

 RowHolder(View itemView) {
 super(itemView);
 text1=itemView.findViewById(android.R.id.text1);
 text2=itemView.findViewById(android.R.id.text2);
 }

 public void bind(Cursor cursor, String[] columns) {
 int index=cursor.getColumnIndex(columns[0]);

 text1.setText(cursor.getString(index));

 if (columns.length==2) {
 index=cursor.getColumnIndex(columns[1]);
 text2.setText(cursor.getString(index));
 }
 }
 }

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)
Makin’ Contacts
Let’s now take a peek at the reverse direction: adding contacts to
the system. This was never particularly easy and now is… well,
different.
First, we need to distinguish between sync providers and other apps.
Sync providers are the guts underpinning the accounts system in
Android, bridging some existing source of contact data to the Android
device. Hence, you can have sync providers for Exchange, Facebook,
and so forth. These will need to create raw contacts for newly-added
contacts to their backing stores that are being sync’d to the device
for the first time. Creating sync providers is outside of the scope
of this book for now.
It is possible for other applications to create contacts. These, by
definition, will be phone-only contacts, lacking any associated
account, no different than if the user added the contact directly.
The recommended approach to doing this is to collect the data you
want, then spawn an activity to let the user add the contact —
this avoids your application needing the WRITE_CONTACTS permission
and all the privacy/data integrity issues that creates.
To that end, take a look at the
Contacts/Inserter
sample project.
It defines a simple activity with a two-field UI, with one field
apiece for the person’s first name and phone number:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="First name:"
 />
 <EditText android:id="@+id/name"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Phone:"
 />
 <EditText android:id="@+id/phone"
 android:inputType="phone"
 />
 </TableRow>
 <Button android:id="@+id/insert" android:text="Insert!" />
</TableLayout>

(from Contacts/Inserter/app/src/main/res/layout/main.xml)
The trivial UI also sports a button to add the contact:

[image: The ContactInserter sample application]

Figure 748: The ContactInserter sample application
When the user clicks the button, the activity gets the data and
creates an Intent to be used to launch the add-a-contact activity.
This uses the ACTION_INSERT_OR_EDIT action and a couple of extras
from the ContactsContract.Intents.Insert class:

package com.commonsware.android.inserter;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.provider.ContactsContract.Intents.Insert;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class ContactsInserter extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.insert);

 btn.setOnClickListener(onInsert);
 }

 View.OnClickListener onInsert=new View.OnClickListener() {
 public void onClick(View v) {
 EditText fld=(EditText)findViewById(R.id.name);
 String name=fld.getText().toString();

 fld=(EditText)findViewById(R.id.phone);

 String phone=fld.getText().toString();
 Intent i=new Intent(Intent.ACTION_INSERT_OR_EDIT);

 i.setType(Contacts.CONTENT_ITEM_TYPE);
 i.putExtra(Insert.NAME, name);
 i.putExtra(Insert.PHONE, phone);
 startActivity(i);
 }
 };
}

(from Contacts/Inserter/app/src/main/java/com/commonsware/android/inserter/ContactsInserter.java)
We also need to set the MIME type on the Intent via setType(), to
be CONTENT_ITEM_TYPE, so Android knows what sort of data we want to
actually insert. Then, we call startActivity() on the resulting
Intent. That brings up an add-or-edit activity:

[image: The add-or-edit-a-contact activity]

Figure 749: The add-or-edit-a-contact activity
… where if the user chooses “Create new contact”, they are taken to
the ordinary add-a-contact activity, with our data pre-filled in:

[image: The edit-contact form, showing the data from the ContactInserter activity]

Figure 750: The edit-contact form, showing the data from the ContactInserter activity
Note that the user could choose an existing contact, rather than
creating a new contact. If they choose an existing contact, the first
name of that contact will be overwritten with the data supplied by
the ContactsInserter activity, and a new phone number will be added
from those Intent extras.
Looking at the CallLog
A closely-related ContentProvider to ContactsContract is CallLog.
As the name suggests, it contains a log of calls for this device,
including things like the date/time of the call, the call duration, and
the other party on the call (e.g., a phone number).
If you wish to give the user another look at their calls, independent
from the UI available on the device (e.g., Dialer app), you might
wish to query the CallLog, as we do in the
Contacts/CallLog
sample application
Pondering Permissions
In the beginning, there was no READ_CALL_LOG permission. To read the CallLog
provider, you needed to hold READ_CONTACTS.
The reason for the READ_CONTACTS permission is that the CallLog
denormalizes the data, copying into its own table contact data about
the other party, so that the CallLog can remain independent
of ContactsContract.
In API Level 16, though, they added the READ_CALL_LOG permission. If your
minSdkVersion is 16 or higher, you can just request READ_CALL_LOG. If
your minSdkVersion is lower than that, though, you will want to request
both permissions, to make sure that you are covered. You might consider
using the android:maxSdkVersion attribute on the READ_CONTACTS
<uses-permission> element, as you will not need it on newer devices, unless
you are also working with ContactContract.
Both READ_CALL_LOG and READ_CONTACTS are dangerous permissions, and
therefore if your targetSdkVersion is 23 or higher, you need to request
those permissions at runtime. Of course, you only need to request the permissions
that you need, and so if your minSdkVersion is 16 or higher and you are only
using READ_CALL_LOG, you only need to request READ_CALL_LOG at runtime.
Our sample app uses the same AbstractPermissionActivity as did the first
sample app in this chapter, though this time our CallLogConsumerActivity
will request READ_CALL_LOG instead of READ_CONTACTS.
Contents of CallLog.Calls
The sample app requests the READ_CALL_LOG permission, so it can
query the CallLog:

 <uses-permission android:name="android.permission.READ_CALL_LOG" />

(from Contacts/CallLog/app/src/main/AndroidManifest.xml)
To request this permission when our app launches, this project uses the same
AbstractPermissionActivity seen elsewhere in the book and profiled in
the chapter on permissions. That logic gives
us control in an onReady() method in our CallLogConsumerActivity when we
can start setting up the UI and requesting the call log data.
In onReady() — among other bits of work that we will explore shortly –
we call initLoader(), to query the CallLog
via a CursorLoader. The activity itself implements the
LoaderManager.LoaderCallbacks interface needed by initLoader(), and so
the activity has the three required LoaderCallbacks methods:

 @Override
 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 return(new CursorLoader(this, CallLog.Calls.CONTENT_URI,
 PROJECTION, null, null, CallLog.Calls.DATE
 + " DESC"));
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 adapter.changeCursor(cursor);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 adapter.changeCursor(null);
 }

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)
Here, we retrieve the data from the CallLog.Calls “table” via its
CONTENT_URI, asking for the “columns” indicated by the PROJECTION:

 private static final String[] PROJECTION=new String[] {
 CallLog.Calls.NUMBER, CallLog.Calls.DATE };

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)
We sort the data descending by date. It would be nice if the documentation
for CallLog included some indication that this approach was endorsed
and supported. Based on the CallLog implementation, it should be stable.
Showing the CallLog
onLoadFinished() and onLoaderReset() each call a changeCursor() method on
our adapter. That is an instance of RVCursorAdapter, set up in onReady():

 @Override
 public void onReady() {
 adapter=new RVCursorAdapter(getLayoutInflater());

 RecyclerView rv=getRecyclerView();

 setLayoutManager(new LinearLayoutManager(this));
 rv.addItemDecoration(new DividerItemDecoration(this,
 DividerItemDecoration.VERTICAL));
 rv.setAdapter(adapter);

 getSupportLoaderManager().initLoader(0, null, this);
 }

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)
RVCursorAdapter wraps around the Cursor of calendar data:

 private static class RVCursorAdapter extends RecyclerView.Adapter<RowHolder> {
 private Cursor cursor;
 private final LayoutInflater inflater;

 private RVCursorAdapter(LayoutInflater inflater) {
 this.inflater=inflater;
 }

 @NonNull
 @Override
 public RowHolder onCreateViewHolder(@NonNull ViewGroup parent,
 int viewType) {
 View row=inflater.inflate(R.layout.row, parent, false);

 return new RowHolder(row);
 }

 @Override
 public void onBindViewHolder(@NonNull RowHolder holder,
 int position) {
 cursor.moveToPosition(position);
 holder.bind(cursor);
 }

 @Override
 public int getItemCount() {
 return cursor==null ? 0 : cursor.getCount();
 }

 private void changeCursor(Cursor cursor) {
 if (this.cursor!=null) this.cursor.close();
 this.cursor=cursor;
 notifyDataSetChanged();
 }
 }

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)
changeCursor() closes the old Cursor (if there was one), holds onto the new
one, and tells the RecyclerView to reload its contents, as our data has changed.
Our row layout (res/layout/row.xml) has two
TextView widgets for the two pieces of data that we want to
display:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <TextView
 android:id="@+id/date"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentEnd="true"
 android:layout_alignParentRight="true"
 android:textSize="28sp" />

 <TextView
 android:id="@+id/number"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:textSize="28sp" />
</RelativeLayout>

(from Contacts/CallLog/app/src/main/res/layout/row.xml)
Each row in the list is managed by a RowHolder:

 private static class RowHolder extends RecyclerView.ViewHolder {
 private final TextView date;
 private final TextView number;

 RowHolder(View itemView) {
 super(itemView);
 date=itemView.findViewById(R.id.date);
 number=itemView.findViewById(R.id.number);
 }

 public void bind(Cursor cursor) {
 number.setText(cursor.getString(0));

 long time=cursor.getLong(1);
 String formattedTime=DateUtils.formatDateTime(date.getContext(), time,
 DateUtils.FORMAT_ABBREV_RELATIVE);

 date.setText(formattedTime);
 }
 }

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)
The DATE columns is returned to use as milliseconds since the
Unix epoch, so we use DateUtils.formatDateTime() to convert that into something
that is human-readable and matches the user’s chosen locale settings.
The results is a list of calls by date and phone number.
The CalendarContract Provider
The Android Open Source Project (AOSP) has had a Calendar application
from its earliest days. This application originally was designed to
sync with Google Calendar, later extended to other sync sources, such
as Microsoft’s Exchange. However, this application was not part of
the Android SDK, so there was no way to access it from your Android
application.
At least, no officially documented and supported way.
Many developers poked through the AOSP source code and found that the
Calendar application had a ContentProvider. Moreover, this
ContentProvider was exported (by default). So many developers used
undocumented and unsupported means for accessing calendar
information. This occasionally broke, as Google modified the Calendar
app and changed these pseudo-external interfaces.
Android 4.0 added official SDK support for interacting with the
Calendar application via its ContentProvider. As part of the SDK,
these new interfaces should be fairly stable — if nothing else,
they should be supported indefinitely, even if new and improved
interfaces are added sometime in the future. So, if you want to tie
into the user’s calendars, you can. Bear in mind, though, that the
new CalendarContract ContentProvider is not identical to the
older undocumented providers, so if you are aiming to support pre-4.0
devices, you have some more work to do.
Of course, similar to the ContactsContract ContentProvider, the
CalendarContract ContentProvider is severely lacking in
documentation, and anything not documented is subject to change.
Prerequisites
Understanding this chapter requires that you have read the chapters on:

	content provider theory

	content provider implementations

You Can’t Be a Faker
While the Android emulator has the CalendarContract
ContentProvider, it will do you little good. While you can define a
Google account on the emulator, the emulator lacks any ability to
sync content with that account. Hence, you cannot see any events for
your calendars in the Calendar app, and you cannot access any
calendar data via CalendarContract.
You may be able to use an outlook.com account,
to sync with an Outlook calendar.
Otherwise, in order to test your use of CalendarContract,
you will need to have hardware that runs Android 4.0 (or higher),
with one or more accounts set up that have calendar data.
Do You Have Room on Your Calendar?
As a ContentProvider, CalendarContract is not significantly
different from any other such provider that Android supplies or that
you write yourself, in that there are Uri values representing
collections of data, upon which you can query, insert, update, and
delete as needed.
The two main collections of data that you are likely to be interested
in are CalendarContract.Calendars (the collection of all defined
calendars) and CalendarContract.Events (the collection of all
defined events across all calendars). Each of those has a
CONTENT_URI static data member that you would use with
ContentResolver or a CursorLoader to perform operations on those
collections. An entry in CalendarContract.Events points back to its
corresponding calendar via a CALENDAR_ID column that you can query
upon; the remaining columns on CalendarContract.Events have names
apparently designed to match with the
iCalendar specification (e.g.,
DTSTART and DTEND for the start and end times of the event).
Three other collections may be of interest:

	
CalendarContract.Instances has one entry per occurrence of an
event, so recurring events get multiple rows

	
CalendarContract.Attendees has information about each attendee
of an event

	
CalendarContract.Reminders has information about each reminder
scheduled for an event (e.g., when to remind the user), for those
events with associated reminders

Each of those ties back to its associated CalendarContract.Events
row via an EVENT_ID column.
Calendar Permissions
There are two permissions for working with CalendarContract:
READ_CALENDAR and WRITE_CALENDAR. As you might expect, querying
CalendarContract requires the READ_CALENDAR permission; modifying
CalendarContract data requires the WRITE_CALENDAR permission.
These permissions have existed since Android’s earliest days, even in
the SDK, as a side effect of the “meat cleaver” approach the core
Android team employed to create the initial SDK. Hence, you can
request these permissions in the manifest with any Android build
target, without compiler errors. Of course, actually referring to
CalendarContract will require a build target
(i.e., compileSdkVersion in Android Studio) of API Level 14 or
higher.
Querying for Events
For example, let’s populate a RecyclerView with the roster of all
events the user has across all calendars, using a CursorLoader,
showing the name of each event, the event’s start date, and the
event’s end date. You can find this in the
Calendar/Query
sample
project in the book’s source code.
The Permission
Our manifest has the READ_CALENDAR permission, as you would expect:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.cal.query"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.READ_CALENDAR"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name=".CalendarQueryActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Calendar/Query/app/src/main/AndroidManifest.xml)
To request this permission when our app launches, this project uses the same
AbstractPermissionActivity seen elsewhere in the book and profiled in
the chapter on permissions. That logic gives
us control in an onReady() method in our CalendarQueryActivity when we
can start setting up the UI and requesting the calendar data.
The CursorLoader
As part of our onReady() work, we call initLoader() on a LoaderManager:

 getSupportLoaderManager().initLoader(0, null, this);

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)
That triggers a call to our LoaderCallbacks methods:

 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 return(new CursorLoader(this, CalendarContract.Events.CONTENT_URI,
 PROJECTION, null, null,
 CalendarContract.Events.DTSTART));
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 adapter.changeCursor(cursor);
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 adapter.changeCursor(null);
 }

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)
onCreateLoader() requests data from CalendarContract.Events.CONTENT_URI,
the Uri that represents the virtual table of calendar event data. We
request three columns, identified by the PROJECTION:

 private static final String[] PROJECTION=
 new String[] { CalendarContract.Events.TITLE,
 CalendarContract.Events.DTSTART,
 CalendarContract.Events.DTEND };

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)
onCreateLoader() also requests that the calendar data be sorted by starting
date.
The RecyclerView
onLoadFinished() and onLoaderReset() each call a changeCursor() method on
our adapter. That is an instance of RVCursorAdapter, set up in onReady():

 @Override
 public void onReady() {
 adapter=new RVCursorAdapter(getLayoutInflater());

 RecyclerView rv=getRecyclerView();

 setLayoutManager(new LinearLayoutManager(this));
 rv.addItemDecoration(new DividerItemDecoration(this,
 DividerItemDecoration.VERTICAL));
 rv.setAdapter(adapter);

 getSupportLoaderManager().initLoader(0, null, this);
 }

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)
RVCursorAdapter wraps around the Cursor of calendar data:

 private static class RVCursorAdapter extends RecyclerView.Adapter<RowHolder> {
 private Cursor cursor;
 private final LayoutInflater inflater;

 private RVCursorAdapter(LayoutInflater inflater) {
 this.inflater=inflater;
 }

 @NonNull
 @Override
 public RowHolder onCreateViewHolder(@NonNull ViewGroup parent,
 int viewType) {
 View row=inflater.inflate(R.layout.row, parent, false);

 return new RowHolder(row);
 }

 @Override
 public void onBindViewHolder(@NonNull RowHolder holder,
 int position) {
 cursor.moveToPosition(position);
 holder.bind(cursor);
 }

 @Override
 public int getItemCount() {
 return cursor==null ? 0 : cursor.getCount();
 }

 private void changeCursor(Cursor cursor) {
 if (this.cursor!=null) this.cursor.close();
 this.cursor=cursor;
 notifyDataSetChanged();
 }
 }

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)
changeCursor() closes the old Cursor (if there was one), holds onto the new
one, and tells the RecyclerView to reload its contents, as our data has changed.
Our row layout (res/layout/row.xml) has three
TextView widgets for the three pieces of data that we want to
display:

<LinearLayout android:id="@+id/linearLayout1"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:layout_marginLeft="4dip"
 android:layout_marginRight="4dip"
 android:layout_weight="1"
 android:ellipsize="end"
 android:textSize="20sp" />

 <LinearLayout
 android:id="@+id/linearLayout2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="4dip"
 android:layout_marginRight="4dip"
 android:orientation="vertical">

 <TextView
 android:id="@+id/dtstart"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:textSize="12sp" />

 <TextView
 android:id="@+id/dtend"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom"
 android:textSize="12sp" />
 </LinearLayout>

</LinearLayout>

(from Calendar/Query/app/src/main/res/layout/row.xml)
Each row in the list is managed by a RowHolder:

 private static class RowHolder extends RecyclerView.ViewHolder {
 private final TextView title, dtstart, dtend;

 RowHolder(View itemView) {
 super(itemView);
 title=itemView.findViewById(R.id.title);
 dtstart=itemView.findViewById(R.id.dtstart);
 dtend=itemView.findViewById(R.id.dtend);
 }

 public void bind(Cursor cursor) {
 title.setText(cursor.getString(0));
 dtstart.setText(getFormattedDate(cursor, 1));
 dtend.setText(getFormattedDate(cursor, 2));
 }

 private String getFormattedDate(Cursor cursor, int column) {
 long time=cursor.getLong(column);

 return
 DateUtils.formatDateTime(dtstart.getContext(), time,
 DateUtils.FORMAT_ABBREV_RELATIVE);
 }
 }

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)
The DTSTART and DTEND values are returned to use as milliseconds since the
Unix epoch, so we use DateUtils.formatDateTime() to convert that into something
that is human-readable and matches the user’s chosen locale settings.
The Results
If you run this on a device with available calendar data, you will
get a list of those events:

[image: The Calendar Query sample application, with some events redacted]

Figure 751: The Calendar Query sample application, with some events redacted
Penciling In an Event
What is rarely documented in the Android SDK is what activities might
exist that support the MIME types of a given ContentProvider. In
part, that is because device manufacturers have the right to remove
or replace many of the built-in applications.
The Calendar application is considered by Google to be a “core”
application. Quoting the Android 2.3 version of the
Compatibility Definition Document
(CDD):

The Android upstream project defines a number of core applications,
such as a phone dialer, calendar, contacts book, music player, and so
on. Device implementers MAY replace these applications with
alternative versions. However, any such alternative versions MUST
honor the same Intent patterns provided by the upstream project. For
example, if a device contains an alternative music player, it must
still honor the Intent pattern issued by third-party applications to
pick a song.

Hence, in theory, so long as the CDD does not change and device
manufacturers correctly honor it, those Intent patterns described by
the Calendar application’s manifest should be available across
Android 4.0 devices. The Calendar application appears to support
ACTION_INSERT and ACTION_EDIT for both the collection MIME type
(vnd.android.cursor.dir/event) and the instance MIME type
(vnd.android.cursor.item/event). Notably, there is no support for
ACTION_PICK to pick a calendar or event, the way you can use
ACTION_PICK to pick a contact.
The MediaStore Provider
Playing back media is a popular pastime on Android devices, one in which your
app may want to participate. The easiest way for you to find out what
media is available for you to display, edit, or otherwise work with is via
the MediaStore content provider. MediaStore is part of the Android framework
and allows you to query for images, audio files, and video files that are
indexed on the device.
This chapter will review the general workings of MediaStore, plus work
through an example of getting video files — and their thumbnails — from
MediaStore.
Prerequisites
Understanding this chapter requires that you have read the chapters on:

	RecyclerView

	content provider theory

	content provider implementations

It is also a pretty good idea to have read the chapters on media
recording and playback that might be of relevance, depending on what
you intend to do with the MediaStore:

	Audio Playback

	Audio Recording

	Video Playback

	Using the Camera via 3rd-Party Apps

	Working Directly with the Camera

You might also wish to consider skimming through
the chapter on files again, as it will be cross-referenced in
several places in this chapter.
What Is the MediaStore?
The documentation for MediaStore
describes it this way:

The Media provider contains meta data for all available media on both internal and external storage devices.

This definition… leaves a bit to be desired.
From our standpoint as Android developers, the MediaStore is a
ContentProvider, supplied by Android. We can use it much like we use
other system-supplied providers, like ContactsContract and CalendarContract.
In this case, the primary role of MediaStore is for us to find media,
just as the primary role of ContactsContract is for us to find contacts.
The “meta data” reference in the documentation refers to the fact that
MediaStore itself does not store the media, even though that’s what the
name MediaStore would suggest. MediaMetadataStore would be a more
accurate description. We can learn about available media — names, durations,
etc. — and we can get a Uri from MediaStore pointing to the media,
but the media itself lives as a file somewhere else.
Indexed Media
MediaStore has media as a primary focus. Here, “media” refers to:

	Images (typically photos)

	Audio (music, podcasts, etc.)

	Video (whether recorded by the device, downloaded from somewhere, etc.)

MediaStore has intrinsic knowledge of these, particularly for the file
formats and codecs that Android supports. As a result, the index maintained
by MediaStore will contain some metadata in common for all file types,
such as:

	title

	MIME type

	dates (when the file was added, when the file was modified)

…and other metadata that will be unique to one or two of the major types,
such as:

	duration for audio and video (but not images)

	height and width for images and video (but not audio)

	geotagging for images and video (but not audio)

Indexed Non-Media
As was mentioned in passing in the chapter on files, Android
uses MTP for Android 4.0+ as the USB protocol for sharing files with a desktop
or notebook computer.
To power this, Android does not go straight to the filesystem, but rather works
with MediaStore. MediaStore maintains an index of all files, not just
“media”. Whatever shows up in MediaStore is what shows up to the user in
their Windows drive letter, macOS mounted volume, etc.
You too can query MediaStore for non-media files. Android will try to maintain
a MIME type — probably based on file extensions — and so you can find all
indexed PDF files, for example, by querying MediaStore.
MediaStore and “Other” External Storage
In the chapter on files, we covered the difference between
internal storage and external storage. Primarily, MediaStore maintains an
index of external storage.
However, many Android devices today have multiple locations that could be
considered “external storage”. While the vast majority of Android devices
have “external storage” as a portion of on-board flash memory, Android device
manufacturers are welcome to add other options, such as:

	card slots (typically microSD)

	USB host ports (capable of mounting thumb drives and the like)

From the standpoint of the Android SDK, such secondary storage locations are
off-limits, in that there is nothing in the Android SDK to tell us if there are
any such locations, where they are located (in terms of File objects to their
roots), whether they can be read from, or whether they can be written to. You
will find various blog posts and Stack Overflow answers where developers have
attempted to catalog all of the possibilities, using a mix of low-level Linux
information and manufacturer-based heuristics, but these techniques will be
generally unreliable across thousands of device models.
However, many manufacturers who have added such secondary storage options will
arrange to have that storage be indexed and be part of MediaStore. So, if the
user slides in a microSD card containing audio files, on many devices, when you
query MediaStore for available audio files, you will find those on the microSD
card in addition to those on “traditional” external storage. From the user’s
standpoint, in terms of consuming media, this is sufficient.
How Does My Content Get Indexed?
As was noted back in the chapter on files, if you write files
to external storage, you will want to use MediaScannerConnection to ensure
that those files get indexed. In that chapter, the focus was on ensuring that
your files would be visible to attached desktops/notebooks via MTP. However,
what really happens is that MediaScannerConnection updates MediaStore,
which in turn drives the MTP-served content.
Even if you fail to index content manually, at some point, Android is likely
to pick up the files. For example, Android will scan external storage after a
reboot. However, using MediaScannerConnection to “tap Android on the shoulder”
and have it index your file means that it will show up in MediaStore more
quickly. This is very important for multimedia assets — if you downloaded some
media, you want that to be indexed as soon as possible, so the user can turn
around and consume that media, whether through your app or another one on the
user’s device.
How Do I Retrieve Video from the MediaStore?
Video players will need to find out what videos are available on the device,
eligible for playback. They may wish to retrieve other details, such as the
video title, duration, and so forth. And, of course, they will need something
that they can use to actually play back the video itself.
In this section, we will examine elements of the
RecyclerView/VideoList
sample project. This project will show the
roster of available videos; tapping on a video in the list will launch the user’s
video player to watch that video. See also the chapter on advanced RecyclerView techniques
for more about the RecyclerView aspects of this app.
Requesting Permission
Starting on API Level 19 devices, you need to hold the READ_EXTERNAL_STORAGE
or WRITE_EXTERNAL_STORAGE permissions to be able to work with the
MediaStore. Hence, the VideoList sample app has the READ_EXTERNAL_STORAGE
permission in its manifest, as it has no need to write to external
storage:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.recyclerview.videolist"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

 <application
 android:icon="@drawable/ic_launcher"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from RecyclerView/VideoList/app/src/main/AndroidManifest.xml)
Since READ_EXTERNAL_STORAGE is a dangerous permission, we need to request this
permission at runtime, in addition to requesting it in the manifest. MainActivity
implements this logic, using the same basic approaches as is seen in
the chapter on permissions.
Querying for Video
MainActivity uses the Loader framework,
since MediaStore is a
ContentProvider and Loader is a convenient way to asynchronously load
content from a ContentProvider. MainActivity implements the
LoaderManager.LoaderCallbacks interface.
Calling initLoader() is done in a loadVideos() method:

 private void loadVideos() {
 getSupportLoaderManager().initLoader(0, null, this);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
That method, in turn, is called in two places:

	
onCreate(), if we already have the READ_EXTERNAL_STORAGE permission

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setLayoutManager(new LinearLayoutManager(this));
 setAdapter(new VideoAdapter());

 if (state!=null) {
 isInPermission=
 state.getBoolean(STATE_IN_PERMISSION, false);
 }

 if (hasFilesPermission()) {
 loadVideos();
 }
 else if (!isInPermission) {
 isInPermission=true;

 ActivityCompat.requestPermissions(this,
 new String[] {Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_PERMS);
 }
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)

	
onRequestPermissionsResult(), if we were just granted the READ_EXTERNAL_STORAGE permission

 @Override
 public void onRequestPermissionsResult(int requestCode,
 String[] permissions,
 int[] grantResults) {
 isInPermission=false;

 if (requestCode==REQUEST_PERMS) {
 if (hasFilesPermission()) {
 loadVideos();
 }
 else {
 finish(); // denied permission, so we're done
 }
 }
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
The initLoader() call triggers a call to onCreateLoader(), where MainActivity
creates a CursorLoader to query the MediaStore for videos:

 @Override
 public Loader<Cursor> onCreateLoader(int arg0, Bundle arg1) {
 return(new CursorLoader(this,
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 null, null, null,
 MediaStore.Video.Media.TITLE));
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
The Uri for video content from MediaStore is
MediaStore.Video.Media.EXTERNAL_CONTENT_URI. Passing in null for the
list of columns to return will return all available columns — not the most
efficient approach, but it is convenient. The sort order of
MediaStore.Video.Media.TITLE has the results sorted by the TITLE column,
so the videos are returned alphabetically.
Our other LoaderManager.LoaderCallbacks methods are fairly conventional,
updating a VideosAdapter that our RecyclerView uses for displaying
the videos:

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 ((VideoAdapter)getAdapter()).setVideos(c);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 ((VideoAdapter)getAdapter()).setVideos(null);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)
Showing the Thumbnails
If you have used a video player on Android, most have an activity (or fragment)
akin to the one we are implementing in this section. And, most of those will
show thumbnail images of the videos in question.
However, retrieving and showing those thumbnails is a bit complicated, because
Android may need to generate the thumbnail, if there is not already a thumbnail
for the video, or if its cache of thumbnails was cleared. Generating a thumbnail
takes time, time that we do not want to spend on the main application thread.
For that, we will use Picasso, as profiled in the chapter on Internet access.
The thumbnail will need to be displayed using some sort of ImageView.
That is handled by RowController, which is the ViewHolder that we are
using with VideosAdapter. It, in turn, uses Picasso to load the thumbnail:

 void bindModel(Cursor row) {
 title.setText(row.getString(
 row.getColumnIndex(MediaStore.Video.Media.TITLE)));

 videoUri=
 ContentUris.withAppendedId(
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));

 Picasso.with(thumbnail.getContext())
 .load(videoUri.toString())
 .fit().centerCrop()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(thumbnail);

 int mimeTypeColumn=
 row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);

 videoMimeType=row.getString(mimeTypeColumn);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)
We construct the Uri to the video using ContentUris.withAppendedId().
Picasso knows how to handle such Uri values, identifying them as coming from
the MediaStore and using appropriate methods to retrieve a suitable thumbnail.
That will be done in the background, with a placeholder image shown while the
thumbnail is loading.
The net result is that when we populate our RecyclerView with our
videos, the rows will initially
have the placeholder image, replaced by the actual video thumbnails as they
get loaded.
Playing the Selection
RowController also sets itself up to find out about clicks on the list rows.
The objective is to play back the video when the user clicks on a row.
It simply constructs an Intent to view
the video and starts an activity with it:

 @Override
 public void onClick(View v) {
 Intent i=new Intent(Intent.ACTION_VIEW);

 i.setDataAndType(videoUri, videoMimeType);
 title.getContext().startActivity(i);
 }

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)
videoUri and videoMimeType were populated in the bindModel() method
shown above, so they will have the proper values for whatever row the user
clicked upon.
The Results
Running this on a device with videos available should show the list of those
videos, complete with title and thumbnail:

[image: The Video List Demo App]

Figure 752: The Video List Demo App
Tapping on any entry in the list should bring up a video player on your device,
assuming that one or more such players (that are capable of supporting
content:// Uri values) are installed.
Consuming Documents
Android has long offered the ability for an app to pick some file or
stream from another app and consume it. However, the original options
were designed around an app loading content from another app. Even
though our code would be requesting content based on abstractions like
MIME types, the implementation and user experience would be based
on the traditional “pick an app to fulfill this request” chooser.
Google, given its clear interest in cross-cutting storage engines like
Google Drive, wanted something better. In Android 4.4, they added the
Storage Access Framework (SAF) to provide a better user experience, with
only modest changes to client code. With Android’s increasing reliance
upon content and document providers for cross-app content sharing, understanding
the Storage Access Framework is fairly important for modern app development.
In this chapter, we will examine what it takes to consume documents
published via the SAF.
Prerequisites
This chapter assumes that you have read
the chapter on ContentProvider patterns or have equivalent
experience with consuming streams published by a ContentProvider.
The Storage Access… What?
Let’s think about photos for a minute.
A person might have photos managed as:

	on-device photos, mediated by an app like a gallery

	photos stored online in a photo-specific service, like Instagram

	photos stored online in a generic file-storage service, like Google Drive
or Dropbox

Now, let’s suppose that person is in an app that allows the user to pick a photo,
such as to attach to an email.
The classic Android solution would be for the user to have to first choose
the app to use to find the photo (e.g., Gallery, Instagram, Google Drive, Dropbox),
then find the photo using that app. Then, if all goes well, the original app
would receive a Uri to that photo and be able to make use of it.
However, this flow has three main problems:

	From the user’s standpoint, they need to know where they have the photo
before they can go looking for it. Given the prominence of generic file-storage
services, the user might not remember where the photo is stored, but might remember
enough details about the photo (e.g., timeframe when taken, tags that might have
been attached to the photo) to find it… but the user has to sequentially search
each possible photo-storing app until the right one is found.

	From the client app developer’s standpoint, too many apps screw up handling
the classic ACTION_PICK and ACTION_GET_CONTENT activities, failing to return
a result in all cases. Users then are as likely to blame the client app for
the mistake as they are to blame the photo-storing app or Android itself.

	None of this was designed with online file-sharing services in mind. What
happens if an app knows about a possible file, but the file is not available on
the device right now, because it has not been downloaded from the online service?

The Storage Access Framework is designed to address these issues. It provides
its own “picker” UI to allow users to find a file of interest that matches the
MIME type that the client app wants. File providers simply publish details
about their available files — including those that may not be on the device
but could be retrieved if needed. The picker UI allows for easy browsing and
searching across all possible file providers, to streamline the process for
the user. And, since Android is the one providing the picker, the picker should
more reliably give a result to the client app based upon the user’s selection
(if any).
The Storage Access Framework Participants
Providers are specialized ContentProvider implementations, usually extending
DocumentsProvider, that can tell Android about the documents that are published
by an app. This includes providing any sort of organizational structure
(directory tree, tag cloud, etc.)
The clients are apps that wish to consume (or create) documents managed
by providers. Clients will indicate what sort of document they want, in the
form of a MIME type, where applicable.
The picker is the system UI that allows the user to pick a document
(or documents) from among the documents published by all providers that meet
the criteria established by a client requesting access to the document(s).
Picking How to Pick (a Peck of Pickled Pepper Photos)
ACTION_PICK would seem to be the Intent action to use to pick something.
It works, but it is designed for the case where you know the specific
collection of “somethings” you want to pick from. Use this, for example,
to pick a contact specifically out of ContactsContract.
In cases where you know the MIME type you want, but you do not particularly
know or care about the exact source of the file, use ACTION_GET_CONTENT
on API Level 18 and below for everything.
For MIME types that clearly
represent a document, file, or other sort of stream, use ACTION_OPEN_DOCUMENT
(and the SAF) on API Level 19+. The SAF picker will incorporate both full-fledged
SAF-compliant providers’ documents along with apps that only support
ACTION_GET_CONTENT. However, since ACTION_OPEN_DOCUMENT is only available
on API Level 19+ devices, if you are supporting older devices, you will need
to check Build.VERSION.SDK_INT and choose an Intent action accordingly.
For MIME types that represent entries in a database (e.g., a calendar entry),
use ACTION_GET_CONTENT, even on API Level 19+. Google also recommends
using ACTION_GET_CONTENT on API Level 19+ “if you want your app to simply
read/import data”, though it is unclear why they make this recommendation or
why the user experience should differ based upon how the bytes would be used.
Opening a Document
Technically, we do not “open” a document using ACTION_OPEN_DOCUMENT. Instead,
we are requesting a Uri pointing to some document that the user chooses.
To do that, create an Intent with:

	
ACTION_OPEN_DOCUMENT as the action

	
CATEGORY_OPENABLE as the category

	your desired MIME type

Then, use that Intent with startActivityForResult().
For example, the
Documents/Consumer
sample application contains a ConsumerFragment that adds an “Open” item to the
action bar overflow. Clicking on “Open” triggers a call to the open() method
on the fragment. And, for API Level 19+ devices, that will in turn request to
“open” a document:

 @TargetApi(Build.VERSION_CODES.KITKAT)
 private void open() {
 Intent i=new Intent().setType("image/*");

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 startActivityForResult(i.setAction(Intent.ACTION_OPEN_DOCUMENT)
 .addCategory(Intent.CATEGORY_OPENABLE),
 REQUEST_OPEN);
 }
 else {
 startActivityForResult(i.setAction(Intent.ACTION_GET_CONTENT)
 .addCategory(Intent.CATEGORY_OPENABLE),
 REQUEST_GET);
 }
 }

(from Documents/Consumer/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)
This open() method also gracefully degrades for older devices, falling back
to ACTION_GET_CONTENT. In both cases, we are trying to allow the user to pick
some image (MIME type of image/*). The two startActivityForResult() calls
use different request IDs (REQUEST_OPEN versus REQUEST_GET), so that we can
distinguish the sort of result that we get in onActivityResult():

 @Override
 public void onActivityResult(int requestCode, int resultCode,
 Intent resultData) {
 if (resultCode==Activity.RESULT_OK) {
 if (resultData!=null) {
 uri=resultData.getData();

 if (requestCode==REQUEST_OPEN) {
 getLoaderManager().initLoader(0, null, this);
 }
 else {
 logToTranscript(uri.toString());
 }
 }
 }
 }

(from Documents/Consumer/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)
Both ACTION_GET_CONTENT and ACTION_OPEN_DOCUMENT should supply a Uri
in the result Intent that points to the document the user chose, if the user
actually chose one and we got RESULT_OK as the result code. This sample logs
that Uri value to a “transcript” (TextView inside of a ScrollView) to
show what we get back.
If the result is from an ACTION_OPEN_DOCUMENT request (REQUEST_OPEN request code),
we can try to get some metadata about the document. The provider should support
a query on the returned Uri that will give us the display name
(OpenableColumns.DISPLAY_NAME) and possibly the size of the file
(OpenableColumns.SIZE). So, we use the Loader framework to run this query,
with our fragment implementing the LoaderCallbacks:

 public Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
 return(new CursorLoader(getActivity(), uri, PROJECTION, null, null, null));
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 transcript.setText(null);
 logToTranscript(uri.toString());

 if (c!=null && c.moveToFirst()) {
 int displayNameColumn=
 c.getColumnIndex(OpenableColumns.DISPLAY_NAME);

 if (displayNameColumn>=0) {
 logToTranscript("Display name: "
 +c.getString(displayNameColumn));
 }

 int sizeColumn=c.getColumnIndex(OpenableColumns.SIZE);

 if (sizeColumn<0 || c.isNull(sizeColumn)) {
 logToTranscript("Size not available");
 }
 else {
 logToTranscript(String.format("Size: %d",
 c.getInt(sizeColumn)));
 }
 }
 else {
 logToTranscript("...no metadata available?");
 }
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 // unused
 }

(from Documents/Consumer/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)
If we get results back, we try to read out these two values and record them
to the transcript as well. Note, though, that:

	There is no guarantee that either column will be in the result set, or that
the result set will have any rows

	The size might not be known, particularly if the file is not presently resident
on the device (e.g., it is being downloaded now, given that the user chose the
file), and so we need to call isNull() on the Cursor to see if we actually
have a SIZE value before trying to get it as an integer

The user is presented with the system’s picker, to choose an image, complete
with a navigation drawer to get to various spots within the picker:

[image: Storage Access Framework Picker, Showing Images]

Figure 753: Storage Access Framework Picker, Showing Images
When the user taps on an image, the results wind up in our transcript UI:

[image: Uri, Display Name, and Size of Chosen File]

Figure 754: Uri, Display Name, and Size of Chosen File
Note that the default behavior of ACTION_OPEN_DOCUMENT is to let the user choose
a single file. If your Intent includes EXTRA_ALLOW_MULTIPLE, set to true,
then the user can choose multiple documents. Rather than getting their Uri
values via getData() on the result Intent, you will need to call getClipData()
on the Intent and iterate over the “clipboard entries”.
The Uri itself can then be used to get an InputStream or OutputStream
for the contents, using openInputStream() and openOutputStream() on
ContentResolver, respectively. Note, though, that you cannot pass the Uri
to other applications, as they may not have rights to work with that document
the way that you do.
Why We Want Things To Be Openable
You will notice that both the ACTION_OPEN_DOCUMENT and the
ACTION_GET_CONTENT Intent objects created in the preceding example
have CATEGORY_OPENABLE applied to them. This is supposed to guarantee
that we can actually consume the content represented by the Uri that
we get. In particular, we should be able to use a ContentResolver
and open streams on that content.
If we leave off CATEGORY_OPENABLE, it is possible that we will
get a Uri that we cannot open ourselves.
The difference boils down to what use we intend to put the Uri toward:

	If all we plan to do is use that Uri for is to wrap it in an
ACTION_VIEW Intent and start an activity on it, you could skip
CATEGORY_OPENABLE and perhaps offer more choices to your user

	Otherwise, use CATEGORY_OPENABLE

The Rest of the CRUD
ACTION_OPEN_DOCUMENT will give you a Uri for a document that you can
open for reading — the “R” in “CRUD”.
However, the other CRUD operations are also entirely possible.
Create
ACTION_CREATE_DOCUMENT will give you a Uri for a document
that you can open for writing, as it is your document.
To do this, construct an Intent with:

	an action of ACTION_CREATE_DOCUMENT

	a category of CATEGORY_OPENABLE

	the MIME type of the content you wish to write

	an extra, named EXTRA_TITLE, containing your desired filename

Then, invoke startActivityForResult() on that Intent, and use the Uri
supplied in the result Intent delivered to onActivityResult().
Update
The Uri returned from an ACTION_OPEN_DOCUMENT request may be writable.
If it is, you can use openOutputStream() on a ContentResolver to
write to that document. You can determine if a document is writable by examining
the COLUMN_FLAGS value returned from a query() on the Uri — if
it includes FLAG_SUPPORTS_WRITE, you can write to the document.
Delete
Similarly, if the COLUMN_FLAGS value includes FLAG_SUPPORTS_DELETE,
you can delete the document by calling the static deleteDocument()
method on the DocumentsContract class, supplying a ContentResolver
plus the Uri of the document to be deleted.
The DocumentFile Helper
The support-core-utils library from the Android Support libraries contains
a DocumentFile class. This provides a light File-like layer atop
the low-level API offered through a ContentResolver or DocumentsContract.
Of note, DocumentFile offers convenience methods for:

	determining read/write access (canRead() and canWrite())

	getting the display name (getName()) and length (length()) of the document

	getting the MIME type (getType())

	deleting the document (delete())

	and so on

DocumentFile can actually work with raw files — just create a
DocumentFile using the static fromFile() method. More often, though,
you will create a DocumentFile wrapped around the Uri that you
get from ACTION_OPEN_DOCUMENT or ACTION_CREATE_DOCUMENT. For that,
there is the static fromSingleUri() method.
CWAC-Document and DocumentFileCompat
There is one significant problem with DocumentFile, though: it only works
on document Uri values on API Level 19 and higher. However, we can get such
Uri values on older devices, and we can get Uri values from other places
than a DocumentProvider (e.g., FileProvider).
The CWAC-Document library offers
a DocumentFileCompat class. This is forked from the official DocumentFile
but adds support for older devices and non-document Uri values.
Specifically, for a non-document content Uri, you can get:

	the display name, queried via the OpenableColumns

	the length, also from the OpenableColumns

	the MIME type, from ContentResolver and getType()

Also, some DocumentFile methods whose values can be safely hard-coded for
legacy documents, like isVirtual() (false), isDirectory() (false),
and isFile() (true) are supported.
DocumentFileCompat also offers convenience methods for:

	Accessing streams (openInputStream(), openOutputStream())

	Copying the content to something else (copyTo())

	Copying something else into this content (copyFrom(), copyFromAsset())

We will see the use of DocumentFileCompat in the next couple of sample apps.
Getting Durable Access
By default, you will have the rights to read (and optionally write) to
the document represented by the Uri until the activity that requested
the document via ACTION_OPEN_DOCUMENT or ACTION_CREATE_DOCUMENT is destroyed.
If you pass the Uri to another component — such as a service –
you will need to add FLAG_GRANT_READ_URI_PERMISSION and/or
FLAG_GRANT_WRITE_URI_PERMISSION to the Intent used to start that
component. That extends your access until that component is destroyed.
If, however, you need the rights to survive your app restarting, you can call
takePersistableUriPermission() on a ContentResolver, indicating the
Uri of the document and the permissions (FLAG_GRANT_READ_URI_PERMISSION
and/or FLAG_GRANT_WRITE_URI_PERMISSION) that you want persisted. Those
rights will then survive a reboot. However:

	They will not survive the document being deleted, so just because
you have a saved Uri, do not assume that the Uri will still be valid

	Not every storage provider will grant such persistable permissions

	This will only work for Uri values that you get from
ACTION_OPEN_DOCUMENT or ACTION_CREATE_DOCUMENT, not ones that you get
by other means (e.g., ACTION_GET_CONTENT)

	You can revoke those rights by calling releasePersistableUriPermission()
later on, and there is nothing stopping the storage provider from
revoking those permissions itself at some time in the future

In addition, you can call getPersistedUriPermissions() to find out what
persisted permissions your app has. This returns a List of
UriPermission objects, where each one of those represents a Uri,
what persisted permissions (read or write) you have, and when the permissions
will expire.
If you do not have persistable permissions when you get the Uri,
your primary recourse is to make a local copy of the content, while you
still have temporary access to it. The
Documents/Durable
sample application illustrates this. It is based on the Documents/Consumer
sample app from earlier in this chapter, with a few key changes:

	It provides menu options for opening a document via ACTION_OPEN_DOCUMENT
or getting content via ACTION_GET_CONTENT

	It uses an IntentService (DurablizerService)
to either obtain persistable permissions to the
content or to make a local copy, delivering the results asynchronously via
an event bus

	It uses DocumentFileCompat instead of direct ContentResolver queries to
get the content metadata

For an event bus, we use greenrobot’s EventBus, added as a dependency
via build.gradle, along with the CWAC-Document library:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 applicationId "com.commonsware.android.documents.durable"
 }
}

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.android.support:support-fragment:27.1.0'
 implementation 'org.greenrobot:eventbus:3.0.0'
 implementation 'com.commonsware.cwac:document:0.2.0'
}

(from Documents/Durable/app/build.gradle)
MainActivity is the same as in the Documents/Consumer sample app,
as is the core UI of ConsumerFragment (ScrollView with a TextView
inside). However, ConsumerFragment registers for events in onStart()
and unregisters in onStop():

 @Override
 public void onStart() {
 super.onStart();

 EventBus.getDefault().register(this);
 }

 @Override
 public void onStop() {
 EventBus.getDefault().unregister(this);

 super.onStop();
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)
The menu resource now has two items, open (for ACTION_OPEN_DOCUMENT)
and get (for ACTION_GET_CONTENT):

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/get"
 android:showAsAction="never"
 android:title="@string/get" />
 <item
 android:id="@+id/open"
 android:enabled="false"
 android:showAsAction="never"
 android:title="@string/open" />

</menu>

(from Documents/Durable/app/src/main/res/menu/actions.xml)
The open one is disabled (android:enabled="false") at the outset,
as ACTION_OPEN_DOCUMENT only works on API Level 19+ devices, and
the minSdkVersion of this sample is 15.
In onCreateOptionsMenu(), we conditionally enable the open item, and
in onOptionsItemSelected(), we route the menu items to open() and
get() methods:

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.actions, menu);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.KITKAT) {
 menu.findItem(R.id.open).setEnabled(true);
 }

 super.onCreateOptionsMenu(menu, inflater);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.open) {
 open();
 }
 else if (item.getItemId()==R.id.get) {
 get();
 }

 return(super.onOptionsItemSelected(item));
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)
Those methods invoke their associated Intent actions, using */* this
time for the MIME type:

 @TargetApi(Build.VERSION_CODES.KITKAT)
 private void open() {
 Intent i=
 new Intent()
 .setType("*/*")
 .setAction(Intent.ACTION_OPEN_DOCUMENT)
 .addCategory(Intent.CATEGORY_OPENABLE);

 startActivityForResult(i, REQUEST_OPEN);
 }

 private void get() {
 Intent i=
 new Intent()
 .setType("image/png")
 .setAction(Intent.ACTION_GET_CONTENT)
 .addCategory(Intent.CATEGORY_OPENABLE);

 startActivityForResult(i, REQUEST_GET);
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)
However, whereas the Documents/Consumer sample app processed the resulting
Uri directly in onActivityResult(), now we delegate that work to a
DurablizerService that is responsible for ensuring that we have durable
access to the content:

 @Override
 public void onActivityResult(int requestCode, int resultCode,
 Intent resultData) {
 if (resultCode==Activity.RESULT_OK) {
 getActivity()
 .startService(new Intent(getActivity(), DurablizerService.class)
 .setData(resultData.getData())
 .addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION));
 }
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)
We pass the Uri via the data facet of the Intent (setData()), plus
add the FLAG_GRANT_READ_URI_PERMISSION flag. This ensures that
DurablizerService will have access to the content even if MainActivity
is destroyed before our work is complete.
onHandleIntent() in DurablizerService has a basic flow:

	Try to obtain persistable permissions

	If that does not work, try to make a local copy

	If either of those work, deliver a DocumentFile to the UI layer via
a ContentReadyEvent

 @Override
 protected void onHandleIntent(Intent intent) {
 Uri document=intent.getData();
 boolean weHaveDurablePermission=obtainDurablePermission(document);

 if (!weHaveDurablePermission) {
 document=makeLocalCopy(document);
 }

 if (weHaveDurablePermission || document!=null) {
 Log.d(getClass().getSimpleName(), document.toString());

 DocumentFileCompat docFile=buildDocFileForUri(document);

 Log.d(getClass().getSimpleName(),
 "Display name: "+docFile.getName());
 Log.d(getClass().getSimpleName(),
 "Size: "+Long.toString(docFile.length()));

 EventBus.getDefault().post(new ContentReadyEvent(docFile));
 }
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/DurablizerService.java)
The job of obtainDurablePermission() is to use takePersistableUriPermission()
on a ContentResolver to request read and write access, at least
on Android 4.4 or higher. So, we create a perms value that requests
both FLAG_GRANT_READ_URI_PERMISSION and FLAG_GRANT_WRITE_URI_PERMISSION,
and pass that to takePersistableUriPermission(), along with the document
Uri:

 private boolean obtainDurablePermission(Uri document) {
 boolean weHaveDurablePermission=false;

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.KITKAT) {
 int perms=Intent.FLAG_GRANT_READ_URI_PERMISSION
 | Intent.FLAG_GRANT_WRITE_URI_PERMISSION;

 try {
 getContentResolver()
 .takePersistableUriPermission(document, perms);

 for (UriPermission perm :
 getContentResolver().getPersistedUriPermissions()) {
 if (perm.getUri().equals(document)) {
 weHaveDurablePermission=true;
 }
 }
 }
 catch (SecurityException e) {
 // OK, we were not offered any persistable permissions
 }
 }

 return(weHaveDurablePermission);
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/DurablizerService.java)
Unfortunately,
while takePersistableUriPermission() is synchronous, it does not actually
tell us if we have those permissions.
The only way to find out if we have access is to call getPersistedUriPermissions(),
which returns a roster of UriPermission objects listing every
persisted Uri permission held by our app. Then, we have to sift through
those, looking for one matching our desired document Uri.
obtainDurablePermission() then returns a boolean indicating whether
or not our request for persistable permissions succeeded.
makeLocalCopy() will be called if obtainDurablePermission() returns
false (e.g., we are on an older Android device or otherwise used
ACTION_GET_CONTENT). Its job is to make a local copy of the content,
so we have indefinite access:

 private Uri makeLocalCopy(Uri document) {
 DocumentFileCompat docFile=buildDocFileForUri(document);
 Uri result=null;

 if (docFile.getName()!=null) {
 try {
 String ext=
 MimeTypeMap.getSingleton().getExtensionFromMimeType(docFile.getType());

 if (ext!=null) {
 ext="."+ext;
 }

 File f=File.createTempFile("cw_", ext, getFilesDir());

 docFile.copyTo(f);
 result=Uri.fromFile(f);
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception copying content to file", e);
 }
 }

 return(result);
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/DurablizerService.java)
We start off by getting a DocumentFileCompat for the document Uri, using
a buildDocFileForUri() helper method:

 private DocumentFileCompat buildDocFileForUri(Uri document) {
 DocumentFileCompat docFile;

 if (document.getScheme().equals(ContentResolver.SCHEME_CONTENT)) {
 docFile=DocumentFileCompat.fromSingleUri(this, document);
 }
 else {
 docFile=DocumentFileCompat.fromFile(new File(document.getPath()));
 }

 return(docFile);
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/DurablizerService.java)
This handles both likely scenarios:

	We get a content: Uri, and so our DocumentFileCompat needs to be created
using the fromSingleUri() factory method

	We get a file: Uri, and so our DocumentFileCompat needs to be created
using the fromFile() factory method

Back in makeLocalCopy(), we get the file extension associated with the content’s
MIME type, by way of MimeTypeMap and getExtensionFromMimeType(). Calling
getType() on the DocumentFileCompat will fail if, for some reason,
we have a content: Uri but do not have any permission to work with
it. For example, had we failed to include FLAG_GRANT_READ_URI_PERMISSION
on the Intent that started DurablizerService and if the MainActivity
were destroyed by this point, we would not have any rights to use the
content, and getType() will fail to get the MIME type for the content.
But, if getType() succeeds, we try to get that file extension. That too
might fail, returning null, if the MIME type is not recognized by MimeTypeMap.
We can live with a null file extension. However, if the file extension is
not null, it will lack the leading ., so we add that. Then, we create
a unique file in getFilesDir(), using that file extension and createTempFile()
on File. From there, we use the convenient copyTo() method on DocumentFileCompat
to copy that content into our temporary file.
The ContentReadyEvent simply wraps a DocumentFileCompat pointing to our
final content: either the original Uri (if we obtained durable access
to it) or on our local copy:

 static class ContentReadyEvent {
 final DocumentFileCompat docFile;

 ContentReadyEvent(DocumentFileCompat docFile) {
 this.docFile=docFile;
 }
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/DurablizerService.java)
Back in ConsumerFragment, when the ContentReadyEvent is received,
we log the details to the transcript:

 @Subscribe(threadMode=ThreadMode.MAIN)
 public void onContentReady(DurablizerService.ContentReadyEvent event) {
 logToTranscript(event.docFile.getUri().toString());
 logToTranscript("Display name: "+event.docFile.getName());
 logToTranscript("Size: "+Long.toString(event.docFile.length()));
 }

(from Documents/Durable/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)
For cases where we are granted persistable permissions, the output
will show a content: Uri, as we can continue to use the original
content:

[image: Durable Document Demo, Showing Document Result]

Figure 755: Durable Document Demo, Showing Document Result
For cases where we were not granted persistable permissions — such as
ACTION_GET_CONTENT — the output will show a file: Uri, representing
the local copy of the content:

[image: Durable Document Demo, Showing Content Result]

Figure 756: Durable Document Demo, Showing Content Result
Another Durable Example: Diceware
Dealing with durable documents does not require a service. Services are a good
idea when you might need to make a copy of the document (e.g., the
ACTION_GET_CONTENT scenario) and you do not know how big that document
might be. In cases where the document is known to be small, just using
background threads is fine, such as via RxJava.
With that in mind, here is another sample app that demonstrates using
ACTION_OPEN_DOCUMENT and ACTION_GET_CONTENT to work with user-provided
documents. Unlike most examples in this book, though, this app has some
direct usefulness, as it is a passphrase generator, using the diceware approach.
Dice? Where?!?
Simply put, diceware
is a technique for generating a lengthy passphrase that
still has a chance of being memorable, by choosing words from a list of
common words.
The name “diceware” comes from the canonical way of generating the passphrase:
rolling five six-sided dice (the sorts of dice that you see in casinos and
board games) and looking up words in a word list. The more randomly-chosen
words in the passphrase, the stronger the passphrase and the more time it would
take for it to be cracked by somebody.
Perhaps the most famous such passphrase is correct horse battery staple,
though a four-word passphrase is probably a bit short today.
We Want Words!
To use the diceware approach to generate a passphrase, you need a list of words.
A traditional diceware word list contains two columns. The right-hand column
is the word, and the left-hand column is the dice roll that corresponds to that
word:

4244 liverwurst
4245 lizard
4246 llama
4251 luau
4252 lubricant
4253 lucidity
4254 ludicrous
4255 luggage

The canonical diceware site has
a number of word lists for a variety of languages. Each of those lists has 7,776
words, which equates to 65, or the number of combinations of five
rolls of a six-sided die.
However, other word lists also exist. The EFF has published
a few lists, aiming for more commonly-used words and eliminating ones
that might cause confusion (e.g., homophones).
They also have some short lists, with only 1,296 (64) words, with an
emphasis on shorter words. Shorter word lists require more words in the passphrase
to get the same level of security (e.g., 8 words from the short lists result
in similar security as 6 words from the longer lists).
The
Documents/Diceware
sample application packages one of the EFF word lists in the app itself, as an
asset, so the app is usable “out of the box” to generate a passphrase. However,
it also has action bar items to allow you to use ACTION_OPEN_DOCUMENT or
ACTION_GET_CONTENT to use a different word list, if you wanted.
The Results
First, let’s take a look at what the app does, before we see how it is built.
When you run the app, you immediately get a CardView showing a randomly-generated
passphrase, using the word list that is baked into the app:

[image: Diceware App, As Initially Launched]

Figure 757: Diceware App, As Initially Launched
Clicking the refresh action bar item will generate a fresh passphrase, while
tapping the “Words” action bar item lets you choose the length of the passphrase
(from 4-10 words):

[image: Diceware App, Showing Word Count Submenu]

Figure 758: Diceware App, Showing Word Count Submenu
There are three options in the action bar overflow:

	“Get Word File”, which uses ACTION_GET_CONTENT to allow you to pick an
alternative word list file

	“Open Word File”, which uses ACTION_OPEN_DOCUMENT to allow you to do the same

	“Reset”, which switches you back to the built-in word list

How We Got There
The Diceware app consists of a single PassphraseFragment, loaded using a FragmentTransaction
by the MainActivity.
Loading Our Words
PassphraseFragment uses two RxJava Observable objects:

	One manages loading the list of words and randomly choosing a word from
that list (wordsObservable)

	The other manages getting durable access to the external word file that
you choose to load in (docObservable)

When the app first runs, neither of these are set up yet. In onViewCreated(),
we confirm that we do not have a docObservable at the moment — if we did, that
would indicate that we are still in the middle of getting durable access to some
words. Normally, docObservable will be null here, and so we call a loadWords()
method:

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 passphrase=view.findViewById(R.id.passphrase);

 if (savedInstanceState!=null) {
 wordCount=savedInstanceState.getInt(STATE_WORD_COUNT);
 }

 if (docObservable!=null) {
 docSub();
 }
 else {
 loadWords(false, wordsObservable==null);
 }
 }

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
(we will cover docObservable, docSub(), and wordCount later)
loadWords() takes two boolean parameters:

	The first is “should we forcibly reload our words, even if we already loaded them before?”

	The second is “do we want to generate a new passphrase?”

PassphraseFragment is a retained fragment. It is entirely possible that we
already have our words loaded from disk, in which case we do not need to load
them again (e.g., after the user rotated the screen). So, here we pass false
for the first parameter.
However, just because the user rotated the screen does not mean that we want
to generate a fresh passphrase. We only want to do that if we do not already
have a passphrase, or have one being generated right now. If wordsObservable
exists (is not null), then we know that a passphrase has either been displayed
or is soon to be displayed, and so we can skip creating a new one. When the
app is first launched, though, wordsObservable is null, and so we tell
loadWords() to generate a passphrase.
loadWords() then sets up wordsObservable:

 private void loadWords(boolean forceReload, boolean regenPassphrase) {
 if (wordsObservable==null || forceReload) {
 final Application app=getActivity().getApplication();

 wordsObservable=Observable
 .defer(() -> (Observable.just(PreferenceManager
 .getDefaultSharedPreferences(app))))
 .subscribeOn(Schedulers.io())
 .map(sharedPreferences -> {
 PassphraseFragment.this.prefs=sharedPreferences;

 return(sharedPreferences.getString(PREF_URI, ""));
 })
 .map(s -> {
 InputStream in;

 if (s.length()==0) {
 in=app.getAssets().open(ASSET_FILENAME);
 }
 else {
 in=app.getContentResolver().openInputStream(Uri.parse(s));
 }

 return(readWords(in));
 })
 .cache()
 .observeOn(AndroidSchedulers.mainThread());
 }

 unsubWords();

 if (regenPassphrase) {
 wordsSub=wordsObservable.subscribe(this::rollDemBones, error -> {
 Toast
 .makeText(getActivity(), error.getMessage(), Toast.LENGTH_LONG)
 .show();
 Log.e(getClass().getSimpleName(), "Exception processing request",
 error);
 });
 }
 }

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
We only need to set up wordsObservable if it does not already exist or
forceReload is true. In either of those cases, we:

	Use defer() to set up an Observable that starts by loading the default
SharedPreferences for our app, as that is where we will record the Uri
of any external word list that we are supposed to be using

	Use subscribeOn() to move all this I/O to a background thread

	Use map() to extract the String preference value, keyed by PREF_URI,
that is the Uri for our external word list, returning the empty string if
there is no such Uri (note: we cannot return null because RxJava does not
like that)

	Use another map() to create an InputStream either on that external word
list or the one in assets/, then read in the words from that stream
via readWords()

	Use cache() to get RxJava to hold onto the results of all that work, so long
as we have the same wordsObservable object

	Use observeOn() to arrange to observe the results on the main application
thread

readWords() simply reads in the lines from the asset or external word list,
divides each line on the whitespace between the two columns, and extracts
the word from the second column:

 private static List<String> readWords(InputStream in) throws IOException {
 InputStreamReader isr=new InputStreamReader(in);
 BufferedReader reader=new BufferedReader(isr);
 String line;
 List<String> result=new ArrayList<>();

 while ((line = reader.readLine())!=null) {
 String[] pieces=line.split("\s");

 if (pieces.length==2) {
 result.add(pieces[1]);
 }
 }

 return(result);
 }

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
loadWords() then calls unsubWords(). This will dispose() any existing
subscription to wordsObservable:

 private void unsubWords() {
 if (wordsSub!=null && !wordsSub.isDisposed()) {
 wordsSub.dispose();
 }
 }

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
Then, if we need a passphrase (regenPassphrase is true), we subscribe()
to the wordsObservable, routing the word list to a rollDemBones()
method, and displaying a Toast and logging to Logcat in case there is some
sort of error (e.g., IOException reading in the words).
rollDemBones() uses SecureRandom to pick wordCount words from the list
and updates the passphrase TextView with those words:

 private void rollDemBones(List<String> words) {
 StringBuilder buf=new StringBuilder();
 int size=words.size();

 for (int i=0;i<wordCount;i++) {
 if (buf.length()>0) {
 buf.append(' ');
 }

 buf.append(words.get(random.nextInt(size)));
 }

 passphrase.setText(buf.toString());
 }

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
The net result, after all of that, is that when we first run the app, we
create and subscribe to the wordsObservable, and after a brief bit of I/O,
we show the initial passphrase to the user.
Getting More Words
Handling the ACTION_GET_CONTENT and ACTION_OPEN_DOCUMENT scenarios is
reminiscent of the Documents/Durable sample from before.
The two action bar items (“Get Word File”, “Open Word File”) route to get()
and open() methods, each of which call startActivityForResult() with the appropriate
action string:

 @TargetApi(Build.VERSION_CODES.KITKAT)
 private void open() {
 Intent i=
 new Intent()
 .setType("text/plain")
 .setAction(Intent.ACTION_OPEN_DOCUMENT)
 .addCategory(Intent.CATEGORY_OPENABLE);

 startActivityForResult(i, REQUEST_OPEN);
 }

 private void get() {
 Intent i=
 new Intent()
 .setType("text/plain")
 .setAction(Intent.ACTION_GET_CONTENT)
 .addCategory(Intent.CATEGORY_OPENABLE);

 startActivityForResult(i, REQUEST_GET);
 }

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
In onActivityResult(), if we received a RESULT_OK response, we set
up docObservable, where we:

	Use defer() and just() to “observe” the results of calling createDurableContent(),
supplying it the Intent that is the result of the startActivityForResult() call

	Use subscribeOn() to move that work to a background thread

	Use cache() to cache the results for as long as we have docObservable

	Use observeOn() to observe the results on the main application thread.

createDurableContent(), along with obtainDurablePermissions(),
makeLocalCopy(), and buildDocFileForUri(),
does the same work that the DurablizerService did in the
Documents/Durable sample app:

	Get the persistable Uri permissions, if we can have them

	Make a local copy of the content, if we cannot

The biggest differences are that createDurableContent() saves the Uri
of either the opened document (if we got permission) or the local copy
in SharedPreferences, and it returns a DocumentFileCompat representing the
external word list:

 private DocumentFileCompat createDurableContent(Intent result) throws IOException {
 Uri document=result.getData();
 ContentResolver resolver=getActivity().getContentResolver();
 boolean weHaveDurablePermission=obtainDurablePermission(resolver, document);

 if (!weHaveDurablePermission) {
 document=makeLocalCopy(getActivity(), resolver, document);
 }

 if (weHaveDurablePermission || document!=null) {
 prefs
 .edit()
 .putString(PREF_URI, document.toString())
 .commit();

 return(buildDocFileForUri(getActivity(), document));
 }

 throw new IllegalStateException("Could not get durable permission or make copy");
 }

 private static boolean obtainDurablePermission(ContentResolver resolver,
 Uri document) {
 boolean weHaveDurablePermission=false;

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.KITKAT) {
 int perms=Intent.FLAG_GRANT_READ_URI_PERMISSION
 | Intent.FLAG_GRANT_WRITE_URI_PERMISSION;

 try {
 resolver.takePersistableUriPermission(document, perms);

 for (UriPermission perm : resolver.getPersistedUriPermissions()) {
 if (perm.getUri().equals(document)) {
 weHaveDurablePermission=true;
 }
 }
 }
 catch (SecurityException e) {
 // OK, we were not offered any persistable permissions
 }
 }

 return(weHaveDurablePermission);
 }

 private static Uri makeLocalCopy(Context ctxt, ContentResolver resolver,
 Uri document)
 throws IOException {
 DocumentFileCompat docFile=buildDocFileForUri(ctxt, document);
 Uri result=null;

 if (docFile.getName()!=null) {
 String ext=
 MimeTypeMap.getSingleton().getExtensionFromMimeType(docFile.getType());

 if (ext!=null) {
 ext="."+ext;
 }

 File f=File.createTempFile("cw_", ext, ctxt.getFilesDir());

 docFile.copyTo(f);
 result=Uri.fromFile(f);
 }

 return(result);
 }

 private static DocumentFileCompat buildDocFileForUri(Context ctxt, Uri document) {
 DocumentFileCompat docFile;

 if (document.getScheme().equals(ContentResolver.SCHEME_CONTENT)) {
 docFile=DocumentFileCompat.fromSingleUri(ctxt, document);
 }
 else {
 docFile=DocumentFileCompat.fromFile(new File(document.getPath()));
 }

 return(docFile);
 }

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
onActivityResult() then calls docSub():

 private void docSub() {
 docSub=docObservable.subscribe(documentFile -> {
 docObservable=null;
 loadWords(true, true);
 });
 }

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
Here, we subscribe to docObservable, and when the work is complete, we
set docObservable to null (indicating that we are done with it), then
call loadWords(true, true) to reload the words from our new source and generate a
new passphrase based on those words.
The net result is that tapping either of those action bar items brings up
the appropriate system UI to pick a piece of content, after which we start
using that content. And, since we are persisting the Uri to that external
word list in SharedPreferences, we will continue using that word source
for the foreseeable future.
Other Fiddly Bits
That “forseeable future” may not be all that long. If the user taps the
“Reset” action bar overflow item, we clear() our SharedPreferences,
then call loadWords(true, true) to read in the asset’s words plus generate
a passphrase based that word list:

 case R.id.reset:
 prefs.edit().clear().apply();
 loadWords(true, true);
 return(true);

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
The action bar itself is populated from a menu resource, one that defines a submenu
for the possible wordCount values:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/word_count"
 android:showAsAction="ifRoom"
 android:title="@string/menu_words">
 <menu>
 <group android:checkableBehavior="single">
 <item
 android:id="@+id/word_count_4"
 android:title="4" />
 <item
 android:id="@+id/word_count_5"
 android:title="5" />
 <item
 android:id="@+id/word_count_6"
 android:checked="true"
 android:title="6" />
 <item
 android:id="@+id/word_count_7"
 android:title="7" />
 <item
 android:id="@+id/word_count_8"
 android:title="8" />
 <item
 android:id="@+id/word_count_9"
 android:title="9" />
 <item
 android:id="@+id/word_count_10"
 android:title="10" />
 </group>
 </menu>
 </item>
 <item
 android:id="@+id/refresh"
 android:icon="@drawable/ic_cached_white_24dp"
 android:showAsAction="ifRoom"
 android:title="@string/menu_refresh" />
 <item
 android:id="@+id/get"
 android:showAsAction="never"
 android:title="@string/get" />
 <item
 android:id="@+id/open"
 android:enabled="false"
 android:showAsAction="never"
 android:title="@string/open" />
 <item
 android:id="@+id/reset"
 android:showAsAction="never"
 android:title="@string/menu_reset" />

</menu>

(from Documents/Diceware/app/src/main/res/menu/actions.xml)
We start with the word_count_6 item checked, and the wordCount field is also
initialized to 6. If the user taps on any of those submenu items, we update
the submenu to check the proper item, figure out the new wordCount (by cheating
and parsing the menu title as an Integer), and if the user changed word
count values we generate a fresh passphrase (without re-loading the word list):

 case R.id.word_count_4:
 case R.id.word_count_5:
 case R.id.word_count_6:
 case R.id.word_count_7:
 case R.id.word_count_8:
 case R.id.word_count_9:
 case R.id.word_count_10:
 item.setChecked(!item.isChecked());

 int temp=Integer.parseInt(item.getTitle().toString());

 if (temp!=wordCount) {
 wordCount=temp;
 loadWords(false, true);
 }

 return(true);

(from Documents/Diceware/app/src/main/java/com/commonsware/android/diceware/PassphraseFragment.java)
Since that wordCount value can change, we save it as part of the saved
instance state Bundle in onSaveInstanceState(), and we pull that value
back out of that Bundle in onCreateView().
However, we are not putting the generated passphrase in the saved instance
state Bundle ourselves, even though clearly that is being generated at runtime.
Here, Diceware takes advantage of a bit of a trick. On the layout
resource, the TextView that shows the passphrase has android:freezesText="true":

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="8dp">

 <android.support.v7.widget.CardView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:padding="8dp">

 <TextView
 android:id="@+id/passphrase"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:freezesText="true"
 android:textSize="20sp"
 android:typeface="monospace" />
 </android.support.v7.widget.CardView>

</FrameLayout>

(from Documents/Diceware/app/src/main/res/layout/activity_main.xml)
Ordinarily, the contents of a TextView are not part of the saved instance
state Bundle, because Android assumes that those values are fixed (e.g., via
android:text in the layout). In our case, we are generating the passphrase at
runtime, and so android:freezesText="true" tells Android to hold onto our
TextView content in the saved instance state Bundle automatically, the way that
it does for EditText. Hence, with that one attribute, Android will take care
of holding onto the passphrase across configuration changes for us.
Document Trees
ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT are sufficient
for most apps. These roughly correspond to the “file open” and “new file”
dialogs that you see in desktop operating systems.
However, there may be cases where you need the equivalent of a “choose folder”
dialog, to allow the user to pick a location where you can create
(or work with) several documents. For example, suppose that your app
offers a report generator, taking data from the database and creating
a report with tables and graphs and stuff. Some file formats, like PDF,
might have the entire report in a single file — for that, use
ACTION_CREATE_DOCUMENT to allow the user to choose where to put that
report. Other file formats, like HTML, might require several files
(e.g., the report body in HTML and embedded graphs in PNG format).
For that, you really need a “folder”, into which you can create all of
those individual bits of content.
For that, the Storage Access Framework offers document trees… as of
Android 5.0 (API Level 21). Android 4.4’s edition of the Storage Access
Framework lacked this capability.
Getting a Tree
Instead of using ACTION_OPEN_DOCUMENT, you can use ACTION_OPEN_DOCUMENT_TREE.
Once again, you will use startActivityForResult() to request access
to the tree. In onActivityResult(), the result Intent has a Uri
(getData()) that represents the tree. You should have full read/write
access not only to this tree but to anything inside of it.
Another option, starting with Android 7.0, is “scoped directory access”.
Here, you work with
StorageManager to access the device’s StorageVolume list. All devices
should have at least one StorageVolume, representing what we think of
as external storage. Some devices may have more than that, representing
mounted removable media. Given a StorageVolume, you can call
createAccessIntent() to get an Intent that will ask the user permission
for access to some portion of that volume, when called with
startActivityForResult(). As with ACTION_OPEN_DOCUMENT_TREE,
you get a Uri in onActivityResult() that you can then use to work
with that tree of files.
Working in the Tree
The simplest approach for then working with the tree is to use the
aforementioned DocumentFile wrapper. You can create one representing
the tree by using the fromTreeUri() static method, passing in the
Uri that you got from the ACTION_OPEN_DOCUMENT_TREE request.
From there, you can:

	Call listFiles() to get the immediate children of the root of this
tree, getting back an array of DocumentFile objects representing
those children

	Call isDirectory() to confirm that you do indeed have a tree
(or, call it on a child to see if that child represents a sub-tree)

	For those existing children that are files (isFile() returns
true), use getUri() to get the Uri for this child, so you can
read its contents using a ContentResolver and openInputStream()

	Call createDirectory() or createFile() to add new content as an
immediate child of this tree, getting a DocumentFile as a result

	For the createFile() scenario, call getUri() on the DocumentFile
to get a Uri that you can use for writing out the content using
ContentResolver and openOutputStream()

	and so on

Note that you can call takePersistableUriPermission() on a
ContentResolver to try to have durable access to the document tree,
just as you can for a Uri to an individual document.
Getting a Tree: Example
The
Documents/DocumentTree
sample application demonstrates how to use ACTION_OPEN_DOCUMENT_TREE and
StorageManager/StorageVolume to get a Uri pointing to a directory
that you can work with.
The Objective: a Preference for Storage
The sample app’s UI is a PreferenceFragment, where we have two
preferences: one to pick a document tree via ACTION_OPEN_DOCUMENT_TREE
and one to pick a StorageVolume from among the available volumes.
In theory, an app might include one of these for the user to pick
an alternative default storage location for files, for example. However,
since the StorageVolume APIs for choosing a storage volume are new
to API Level 24, we will only enable that preference on compatible
devices.
In each case, part of the work to get access to these locations involves
startActivityForResult(), which is unusual for a preference and adds
to the sample’s complexity.
What the User Sees
When the user first launches the app, the preference subtitles are
“no value”, because the user has not chosen anything yet:

[image: DocumentTree Demo, As Initially Launched]

Figure 759: DocumentTree Demo, As Initially Launched
If the user taps the “Document Tree Root” preference, the UI for the
Storage Access Framework appears, allowing the user to browse for
a directory of interest:

[image: DocumentTree Demo, Showing Internal Storage via SAF]

Figure 760: DocumentTree Demo, Showing “Internal Storage” via SAF
If the user chooses a location, the preference is updated with the
Uri of the selected document tree:

[image: DocumentTree Demo, Showing Selected Document Tree Uri]

Figure 761: DocumentTree Demo, Showing Selected Document Tree Uri
If the user taps the “Storage Volume” preference, a ListPreference
dialog appears, showing the available storage volumes:

[image: DocumentTree Demo, Showing Available Storage Volume(s)]

Figure 762: DocumentTree Demo, Showing Available Storage Volume(s)
On some devices, there will only be one option (“Internal shared storage”,
or what we developer call “external storage”). On other devices, if
there is a piece of removable storage mounted, there will be more than
one option.
If the user chooses a volume, a permission confirmation dialog may
appear, to confirm that the user wants to grant you access to the
“Documents” directory inside of that storage volume:

[image: DocumentTree Demo, Requesting Permission]

Figure 763: DocumentTree Demo, Requesting Permission
If the user grants permission, once again the preference’s subtitle
will reflect the Uri of the chosen location:

[image: DocumentTree Demo, Showing Selected Storage Volume Directory]

Figure 764: DocumentTree Demo, Showing Selected Storage Volume Directory
On Android 5.0-6.0 devices, the app will run, but the storage volume
preference is disabled:

[image: DocumentTree Demo, Running on Android 6.0]

Figure 765: DocumentTree Demo, Running on Android 6.0
The Document Tree
Of the two options, ACTION_OPEN_DOCUMENT_TREE is the most straight-forward
to implement: call startActivityForResult() and get your Uri in
onActivityResult().
But, since preferences are not set up to handle startActivityForResult()
or receive data via onActivityResult(), we have a little bit of work
to do.
The Preference XML
The app has a res/raw/settings.xml file containing our preferences:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
 <Preference
 android:key="documentTree"
 android:title="@string/pref_doc_tree" />
 <ListPreference
 android:dialogTitle="@string/dlg_storage_volume"
 android:enabled="@bool/is_nougat"
 android:key="storageVolume"
 android:title="@string/pref_storage_volume" />
</PreferenceScreen>

(from Documents/DocumentTree/app/src/main/res/xml/settings.xml)
The first one is our “Document Tree Root” preference… and it is literally
a Preference. This is not used all that frequently, since it cannot
actually collect any preference data. In cases like this one, where we
really want to handle this more like the user tapped on a generic
ListView row, it is a reasonable choice.
We will explore the ListPreference for the “Storage Volume” option later
in this section.
Populating the Preference
The UI is a PreferenceFragment subclass named SettingsFragment. In
onCreate(), we call addPreferencesFromResource() to inflate that
preference XML and populate the fragment:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.settings);

 prefDocTree=findPreference(PREF_DOC_TREE);
 prefs=prefDocTree
 .getSharedPreferences();
 prefs.registerOnSharedPreferenceChangeListener(this);
 onSharedPreferenceChanged(prefs, PREF_DOC_TREE);
 docTreeHelper=new DocumentHelper(this,
 prefDocTree);

 prefVolumes=(ListPreference)findPreference(PREF_VOLUMES);

 if (prefVolumes.isEnabled()) {
 populateVolumes();
 onSharedPreferenceChanged(prefs, PREF_STORAGE_URI);
 volumeHelper=
 new VolumeHelper(this, prefVolumes,
 PREF_STORAGE_URI, Environment.DIRECTORY_DOCUMENTS);
 }
 }

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)
We then do a few things to set up our “Document Tree Root” preference:

	We call findPreference() to get that Preference object, storing
it in a prefDocTree field.

	We ask the Preference for the SharedPreferences that are being
used, holding onto that in a field named prefs.

	Register the fragment itself as an OnSharedPreferenceChangeListener
for the SharedPreferences,
then immediately call onSharedPreferenceChanged(). That, in turn,
fills in the summary of the Preference with the current Uri, if we
have one:

 @Override
 public void onSharedPreferenceChanged(SharedPreferences prefs,
 String key) {
 if (PREF_DOC_TREE.equals(key)) {
 prefDocTree.setSummary(prefs.getString(key, "<no value>"));
 }
 else if (PREF_STORAGE_URI.equals(key)) {
 prefVolumes
 .setSummary(prefs
 .getString(key, "<no value>").replaceAll("%", "%%"));
 }
 }

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)

	Wrap that Preference in a DocumentHelper object,
which we will look at shortly.

We will cover the remainder of this code, pertaining to the other
preference, later.
Choosing a Tree
We need some common code between the document-root and the storage-volume
options:

	Bridging between a Preference and a hosting activity or fragment
that can do the startActivityForResult() and onActivityResult() work

	Calling takePersistableUriPermission()

	Updating the SharedPreferences with the Uri that we receive

The TreeUriPreferenceHelper abstract class, along with its DocumentHelper
and VolumeHelper subclasses, implement this common code.
A TreeUriPreferenceHelper subclass’ constructor needs to be passed
the Preference that we are “helping”, along with some implementation
of the Host interface:

 public interface Host {
 void startActivityForHelper(Intent intent,
 TreeUriPreferenceHelper helper);
 }

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/TreeUriPreferenceHelper.java)
DocumentHelper simply collects those values, passes them to
TreeUriPreferenceHelper, and registers itself to be called when the
user clicks on the Preference:

package com.commonsware.android.documenttree;

import android.content.Intent;
import android.preference.Preference;

public class DocumentHelper extends TreeUriPreferenceHelper
 implements Preference.OnPreferenceClickListener {
 public DocumentHelper(Host host, Preference pref) {
 super(host, pref);
 pref.setOnPreferenceClickListener(this);
 }

 @Override
 protected String getUriKey() {
 return (pref.getKey());
 }

 @Override
 public boolean onPreferenceClick(Preference preference) {
 Intent i=new Intent(Intent.ACTION_OPEN_DOCUMENT_TREE);

 host.startActivityForHelper(i, this);

 return(true);
 }
}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/DocumentHelper.java)
TreeUriPreferenceHelper, in turn, just holds onto the Host and
Preference in host and pref fields, respectively.
When the user clicks on the Preference, the onPreferenceClick() method
of the DocumentHelper is called. There, we create an
ACTION_OPEN_DOCUMENT_TREE Intent and call startActivityForHelper()
on the host.
Our Host, in this case, is the SettingsFragment, so it has an
implementation of startActivityForHelper():

 @Override
 public void startActivityForHelper(Intent intent,
 TreeUriPreferenceHelper helper) {
 if (helper==docTreeHelper) {
 startActivityForResult(intent, REQUEST_DOC_TREE);
 }
 else if (helper==volumeHelper) {
 startActivityForResult(intent, REQUEST_STORAGE_VOLUME);
 }
 }

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)
It just sees which TreeUriPreferenceHelper we are working with, then
calls startActivityForResult() with an appropriate request code
(e.g., REQUEST_DOC_TREE).
Eventually, SettingsFragment should be called with onActivityResult().
If the result is RESULT_OK, we forward the result along to the
TreeUriPreferenceHelper, based on the request code:

 @Override
 public void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (resultCode==Activity.RESULT_OK) {
 if (requestCode==REQUEST_DOC_TREE) {
 docTreeHelper.onActivityResult(data);
 }
 else if (requestCode==REQUEST_STORAGE_VOLUME) {
 volumeHelper.onActivityResult(data);
 }
 }
 }

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)
TreeUriPreferenceHelper has the common implementation of onActivityResult(),
where we call takePersistableUriPermission() (asking for read/write access)
and put the Uri into the SharedPreferences under some key:

 public void onActivityResult(Intent data) {
 Uri docTree=data.getData();
 ContentResolver cr=pref.getContext().getContentResolver();
 int perms=Intent.FLAG_GRANT_READ_URI_PERMISSION
 | Intent.FLAG_GRANT_WRITE_URI_PERMISSION;

 cr.takePersistableUriPermission(docTree, perms);

 pref
 .getSharedPreferences()
 .edit()
 .putString(getUriKey(), docTree.toString())
 .apply();
 }

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/TreeUriPreferenceHelper.java)
In the case of the document-root Preference, that key is the key from
the Preference itself (getKey()). Saving the value not only persists
it, but it also triggers the SettingsFragment to be notified about
the new value, causing SettingsFragment to update the Preference
summary… which is why we see the Uri show up on the screen right
after selecting it.
The Storage Volume
The StorageVolume scenario is a bit more complicated, in that we have
to provide the UI for choosing a volume — this is not provided by
Android. That, plus some interesting challenges in the StorageVolume
implementation, add to our level of effort.
The Preference XML
The settings.xml file has a ListPreference that will serve as
the UI for selecting a StorageVolume:

 <ListPreference
 android:dialogTitle="@string/dlg_storage_volume"
 android:enabled="@bool/is_nougat"
 android:key="storageVolume"

(from Documents/DocumentTree/app/src/main/res/xml/settings.xml)
Since the roster of possible volumes is dynamic, we cannot provide
our ListPreference contents via string-array resources, but instead
will need to do so from Java code.
Note that this preference is enabled based upon an is_nougat bool
resource. That is set to true for API Level 24+ (in res/values-v24/bools.xml),
false otherwise (in res/values/bools.xml).
Populating the Preference
Some of the work from onCreate() of SettingsFragment is for setting
up this ListPreference:

 prefVolumes=(ListPreference)findPreference(PREF_VOLUMES);

 if (prefVolumes.isEnabled()) {
 populateVolumes();
 onSharedPreferenceChanged(prefs, PREF_STORAGE_URI);
 volumeHelper=
 new VolumeHelper(this, prefVolumes,
 PREF_STORAGE_URI, Environment.DIRECTORY_DOCUMENTS);
 }

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)
We store the ListPreference in a prefVolumes field, before calling
a private populateVolumes() method to fill in the list contents. We
also trigger updating its summary via a manual call to
onSharedPreferenceChanged(), plus wrap the ListPreference in
a VolumeHelper that we will explore in detail shortly. And all of this
is wrapped in a check to see if the preference is enabled; if it is not,
we skip this work, as it is unnecessary.
populateVolumes() is responsible for providing the entries and values
for the ListPreference, based on the available volumes:

 @TargetApi(Build.VERSION_CODES.N)
 private void populateVolumes() {
 StorageManager storage=
 (StorageManager)getActivity()
 .getSystemService(Context.STORAGE_SERVICE);
 List<StorageVolume> volumes=storage.getStorageVolumes();

 Collections.sort(volumes, new Comparator<StorageVolume>() {
 @Override
 public int compare(StorageVolume lhs,
 StorageVolume rhs) {
 return(lhs.getDescription(getActivity())
 .compareTo(rhs.getDescription(getActivity())));
 }
 });

 String[] displayNames=new String[volumes.size()];
 String[] uuids=new String[volumes.size()];

 for (int i=0;i<volumes.size();i++) {
 displayNames[i]=volumes.get(i).getDescription(getActivity());
 uuids[i]=volumes.get(i).getUuid();

 if (uuids[i]==null) {
 uuids[i]=STORAGE_FAKE_UUID;
 }
 }

 prefVolumes.setEntries(displayNames);
 prefVolumes.setEntryValues(uuids);
 }

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)
We start off by getting a StorageManager system service. Here, we are
using the newer version of getSystemService(), introduced in API Level 21,
where we can pass in the Java class of the system service that
we want (StorageManager.class). This allows Android to return an instance
of the actual class, avoiding a cast.
Then, we call getStorageVolumes() on the StorageManager, to get the
roster of available StorageVolume objects.
Since those StorageVolume objects might arrive in any order, we sort()
them by their description, which is a human-readable label describing
what the volume is. For example, for removable storage, it might be a
combination of the manufacturer of the drive or card, plus the stated
capacity of the drive or card.
Since ListPreference wants two String arrays for the entries and
values, we set those up, filling them in from the description and UUIDs
of the volumes. Each volume is supposed to have a UUID, but that is not
guaranteed — in particular, the StorageVolume for external storage
returns null for getUuid(). Since ListPreference really does
not like null values, we substitute in a non-UUID string
(STORAGE_FAKE_UUID, defined to be "fake") to identify it. We then
give those two string arrays to the ListPreference.
Choosing a Volume
VolumeHelper, like DocumentHelper, is designed to help bridge
between the preference system, the hosting fragment, and the Android
APIs for getting a document tree Uri.
VolumeHelper takes two additional constructor parameters, beyond
the Host and Preference:

	The key for the SharedPreference under which the Uri will be
stored. The ListPreference will store the UUID of the storage volume
under its key, but once we get the Uri, we need to save it to the
SharedPreferences as well, for later use.

	The directory on the storage volume to use. createAccessIntent()
accepts any of the standard Environment directories — in this case,
we are using DIRECTORY_DOWNLOADS

The constructor holds onto those additional parameters in fields, then
registers itself to respond to when the ListPreference value changes,
because the user selected a different StorageVolume in the list:

package com.commonsware.android.documenttree;

import android.content.Intent;
import android.os.storage.StorageManager;
import android.os.storage.StorageVolume;
import android.preference.ListPreference;
import android.preference.Preference;
import java.util.List;

public class VolumeHelper extends TreeUriPreferenceHelper
 implements Preference.OnPreferenceChangeListener {
 private final String uriKey;
 private final String dirName;

 public VolumeHelper(Host host, ListPreference pref, String uriKey,
 String dirName) {
 super(host, pref);

 this.uriKey=uriKey;
 this.dirName=dirName;
 pref.setOnPreferenceChangeListener(this);
 }

 @Override
 protected String getUriKey() {
 return(uriKey);
 }

 @Override
 public boolean onPreferenceChange(Preference pref,
 Object o) {
 StorageManager storage=
 pref.getContext().getSystemService(StorageManager.class);
 List<StorageVolume> volumes=storage.getStorageVolumes();
 String uuid=o.toString();

 for (StorageVolume volume : volumes) {
 if ((volume.getUuid()==null &&
 uuid.equals(SettingsFragment.STORAGE_FAKE_UUID)) ||
 (uuid.equals(volume.getUuid()))) {
 Intent i=volume.createAccessIntent(dirName);

 host.startActivityForHelper(i, this);
 break;
 }
 }

 return(true);
 }
}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/VolumeHelper.java)
When the user eventually does change the selection in the ListPreference
and onPreferenceChange() is called, we get a fresh StorageManager.
Unfortunately, StorageManager does not have any sort of lookup API
to get a StorageVolume by UUID, so we have to iterate over the
currently-available volumes and find a match, taking into account our
fake UUID for the null-UUID case.
When we find a match, we call createAccessIntent() on the StorageVolume,
passing in the directory name. That Intent is then given to the Host
via startActivityForHelper(). That will trigger the same process as was
used for DocumentHelper, eventually resulting in the Uri being saved
to the SharedPreferences under the supplied key.
Potential Issues
It is unclear if more than one StorageVolume could have a null UUID.
If it can, the approach of using a fake value in lieu of null will
not work. Of course, if more than one StorageVolume could have a null
UUID, we will have no means of identifying which StorageVolume the
null UUID refers to, making long-term identification of StorageVolume
objects difficult.
Scoped Directory Access Bug
The scoped directory access feature — using StorageVolume to request
access to standard directories — works fairly well on Android 7.0+…
with one UX flaw, tied to how the user grants you that access.
The flow of the permission dialogs resembles that of Android 6.0’s
runtime permissions:

	When you first ask for access, the user can allow or deny

	If the user denied access, and you later ask for access again,
the dialog now has a “Don’t ask again” checkbox

	If the user checked that checkbox and denied access again, any future
attempts you make to request access will be denied immediately,
without the user seeing a dialog

One problem is that we have no good way of knowing that the user
has previously denied our request, let alone checked the “Don’t ask
again” checkbox. With Android 6.0’s runtime permissions, we have
checkSelfPermission() and shouldShowPermissionRequestRationale()
for those things. We have no equivalents for scoped directory access.
However, the bigger problem is that once the user checks “Don’t ask
again” and denies access, the user has no further recourse. With
runtime permissions, the user can always go into the Permissions
area of an app’s page in Settings and manually grant permissions.
There is no equivalent of this for the scoped directory access API.
On Android 7.1, the user
can use “Clear Data” to reset these dialogs, causing future dialogs
to appear again even if “Don’t ask again” had been checked. Of course,
“Clear Data” has somewhat broader impact than this, and the user might
not appreciate wiping out all the app’s local data.
Worse, on Android 7.0, not only does “Clear Data” not fix this, but
a full uninstall of the app does not fix this. Nothing short
of a factory reset will allow the app to ask the user for permission
and the user have an opportunity again to grant permission.
Admittedly, this is an edge case, but it is one that you should
keep in mind if you are using createAccessIntent() and the
scoped directory access API. Keep an eye on
this issue
to try to get some resolution to how the user is supposed to manually
revert the “Don’t ask again” status.
Android 8.0 Changes
Android 8.0 introduced some new options for consuming documents and document trees
via the Storage Access Framework.
Document Tree Traversal
The DocumentsContract client interface to the Storage Access Framework
now has a findDocumentPath() method. Many developers will think that
this means that they can get a filesystem path for a document Uri from the
Framework.
That is not what this method does.
Instead, findDocumentPath() returns a list of document IDs representing
the hierarchy of document trees leading to the specific document being requested.
In other words, if the document is inside of a goo tree, which is inside
of a bar tree, which is inside of a foo tree, and foo is the top of a
provider’s hierarchy, findDocumentPath() would return a List of document
IDs representing foo, bar, goo, and the requested document.
Presumably, the idea is that this would be used by client UIs to help build
a way to traverse the relevant set of document trees for a particular document.
For this to work, the corresponding DocumentsProvider needs to implement
its own findDocumentPath() method.
Web Links for Documents
DocumentsContract also has a createWebLinkIntent() method, with a corresponding
implementation on DocumentsProvider. This is very poorly documented, but
apparently the idea is that for some cloud document providers, you can get a URL
to the document, given the Storage Access Framework Uri for the document.
Presumably, this is a publicly-visible document, and the URL could be sent
to other parties (e.g., via email) for them to see the document.
Android itself does not ship with a cloud document provider. Google Play devices
may ship with Google Drive, and Drive might support this feature.
Document Settings Activity
If you implement a DocumentsProvider, you have the option
of including FLAG_SUPPORTS_SETTINGS in the details that you return for
queryChildDocuments(). If you do that, and you have an activity that supports
ACTION_DOCUMENT_SETTINGS, the user may be presented with an option to visit
that activity. The activity should be given the Uri of the particular document
that the user wishes to manage. A provider might use this for offering
management of metadata for the document: tags, access rights, etc.
Providing Documents
The Storage Access Framework gives developers access to
ACTION_OPEN_DOCUMENT and related Intent actions
to perform operations on a document provider.
However, what if you want to be a document provider?
To do that, you will need to create a subclass of DocumentsProvider,
override some abstract methods, and perhaps put up with some really obtuse
error messages.
This chapter will help you in setting up your DocumentsProvider. With
luck, you will escape without encountering errors.
Prerequisites
This chapter assumes that you have read
the preceding chapter on consuming documents, along
with its prerequisites.
Have Your Content, and Provide it Too
Most apps will not need to implement a document provider. They might not
even consume documents, let alone provide them to other apps.
However, if your app has document-style content, and that content is of
a MIME type that could reasonably be manipulated by other apps, you should
consider implementing a document provider to allow the user to manipulate
that content using those other apps.
Historically, developers had two main approaches for content:

	Store it on internal storage

	Store it on external storage

The internal storage route would be for content that would not normally
be user-accessible, while external storage would be for user-accessible
content.
In either of those cases, you will want to consider creating a document
provider. In the case of internal storage, the user has no way to get to
that content except through your app, and so if your app does not offer
some capabilities that other apps do for that content, you limit your user
by not having a document provider. In the case of external storage, while
users in theory could use a file manager or something to try to get other
apps to recognize the content, it will be easier for users if you provide
a document provider to proactively publish this content to consuming apps.
However, bear in mind that your app does not have to store its content
in either of these places. It could store the content in somebody else’s
document provider, using the mechanisms discussed in
the preceding chapter on consuming documents. In this
case, you would not need to publish a document provider yourself, as the
content is available through the same provider that your code is using.
It may also be the case that while your app is the one directly storing
the content on internal or external storage, that content would not
reasonably be used by other apps. Perhaps it is in some non-standard
format that other apps are unlikely to support. Perhaps the files are
not to be used by other apps for security reasons. In these cases, skipping
the document provider is reasonable, though not exactly ideal from
the user’s standpoint. In particular, it restricts them from using those
files with apps that can work with any file, such as attaching them to
email messages.
So, for example:

	If you are implementing a camera app, and you are not storing the
photos in the standard DIRECTORY_DCIM location for photos, but you
are storing the photos yourself in files consider
implementing a document provider so users can get at the photos you are
taking. But, if you are implementing a camera app, you might elect to
allow the user to indicate some place in somebody else’s document provider
where you could save the photo on their behalf.

	If you are implementing some sort of network-synced file service
(e.g., DropBox, Bittorrent Sync), or some sort of on-device version
control system, consider implementing a document provider
so users can manipulate the documents that you are managing on their
behalf.

Key Provider Concepts
Creating a document provider is significantly more complex than is
creating a document consumer. To help make sense of what is required,
here are some key terms that you will need to understand.
Roots
A document provider can publish one or more “roots”. Basically, a
“root” points to a tree of documents. Many providers will have just one
root, but it is entirely possible for your provider to have more
than one.
Documents
Documents, in turn, represent what in filesystem terms would be
considered files and directories. A document can either have
children (e.g., a directory) or it can have content (e.g., a file),
but not both.
A root also is a document — here, “root” refers to the root
of a tree of documents.
Root and Document IDs
Each root has an ID unique to your app to identify that root as being
distinct from any other root. This is a string.
Each document — files and directories alike — will have a string
document ID to uniquely identify that document within its root.
If you have some natural identifier (e.g., a primary key in some
table), feel free to use it. Otherwise, you might consider your
document ID to be some path to get to the document.
And, since a root is also a document, a root will have both a root
ID and a document ID.
These document IDs need to be durable. Clients, or the Storage Access
Framework itself, may wind up caching these IDs. Hence, pick something
that not only uniquely identifies this document, but will continue
to uniquely identify the document even after the document has been
modified.
Pieces of a Provider
The Documents/Provider
sample application implements a document provider, one that serves
documents baked into the app itself in assets/. Of course, this is
a rather artificial scenario — usually, a document provider will be
working with a read/write data store, like internal storage.
The Activity
A document provider app probably needs a real UI. Perhaps that UI
is for broader functionality that the app provides on top of serving
documents. Perhaps that UI is merely to configure the document
store, such as providing account credentials for the online
storage service that the document provider exposes on Android.
If nothing else, you will need a do-nothing activity for the user
to run, to ensure that your app is moved out of the stopped state.
In the sample app, this is handled by MainActivity, which uses
Theme.Translucent.NoDisplay to avoid a UI and just shows a Toast to indicate
that the provider is now activated:

package com.commonsware.android.documents.provider;

import android.app.Activity;
import android.content.res.AssetManager;
import android.os.Bundle;
import android.util.Log;
import android.widget.Toast;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;

public class MainActivity extends Activity {
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Toast.makeText(this, R.string.activated, Toast.LENGTH_LONG).show();
 finish();
 }
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/MainActivity.java)
The API Level Resources
The document provider itself comes courtesy of a subclass of
DocumentsProvider. However, the DocumentsProvider class only exists
on API Level 19 and higher — our subclass is useless on older
devices. To ensure that our provider is only used on API Level 19 and
higher, we should only enable it on API Level 19+ devices.
To that end, in res/values/bools.xml, we have a boolean resource
named min19, set to false:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <bool name="min19">false</bool>
</resources>

(from Documents/Provider/app/src/main/res/values/bools.xml)
In res/values-v19/bools.xml, we redefine that boolean resource to
be true:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <bool name="min19">true</bool>
</resources>

(from Documents/Provider/app/src/main/res/values-v19/bools.xml)
Hence, when we refer to the min19 boolean resource, we will get
true or false depending upon whether we are on API Level 19 or
not.
The Manifest
Since DocumentsProvider is a subclass of ContentProvider, we will need
a <provider> element in the manifest pointing to our subclass of
DocumentsProvider:

 <provider
 android:name=".DemoDocumentsProvider"
 android:authorities="com.commonsware.android.documents.provider"
 android:enabled="@bool/min19"
 android:exported="true"
 android:grantUriPermissions="true"
 android:permission="android.permission.MANAGE_DOCUMENTS">
 <intent-filter>
 <action android:name="android.content.action.DOCUMENTS_PROVIDER" />
 </intent-filter>
 </provider>

(from Documents/Provider/app/src/main/AndroidManifest.xml)
That element:

	Uses our @bool/min19 resource from above to indicate that
this component should only be enabled on API Level 19 and higher

	Is exported, but requires that applications looking to talk to
our provider hold the MANAGE_DOCUMENTS permission, which can only
be held by the firmware (or apps signed with the firmware’s signing
key)

	Sets the android:grantUriPermissions attribute to true, as that
will be used by DocumentsProvider to allow third-party apps
limited, conditional access to our documents

	Has your standard android:name and android:authorities attributes,
as with any other <provider>

In addition, the <provider> has a nested <intent-filter]
element. This may seem odd, as this used to be impossible, and it
is not intuitively obvious what it would mean for a ContentProvider
to have an IntentFilter. It also is
not documented as being allowed on <provider>,
so we have no official explanation of what this means. Most likely,
the magic android.content.action.DOCUMENTS_PROVIDER filter is being
used simply as a marker, to indicate to Android that this particular
<provider> is part of the Storage Access Framework and implements
a DocumentsProvider.
The DocumentsProvider
The real business logic of publishing documents comes from your
subclass of DocumentsProvider. As this class is new to API Level 19,
your build target (e.g., compileSdkVersion in build.gradle)
needs to be 19 or higher.
A minimal DocumentsProvider implementation will typically need
five methods, outlined below.
onCreate()
As with any ContentProvider, your DocumentsProvider can override
onCreate() to perform initialization work. Technically, this is
not required, but the odds are very good that you will have something
that you need to initialize.
In the case of our sample DocumentsProvider — named
DemoDocumentsProvider — onCreate() simply obtains access
to an AssetManager instance that can be used for serving documents:

 private AssetManager assets;

 @Override
 public boolean onCreate() {
 assets=getContext().getAssets();

 return(true);
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
queryRoots()
Your queryRoots() method needs to return information about the
root(s) that your provider will provide.
However, rather than returning this in the form of some clean object
model (e.g., a List of Document.Root objects or some such),
the return value is a Cursor. While in principle this Cursor
could come from a database, in many cases it will be a MatrixCursor,
which is a Cursor interface over a two-dimensional array representing
the rows and columns.
From here, you should return all presently valid roots. The
“presently valid” part is because a root might exist but not
be usable at the present time. For example, suppose that you are
writing a DocumentsProvider that provides a document interface
to an Internet-hosted storage service. In this case, you may need
the user to authenticate in order to allow access to those files,
such as to pass that authentication data along to the Web service to
be able to retrieve directory and file data. If the user is not
presently logged in, though, not only can you not talk to the Web
service right now, but you do not have the ability to force the user
to authenticate right now. Instead, you will have to cull the root(s)
governed by those authentication credentials. This may mean that
the Cursor you return has no rows, as you simply do not have anything
that can be published right now.
The Cursor that you return will have one row per presently valid
root. The columns will be ones defined on the DocumentsContract.Root
class. Your queryRoots() method is passed a String array
representing the columns requested by the Storage Access Framework.
As your app may not support all of those columns, you will need to
determine the intersection between the requested columns and the
ones you support.
The sample app defines a SUPPORTED_ROOT_PROJECTION static data
member to list the DocumentsContract.Root columns that are supported
in general:

 private static final String[] SUPPORTED_ROOT_PROJECTION=new String[] {
 Root.COLUMN_ROOT_ID, Root.COLUMN_FLAGS, Root.COLUMN_TITLE,
 Root.COLUMN_DOCUMENT_ID, Root.COLUMN_ICON };

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
And the demo provider has a private netProjection() utility method that
computes the intersection between the requested columns and the
supported ones:

 private static String[] netProjection(String[] requested, String[] supported) {
 if (requested==null) {
 return(supported);
 }

 ArrayList<String> result=new ArrayList<String>();

 for (String request : requested) {
 for (String support : supported) {
 if (request.equals(support)) {
 result.add(request);
 break;
 }
 }
 }

 return(result.toArray(new String[0]));
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
That net projection is used in the MatrixCursor constructor,
to teach it the available columns, as part of the queryRoots()
implementation:

 @Override
 public Cursor queryRoots(String[] projection)
 throws FileNotFoundException {
 String[] netProjection=
 netProjection(projection, SUPPORTED_ROOT_PROJECTION);
 MatrixCursor result=new MatrixCursor(netProjection);
 MatrixCursor.RowBuilder row=result.newRow();

 row.add(Root.COLUMN_ROOT_ID, ROOT_ID);
 row.add(Root.COLUMN_ICON, R.drawable.ic_launcher);
 row.add(Root.COLUMN_FLAGS, Root.FLAG_LOCAL_ONLY);
 row.add(Root.COLUMN_TITLE, getContext().getString(R.string.root));
 row.add(Root.COLUMN_DOCUMENT_ID, ROOT_DOCUMENT_ID);

 return(result);
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
queryRoots() then adds a row to the MatrixCursor, through
a MatrixCursor.RowBuilder, containing five columns:

	
DocumentsContract.Root.COLUMN_ROOT_ID is the root ID for this
root, as described earlier in this chapter.

	
DocumentsContract.Root.COLUMN_ICON, which is a reference to a
drawable resource that may be used in Storage Access Framework UI
to help visually represent this root. In principle, this could
be anything; in practice, you will probably choose your launcher icon,
as it is the icon that the user will recognize.

	
DocumentsContract.Root.COLUMN_FLAGS, indicating which optional
capabilities this root supports. In this case, the only flag we are
setting is FLAG_LOCAL_ONLY, indicating that network I/O is not
required to browse the contents of the provider. Our sample app
indicates that it is local-only, as its documents are all packaged
in assets/. A provider backed by a Web service, though, would not
include this flag, so the Storage Access Framework knows that calls
to some of the other methods (e.g., queryChildDocuments()) may
take a significant amount of time.

	
DocumentsContract.Root.COLUMN_TITLE, which is a string
identifying this root. The title and icon will tend to be included
in Storage Access Framework-supplied UIs. In this case, with only a
single root, the title is hard-coded to be a string resource. In
other cases, this might be some other human-grokkable display name
(e.g., the name of some storage service account).

	
DocumentsContract.Root.COLUMN_DOCUMENT_ID, which returns
the document ID representing the document tree for this root.

In this case, the document IDs for this DocumentsProvider
are the relative paths within assets/ of the files, starting
from a root docs/ directory. So, while the root ID could be
anything, the root document ID should be consistent with the
other document ID values. In this case, the sample app uses:

 private static final String ROOT_ID="thisIsMyBoomstick";
 private static final String ROOT_DOCUMENT_ID="docs";

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
queryChildDocuments()
As noted previously, some documents will represent a directory,
while others will represent files. For those that represent a
directory, queryChildDocuments() will need to return the document
information for the contents of the directory.
queryChildDocuments() is passed:

	the document ID of the directory

	the columns, defined on the DocumentsContract.Document class,
that the Storage Access Framework wants

	the sort order, expressed as a SQL-style ORDER BY clause
(minus the actual ORDER BY part), that you might use to help
control the order in which to return the child documents (or ignore
if you wish)

As with queryRoots(), we need to come up with the intersection
of the columns that the requester asks for and the columns that we
support. There is a static string array named
SUPPORTED_DOCUMENT_PROJECTION that represents the columns that
we support:

 private static final String[] SUPPORTED_DOCUMENT_PROJECTION=
 new String[] { Document.COLUMN_DOCUMENT_ID, Document.COLUMN_SIZE,
 Document.COLUMN_MIME_TYPE, Document.COLUMN_DISPLAY_NAME,
 Document.COLUMN_FLAGS};

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
The queryChildDocuments() method then uses the same netProjection()
helper method that queryRoots() did to determine the intersection:

 @Override
 public Cursor queryChildDocuments(String parentDocId,
 String[] projection,
 String sortOrder)
 throws FileNotFoundException {
 String[] netProjection=
 netProjection(projection, SUPPORTED_DOCUMENT_PROJECTION);
 MatrixCursor result=new MatrixCursor(netProjection);

 try {
 String[] children=assets.list(parentDocId);

 for (String child : children) {
 addDocumentRow(result, child,
 parentDocId + File.separator + child);
 }
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception reading asset dir", e);
 }

 return(result);
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
As with queryRoots(), the return value of queryChildDocuments()
is a Cursor representing the documents contained in this
directory. Once again, we use a MatrixCursor to build up an
in-memory Cursor, this time for all files within the assets/ directory
denoted by parentDocId, using the list() method on AssetManager
to find out what those files are.
The logic to populate the MatrixCursor is delegated to an
addDocumentRow() private method, as we will be using it elsewhere
in this DocumentsProvider implementation. addDocumentRow()
creates a MatrixCursor.RowBuilder and fills in the supported
columns:

 private void addDocumentRow(MatrixCursor result, String child,
 String assetPath) throws IOException {
 MatrixCursor.RowBuilder row=result.newRow();

 row.add(Document.COLUMN_DOCUMENT_ID, assetPath);

 if (isDirectory(assetPath)) {
 row.add(Document.COLUMN_MIME_TYPE, Document.MIME_TYPE_DIR);
 }
 else {
 String ext=MimeTypeMap.getFileExtensionFromUrl(assetPath);

 row.add(Document.COLUMN_MIME_TYPE,
 MimeTypeMap.getSingleton().getMimeTypeFromExtension(ext));
 row.add(Document.COLUMN_SIZE, getAssetLength(assetPath));
 }

 row.add(Document.COLUMN_DISPLAY_NAME, child);
 row.add(Document.COLUMN_FLAGS, 0);
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
Of note:

	the document ID of the child is simply its relative path within
assets/

	the MIME type is a special one if the child document represents
a directory, or else is looked up using MimeTypeMap if the child
document represents a file

	the “display name” could be something special (e.g., the <title>
of a Web page), but in this case is just the filename

To determine if an asset path represents a directory, the
isDirectory() utility method just sees if list() returns a
non-empty list:

 private boolean isDirectory(String assetPath) throws IOException {
 return(assets.list(assetPath).length>=1);
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
To find the size of a document — to fill in the COLUMN_SIZE
column in the output — we can ask the AssetManager for a
FileDescriptor on the asset, then obtain the length from that
descriptor, as seen in the getAssetLength() utility method:

 private long getAssetLength(String assetPath) throws IOException {
 return(assets.openFd(assetPath).getLength());
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
The net result is that, given the name of a directory in assets/,
we return a Cursor with one row per child of that directory,
with columns indicating details of that child.
queryDocument()
queryDocument() is similar to queryChildDocuments(). Both
return a Cursor with the same sorts of columns as output. The
difference: queryDocument() provides you with the document ID
of a file, and you return details of that file. By contrast,
queryChildDocuments() gives you the document ID of a directory,
and you return the details of all documents within that directory.
This is why addDocumentRow() was implemented as a separate
method, as we need the same business logic (populate a MatrixCursor
row based on an asset path) from queryDocument():

 @Override
 public Cursor queryDocument(String documentId, String[] projection)
 throws FileNotFoundException {
 String[] netProjection=
 netProjection(projection, SUPPORTED_DOCUMENT_PROJECTION);
 MatrixCursor result=new MatrixCursor(netProjection);

 try {
 addDocumentRow(result, Uri.parse(documentId).getLastPathSegment(),
 documentId);
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception reading asset dir", e);
 }

 return(result);
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
In this case, the only thing different is that we need to get
the bare filename, for use in the DISPLAY_NAME field. Here, we
cheat a bit and use getLastPathSegment() on Uri to obtain the
filename.
openDocument()
The openDocument() method behaves much like the openFile()
method of a classic streaming ContentProvider: given a path,
you return a ParcelFileDescriptor representing the file
contents. For documents that are true files on the filesystem,
you can use the static open() method on ParcelFileDescriptor.
For documents that are not files on the filesystem — such as
documents that are assets in the APK — you will need to set up
a ParcelFileDescriptor pipe and stream the content that way.
That is what DemoDocumentsProvider does, using logic copied
from the book’s streaming ContentProvider samples:

 @Override
 public ParcelFileDescriptor openDocument(String documentId,
 String mode,
 CancellationSignal signal)
 throws FileNotFoundException {
 ParcelFileDescriptor[] pipe=null;

 try {
 pipe=ParcelFileDescriptor.createPipe();
 AssetManager assets=getContext().getAssets();

 new TransferThread(assets.open(documentId),
 new ParcelFileDescriptor.AutoCloseOutputStream(pipe[1])).start();
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception opening pipe", e);
 throw new FileNotFoundException("Could not open pipe for: "
 + documentId);
 }

 return(pipe[0]);
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
openDocument() is passed three parameters:

	The document ID of the document to stream back

	A file mode (r, w, or wt) indicating what sort of operations
the client wants to perform on the stream

	A CancellationSignal that we can use to find out that our
streaming is being interrupted

In this case:

	
openDocument() ignores the mode, because it did not return
FLAG_SUPPORTS_WRITE in either queryChildDocuments() or
queryDocument() to indicate that writing is an option, so the
mode should always be r

	
openDocument() ignores the CancellationSignal, though in
reality it should pay attention to it when streaming back the
content and stop streaming when requested

The TransferThread that does the actual streaming is, once again,
the same as the one used earlier in this book for a streaming
ContentProvider:

 static class TransferThread extends Thread {
 InputStream in;
 OutputStream out;

 TransferThread(InputStream in, OutputStream out) {
 this.in=in;
 this.out=out;
 }

 @Override
 public void run() {
 byte[] buf=new byte[8192];
 int len;

 try {
 while ((len=in.read(buf)) >= 0) {
 out.write(buf, 0, len);
 }

 in.close();
 out.flush();
 out.close();
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception transferring file", e);
 }
 }
 }

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)
The Results
If you have both this sample app and the one from
the previous chapter, then run the one from
the previous chapter to bring up the Storage Access Framework
UI, you will see our provider among the list of available providers:

[image: Storage Access Framework Picker, Showing Custom Provider]

Figure 766: Storage Access Framework Picker, Showing Custom Provider
The provider’s assets/docs/ directory contains three files,
one just off the root and two in a bar/ subdirectory:

[image: DocumentsProvider Sample Documents]

Figure 767: DocumentsProvider Sample Documents
Hence, tapping on our provider in the Storage Access Framework
picker brings up the contents of the root document:

[image: Storage Access Framework Picker, Showing Documents in Root]

Figure 768: Storage Access Framework Picker, Showing Documents in Root
Tapping on the bar/ directory brings up its contents in turn:

[image: Storage Access Framework Picker, Showing Yet More Documents]

Figure 769: Storage Access Framework Picker, Showing Yet More Documents
Tapping on one of the files brings up the details for that file:

[image: Document Consumer, Showing Details of Picked Document]

Figure 770: Document Consumer, Showing Details of Picked Document
Optional Provider Capabilities
A DocumentsProvider can do a fair bit more than what the above
sample app demonstrates. While the sample will suffice for the
basics, it is reasonably likely that a production-grade
DocumentsProvider will need to implement and provide some other
optional capabilities, such as those described in this section.
Other CRUD Operations
CRUD — Create, Read, Update, and Delete — is a standard shorthand
for the basic operations one can perform on data. The sample app
handles the “Read” portion of CRUD, but a DocumentsProvider can
support all of them if desired.
Create
It may be that your DocumentsProvider is only going to serve up
documents that were created in your app, or were created outside
of the Android device (e.g., on a Web app). If, however, you want
consumers of your provider to be able to use ACTION_CREATE_DOCUMENT
to create new documents in your provider, you will need to do a
few things.
First, in the COLUMN_FLAGS for the relevant root(s) returned
by queryRoots(), you will need to include FLAG_SUPPORTS_CREATE,
defined on DocumentsContract.Root. This indicates that at least
one directory within that root supports creating new documents.
Without this flag, your root(s) will be shown for
ACTION_OPEN_DOCUMENT requests but not ACTION_CREATE_DOCUMENT
requests.
Next, in one or more directories returned as part of
queryDocument() and queryChildDocuments() calls, in the
COLUMN_FLAGS column, you will need to include
FLAG_DIR_SUPPORTS_CREATE, defined on DocumentsContract.Documents.
This indicates that this document is a directory that supports
creating new documents inside of it. Otherwise, a directory will
be assumed to not support creating new documents. Note that this
flag is only used for documents representing directories, not
documents representing files.
Finally, you will need to implement createDocument() in your
DocumentsProvider. This will be called if a consumer app
used ACTION_CREATE_DOCUMENT and the user chose your provider
and one of your directories for the new document. You are passed in:

	the document ID of the directory

	the MIME type of the new file

	a suggested display name to use for the new file, though you
can modify this if needed

Your job, in createDocument(), is to create the document and return
the document ID for the newly-created document. For example, if
your documents are held in internal storage, you might create a new
file for the document itself plus a database row in some documents
table to hold the MIME type and display name.
Update
For something like files, an “update” is replacing the current
contents with something new. In the case of a streaming protocol
like DocumentsProvider, this implies that your provider can
support output as well as input.
This too requires a few changes to your provider.
First, for the file(s) that can be updated, in the results for
queryDocument() and queryChildDocuments(), you will need to
include FLAG_SUPPORTS_WRITE in COLUMN_FLAGS, to indicate that
writing to this file should work.
Then, you will need to pay attention to the mode passed into
openDocument(). If the mode is w or wt, you would need to
arrange to support writing the file, where your background thread
reads from an InputStream on the pipe and writes the data to
wherever your data is being stored.
Delete
For any documents that the consumer can delete, include
FLAG_SUPPORTS_DELETE in COLUMN_FLAGS in the results for
queryDocument() and queryChildDocuments().
You will also need to implement deleteDocument() in your
DocumentsProvider. You are supplied the document ID to delete,
and your job is to delete it.
If the document represents a directory, you may also need to delete
all of its children. That really depends on how you are leveraging
the “directory” construct in DocumentsProvider:

	If the “directory” is like a filesystem directory, where
children have only one parent, you will want to delete the children
when you delete the parent

	If the “directory” is more like a category, such as a tag,
where children could have multiple parents, you will need to decide
how to handle the children that would be orphaned by your deleting
the last parent (delete the children? move them to some other
default parent? something else?)

Change Notification
If the data served by your provider changes, it is incumbent upon
you to let possible consumers know about the change. For example,
if you elect to delete children when you delete their parent,
you should let consumers know that those children were deleted.
This is not necessary for direct operations performed by consumers
(e.g., writing to a document), but is necessary for anything else.
To do that, you call notifyChange() on a ContentResolver, just
as you would for changes to the data in a ContentProvider. However,
notifyChange() takes a Uri as a parameter, to indicate the
scope of the change. There are static utility methods on
DocumentsContract that will return a Uri that you can use.
Notably:

	
buildDocumentUri(), given your authority and a document ID,
provides a Uri that points to that document

	
buildChildDocumentsUri(), given your authority and a document ID,
provides a Uri that represents the collection of children
of that document

So, for example, if by deleting a parent you also delete the children,
you would use buildChildDocumentsUri() with notifyChange()
to ensure that consumers know that those children were modified.
The Storage Access Framework will use methods like queryChildDocuments()
to determine that the children were deleted in this case.
Thumbnails
By default, the Storage Access Framework will use stock icons for
directories and files. You can supply your own thumbnails instead,
though, if you want. To do this:

	Include FLAG_SUPPORTS_THUMBNAIL in the COLUMN_FLAGS for the
affected document(s) in queryDocument() and queryChildDocuments()

	Implement openDocumentThumbnail() in your DocumentsProvider

openDocumentThumbnail() is provided the document ID of the
document whose thumbnail is required, along with a Point object
providing a requested size. While your thumbnail does not have
to exactly match that size — for example, the aspect ratio that
is requested may not match the thumbnail — it should be close.
However, the return value for openDocumentThumbnail() is an
AssetFileDescriptor, which is a wrapper around a
ParcelFileDescriptor. If your image exists as a file that
happens to be the right size, return it by using the static open()
method on ParcelFileDescriptor is fairly straightforward. If,
however, you need to scale your source image to fit the desired
size, implementing this via a pipe will be moderately tedious.
Recent Documents
If your app has its own concept of recent documents, you can expose
that roster to the Storage Access Framework, which can incorporate
it as part of its UI. To do this:

	Have your queryRoots() method include FLAG_SUPPORTS_RECENTS
in the COLUMN_FLAGS value for the root(s) that support recent
documents

	Implement queryRecentDocuments() on your DocumentsProvider,
where you are given the root ID (not a document ID!) of one of
your roots, and you need to return the same sort of Cursor
as you would from queryChildDocuments(), but representing the
recent documents for that root

The two constraints upon the returned Cursor are:

	It should be sorted descending based on last-modified date
(e.g., the COLUMN_LAST_MODIFIED column in your rows)

	It should be capped at 64 rows, though it can be less if desired

Note that you can, if you wish, have the Cursor return rows
reflecting both files and directories — you are not limited to
one or the other.
Search
If your provider has its own search capability, you can expose that
to the Storage Access Framework, which in turn can make it available
to users looking for a certain document. To support this:

	Have your queryRoots() method include FLAG_SUPPORTS_SEARCH
in the COLUMN_FLAGS value for the root(s) that support searching

	Implement querySearchDocuments() on your DocumentsProvider,
where you are given the root ID (not a document ID!) of one of
your roots, and you need to return the same sort of Cursor
as you would from queryChildDocuments(), but representing the
results of a search

querySearchDocuments() is passed a String representing the
search expression entered by the user. It is up to you to decide
what that expression means. It is also up to you to determine
where you are searching for that expression (filenames? file
contents?).
Note that the Cursor you return should only contain documents
that reflect files, not documents that point to directories.
Other Flags
There are a few other flags that are available to you on
DocumentsContract.Document that you can use in COLUMN_FLAGS
for Cursor results representing a document or collection of
documents, such as the results of queryDocument() and
queryChildDocuments():

	If the document represents a directory, and you are supporting
thumbnails, and you would like the contents of this directory
to be represented in a thumbnail grid as opposed to a list, include
FLAG_DIR_PREFERS_GRID

	If the document represents a directory, and you feel that users
will be better served showing the documents in descending order
based upon COLUMN_LAST_MODIFIED, rather than alphabetical by
display name, include FLAG_DIR_PREFERS_LAST_MODIFIED

Encrypted Storage
SQLite databases, by default, are stored on internal storage,
accessible only to the app that creates them.
At least, that is the theory.
In practice, it is conceivable that others could get at an app’s
SQLite database, and that those “others” may not have the user’s best
interests at heart. Hence, if you are storing data in SQLite that
should remain confidential despite extreme measures to steal the
data, you may wish to consider encrypting the database.
Perhaps the simplest way to encrypt a SQLite database is to use
SQLCipher. SQLCipher is a SQLite extension
that encrypts and decrypts database pages as they are written and
read. However, SQLite extensions need to be compiled into SQLite, and
the stock Android SQLite does not have the SQLCipher extension.
SQLCipher for Android,
therefore, comes in the form of a replacement implementation of
SQLite that you add as an NDK library to your project. It also ships
with replacement editions of the android.database.sqlite.* classes
that use the SQLCipher library instead of the built-in SQLite. This
way, your app can be largely oblivious to the actual database
implementation, particularly if it is hidden behind a
ContentProvider or similar abstraction layer.
SQLCipher for Android is a joint initiative of
Zetetic (the creators of SQLCipher) and
the Guardian Project (home of many
privacy-enhancing projects for Android). SQLCipher for Android is
open source, under the Apache License 2.0.
Prerequisites
Understanding this chapter requires that you have read the chapter on
database access.
Scenarios for Encryption
So, why might you want to encrypt a database?
Some developers probably are thinking that this is a way of
protecting the app’s content against “those pesky rooted device
users”. In practice, this is unlikely to help. As with most
encryption mechanisms, SQLCipher uses an encryption key. If the app
has the key, such as being hard-coded into the app itself, anyone can
get the key by reverse-engineering the app.
Rather, encrypted databases are to help the user defend their data
against other people seeing it when they should not. The classic
example is somebody leaving their phone in the back of a taxi —
if that device winds up in the hands of some group with the skills to
root the device, they can get at any unencrypted content they want.
While some users will handle this via the whole-disk encryption
available since Android 3.0, others might not.
If the database is going anywhere other than internal storage, there
is all the more reason to consider encrypting it, as then it may not
even require a rooted device to access the database. Scenarios here
include:

	Databases stored on external storage

	Databases backed up using external storage, BackupManager, or
another Internet-based solution

	Databases explicitly being shared among a user’s devices, or
between a user’s device and a desktop (note that SQLCipher works on
many operating systems, including desktops and iOS)

Obtaining SQLCipher
SQLCipher is available from Zetetic.
As of July 2016, the
current shipping version was 3.5.0.
It is very important for you to use 3.5.0 or higher, as earlier versions
of SQLCipher for Android will not work on Android 7.0 or higher versions
of Android.
In Android Studio, to add SQLCipher for Android to your project,
just add the official AAR dependency:

dependencies {
 implementation 'net.zetetic:android-database-sqlcipher:3.5.0@aar'
}

Using SQLCipher
If you have existing code that uses classic Android SQLite, you will
need to change your import statements to pick up the SQLCipher for
Android equivalents of the classes. For example, you obtain
SQLiteDatabase now from net.sqlcipher.database.sqlcipher,
not android.database.sqlite. Similarly, you obtain SQLException
from net.sqlcipher.database instead of android.database.
Unfortunately, there is no complete list of which classes need this
conversion — Cursor, for example, does not. Try converting
everything from android.database and android.database.sqlite, and
leave alone those that do not exist in the SQLCipher for Android
equivalent packages.
Before starting to use SQLCipher for Android, you need to call
SQLiteDatabase.loadLibs(), supplying a suitable Context object as
a parameter. This initializes the necessary libraries. If you are
using a ContentProvider, just call this in onCreate() before
actually using anything else with your database. If you are not using
a ContentProvider, you probably will want to create a custom
subclass of Application and make this call from that class’
onCreate(), and reference your custom Application class in the
android:name attribute of the <application> element in your
manifest. Either of these approaches will help ensure that the
libraries are ready before you try doing anything with the database.
Finally, when calling getReadableDatabase() or
getWritableDatabase() on SQLiteDatabase, you need to supply the
encryption key to use. For the purposes of book examples, a hard-coded
passphrase is sufficient. However, those can be trivially
reverse-engineered, and so they offer little real-world protection.
But, they keep the code simple, which is useful when examining APIs.
The
Database/ConstantsSecure-AndroidStudio
sample app is yet another variation of the ConstantsBrowser
sample that we have been using for most of the database examples.
From the standpoint of the ConstantsBrowser activity and
ConstantsFragment UI, nothing is different. However,
DatabaseHelper uses SQLCipher, rather than SQLite.
In the DatabaseHelper constructor, we call loadLibs()
on the SQLiteDatabase class, which is a required initialization step
to get the native libraries set up:

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA);

 SQLiteDatabase.loadLibs(context);
 }

(from Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java)
It also offers zero-argument getReadableDatabase() and
getWritableDatabase() methods, akin to those offered by the regular
SQLiteOpenHelper. However, the DatabaseHelper editions turn around
and invoke the one-argument equivalents on the SQLCipher edition of
SQLiteOpenHelper:

 SQLiteDatabase getReadableDatabase() {
 return(super.getReadableDatabase(PASSPHRASE));
 }

 SQLiteDatabase getWritableDatabase() {
 return(super.getWritableDatabase(PASSPHRASE));
 }

(from Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java)
Here, the PASSPHRASE is just a hard-coded string:

 private static final String PASSPHRASE=
 "hard-coding passphrases is only for sample code;"+
 "nobody does this in production";

(from Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java)
That is all the changes that are needed to use SQLCipher.
SQLCipher Limitations
Alas, SQLCipher for Android is not perfect.
It will add a few MB to the size of your APK file per CPU architecture.
For most modern
Android devices, this extra size will not be a huge issue, though it
will be an impediment for older devices with less internal storage, or
for apps that are getting close to the size limits imposed by the Play
Store or other distribution mechanisms. The chapter on the NDK contains
a section about a technology called libhoudini
that can help reduce this bloat, albeit with a significant performance
penalty.
However, the size is mostly from code, and that may cause a problem
for Eclipse users. Eclipse may crash with its own OutOfMemoryError
during the final build process. To address that, find your
eclipse.ini file (location varies by OS and installation method)
and increase the -Xmx value shown on one of the lines (e.g., change
it to -Xmx512m).
Other code that expects to be using native SQLite databases will
require alteration to work with SQLCipher for Android databases. For
example, the SQLiteAssetHelper described
elsewhere in this book
would need to be ported to use the
SQLCipher for Android implementations of SQLiteOpenHelper,
SQLiteDatabase, etc. This is not too difficult for an open source
component like SQLiteAssetHelper.
Passwords and Sessions
Given an encrypted database, there are several ways that an attacker
can try to access the data, including:

	Use a brute-force attack via the app itself

	Use a brute-force attack on the database directly, by copying it
to some other machine

	Obtain the password by the strategic deployment of
a $5 wrench

The classic way to prevent the first approach is by having business
logic that prevents lots of failed login attempts in a short period
of time. This can be built into your login dialog (or the
equivalent), tracking the number and times of failed logins and
introducing delays, forced app exits, or something to add time and
hassle for trying lots of passwords.
Since manually trying passwords is nasty, brutish, and long, many
attackers would automate the process by copying the SQLCipher
database to another machine (e.g., desktop) and running a brute-force
attack on it directly. SQLCipher for Android has many built-in
protections to help defend against this. So long as you are using a
sufficiently long and complex encryption key, you should be fairly
well-protected against such attacks.
Defending against wrenches is decidedly more difficult and is beyond
the scope of this book.
About Those Passphrases…
Having a solid encryption algorithm, like the AES-256 used by default
with SQLCipher for Android, is only half the battle. The other half is
in using a high-quality passphrase, one that is unlikely to be guessed by
anyone looking to break the encryption.
Upgrading to Encryption
Suppose you have an app already out on the market, and you decide that
you want to add the option for encryption. It is fairly likely that the
user will be miffed if they lose all their data in the process of switching
to an encrypted database. Therefore, you will want to try to retain their
data.
SQLCipher for Android does not support in-place encryption of database.
However, it does support working with unencrypted databases and
encrypted databases simultaneously, giving you the option of migration.
The approach boils down to:

	Open the unencrypted database in SQLCipher for Android, using an empty
passphrase

	Use the ATTACH statement to open the encrypted database inside the same
SQLCipher for Android session

	Use a supplied sqlcipher_export() function to migrate most of the data

	Copy the Android database schema version between the databases

	
DETACH the encrypted database

	Close the unencrypted database (and, presumably, delete it)

	Use the encrypted database from this point forward

Since both database files will exist at one time, you will find it simplest
to use separate names for them (e.g., stuff.db and stuff-encrypted.db).
To see how this works, take a look at the
Database/SQLCipherPassphrase-AndroidStudio,
which is a variation of the original, non-ContentProvider “constants”
sample app, this time using SQLCipher for Android and supporting an upgrade
from a non-encrypted database to an encrypted one.
The bulk of the logic for handling the encryption upgrade is in a static
encrypt() method on our DatabaseHelper:

 static void encrypt(Context ctxt) {
 SQLiteDatabase.loadLibs(ctxt);

 File dbFile=ctxt.getDatabasePath(DATABASE_NAME);
 File legacyFile=ctxt.getDatabasePath(LEGACY_DATABASE_NAME);

 if (!dbFile.exists() && legacyFile.exists()) {
 SQLiteDatabase db=
 SQLiteDatabase.openOrCreateDatabase(legacyFile, "", null);

 db.rawExecSQL(String.format("ATTACH DATABASE '%s' AS encrypted KEY '%s';",
 dbFile.getAbsolutePath(), PASSPHRASE));
 db.rawExecSQL("SELECT sqlcipher_export('encrypted')");
 db.rawExecSQL("DETACH DATABASE encrypted;");

 int version=db.getVersion();

 db.close();

 db=SQLiteDatabase.openOrCreateDatabase(dbFile, PASSPHRASE, null);
 db.setVersion(version);
 db.close();

 legacyFile.delete();
 }
 }

(from Database/SQLCipherPassphrase-AndroidStudio/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)
First, we initialize SQLCipher for Android by calling loadLibs() on the
SQLCipher version of SQLiteDatabase. We could do this someplace else,
but for this sample, this is as good a spot as any.
We then create File objects pointing at the locations of the old, unencrypted
database (with a name represented by a LEGACY_DATABASE_NAME static data
member) and the new encrypted database (DATABASE_NAME). To get the File
locations of those databases, we use getDatabasePath(), a method on Context,
which returns the correct location for a database file given its name.
If the encrypted database exists, there is nothing that we need to do. Similarly,
if it does not exist but the unencrypted database also does not exist,
there is nothing that we can do. In either of those cases, we skip over
the rest of the logic. In the first case, we already did the conversion
(presumably); in the latter case, this is a new installation, and our
SQLiteOpenHelper onCreate() logic will handle that. But, in the case where
we do not have the encrypted database but do have the unencrypted one, we
can create the encrypted database from the unencrypted data, which is what
the bulk of the encrypt() method does.
To that, we:

	Use openOrCreateDatabase() to open the already-existing unencrypted
database file in SQLCipher for Android, using "" as the passphrase.

	Use a rawExecSQL() method available on the SQLCipher for Android version
of SQLiteDatabase to ATTACH the encrypted database, given its path,
to our database session, using the supplied passphrase. This means that we
can access the tables from both databases simultaneously, though we need
to prefix all references to the attached database via its handle, encrypted.

	Use rawExecSQL() to execute SELECT sqlcipher_export('encrypted'), which
copies most of our data from the unencrypted database (the database we have
open) into the encrypted database (the one we attached). The big thing that
sqlcipher_export() does not copy is the schema version number that
Android maintains.

	Use rawExecSQL() to DETACH the attached encrypted database, as we
no longer need it.

	Call getVersion() on the SQLiteDatabase representing the unencrypted
database, to retrieve the schema version number that Android maintains.

	Close the unencrypted database and open the encrypted one using
openOrCreateDatabase().

	Use setVersion() on SQLiteDatabase to set the schema version of the
encrypted database to the value we had from the unencrypted database.

	Close the encrypted database and delete the unencrypted database file.
Note that on API Level 16+, we could use the deleteDatabase() method on SQLiteDatabase
to cleanly delete everything associated with SQLite.

The combination of doing all of that migrates our data from an unencrypted
database to an encrypted one.
Then, we simply need to call encrypt() before we try loading our constants,
from doInBackground() of our LoadCursorTask:

 private class LoadCursorTask extends BaseTask<Void> {
 private final Context ctxt;

 LoadCursorTask() {
 this.ctxt=getActivity().getApplicationContext();
 }

 @Override
 protected Cursor doInBackground(Void... params) {
 DatabaseHelper.encrypt(ctxt);
 return(doQuery());
 }
 }

(from Database/SQLCipherPassphrase-AndroidStudio/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)
To test this upgrade logic, you will need to:

	Run the original unencrypted version of this sample, found
in the
Database/Constants
sample application

	Add a new constant using the unencrypted version of the app

	Run the encrypted version of the sample from this section, which shares the
same package name as the original and therefore will replace it on your
emulator

You will see your added constant appear along with all of the standard ones,
yet if you examine /data/data/com.commonsware.android.constants/databases
on your ARM emulator via DDMS, you will see that your database is now named
constants-crypt.db instead of constants.db, as we have replaced the
unencrypted database with an encrypted one.
Changing Encryption Passphrases
Another thing the user might wish to do is change their passphrase. Perhaps
they fear that their existing passphrase has been compromised (e.g., a narrow
escape from a $5 wrench). Perhaps they rotate their passphrases as a matter
of course. Perhaps they simply keep typing in their current one incorrectly
and want to switch to one they think they can enter more accurately.
SQLCipher for Android supports a rekey PRAGMA that can accomplish this.
Given an open encrypted database db — opened using the old passphrase –
you can change the password to a newPassword string variable via:

db.execSQL(String.format("PRAGMA rekey = '%s'", newPassword));

Note that this may take some time, as SQLCipher for Android needs to re-encrypt
the entire database.
Dealing with the Version 3.0.x Upgrade
If you are starting with SQLCipher for Android with the 3.0.x release, all
is good.
If you have been using SQLCipher for Android from previous releases,
but you are still in development mode, all is still good, so long as you
can wipe out your old databases.
If you have apps in production using SQLCipher for Android from previous
releases, you will have a small headache: the database structure has changed.
SQLCipher for Android provides us with a PRAGMA cipher_migrate that we can
run to upgrade the database in place to the new structure, once we have
opened the database with our passphrase. However:

	There is no great built-in place to put the code for calling this pragma

	You do not want to blindly call this pragma every time you open the
database, as it results in extra processing time

SQLCipher for Android, in an attempt to help with this,
offers a modified version of methods like openOrCreateDatabase()
on SQLiteDatabase, ones that take a SQLiteDatabaseHook implementation
as the last parameter. This interface requires two methods:

	
preKey(), called after the database is opened but before the
passphrase is applied

	
postKey(), called after the database is opened and after
the passphrase is applied, but before anything else is done (e.g., standard
SQLiteOpenHelper schema version checking)

Both methods are passed the SQLiteDatabase as a parameter, for you
to do with as needed. So, for example, you could have a postKey() implementation
that does the postKey() call only if needed:

public class SQLCipherV3Hook implements SQLiteDatabaseHook {
 private static final String PREFS=
 "net.sqlcipher.database.SQLCipherV3Helper";

 public static void resetMigrationFlag(Context ctxt, String dbPath) {
 SharedPreferences prefs=
 ctxt.getSharedPreferences(PREFS, Context.MODE_PRIVATE);
 prefs.edit().putBoolean(dbPath, false).commit();
 }

 @Override
 public void preKey(SQLiteDatabase database) {
 // no-op
 }

 @Override
 public void postKey(SQLiteDatabase database) {
 SharedPreferences prefs=
 getContext().getSharedPreferences(PREFS, Context.MODE_PRIVATE);
 boolean isMigrated=prefs.getBoolean(database.getPath(), false);

 if (!isMigrated) {
 database.rawExecSQL("PRAGMA cipher_migrate;");
 prefs.edit().putBoolean(database.getPath(), true).commit();
 }
 }
}

You can also pass a SQLiteDatabaseHook implementation into the
SQLiteOpenHelper constructor as the fifth parameter, which will
be used when SQLiteOpenHelper works with the underlying SQLiteDatabase.
Multi-Factor Authentication
Another way to effectively boost the strength of your security is to implement
your own multi-factor authentication. In this case, the passphrase is not
obtained solely through the user typing in the whole thing, but instead
is synthesized from two or more sources. So, in addition to some EditText
widget for entering in a portion of the passphrase, the rest could come from
things like:

	A value written to an NFC tag that the user must tap

	A value encoded in a QR code that the user must scan

	A value obtained by some Bluetooth-connected device via a custom protocol

You, in code, would concatenate the pieces together, possibly using delimiters
that cannot be typed in (e.g., ASCII characters below 32) to denote the sources
of each segment of the passphrase. The result would be the actual passphrase
you would use with SQLCipher for Android.
The objective is to make it easier for users to have more complex passphrases,
while not having to type in something complex every time. Tapping an NFC tag
is much faster than tapping out a passphrase on a typical phone keyboard,
for example. Also, the “something you know and something you have” benefit of
multi-factor authentication can help with defending against $5 wrench attacks:
if the NFC tag was destroyed, and the user never knew the portion of the
passphrase stored on it, the user cannot divulge it.
Of course, this adds risks, such as the NFC tag being destroyed
accidentally (e.g., “my dog ate it”). This can be mitigated in some cases by
some “admin” being able to reset the password or supply a new NFC tag. In
that case, getting the credentials requires two kidnappings and two $5
wrenches (or the serial
application of a single $5 wrench, if budgets preclude buying two such wrenches),
adding to the degree of difficulty for breaking the encryption by that means.
Detecting Failed Logins
If you try to decrypt a database using the incorrect passphrase — whether an
attempt by outsiders to use the app, or the user “fat-fingering” the passphrase
and making a typo — you will get an exception:
11-19 09:17:22.700: E/SQLiteOpenHelper(1634): net.sqlcipher.database.SQLiteException: file is encrypted or is not a database
Alas, this is not a specific exception, making it a bit difficult to detect
failed passphrases specifically. Your options are:

	Assume that your testing is sound and that exceptions when opening a database
represent invalid passphrases, or

	Use a generic error message that hints at an invalid passphrase but leaves
open the possibility of something else being wrong, or

	Read into the exception’s message looking for “file is encrypted or is not a database”,
though this is fragile in the face of changes to SQLCipher for Android

SQLCipher for Android and Performance
Some developers worry about the overhead that encryption will place on
the database I/O, and therefore worry that SQLCipher for Android will make
their app unacceptably slow.
The impact of SQLCipher is not that bad, particularly for hardware with
faster CPUs. Encryption is CPU-intensive, so faster CPUs reduce the overhead
of the encryption. Also, since the disk I/O is comparable between SQLite
and SQLCipher, the fact that flash memory is slow will mean that disk I/O,
not decryption speed, will be the primary determinant of the speed of
your queries. Similarly, disk I/O will count for more than CPU speed
for the encryption needed for INSERT/UPDATE/DELETE operations.
For example, porting one relatively crude benchmark
to use SQLCipher for Android showed no statistically significant
performance difference from the SQLite edition on a Nexus 5 running
Android 4.4.2.
To the extent that encryption adds overhead, it will tend to magnify existing
problems. For example, anything that involves a “table scan” (i.e., a
non-indexed lookup of database contents) will need more pages to be decrypted
and, therefore, more decryption time. If your database I/O is well-tuned
for SQLite, such as adding appropriate indexes, then your SQLCipher for
Android overhead should be nominal.
Of course, the worse the CPU, the worse the story, and so older/cheaper
devices may fare worse with SQLCipher for Android by comparison.
Encrypted Preferences
There are effectively three forms of data storage in Android:

	SQLite databases

	SharedPreferences

	Arbitrary files, in whatever format you want

You can encrypt SQLite via SQLCipher for Android, as seen in this chapter.
You can encrypt arbitrary files as part of your data format, such as via
javax.crypto.
What is not supported, out of the box, is a way to encrypt SharedPreferences.
There are two approaches for encrypting the contents of SharedPreferences:

	Encrypt the container in which the SharedPreferences are stored

	Encrypt each preference value as you store it in the SharedPreferences,
and decrypt it when you read the value back out

Encryption via Custom SharedPreferences
SharedPreferences is an interface. Hence, you can create other implementations
of that interface that store their data in something other than unencrypted
XML files.
CWSharedPreferences is one such implementation. You can find it in the
cwac-prefs project on GitHub.
CWSharedPreferences handles the SharedPreferences and
SharedPreferences.Editor interfaces, along with the in-memory representations
of the preferences. It then delegates the work of storing the preferences
to a strategy object, implementing a strategy interface
(CWSharedPreferences.StorageStrategy). Two such strategy implementations
are supplied in the project: one using ordinary SQLite, and one using
SQLCipher for Android.
The basic recipe for using CWSharedPreferences is:

	Create the strategy object, such as

new SQLCipherStrategy(getContext(), NAME, "atestpassword", LoadPolicy.SYNC)

(here, NAME is the name of the set of preferences, "atestpassword" is your
passphrase, and LoadPolicy.SYNC indicates that the preferences should be loaded
from disk immediately, not on a background thread)

	Create a CWSharedPreferences that employs your chosen strategy:

new CWSharedPreferences(yourStrategyObjectGoesHere);

	Use the CWSharedPreferences as you would any other SharedPreferences
implementation

	Call close() on the strategy object, to release any resources that it
might hold (e.g., open database connection)

Encryption via Custom Preference UI and Accessors
The big drawback to the custom SharedPreferences is the fact that you cannot
get the PreferenceScreen system to work with it. The preference UI is hard-wired
to use the stock implementation of SharedPreferences and does not appear to
support any way to substitute in some other implementation.
Hence, another approach is to keep things in standard SharedPreferences’ XML
files, but encrypt text values on a preference-by-preference basis. Since the
data type needs to remain the same, most likely you would restrict this to
encrypting strings (e.g., EditTextPreference, ListPreference) rather than
numbers, booleans, etc.
To do this, you would need to:

	Implement static methods somewhere for your encryption and decryption
algorithms

	Subclass the Preference classes of interest and override methods that
would deal with the raw preference data, like onDialogClosed(), to
encrypt the values you persist and decrypt the values you read in, using
the static methods mentioned above

	Use your extended Preference classes in your preference XML as needed

	Use those static methods as part of reading (or writing) the preference
values directly via SharedPreferences

The downsides to this approach include:

	Only certain preferences are encrypted, rather than all of them

	You lose some of the low-level encryption power of SQLCipher for Android,
such as automatic hashing of passphrases, which you would have to handle
yourself

	There may not be a library that supplies these extended Preference
classes, forcing you to roll your own

IOCipher
SQLCipher for Android is also used as the backing store for
IOCipher. IOCipher is a virtual
file system (VFS) for Android, allowing you to write code that looks and works
like it uses normal file I/O, yet all of the files are actually saved as BLOBs
in a SQLCipher for Android database. The result is a fully-encrypted VFS,
inheriting all of SQLCipher’s security features, such as default AES-256
encryption. This may be easier for you to use than encrypting and decrypting
files individually via javax.crypto, for example.
IOCipher is considered to be in pre-alpha state as of November 2012.
Packaging and Distributing Data
Sometimes, you not only want to ship your code and simple resources with
your app, but you also want to ship other types of data, such as an
initial database that your app will use when first run. This chapter
will examine the means by which you can do those sorts of things.
Prerequisites
Understanding this chapter requires that you have read the chapters on:

	database access

	content provider theory

	content provider implementations

Packing a Database To Go
Android’s support for databases is focused on databases you create
and populate entirely at runtime. Even if you want some initial data
in the database, the expectation is that you would add that via Java
code, such as the series of insert() calls we made in the
DatabaseHelper of the various flavors of the ConstantsBrowser
sample application.
However, that is tedious and slow for larger initial data sets, even
if you make careful use of transactions to minimize the disk I/O.
What would be nice is to be able to ship a pre-populated database
with your app. While Android does not offer built-in support for
this, there are a few ways you can accomplish it yourself. One of the
easiest, though, is to use existing third-party code that supports
this pattern, such as Jeff Gilfelt’s SQLiteAssetHelper, available
via
a GitHub repository.
Android Studio users can add a implementation
statement to the dependencies closure in build.gradle to pull in
com.readystatesoftware.sqliteasset:sqliteassethelper:... (for some
version indicated by ...).
SQLiteAssetHelper replaces your existing SQLiteOpenHelper
subclass with one that handles database creation and upgrading for
you. Rather than you writing a lot of SQL code for each of those, you
provide a pre-populated SQLite database (for
creation) and a series of SQL scripts (for upgrades).
SQLiteAssetHelper then does the work to set up your pre-populated
database when the database is first accessed and running your SQL
scripts as needed to handle schema changes. And, SQLiteAssetHelper
is open source, licensed under the same Apache License 2.0 that is
used for Android proper.
To examine SQLiteAssetHelper in action, let’s look at the
Database/ConstantsAssets-AndroidStudio
sample project. This is yet another
rendition of the same app as the other flavors of ConstantsBrowser,
but one where we use a pre-populated database.
Create and Pack the Database
Whereas normally you create your SQLite database at runtime from Java
code in your app, you now create your SQLite database using whatever
tools you like, at development time. Whether you use the command-line
sqlite3 utility, the SQLite Manager extension for Firefox, or
anything else, is up to you. You will need to set up all of your
tables, indexes, and so forth.
Then, you need to:

	Create an assets/databases/ directory in your project

	Copy your database into this directory (or put it there in the first
place, if you prefer)

If your minSdkVersion is less than 11, you will instead need to have
a ZIP or GZIP archive containing the database. The archive should have
the same name as the database file, just with the .zip or .gz
extension.
The reason for the ZIP compression comes from an Android 1.x/2.x limitation
– assets that are compressed by the Android build tools have a
file-size limitation (around 1MB). Hence, you need to store larger
files in a file format that will not be compressed by the Android
build tools, and those tools will not try to compress a .zip file.
In the ConstantsAssets project, you will see an
assets/databases/constants.db file, containing a copy of the
SQLite database with our constants table and pre-populated values.
Unpack the Database, With a Little Help(er)
Your compressed database will ship with your APK. To get it into its
regular position on internal storage, you use SQLiteAssetHelper.
Simply create a subclass of SQLiteAssetHelper and override its
constructor, supplying the same values as you would for a
SQLiteOpenHelper subclass, notably the database name and schema
revision number. Note that the database name that you use must match
the filename of the compressed database (minus the .zip extension,
if you needed that).
So, for example, our new DatabaseHelper looks like this:

package com.commonsware.android.dbasset;

import android.content.Context;
import com.readystatesoftware.sqliteasset.SQLiteAssetHelper;

class DatabaseHelper extends SQLiteAssetHelper {
 static final String TITLE="title";
 static final String VALUE="value";
 static final String TABLE="constants";
 private static final String DATABASE_NAME="constants.db";

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, 1);
 }
}

(from Database/ConstantsAssets-AndroidStudio/app/src/main/java/com/commonsware/android/dbasset/DatabaseHelper.java)
SQLiteAssetHelper will then copy your database out of assets and
set it up for conventional use, as soon as you call
getReadableDatabase() or getWritableDatabase() on an instance of
your SQLiteAssetHelper subclass.
Upgrading Sans Java
Traditionally, with SQLiteOpenHelper, to handle a revision in your
schema, you override onUpgrade() and do the upgrade work in there.
With SQLiteAssetHelper, there is a built-in onUpgrade() method
that uses SQL scripts in your APK to do the upgrade work instead.
These scripts will also reside in your assets/databases/ directory
of your project. The name of the file will be
$NAME_upgrade_$FROM-$TO.sql, where you replace $NAME with the
name of your database (e.g., constants.db), $FROM with the old
schema version number (e.g., 1) and $TO with the new schema
version number (e.g., 2). Hence, you wind up with files like
assets/databases/constants.db_upgrade_1-2.sql. This should contain
the SQL statements necessary to upgrade your schema between the
versions.
SQLiteAssetHelper will chain these together as needed. Hence, to
upgrade from schema version 1 to 3, you could either have a single
dedicated 1->3 script, or a 1->2 script and a 2->3 script.
Limitations
The biggest limitation comes with disk space. Since APK files are
read-only at runtime, you cannot delete the copy of the database held
as an asset in your APK file once SQLiteAssetHelper has unpacked
it. This means that the space taken up by your ZIP file will be taken
up indefinitely. Note, though, that you could use this to your
advantage, offering the user a “start over from scratch” option that
deletes their existing database, so SQLiteAssetHelper will unpack a
fresh original copy on the next run. Or, you could implement a
SQLiteDownloadHelper that follows the SQLiteAssetHelper approach
but obtains its database from the Internet instead of from assets.
In principle, SQLite could change their file format. If that ever
happens, you will need to make sure that you create a SQLite database
in the file format that can be used by Android, more so than what can
be used by the latest SQLite standalone tools.
Advanced Database Techniques
This chapter offers tips and techniques for working with SQLite
beyond what the previous chapters in the book have covered.
Prerequisites
This chapter assumes that you have read the core chapters, particularly the ones
on databases and Internet access.
Also, please read the chapter on advanced action bar techniques,
particularly the section on SearchView, as that
is used in one of the sample apps.
Full-Text Indexing
Standard SQL databases are great for ordinary queries. In particular, when it
comes to text, SQL databases are great for finding rows where a certain column
value matches a particular string. They are usually pretty good about finding
when a column value matches a particular string prefix, if there is an index on
that column. Things start to break down when you want to search for an occurrence
of a string in a column, as this usually requires a “table scan” (i.e., iteratively
examining each row to see if this matches). And getting more complex than that is
often impossible, or at least rather difficult.
SQLite, in its stock form, inherits all those capabilities and limitations.
However, SQLite also offers full-text indexing, where we can search our database
much like how we use a search engine (e.g., “find all rows where this column has
both foo and bar in it somewhere”). While a full-text index takes up additional
disk space, the speed of the full-text searching is quite impressive.
For example, if you are reading this book using the Android APK edition (instead
of the PDF, EPUB, or Kindle/MOBI editions), tap on the SearchView action bar
item and search for FTS4. You will get a list of matches back almost instantaneously,
despite the fact that you are searching a multi-megabyte book. That is because
this book ships a SQLite-powered full-text index of the book’s contents, specifically
to power your use of SearchView.
In this section, we will review how you can add full-text indexing to your
SQLite database and how you can let the user take advantage of that index
using a SearchView.
First, a Word About SQLite Versions
SQLite has evolved since Android’s initial production release in 2008.
In many cases, Android does not incorporate updates to third-party code, for
backwards-compatibility reasons (e.g., Apache’s HttpClient). In the case
of SQLite, newer Android versions do take on newer versions of SQLite… but
the exact version of SQLite that a given version of Android uses is undocumented.
Worse, some device manufacturers replace the stock SQLite for a version of
Android with a different one.
This Stack Overflow answer contains
a mapping of Android OS releases to SQLite versions, including various “anomalies”
where manufacturers have elected to ship something else.
In many cases, the SQLite version does not matter. Core SQLite capabilities will
have existed since the earliest days of Android. However, full-text indexing
did not exist in the first SQLite used by Android, meaning that you will have
to pay attention to your minSdkVersion and aim high enough that devices should
support the full-text indexing option you choose.
Note that you could use an external SQLite implementation, one that
gives you a newer SQLite engine than what might be on the device.
For example, SQLCipher for Android ships its
own copy of SQLite (with the SQLCipher extensions compiled in), one
that is often newer than the one that is baked into the firmware of
any given device.
FTS3 and FTS4
There are two full-text indexing options available in SQLite: FTS3
and FTS4. FTS4 can be much faster on certain queries, though overall
the speed of the two implementations should be similar. FTS4 has
two key limitations:

	It may take a bit more disk space for its indexes.

	It was added to SQLite 3.7.4, which was only introduced into
standard Android in API Level 11.

The sample app for this section will demonstrate FTS4, as that is
available on most Android devices.
Note that the Android developer documentation does not cover FTS3
or FTS4 full-text indexing. The details for the SQL syntax to support
these options can be found in
the SQLite documentation.
Creating a Full-Text Indexed Table
A full-text indexed table, using FTS3 or FTS4, uses SQLite’s
CREATE VIRTUAL TABLE syntax. This indicates that you are opting
into some special table-storage behavior, rather than the stock stuff.
In the
Database/FTS
sample project, the onCreate() method of our SQLiteOpenHelper
subclass (DatabaseHelper) creates such a virtual table, using FTS4
for full-text indexing:

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE VIRTUAL TABLE questions USING fts4("
 +"_id INTEGER PRIMARY KEY, title TEXT, "
 +"link TEXT, profileImage TEXT, creationDate INTEGER, "
 +"order=DESC);");
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java)
There are a few differences here from a typical CREATE TABLE
statement, beyond the introduction of the VIRTUAL keyword:

	The USING fts4 indicates that the virtual table is employing
the FTS4 full-text indexing engine. To use FTS3, just replace fts4
with fts3.

	You can have key-value pairs in the column list, separated by
equals signs, to provide options for configuring the virtual table.
In this case, it will provide options for configuring the FTS4
indexing behavior. In this case, we are providing order=DESC, to
indicate that the full-text index should be optimized for returning
items in descending order. Note that these options only exist for
FTS4, not FTS3. The full roster of available options is covered
in the SQLite documentation.

This gives us a table that supports normal table operations but
also has a full-text index for its columns. However, there are some
limitations, notably that these tables ignore constraints. So, for
example, the PRIMARY KEY constraint applied to the _id column
is ignored.
Populating a Full-Text Indexed Table
Adding content to an FTS3 or FTS4 table uses the same INSERT
statements that you might use for a regular table. For example,
the DatabaseHelper in the sample app has an insertQuestions()
method that deletes all existing rows in the questions table,
then inserts a bunch of rows based on a supplied List of Item
objects:

 void insertQuestions(Context app, List<Item> items) {
 SQLiteDatabase db=getDb(app);

 db.beginTransaction();

 db.delete("questions", null, null);

 try {
 for (Item item : items) {
 Object[] args={ item.id, item.title, item.link,
 item.owner.profileImage, item.creationDate};

 db.execSQL("INSERT INTO questions (_id, title, "
 +"link, profileImage, creationDate) "
 +"VALUES (?, ?, ?, ?, ?)",
 args);
 }

 db.setTransactionSuccessful();
 }
 finally {
 db.endTransaction();
 }
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java)
If those Item objects look familiar, that is because this app
is a modified version of the Stack Overflow questions apps profiled
in the chapter on Internet access.
The reason why we are deleting everything before inserting is just
to keep the sample simple. The database table will hold all of
the questions pulled from the Stack Exchange API. Each time we
run the app, we get the latest questions from that API. The vision
was to use INSERT OR REPLACE or INSERT OR IGNORE statements to
be able to merge content into the table. However, FTS3 and FTS4
tables ignore all constraints, as noted above, which prevents
the conflict resolution options (e.g., OR REPLACE) from working.
Hence, rather than manually sifting through to find if there is an
existing row or not for a given ID value, this sample simply gets
rid of all existing rows. A production-grade app would likely apply
a more sophisticated algorithm.
Querying a Full-Text Indexed Table
While you can query a full-text indexed table using normal SELECT
statements, usually the point is to apply the MATCH operator, as
is seen in the loadQuestions() method from DatabaseHelper:

 Cursor loadQuestions(Context app, String match) {
 SQLiteDatabase db=getDb(app);

 if (TextUtils.isEmpty(match)) {
 return(db.rawQuery("SELECT * FROM questions ORDER BY creationDate DESC",
 null));
 }

 String[] args={ match };

 return(db.rawQuery("SELECT * FROM questions WHERE title "
 +"MATCH ? ORDER BY creationDate DESC", args));
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java)
The MATCH operator supports a wide range of query structures,
including:

	Keyword matches (e.g., Android)

	Prefix matches (e.g., SQL*)

	Phrase matches (e.g., "open source")

	
NEAR, AND, OR, and NOT operators (e.g., sqlite AND database)

The result is the same sort of Cursor that you would get from a
regular SELECT statement against a non-full-text-indexed table.
Some Notes About the Rest of the Sample App
As noted previously, this sample app is a revised version of the
Stack Overflow questions list from the chapter on Internet access.
It is specifically derived from the Picasso version of the sample.
However, this version is designed to allow the user to full-text search
the downloaded question data (e.g., title), above and beyond just seeing
the list of latest questions.
This, in turn, requires a few more changes than those outlined so far. The
following sections outline some of the highlights.
Adding a ModelFragment
The original sample had a very simple data model: a list of questions retrieved
via Retrofit. Hence, the sample did not include much in the way of model
management.
The FTS sample needs a database, which implies more local disk I/O that
we are responsible for, which in turn leads us in the direction of implementing
a model fragment (ModelFragment), much as the tutorials and a few other
samples do:

package com.commonsware.android.fts;

import android.app.Activity;
import android.content.Context;
import android.database.Cursor;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.util.Log;
import org.greenrobot.eventbus.EventBus;
import org.greenrobot.eventbus.Subscribe;
import org.greenrobot.eventbus.ThreadMode;
import retrofit2.Retrofit;
import retrofit2.converter.gson.GsonConverterFactory;

public class ModelFragment extends Fragment {
 private Context app=null;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setRetainInstance(true);
 }

 @Override
 public void onAttach(Activity host) {
 super.onAttach(host);

 EventBus.getDefault().register(this);

 if (app==null) {
 app=host.getApplicationContext();
 new FetchQuestionsThread().start();
 }
 }

 @Override
 public void onDetach() {
 EventBus.getDefault().unregister(this);

 super.onDetach();
 }

 @Subscribe(threadMode =ThreadMode.BACKGROUND)
 public void onSearchRequested(SearchRequestedEvent event) {
 try {
 Cursor results=DatabaseHelper.getInstance(app).loadQuestions(app, event.match);

 EventBus.getDefault().postSticky(new ModelLoadedEvent(results));
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception searching database", e);
 }
 }

 class FetchQuestionsThread extends Thread {
 @Override
 public void run() {
 Retrofit retrofit=
 new Retrofit.Builder()
 .baseUrl("https://api.stackexchange.com")
 .addConverterFactory(GsonConverterFactory.create())
 .build();
 StackOverflowInterface so=
 retrofit.create(StackOverflowInterface.class);

 try {
 SOQuestions questions=so.questions("android").execute().body();

 DatabaseHelper
 .getInstance(app)
 .insertQuestions(app, questions.items);
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception populating database", e);
 }

 try {
 Cursor results=DatabaseHelper.getInstance(app).loadQuestions(app, null);

 EventBus.getDefault().postSticky(new ModelLoadedEvent(results));
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception populating database", e);
 }
 }
 }
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/ModelFragment.java)
In onCreate(), we mark this fragment as retained, as that is key to the
model fragment pattern, so the fragment retains the model data across
configuration changes.
In onAttach(), we register for the greenrobot EventBus, plus kick off
a FetchQuestionsThread if we have not done so already (i.e., this is
the first onAttach() call we have received). onDetach() unregisters
us from the event bus.
FetchQuestionsThread, in turn, uses Retrofit to download the questions
from Stack Overflow, then uses DatabaseHelper to insert the questions
into the FTS-enabled database table, then uses the DatabaseHelper again
to retrieve all existing questions in the form of a Cursor, which it
wraps in a ModelLoadedEvent and posts to the EventBus. This time, though,
it posts it as a sticky event.
That sticky event is consumed by a revised version of the QuestionsFragment,
in its onModelLoaded() method:

 @Subscribe(sticky = true, threadMode =ThreadMode.MAIN)
 public void onModelLoaded(ModelLoadedEvent event) {
 ((SimpleCursorAdapter)getListAdapter()).changeCursor(event.model);

 if (sv!=null) {
 sv.setEnabled(true);
 }
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)
But because this is a sticky event, we will get this event both when it is
raised (because the data is loaded) and any time thereafter when the fragment
registers with the EventBus. This allows QuestionsFragment to not be
retained, as it will get back the bulk of its model data automatically from
greenrobot’s EventBus.
QuestionsFragment also is modified from the Picasso sample to deal with the
fact that its model data is now a Cursor, so it uses SimpleCursorAdapter
to populate the list. To handle loading avatar images from the URLs,
QuestionsFragment adds a QuestionBinder implementation of ViewBinder
to the SimpleCursorAdapter, where QuestionBinder handles the Picasso logic
from before:

 private class QuestionBinder implements SimpleCursorAdapter.ViewBinder {
 int size;

 QuestionBinder() {
 size=getActivity()
 .getResources()
 .getDimensionPixelSize(R.dimen.icon);
 }

 @Override
 public boolean setViewValue (View view, Cursor cursor, int columnIndex) {
 switch (view.getId()) {
 case R.id.title:
 ((TextView)view).setText(Html.fromHtml(cursor.getString(columnIndex)));

 return(true);

 case R.id.icon:
 Picasso.with(getActivity()).load(cursor.getString(columnIndex))
 .resize(size, size).centerCrop()
 .placeholder(R.drawable.owner_placeholder)
 .error(R.drawable.owner_error).into((ImageView)view);

 return(true);
 }

 return(false);
 }
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)
The main activity (MainActivity) sets up the ModelFragment in onCreate(),
at least when one does not already exist due to a configuration change:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new QuestionsFragment()).commit();
 }

 model=(ModelFragment)getSupportFragmentManager().findFragmentByTag(MODEL);

 if (model==null) {
 model=new ModelFragment();
 getSupportFragmentManager().beginTransaction().add(model, MODEL).commit();
 }
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/MainActivity.java)
This description, though, has skipped over the onEventBackgroundThread()
method on the ModelFragment, which we will get to later in this overview.
Adding a SearchView
As is covered in the chapter on advanced action bar techniques,
a SearchView can be used to provide the standard “magnifying glass” search
icon in the action bar. When tapped, the action bar item expands into a field
where the user can type something, which our code can then receive and use to
update the UI. In the SearchView sample from the action bar chapter, we saw
using a SearchView for filtering. This time, we will use a SearchView
for searching.
For a search, we need to know when the user is done typing, which is usually
done by the user clicking a submit button. Hence, our code to configure
the SearchView (a configureSearchView() method in QuestionsFragment)
calls setSubmitButtonEnabled(true):

 private void configureSearchView(Menu menu) {
 MenuItem search=menu.findItem(R.id.search);

 search.setOnActionExpandListener(this);
 sv=(SearchView)search.getActionView();
 sv.setOnQueryTextListener(this);
 sv.setSubmitButtonEnabled(true);
 sv.setIconifiedByDefault(true);

 if (initialQuery != null) {
 sv.setIconified(false);
 search.expandActionView();
 sv.setQuery(initialQuery, true);
 }
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)
This, in turn, means that we need to pay attention to onQueryTextSubmit()
in our SearchView.OnQueryTextListener implementation. That interface is
implemented on QuestionsFragment itself, and delegates its work to a
doSearch() method:

 @Override
 public boolean onQueryTextSubmit(String query) {
 doSearch(query);

 return(true);
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)
That method, in turn, confirms that the search is different than the last one we
did (so we do not waste time running the search again), disables the SearchView,
and posts a SearchRequestedEvent on the EventBus with the user’s search string:

 private void doSearch(String match) {
 if (!match.equals(lastQuery)) {
 lastQuery=match;

 if (sv != null) {
 sv.setEnabled(false);
 }

 EventBus.getDefault().post(new SearchRequestedEvent(match));
 }
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)
That event is picked up by onSearchRequested() on ModelFragment.
The @Subscribe(threadMode =ThreadMode.BACKGROUND) annotation means that the event will be
delivered to us on an EventBus-supplied background thread, so we can perform
database I/O. In it, we call loadQuestions() on the DatabaseHelper to
perform the search, and post another sticky ModelLoadedEvent to update
the UI with the search results and re-enable the SearchView:

 @Subscribe(threadMode =ThreadMode.BACKGROUND)
 public void onSearchRequested(SearchRequestedEvent event) {
 try {
 Cursor results=DatabaseHelper.getInstance(app).loadQuestions(app, event.match);

 EventBus.getDefault().postSticky(new ModelLoadedEvent(results));
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception searching database", e);
 }
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/ModelFragment.java)
When the user clears the SearchView, such as by pressing the BACK button a
few times, the onMenuItemActionCollapse() method of QuestionsFragment
calls a clearSearch() method:

 @Override
 public boolean onMenuItemActionCollapse(MenuItem item) {
 clearSearch();

 return(true);
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)
That clearSearch() method simply posts another SearchRequestedEvent, this time
to load a fresh roster of all questions:

 private void clearSearch() {
 if (lastQuery!=null) {
 lastQuery=null;

 sv.setEnabled(false);
 EventBus.getDefault().post(new SearchRequestedEvent(null));
 }
 }

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)
The Results
When you run the app, you are initially presented with the list
of questions pulled from the Stack Exchange API:

[image: FTS Demo, As Initially Launched]

Figure 771: FTS Demo, As Initially Launched
Tapping on the SearchView opens it up, as normal, though this time
with the “submit” button (the rightward-pointing arrowhead):

[image: FTS Demo, with Open SearchView]

Figure 772: FTS Demo, with Open SearchView
Typing in a search, then tapping the “submit” button, will reload
the list with those questions that match the search criteria in the
question title:

[image: FTS Demo, Showing Basic Search]

Figure 773: FTS Demo, Showing Basic Search

[image: FTS Demo, Showing Boolean Search]

Figure 774: FTS Demo, Showing Boolean Search
Using the BACK button to get out of the SearchView reloads the
full list of questions.
Getting Snippets
Usually, the content that is being indexed is a lot longer than Stack
Overflow question titles. For example, it might be chapters in a book
on Android application development. In that case, it would be useful to
not only find out what chapters match the search expression, but what the
prose is around the search expression, to help the user determine which
search results are likely to be useful.
The APK edition of this book stores each paragraph and bullet as a
separate entry in a SQLite database in an FTS3-enabled table. The
query used when the reader types in a search expression in the app’s
SearchView is:

SELECT ROWID as _id, file, node, snippet(booksearch) AS snippet FROM booksearch WHERE prose MATCH ?

Here, file and node are used to identify where this passage came
from within the book, so when the user taps on a search result in
the list, the book reader can jump to that particular location.
The snippet() auxiliary function will return, as the name suggests,
a snippet of the indexed text, with the search match highlighted. It
takes the name of the table booksearch as a mandatory parameter. It
also supports optional parameters for what to bracket the search match
with (defaults to and </b]) and what to use for an ellipsis for
extended prose segments (defaults to [b>...</b]). In the case of this
query, the default formatting of the result is used. The resulting text
can then be fed into Html.fromHtml() to generate the text for the
ListView row, showing the search match within the snippet highlighted
in bold:

[image: This Books Reader App, Showing Search Results]

Figure 775: This Book’s Reader App, Showing Search Results
The app also shows the name of the chapter in the lower-right corner
of each row, to help provide larger context for where this snippet
comes from.
Data Backup
Backing up your PC used to be essential. To some extent, it still is,
but as more and more stuff moves to “the cloud”, local machine backups
become less and less important.
Backing up mobile devices historically has been an afterthought, as
a lot of what people use these devices for are gateways to Internet-hosted
content and services. However, as more and more stuff becomes local
to the device — for disconnected operation, for example — the greater
the need for backing up that local data.
Android does not have a full-device backup as part of the OS. It does
have some hooks that Google advertises as being “backup”, but IT professionals
would not consider Google’s definition to match their own for “backup”.
And, what hooks there are exist at the level of an app, not the device,
providing opportunity — and requirements — for developers to tailor what
gets backed up and, to a lesser extent, how it gets backed up.
This chapter will explore the steps to back up your app’s data, with and
without Google’s assistance.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on file access and
Internet access.
Having read the chapters on SSL
and SQLCipher for Android are not required but may prove
to be useful background for some of the side topics in this chapter.
First, Some Terminology
One key concept when it comes to backups is what, exactly, we are backing
up. The general rule is that you focus your backup regimen on
the “system of record”. This is the one and only system that has the master
copy of the data. While it may be one “system”, that “system” may be
rather complex (e.g., cluster of database servers). However, anything
else outside of that system — such as clients for those servers — are
not part of the system of record. While they may have some data that is
also held by the system of record, that data is considered to be a cached
local copy; the system of record has the “real” copy of the data.
Differing Definitions of “Backup”
The problem is that we toss around the term “backup” as though there
is a universal canonical definition for that term. Hence, what Google
will tell users is “backup” will not necessarily line up with what
an IT department will consider “backup” to mean.
What Google Thinks “Backup” Means
Google’s focus is on the cloud. Therefore, their focus is on apps using
data resident in the cloud, with some servers forming the system of record.
Google (presumably) does some sort of backup for their own systems of
record, for their own Internet-based services, and Google assumes that
other firms are doing the same.
The side-effect of this definition, though, is that Google does not view
an app as having much in the way of local data that needs to be backed up.
Cached data can always be reloaded from the system of record, after all.
What Google expects needs to be backed up will be local preferences and
perhaps authentication or authorization credentials for working with the
system of record. This dataset is small and does not necessarily change
all that often.
Because the dataset does not change that often, Google only really cares
about restoring that data in case of a total device replacement. In other
words, if your phone gets run over by a bakery truck, and you wind up
replacing that phone with another Android phone, Google is interested in
making sure that your old phone’s apps get restored along with the old
phone’s last backup of the tiny dataset. After that, you are on your own.
In particular, because the dataset does not change that often and does not
have much in the way of critical data, Google is not concerned with allowing
users to restore app data from backup for any reason other than replacing
the device outright. In other words, Google is only concerned with disaster
recovery.
Google does not offer any configurability for where backups themselves
are stored. Whatever Google backs up, Google stores where Google wants.
Terms of service and related agreements give Google — at least in Google’s
eyes — the right to do pretty much anything they want with that data. While they
will tout the fact that Android 6.0+ backups are stored in an encrypted
fashion, they fail to note that Google — not the developer, not the user –
holds the encryption keys. Thus, the security offered by this encryption
is nominal, perhaps slowing down somebody who breaks into Google’s network,
but otherwise not preventing anyone from accessing the data.
Also, there is a 25MB data cap on the size of the backup, so if your
app might have data in excess of that, you need to handle backups yourself.
Finally, the author of this book cannot get Google’s backup system to work
on production hardware,
as will be explained a bit more
later in this chapter.
What IT Thinks “Backup” Means
Apps may well be the system of record for the data that they work with.
There is no requirement that all apps be front-ends for some server,
any more than there is a requirement that all desktop OS apps be front-ends
for some server. There may be plenty of business or technical reasons
why an app will be the system of record for its data, either all of the
time or in between specific sync operations with some central data store.
As a result, an IT department will recognize that apps need a much more
robust backup and restoration service, one that takes into account
conventional IT backup concepts.
Most IT-grade backup regimens have the notion of “backup aging”. Rather
than Google’s approach of considering only one backup to be relevant,
an IT department will maintain a series of backups (e.g., 14 days of nightly
backups, plus 3 months of weekly backups, plus 5 years of monthly backups),
to be able to handle data that might be lost, but where that loss is not
detected for some time.
Most IT-grade backups regimens allow data to be restored, in part or
completely, at any point, not just in case a device is stepped on by
an elephant or otherwise destroyed. Disaster recovery is a scenario
of a backup regimen, not the sole objective.
IT departments also tend to be very concerned about where their business
data goes. The idea that the data should be available, unencrypted,
to arbitrary third parties would be an anathema. Business data should
be backed up on by IT-supplied technology on IT-supplied backup media,
employing whatever security the IT department thinks is necessary.
Suffice it to say, Google’s approach to “backup” does not align well
with what an IT department will want.
What Your Legal Counsel Thinks “Backup” Means
Legal counsel, at some point, should be brought into the discussion
of backups, as, for better or worse, there are legal risks involved
in backups.
Particularly with Google-style, send-the-data-to-a-third-party backups,
you need to ensure that this will not get you in legal trouble.
From European Union privacy laws to HIPAA in the US, there are plenty
of laws that prohibit the careless distribution of data.
Beyond that, legal counsel will be worried about “the Ashley Madison
scenario”. A firm’s IT department will be responsible for ensuring that
their servers are not hacked into. However, once you start passing
data to third parties, now you are at risk of those servers getting
hacked into. Legal counsel can advise you on what your legal exposure
is, in terms of potential lawsuits from people whose data might get
leaked by these sorts of attacks.
Implementing IT-Style Backup
So, if we want to add backup and restore capability to our app,
what is needed? To explore that, we will use
the
Backup/BackupClient
sample project as an illustration. This is a clone of a sample that
originally appeared in the chapter on files. We have
a three-tab ViewPager, with a large EditText widget in each tab.
The three tabs differ in where they persist their data:

	getFilesDir()

	getExternalFilesDir()

	
DIRECTORY_DOCUMENTS — the user’s Documents/ directory on API Level 19+ devices

This revised sample adds backup-and-restore functionality to this app.
The app also has one other change: it stores the most-recently-visited
tab in SharedPreferences. To that end, MainActivity has a PrefsLoadThread
static inner class that asynchronously loads the SharedPreferences,
then delivers them via greenrobot’s EventBus:

 private static class PrefsLoadThread extends Thread {
 private final Context ctxt;

 PrefsLoadThread(Context ctxt) {
 this.ctxt=ctxt.getApplicationContext();
 }

 @Override
 public void run() {
 SharedPreferences prefs=
 PreferenceManager.getDefaultSharedPreferences(ctxt);
 PrefsLoadedEvent event=new PrefsLoadedEvent(prefs);

 EventBus.getDefault().post(event);
 }
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)
MainActivity picks up this event in onPrefsLoaded(),
an EventBus method that takes PrefsLoadedEvent as a parameter and updates the
current page of the ViewPager (named pager):

 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onPrefsLoaded(PrefsLoadedEvent event) {
 this.prefs=event.prefs;

 int lastVisited=prefs.getInt(PREF_LAST_VISITED, -1);

 if (lastVisited>-1) {
 pager.setCurrentItem(lastVisited);
 }
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)
The PrefsLoadThread is kicked off in onStart(), and the
 PREF_LAST_VISITED value is saved in onStop(), along with the
registration and unregistration from the event bus:

 @Override
 protected void onStart() {
 super.onStart();

 EventBus.getDefault().register(this);

 if (prefs==null) {
 new PrefsLoadThread(this).start();
 }
 }

 @Override
 protected void onStop() {
 EventBus.getDefault().unregister(this);

 if (prefs!=null) {
 prefs
 .edit()
 .putInt(PREF_LAST_VISITED, pager.getCurrentItem())
 .apply();
 }

 super.onStop();
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)
The net effect is that we retain the last-visited tab across invocations
of MainActivity. This forms part of the data that we would like to back
up.
Choosing the Backup Scope
The first question is: what exactly are we backing up? Files? Databases?
SharedPreferences? Stuff that is out in common areas, like top-level
directories on external storage (e.g., DIRECTORY_DOCUMENTS) or the
ContactsContract ContentProvider?
Typically, an individual app will focus on backing up only that app’s data,
which would exclude the common areas from consideration. That does not
mean that you can’t back up common data, but it makes restoration
a bit more challenging, as you do not want to overwrite changes to that
data that the user made from another app.
In BackupClient, we are backing up:

	the contents of getFilesDir(), which will hold onto one of our
tabs’ contents

	the contents of getExternalFilesDir(), which will hold onto
another of our tabs’ contents

	some of the contents of the directory that holds the SharedPreferences for
the app, which will pick up the preference value we are using for
the last-visited tab

Notably, we are not backing up the file out on shared storage
(the “Public” tab, set to store its data in
Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS)).
Hence, whatever is in that tab will be left alone when we restore
the data from the backup.
Choosing a Backup Trigger
The next question is: when are we backing up the data?
There are any number of possibilities:

	A push message, such as through GCM, could request that
the app back up its data

	Time-based triggers, using AlarmManager or
JobScheduler, could
be used to periodically make backups

	You could offer backups on demand, such as through an action bar
item

The automated options (push message, AlarmManager, JobScheduler)
are great, so users do not forget to make a backup. On the other hand,
there is the risk that the user is using the app at the time the automated
backup is supposed to happen, which means you will need some additional
logic to ensure that you postpone that backup until a quieter time.
It is difficult to back up data that is actively in use.
The BackupClient sample will settle for a simple manual trigger, via
a “Backup” action bar item in the main activity. We also have a “Restore”
action bar item, to request to restore the data from a backup. So,
MainActivity will load in a menu resource that contains these
two options:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/backup"
 android:icon="@drawable/ic_backup_white_24dp"
 android:title="@string/menu_backup"/>
 <item
 android:id="@+id/restore"
 android:icon="@drawable/ic_restore_white_24dp"
 android:title="@string/menu_restore"/>
</menu>

(from Backup/BackupClient/app/src/main/res/menu/actions.xml)
It uses a pair of icons culled from
Google’s material design icon set.
That resource is inflated in onCreateOptionsMenu(). If the user
chooses the “Backup” option, we start a BackupService to do the work:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.backup) {
 BackupService.enqueueWork(this);

 return(true);
 }
 else if (item.getItemId()==R.id.restore) {
 startActivity(new Intent(this, RestoreRosterActivity.class));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)
We will get into the restore scenario a bit later in this chapter.
Generating the Dataset
Next, we need to actually collect the data to be backed up and package
it in some form to send to a server to serve as the backup dataset.
There are any number of ways to package this sort of data, but a ZIP
file seems like a likely candidate:

	It is fairly easy to work with on Android

	It is fairly easy to work with on servers that might need to unpack
the data

	It is fairly easy to examine using desktop tools, for development,
diagnostics, etc.

It is the job of the BackupService to create a ZIP file of our
desired data, then send that ZIP file to a backup server.
BackupService itself is a JobIntentService, as this sort of work
is a nice “fire-and-forget” sort of request, where we no longer need
the service once the work is done.
In onHandleWork(), we orchestrate the major steps in this process:

 @Override
 public void onHandleWork(@NonNull Intent i) {
 try {
 File backup=buildBackup();

 uploadBackup(backup);
 backup.delete();

 EventBus.getDefault().post(new BackupCompletedEvent());
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception creating ZIP file", e);
 EventBus.getDefault().post(new BackupFailedEvent());
 }
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
We:

	Call a buildBackup() method that creates our backup dataset

	Call an uploadBackup() method to send the dataset to some backup
server

	Delete the local backup when that is done, as we no longer need it

	Raise events on an event bus for the UI layer’s use, for when
a backup succeeds or fails

Those events can then trigger UI responses. In the case of this trivial
sample app, they just result in Toast messages to the user:

 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onCompleted(BackupService.BackupCompletedEvent event) {
 Toast
 .makeText(this, R.string.msg_backup_completed, Toast.LENGTH_LONG)
 .show();
 }

 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onFailed(BackupService.BackupFailedEvent event) {
 Toast
 .makeText(this, R.string.msg_backup_failed, Toast.LENGTH_LONG)
 .show();
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)
A production-grade app would do something more sophisticated, particularly
for error messages, given that a Toast is ephemeral, and so the user
might not see it.
buildBackup() is responsible for creating a file that contains our desired
dataset and returning the File object pointing to that file:

 private File buildBackup() throws IOException {
 File zipFile=new File(getCacheDir(), BACKUP_FILENAME);

 if (zipFile.exists()) {
 zipFile.delete();
 }

 FileOutputStream fos=new FileOutputStream(zipFile);
 ZipOutputStream zos=new ZipOutputStream(fos);

 zipDir(ZIP_PREFIX_FILES, getFilesDir(), zos);
 zipDir(ZIP_PREFIX_PREFS, getSharedPrefsDir(this), zos);
 zipDir(ZIP_PREFIX_EXTERNAL, getExternalFilesDir(null), zos);
 zos.flush();
 fos.getFD().sync();
 zos.close();

 return(zipFile);
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
We put the backup ZIP file in internal storage cache (getCacheDir()), as
that is not something that we are backing up, and therefore we do not need
to worry about somehow trying to back up the backup file itself.
We then call zipDir() three times, one for each directory of data to be
backed up. Two of the three locations have SDK-supplied methods to get
the File object pointing at those directories: getFilesDir() and
getExternalFilesDir(). Unfortunately, the SDK does not provide any
direct method that returns a File pointing at the directory for
SharedPreferences. So, we have to hack one ourselves, in the form of
getSharedPrefsDir():

 static File getSharedPrefsDir(Context ctxt) {
 return(new File(new File(ctxt.getApplicationInfo().dataDir),
 "shared_prefs"));
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
getApplicationInfo() returns the ApplicationInfo object describing
our app. That has a dataDir field that points to all of our
internal storage (whereas getFilesDir() points to a subdirectory off
of dataDir). The SharedPreferences are stored in XML files in a
shared_prefs/ directory off of the location pointed to by the dataDir field.
This is not an ideal solution, as in theory the SharedPreferences
storage location could move. However, this code should work for all
API levels from 1 through 23, and therefore it is reasonably likely that
it will hold up over time.
zipDir() not only takes the File of data to be backed up and
a ZipOutputStream representing where to package the data, but it also
takes a path prefix. ZIP files do not really have a directory structure;
that structure is faked based on path-style names associated with each
entry. The prefix is added to each of those names, giving the effect of
putting each directory’s contents into a separate “directory” within
the ZIP archive. Those three prefixes are defined as simple String
constants:

 static final String ZIP_PREFIX_FILES="files/";
 static final String ZIP_PREFIX_PREFS="shared_prefs/";
 static final String ZIP_PREFIX_EXTERNAL="external/";

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
zipDir() itself (mostly) is a typical recursive put-the-files-in-the-archive
method:

 private void zipDir(String basePath, File dir,
 ZipOutputStream zos) throws IOException {
 byte[] buf=new byte[16384];

 if (dir.listFiles()!=null) {
 for (File file : dir.listFiles()) {
 if (file.isDirectory()) {
 String path=basePath+file.getName()+"/";

 zos.putNextEntry(new ZipEntry(path));
 zipDir(path, file, zos);
 zos.closeEntry();
 }
 else if (!file.getName().equals(BACKUP_PREFS_FILENAME)) {
 FileInputStream fin=new FileInputStream(file);
 int length;

 zos.putNextEntry(
 new ZipEntry(basePath+file.getName()));

 while ((length=fin.read(buf))>0) {
 zos.write(buf, 0, length);
 }

 zos.closeEntry();
 fin.close();
 }
 }
 }
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
The one wrinkle is that we filter out files with a particular name,
denoted by the BACKUP_PREFS_FILENAME constant:

 private static final String BACKUP_PREFS_FILENAME=
 "com.commonsware.android.backup.BackupService.xml";

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
We will explore what this file is, and why we are not backing it up,
later in this chapter.
This backup approach has its flaws, in the interests of keeping the
example simple:

	The UI layer is not saving all in-flight data before doing the
backup. Hence, any changes in the current tab, since we moved to that
tab, are not saved to disk or backed up. And, since we only save what
the current tab is in onStop(), that too has not been adjusted since
our activity moved to the foreground, and so it may be out of date.
A production-grade app will need to decide what data that has not been
saved through ordinary means should be saved prior to a manual backup,
assuming that the app has a manual backup option in the first place.

	The UI layer is not preventing the user from changing data that is
being backed up while the backup is happening. In this sample app,
the data to be backed up is small enough that it will probably happen
quickly enough to not be a problem. A production-grade app, though,
should take steps to prevent data entry (though perhaps not navigation
through the app) while the backup is going on. Any such steps, though,
need to take into account the possibility that the backup may fail — we
do not want a failed backup to block the user from working in the app
for hours.

Transmitting the Dataset
Given the data to be backed up in a nice convenient package, we need to get
that dataset off the device and someplace safe, where we can later
download and restore it if needed. There are any number of possible
solutions here, including many existing public Web services (Dropbox,
Amazon’s AWS S3, Google Drive, etc.). If you are only worried about
manual backups, you could even consider using ACTION_SEND to send
the dataset as an email attachment, though size and content
limitations on email attachments
may make this impractical for many users.
BackupService works with some implementation of a particular REST-style
API for backing up and restoring the data. This API is fairly lightweight,
light enough that it can be implemented in ~70 lines of Ruby code, as
will be seen later in this chapter. You could implement
the same sort of API in any number of Web frameworks.
For backing up data, there are two REST operations that we need to perform:

	We need to create a new backup entry, via an HTTP POST request to /api/backups
on the backup server

	We need to upload the dataset itself, via an HTTP PUT request to
/api/backups/.../dataset on the backup server, where the ... is
a backup ID that we get from the response to the original POST request

To implement the client side, BackupService employs the OkHttp library
profiled in the chapter on Internet access. Specifically,
uploadBackup() does both of the HTTP requests necessary to back up the data,
given the File pointing to the ZIP archive that is our dataset:

 private void uploadBackup(File backup) throws IOException {
 Request request=new Request.Builder()
 .url(URL_CREATE_BACKUP)
 .post(RequestBody.create(JSON, "{}"))
 .build();
 Response response=OKHTTP_CLIENT.newCall(request).execute();

 if (response.code()==201) {
 String backupURL=response.header("Location");

 request=new Request.Builder()
 .url(backupURL+RESOURCE_DATASET)
 .put(RequestBody.create(ZIP, backup))
 .build();
 response=OKHTTP_CLIENT.newCall(request).execute();

 if (response.code()==201) {
 String datasetURL=response.header("Location");
 SharedPreferences prefs=
 getSharedPreferences(getClass().getName(),
 Context.MODE_PRIVATE);

 prefs
 .edit()
 .putString(PREF_LAST_BACKUP_DATASET, datasetURL)
 .commit();
 }
 else {
 Log.e(getClass().getSimpleName(),
 "Unsuccessful request to upload backup");
 }
 }
 else {
 Log.e(getClass().getSimpleName(),
 "Unsuccessful request to create backup");
 }
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
We create an OkHttp Request.Builder representing our POST request.
The URL is defined as a constant, URL_CREATE_BACKUP:

 private static final String URL_CREATE_BACKUP=
 BuildConfig.URL_SERVER+"/api/backups";

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
This, in turn, is built up from the fixed REST endpoint path (/api/backups),
with the rest of the URL coming from BuildConfig.URL_SERVER. This is
defined out in our build.gradle file, allowing us to have different
backup server locations based upon build types (or, in principle, product
flavors):

 buildTypes {
 debug {
 buildConfigField "String", "URL_SERVER", '"http://10.0.2.2:4567"'
 }

 release {
 buildConfigField "String", "URL_SERVER", '"http://10.0.2.2:4567"'
 }
 }

(from Backup/BackupClient/app/build.gradle)
Here, they happen to both point to the same value at the moment, the
IP address that, on an Android emulator, represents localhost of your
development machine. However, you could easily change the release
build type to point to some production instance of a backup server.
The body of the POST request is a JSON object containing whatever we
want, in case we need to provide some sort of identifiers with the
backup for server-side use or analysis. In this case, we are passing
an empty JSON object ({}), using the JSON MediaType declared as
another constant:

 private static final MediaType JSON=
 MediaType.parse("application/json; charset=utf-8");

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
We then use an instance of an OkHttpClient object to perform the request,
getting the Response synchronously (since we are already on a background
thread). If multiple components in your app will all be using OkHttp,
the recommendation is to use a singleton instance of OkHttpClient,
here defined on BackupService itself:

 static final OkHttpClient OKHTTP_CLIENT=new OkHttpClient();

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
The REST protocol to the backup server is that a 201 response code (“Created”)
means that our backup metadata has been saved and an ID has been generated
for our backup. The Location header in the response contains a REST
URL pointing to the backup itself (/api/backups/... for some value
of ...). We then use that to generate the URL for the dataset
(/api/backups/.../dataset), and perform a PUT request for the dataset,
using the ZIP MediaType defined as yet another constant:

 private static final MediaType ZIP=
 MediaType.parse("application/zip");

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)
Once again, a 201 response indicates that our resource was created, and
the Location header provides the URL for the backup dataset. We stuff
that URL in a SharedPreferences object unique to BackupService, under
a PREF_LAST_BACKUP_DATASET key. We will use that — at least, in theory –
if we are restored from a Google disaster recovery process. We will explore
that more later in the chapter.
If we get an unexpected response from the server, the sample app logs a message
to Logcat and otherwise quietly fails. A production-grade app would handle
these scenarios better, including informing the user about the problem.
Of course, a production-grade backup implementation might want more than
what we have here, such as better security.
For apps being publicly distributed through the Play Store or similar
channels, you may want to offer multiple ways of saving off the backup,
through some common API with multiple implementations. That way, users can
choose whether to back up data via a private server or a public one
(e.g., Amazon S3) or some other means that you offer.
Initiating a Restore
Unfortunately, on occasion, the user may have a need to restore the
app’s data from a backup.
There are three primary possible triggers for this work to be done:

	The user could ask for data to be restored manually, through some option
in the app’s UI, such as an action bar item

	The request to restore the data could be pushed to the device, such as
through GCM, perhaps in response to an IT department staff member initiating
a remote restore

	The user could have gotten a new device, and if the user had chosen
automatic disaster recovery “backups” on their old device, they could have
our app and its data automatically restored onto the new device

There is also the question of which backup to restore. Frequently, the
user will want the most recent backup, but that is not always the case.
The user might realize that the data has been wrong for days and needs
to restore an earlier backup than the most recent one.
To that end, the BackupClient demo app will allow the user to manually
request that data be restored, via a “Restore” action bar item. We will
fetch a list of available backups from the backup server, so the user
can choose what backup to restore from.
The “Restore” action bar item in MainActivity simply launches a
RestoreRosterActivity, to allow the user to choose the backup to restore.
That activity merely sets up a dynamic fragment, RestoreRosterFragment,
in onCreate():

package com.commonsware.android.backup;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class RestoreRosterActivity extends FragmentActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager()
 .findFragmentById(android.R.id.content)==null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new RestoreRosterFragment()).commit();
 }
 }
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterActivity.java)
RestoreRosterFragment has fairly basic implementations of the onCreate(),
onStart(), and onStop() lifecycle methods, to mark the fragment as
being a retained fragment, plus to register and unregister from the
event bus:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);
 }

 @Override
 public void onStart() {
 super.onStart();

 EventBus.getDefault().register(this);
 }

 @Override
 public void onStop() {
 EventBus.getDefault().unregister(this);

 super.onStop();
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)
RestoreRosterFragment is a ListFragment, so the ListView will be
set up automatically in the inherited implementation of onCreateView().
In onViewCreated(), we can kick off a REST request to pull down the
list of backups from the backup server. This client assumes that the
REST server has an /api/backups endpoint that will return a JSON
roster of the available backups, so we can use OkHttp to perform the
GET request for that data:

 @Override
 public void onViewCreated(View view,
 Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 Request request=new Request.Builder()
 .url(URL_BACKUPS)
 .build();

 BackupService.OKHTTP_CLIENT.newCall(request).enqueue(this);
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)
Here, we use the same OkHttpClient instance as BackupService uses — since
this is a static data member that is automatically initialized, it does
not matter whether or not we have used BackupService already in this process.
The endpoint URL is found in the URL_BACKUPS constant:

 private static final String URL_BACKUPS=
 BuildConfig.URL_SERVER+"/api/backups";

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)
Since this is being driven by the UI, and we are calling OkHttp from
the main application thread, we use enqueue() instead of execute(),
to schedule the request to be performed on a background thread supplied
and managed by OkHttp. RestoreRosterFragment implements the required
Callback interface needed by enqueue(). That interface, in turn,
requires two methods. One is onFailure(), to be called if there
is a problem in executing the HTTP request. Here, we just inform the user
about the problem in a Toast, though a production-grade app would do
something more sophisticated:

 @Override
 public void onFailure(Request request, IOException e) {
 Toast.makeText(getActivity(), R.string.msg_roster_failure,
 Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(),
 "Exception retrieving backup roster", e);
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)
The more important method is onResponse(), called when we get a valid-looking
response from the server:

 @Override
 public void onResponse(Response response) throws IOException {
 Gson gson=new GsonBuilder()
 .setDateFormat("yyyy-MM-dd'T'HH:mm:ssZZZZZ")
 .create();

 Type listType=new TypeToken<List<BackupMetadata>>() {}.getType();

 EventBus
 .getDefault()
 .post(
 gson.fromJson(response.body().charStream(), listType));
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)
This sample could use Retrofit for performing this REST-style GET
request, in which case Retrofit would work with OkHttp and Google’s Gson
to parse our response. In this case, we are using OkHttp directly, and so
we need to arrange to have Gson parse the response.
To that end, we:

	Create a Gson instance through a GsonBuilder, teaching it that
the JSON data to be mapped to Date objects in our results have a particular
serialized format

	Create a Type object wrapping our expected response: a List of
BackupMetadata objects

	Get the JSON from the response (response.body().charStream), and pass that
to the Gson object for parsing

And, since onResponse() is called on a background thread, we use
the event bus to deliver that List of BackupMetadata objects to
the fragment itself, so we can pick up that event on the main application thread.
The JSON we get back will be a JSON array containing a list of JSON
objects, with each of those objects being mapped to a BackupMetadata
instance by Gson:

package com.commonsware.android.backup;

import java.util.Date;

public class BackupMetadata {
 Date timestamp;
 String dataset;

 @Override
 public String toString() {
 return(timestamp.toString());
 }
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupMetadata.java)
RestoreRosterFragment then has an onEventMainThread() method, to pick
up the List of BackupMetadata, to wrap that in an ArrayAdapter and
put those results in the fragment’s ListView:

 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onEventMainThread(List<BackupMetadata> roster) {
 adapter=new ArrayAdapter<BackupMetadata>(getActivity(),
 android.R.layout.simple_list_item_1, roster);

 setListAdapter(adapter);
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)

[image: RestoreRosterFragment, Showing Two Backups]

Figure 776: RestoreRosterFragment, Showing Two Backups
Starting the Restore Activity
When the user clicks on an available backup in the ListView,
onListItemClick() gets called:

 @Override
 public void onListItemClick(ListView l, View v, int position,
 long id) {
 String url=
 BuildConfig.URL_SERVER+adapter.getItem(position).dataset;
 Intent i=
 new Intent(getActivity(), RestoreProgressActivity.class)
 .setData(Uri.parse(url))
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK|
 Intent.FLAG_ACTIVITY_CLEAR_TASK|
 Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);

 startActivity(i);
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)
The BackupMetadata has a relative URL to the backup’s dataset, so we
combine that with BuildConfig.URL_SERVER to get a fully-qualified URL.
Then, we start up a RestoreProgressActivity, which will be responsible
for kicking off the restore and showing some form of progress indicator
along the way.
The tricky part with restoring your app’s data is that you cannot have
any app components running that rely upon that data, as the data will
be changing out from underneath those components. In our case, we need
to get rid of our MainActivity.
To do that, we attach a few flags to the Intent used to start up
the RestoreProgressActivity:

	FLAG_ACTIVITY_NEW_TASK

	FLAG_ACTIVITY_CLEAR_TASK

	FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS

These will get rid of all of our previous activities (including the
currently-active RestoreRosterActivity) and will prevent
the RestoreProgressActivity from showing up in the overview screen.
RestoreProgressActivity has a simple layout with a large centered
ProgressBar:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ProgressBar
 style="@android:style/Widget.ProgressBar.Large"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"/>
</FrameLayout>

(from Backup/BackupClient/app/src/main/res/layout/progress.xml)
In onCreate() of RestoreProgressActivity, in addition to showing
that ProgressBar, we kick off a RestoreService to actually download
and restore the backup. We are passed the URL to the backup dataset in
the Intent used to start RestoreProgressActivity, and we just
pass that same URL along (as a Uri) to the service:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.progress);

 if (savedInstanceState==null) {
 RestoreService.enqueueWork(this);
 }
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java)
However, we only do that if we are not being recreated after a configuration
change, so this only happens on the first invocation of the activity.
RestoreProgressActivity also registers for events on the event bus, using
the typical onStop()/onStart() pattern:

 @Override
 protected void onStart() {
 super.onStart();

 EventBus.getDefault().register(this);
 }

 @Override
 protected void onStop() {
 EventBus.getDefault().unregister(this);

 super.onStop();
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java)
Downloading and Restoring the Dataset
Meanwhile, over in RestoreService, we download and unpack the dataset:

package com.commonsware.android.backup;

import android.content.Context;
import android.content.Intent;
import android.support.annotation.NonNull;
import android.support.v4.app.JobIntentService;
import android.util.Log;
import com.squareup.okhttp.Request;
import com.squareup.okhttp.Response;
import org.greenrobot.eventbus.EventBus;
import java.io.File;
import okio.BufferedSink;
import okio.Okio;

public class RestoreService extends JobIntentService {
 private static final int UNIQUE_JOB_ID=1337;

 static void enqueueWork(Context ctxt) {
 enqueueWork(ctxt, RestoreService.class, UNIQUE_JOB_ID,
 new Intent(ctxt, RestoreService.class));
 }

 @Override
 public void onHandleWork(@NonNull Intent i) {
 Request request=new Request.Builder()
 .url(i.getData().toString())
 .build();

 try {
 Response response=
 BackupService.OKHTTP_CLIENT.newCall(request).execute();
 File toRestore=new File(getCacheDir(), "backup.zip");

 if (toRestore.exists()) {
 toRestore.delete();
 }

 BufferedSink sink = Okio.buffer(Okio.sink(toRestore));

 sink.writeAll(response.body().source());
 sink.close();

 ZipUtils.unzip(toRestore, getFilesDir(),
 BackupService.ZIP_PREFIX_FILES);
 ZipUtils.unzip(toRestore,
 BackupService.getSharedPrefsDir(this),
 BackupService.ZIP_PREFIX_PREFS);
 ZipUtils.unzip(toRestore, getExternalFilesDir(null),
 BackupService.ZIP_PREFIX_EXTERNAL);

 EventBus.getDefault().post(new RestoreCompletedEvent());
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception restoring backup", e);
 EventBus.getDefault().post(new RestoreFailedEvent());
 }
 }

 static class RestoreCompletedEvent {

 }

 static class RestoreFailedEvent {

 }
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreService.java)
The URL for the dataset is coming in via the Intent passed into
onHandleIntent(). We use that to build the OkHttp Request, then
do a synchronous call via execute() to get the Response.
Previous uses of OkHttp in this chapter focused on REST responses, where
we could either just use Location headers or pass the text of the
response over to Gson. Here, we are expecting a ZIP file, and possibly
a large one. The right way to get that written to disk (so we can unpack it)
is to stream the data down and write that data out to disk, rather than
attempting to read everything into memory first.
To that end, we take advantage of the fact that OkHttp itself is built
atop Square’s Okio library, which offers
a nice Java API for handling streams, based on sinks and sources.
The recipe for streaming an HTTP response to disk involves:

	Creating a sink for the destination file (in this case, a backup.zip file
placed in getCacheDir())

	Wrapping that in a BufferedSink

	Telling the sink to write everything from the source() we get from
OkHttp representing the ZIP data

	Closing the sink

At that point, we need to unpack the dataset into the places we got the
data from in the first place when we backed it up:

	getFilesDir()

	the directory for SharedPreferences

	getExternalFilesDir()

To that end, we use a slightly modified version of the ZipUtils
class first referenced in the tutorials. The one used
in the tutorials comes from the CWAC-Security library. However,
that ZipUtils class does not handle two things that we need here:

	Unpacking a subset of the files, from one virtual directory within
the ZIP archive

	Restoring them to an already-existing directory without deleting
and recreating that directory.

The BackupClient project has its own modified version of ZipUtils
that handles those cases. Beyond that, the unzip() method is the
same as before, taking:

	The ZIP file to unpack

	The filesystem directory where the unpacked files should go

	The virtual directory within the ZIP archive that we want (as opposed
to the entire contents)

When that is done, we post a RestoreCompletedEvent. If there is some
problem, we post a RestoreFailedEvent, in addition to logging details
to Logcat.
RestoreProgressActivity listens for both of those events:

 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onCompleted(RestoreService.RestoreCompletedEvent event) {
 startActivity(new Intent(this, MainActivity.class));
 finish();
 }

 @Subscribe(threadMode =ThreadMode.MAIN)
 public void onFailed(RestoreService.RestoreFailedEvent event) {
 Toast.makeText(this, R.string.msg_restore_failed,
 Toast.LENGTH_LONG).show();
 finish();
 }

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java)
In the success case, we can now start up a fresh MainActivity (since
the original was destroyed as part of launching RestoreProgressActivity),
and it can read the restored data.
In the failure case… we are really screwed. We may have partially restored
the data, but perhaps not all of it, and there is no telling what state
the data is in. A production-grade app would handle this by:

	Moving all of the existing data to a safe location on the device

	Attempting to restore the data

	If there is an unhandled exception in the restoration process, deleting
the partially-restored data and moving the original data back into position

This would reduce the odds of some catastrophic problem wiping out the
app. In this sample, though, we just show a Toast, finish() the
activity (thereby exiting the app, as we have no other active activities),
and hoping the user uninstalls and reinstalls the app, or just uninstalls the
app, or something.
Trying This Yourself… With a Little Help from Ol’ Blue Eyes
Everything discussed so far assumes the existence of some REST-style
Web server that we can interact with for backups. As it so happens,
the BackupClient project has a crude implementation of
such a server, in the form of a Ruby
script using the Sinatra gem:

require 'fileutils'
require 'time'
require 'sinatra'
require 'json'

BACKUP_ROOT='/tmp/backups'

get '/' do
 'Hello world!'
end

get '/api/backups' do
 result=[]

 if File.exist?(BACKUP_ROOT)
 Dir.foreach(BACKUP_ROOT) do |item|
 next if item == '.' or item == '..'

 subdir=File.join(BACKUP_ROOT, item)

 if File.directory?(subdir)
 f=File.join(subdir, "metadata.json")

 if File.exist?(f)
 metadata=JSON.load(open(f))
 metadata['dataset']="/api/backups/#{item}/dataset"

 result << metadata
 end
 end
 end
 end

 result.sort_by!{|metadata| metadata['timestamp']}
 result.reverse!

 JSON.pretty_generate(result)
end

post '/api/backups' do
 id=SecureRandom.uuid
 dir=File.join(BACKUP_ROOT, id)
 FileUtils.mkdir_p(dir)
 f=File.join(dir, "metadata.json")
 metadata={'timestamp'=>Time.new.xmlschema}
 File.open(f, 'w') {|io| io.write(JSON.generate(metadata))}

 redirect to('/api/backups/'+id), 201
end

put '/api/backups/:id/dataset' do
 dir=File.join(BACKUP_ROOT, params[:id])

 if File.exist?(dir)
 f=File.join(dir, "backup.zip")
 File.open(f, 'w') {|io| io.write(request.body.read)}

 redirect to("/api/backups/#{params[:id]}/dataset"), 201
 else
 status 404
 end
end

get '/api/backups/:id/dataset' do
 dir=File.join(BACKUP_ROOT, params[:id])
 f=File.join(dir, "backup.zip")

 if File.exist?(f)
 send_file f
 else
 status 404
 end
end

(from Backup/BackupClient/server.rb)
If you have familiarity with Ruby, you can:

	install the sinatra and json gems in your environment

	run the script (ruby server.rb)

That will give you a server, listening to localhost:4567… which happens
to be what the BackupClient Android app is looking to talk to, if that
app is running on an emulator. If you want to test with an actual Android
device, the -o switch lets you specify the IP address to listen to, and
-p lets you change up the port number if you wish.
The Google Backup Bootstrap
Once you get your real backup system going, then, if you wish,
you can play around with Google’s disaster recovery bootstrap. By
opting into what Google terms “backup”, you can have some of your data
automatically backed up, then restored when the user replaces their
device.
What to Bootstrap?
The biggest decision that you will need to make is what should be
included in Google’s bootstrap backup and what should not.
The primary considerations are privacy and security. Any data included
in the bootstrap is visible to other parties. If that data is not
encrypted with a user-supplied passphrase, other parties will be able
to do what they want with the data, without much recourse.
One option, therefore, is to opt out of these bootstrap backups entirely,
and handle disaster recovery like any other restore process.
Another is to only include some identifying information in the bootstrap
backup, to help expedite the restore process, but without really compromising
security much. In the context of the BackupClient sample shown earlier
in this chapter, if the backup server was adequately secured,
including a dataset URL in the bootstrap backup would not be much of a
problem. Having the URL itself is probably not that useful, and if only
authorized users can download datasets from those URLs, attackers would
not gain anything from peeking at the bootstrap. BackupClient itself
has very little security, to keep the sample (reasonably) simple, but
you can imagine requiring user accounts or similar means to try to lock
down access to the backup server.
The far other end of the spectrum is to allow Android to backup
“the whole shootin’ match” (i.e., everything), on the grounds that the
data you have is not especially private.
You and your qualified legal counsel will need to make this decision
before deciding what to do for implementing the bootstrap backup itself.
Bootstrap Backup on Android 6.0+
Android has had a backup API since Android 2.2. However, not only did
developers have to opt into the backups, but they had to write special
code to assist in those backups. As such, that API was not used that
much.
Android 6.0 has gone the other direction, with opt-out backups of
all likely data, if your targetSdkVersion is 23 or higher. Specifically:

	Your app’s internal storage (getFilesDir(), SharedPreferences,
getDatabaseDir(), etc.) gets backed up, with the exception of
getCacheDir() and getNoBackupFilesDir() (the latter introduced in
API Level 21)

	
getExternalFilesDir() is backed up, but not other locations on
external storage

Backups occur approximately once per day, if the device is idle,
charging, and on WiFi.
Configuring the Backup
If what you want to back up is different than what Android 6.0+ will
back up by default, you can add manifest entries to better control
what is and is not backed up.
To opt out entirely, add android:allowBackup="false" to your
<application> element in the manifest:

<application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme"
 tools:replace="android:allowBackup">
 <!-- other cool stuff here -->
</application>

Here, the tools:replace ensures that no library attempts to override
your allowBackup value.
Conversely, if you want to participate in the bootstrap backup, but you
want to change the roster of what gets backed up, use the
android:fullBackupContent attribute on the <application> element.
This needs to point to an XML resource that describes what it is
that you do and do not want backed up.
The BackupClient sample has this configured. The <application>
element points to a res/xml/backup_rules.xml resource:

 <application
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".RestoreRosterActivity" />
 <activity android:name=".RestoreProgressActivity" />

 <service
 android:name=".BackupService"
 android:permission="android.permission.BIND_JOB_SERVICE" />
 <service
 android:name=".RestoreService"
 android:permission="android.permission.BIND_JOB_SERVICE" />
 </application>

(from Backup/BackupClient/app/src/main/AndroidManifest.xml)
That XML resource can contain <include> and <exclude> elements,
inside of a root <full-backup-content> element. The rules are:

	If there are no <include> elements — only <exclude> elements –
then all the files that get backed up by default will get backed up,
except those blocked by those <exclude> elements.

	If there are one or more <include> elements (perhaps along with
<exclude> elements), then none of the files that get backed up by
default will be backed up. Instead, only the files listed in the
<include> elements (and not blocked by any <exclude> elements) will
be backed up.

The BackupClient sample has two <include> elements, in effect
saying that only what is cited in these elements should be backed up:

<?xml version="1.0" encoding="utf-8"?>
<full-backup-content>
 <include
 domain="sharedpref"
 path="com.commonsware.android.backup_preferences.xml"/>
 <include
 domain="sharedpref"
 path="com.commonsware.android.backup.BackupService.xml"/>
</full-backup-content>

(from Backup/BackupClient/app/src/main/res/xml/backup_rules.xml)
The <include> and <exclude> elements must have a domain attribute
and a path attribute. These combine to indicate what is being included
or excluded.
The domain attribute indicates one of five locations relative to your
app:

	
root points to all of your internal storage

	
file points to the subset of your internal storage used for ordinary
files (i.e., getFilesDir())

	
database points to the subset of your internal storage used for
databases (i.e., getDatabasePath())

	
sharedpref points to the subset of your internal storage used for
SharedPreferences

	
external points to the location used by getExternalFilesDir(null)

The path attribute then provides a relative path, from the base location
indicated by domain, for the item to be included or excluded.
Hence, the BackupClient backup rules say to include two
SharedPreferences files. One is written to by BackupService
on every backup, holding a single value, keyed by lastBackupDataset,
with the URL to the last backup dataset. The other is the default
SharedPreferences, used for the last-visited tab by the UI.
Because these SharedPreferences
files are included in the bootstrap backup, they should be restored in case
the user replaces the device. However, they are the only things that is
supposed to be backed up — everything else in the app should be left
alone.
Note that the documentation does not state clearly if the path attribute
is required. It is possible that the path attribute is optional, where
if it is missing, it means you want to include or exclude everything in
the cited domain.
Testing the Backup and Restore Steps
In theory, to test your backup configuration, you can run three commands
on the command line:

adb shell setprop log.tag.BackupXmlParserLogging VERBOSE
adb shell bmgr run
adb shell bmgr fullbackup ...

where ... is the application ID of the app to be backed up. For the
sample app, that is com.commonsware.android.backup.
(the above assumes that you have adb in your PATH)
You can then manually initiate a restore operation via:

adb shell bmgr restore ...

for the same value of Presumably, you would do this after
modifying or clearing the backed-up data, so you can confirm that the
data was restored properly.
For the purposes of conducting lightweight experiments
with the auto-backup facility, you do
not need to mess around with the entire backup system outlined earlier
in this chapter. That backs up the actual content; the auto-backup
facility is backing up SharedPreferences, and that happens whether
or not we are also backing up the content.
So, for example, you could do the following:

	Run the sample app and switch to some tab other than the default,
then press BACK to exit the app and save your last-visited tab in
SharedPreferences

	Execute the following at the command line of your developer machine,
to examine the contents of the SharedPreferences:

adb shell run-as com.commonsware.android.backup
"cat /data/data/com.commonsware.android.backup/
shared_prefs/com.commonsware.android.backup_preferences.xml"

(NOTE: the above should be all on one line; it is split here across
three lines due to the length of the command)
You should see something like:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <int name="lastVisited" value="2" />
</map>

The value will be the index of whatever tab you were on when you
exited the activity.

	Run the commands shown earlier to back up those SharedPreferences:

adb shell setprop log.tag.BackupXmlParserLogging VERBOSE
adb shell bmgr run
adb shell bmgr fullbackup com.commonsware.android.backup

You should see output in Logcat indicating that
the backup was taken:

14936-14936/? D/AndroidRuntime: Calling main entry com.android.commands.bmgr.Bmgr
800-2345/? D/BackupManagerService: fullTransportBackup()
800-14960/? I/PFTBT: Initiating full-data transport backup of ...
800-14961/? D/BackupManagerService: Binding to full backup agent : ...
800-14961/? D/BackupManagerService: awaiting agent for ApplicationInfo{...}
800-810/? D/BackupManagerService: agentConnected pkg=com.commonsware...
800-14961/? I/BackupManagerService: got agent android.app.IBackupAgent$Stub$Proxy@e17804c
800-14961/? I/BackupRestoreController: Getting widget state for user: 0
800-14962/? I/file_backup_helper: Name: apps/com.commonsware.android...
800-14962/? D/BackupManagerService: Calling doFullBackup() on com.commonsware...
9380-9391/com.commonsware.android.backup I/file_backup_helper: Name: ...
800-14960/? I/PFTBT: Transport suggested backoff=0
800-14960/? I/PFTBT: Full backup completed.
9380-9380/? I/Process: Sending signal. PID: 9380 SIG: 9
800-2345/? D/BackupManagerService: Done with full transport backup.

(NOTE: the lines have been truncated due to length)

	Run the app again and switch to another tab, then press BACK to exit
the activity.

	Run the run-as command again to examine the contents of
the current SharedPreferences, and see that it contains your newly-chosen
tab.

	Execute adb shell bmgr restore com.commonsware.android.backup from
the command line to restore the SharedPreferences from your backup.
You should get additional lines in Logcat showing that the restoration
took place:

16814-16814/? D/AndroidRuntime: Calling main entry com.android.commands.bmgr.Bmgr
800-7101/? V/BackupManagerService: beginRestoreSession: pkg=com.commonsware...
800-2345/? V/RestoreSession: restorePackage pkg=com.commonsware.android.backup ...
800-2345/? V/RestoreSession: restorePackage pkg=com.commonsware.android.backup ...
800-1111/? D/BackupManagerService: MSG_RUN_RESTORE observer=android.app.backup...
800-1111/? D/BackupManagerService: initiateOneRestore packageName=@pm@
800-1111/? E/SELinux: SELinux: Could not get canonical path /cache/@pm@.restore ...
800-1111/? I/BackupManagerService: Next restore package: RestoreDescription{...}
800-16839/? I/RestoreEngine: Sig + version match; taking data
800-16839/? D/RestoreEngine: Need to launch agent for com.commonsware.android.backup
800-16839/? D/RestoreEngine: Clearing app data preparatory to full restore
800-16839/? I/ActivityManager: Force stopping com.commonsware.android.backup ...
800-16839/? I/ActivityManager: Killing 15029:com.commonsware.android.backup/...
800-1195/? D/GraphicsStats: Buffer count: 5
800-1198/? W/ActivityManager: Spurious death for ProcessRecord...
5005-5986/? D/Documents: Update found 7 roots in 8ms
1888-16840/? D/PackageBroadcastService: Received broadcast ...
1888-16840/? D/AccountUtils: Clearing selected account for com.commonsware...
1888-16840/? I/LocationSettingsChecker: Removing dialog suppression flag...
1888-2082/? I/Icing: doRemovePackageData com.commonsware.android.backup
800-16839/? I/ActivityManager: Start proc 16848:com.commonsware.android...
800-16839/? D/BackupManagerService: awaiting agent for ApplicationInfo{...}
16848-16848/? I/art: Late-enabling -Xcheck:jni
16848-16848/? W/System: ClassLoader referenced unknown path: ...
800-1128/? D/BackupManagerService: agentConnected pkg=com.commonsware.android...
800-16839/? I/BackupManagerService: got agent android.app...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: Final tally.
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: Includes:
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: domain=sp
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: Excludes:
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...nothing to exclude.
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging:
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
800-1111/? V/BackupManagerService: No more packages; finishing restore
800-2345/? D/RestoreSession: endRestoreSession
800-1111/? I/BackupRestoreController: restoreFinished for 0
800-1111/? I/BackupManagerService: Restore complete.
800-1111/? V/BackupManagerService: Clearing restore session and halting timeout

	Run the run-as command again to examine the contents of
the current SharedPreferences, and see that it contains your original tab.

	Uninstall your application, then try the run-as again, which will
give you an error indicating that the file was not found.

	Re-run the app from the IDE. Then, run the run-as command again, to
see that your file was restored without manually having to restore it.

Bootstrap Backup on Android 2.2-5.1
Prior to Android 6.0, Android had a “backup service”, inaugurated in
Android 2.2. As with the Android 6.0 approach, the original backup
service was mostly for disaster recovery.
Unlike with Android 6.0’s approach, you needed to opt into having
these backups. Partly, this opt-in was accomplished via code,
as you had to extend a BackupAgentHelper and register it in your
manifest as the android:backupAgent, via the <application> element.
The BackupAgentHelper subclass would indicate what should be backed up,
by instantiating one or more BackupHelper objects (e.g., FileBackupHelper),
configuring them to back up certain items, then registering them
with the BackupAgentHelper via an addHelper() method.
Partly, though, the opt-in was accomplished via registering for an API
key. This process was never integrated into the rest of the Play Services
architecture, which now has a standardized approach for registering for
various API keys and agreeing to the terms of service for each.
Instead, you would need to visit an
obscure Web page,
agree to the terms of service, provide information about your app
(notably the application ID), get the API key, and add it to your
manifest via a <meta-data> element.
However, those terms of service contain some interesting clauses, ones
that may give your legal counsel some concern, such as:

	“the form and nature” of the backup service “may change from time
to time without prior notice to you”

	“Google may stop… providing the Service (or any features within the
Service) to you or to users generally at Google’s sole discretion, without
prior notice to you”

	You “agree to use the Service only for purposes that are permitted by…
any applicable law… in the relevant jurisdictions (including any laws
regarding the export of data or software to and from the United States
or other relevant countries)” without ever disclosing what those “relevant
countries” are

	You agree to not “sell… access to the Service”, which would seem to
preclude its use by paid apps or apps using in-app purchases to upgrade
to some “pro” edition that enabled backups

	“you are responsible for maintaining the security… of the Backup
Service Key(s)”, despite the fact that these have to be published in the
manifest and therefore are readable by anyone

	“you will not transmit any Content through the Service that
is copyrighted, protected by trade secret or otherwise subject to
third party proprietary rights”, despite the fact that developers have
no means of validating these rights for user-supplied content

	“Google may need to change these Terms from time to time… Once
the modified Terms are posted, the changes will become effective
immediately, and you are deemed to have accepted the modified Terms
if you continue to use the Service”, despite the fact that developers
have no means of finding out exactly when the terms change or somehow
instantaneously preventing installed copies of their apps from using
the service

Beyond this, there are no statements about where the data is actually
backed up, other than opening it up to just about anyone that Google
wishes to characterize as “Subsidiaries and Affiliates”.
Please discuss these terms with legal counsel before registering for
this service and integrating it within your app.
Additional documentation about this form of backup, should you choose
to pursue it, can be found online.
Boosting Backup Security
Backups, in effect, are intentional data leaks. You want something
other than the device to have access to your app’s data. Hence, it is
important to take reasonable steps to ensure that those backups are
secure, secure enough that nobody is going to be able to exploit them
for uses that go against the user’s wishes. Rest assured that
people will try to exploit backups
and will succeed if your security is insufficient.
Securing Access to the Dataset
The backup dataset that you transfer off the device needs to be secure
from attack. Unauthorized people should not be able to get at the dataset.
For a backup system like the one outlined in this chapter, the big thing
to secure is access to the dataset via its URL. If anyone who gets the URL
can download the dataset, now all an attacker needs to do is determine
how to get that URL, such as by exploiting flaws in Google’s bootstrap
backup. Or, for that matter, Google staff could get at the URL, at least
in principle.
In this case, the URL alone must be insufficient. It would need to be
combined with other information from the user, such as some sort of site
authentication, where that other information is not retained.
If you are holding onto backup datasets yourself, on your own servers,
you will also need to ensure that only authorized staff can get at
those datasets and that such access is highly visible.
Otherwise, you are at risk of an insider attack, whether
through so-called “social engineering” or just good old-fashioned extortion.
Securing Transmission of the Dataset
Another way that an attacker could get at the dataset is to copy the data
in motion, as it is sent from your app to the backup server. Make sure
that you are using suitable security here:

	HTTPS with certificate pinning

	Corporate VPN

	etc.

Bear in mind that users may wind up making a backup from any sort of network,
ranging from your office network to the free WiFi at a local coffee shop.
In principle, you could detect this and refuse to back up the data when
you do not recognize the network. However, this reduces the value of the
backup system, as the user might not be able to make a manual backup at
some point when they need it (e.g., on business travel).
Encrypting the Dataset
The ultimate in protection for the user is to have the data be encrypted
by a user-supplied passphrase. Then, even you cannot access the data
without the user’s assistance. There are ways of addressing
this, perhaps involving
brute force attacks
or
other sorts of brute force attacks. However,
it certainly slows attackers down.
The simplest way to have encrypted backups — from the standpoint of the
person writing the backup code — is to encrypt the data itself. For example,
you do not necessarily need to re-encrypt a SQLCipher for Android database
as part of a backup dataset, as it is already encrypted. Note, though,
that having encrypted data at rest does not mean you can skip encrypting
the data in motion, as it is sent to your backup server. While attackers
would not be able to read the backed-up data readily, they could replace
the backed-up data sent over the unencrypted communications channel
and perhaps cause problems that way.
If, however, you are not in position to encrypt the data at rest within
your app, you may wish to consider asking the user for a passphrase and
using that to encrypt the backup dataset. Note that this passphrase requirement
largely eliminates the ability for you to do unattended automated
backups, as you either do not have the passphrase then (and so cannot
encrypt the backups) or you are saving the passphrase (and so have just
made it trivial for somebody to get it and decrypt the data).
Alternative Approaches
Backing up local data
is essential where the device is the system of record, to be able to deal
with catastrophe (e.g., the user accidentally uninstalls the app).
That being said, there are a few ways of dealing with backing up local
data that might not necessarily seem to the user as though it is
a backup process.
Data Versioning
Beyond the accidental wiping of data, such as through an erroneous install,
a backup can also help recover from more fine-grained errors, like
accidentally deleting a bit of data (e.g., a row or set of rows
from database tables).
One way to address that is to use some sort of data versioning approach.
Many software developers are familiar with this in the form of
source code version control, such as git. Here, you never really
“delete” anything forever. Instead, you delete (or change) things in
your working copy of the data, with the versioning system tracking
changes to the data, so you can roll back to some earlier version if
the need arises.
This is not limited to source code or similar sorts of documents. One
simple example of versioning that has been used for decades is to
not actually delete database rows, but instead set some is_deleted
column to a known value. Then, when you query the database, you filter
out the “deleted” rows by excluding from the query those rows where
is_deleted is set to that specific value. Recovering those deleted
rows is then a matter of showing all the deleted ones to the user and
clearing is_deleted for the ones to be restored.
Obviously, this gets much more complicated once you get into foreign
key constraints (i.e., how can you restore X if it depends on Y that
was also deleted?). And it is not a full replacement for a backup-and-restore
system, since anything that damages or deletes the entire database cannot be
recovered via this sort of versioning. But, if you are looking to implement
a robust disk-based “undo” facility for users, just bear in mind that
it also helps out for some sorts of cases where you might ordinarily
think of restoring from a backup.
Import and Export
Another feature that you can add that has some relationship to data backups
is data import and export. Whatever is exported can be backed up by the
user by some other means; if the master copy of the app’s data gets damaged,
you might be able to recover from that damage via importing a previous
export.
Of course, import and export are also used for data exchange with
foreign systems (e.g., exporting tabular data in a format that can be
read in by a desktop spreadsheet program). Also, traditionally,
import and export are tasks that are manually requested by users. However,
you might consider giving the user an option of performing an automatic
export as a replacement for, or adjunct to, some other form of regular
backup.
Data Synchronization
The ultimate solution for not having to mess with a robust device-based
backup system is to not have the device be the system of record. Instead,
some server is the system of record, with the device holding what amounts
to a persistent cache of some of that data:

	Data that you retrieved previously, so you do not necessarily have to
keep downloading the same data from the server

	Data that the user has modified that you are planning on sending to the
server at some time in the future (e.g., during the nightly sync, or when
the Internet is available again).

SSL
The traditional approach to securing HTTP operations is by means of SSL. Android
supports SSL, much as ordinary Java does. Most of the time, you can just allow
Android to do its thing with respect to SSL, and you will be fine. However, there
may be times when you have to play a more direct role in SSL communications, to
handle arbitrary SSL-encrypted endpoints, or to help ensure that your app is not
the victim of a man-in-the-middle attack.
This chapter will explore various SSL scenarios and how to address them.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, particularly the chapter on Internet access.
Basic SSL Operation
Generally speaking, SSL “just works”, for ordinary sites with ordinary certificates.
If you use an https: URL with HttpUrlConnection or WebView,
SSL handshaking will happen automatically, and assuming the certificates check out
OK, you will get your result, just as if you had requested an http: URL.
However, originally, requesting
a download via DownloadManager with an https: scheme would result in
java.lang.IllegalArgumentException: Can only download HTTP URIs. As of Android 4.0,
SSL is supported. Hence, you need to be careful about making SSL requests via
DownloadManager if your minSdkVersion is less than 14.
For example, the Retrofit and Picasso sample apps from
the chapter on Internet access both use
https://api.stackexchange.com for their service endpoint. As a result, those
requests — for the API JSON, at least — will go over SSL. You would need to
log the URLs used for the image avatars to see whether StackExchange gives you https
URLs or not.
Problems in Paradise
Ideally, SSL just works.
In practice, it often does, but depending on your app and your situation,
you may encounter issues, such as:

	You want to test using SSL, but your test server does not have a
domain name, let alone a SSL certificate, and so you need to try using
a self-signed certificate

	Your IT department chose an obscure certificate authority for obtaining
the SSL certificate used by your production server, and older Android
devices do not recognize that certificate authority

	You are worried about MITM (“man-in-the-middle” or “Martian-in-the-middle”)
attacks, and you hear all these scary things about certificate authorities
being hacked, and so you want to try to ensure that only valid certificates
are honored by your app

And so on.
Here are some more details about some common SSL problems.
Self-Signed Certificate
SSL certificates used for public Web sites are usually backed by a “root certificate
authority” that is well-known. That is not always the case.
One case is when the certificate is “self-signed”, meaning that it was generated by
somebody without involving a certificate authority. If you have shipped a production
Android app, you created a self-signed certificate when you created your production key
store. And you have been using a system-generated self-signed certificate throughout
your development, known as the “debug signing key”.
Self-signed certificates are rarely used on public-facing Web sites, as Web browsers
are taught to warn users when such certificates are encountered. However, self-signed
certificates might be used on internal servers, particularly test servers and other
non-production environments.
There are even some benefits for using a self-signed
certificate for production servers, if those servers will be talking only to your
own apps and not arbitrary Web browsers.
Wildcard Certificate
Some certificates are difficult to validate because they use wildcards.
For example, Amazon S3 is a file storage and serving “cloud” solution from Amazon.com. They
allow you to define “buckets” containing “objects”, where each object then has its own
URL. That URL is based on the name of the bucket and the name of the object. One option is
for you to have the domain name of the URL be based on the name of the bucket, leaving the
path to be solely the name of the object. This works, even with SSL, but Amazon needed to
use a “wildcard SSL certificate”, one that matches *.s3.amazonaws.com, not just a single
domain name. By default, this will fail on Android, as Android’s stock TrustManager
will not validate wildcards for multiple domain name segments
(e.g., http://misc.commonsware.com.s3.amazonaws.com/foo.txt). You will get an exception
akin to:

javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException:
No subject alternative DNS name matching misc.commonsware.com.s3.amazonaws.com found

Custom Certificate Authority
Some larger organizations have set up their own certificate authority. Sometimes, they
aspire to become a recognized root certificate authority, but have not been adopted by
many browsers. Sometimes, they simply want to have more structure than a pure self-signed
certificate but do not necessarily want to have all certificates go through a
root certificate authority, perhaps due to expense.
In these cases, Android will reject the SSL certificate, for the same reason it
rejects self-signed ones: it cannot validate the certificate chain all the way back
to a known root certificate authority. But, with a little work, you can enable Android
to support these as well.
Man in the Middle Attacks
Man-in-the-middle (MITM) attacks are a common way of trying to intercept SSL encrypted
communications. The “man” in the “middle” might be a proxy server, a different
Web site you wind up communicating with via DNS poisoning, etc. The objective
of the “man” is to pretend to be the actual Web site or Web service you are trying
to communicate with. If your app “falls for it”, your app will open an encrypted
channel to the attacker, not your site, and the attacker will have access to the
unencrypted data you send over that channel.
Unfortunately, Android apps have a long history of being victims of man-in-the-middle
attacks.
“Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security”,
an analysis of possible man-in-the-middle attacks on Android,
is depressing. One in six surveyed apps explicitly ignored SSL certificate validation
issues, mostly by means of do-nothing TrustManager implementations as noted
above. Out of a selected 100 apps, 41 could be successfully attacked using
man-in-the-middle techniques, yielding a treasure trove of credit card
information, account credentials for all the major social networks, and so
forth.
Their paper outlines a few ways in which apps can screw up SSL management — the
following sections outline some of them.
Disabling SSL Certificate Validation
As mentioned above, if you disable SSL certificate validation, by implementing
and using a do-nothing TrustManager, you are wide open for man-in-the-middle
attacks. A simple transparent proxy server can pretend to be the real
endpoint — apps ignoring SSL validation entirely will trust that the transparent
proxy is the real endpoint and, therefore, perform SSL key exchange with the
proxy rather than the real site. The proxy, as a result, gets access to everything
the app sends.
Ignoring Domain Names
A related flaw is when you disable hostname verification. The “common name” (CN) of
the SSL certificate should reflect the domain name being requested. Requesting
https://www.foo.com/something and receiving an SSL certificate for xkcdhatguy.com
would be indicative of a mis-configured Web server at best and a man-in-the-middle
attack at worst.
By default, this is checked, and if there is no match, you will get errors like:

javax.net.ssl.SSLException: hostname in certificate didn't match: <...>

where the ... is replaced by whatever domain name you were requesting.
But some developers disable this check. Perhaps during development they were
accessing the server using a private IP address, and they were getting SSLExceptions
when trying to access that server. It is very important to allow Android to
check the hostname for you, which is the default behavior.
Hacked CAs
The truly scary issue is when the problem stems from the CA itself.
Comodo, TURKTRUST, and other certificate authorities have been hacked, where
nefarious parties gained the ability to create arbitrary certificates backed by
the CA. For example, in
the TURKTRUST case,
Google found that somebody had created a *.google.com certificate that
had TURKTRUST as the root CA. Any browser — or Android app — that implicitly
trusted TURKTRUST-issued certificates would believe that this certificate was
genuine. This is the ultimate in man-in-the-middle attacks, as code that
is ordinarily fairly well-written will believe the CA and therefore happily
communicate with the attacker.
Even well-intentioned certificate authorities sometimes make mistakes.
StartSSL offered a tool called StartEncrypt
to make it easy to request and install certificates
on a Web server. However, they made mistakes in the Web service API
used by that tool to communicate back to StartSSL’s servers.
Attackers could create SSL certificates for a wide range of existing domains,
including google.com, facebook.com, and other widely-used domains.
Those fraudulent certificates could have been used to implement MITM
attacks.
Introducing Network Security Configuration
You can use a “network security configuration” to help address those
issues. This comes in the form of an XML resource, which you teach Android
to use for your network connections. That resource tailors what you do
and do not want to accept for SSL connections, such as “yes, I want to accept
this self-signed certificate, at least for debug builds of the app” and
“yes, I am willing to accept this additional certificate authority”.
This XML resource will have a <network-security-config> root element.
That in turn will contain:

	Zero or one <base-config> elements, defining global rules

	Zero, one, or several <domain-config> elements, defining rules to
apply to a specific domain name or set of domain names

	Zero or one <debug-overrides> elements, defining global rules that
will be applied only for debug builds of your app

The Native Android 7.0 Version
On Android 7.0 and higher, you can direct Android to apply your network
security configuration by having an android:networkSecurityConfig
attribute on the <application> element in your manifest:

<application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:networkSecurityConfig="@xml/net_security_config">
 // other stuff here
</application>

The name of the XML resource does not matter, so long as your
android:networkSecurityConfig attribute points to it.
On Android 7.0 and higher, your network security configuration will be
applied automatically for all network connections, without any Java
configuration.
The CWAC-NetSecurity Backport
At the time of this writing, Google has not released an official backport
of the network security configuration subsystem.
The author of this book converted that subsystem into a library –
CWAC-NetSecurity — that serves as a backport, working back to API Level 17
(Android 4.2). It does not support every feature of the native
implementation, and it requires a bit of Java code to arrange to use
your network security configuration for HTTP requests. However, you can
use the same XML resource structure. As with many backports, the vision
is that you would use the backport until such time as your
minSdkVersion rises to 24 or higher, at which point you can just use
the native implementation.
The CWAC-NetSecurity library also offers a TrustManagerBuilder and related classes
to make it easier for developers to integrate the network security
configuration backport, particularly for
OkHttp3
and HttpURLConnection.
The artifact for this library is distributed via the CWAC repository,
so you will need to configure that in your module’s build.gradle file,
along with your implementation statement:

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.commonsware.cwac:netsecurity:0.0.1'
 implementation 'com.squareup.okhttp3:okhttp:3.4.0'
}

If you are using this library with OkHttp3, you also need to have
a implementation statement for a compatible OkHttp3 artifact, as shown
above.
If you are using HttpURLConnection, or tying this code into some
other HTTP client stack, you can skip the OkHttp3 dependency.
Next, add in this <meta-data> element to your manifest, as a child
of the <application> element:

<meta-data
 android:name="android.security.net.config"
 android:resource="@xml/net_security_config" />

The value for android:resource should be the same XML resource that
you used in the android:networkSecurityConfig attribute in the
<application> element for the native network security configuration
support on Android 7.0.
Then, in your code where you want to set up your network communications,
create a TrustManagerBuilder and teach it to load the configuration
from the manifest:

TrustManagerBuilder tmb=
 new TrustManagerBuilder().withManifestConfig(ctxt);

(where ctxt is some Context)
If you are using OkHttp3, create your basic OkHttpClient.Builder,
then call:

OkHttp3Integrator.applyTo(tmb, okb);

(where tmb is the TrustManagerBuilder from before, and okb
is your OkHttpClient.Builder)
At this point, you can create your OkHttpClient from the Builder
and start using it.
If you are using HttpURLConnection, you can call applyTo() on
the TrustManagerBuilder itself, passing in the HttpURLConnection.
Afterwards, you can start using the HttpURLConnection to make your
HTTP request:

 URL url=new URL(i.getData().toString());
 HttpURLConnection c=
 (HttpURLConnection)url.openConnection();
 TrustManagerBuilder tmb=
 new TrustManagerBuilder().withManifestConfig(this);

 tmb.applyTo(c);

(from Internet/CA/app/src/main/java/com/commonsware/android/downloader/Downloader.java)
In either case, on Android 7.0+ devices, withManifestConfig() will
not use the backport. Instead, the platform-native implementation
of the network security configuration subsystem will be used. On
Android 4.2-6.0 devices, the backport will be used.
SSL Problems and Network Security Configuration
With all that as prologue, let’s examine how the network security
configuration subsystem — native or backport — can address some
of the SSL issues outlined earlier in this chapter.
The sample code for these scenarios comes from the
Internet/CA
sample application. This application is based on some of the samples
from the chapter on notifications, that use HttpURLConnection
to download a PDF from the CommonsWare site.
Pinning the Certificate Authority
Your app may only communicate with one server, such as an employee-only
server for your organization. To help limit the risk of possible
MITM attacks, you might want to lock down your app,
to only work with certificates coming from your chosen certificate
authority for this server. That way, in addition to the other logistical
problems facing attackers, they would need to get a forged SSL certificate
from your certificate provider, instead of a forged SSL certificate
from any certificate provider.
To make this work, first, you will need a PEM or DER file representing
the root certificate for the certificate authority. Usually, the
certificate authority will publish one of these on its Web site. You
will need to put that file in res/raw/ of your project, under a suitable
resource name. For this scenario, in the sample app, there are two
raw resources of note: addtrustexternalcaroot.pem and verisign_class3.pem,
for Comodo and Verisign, respectively.
Next, you will need to create your network security configuration.
As noted above, this is an XML resource, in res/xml/, that describes
what changes you wish to make to the mix of supported certificate authorities.
In the sample app, one such resource is res/xml/network_comodo.xml:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config>
 <domain includeSubdomains="false" usesCleartextTraffic="false">wares.commonsware.com</domain>
 <trust-anchors>
 <certificates src="@raw/addtrustexternalcaroot" />
 </trust-anchors>
 </domain-config>
</network-security-config>

(from Internet/CA/app/src/main/res/xml/network_comodo.xml)
As mentioned previously, the root element is
<network-security-config>. In there, you can
have one or more <domain-config> elements, describing the rules that
you wish to apply to certain domains being used by your app.
A <domain-config> element will have one or more <domain> elements, listing
domains that this particular configuration controls. Here, we have just one,
for wares.commonsware.com. The includeSubdomains attribute indicates whether
this rule applies to subdomains of the base domain, such as foo.wares.commonsware.com.
A <domain-config> element can have a <trust-anchors] element, listing
what certificates to use to validate SSL connections made to this domain.
Those certificates are identified by <certificate> elements, usually pointing
to raw resources that are the PEM or DER files for those certificate
authorities. In this case, we point to the addtrustexternalcaroot resource.
To teach Android that you have this network security configuration that
you wish to apply, you will need add an android:networkSecurityConfig
attribute (for the native Android 7.0 code) and perhaps a <meta-data> element to the
<application> element of your manifest (for the CWAC-NetSecurity backport):

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:networkSecurityConfig="@xml/${networkSecurityConfig}">
 <activity
 android:name="DownloaderDemo"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service
 android:name="Downloader"
 android:permission="android.permission.BIND_JOB_SERVICE" />

 <provider
 android:name="LegacyCompatFileProvider"
 android:authorities="${applicationId}.provider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/provider_paths" />
 </provider>

 <meta-data
 android:name="android.security.net.config"
 android:resource="@xml/${networkSecurityConfig}" />
 </application>

(from Internet/CA/app/src/main/AndroidManifest.xml)
In this case, the resource value used in both places
is not a simple XML resource name, like
@xml/network_comodo, though that will be what most apps will use.
This sample application has different product flavors for applying different
network security configurations, configured in build.gradle. Those
product flavors use manifestPlaceholders to indicate which XML
resource to apply for that flavor:

apply plugin: 'com.android.application'

def WARES='"https://wares.commonsware.com/excerpt-7p0.pdf"'
def SELFSIGNED='"https://scrap.commonsware.com:3001/excerpt-7p0.pdf"'

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 17
 targetSdkVersion 27
 }

 flavorDimensions "default"

 productFlavors {
 comodo {
 dimension "default"
 resValue "string", "app_name", "CA Validation Demo"
 applicationId "com.commonsware.android.downloader.ca.comodo"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_comodo']
 buildConfigField "String", "URL", WARES
 }
 verisign {
 dimension "default"
 resValue "string", "app_name", "Invalid CA Validation Demo"
 applicationId "com.commonsware.android.downloader.ca.verisign"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_verisign']
 buildConfigField "String", "URL", WARES
 }
 system {
 dimension "default"
 resValue "string", "app_name", "System CA Validation Demo"
 applicationId "com.commonsware.android.downloader.ca.system"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_verisign_system']
 buildConfigField "String", "URL", WARES
 }
 pin {
 dimension "default"
 resValue "string", "app_name", "Cert Pin Demo"
 applicationId "com.commonsware.android.downloader.ca.pin"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_pin']
 buildConfigField "String", "URL", WARES
 }
 invalidPin {
 dimension "default"
 resValue "string", "app_name", "Cert Pin Demo"
 applicationId "com.commonsware.android.downloader.ca.invalidpin"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_invalid_pin']
 buildConfigField "String", "URL", WARES
 }
 selfSigned {
 dimension "default"
 resValue "string", "app_name", "Self-Signed Demo"
 applicationId "com.commonsware.android.downloader.ca.ss"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_selfsigned']
 buildConfigField "String", "URL", SELFSIGNED
 }
 override {
 dimension "default"
 resValue "string", "app_name", "Debug Override Demo"
 applicationId "com.commonsware.android.downloader.ca.debug"
 manifestPlaceholders=
 [networkSecurityConfig: 'network_override']
 buildConfigField "String", "URL", SELFSIGNED
 }
 }
}

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.android.support:support-v13:27.0.2'
 implementation 'com.commonsware.cwac:provider:0.5.3'
 implementation 'com.commonsware.cwac:netsecurity:0.4.4'
}

(from Internet/CA/app/build.gradle)
The CommonsWare Warescription Web site, at the time of this writing, uses an SSL
certificate backed by Comodo. Running the comodoDebug build variant
should successfully download the PDF file, as the SSL certificate
will be validated properly. However, running the verisignDebug
build variant will fail the SSL validation and crash:

03-22 12:51:01.662 27356-27418/com.commonsware.android.downloader.ca E/Exception downloading file
javax.net.ssl.SSLHandshakeException: java.security.cert.CertPathValidatorException: Trust anchor for certification path not found.
 at com.android.org.conscrypt.OpenSSLSocketImpl.startHandshake(OpenSSLSocketImpl.java:339)
 at com.android.okhttp.Connection.connectTls(Connection.java:235)
 at com.android.okhttp.Connection.connectSocket(Connection.java:199)
 at com.android.okhttp.Connection.connect(Connection.java:172)
 at com.android.okhttp.Connection.connectAndSetOwner(Connection.java:367)
 at com.android.okhttp.OkHttpClient$1.connectAndSetOwner(OkHttpClient.java:130)
 at com.android.okhttp.internal.http.HttpEngine.connect(HttpEngine.java:329)
 at com.android.okhttp.internal.http.HttpEngine.sendRequest(HttpEngine.java:246)
 at com.android.okhttp.internal.huc.HttpURLConnectionImpl.execute(HttpURLConnectionImpl.java:457)
 at com.android.okhttp.internal.huc.HttpURLConnectionImpl.getResponse(HttpURLConnectionImpl.java:405)
 at com.android.okhttp.internal.huc.HttpURLConnectionImpl.getHeaders(HttpURLConnectionImpl.java:162)
 at com.android.okhttp.internal.huc.HttpURLConnectionImpl.getHeaderField(HttpURLConnectionImpl.java:206)
 at com.android.okhttp.internal.huc.DelegatingHttpsURLConnection.getHeaderField(DelegatingHttpsURLConnection.java:190)
 at com.android.okhttp.internal.huc.HttpsURLConnectionImpl.getHeaderField(HttpsURLConnectionImpl.java)
 at com.commonsware.android.downloader.Downloader.onHandleIntent(Downloader.java:70)

If you have multiple certificate authorities that you wish to support,
you can have multiple <certificate> elements, or a <certificate>
element pointing to a file with multiple PEM or DER entries.
Unusual Certificate Authorities
Perhaps your organization runs its own certificate authority (e.g., for
internal servers). Or perhaps your organization is using a regular
certificate authority, but one that is too new to be recognized
by Android. You could cover the unexpected certificate authority by
using the <certificate> elements shown above.
But, what happens if you want to support something custom and regular
certificate authorities as well?
In that case, there is a special <certificate> element that you can
add:

<certificates src="system"/>

The value system, instead of a reference to a raw resource, indicates
that the default system set of certificate authorities should be considered
to be valid.
The systemDebug build variant uses a different network security configuration:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config>
 <domain includeSubdomains="false" usesCleartextTraffic="false">wares.commonsware.com</domain>
 <trust-anchors>
 <certificates src="@raw/verisign_class3" />
 <certificates src="system" />
 </trust-anchors>
 </domain-config>
</network-security-config>

(from Internet/CA/app/src/main/res/xml/network_verisign_system.xml)
Here, first, we pull in Verisign’s root certificate. If that were all
we had (as you can see in the network_verisign.xml resource file),
an attempt to download something from wares.commonsware.com would fail,
as that site uses a Comodo certificate, not a Verisign one. However,
we also have the system set of certificate authorities. Since Comodo
is a major certificate authority, it is included in Android’s default set,
and so our download should succeed.
Pinning the Certificate
Perhaps even supporting any CA’s certificates will be too much of a risk
for you and your users. For example, perhaps your site’s certificate
is from a certificate authority that has issued fraudulent credentials
in the past, and so you fear that your users might still be at risk of
a MITM attack.
You can really narrow things down by pinning your app to your specific
certificate. Then, only that one certificate will be accepted, not others
that might be issued, for your domain, by your certificate authority, either
through social engineering, nation-state duress, or whatever.
To do this, you will use a <pin-set> element, instead of a <certificate>
element, in your network security configuration, as seen in the network_pin
resource:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config>
 <domain includeSubdomains="false" usesCleartextTraffic="false">wares.commonsware.com</domain>
 <pin-set expiration="2020-05-01">
 <pin digest="SHA-256">sF1A3ez70l81aUjLwU6KiAMmOyPNFQDueJH+4YDWppo=</pin>
 </pin-set>
 </domain-config>
</network-security-config>

(from Internet/CA/app/src/main/res/xml/network_pin.xml)
The <pin-set> element can include one or more <pin> elements,
each of which has a digest attribute and a value. The digest value
has to be SHA-256 at the present time, though perhaps other hash algorithms
will be supported in the future. The value of the <pin> element is
the base64-encoded SHA-256 hash of the SubjectPublicKeyInfo field
of the X509 certificate of the server.
To generate that value, you will need to use a tool like openssl.
Given a PEM file named server.crt, you can generate the hash for that
server using the following command:

openssl x509 -in server.crt -pubkey -noout | openssl pkey -pubin -outform der | openssl dgst -sha256 -binary | openssl enc -base64

(NOTE: this should appear all on one line but will be word-wrapped
to the size of the book page)
The <pin-set> element can also have an expiration attribute, with a date
in yyyy-MM-dd format. Prior to this date, the SSL certificate of the
server must match one of the pins. On or after this date, the pins are
ignored. For example, you might choose a date that is a bit before the
date when the SSL certificate itself will expire.
This has the benefit of allowing the app to work even if you
fail to update the app and supply a new pin for a new SSL certificate,
or if you do update that app but the user does not install the update
in time. On the other hand, manually altering the device date and time
can bypass your pin.
This behavior — pin expiration allowing formerly-blocked access — is
a bit unusual. Typically, with security, we “fail closed”, meaning that
once something has expired, no access is allowed. Instead, <pin-set>
specifically “fails open”, meaning that once it expires, security is
weakened. In this case, Google elected to focus on utility over security.
Self-Signed Certificates
As Moxie Marlinspike points out,
one way to avoid having your app be the victim of a man-in-the-middle
attack due to a hijacked certificate authority is to simply
not use a certificate authority.
Certificate authorities are designed for use by general-purpose clients (e.g., Web browsers)
hitting general-purpose servers (e.g., Web servers). In the case where you control
both the client and the server, you don’t need a certificate authority. You
merely need to have a self-signed certificate that both ends know about.
This works well if the Web server is solely functioning as a Web service to deliver
data to your Android app, or perhaps other native apps on other platforms for which
you can also support self-signed certificates. Depending upon your server’s
capabilities, you might be able to arrange to have the same server-side application
logic be available both from a self-signed certificate on one domain (for use with
apps) and from a CA-rooted certificate for another domain (for use with Web
browsers).
However, it is very possible that the staff who manage the servers will reject
the notion of using a self-signed certificate, perhaps in an effort to minimize
the complexity of supporting multiple SSL paths (for browsers and apps). Or, you
may not control the server well enough to go with a self-signed certificate, such
as if you are using a cloud computing provider.
However, if self-signed certificates are an option for you, the network
security configuration code makes them simple to integrate.
You can use the PEM or DER file from your self-signed certificate
much as you would one from a certificate authority: put in res/raw/
and set up your network security configuration XML to match:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config>
 <domain includeSubdomains="false" usesCleartextTraffic="false">scrap.commonsware.com</domain>
 <trust-anchors>
 <certificates src="@raw/example" />
 </trust-anchors>
 </domain-config>
</network-security-config>

(from Internet/CA/app/src/main/res/xml/network_selfsigned.xml)
This is from the selfSigned product flavor. Note that it will not work
on your development machine, as you do not have a Web
server with a self-signed SSL certificate at scrap.commonsware.com.
However, this shows the basic setup, as being the same as before.
This site
has instructions for setting up a self-signed certificate. The CRT
file that is created (e.g., example.crt) is what you would put in your
app.
Self-Signed Certificates for Debug Builds
If you are only using a self-signed certificate for debuggable builds
(e.g., debug build type), you can use the <debug-overrides> XML
element in your network security configuration. This adds your
self-signed certificates to the roster of trust anchors, but only
for debuggable builds. For non-debuggable builds (e.g., release
build type), your self-signed SSL certificate will be ignored.
You can see this in the network_override.xml resource:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <debug-overrides>
 <trust-anchors>
 <certificates src="@raw/example"/>
 </trust-anchors>
 </debug-overrides>
</network-security-config>

(from Internet/CA/app/src/main/res/xml/network_override.xml)
This is for the override product flavor which, like selfSigned,
will not work for you, as you will not have a Web server using that
SSL certificate.
Blocking Cleartext Traffic
For a domain, or perhaps for everything in your app, you might want to
ensure that you always are using SSL… even to the point of being
willing to crash your app if you are not using SSL. While this is
an extreme measure, some apps have those sorts of security requirements.
The network security configuration subsystem supports a
cleartextTrafficPermitted attribute on <base-config> and
<domain-config>:

<base-config cleartextTrafficPermitted="false">
 <trust-anchors>
 <certificates src="system" />
 </trust-anchors>
</base-config>

If set to false, this means that you want to block all “cleartext”
(non-SSL) traffic for the scope of that element.
The native implementation of network security configuration supports
this flag for most Internet communications. Notably, WebView does
not support it.
The CWAC-NetSecurity backport, if you are using the OkHttp3 integration,
attempts to honor this, by checking the scheme for requests. If you
make an http request, but you have cleartextTrafficPermitted="false"
for the appropriate scope (e.g., for the domain in the URL), the
request is rejected. However, this is not quite as strong as the
native implementation, and it certainly does not affect anything other
than the OkHttp3 integration.
On Android 6.0, you have
another option of enabling this same sort of check.
You also have a way to have
StrictMode validate cleartext traffic on
Android 6.0+.
Supporting User-Added Certificates
The native Android 7.0+ network security configuration subsystem not
only allows you to use [certificates src="system" /] to say “we also
allow any standard certificate authorities here”, but also
[certificates src="user" /]. This indicates that certificate authorities
added by the user, through Settings, should be honored as well.
By default, for apps with targetSdkVersion set to 24 or higher,
user-added certificates are ignored unless [certificates src="user" /]
is included in a network security configuration.
Such user-added certificate authorities
are a bit controversial in Android app development.
On the one hand, they allow users to add support for unrecognized
authorities, in case Android is slow to adopt them, and without apps
having to do anything. On the other hand, those user-added
certificate authorities are global in scope, rather than being tied
to specific domains.
Note that this feature is not available in the CWAC-NetSecurity
backport. [certificates src="user" /] is ignored. User-added certificate
authorities are lumped in with the system-defined certificate authorities,
so if you have [certificates src="system" /], you will get certificate
authorities from both sources.
Other SSL Strengthening Techniques
Not everything that one can do to improve SSL security is covered by either
the native network security configuration implementation or the
CWAC-NetSecurity backport. Here are some other possibilities to consider.
Certificate Memorizing
If your app needs to connect to arbitrary SSL servers — perhaps ones configured
by the user (e.g., email client) or are intrinsic to the app’s usage (e.g.,
URLs in a Web browser) — detecting man-in-the-middle attacks boils down to
proper SSL certificate validation… and praying for no hacked CA certificates.
However, one way to incrementally improve security is to use certificate memorizing.
With this technique, each time you see a certificate that you have not seen before,
or perhaps a different certificate for a site visited previously, you ask the user
to confirm that it is OK to proceed.
The idea here is that even if we cannot tell, absolutely, whether a given certificate
is genuine or from an attacker, we can detect differences in certificates over time.
So, if the user has been seeing certificate A, and now all of a sudden receives
certificate B instead, there are two main possibilities:

	The HTTPS server changed certificates for legitimate reasons

	An attacker is providing an alternative certificate

So, what we do is check certificates against a roster that the user has approved
before. If the newly-received certificate is not in that roster, we fail the HTTPS
request, but raise a custom exception so that your code can detect this case and
ask the user for approval to proceed.
Technically savvy users may be able to deduce
whether the certificate is indeed genuine; slightly less-savvy users might simply
contact the site to see if this is expected behavior. The downside is that technically
unsophisticated users might be baffled by the question of whether or not they should
accept the certificate and may take their confusion out on you, the developer of the
app that is asking the question.
There is
a standalone implementation of a MemorizingTrustManager
that you could consider using. It has been around for a few years, with a slow-but-steady
set of updates.
However, that library handles asking the user for acceptance of the certificates for you,
rather than raising some event that your app can handle itself. In order to tailor
the UI, you would need to modify the library itself.
Moreover, the library attempts to handle this UI while your SSL request is in process,
by blocking the background thread upon which you are making the HTTPS request.
A side-effect of this is that MemorizingTrustManager has some fairly unpleasant
code for trying to block this thread while interacting with the user on the main
application thread. And, if the user takes too long, your request to the server may
time out anyway.
Requiring Encryption, Android 6.0 Style
Android 6.0 supports an usesCleartextTraffic attribute on the
<application> element in the manifest. This works like the
cleartextTrafficPermitted option in the network security configuration
subsystem. If this is set to false,
you are saying that your app not only should be using SSL for everything,
but that you expressly want to crash the app in case you wind up
not using SSL.
If you try to perform plain HTTP requests on Android 6.0 with
usesCleartextTraffic set to false,
you will crash when you attempt to download the
file, with a stack trace akin to:

06-19 08:03:46.325 6420-6478/com.commonsware.android.downloader E/com.commonsware.android.downloader.Downloader: Exception in download
 java.net.UnknownServiceException: CLEARTEXT communication not supported: []
 at com.android.okhttp.Connection.connect(Connection.java:149)
 at com.android.okhttp.Connection.connectAndSetOwner(Connection.java:185)
 .
 .
 .

What is really going on “under the covers” is that this attribute
sets a flag that HTTP client APIs can check, electing to fail a request
if the flag says that SSL is required and the request’s URL does not
have the https scheme. Android’s built-in HTTP clients should support
this flag, but third-party HTTP stacks that manage their own socket
connections may not. Also note that WebView does not honor
usesCleartextTraffic.
Watching for Encryption
The downside of usesCleartextTraffic is that it is “all or nothing” and
always terminates your process. The same thing holds true for using
cleartextTrafficPermitted with the network security configuration
in the <base-config> element. That is wonderful in situations where
SSL is crucial. It is less wonderful if your app crashes in production
in situations where SSL would be a really good idea but is unavailable
for whatever reason.
StrictMode on API Level 23+ devices supports a way to be warned if your app performs
unencrypted network operations, via a detectCleartextNetwork()
method on StrictMode.VmPolicy.Builder. You can configure this, and
suitable penalties, alongside the rest of your StrictMode setup. This
can include doing different things for debug versus release builds,
for example. So, in a debug build, you might choose penaltyDeath()
to crash the process, while in a release build, you settle for penaltyLog()
or something else less drastic.
If you are using a build server, you could set it up to watch
for StrictMode Logcat messages coming from your test suite to find out about
these accesses.
Advanced Uses of CWAC-NetSecurity
Adding a couple of lines of Java code, along with the dependency, is all
that you need to use CWAC-NetSecurity to gain the benefits of the
backport of the network security configuration subsystem. However,
CWAC-NetSecurity offers a few more features that may be of use to you.
Using Alternative Network Security Configuration XML
withManifestConfig() on TrustManagerBuilder uses the resource
that you declare in your manifest as the network security configuration
to apply. However, that is fairly inflexible, as you can only define
this in the manifest once. Also, withManifestConfig() performs the
version check to only apply the backport on pre-7.0 devices.
You can also use withConfig(), where you provide a Context and the resource ID
of the XML resource to use for the network security configuration.
This is useful for cases where:

	You want to always use the backport, for consistent behavior across
OS versions

	You want to use different configurations in different settings
for the same APK

For example, the test suites use withConfig(), as otherwise we would
need dozens of separate manifests.
Using the Backport Directly
You do not have to use TrustManagerBuilder to use the network security
configuration backport. If you wish to use it directly:

	Create an instance of ApplicationConfig, passing in a ConfigSource
implementation that indicates where the configuration should be pulled
from. Two likely ConfigSource implementations are ManifestConfigSource
(to use the one defined in the manifest) and XmlConfigSource (to
use one defined in an arbitrary XML resource).

	Call getTrustManager() on the ApplicationConfig to get a TrustManager
that will implement the requested configuration.

	Add that TrustManager to your HTTP client via whatever API that
client offers for such things. In many cases, that will be by configuring
an SSLContext to use the TrustManager, then using the SSLContext
(or an SSLSocketFactory created by the SSLContext) with your
HTTP client.

Integrating with Other HTTP Client Libraries
If you want to integrate TrustManagerBuilder and the network security
configuration backport with some other HTTP client API, start by reviewing
the OkHttp3Integrator class in the netsecurity-okhttp3 library.
This will give you an idea of what is required and how easy it will
be to replicate this class for your particular HTTP client API.
Adding the TrustManager
Calling build() on the TrustManagerBuilder gives you a
CompositeTrustManager, set up to implement your desired network
security configuration. You will need to add that to your HTTP client
by one means or another. If size() on the CompositeTrustManager
returns 0, though, you can skip it, as it means that there are no rules
to be applied (e.g., you used withManifestConfig(), and your app
is running on an Android 7.0+ device).
So, you might have code that looks like this, where tmb is a
configured TrustManagerBuilder:

CompositeTrustManager trustManager=tmb.build();

if (trustManager.size()>0) {
 SSLContext ssl=SSLContext.getInstance("TLS");
 X509Interceptor interceptor=new X509Interceptor(trustManager, tmb);

 ssl.init(null, new TrustManager[]{trustManager}, null);

 // apply the SSLContext or ssl.getSocketFactory() to your HTTP client
}

Handling Cleartext
You can call isCleartextTrafficPermitted() on the CompositeTrustManager
to determine if cleartext traffic should be supported. This takes the
domain name of the Web server you are going to be communicating with
and returns a simple boolean. If isCleartextTrafficPermitted()
returns false, you will need to examine the scheme of the URL and
accept or reject the HTTP operation accordingly.
If you fail to do this, then cleartext traffic will be allowed in all
cases, akin to the stock HttpURLConnection integration.
Handling Redirects
If your HTTP client automatically traverses server-side redirects
(making the HTTP request for the redirected-to URL), you will need
to handle the cleartext check and the setHost() call on every
step of the redirection, not just your initial request. In the
case of OkHttp3, this is accomplished via their interceptor framework.
Debugging Certificate Chains
You can call withCertChainListener() on TrustManagerBuilder,
providing an implementation of CertChainListener. Your listener
will be called with onChain() each time a certificate chain is
encountered. In onChain(), you can inspect the certificates, dump
their contents to Logcat, or whatever you wish to do.
This is designed for use in development. For example, when writing
the demo/ app, the author used a CertChainListener to log what
HTTP requests were being made, what domains those were for, and what
root certificates are being used. This in turn led to creating the
network security configuration that matched.
However, logging certificate chains on a production device may result
in security issues. Please only use CertChainListener in debug
builds.
NetCipher
The Guardian Project has released an Android library
project called NetCipher — formerly
known as OnionKit — designed to help
boost Internet security for Android applications.
In particular, NetCipher helps your application integrate with Orbot, a
Tor proxy. Tor (“The Onion Router”) is designed to help
with anonymity, having your Internet requests go through a series of Tor routers
before actually connecting to your targeted server through some Tor endpoint. Tor is
used for everything from mitigating Web site tracking to helping dissidents bypass
national firewalls. NetCipher helps your app:

	Detect if Orbot is installed, and help the user install it if it is not

	Detect if Orbot is running, and help you start it if it is not

	Make HTTP requests by means of Orbot instead of directly over the Internet

There is a dedicated chapter on NetCipher, if you
have interest in this technology.
NetCipher
NetCipher is a library
from the Guardian Project to improve the privacy and security of HTTP
network communications. In particular, it makes it easier for your app
to integrate with Orbot,
an Android proxy server that forwards HTTP requests via
Tor.
This chapter covers:

	An introduction to Tor, Orbot, and NetCipher

	An explanation of how to use a fairly simple API layered atop NetCipher
to add its functionality to your app

Prerequisites
This chapter assumes that you have read the core chapters
of the book, particularly the one on Internet access.
Having read the chapter on SSL is also a very good
idea.
Network Security’s Got Onions
Maintaining privacy and security on the Internet, in the face of
so-called “advanced persistent threats”, is a continuous challenge
facing many people, particularly those under threats from hostile
forces, ranging from organized crime syndicates to your average
rampaging warlord. Tor was created to help deal with this sort of
problem; Orbot was created to extend Tor to Android.
A Quick Primer on Tor
Originally named The Onion Router, Tor was created by researchers
in the US Naval Research Laboratory back in the mid-1990’s,
with an eye towards protecting US intelligence communications. In
2006, the technology spun out into an independent non-profit organization,
which has continued to improve upon the core Tor software and expand
the reach of Tor. Through packages like the Tor Browser Bundle, it
is fairly easy for at-risk people to start using Tor to help shroud
their communications.
Without getting into the full technical details of Tor — which are well
beyond the scope of this chapter — Tor basically works by routing
a request through a series of relay servers, through a process known as onion
routing. Requests are secured through layers of encryption, to keep
any two connected relays from knowing the full details of the communications.
Some relays serve as “exit nodes”, for requests being made of ordinary
Web servers. Certain servers — Tor hidden services — are only reachable
through Tor; requests made of these servers never leave the Tor network.
Of course, technology like Tor is agnostic in terms of its users and usages,
and there have been plenty of examples of people using Tor for illicit
purposes, such as the
Silk Road.
This has a tendency to obscure Tor’s benefits to people who need to
remain somewhat hidden online, whether from stalkers or other harassers
or from the security forces of dictatorships.
Introducing Orbot
The entry path into Tor is usually via some sort of proxy server, that
a regular Internet client can connect to. Orbot is one such proxy server,
that runs on Android. Apps can use Orbot’s HTTP or SOCKS proxies to route
requests; those requests will then wind up traversing the Tor network
to the end site, whether that site is on the public Internet (reached
from a Tor exit node) or a Tor hidden service.
By default,
Orbot is limited to localhost use, meaning that it does
not have open ports that can be reached from other devices on the
local WiFi LAN segment (or some subnet of the mobile carrier, if not
on WiFi). For an Android app on the same device, this is not a problem,
and it in fact simplifies things a fair bit, as there is no guesswork
as to what the IP address should be for the proxy. As we will see, though,
finding out exactly how to connect to Orbot is a bit tricky, though with
some helper code it is not too bad.
What NetCipher Provides
While we know that Orbot will be listening on localhost, we do not
necessarily know the port that it is using for its HTTP proxy. Partly,
that is because the user might configure it manually. Partly, that is
because there are occasional conflicts with Orbot’s default port.
Hence, NetCipher contains some code that will help you find out:

	Is Orbot installed? (and, if not, help get it installed)

	Is Orbot running? (and, if not, help get it running)

	What port is used for the HTTP proxy?

The NetCipher HTTP Integration APIs
NetCipher offers two levels of API for integration. This chapter focuses on
the newer of those, a suite that offers simple plug-and-play
integration with popular HTTP client APIs: HttpURLConnection,
OkHttp, Volley, and Apache’s HttpClient. This focus stems from two
main reasons:

	These integration APIs are much simpler to use

	The author of this book wrote those APIs, and so is biased as to how
simple they are to use

The
Internet/HTTPStacks
sample application demonstrates all four of the HTTP integration APIs.
Each of the four is based on the Stack Overflow sample app from
the chapter on Internet access, with
NetCipher integration added in.
There are a few simple steps for adding in NetCipher integration: choosing
your HTTP stack, adding the dependencies, setting up OrbotHelper, and
then using a secure connection.
Choose an HTTP Stack
As noted above, NetCipher offers integration APIs for four
major HTTP client implementations (a.k.a., “HTTP stacks”):

	HttpURLConnection

	OkHttp3

	Apache’s independent HttpClient package

	Volley

HttpURLConnection support is part of the core NetCipher library
(info.guardianproject.netcipher:netcipher), as HttpURLConnection
is part of standard Java and Android. The other three HTTP
stacks have separate libraries:

 	HTTP Stack
 	NetCipher Artifact

 	OkHttp3
 	info.guardianproject.netcipher:netcipher-okhttp3

 	HttpClient
 	info.guardianproject.netcipher:netcipher-httpclient

 	Volley
 	info.guardianproject.netcipher:netcipher-volley

Add the Dependencies
Unfortunately, some packaging issues with the 2.0.0-alpha1 edition
of NetCipher, adding the dependencies is more complicated than it
needs to be. Your project needs to have dependencies on:

	
info.guardianproject.netcipher:netcipher:2.0.0-alpha1, for the core
of NetCipher

	the NetCipher artifact specifically for your HTTP stack, if you are using something other
than HttpURLConnection

	the artifact for the HTTP client API itself

	any other artifacts that your project needs for other reasons

So, for example, the okhttp3 module in the HTTPStacks project
is a sample app that uses OkHttp 3.x for its HTTP client API. It
needs three artifacts in its dependencies closure to pull in
OkHttp and NetCipher’s support for OkHttp:

 compile 'info.guardianproject.netcipher:netcipher:2.0.0-alpha1'
 compile 'info.guardianproject.netcipher:netcipher-okhttp3:2.0.0-alpha1'
 compile 'com.squareup.okhttp3:okhttp:3.8.0'

(from Internet/HTTPStacks/okhttp3/build.gradle)
Volley integration has been tested with com.android.volley:volley:1.0.0,
while the HttpClient integration work with the cz.msebera.android:httpclient:4.4.1.2
independent repackaging of Apache HttpClient for Android.
Set up OrbotHelper
OrbotHelper is a singleton that manages a lot of the asynchronous
communication between your app and Orbot. It is designed to be initialized
fairly early on in your app’s lifecycle. One likely candidate is to have
a custom Application subclass, where you override onCreate() and
set up OrbotHelper.
All of the sample apps do this in a custom SampleApplication class:

package com.commonsware.android.http;

import android.app.Application;
import com.squareup.leakcanary.LeakCanary;
import info.guardianproject.netcipher.proxy.OrbotHelper;

public class SampleApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();

 LeakCanary.install(this);
 OrbotHelper.get(this).init();
 }
}

(from Internet/HTTPStacks/okhttp3/src/main/java/com/commonsware/android/http/SampleApplication.java)
This custom Application also sets up LeakCanary.
SampleApplication is then tied into the app via the android:name
attribute on the <application> element in the manifest:

 <application
 android:name=".SampleApplication"
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">

(from Internet/HTTPStacks/okhttp3/src/main/AndroidManifest.xml)
Choose and Create a Builder
Each module defines a corresponding builder class that can be used
to configure NetCipher for use with that stack, with names based
on the classes used with those HTTP stacks:

 	HTTP Stack
 	Builder Class

 	HttpURLConnection
 	StrongConnectionBuilder

 	OkHttp3
 	StrongOkHttpClientBuilder

 	HttpClient
 	StrongHttpClientBuilder

 	Volley
 	StrongVolleyQueueBuilder

You will need an instance of your chosen builder class. The
simplest way to do that is to call the forMaxSecurity()
static method on the builder class. forMaxSecurity() takes
a Context as a parameter, though it only holds onto the Application
singleton internally, so any Context is safe. forMaxSecurity()
returns a builder configured for the best protection that NetCipher
can offer.
Get a Connection
Then, call build() on the builder object. It will take a
StrongBuilder.Callback object as a parameter,
typed for whatever HTTP stack you chose.
So, for example, if you went with StrongConnectionBuilder, your
callback will be a StrongBuilder.Callback<HttpURLConnection>.

 	HTTP Stack
 	Builder Class
 	Connection Class

 	HttpURLConnection
 	StrongConnectionBuilder
 	HttpURLConnection

 	OkHttp3
 	StrongOkHttpClientBuilder
 	OkHttpClient

 	HttpClient
 	StrongHttpClientBuilder
 	HttpClient

 	Volley
 	StrongVolleyQueueBuilder
 	RequestQueue

You will need to implement four methods on that Callback:

	
onConnected() will be passed an instance of your connection
class (e.g., an HttpURLConnection instance), ready for your use,
configured to hook into NetCipher

	
onConnectionException() will be passed an IOException, if one
of those occurs while trying to set up your connection

	
onTimeout() will be called if Orbot is not installed or we could not
connect to it within 30 seconds

	
onInvalid() will be called if the Tor connection is established
but is deemed to be compromised (more on this later)

Seeing the Builder in Action
Each of the four modules in the sample app (hurl, httpclient,
okhttp3, and volley) have a similar MainActivity implementation,
one that populates a ListView with the latest Stack Overflow Android
questions. The difference in which HTTP stack the sample uses.
For example, the okhttp3 module, in onCreate() of its MainActivity,
uses StrongOkHttpClientBuilder:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 try {
 StrongOkHttpClientBuilder
 .forMaxSecurity(this)
 .withTorValidation()
 .build(this);
 }
 catch (Exception e) {
 Toast
 .makeText(this, R.string.msg_crash, Toast.LENGTH_LONG)
 .show();
 Log.e(getClass().getSimpleName(),
 "Exception loading SO questions", e);
 finish();
 }
 }

(from Internet/HTTPStacks/okhttp3/src/main/java/com/commonsware/android/http/MainActivity.java)
Here, we use forMaxSecurity() to create the StrongOkHttpClientBuilder,
then configure it further with withTorValidation(). This requests that
we do a test HTTP request to a Tor status URL to confirm that our request
has indeed gone over Tor.
Note that StrongConnectionBuilder — for use with HttpURLConnection –
also requires that you call connectTo(),
before build(), to indicate the specific URL for which you want
an HttpURLConnection. This is unique among the builders. These sorts
of per-builder differences are discussed later in this chapter.
build() is passed this, referencing MainActivity itself, which is
implementing the StrongBuilder.Callback interface:

public class MainActivity extends ListActivity implements
 StrongBuilder.Callback<OkHttpClient> {

(from Internet/HTTPStacks/okhttp3/src/main/java/com/commonsware/android/http/MainActivity.java)
That Callback is tied to the particular type of connection
we are creating. We are using OkHttp3 and StrongOkHttpClientBuilder,
so we are creating an OkHttpClient connection.
Our onConnected() method for that Callback gets the OkHttpClient
and makes an HTTP request using it:

 @Override
 public void onConnected(final OkHttpClient client) {
 new Thread() {
 @Override
 public void run() {
 try {
 Request request=new Request.Builder().url(SO_URL).build();
 Response response=client.newCall(request).execute();

 final SOQuestions result=
 new Gson().fromJson(response.body().charStream(), SOQuestions.class);

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 setListAdapter(new ItemsAdapter(result.items));
 }
 });
 }
 catch (IOException e) {
 onConnectionException(e);
 }
 }
 }.start();
 }

(from Internet/HTTPStacks/okhttp3/src/main/java/com/commonsware/android/http/MainActivity.java)
SO_URL, passed into url(), is a Web service request URL from
the Stack Exchange API, looking for Stack Overflow questions tagged with
the android tag:

 String SO_URL=
 "https://api.stackexchange.com/2.1/questions?"
 + "order=desc&sort=creation&site=stackoverflow&tagged=android";

(from Internet/HTTPStacks/okhttp3/src/main/java/com/commonsware/android/http/MainActivity.java)
Note that onConnected() will be called on the
main application thread, so you will need to get your connection over to
whatever background thread will be doing your work. In this case, we
create a background thread right here to retrieve the JSON, parse it,
and use runOnUiThread() to update the ListActivity with an
ItemsAdapter to show the parsed Stack Overflow questions:

 class ItemsAdapter extends ArrayAdapter<Item> {
 ItemsAdapter(List<Item> items) {
 super(MainActivity.this,
 android.R.layout.simple_list_item_1, items);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 TextView title=(TextView)row.findViewById(android.R.id.text1);

 title.setText(Html.fromHtml(getItem(position).title));

 return(row);
 }
 }

(from Internet/HTTPStacks/okhttp3/src/main/java/com/commonsware/android/http/MainActivity.java)
The other three methods that we need to implement for our Callback are
for error conditions: onConnectionException(), onTimeout(), and
onInvalid():

 @Override
 public void onConnectionException(Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception loading SO questions", e);

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast
 .makeText(MainActivity.this, R.string.msg_crash,
 Toast.LENGTH_LONG)
 .show();
 finish();
 }
 });
 }

 @Override
 public void onTimeout() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast
 .makeText(MainActivity.this, R.string.msg_timeout,
 Toast.LENGTH_LONG)
 .show();
 finish();
 }
 });
 }

 @Override
 public void onInvalid() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast
 .makeText(MainActivity.this, R.string.msg_invalid,
 Toast.LENGTH_LONG)
 .show();
 finish();
 }
 });
 }

(from Internet/HTTPStacks/okhttp3/src/main/java/com/commonsware/android/http/MainActivity.java)
Other than initializing OrbotHelper, setting up the builder, and
implementing StrongBuilder.Callback somewhere to handle the results,
the rest of the code is tied to application logic, not NetCipher itself.
The Rest of the Builder API
The API shown above for getting a NetCipher-secured connection via your
favorite HTTP stack is designed for ease of use. However, as shown, it
is not very flexible.
The rest of the builder API offers that flexibility, at the cost of
some additional code.
Common Configuration Methods
The StrongBuilder interface defines the common public API for all
four of the builder classes:

/*
 * Copyright (c) 2016 CommonsWare, LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package info.guardianproject.netcipher.client;

import android.content.Intent;
import java.io.IOException;
import java.security.KeyManagementException;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.UnrecoverableKeyException;
import java.security.cert.CertificateException;
import javax.net.ssl.TrustManager;

public interface StrongBuilder<T extends StrongBuilder, C> {
 /**
 * Callback to get a connection handed to you for use,
 * already set up for NetCipher.
 *
 * @param <C> the type of connection created by this builder
 */
 interface Callback<C> {
 /**
 * Called when the NetCipher-enhanced connection is ready
 * for use.
 *
 * @param connection the connection
 */
 void onConnected(C connection);

 /**
 * Called if we tried to connect through to Orbot but failed
 * for some reason
 *
 * @param e the reason
 */
 void onConnectionException(Exception e);

 /**
 * Called if our attempt to get a status from Orbot failed
 * after a defined period of time. See statusTimeout() on
 * OrbotInitializer.
 */
 void onTimeout();

 /**
 * Called if you requested validation that we are connecting
 * through Tor, and while we were able to connect to Orbot, that
 * validation failed.
 */
 void onInvalid();
 }

 /**
 * Call this to configure the Tor proxy from the results
 * returned by Orbot, using the best available proxy
 * (SOCKS if possible, else HTTP)
 *
 * @return the builder
 */
 T withBestProxy();

 /**
 * @return true if this builder supports HTTP proxies, false
 * otherwise
 */
 boolean supportsHttpProxy();

 /**
 * Call this to configure the Tor proxy from the results
 * returned by Orbot, using the HTTP proxy.
 *
 * @return the builder
 */
 T withHttpProxy();

 /**
 * @return true if this builder supports SOCKS proxies, false
 * otherwise
 */
 boolean supportsSocksProxy();

 /**
 * Call this to configure the Tor proxy from the results
 * returned by Orbot, using the SOCKS proxy.
 *
 * @return the builder
 */
 T withSocksProxy();

 /**
 * Applies your own custom TrustManagers, such as for
 * replacing the stock keystore support with a custom
 * keystore.
 *
 * @param trustManagers the TrustManagers to use
 * @return the builder
 */
 T withTrustManagers(TrustManager[] trustManagers)
 throws NoSuchAlgorithmException, KeyManagementException;

 /**
 * Call this if you want a weaker set of supported ciphers,
 * because you are running into compatibility problems with
 * some server due to a cipher mismatch. The better solution
 * is to fix the server.
 *
 * @return the builder
 */
 T withWeakCiphers();

 /**
 * Call this if you want the builder to confirm that we are
 * communicating over Tor, by reaching out to a Tor test
 * server and confirming our connection status. By default,
 * this is skipped. Adding this check adds security, but it
 * has the chance of false negatives (e.g., we cannot reach
 * that Tor server for some reason).
 *
 * @return the builder
 */
 T withTorValidation();

 /**
 * Builds a connection, applying the configuration already
 * specified in the builder.
 *
 * @param status status Intent from OrbotInitializer
 * @return the connection
 * @throws IOException
 */
 C build(Intent status) throws Exception;

 /**
 * Asynchronous version of build(), one that uses OrbotInitializer
 * internally to get the status and checks the validity of the Tor
 * connection (if requested). Note that your callback methods may
 * be invoked on any thread; do not assume that they will be called
 * on any particular thread.
 *
 * @param callback Callback to get a connection handed to you
 * for use, already set up for NetCipher
 */
 void build(Callback<C> callback);
}

withTorValidation(), build(), and the Callback nested interface
were covered earlier in this chapter, but the others offer finer-grained
configuration options.
Five of the methods are tied into choosing what proxy protocol should
be used with Orbot.
forMaxSecurity(), under the covers, uses withBestProxy(), which
chooses the best proxy for the situation. Right now, the implementation
chooses the SOCKS proxy where that is supported, falling back to the HTTP
proxy where it is not.
The supportsHttpProxy() and supportsSocksProxy() methods indicate
whether a given builder supports these proxy types.
The withHttpProxy() and withSocksProxy() methods tell the builder
that you want to use that specific proxy. Use these with care, making
sure that the proxy you want is supported. withBestProxy() is a far
better choice overall.
withWeakCiphers() expands the roster of SSL ciphers that NetCipher
allows the HTTPS connection to use. Normally, NetCipher tries to avoid
ciphers with known security issues. However, that may cause problems with
some servers, if NetCipher and the server cannot negotiate a common
cipher. withWeakCiphers() allows NetCipher to use more ciphers, to
perhaps overcome the negotiation problem, with the cost of possibly weaker
security.
withTrustManagers() allows you to replace the TrustManager
implementation that NetCipher would use by default with a different one,
perhaps one that supports certificate pinning or other SSL strengthening techniques.
Differences Between the Stacks
While each of the builders supports the StrongBuilder API, there are
some differences between the implementations.
StrongConnectionBuilder
Before calling build(), you need to call connectTo()
to supply the URL (as a String or URL) that you want to connect to.
The other builders give you objects that you can reuse across many
requests (e.g., OkHttp3’s OkHttpClient), but that is not possible
with HttpURLConnection.
The hurl module’s MainActivity does just that:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 try {
 StrongConnectionBuilder
 .forMaxSecurity(this)
 .withTorValidation()
 .connectTo(SO_URL)
 .build(this);
 }
 catch (Exception e) {
 Toast
 .makeText(this, R.string.msg_crash, Toast.LENGTH_LONG)
 .show();
 Log.e(getClass().getSimpleName(),
 "Exception loading SO questions", e);
 finish();
 }
 }

(from Internet/HTTPStacks/hurl/src/main/java/com/commonsware/android/http/MainActivity.java)
The onConnected() method then just uses the fully-configured
HttpURLConnection object:

 @Override
 public void onConnected(final HttpURLConnection conn) {
 new Thread() {
 @Override
 public void run() {
 try {
 InputStream in=conn.getInputStream();
 BufferedReader reader=
 new BufferedReader(new InputStreamReader(in));

 final SOQuestions result=
 new Gson().fromJson(reader, SOQuestions.class);

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 setListAdapter(new ItemsAdapter(result.items));
 }
 });

 reader.close();
 }
 catch (IOException e) {
 onConnectionException(e);
 }
 finally {
 conn.disconnect();
 }
 }
 }.start();
 }

(from Internet/HTTPStacks/hurl/src/main/java/com/commonsware/android/http/MainActivity.java)
To help make this a bit easier, StrongConnectionBuilder supports
the copy constructor. You can create a master StrongConnectionBuilder
with your base configuration, then make a copy, call connectTo() on
the copy, then call build() on the copy, throwing away the copy when
you are done.
StrongHttpClientBuilder
The builder for Apache’s independent packaging of HttpClient for Android
extends Apache’s own HttpClientBuilder. As a result, you can call all
the normal HttpClientBuilder methods in addition to calling the
StrongBuilder methods. The noteworthy exception is that the standard
zero-parameter build() offered by HttpClientBuilder is not supported.
The httpclient module’s MainActivity does not need any HttpClient-specific
configuration:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 try {
 StrongHttpClientBuilder
 .forMaxSecurity(this)
 .withTorValidation()
 .build(this);
 }
 catch (Exception e) {
 Toast
 .makeText(this, R.string.msg_crash, Toast.LENGTH_LONG)
 .show();
 Log.e(getClass().getSimpleName(),
 "Exception loading SO questions", e);
 finish();
 }
 }

(from Internet/HTTPStacks/httpclient/src/main/java/com/commonsware/android/http/MainActivity.java)
The onConnected() method then just uses the configured
HttpClient object:

 @Override
 public void onConnected(final HttpClient client) {
 new Thread() {
 @Override
 public void run() {
 try {
 HttpGet get=new HttpGet(SO_URL);
 String json=client.execute(get, new BasicResponseHandler());

 final SOQuestions result=
 new Gson().fromJson(new StringReader(json),
 SOQuestions.class);

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 setListAdapter(new ItemsAdapter(result.items));
 }
 });
 }
 catch (IOException e) {
 onConnectionException(e);
 }
 }
 }.start();
 }

(from Internet/HTTPStacks/httpclient/src/main/java/com/commonsware/android/http/MainActivity.java)
StrongVolleyQueueBuilder
This builder class adheres to the StrongBuilder API without any
changes, making its use fairly straightforward:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 try {
 StrongVolleyQueueBuilder
 .forMaxSecurity(this)
 .withTorValidation()
 .build(this);
 }
 catch (Exception e) {
 Toast
 .makeText(this, R.string.msg_crash, Toast.LENGTH_LONG)
 .show();
 Log.e(getClass().getSimpleName(),
 "Exception loading SO questions", e);
 finish();
 }
 }

(from Internet/HTTPStacks/volley/src/main/java/com/commonsware/android/http/MainActivity.java)
The onConnected() method then just uses the configured
RequestQueue object:

 @Override
 public void onConnected(final RequestQueue rq) {
 new Thread() {
 @Override
 public void run() {
 final StringRequest stringRequest=
 new StringRequest(StringRequest.Method.GET, SO_URL,
 new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 final SOQuestions result=
 new Gson().fromJson(new StringReader(response),
 SOQuestions.class);

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 setListAdapter(new ItemsAdapter(result.items));
 }
 });
 }
 },
 new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 Log.e(getClass().getSimpleName(),
 "Exception making Volley request", error);
 }
 });

 rq.add(stringRequest);
 }
 }.start();
 }

(from Internet/HTTPStacks/volley/src/main/java/com/commonsware/android/http/MainActivity.java)
StrongOkHttpClientBuilder
Note that OkHttp3 does not support SOCKS proxies.
Hence, supportsSocksProxy() returns false, causing withBestProxy()
to fall back to the HTTP proxy. This is handled for you automatically.
Miscellaneous Network Topics
This chapter is a catch-all for various Android capabilities related to network
I/O and the Internet, beyond what is covered elsewhere in the book.
(yes, this chapter could have a more exciting rationale for existing, but the
author is subject to “Truth in Advertising” laws…)
Prerequisites
Readers of this chapter should have read the core chapters of the book.
Downloading Files
Android 2.3 introduced a DownloadManager, designed to handle a lot of the
complexities of downloading larger files, such as:

	Determining whether the user is on WiFi or mobile data, and if so, whether
the download should occur

	Handling when the user, previously on WiFi, moves out of range of the access
point and “fails over” to mobile data

	Ensuring the device stays awake while the download proceeds

DownloadManager itself is less complicated than the alternative of writing
all of that stuff yourself. However, it does present a few challenges. In this section,
we will examine
the Internet/Download
sample project, one that uses
DownloadManager.
The Permissions
To use DownloadManager, you will need to hold the INTERNET permission.
You will also need the WRITE_EXTERNAL_STORAGE permission, as DownloadManager
can only download to external storage. Note that you need to hold
WRITE_EXTERNAL_STORAGE even if you are trying to have DownloadManager
write to some location where that permission might not be needed
(e.g., getExternalFilesDir() on an Android 4.4+ device). DownloadManager
is requiring you to hold that permission, more so than the Android
framework, and DownloadManager requires that permission for all API
levels at the present time.
For example, here is the manifest for the Internet/Download application,
where we request these two permissions:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.downmgr"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:anyDensity="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true" />

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name=".DownloadDemo"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Internet/Download/app/src/main/AndroidManifest.xml)
WRITE_EXTERNAL_STORAGE is a dangerous permission. With a targetSdkVersion
of 23 or higher, we need to handle that in our app. This app uses the
same AbstractPermissionActivity seen in the chapter on permissions,
so we can request WRITE_EXTERNAL_STORAGE from the user on the first run
of our app from the DownloadDemo activity:

package com.commonsware.android.downmgr;

import android.Manifest;
import android.app.Activity;
import android.app.DownloadManager;
import android.content.Intent;
import android.os.Bundle;
import android.os.StrictMode;
import android.widget.Toast;

public class DownloadDemo extends AbstractPermissionActivity {

 @Override
 protected String[] getDesiredPermissions() {
 return(new String[] {Manifest.permission.WRITE_EXTERNAL_STORAGE});
 }

 @Override
 protected void onPermissionDenied() {
 Toast
 .makeText(this, R.string.msg_sorry, Toast.LENGTH_LONG)
 .show();
 finish();
 }

 @Override
 public void onReady(Bundle savedInstanceState) {
 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectNetwork()
 .penaltyDeath()
 .build());

 if (getSupportFragmentManager().findFragmentById(android.R.id.content)==null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new DownloadFragment()).commit();
 }
 }

 public void viewLog() {
 startActivity(new Intent(DownloadManager.ACTION_VIEW_DOWNLOADS));
 }
}

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadDemo.java)
That activity then goes on to display a DownloadFragment, where most of our
code resides.
The Layout
Our sample application has a simple layout, consisting of three buttons:

	One to kick off a download

	One to query the status of a download

	One to display a system-supplied activity containing the roster of
downloaded files

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <Button
 android:id="@+id/start"
 android:text="@string/start_download"
 android:layout_width="match_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 />
 <Button
 android:id="@+id/query"
 android:text="@string/query_status"
 android:layout_width="match_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:enabled="false"
 />
 <Button android:id="@+id/view"
 android:text="@string/view_log"
 android:layout_width="match_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 />
</LinearLayout>

(from Internet/Download/app/src/main/res/layout/main.xml)
Requesting the Download
To kick off a download, we first need to get access to the DownloadManager.
This is a so-called “system service”. You can call getSystemService() on any
activity (or other Context), provide it the identifier of the system service
you want, and receive the system service object back. However, since
getSystemService() supports a wide range of these objects, you need to cast
it to the proper type for the service you requested.
So, for example, here is the onCreateView() method of the DownloadFragment,
in which we get the DownloadManager:

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 mgr=
 (DownloadManager)getActivity().getSystemService(Context.DOWNLOAD_SERVICE);

 View result=inflater.inflate(R.layout.main, parent, false);

 query=result.findViewById(R.id.query);
 query.setOnClickListener(this);
 start=result.findViewById(R.id.start);
 start.setOnClickListener(this);

 result.findViewById(R.id.view).setOnClickListener(this);

 return(result);
 }

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)
Most of these managers have no close() or release() or goAwayPlease()
sort of methods — you can just use them and let garbage collection take
care of cleaning them up.
Given the manager, we can now call an enqueue() method to request a download.
The name is relevant — do not assume that your download will begin
immediately, though often times it will. The enqueue() method takes a
DownloadManager.Request object as a parameter. The Request object uses the
builder pattern, in that most methods return the Request itself, so you can
chain a series of calls together with less typing.
For example, the top-most button in our layout is tied to a startDownload()
method in DownloadFragment, shown below:

 private void startDownload(View v) {
 Uri uri=Uri.parse("https://commonsware.com/misc/test.mp4");

 Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
 .mkdirs();

 DownloadManager.Request req=new DownloadManager.Request(uri);

 req.setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI
 | DownloadManager.Request.NETWORK_MOBILE)
 .setAllowedOverRoaming(false)
 .setTitle("Demo")
 .setDescription("Something useful. No, really.")
 .setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOADS,
 "test.mp4");

 lastDownload=mgr.enqueue(req);

 v.setEnabled(false);
 query.setEnabled(true);
 }

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)
We are downloading a sample MP4 file, and we want to download it to the
external storage area. To do the latter, we are using
getExternalStoragePublicDirectory() on Environment, which gives us a
directory suitable for storing a certain class of content. In this case, we are
going to store the download in the Environment.DIRECTORY_DOWNLOADS, though we
could just as easily have chosen Environment.DIRECTORY_MOVIES, since we are
downloading a video clip. Note that the File object returned by
getExternalStoragePublicDirectory() may point to a not-yet-created directory,
which is why we call mkdirs() on it, to ensure the directory exists.
We then create the DownloadManager.Request object, with the following
attributes:

	We are downloading the specific URL we want, courtesy of the Uri supplied
to the Request constructor

	We are willing to use either mobile data or WiFi for the download
(setAllowedNetworkTypes()), but we do not want the download to incur roaming
charges (setAllowedOverRoaming())

	We want the file downloaded as test.mp4 in the downloads area on the
external storage (setDestinationInExternalPublicDir())

We also provide a name (setTitle()) and description (setDescription()),
which are used as part of the notification drawer entry for this download. The
user will see these when they slide down the drawer while the download is
progressing.
The enqueue() method returns an ID of this download, which we hold onto for use
in querying the download status.
Keeping Track of Download Status
If the user presses the Query Status button, we want to find out the details of
how the download is progressing. To do that, we can call query() on the
DownloadManager. The query() method takes a DownloadManager.Query object,
describing what download(s) you are interested in. In our case, we use the
value we got from the enqueue() method when the user requested the download:

 private void queryStatus(View v) {
 Cursor c=
 mgr.query(new DownloadManager.Query().setFilterById(lastDownload));

 if (c == null) {
 Toast.makeText(getActivity(), R.string.download_not_found,
 Toast.LENGTH_LONG).show();
 }
 else {
 c.moveToFirst();

 Log.d(getClass().getName(),
 "COLUMN_ID: "
 + c.getLong(c.getColumnIndex(DownloadManager.COLUMN_ID)));
 Log.d(getClass().getName(),
 "COLUMN_BYTES_DOWNLOADED_SO_FAR: "
 + c.getLong(c.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR)));
 Log.d(getClass().getName(),
 "COLUMN_LAST_MODIFIED_TIMESTAMP: "
 + c.getLong(c.getColumnIndex(DownloadManager.COLUMN_LAST_MODIFIED_TIMESTAMP)));
 Log.d(getClass().getName(),
 "COLUMN_LOCAL_URI: "
 + c.getString(c.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI)));
 Log.d(getClass().getName(),
 "COLUMN_STATUS: "
 + c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS)));
 Log.d(getClass().getName(),
 "COLUMN_REASON: "
 + c.getInt(c.getColumnIndex(DownloadManager.COLUMN_REASON)));

 Toast.makeText(getActivity(), statusMessage(c), Toast.LENGTH_LONG)
 .show();

 c.close();
 }
 }

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)
The query() method returns a Cursor, containing a series of columns
representing the details about our download. There is a series of constants on
the DownloadManager class outlining what is possible. In our case, we
retrieve (and dump to Logcat):

	The ID of the download (COLUMN_ID)

	The amount of data that has been downloaded to date
(COLUMN_BYTES_DOWNLOADED_SO_FAR)

	What the last-modified timestamp is on the download
(COLUMN_LAST_MODIFIED_TIMESTAMP)

	Where the file is being saved to locally (COLUMN_LOCAL_URI)

	What the actual status is (COLUMN_STATUS)

	What the reason is for that status (COLUMN_REASON)

Note that COLUMN_LOCAL_URI may be unavailable, if the user has deleted the
downloaded file between when the download completed and the time you try to
access the column.
There are a number of possible status codes (e.g., STATUS_FAILED,
STATUS_SUCCESSFUL, STATUS_RUNNING). Some, like STATUS_FAILED, may have an
accompanying reason to provide more details.
Note that you really should close this Cursor when you are done with it.
StrictMode, for example, will complain if you do not.
Download Broadcasts
To find out about the results of the download, we need to register a
BroadcastReceiver, to watch for two actions used by DownloadManager:

	
ACTION_DOWNLOAD_COMPLETE, to let us know when the download is done

	
ACTION_NOTIFICATION_CLICKED, to let us know if the user taps on the
Notification displayed on the user’s device related to our download

So, in onResume() of our fragment, we register a single BroadcastReceiver
for both of those events:

 @Override
 public void onResume() {
 super.onResume();

 IntentFilter f=
 new IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE);

 f.addAction(DownloadManager.ACTION_NOTIFICATION_CLICKED);

 getActivity().registerReceiver(onEvent, f);
 }

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)
That BroadcastReceiver is unregistered in onPause():

 @Override
 public void onPause() {
 getActivity().unregisterReceiver(onEvent);

 super.onPause();
 }

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)
The BroadcastReceiver implementation examines the action string of the
incoming Intent (via a call to getAction() and either displays a Toast
(for ACTION_NOTIFICATION_CLICKED) or enables the start-download Button:

 public void onReceive(Context ctxt, Intent i) {
 if (DownloadManager.ACTION_NOTIFICATION_CLICKED.equals(i.getAction())) {
 Toast.makeText(ctxt, R.string.hi, Toast.LENGTH_LONG).show();
 }
 else {
 start.setEnabled(true);
 }
 }
 };
}

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)
What the User Sees
The user, upon launching the application, sees our three pretty buttons:

[image: The Download Demo Sample, As Initially Launched]

Figure 777: The Download Demo Sample, As Initially Launched
Clicking the first disables the button while the download is going on, and a
download icon appears in the status bar (though it is a bit difficult to see,
given the poor contrast between Android’s icon and Android’s status bar):

[image: The Download Demo Sample, Downloading]

Figure 778: The Download Demo Sample, Downloading
Sliding down the notification drawer shows the user the progress in the form of
a ProgressBar widget:

[image: The DownloadManager Notification]

Figure 779: The DownloadManager Notification
Tapping on the entry in the notification drawer returns control to our original
activity, where they see a Toast, raised by our BroadcastReceiver.
If they tap the middle button during the download, a different Toast will appear
indicating that the download is in progress:

[image: The Download Demo, Showing Download Status]

Figure 780: The Download Demo, Showing Download Status
Additional details are also dumped to Logcat:

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_ID: 12
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_BYTES_DOWNLOADED_SO_FAR: 615400
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988696232
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_STATUS: 2
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_REASON: 0

Once the download is complete, tapping the middle button will indicate that the
download is, indeed, complete, and final information about the download is
emitted to Logcat:

12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_ID: 12
12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_BYTES_DOWNLOADED_SO_FAR: 6219229
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988713409
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_STATUS: 8
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_REASON: 0

Tapping the bottom button brings up the activity displaying all downloads,
including both successes and failures:

[image: The DownloadManager Results]

Figure 781: The DownloadManager Results
And, of course, the file is downloaded.
Limitations
While DownloadManager nowadays supports HTTPS (SSL) URLs, that was not the
case when it was introduced back in Android 2.3. You will want to test any
HTTPS URLs you intend to use with DownloadManager if you are supporting older
versions of Android.
If you display the list of all downloads, and your download is among them, it
is a really good idea to make sure that some activity (perhaps one of yours) is
able to respond to an ACTION_VIEW Intent on that download’s MIME type.
Otherwise, when the user taps on the entry in the list, they will get a Toast
indicating that there is nothing available to view the download. This may
confuse users. Alternatively, use setVisibleInDownloadsUi() on your request,
passing in false, to suppress it from this list.
Also, starting with Android 5.0, the Downloads app that provides the
core implementation of DownloadManager keeps track of when other
apps get uninstalled. At that point, the Downloads app deletes the files
downloaded by DownloadManager on behalf of that app. This includes
files stored in common locations (e.g., DIRECTORY_DOWNLOADS) that would
ordinarily survive an uninstall. For example, if you run the
Internet/Download sample app on an Android 5.0+ device, then
uninstall the app, the downloaded file vanishes from the Downloads app.
If you elect to use DownloadManager, you should either:

	Download the file to a temporary spot, then move it to a long-term
location yourself, or

	Advise the user that the file will be deleted if the user uninstalls
your app, suggesting that the user might want to make a
safe copy of the file

Data Saver
Android has had a per-app “data saver” mode for some time, with an eye
towards reducing bandwidth consumption when the device is using a known
metered data plan. Android 7.0+ extended this to a device-wide setting,
Apps can be in one of three states as a result:

	The device is normal

	The device is in data-saver mode

	The device is in data-saver mode, but your app is whitelisted by the
user

The idea is that if the device is in normal mode, you can do what
you want. If the device is in data-saver mode, you should restrict
your bandwidth, even if the user whitelists you. Apps that are not
whitelisted have no network access while in the background.
To that end, ConnectivityManager has three things for you.
First, isActiveNetworkMetered() will return true if the device
is on a metered data connection, false otherwise. This has been
around for years (API Level 16+), but has not been all that popular,
apparently.
Second, Android 7.0 has a getRestrictBackgroundStatus() method on
ConnectivityManager. This returns an int that resolves to one of
three values:

	RESTRICT_BACKGROUND_STATUS_DISABLED

	RESTRICT_BACKGROUND_STATUS_ENABLED

	RESTRICT_BACKGROUND_STATUS_WHITELISTED

If isActiveNetworkMetered() is true, and getRestrictBackgroundStatus()
returns RESTRICT_BACKGROUND_STATUS_ENABLED, any attempts to use the
network may fail, and so your app should plan accordingly.
If you want to try to react in real-time to changes in the data-saver
configuration, you can register a receiver for ACTION_RESTRICT_BACKGROUND_CHANGED
(defined on ConnectivityManager). This will be broadcast for any change
in data-saver settings, which means that your app’s state may not have
changed. You will need to call getRestrictBackgroundStatus() to find
out your current state. Also note that this broadcast is only sent to
receivers registered dynamically, via registerReceiver(). You cannot
register for this broadcast in the manifest.
To try to get on the whitelist, you might be tempted to try using
ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS to lead the
user to add your app to the Data Saver whitelist, so you have normal
background network access. However, bear in mind that Google has
a similar feature for the battery saver whitelist… and trying
to use that action
got apps banned from the Play Store.
At the moment, there is no similar language around the use of the
data saver whitelist… but, then again, they did not tell you they were
going to ban you for asking to be on the battery saver whitelist until
after Android 6.0 shipped.
Audio Playback
Whether it comes in the form of simple beeps or in the form
of symphonies (or gangster rap or whatever), Android applications
often need to play audio. A few things in Android can play audio
automatically, such as a Notification. However,
once you get past those, you are on your own.
Fortunately for you, Android offers support for audio playback, and
we will examine some of the options in this chapter.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Get Your Media On
In Android, you have a few different places you can pull media clips
from — one of these will hopefully fit your needs:

	You can package audio clips as raw resources (res/raw/ in your
project), so they are bundled with your application. The benefit is
that you’re guaranteed the clips will be there; the downside is that
they cannot be replaced without upgrading the application.

	You can package audio clips as assets (assets/ in your project)
and reference them via file:///android_asset/ URLs in a Uri. The
benefit over raw resources is that this location works with APIs that
expect Uri parameters instead of resource IDs. The downside —
assets are only replaceable when the application is upgraded —
remains. On the whole, the audio APIs tend to favor raw resources
over assets.

	You can download and
store media in internal storage, external storage,
or possibly on removable storage.

	You can, in some cases, stream media off the Internet, bypassing
any local storage.

MediaPlayer for Audio
If you want to play back music, particularly material in MP3 format,
you will want to use the MediaPlayer class. With it, you can feed
it an audio clip, start/stop/pause playback, and get notified on key
events, such as when the clip is ready to be played or is done
playing.
You have three ways to set up a MediaPlayer and tell it what audio
clip to play:

	If the clip is a raw resource, use MediaPlayer.create() and
provide the resource ID of the clip.

	If you have a Uri to the clip, use the Uri-flavored version of
MediaPlayer.create().

	If you have a string path to the clip, just create a MediaPlayer
using the default constructor, then call setDataSource() with the
path to the clip.
However, in this case, you also need to call prepare() or prepareAsync(). Both will set
up the clip to be ready to play, such as fetching the first few
seconds off the file or stream. The prepare() method is
synchronous; as soon as it returns, the clip is ready to play. The
prepareAsync() method is asynchronous.

Once the clip is prepared, start() begins playback, pause()
pauses playback (with start() picking up playback where pause()
paused), and stop() ends playback. One caveat: you cannot simply
call start() again on the MediaPlayer once you have called
stop() — we’ll cover a workaround a bit later in this section.
To see this in action, take a look at the
Media/Audio
sample project. It contains a single activity — MainActivity –
that offers playback of a Creative Commons-licensed audio clip, stored
as an Ogg Vorbis file as a raw resource (R.raw.clip).
In onCreate(), we use the static create() factory method on MediaPlayer
to set up a MediaPlayer for our audio clip:

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 try {
 mp=MediaPlayer.create(this, R.raw.clip);
 mp.setOnCompletionListener(this);
 }
 catch (Exception e) {
 goBlooey(e);
 }
 }

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/MainActivity.java)
We also register the activity itself as the OnCompletionListener, to find
out if the audio clip is played through to the end.
Under the covers, create() not only creates an instance of MediaPlayer
and sets up the data source, but it also calls prepare(), so the
MediaPlayer is ready for use once create() returns. However, this also
means that there might be an exception, such as providing an invalid
resource ID (e.g., one pointing to a Photoshop file instead of an audio
file). goBlooey() simply logs the exception and shows a Toast as a
crude form of error handling:

 private void goBlooey(Exception e) {
 Log.e(getClass().getSimpleName(), getString(R.string.msg_error),
 e);
 Toast
 .makeText(this, R.string.msg_error_toast, Toast.LENGTH_LONG)
 .show();
 }

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/MainActivity.java)
Our UI is purely a set of action bar items:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/play"
 android:icon="@drawable/ic_play_arrow"
 android:showAsAction="ifRoom"
 android:title="@string/menu_play" />
 <item
 android:id="@+id/pause"
 android:icon="@drawable/ic_pause"
 android:showAsAction="ifRoom"
 android:title="@string/menu_pause"
 android:visible="false" />
 <item
 android:id="@+id/stop"
 android:icon="@drawable/ic_stop"
 android:showAsAction="ifRoom"
 android:title="@string/menu_stop"
 android:visible="false" />
</menu>

(from Media/Audio/app/src/main/res/menu/actions.xml)
Note that only the play action bar item is visible at the outset.
We will toggle the visibility of the action bar items based on the status
of the playback of the clip.
We populate the action bar in onCreateOptionsMenu(), also retrieving
the three MenuItem objects for our three action bar items:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);
 play=menu.findItem(R.id.play);
 pause=menu.findItem(R.id.pause);
 stop=menu.findItem(R.id.stop);

 return(super.onCreateOptionsMenu(menu));
 }

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/MainActivity.java)
onOptionsItemSelected() merely delegates the three action items to
three similarly-named methods: play(), pause(), and stop():

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.play:
 play();
 return (true);

 case R.id.pause:
 pause();
 return (true);

 case R.id.stop:
 stop();
 return (true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/MainActivity.java)
The play() method calls start() to cause the MediaPlayer to
begin playing back the audio clip. It also toggles the visibility of
the action bar items, so the pause and stop ones are now visible:

 private void play() {
 mp.start();

 play.setVisible(false);
 pause.setVisible(true);
 stop.setVisible(true);
 }

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/MainActivity.java)
play() is asynchronous, as the audio clip plays back on another
system-supplied thread. We are not tying up the main application thread
by playing back this clip.
pause() is similar: it calls pause() to cause the MediaPlayer
to pause playback of the audio clip. It also toggles the visibility of
the action bar items, so the play and stop ones are now visible:

 private void pause() {
 mp.pause();

 play.setVisible(true);
 pause.setVisible(false);
 stop.setVisible(true);
 }

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/MainActivity.java)
Where things get a bit complicated is in the stop() method. There,
we not only want to stop playback, but also set up the MediaPlayer to
be able to play back from the beginning of the clip:

 private void stop() {
 mp.stop();
 pause.setVisible(false);
 stop.setVisible(false);

 findViewById(android.R.id.content).postDelayed(new Runnable() {
 @Override
 public void run() {
 try {
 mp.prepare();
 mp.seekTo(0);
 play.setVisible(true);
 }
 catch (Exception e) {
 goBlooey(e);
 }
 }
 }, 100);
 }

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/MainActivity.java)
Stopping the playback is merely a matter of calling stop() on the
MediaPlayer. After that, we hide all the action bar items.
To reset the MediaPlayer to play the clip again, you need to re-prepare
the player, via prepare() or prepareAsync(). You also need to call
seekTo(0). seekTo() positions playback at a certain number of
milliseconds from the beginning of the audio, so seekTo(0) repositions
the player back to the beginning.
However, if we try doing this work right away, we get odd results, owing
to the asynchronous nature of the media playback. We need to let the
stop() complete its work before we prepare() and seekTo(). Unfortunately,
there is no listener interface for the stop-completed event. So, we fake
it, delaying the “rewind” of the clip by 100 milliseconds.
Also, once the MediaPlayer is ready again, we enable the play action
bar item, allowing playback to commence from start, if the user wants.
Finally, in onDestroy(), we stop() the MediaPlayer if it returns
true from isPlaying(), so the playback does not continue after
the activity is destroyed:

 @Override
 public void onDestroy() {
 super.onDestroy();

 if (mp.isPlaying()) {
 mp.stop();
 }
 }

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/MainActivity.java)
Other Ways to Make Noise
While MediaPlayer is the primary audio playback option,
particularly for content along the lines of MP3 files, there are
other alternatives if you are looking to build other sorts of
applications, notably games and custom forms of streaming audio.
SoundPool
The SoundPool class’s claim to fame is the ability to overlay
multiple sounds, and do so in a prioritized fashion, so your
application can just ask for sounds to be played and SoundPool
deals with each sound starting, stopping, and blending while playing.
This may make more sense with an example.
Suppose you are creating a first-person shooter. Such a game may have
several sounds going on at any one time:

	The sound of the wind whistling amongst the trees on the
battlefield

	The sound of the surf crashing against the beach in the landing
zone

	The sound of booted feet crunching on the sand

	The sound of the character’s own panting as the character runs on
the beach

	The sound of orders being barked by a sergeant positioned behind
the character

	The sound of machine gun fire aimed at the character and the
character’s squad mates

	The sound of explosions from the gun batteries of the battleship
providing suppression fire

And so on.
In principle, SoundPool can blend all of those together into a
single audio stream for output. Your game might set up the wind and
surf as constant background sounds, toggle the feet and panting on
and off based on the character’s movement, randomly add the barked
orders, and tie the gunfire based on actual game play.
In reality, your average smartphone will lack the CPU power to handle
all of that audio without harming the frame rate of the game. So, to
keep the frame rate up, you tell SoundPool to play at most two
streams at once. This means that when nothing else is happening in
the game, you will hear the wind and surf, but during the actual
battle, those sounds get dropped out — the user might never
even miss them — so the game speed remains good.
AudioTrack
The lowest-level Java API for playing back audio is AudioTrack. It
has two main roles:

	Its primary role is to support streaming audio, where the streams
come in some format other than what MediaPlayer handles. While
MediaPlayer can handle RTSP, for example, it does not offer SIP. If
you want to create a SIP client (perhaps for a VOIP or Web
conferencing application), you will need to convert the incoming data
stream to PCM format, then hand the stream off to an AudioTrack
instance for playback.

	It can also be used for “static” (versus streamed) bits of sound
that you have pre-decoded to PCM format and want to play back with as
little latency as possible. For example, you might use this for a
game for in-game sounds (beeps, bullets, or “boing”s). By
pre-decoding the data to PCM and caching that result, then using
AudioTrack for playback, you will use the least amount of overhead,
minimizing CPU impact on game play and on battery life.

ToneGenerator
If you want your phone to sound like… well… a phone, you can use
ToneGenerator to have it play back
dual-tone multi-frequency (DTMF) tones. In
other words, you can simulate the sounds played by a regular
“touch-tone” phone in response to button presses. This is used by the
Android dialer, for example, to play back the tones when users dial
the phone using the on-screen keypad, as an audio reinforcement.
Note that these will play through the phone’s earpiece, speaker, or
attached headset. They do not play through the outbound call stream.
In principle, you might be able to get ToneGenerator to play tones
through the speaker loud enough to be picked up by the microphone,
but this probably is not a recommended practice.
You can create a ToneGenerator through its constructor. This
takes two parameters:

	the audio stream associated with this audio

	the volume level to apply to the audio

final private ToneGenerator beeper=
 new ToneGenerator(AudioManager.STREAM_NOTIFICATION, 100);

The stream indication helps with muting; if the user has muted this
particular stream, then ToneGenerator will wind up not generating a tone.
Then, when you need a beep, you can call startTone(), with
the identifier of one of the many DTMF tones listed on the ToneGenerator
class:

beeper.startTone(ToneGenerator.TONE_PROP_NACK);

Many of the tones have a fixed duration. In that case, startTone()
will play that tone to completion, or until you call stopTone() to
interrupt it.
Some tones will repeat indefinitely. There is a second startTone()
variant that takes a duration in milliseconds that you can use to
automatically stop the tone after a particular period of time. Or, you
can use stopTone() to stop the one.
Audio Recording
Most Android devices have microphones. On such devices, it might be nice to get
audio input from those microphones, whether to record locally, process locally
(e.g., speech recognition), or to stream out over the Internet (e.g., voice over IP).
Not surprisingly, Android has some capabilities in this area. Also, not surprisingly,
there are multiple APIs, with varying mixes of power and complexity, to allow you
to capture microphone input. In this chapter, we will examine MediaRecorder for
recording audio files and AudioRecord for raw microphone input.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book. Having read the chapter on audio playback is
probably also a good idea. And, for the section on playing back local
streams, you will want to have read up on content providers, particularly
the chapter on provider patterns.
Recording by Intent
Just as the easiest way to take a picture with the camera is
to use the device’s built-in camera app, the easiest way to record
some audio is to use a built-in activity for it. And, as with using the built-in
camera app, the built-in audio recording activity has some significant limitations.
Requesting the built-in audio recording activity is a matter of calling startActivityForResult()
for a MediaStore.Audio.Media.RECORD_SOUND_ACTION action. You can see this in the
Media/SoundRecordIntent
sample project, specifically the MainActivity:

package com.commonsware.android.soundrecord;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.provider.MediaStore;
import android.widget.Toast;

public class MainActivity extends Activity {
 private static final int REQUEST_ID=1337;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Intent i=new Intent(MediaStore.Audio.Media.RECORD_SOUND_ACTION);

 startActivityForResult(i, REQUEST_ID);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == REQUEST_ID && resultCode == RESULT_OK) {
 Toast.makeText(this, "Recording finished!", Toast.LENGTH_LONG)
 .show();
 }

 finish();
 }
}

(from Media/SoundRecordIntent/app/src/main/java/com/commonsware/android/soundrecord/MainActivity.java)
As with a few other sample apps in this book, the Media/SoundRecordIntent uses a
Theme.Translucent.NoTitleBar activity, avoiding its own UI. Instead, in onCreate(), we immediately
call startActivityForResult() for MediaStore.Audio.Media.RECORD_SOUND_ACTION. That will
bring up a recording activity:

[image: Built-In Sound Recording Activity]

Figure 782: Built-In Sound Recording Activity
If the user records some audio via the “record” ImageButton (one with the circle icon) and
the “stop” ImageButton (one with the square icon), you will get control back in onActivityResult(),
where you are passed an Intent whose Uri (via getData()) will point to this audio recording
in the MediaStore.
However:

	You have no control over where the file is stored or what it is named. It appears that, by default,
these files are dumped unceremoniously in the root of external storage.

	You have no control over anything about the way the audio is recorded, such as codecs or bitrates.
For example, it appears that, by default, the files are recorded in AMR format.

	
ACTION_VIEW may not be able to play back this audio (leastways, it failed to in testing on a few
devices). Whether that is due to codecs, the way the data is put in MediaStore, or the limits of
the default audio player on Android, is unclear.

Hence, in many cases, while this works, it may not work well enough — or controlled enough — to meet
your needs. In that case, you will want to handle the recording yourself, as will be described in the
next couple of sections.
Recording to Files
If your objective is to record a voice note, a presentation, or something along
those lines, then MediaRecorder is probably the class that you want. It will
let you specify what sort of media you wish to record, in what format, and to
what location. It then handles the actual act of recording.
To illustrate this, let us review the
Media/AudioRecording
sample project.
Our activity’s layout consists of a single ToggleButton widget named record:

<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/record"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

(from Media/AudioRecording/app/src/main/res/layout/activity_main.xml)
Our project is set up to record the output to the Environment.DIRECTORY_DOWNLOADS
location on external storage. And, if we have a targetSdkVersion of 23 or higher
(which we do), we need runtime permissions. We also need runtime permissions
for RECORD_AUDIO, since, well, we are recording audio. So our manifest requests
both of those permissions:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.audiorecord"
 android:versionCode="1"
 android:versionName="1.0">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"/>

 <uses-permission android:name="android.permission.RECORD_AUDIO"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

 <uses-feature
 android:name="android.hardware.microphone"
 android:required="true"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/title_activity_main">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Media/AudioRecording/app/src/main/AndroidManifest.xml)
And, following in the pattern demonstrated
in the chapter on permissions, we use AbstractPermissionsActivity
to handle all the details of obtaining our runtime. Our launcher activity — MainActivity –
inherits from AbstractPermissionsActivity, which requests our permissions when
the app starts up. MainActivity simply overrides the necessary methods. Two
of these, getDesiredPermissions() and onPermissionDenied(), are specifically
for the permission logic:

 @Override
 protected String[] getDesiredPermissions() {
 return(new String[]{RECORD_AUDIO, WRITE_EXTERNAL_STORAGE});
 }

 @Override
 protected void onPermissionDenied() {
 Toast
 .makeText(this, R.string.msg_sorry, Toast.LENGTH_LONG)
 .show();
 finish();
 }

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)
onReady() serves as our onCreate() replacement, and it will be invoked when
we have our runtime permissions. There, we load the layout and set the activity itself up
as the OnCheckedChangedListener, to find out when the user toggles the button:

 @Override
 public void onReady(Bundle savedInstanceState) {
 setContentView(R.layout.activity_main);

 ((ToggleButton)findViewById(R.id.record)).setOnCheckedChangeListener(this);
 }

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)
Also, in onStart(), we initialize a MediaRecorder, setting the activity up as
being the one to handle info and error events about the recording. Similarly, we
release() the MediaRecorder in onStop(), to reduce our overhead when we are not
in the foreground:

 @Override
 public void onStart() {
 super.onStart();

 recorder=new MediaRecorder();
 recorder.setOnErrorListener(this);
 recorder.setOnInfoListener(this);
 }

 @Override
 public void onStop() {
 recorder.release();
 recorder=null;

 super.onStop();
 }

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)
Most of the work occurs in onCheckedChanged(), where we get control when the user
toggles the button. If we are now checked, we begin recording; if not, we stop
the previous recording:

 @Override
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (isChecked) {
 output=
 new File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS),
 BASENAME);

 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setOutputFile(output.getAbsolutePath());

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD_MR1) {
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AAC);
 recorder.setAudioEncodingBitRate(160 * 1024);
 }
 else {
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 }

 recorder.setAudioChannels(2);

 try {
 recorder.prepare();
 recorder.start();
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception in preparing recorder", e);
 Toast.makeText(this, e.getMessage(), Toast.LENGTH_LONG).show();
 }
 }
 else {
 try {
 recorder.stop();

 MediaScannerConnection
 .scanFile(this, new String[] {output.getAbsolutePath()}, null, null);
 }
 catch (Exception e) {
 Log.w(getClass().getSimpleName(),
 "Exception in stopping recorder", e);
 // can fail if start() failed for some reason
 }

 recorder.reset();
 }
 }

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)
To record audio, we:

	Create a File object representing where the recording should be stored, in this
case using Environment.getExternalStoragePublicDirectory() to find a location on
external storage

	Tell the MediaRecorder that we wish to record from the microphone, through a
call to setAudioSource(), that we wish to record a 3GP file via a call to
setOutputFormat(), and that we wish to record the results to our File via a call
to setOutputFile()

	If we are running on Android 2.3.3 or higher, we can also configure our encoder
to be AAC via setAudioEncoder() and set our requested bitrate to 160Kbps via
setAudioEncodingBitRate() — otherwise, we use setAudioEncoder() to request
AMR narrowband

	Indicate how many audio channels we want via setAudioChannels(), such as 2 to
attempt to record in stereo

	Kick off the actual recording via calls to prepare() (to set up the output file)
and record()

Stopping the recording, when the user toggles off the button, is merely a matter
of calling stop() on the MediaRecorder, then using MediaScannerConnection
to get the resulting file indexed by the MediaStore, so it shows up for desktop
users, media apps, etc.
Because we told the MediaRecorder that our activity was our OnErrorListener and
OnInfoListener, we have to implement those interfaces on the activity and implement
their required methods (onError() and onInfo(), respectively). In the normal course
of events, neither of these should be triggered. If they are, we are passed an int
value (typically named what) that indicates what happened:

 @Override
 public void onInfo(MediaRecorder mr, int what, int extra) {
 String msg=getString(R.string.strange);

 switch (what) {
 case MediaRecorder.MEDIA_RECORDER_INFO_MAX_DURATION_REACHED:
 msg=getString(R.string.max_duration);
 break;

 case MediaRecorder.MEDIA_RECORDER_INFO_MAX_FILESIZE_REACHED:
 msg=getString(R.string.max_size);
 break;
 }

 Toast.makeText(this, msg, Toast.LENGTH_LONG).show();
 }

 @Override
 public void onError(MediaRecorder mr, int what, int extra) {
 Toast.makeText(this, R.string.strange, Toast.LENGTH_LONG).show();
 }

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)
Here, we just raise a Toast in either case, with either a generic message or a
specific message for the cases where the maximum time duration or the maximum
file size for our recording has been reached.
The results are that we get a recording on external storage (typically in a
Downloads directory) after we toggle the button on, record some audio, then
toggle the button off.
MediaRecorder is rather fussy about the order of method calls for its
configuration. For example, you must call setAudioEncoder() after the call
to setOutputFormat().
Also, the available codecs and file types are rather limited. Notably, Android
lacks the ability to record to MP3 format, perhaps due to patent licensing issues.
Recording to Streams
The nice thing about recording to files is that Android handles all of the actual
file I/O for us. The downside is that because Android handles all of the actual
file I/O for us, it can only write files that are accessible to it and our
process, meaning external storage. This may not be suitable in all cases, such as
wanting to record to some form of private encrypted storage.
The good news is that Android does support recording to streams, in the form of
a pipe created by ParcelFileDescriptor and createPipe(). This follows the
same basic pattern that we saw in the chapter on content provider patterns,
where we served a stream via a pipe. However, as you will
see, there are some limits on how well we can do this.
To demonstrate and explain, let us examine the
Media/AudioRecordStream
sample project. This is nearly a complete clone of the previous sample, so we will only
focus on the changes in this section.
The author would like to thank Lucio Maciel for his assistance in
getting this example to work.
Setting Up the Stream
The biggest change, by far, is in our setOutputFile() call. Before, we supplied a path
to external storage. Now, we supply the write end of a pipe:

 recorder.setOutputFile(getStreamFd());

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)
Our getStreamFd() method looks a lot like the openFile() method of our pipe-providing
provider:

 private FileDescriptor getStreamFd() {
 ParcelFileDescriptor[] pipe=null;

 try {
 pipe=ParcelFileDescriptor.createPipe();

 new TransferThread(new AutoCloseInputStream(pipe[0]),
 new FileOutputStream(getOutputFile())).start();
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception opening pipe", e);
 }

 return(pipe[1].getFileDescriptor());
 }

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)
We create our pipe with createPipe(), spawn a TransferThread to copy the recording from
an InputStream to a FileOutputStream, and return the write end of the pipe. However,
setOutputFile() on MediaRecorder takes the actual integer file descriptor, not a
ParcelFileDescriptor, so we use getFileDescriptor() to retrieve the file descriptor
and return that.
Our TransferThread is similar to the one from the content provider sample, except that
we pass over a FileOutputStream, so we can not only flush() but also sync() when
we are done writing:

 static class TransferThread extends Thread {
 InputStream in;
 FileOutputStream out;

 TransferThread(InputStream in, FileOutputStream out) {
 this.in=in;
 this.out=out;
 }

 @Override
 public void run() {
 byte[] buf=new byte[8192];
 int len;

 try {
 while ((len=in.read(buf)) >= 0) {
 out.write(buf, 0, len);
 }

 in.close();

 out.flush();
 out.getFD().sync();
 out.close();
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception transferring file", e);
 }
 }
 }

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)
Changes in Recording Configuration
The
biggest limitation of a pipe’s stream is that it is purely a stream. You cannot rewind
re-read earlier bits of data. In other words, the stream is not seekable.
That is a problem with MediaRecorder in some configurations. For example, a 3GP file
contains a header with information about the overall file, information that MediaRecorder
does not know until the recording is complete. In the case of a file, MediaRecorder can
simply rewind and update the header with the final data when everything is done. However,
that is not possible with a pipe-based stream.
However, some configurations will work, notably “raw” ones that just have the recorded
audio, with no type of header. That is what we use in this sample.
Specifically, we now write to a .amr file:

 private static final String BASENAME="recording-stream.amr";

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)
We also set our output format to RAW_AMR, and our encoder to AMR_NB:

 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.RAW_AMR);
 recorder.setOutputFile(getStreamFd());
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 recorder.setAudioChannels(2);

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)
This combination works. Other combinations might also work. But our approach
of writing the 3GP file, as in the file-based example, will not work.
Raw Audio Input
Just as AudioTrack allows you to play audio supplied as raw 8- or 16-bit PCM
input, AudioRecord allows you to record audio from the microphone, supplied to
you in PCM format. It is then up to you to actually do something with the raw
byte PCM data, including converting it to some other format and container as needed.
Note that you need the RECORD_AUDIO permission to work with AudioRecord, just as you need it
to work with MediaRecorder.
Requesting the Microphone
As noted in the opening paragraph of this chapter, most Android devices have
microphones. The key word there is most. Not all Android devices will have
microphones, as only some tablets (and fewer Android TV devices) will support
microphone input.
As with most of this optional hardware, the solution is to use <uses-feature>.
In that case, you would request the android.hardware.microphone feature, with
android:required="false" if you felt that you do not absolutely need a
microphone. In that case, you would use hasSystemFeature() on PackageManager
to determine at runtime if you do indeed have a microphone.
Note that the RECORD_AUDIO permission implies that you need a microphone.
Hence, even if you skip the <uses-feature> element, your app will still only
ship to devices that have a microphone. If the microphone is optional, be sure
to include android:required="false", so your app will be available to devices
that lack a microphone.
Video Playback
Just as Android supports audio playback, it also supports video
playback of local and streaming content. Unlike audio playback
– which supports a mix of high-level and low-level APIs –
video playback offers a purely high-level interface, in the
form of the same MediaPlayer class you used for audio playback.
To keep things a bit simpler, though, Android does offer a
VideoView widget you can drop in an activity or fragment to
play back video.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, along with the chapter on audio playback.
Moving Pictures
Video clips get their own
widget, the VideoView. Put it in a layout, feed it an MP4 video
clip, and you get playback!
For example, take a look at this layout, from the
Media/Video
sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <VideoView
 android:id="@+id/video"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</LinearLayout>

(from Media/Video/app/src/main/res/layout/main.xml)
The layout is simply a full-screen video player. Whether it will use
the full screen will be dependent on the video clip, its aspect
ratio, and whether you have the device (or emulator) in portrait or
landscape mode.
Wiring up the Java is almost as simple:

package com.commonsware.android.video;

import java.io.File;
import android.Manifest;
import android.app.Activity;
import android.graphics.PixelFormat;
import android.os.Bundle;
import android.os.Environment;
import android.widget.MediaController;
import android.widget.Toast;
import android.widget.VideoView;

public class VideoDemo extends AbstractPermissionActivity {
 private VideoView video;
 private MediaController ctlr;

 @Override
 protected String[] getDesiredPermissions() {
 return(new String[] {Manifest.permission.WRITE_EXTERNAL_STORAGE});
 }

 @Override
 protected void onPermissionDenied() {
 Toast
 .makeText(this, R.string.msg_sorry, Toast.LENGTH_LONG)
 .show();
 finish();
 }

 @Override
 public void onReady(Bundle state) {
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);

 File clip=new File(Environment.getExternalStorageDirectory(),
 "test.mp4");

 if (clip.exists()) {
 video=(VideoView)findViewById(R.id.video);
 video.setVideoPath(clip.getAbsolutePath());

 ctlr=new MediaController(this);
 ctlr.setMediaPlayer(video);
 video.setMediaController(ctlr);
 video.requestFocus();
 video.start();
 }
 }
}

(from Media/Video/app/src/main/java/com/commonsware/android/video/VideoDemo.java)
We use the AbstractPermissionActivity profiled earlier in the book,
as we need READ_EXTERNAL_STORAGE rights to be able to read a test.mp4 video from the
root of external storage.
Beyond that, we:

	Confirm that our video file exists on external storage

	Tell the VideoView which file to play

	Create a MediaController pop-up panel and cross-connect it to
the VideoView

	Give the VideoView the focus and start playback

The biggest trick with VideoView is getting a video clip onto the
device. While VideoView does support some streaming video, the
requirements on the MP4 file are fairly stringent. If you want to be
able to play a wider array of video clips, you need to have them on
the device, preferably on an SD card.
The crude VideoDemo class assumes there is an MP4 file named
test.mp4 in the root of external storage on your device or
emulator. Once there, the Java code shown above will give you a
working video player:

[image: VideoDemo, Showing a Creative Commons-Licensed Video]

Figure 783: VideoDemo, Showing a Creative Commons-Licensed Video
Tapping on the video will pop up the playback controls:

[image: VideoDemo, Showing Media Controls]

Figure 784: VideoDemo, Showing Media Controls
The video will scale based on space as well:
[image: VideoDemo, in Landscape Mode]
Using the Camera via 3rd-Party Apps
Most Android devices will have a camera, since they are fairly
commonplace on mobile devices these days. You, as an Android
developer, can take advantage of the camera, for everything from
snapping tourist photos to scanning barcodes. If you wish to let
other apps do the “heavy lifting” for you, working with the camera
can be fairly straightforward. If you want more control, you can
work with the camera directly, though this control comes with
greater complexity.
You can also record videos using the camera. Once again, you have
the option of either using a third-party activity, or doing it yourself.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the material on implicit Intents. You also need
to read the chapters on the ContentProvider component, particularly
the coverage of FileProvider.
Being Specific About Features
If your app needs a camera — by any of the means cited in this chapter –
you should include a
<uses-feature> element in the manifest indicating your requirements. However, you
need to be fairly specific about your requirements here.
For example, the Nexus 7 (2012) has a camera… but only a front-facing camera. This facilitates
apps like video chat. However, the android.hardware.camera implies that you need
a high-resolution rear-facing camera.
Hence, to work with the Nexus 7’s camera, you need to:

	Require the CAMERA permission (if you are using the Camera directly)

	Not require the android.hardware.camera feature (android:required="false")

	Optionally require the android.hardware.camera.front feature (if your app definitely
needs a front-facing camera)

At runtime, you would use hasSystemFeature() on PackageManager, or interrogate
the Camera class for available cameras, to determine what you have access to.
Note that if you want to record audio when recording videos, you should also consider
the android.hardware.microphone feature.
Still Photos: Letting the Camera App Do It
The easiest way to take a picture is to not take the picture yourself,
but let somebody else do it. The most common implementation of this
approach is to use an ACTION_IMAGE_CAPTURE Intent to bring up
the user’s default camera application, and let it take a picture on
your behalf.
In theory, this is fairly simple:

	You call startActivityForResult() on an ACTION_IMAGE_CAPTURE Intent

	You either get a thumbnail photo back or — if you provided EXTRA_OUTPUT
as an extra on the ACTION_IMAGE_CAPTURE Intent — a full-sized photo should
be written to where you designated in EXTRA_OUTPUT

In practice, this gets complicated, in part because Android 7.0 is trying to get
rid of file schemes on Uri values. As a result, EXTRA_OUTPUT cannot point
to a file. Instead, it has to point to a ContentProvider, such as FileProvider.
To see this in use, take a look at the
Camera/FileProvider
sample project. This app will use system-supplied activities
to take a picture, then view the result, without actually implementing
any of its own UI.
Setting the Theme
Of course, we still need an activity, so our code can be launched by
the user. We just set it up with Theme.Translucent.NoTitleBar, so
no UI will be created for it:

 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

(from Camera/FileProvider/app/src/main/AndroidManifest.xml)
Requesting the Feature
Since our app is useless without a camera, we have the <uses-feature> element
in the manifest stating that we need some sort of camera:

 <uses-feature android:name="android.hardware.camera.any" />

(from Camera/FileProvider/app/src/main/AndroidManifest.xml)
This will prevent our app from being installed on a device that lacks a camera.
Adding the FileProvider
As noted earlier, Android 7.0 has a ban on file: Uri values, if your
targetSdkVersion is 24 or higher. In particular, you
cannot use a file: Uri in an Intent, whether as the “data” aspect
of the Intent or as the value of an extra.
The proper way to implement this is to use a ContentProvider, such
as a FileProvider, as is covered in
one of the chapters on providers. This is
a fair bit more complicated, and not all camera apps will work well
with a content: Uri, but our options are limited.
Our res/xml/provider_paths.xml metadata for the FileProvider
indicate that we want to serve up the contents of the photos/ directory
inside of getFilesDir(), with a Uri segment of /p/ mapping to that
location:

<?xml version="1.0" encoding="utf-8"?>
<paths>
 <files-path
 name="p"
 path="photos" />
</paths>

(from Camera/FileProvider/app/src/main/res/xml/provider_paths.xml)
Our manifest now has a <provider> element for our FileProvider
subclass, named LegacyCompatFileProvider:

 <provider
 android:name="LegacyCompatFileProvider"
 android:authorities="${applicationId}.provider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/provider_paths" />
 </provider>

(from Camera/FileProvider/app/src/main/AndroidManifest.xml)
That element:

	Provides a pointer to that metadata resource, to configure FileProvider

	Uses the applicationId of this app as the basis of our authorities
value, using a manifest placeholder

	Blocks access to third parties (android:exported="false") except
where we explicitly grant permission in our Java code
(android:grantUriPermissions="true")

LegacyCompatFileProvider is the same implementation as from
the original discussion of FileProvider,
using LegacyCompatCursorWrapper to help increase the odds that
clients of this ContentProvider will behave properly:

package com.commonsware.android.camcon;

import android.database.Cursor;
import android.net.Uri;
import android.support.v4.content.FileProvider;
import com.commonsware.cwac.provider.LegacyCompatCursorWrapper;

public class LegacyCompatFileProvider extends FileProvider {
 @Override
 public Cursor query(Uri uri, String[] projection, String selection, String[] selectionArgs, String sortOrder) {
 return(new LegacyCompatCursorWrapper(super.query(uri, projection, selection, selectionArgs, sortOrder)));
 }
}

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/LegacyCompatFileProvider.java)
Now we can start the work of taking pictures.
Taking a Picture
At this point, we can start using the provider, to give us a Uri that we
can use with EXTRA_OUTPUT and an ACTION_IMAGE_CAPTURE Intent.
Our onCreate() method spends a lot of lines to eventually make that
startActivityForResult() call:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (savedInstanceState==null) {
 output=new File(new File(getFilesDir(), PHOTOS), FILENAME);

 if (output.exists()) {
 output.delete();
 }
 else {
 output.getParentFile().mkdirs();
 }

 Intent i=new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 Uri outputUri=FileProvider.getUriForFile(this, AUTHORITY, output);

 i.putExtra(MediaStore.EXTRA_OUTPUT, outputUri);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
 i.addFlags(Intent.FLAG_GRANT_WRITE_URI_PERMISSION);
 }
 else if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.JELLY_BEAN) {
 ClipData clip=
 ClipData.newUri(getContentResolver(), "A photo", outputUri);

 i.setClipData(clip);
 i.addFlags(Intent.FLAG_GRANT_WRITE_URI_PERMISSION);
 }
 else {
 List<ResolveInfo> resInfoList=
 getPackageManager()
 .queryIntentActivities(i, PackageManager.MATCH_DEFAULT_ONLY);

 for (ResolveInfo resolveInfo : resInfoList) {
 String packageName = resolveInfo.activityInfo.packageName;
 grantUriPermission(packageName, outputUri,
 Intent.FLAG_GRANT_WRITE_URI_PERMISSION);
 }
 }

 try {
 startActivityForResult(i, CONTENT_REQUEST);
 }
 catch (ActivityNotFoundException e) {
 Toast.makeText(this, R.string.msg_no_camera, Toast.LENGTH_LONG).show();
 finish();
 }
 }
 else {
 output=(File)savedInstanceState.getSerializable(EXTRA_FILENAME);
 }
 }

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/MainActivity.java)
When we are first run, our savedInstanceState Bundle will be null. If it
is not null, we know that we
are coming back from some prior invocation of this activity, and so we
do not need to call startActivityForResult() to take a picture.
First, we need a File pointing to where we want the photo to be stored.
We create a directory inside of getFilesDir() (named photos via the
PHOTOS constant), and in there identify a file (named CameraContentDemo.jpeg
via the FILENAME constant).
Then, we create the ACTION_IMAGE_CAPTURE Intent, use FileProvider.getUriForFile()
to get a Uri pointing to our desired File, then put that Uri in the
EXTRA_OUTPUT extra of the Intent.
Now, though, we have to grant permissions to be able to write to that Uri.
If we are on Android 5.0+, calling addFlags(FLAG_GRANT_WRITE_URI_PERMISSION)
not only affects the “data” aspect of the Intent, but also EXTRA_OUTPUT,
due to a bit of a hack that Google added to the Intent class. So, that scenario is simple.
The problem comes in with Android 4.4 and older devices, where
addFlags(FLAG_GRANT_WRITE_URI_PERMISSION) does not affect Uri values
passed in extras.
For Android 4.2 through 4.4, we can use a trick: while flags skip over
Intent extras, flags do apply to a ClipData that you attach to the
Intent via setClipData(). Even though the camera app will never use
this ClipData, by wrapping our Uri in a ClipData and attaching that
to the Intent, our addFlags(FLAG_GRANT_WRITE_URI_PERMISSION) will
affect that Uri. The fact that the camera app gets the Uri from
EXTRA_OUTPUT, instead of from the ClipData, makes no difference.
For Android 4.1 and older devices, though,
there is no means for us to simply indicate on the
Intent itself that it is fine for the app handling our request to write
to our Uri. Instead, we:

	Find all activities that support ACTION_IMAGE_CAPTURE, using
PackageManager and queryIntentActivities()

	Iterate over all of them and call grantUriPermission(), inherited
from Context, to allow the app to read and write from our Uri

This allows our Intent to succeed for any camera app… at least those
that properly handle content: Uri values.
Finally, after all of that, we can call startActivityForResult(). However,
in case the user does not have a camera app, we wrap that call in a
try/catch block, watching for an ActivityNotFoundException.
Saving the State
In order to be able to save the File across configuration changes, we
stuff it in the saved instance state Bundle in onSaveInstanceState():

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putSerializable(EXTRA_FILENAME, output);
 }

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/MainActivity.java)
This is what allows us to pull that value back out in onReady().
Viewing the Photo
Our onActivityResult() method then uses the same File,
creating an ACTION_VIEW Intent, pointing
at our output Uri, granting
read permission on that Uri, indicating the MIME type is image/jpeg, and starting
up an activity for that.

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == CONTENT_REQUEST) {
 if (resultCode == RESULT_OK) {
 Intent i=new Intent(Intent.ACTION_VIEW);
 Uri outputUri=FileProvider.getUriForFile(this, AUTHORITY, output);

 i.setDataAndType(outputUri, "image/jpeg");
 i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 try {
 startActivity(i);
 }
 catch (ActivityNotFoundException e) {
 Toast.makeText(this, R.string.msg_no_viewer, Toast.LENGTH_LONG).show();
 }

 finish();
 }
 }
 }

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/MainActivity.java)
We do not have to fuss with the grantUriPermissions() loop, as
addFlags() has always granted permission to the “data” aspect of the
Intent (our Uri).
We wrap the startActivity() call in another try/catch block, watching
for ActivityNotFoundException. Not all devices will have an image viewing
app that supports a content Uri. For example, stock Android 5.1 (e.g., on a
Nexus 4) will not have such an image viewer.
The Caveats
There are several downsides to this approach.
First, you have no control over the camera app itself. You do not even
really know what app it is. You cannot dictate certain features that
you would like (e.g., resolution, color effects). You simply blindly
ask for a photo and get the result.
Also, since you do not know what the camera app is or behaves like, you
cannot document that portion of your application’s flow very well.
You can say things like “at this point, you can take a picture using your
chosen camera app”, but that is about as specific as you can get.
As noted above, it is possible that your app’s process will be terminated while your
app is not in the foreground, because the user is taking a picture
using the third-party camera app. Whether or not this happens depends
on how much system RAM the camera app uses and what else is all going
on with the device. But, it does happen. Your app should be able
to cope with such things, just as we are doing with the saved instance
state Bundle. However, many developers do not expect their
process to be replaced between a call to startActivityForResult()
and the corresponding onActivityResult() callback.
Not every camera app will support a content Uri for the EXTRA_OUTPUT
value. In fact, Google’s own camera app did not do this until the summer of 2016.
With ACTION_VIEW, since the content Uri is in the “data” facet of the
Intent, the <intent-filter> elements in the manifest will ensure that
our Intent only goes to an activity that advertises support for content.
However, there is no equivalent of this for Uri values in extras. And so
we will launch the camera app, which then may crash because it does not like
our Uri, and our app does not really find out about the problem, other than
not getting RESULT_OK in onActivityResult().
Finally, some camera apps misbehave, returning odd results, such as a
thumbnail-sized image rather than a max-resolution image. There is little
you can do about this.
Permissions and Third-Party Camera Apps
The sample app shown above does not request any permissions — there are no
<uses-permission> elements in the manifest. While there is a CAMERA permission to
use the camera, we do not need it. The camera app that we are starting needs it.
However, you might need the CAMERA permission elsewhere in your app. For example,
you might be embedding some third-party scanning library, where it
will use the camera directly in your app.
In this case, on Android 6.0+, for apps with a targetSdkVersion of 23 or higher,
even though ACTION_IMAGE_CAPTURE itself does not normally
need the CAMERA permission, you cannot use ACTION_IMAGE_CAPTURE if the user
has not granted the CAMERA permission at runtime.
In other words:

 	If you do this…
 	…can you use ACTION_IMAGE_CAPTURE?

 	If you do not request the CAMERA permission
 	Yes

 	If you request the CAMERA permission, and your targetSdkVersion is below 23
 	Yes

 	If you request the CAMERA permission, and the user grants the runtime permission
 	Yes

 	If you request the CAMERA permission, and you have not yet asked the user for the runtime permission
 	No

 	If you request the CAMERA permission, and the user denies the runtime permission
 	No

A Matter of Orientation
When you take a picture using an Android device — whether using
ACTION_IMAGE_CAPTURE or working with the camera APIs directly,
you may find that your picture turns out strange. For example, you
might take a picture in portrait mode, then find that some image viewers
will show you a portrait picture, while others show you a landscape
picture with its contents rotated.
That is due to the way Android camera hardware encodes the JPEG
images that it takes. The orientation that you take the picture in
may not be the orientation of the result.
EXIF Tags
JPEG images can have
EXIF tags.
These represent metadata about the image itself. For example, if you hear
that an image has been “geotagged”, that means that the image has EXIF
tags that contain the latitude and longitude of where the picture was
taken.
These tags are contained in the JPEG file but are in a separate section
from the actual image data itself. Tools can read in the EXIF tags and
use them for additional information for the user (e.g., an image
viewer with an integrated map to show where the picture was taken).
EXIF Tags and Camera Images
One EXIF tag is the “orientation” tag. In effect, this tag is a message
from whatever created the image (e.g., camera hardware) to whatever
is showing the camera image, saying “could you please rotate this image
for me? #kthxbye”.
In other words, the camera hardware is being lazy.
A lot of camera hardware is designed to take landscape images, particularly
when using a rear-facing camera, as that is the traditional way that
cameras were held by default, going back decades. In an ideal world, if the
user took a portrait photo, the camera hardware would take a portrait
picture. Or, at least, the camera hardware would take a landscape picture,
but then rotate the image to be portrait before delivering the JPEG to
whatever app requested the image.
Some camera hardware does just that.
However, other camera hardware leaves the image as a landscape image,
regardless of how the device was held when the image was taken. Instead,
the camera hardware will set the orientation tag to indicate how
image viewers should rotate the image, to reflect what the image really
should look like.
EXIF Tags and Android
Of course, this would not be a problem if all image viewers paid attention
to the orientation tag. However, many do not, particularly on Android…
because BitmapFactory ignores all EXIF tags. As a result, you get
the unmodified image, instead of one rotated as the camera hardware requested.
And so, if you blindly load the image, it will show up without taking
the orientation tag into account.
If you want to take the orientation tag into account, you need to find
out the value of that tag. BitmapFactory will not help you here. However,
ExifInterface can… though which ExifInterface you use is important.
android.media.ExifInterface that Android used for years has
security flaws. Android 7.0+ devices should all ship with a patched
version. Some Android 6.0 devices might get a patch. Everything else
will go unpatched, and if your app uses android.media.ExifInterface, your
app may expose the user to security risks.
Fortunately, alternative ExifInterface implementations exist, that
not only avoid the security flaw, but also support InputStream
as well as File. That is only available on android.media.ExifInterface
starting with Android 7.0; older versions only supported a File, which
is awkward in modern Android development.
The simplest solution for most developers would be to use the exifinterface
artifact from the Android Support Library

dependencies {
 implementation 'com.android.support:exifinterface:25.1.0'
}

This has the same API as does the Android 7.0+ edition of ExifInterface,
including InputStream support.
However, for whatever reason, the API that Google has elected to expose
through both of their supplied ExifInterface classes pales in comparison
to the EXIF classes that they have elsewhere,
such as the AOSP editions of the camera and gallery apps.
A version of this code is available
as an artifact
published by Alessandro Crugnola and is demonstrated in the next section.
If your EXIF needs are fairly limited, using the Google-supplied
ExifInterface classes is simple. But even for something as seemingly
simple as rotating an image, you need a more robust EXIF API.
You Spin (Photos) Right Round
The Camera/EXIFRotater
sample project contains three images in assets/, culled from
this GitHub repository
that supplements this article on the problems with EXIF orientation handling.
Specifically, we have images with orientation tag values of 3, 6, and
8, which are the most common ones that you will encounter.
The objective of this app is to show one of those images in its original
form and rotated in accordance with the EXIF orientation tag:

[image: EXIF Rotater Sample App, with Original and Rotated Images]

Figure 785: EXIF Rotater Sample App, with Original and Rotated Images
However, there are two product flavors in this project, reflecting
two different ways of getting that visual output: rotating the
ImageView and rotating the image itself. These are controlled via
a ROTATE_BITMAP value added to BuildConfig:

 productFlavors {
 image {
 dimension "default"
 buildConfigField "boolean", "ROTATE_BITMAP", "false"
 }
 matrix {
 dimension "default"
 buildConfigField "boolean", "ROTATE_BITMAP", "true"
 }
 }

(from Camera/EXIFRotater/app/build.gradle)
The MainActivity kicks off an ImageLoadThread in onCreate().
That thread is responsible for loading (and, if appropriate, rotating)
the image. When that is done, the thread will post an ImageLoadedEvent
to an event bus (using greenrobot’s EventBus) to have the UI display
the image (and, if needed, rotate a copy of it):

 private static class ImageLoadThread extends Thread {
 private final Context ctxt;

 ImageLoadThread(Context ctxt) {
 this.ctxt=ctxt.getApplicationContext();
 }

 @Override
 public void run() {
 AssetManager assets=ctxt.getAssets();

 try {
 InputStream is=assets.open(ASSET_NAME);
 ExifInterface exif=new ExifInterface();

 exif.readExif(is, ExifInterface.Options.OPTION_ALL);

 ExifTag tag=exif.getTag(ExifInterface.TAG_ORIENTATION);
 int orientation=(tag==null ? -1 : tag.getValueAsInt(-1));

 if (orientation==8 || orientation==3 || orientation==6) {
 is=assets.open(ASSET_NAME);

 Bitmap original=BitmapFactory.decodeStream(is);
 Bitmap rotated=null;

 if (BuildConfig.ROTATE_BITMAP) {
 rotated=rotateViaMatrix(original, orientation);

 exif.setTagValue(ExifInterface.TAG_ORIENTATION, 1);
 exif.removeCompressedThumbnail();

 File output=
 new File(ctxt.getExternalFilesDir(null), "rotated.jpg");

 exif.writeExif(rotated, output.getAbsolutePath(), 100);

 MediaScannerConnection.scanFile(ctxt,
 new String[]{output.getAbsolutePath()}, null, null);
 }

 EventBus
 .getDefault()
 .postSticky(new ImageLoadedEvent(original, rotated, orientation));
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(), "Exception processing image", e);
 }
 }
 }

(from Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java)
We first get an InputStream on the particular image from assets/
that we are to show (hard-coded as the ASSET_NAME constant).
We then create an ExifInterface, using the richer implementation from
the aforementioned artifact. This ExifInterface has a few versions
of readExif(), including one that can take our InputStream as input.
We can then get the orientation tag value via calls to getTag()
(to get an ExifTag for TAG_ORIENTATION), then getValueAsInt().
The latter method retrieves an integer tag value, with a supplied default
value if the tag exists but does not have an integer value.
However, it is also possible that the tag does not exist. In fact, many
JPEG images will lack this header, implying that the image is already
in the correct orientation. So, we use the ternary operator and
the default value to getValueAsInt() to get either the actual orientation
tag numeric value or –1 if, for any reason, we cannot get that value.
If the orientation is 3, 6, or 8, we will want to show the image.
So, we use BitmapFactory to load the image, via decodeStream().
If ROTATE_BITMAP is true, we do five things:

	We rotate the Bitmap itself using a Matrix, in the
rotateViaMatrix() method:

 static private Bitmap rotateViaMatrix(Bitmap original, int orientation) {
 Matrix matrix=new Matrix();

 matrix.setRotate(degreesForRotation(orientation));

 return(Bitmap.createBitmap(original, 0, 0, original.getWidth(),
 original.getHeight(), matrix, true));
 }

(from Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java)

	We set the orientation tag to normal (1), reflecting the fact that
we have oriented the image properly.

	We remove any thumbnail from our EXIF metadata
read from the original image

	We write the revised EXIF data and the rotated Bitmap to a file
on external storage, so we have a JPEG showing the rotated results yet
including all of the original EXIF tags (excluding the orientation
tag and thumbnail)

	We tell MediaScannerConnection to scan this newly-created file, so
it shows up in file managers, both on-device and on-desktop

If ROTATE_BITMAP is false, we instead handle the rotation in
our onImageLoaded() method that is called when the ImageLoadedEvent
is posted:

 @Subscribe(sticky=true, threadMode=ThreadMode.MAIN)
 public void onImageLoaded(ImageLoadedEvent event) {
 original.setImageBitmap(event.original);

 if (BuildConfig.ROTATE_BITMAP) {
 oriented.setImageBitmap(event.rotated);
 }
 else {
 oriented.setImageBitmap(event.original);
 oriented.setRotation(degreesForRotation(event.orientation));
 }
 }

(from Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java)
Rather than show the rotated image in the lower ImageView, we show
the original image, then rotate the ImageView.
Which of these two approaches — rotate the ImageView or rotate the
image — is appropriate for you depends on your app. If all you need to
do is show the image properly to the user, rotating the ImageView
should be less memory-intensive. If, on the other hand, you need to save
the corrected image somewhere for later use, you will need to rotate
the image itself to make that correction.
And Then, There Are the Bugs
Some devices have buggy firmware, where they do not rotate the image
themselves nor set the orientation tag in the image. Instead, they just
ignore the whole issue. For these devices, we have no way of distinguishing
between “images that need to be rotated, but we do not know the orientation”
and “images that are fine and do not need to be rotated”.
Your best option is to let the user manually request that the image be
rotated (e.g., action bar “rotate” item).
Scanning with ZXing
If your objective is to scan a barcode, it is much simpler for you to integrate
Barcode Scanner into your app than to roll it yourself.
Barcode Scanner
– one of the most popular Android apps of all time — can scan
a wide range of 1D and 2D barcode types. They offer an integration library that
you can add to your app to initiate a scan and get the results. The library will
even lead the user to the Play Store to install Barcode Scanner if they do not
already have the app.
One limitation is that while the ZXing team (the authors and maintainers of
Barcode Scanner) make the integration library available, they only do so in
source form.
That sample project —
Camera/ZXing
– has a UI dominated by a “Scan!” button. Clicking the button invokes a doScan()
method in our sample activity:
This passes control to Barcode Scanner by means of the integration JAR and
the IntentIntegrator class. initiateScan() will validate that Barcode Scanner is
installed, then will start up the camera and scan for a barcode.
Once Barcode Scanner detects a barcode and decodes it, the activity invoked by
initiateScan() finishes, and control returns to you in onActivityResult() (as the
Barcode Scanner scanning activity was invoked via startActivityForResult()). There,
you can once again use IntentIntegrator to find out details of the scan, notably
the type of barcode and the encoded contents:

 public void onActivityResult(int request, int result, Intent i) {
 IntentResult scan=IntentIntegrator.parseActivityResult(request,
 result,
 i);

 if (scan!=null) {
 format.setText(scan.getFormatName());
 contents.setText(scan.getContents());
 }
 }

(from Camera/ZXing/app/src/main/java/com/commonsware/android/zxing/ZXingDemo.java)
To use IntentIntegrator and IntentResult, the sample project has two
modules: the app/ module for the app, and a zxing/ module containing
those two classes (and a rump AndroidManifest.xml to make the build tools
happy). The app/ module depends upon the zxing module via
a implementation project(':zxing') dependency directive.
Some notes:

	Barcode Scanner’s scanning activity only works in landscape

	Even though you are not using the camera directly yourself, you should consider
including the <uses-feature> element declaring that you need a camera, if your app
cannot function without barcodes

	If you wish to add Barcode Scanner logic directly to your app, and avoid the
dependency on the third-party APK, that is possible, but the process for doing it is
not well documented or supported

Videos: Letting the Camera App Do It
Just as ACTION_IMAGE_CAPTURE can be used to have a third-party app supply you with
still images, there is an ACTION_VIDEO_CAPTURE on MediaStore that can be used
as an Intent action for asking a third-party app capture a video for you. As with
ACTION_IMAGE_CAPTURE, you use startActivityForResult() with ACTION_VIDEO_CAPTURE
to find out when the video has been recorded.
There are two extras of note for ACTION_VIDEO_CAPTURE:

	
MediaStore.EXTRA_OUTPUT, which indicates where the video
should be written, and

	
MediaStore.EXTRA_VIDEO_QUALITY, which should be an integer, either 0 for
low quality/low size videos or 1 for high quality

If you elect to skip EXTRA_OUTPUT, the video will be written to the
default directory for videos on the device
(typically a “Movies” directory in the root of external storage), and the Uri
you receive on the Intent in onActivityResult() will point to this file.
The impacts of skipping EXTRA_VIDEO_QUALITY are undocumented.
The
Media/VideoRecordIntent
sample project is a near-clone of the Camera/FileProvider sample from earlier in
this chapter. Instead of requesting a third-party app take a still image, though,
this sample requests that a third-party app record a video:

package com.commonsware.android.videorecord;

import android.app.Activity;
import android.content.Intent;
import android.content.pm.PackageManager;
import android.content.pm.ResolveInfo;
import android.net.Uri;
import android.os.Build;
import android.os.Bundle;
import android.provider.MediaStore;
import android.support.v4.content.FileProvider;
import java.io.File;
import java.util.List;

public class MainActivity extends Activity {
 private static final String EXTRA_FILENAME=
 BuildConfig.APPLICATION_ID+".EXTRA_FILENAME";
 private static final String AUTHORITY=
 BuildConfig.APPLICATION_ID+".provider";
 private static final String VIDEOS="videos";
 private static final String FILENAME="sample.mp4";
 private static final int REQUEST_ID=1337;
 private File output=null;
 private Uri outputUri=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (savedInstanceState==null) {
 output=new File(new File(getFilesDir(), VIDEOS), FILENAME);

 if (output.exists()) {
 output.delete();
 }
 else {
 output.getParentFile().mkdirs();
 }
 }
 else {
 output=(File)savedInstanceState.getSerializable(EXTRA_FILENAME);
 }

 outputUri=FileProvider.getUriForFile(this, AUTHORITY, output);

 if (savedInstanceState==null) {
 Intent i=new Intent(MediaStore.ACTION_VIDEO_CAPTURE);

 i.putExtra(MediaStore.EXTRA_OUTPUT, outputUri);
 i.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 1);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
 i.addFlags(Intent.FLAG_GRANT_WRITE_URI_PERMISSION |
 Intent.FLAG_GRANT_READ_URI_PERMISSION);
 }
 else {
 List<ResolveInfo> resInfoList=
 getPackageManager()
 .queryIntentActivities(i, PackageManager.MATCH_DEFAULT_ONLY);

 for (ResolveInfo resolveInfo : resInfoList) {
 String packageName = resolveInfo.activityInfo.packageName;

 grantUriPermission(packageName, outputUri,
 Intent.FLAG_GRANT_WRITE_URI_PERMISSION |
 Intent.FLAG_GRANT_READ_URI_PERMISSION);
 }
 }

 startActivityForResult(i, REQUEST_ID);
 }
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putSerializable(EXTRA_FILENAME, output);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==REQUEST_ID && resultCode==RESULT_OK) {
 Intent view=
 new Intent(Intent.ACTION_VIEW)
 .setDataAndType(outputUri, "video/mp4")
 .addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 startActivity(view);
 finish();
 }
 }
}

(from Media/VideoRecordIntent/app/src/main/java/com/commonsware/android/videorecord/MainActivity.java)
onCreate() of MainActivity starts by setting up a File object pointing to a sample.mp4
file in internal storage. If the file already
exists, onCreate() deletes it; otherwise it ensures that the directory
already exists. We then go through much of the same headache that we
did in the ACTION_IMAGE_CAPTURE scenario, creating a Uri for our
FileProvider that points to our designated File, ensures that the
video-recording app has read/write access to our Uri, before finally
calling startActivityForResult().
The call to startActivityForResult() will trigger the third-party app to record
the video. When control returns to MainActivity, onActivityResult()
creates an ACTION_VIEW Intent for the same Uri, then calls startActivity()
to request that some app play back the video.
And, as before, we hold onto the File object via the saved instance
state Bundle, and we only record the video if there is no such
saved instance state Bundle, in case there is a configuration change
causing our activity to be destroyed and recreated.
There is only one problem: this app is less likely to work on your device
that did the ACTION_IMAGE_CAPTURE sample.
Camera apps need to be able to support content Uri values for EXTRA_OUTPUT
for both still images and video. However,
Google did not support this in their own camera app,
decreasing the likelihood that anyone else supports it.
You can elect to use a file Uri, pointing to a location on
external storage. However, that will require you to keep your targetSdkVersion
at 23 or lower, as once you go above that, file Uri values are
banned in Intent objects on Android 7.0.
Using a Camera Library
Relying upon third-party applications for taking pictures does introduce
some challenges:

	Not all camera apps are created equal. Some implement ACTION_IMAGE_CAPTURE
and ACTION_VIDEO_CAPTURE well… and others do not. Some might only
ever give you a thumbnail, or some might not support all valid Uri
values for writing out the output, and so on.

	Even within “valid” output, there can be variances. One common variation
is how portrait images are handled. Some camera apps will write out an
image that is actually in portrait mode. Some camera apps will write
out an image that is set up for landscape, but with an “EXIF header” in
the JPEG data that tells image viewers to rotate the image to portrait.
Unfortunately, not everything honors those headers, such as Android’s
own BitmapFactory.

	If the camera app uses a lot of system RAM, your app may be kicked out
of RAM while the user is taking a picture. This should not be a problem,
as your app’s process is eligible to be terminated at any point when
you are not in the foreground. However, it is a bit unexpected to think
that taking a picture may cause you to have to switch to a fresh process.

The alternative to relying upon a third-party app is to implement
camera functionality within your own app. For that, you have three major
options:

	Use the android.hardware.Camera API, added to Android way back in
API Level 1, but marked as deprecated in API Level 21

	Use the android.hardware.camera2 API, added to Android in API Level
21 as a replacement for android.hardware.Camera, but therefore is
only useful on its own if your minSdkVersion is 21 or higher

	Use some third-party library that wraps around one or both of those
APIs

Using the native camera APIs is possible but difficult.
However, there are a few libraries that simplify the process. Here, we will look
at two of them: CameraKit-Android and Fotoapparat.
CameraKit-Android
Debuting in 2017, CameraKit-Android
is an MIT-licensed library, making it convenient for both open source
and proprietary development. It offers a fair bit of flexibility in
a simple API. It supports both taking photos and recording videos. However:

	The library was handed off from previous maintainers to a new team, leaving
many outstanding issues in limbo

	The documentation is incorrect for several features

The Camera/CameraKit
sample project demonstrates using CameraKit-Android. It has a two-button UI
in its MainActivity, where one button will trigger taking a picture, while
the other button triggers recording a video.
Adding the Dependency
CameraKit-Android is published as the com.wonderkiln:camerakit-core artifact on JCenter.
However:

	The library depends upon appcompat-v7, despite not using classes from there

	The library depends upon Google Play Services, though only for one particular
method

Hence, the sample app uses Gradle to exclude those two transitive dependencies
and instead depend upon support-compat, since the sample app
it not using appcompat-v7 itself:

dependencies {
 implementation 'com.github.clans:fab:1.6.4'
 implementation 'com.githang:com-phillipcalvin-iconbutton:1.0.1@aar'
 implementation 'com.android.support:support-compat:27.0.2'
 implementation('com.wonderkiln:camerakit-core:0.13.1') {
 exclude group: 'com.android.support', module: 'appcompat-v7'
 exclude group: 'com.google.android.gms', module: 'play-services-vision'
 }
}

(from Camera/CameraKit/app/build.gradle)
The other two dependencies are for:

	An implementation of a floating action button (FAB), profiled in
the chapter on the Design Support Library

	An icon button library, for use by the MainActivity

Adding the Preview Display
The actual photo- or video-taking activity is CameraActivity. It uses a camera.xml
layout resource, which in our case contains a custom CameraView from
CameraKit-Android, along with a FAB:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <com.wonderkiln.camerakit.CameraView android:id="@+id/camera"
 xmlns:camerakit="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:adjustViewBounds="true"
 camerakit:ckFlash="on" />

 <com.github.clans.fab.FloatingActionButton
 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentRight="true"
 android:layout_marginBottom="@dimen/fab_margin"
 android:layout_marginEnd="@dimen/fab_margin"
 android:layout_marginRight="@dimen/fab_margin"
 android:src="@drawable/ic_camera_black_24dp"
 app:fab_colorNormal="@color/ready" />
</RelativeLayout>

(from Camera/CameraKit/app/src/main/res/layout/camera.xml)
CameraKit-Android puts most of its configuration on its CameraView, whether
via custom attributes or via corresponding getter/setter methods on the Java
class. In this case, we are using the ckFlash attribute, indicating that we
want flash mode to be enabled.
Other available attributes include:

	
ckFacing, to indicate if you want the rear-facing (default) or front-facing
camera

	
ckFocus, to indicate what focus mode you want (defaults to continuous focus)

	
ckJpegQuality, to indicate the quality factor to use when saving a photo
as JPEG (defaults to 100, indicating maximum quality/maximum size)

	
ckVideoQuality, to indicate the resolution of the video to capture,
or to choose the highest-available or lowest-available resolution (defaults
to a maximum of 480p, or 640x480)

	
ckZoom, indicating that we want a pinch-to-zoom implementation, so pinch
gestures control the camera’s zoom level

Permissions
If you do not request runtime permissions, CameraKit-Android will do that
for you as part of displaying that CameraView. In the case of this sample
app, MainActivity extends the AbstractPermissionActivity seen elsewhere
in this book, and it requests three permissions:

	
CAMERA, for using the camera

	
WRITE_EXTERNAL_STORAGE, as this is where videos are recorded by default

	
RECORD_AUDIO, needed for recording videos, as they also capture audio
off of a microphone

Integrating with the Lifecycle
MainActivity invokes CameraActivity by means of two static methods
on CameraActivity: takePhoto() and recordVideo(). These simply start up
CameraActivity with EXTRA_IS_PHOTO indicating which mode the camera
should use:

 public static void takePhoto(Activity requester, int requestCode) {
 Intent i=new Intent(requester, CameraActivity.class)
 .putExtra(EXTRA_IS_PHOTO, true);

 requester.startActivityForResult(i, requestCode);
 }

 public static void recordVideo(Activity requester, int requestCode) {
 Intent i=new Intent(requester, CameraActivity.class)
 .putExtra(EXTRA_IS_PHOTO, false);

 requester.startActivityForResult(i, requestCode);
 }

(from Camera/CameraKit/app/src/main/java/com/commonsware/android/camera/CameraActivity.java)
In onCreate(), we load up our layout and retrieve the CameraView, holding
onto it in a camera field:

 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.camera);

 isPhoto=getIntent().getBooleanExtra(EXTRA_IS_PHOTO, true);
 camera=findViewById(R.id.camera);
 fab=findViewById(R.id.fab);

 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 if (isPhoto) {
 takePhoto();
 }
 else {
 recordVideo();
 }
 }
 });

 if (!isPhoto) {
 fab.setImageResource(R.drawable.ic_videocam_black_24dp);
 }

 camera.addCameraKitListener(new CameraKitEventListenerAdapter() {
 @Override
 public void onImage(CameraKitImage image) {
 // TODO: do something with picture

 setResult(RESULT_OK);
 finish();
 }

 @Override
 public void onVideo(CameraKitVideo video) {
 // TODO: do something with video file

 setResult(RESULT_OK);
 finish();
 }
 });
 }

(from Camera/CameraKit/app/src/main/java/com/commonsware/android/camera/CameraActivity.java)
In addition, we:

	Set up the FAB with the proper icon and action,
depending upon whether we are taking a picture or recording a video

	Add a listener to the CameraView, as will be discussed shortly

We need to forward onPause() and onResume() events from the hosting
activity or fragment along to the CameraView, so the custom view knows
when it should be releasing the camera:
Taking a Picture
Taking a picture with CameraKit-Android is merely a matter of calling captureImage():

 private void takePhoto() {
 camera.captureImage();
 fab.setEnabled(false);
 }

(from Camera/CameraKit/app/src/main/java/com/commonsware/android/camera/CameraActivity.java)
When the picture is taken, the CameraKitEventListenerAdapter instance
that we registered via addCameraKitListener() on the CameraView will
be called with onImage(). We are handed a CameraKitImage object, which
has getBitmap() and getJpeg() methods to give us the photo in memory.
The latter is the original data off of the camera; the former returns a
Bitmap created from that JPEG. Note that for a high-resolution image, you
may not be able to create the Bitmap without running out of memory.
In a real app, we would do something with the photo, such as saving it to
disk on a background thread.
Recording a Video
To start recording a video, call start(); to stop recording a video, call
stopVideo():

 private void recordVideo() {
 if (isRecording) {
 camera.stopVideo();
 finish();
 }
 else {
 fab.setColorNormalResId(R.color.recording);
 fab.setImageResource(R.drawable.ic_stop_black_24dp);
 isRecording=true;
 camera.start();
 }
 }

(from Camera/CameraKit/app/src/main/java/com/commonsware/android/camera/CameraActivity.java)
When the video is taken, our listener will be called with onVideo(), where
we are given a CameraKitVideo object. That has a getFile() method, which
contains a File object pointing to wherever the library elected to save
the video.
By default, this will be in your app’s getExternalFilesDir() location, so if
your minSdkVersion is 19 or higher, you will not need the WRITE_EXTERNAL_STORAGE
permission. A production app would do something with this file.
Fotoapparat
Also debuting in 2017, the Apache-licensed
Fotoapparat has a similar flow
to CameraKit-Android: add a custom View for the preview and call methods
to take pictures. However:

	Fotoapparat puts most of the configuration on a Fotoapparat object

	The Fotoapparat API offers a few more features than does CameraKit-Android’s
API, though with a somewhat funky fluent API

	As of January 2019, Fotoapparat only supports taking photos, not recording
videos

The Camera/Fotoapparat
sample project is a clone of the CameraKit-Android sample, with Fotoapparat
as the camera library. Since Fotoapparat does not support recording videos,
the code related to that was removed, and its button in the UI is disabled.
Adding the Dependency
The io.fotoapparat:fotoapparat:2.5.0 dependency used in this project supports
the Android Support Library:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.github.clans:fab:1.6.4'
 implementation 'com.githang:com-phillipcalvin-iconbutton:1.0.1@aar'
 implementation 'com.android.support:support-compat:28.0.0'
 implementation 'io.fotoapparat:fotoapparat:2.5.0'
}

android {
 compileSdkVersion 28

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 28
 applicationId 'com.commonsware.android.camera.fotoapparat'
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
}

(from Camera/Fotoapparat/app/build.gradle)
Starting with 2.6.0, Fotoapparat has moved to using AndroidX dependencies.
Also note that Fotoapparat nowadays is implemented in Kotlin. A side effect
of this is that you will wind up pulling in the Kotlin runtime library, even
if your app otherwise is implemented in Java, not Kotlin.
Permissions
Fotoapparat will merge in the <uses-permission> element for the CAMERA
permission to your manifest, but it does not attempt to request that permission
at runtime. Apps using Fotoapparat have to handle that themselves, before
attempting to use the camera.
The sample app uses the same AbstractPermissionsActivity as before, albeit
only with the CAMERA permission, since that is the only one needed here.
Adding the Preview Display
Fotoapparat has its own CameraView. However, whereas CameraKit-Android
puts its configuration on the CameraView, Fotoapparat does not. As a result,
other than sizing and positioning the CameraView where you want it, little else
is needed:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <io.fotoapparat.view.CameraView android:id="@+id/camera"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

 <com.github.clans.fab.FloatingActionButton
 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentRight="true"
 android:layout_marginBottom="@dimen/fab_margin"
 android:layout_marginEnd="@dimen/fab_margin"
 android:layout_marginRight="@dimen/fab_margin"
 android:src="@drawable/ic_camera_black_24dp"
 app:fab_colorNormal="@color/ready" />
</RelativeLayout>

(from Camera/Fotoapparat/app/src/main/res/layout/camera.xml)
Configuring the Fotoapparat
However, what we remove from the layout goes into Java code. Specifically,
Fotoapparat has a Fotoapparat class. We need to build an instance of a
Fotoapparat and connect it to the CameraView.
CameraActivity handles this in onCreate():

 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.camera);

 CameraView camera = findViewById(R.id.camera);

 fab = findViewById(R.id.fab);
 fab.setOnClickListener(view -> takePhoto());

 fotoapparat = Fotoapparat
 .with(this)
 .into(camera)
 .previewScaleType(ScaleType.CenterCrop)
 .photoResolution(ResolutionSelectorsKt.highestResolution())
 .lensPosition(LensPositionSelectorsKt.back())
 .focusMode(SelectorsKt.firstAvailable(
 FocusModeSelectorsKt.continuousFocusPicture(),
 FocusModeSelectorsKt.autoFocus(), FocusModeSelectorsKt.fixed()))
 .flash(SelectorsKt.firstAvailable(FlashSelectorsKt.autoRedEye(),
 FlashSelectorsKt.autoFlash()))
 .build();
 }

(from Camera/Fotoapparat/app/src/main/java/com/commonsware/android/camera/CameraActivity.java)
The Fotoapparat API is designed for significant use of statically imported
methods. This is akin to how libraries like JUnit and Espresso work, reducing
the visual clutter of the main Java code at the cost of a bunch of additional
import statements. In Fotoapparat’s case, these methods are actually Kotlin
global functions, which Kotlin/JVM maps to static methods on generates classes
based on the Kotlin filename.
Fotoapparat is also significantly more configurable than is CameraKit-Android.
There are many more options, and more complex options, for controlling how
the camera is used.
So, in onCreate(), we:

	Create a FotoapparatBuilder via with(), which takes a Context

	Tie it to the CameraView via into()

	Indicate that we want the camera preview to fill the available space,
at the cost of cropping portions that do not match our CameraView aspect
ratio, via previewScaleType(ScaleType.CenterCrop)

	Indicate that we want to take the highest resolution photo possible,
via photoResolution(ResolutionSelectorsKt.highestResolution())

	Indicate that we want the rear-facing camera via lensPosition(LensPositionSelectorsKt.back())

	Request either continuous focus, auto-focus, or fixed focus, whichever
one is available, via the focusMode() call

	Request either auto-redeye or auto flash, whichever one is available,
via the flash() call

Then, we build() the Fotoapparat from the FotoapparatBuilder.
Methods like photoResolution(), focusMode(), and flashMode() take a “selector”
object. Sometimes, that might be a specific setting (e.g., highestResolution()
for photoResolution()). Sometimes, that might be more of a “functor” object, one
that makes a decision of other selectors to use based upon availability
(e.g., firstAvailable()). This leads to a very expressive API, at the cost
of a fairly convoluted set of objects and methods — writing an API like this
can get complicated rather quickly.
Integrating with the Lifecycle
As with CameraKit-Android, we need to forward lifecycle events along to the
Fotoapparat object. In this case, though, we need to forward onStart()
and onStop(), not onPause() and onResume():

 @Override
 protected void onStart() {
 super.onStart();
 fotoapparat.start();
 }

 @Override
 protected void onStop() {
 fotoapparat.stop();
 super.onStop();
 }

(from Camera/Fotoapparat/app/src/main/java/com/commonsware/android/camera/CameraActivity.java)
Taking a Picture
The Fotoapparat object has a takePicture() method which, as you might
expect, takes a picture. It gives you back a PhotoResult object, which you can
use to work with the resulting photo. In the sample app, we call toBitmap()
on it, then use whenAvailable() to get a callback when the image is ready. This
gives us a BitmapPhoto object, from which we can get the JPEG bytes, akin to
the CameraKit-Android example:

 private void takePhoto() {
 fab.setEnabled(false);

 PhotoResult result = fotoapparat.takePicture();

 result.toBitmap().whenAvailable(bitmapPhoto -> {
 // TODO: do something with picture

 setResult(RESULT_OK);
 finish();

 return Unit.INSTANCE;
 });
 }

(from Camera/Fotoapparat/app/src/main/java/com/commonsware/android/camera/CameraActivity.java)
(note: the return Unit.INSTANCE; in the lambda expression is there because
this really is a Kotlin-defined function set to return Unit, so in Java we
have to explicitly have the return to specify the object to return)
If, however, your objective is to save the photo to a file, simply call
saveToFile() on the PhotoResult object. This will asynchronously write your
JPEG to the supplied File location, and it returns a PendingResult, as
toBitmap() does, for you to attach a callback to find out when the save operation
is complete.
Directly Working with the Camera
Of course, you can bypass these third-party apps and libraries, electing
instead to work directly with
the camera if you so choose. This is very painful, as will be illustrated
in the next chapter.
Working Directly with the Camera
Letting third-party apps take the pictures and videos for you is all well
and good, but there will be times where you need more control than that.
It is possible for you to work directly with the device cameras. However,
doing is exceptionally complicated.
Part of that complexity is because Android presently has three separate
APIs for working with the camera:

	
android.hardware.Camera for taking still photos

	
android.hardware.camera2 for taking still photos on Android 5.0+
devices

	
MediaRecorder for recording videos

This chapter will attempt to outline the basic steps for using
these APIs.
Prerequisites
This chapter assumes that you have read the previous chapter
covering Intent-based uses of the camera and
the chapter on audio recording.
Notes About the Code Snippets
The code snippets shown in this chapter are here purely to illustrate
how to call certain APIs. They are not from any particular sample project, as
a sample project small enough to fit in a book would be riddled with
bugs and limitations.
A Tale of Two APIs
As noted in the introduction to this chapter, there are three APIs for
working with the camera. One — MediaRecorder — is focused purely
on recording videos. It relies on you using one of the other two APIs
for setting up the camera preview, so the user can see what will
be recorded. Those other two APIs exist for taking still photos, where
one (android.hardware.camera2) is substantially newer.
android.hardware.Camera
The original camera API is based around the android.hardware.Camera
class.
(NOTE: there is another Camera class, in android.graphics, that
is not directly related to taking pictures)
Instances of this class represent an open camera, where you call methods
on the Camera to do things like take pictures. You also work
extensively with a Camera.Parameters object, where you can determine
a number of key characteristics about the camera (e.g., what the available
resolutions are for pictures) and set up the particular results that you
want.
This API works on all Android devices.
android.hardware.camera2
The original camera API worked, albeit with some difficulty. However,
it was fairly limited, as it was designed primarily around the smartphone
camera capabilities of 2005-2010. Nowadays, device manufacturers have
access to much more powerful camera modules from chipset manufacturers
like Qualcomm. Android needed a more powerful API to accommodate the
current hardware, and a more flexible API to be able to adjust to
changes over time.
Hence, Android 5.0 brought a new API, based on a series of classes
in the android.hardware.camera2 package. On the plus side, these
offer much greater capability. They are also designed with asynchronous
work in mind, off-loading slow or complex operations onto background threads
for you. However, on the whole, the API is more complicated, much less
documented, and substantially different than the original API.
It is also only available on Android 5.0 devices. If your minSdkVersion
is 21 or higher, that is not a problem. If, however, you are aiming
to support older devices than that, you have two choices:

	Stick with the original API for all devices

	Use the original API for older devices and the newer API for newer
devices

The latter might allow you to offer more features to users of those
newer devices, but it does roughly double the work required to
implement camera logic in your app.
MediaRecorder
MediaRecorder is responsible for both audio recording
and video recording. MediaRecorder has a fairly limited API, one that
has not changed substantially since 2011. However, if you use it carefully,
it works. It works in tandem with either camera API — you use the camera
APIs to show the user what will be recorded, and you use MediaRecorder
to actually do the recording.
However, MediaRecorder has a number of issues, such as a fair bit of delay between
when you ask it to begin recording and when it actually does begin
recording. This makes it a poor choice for fast-twitch video recording
purposes. Some apps, notably Vine, have elected to skip using
MediaRecorder. Instead, they use the regular camera APIs. These APIs,
among other things, give you access to the preview frames that are used
to show the user what is visible through the camera lens. With a fair
amount of work, you can stitch those together into a video. Needless
to say, this is a beyond-advanced topic that is well outside the scope
of this book.
The APIs That You (Probably) Can’t Use
The aforementioned APIs are all part of the Android SDK. For camera
apps that ship with devices, those apps are not limited to these APIs.
Device manufacturers are welcome to create apps that use internal
proprietary APIs for their devices.
Hence, when it comes to determining what is and is not possible
through the camera APIs, it is important to compare to other third-party
camera apps, more so than manufacturer-supplied apps. Manufacturers
can “cheat”; you cannot.
Performing Basic Camera Operations
Cameras have some key functionality:

	Showing a preview to the user, so the user can see in real time
what the camera lens sees, so the user can frame a picture

	Take a still picture

	Record a video

In the following sections, we will outline what is required to
perform these operations using the various APIs.
Permissions
First, you need permission to use the camera. That way, when end
users install your application, they will be
notified that you intend to use the camera, so they can determine if
they deem that appropriate for your application.
You simply need the CAMERA permission in your AndroidManifest.xml
file, along with whatever other permissions your application logic
might require.
If you plan to record video, using MediaRecorder, you will also want to
request the RECORD_AUDIO permission.
And, if you were planning on storing pictures or videos out on external
storage, you probably need the WRITE_EXTERNAL_STORAGE permission.
The exception would be if your minSdkVersion is 19 or higher and you
are only storing those files in locations that are automatically read/write
for your app, such as getExternalFilesDir() or getExternalCacheDir().
Note that all three of these permissions (CAMERA, RECORD_AUDIO,
and WRITE_EXTERNAL_STORAGE) are part of
the Android 6.0 runtime permission system.
If your app has a targetSdkVersion of 23 or higher, you will
need to request those permissions at runtime. If your app has a lower
targetSdkVersion, while you will not have to do anything special
for your app, bear in mind that the user can still revoke your
access to those capabilities, and so you may find lots of devices
that claim to support a camera but just do not seem to have any cameras
available when you try to use one.
Features
Your manifest also should contain one or more <uses-feature> elements,
declaring what you need in terms of camera hardware. By default, asking
for the CAMERA permission indicates that you need a camera. More
specifically, asking
for the CAMERA permission indicates that you need an auto-focus camera.
The following sections outline some common scenarios and how to handle them.
A Camera is Optional
If you would like a camera, but having one is not essential for the use
of your app, put the following <uses-feature> element in your manifest:

<uses-feature android:name="android.hardware.camera" android:required="false" />

This indicates that you would like a camera, but it is not required. This
reverses the default established by the CAMERA permission.
A Camera is Required
Technically, you would not need any <uses-feature> element in your manifest
to indicate that you need a camera, as the CAMERA permission would handle
that for you. However, it is good form to explicitly declare it anyway:

<uses-feature android:name="android.hardware.camera" android:required="true" />

Not only does that make your manifest more self-documenting, but it also helps
protect you in case the default behavior of the CAMERA permission changes.
Other Camera Features
There are three other camera features that you could consider having
<uses-feature> elements for:

	
android.hardware.camera.autofocus, to indicate whether or not the
device needs a camera with auto-focus capability.

	
android.hardware.camera.flash, to indicate whether or not the device
must support a camera flash

	
android.hardware.camera.front, to indicate whether or not the
app needs a front-facing camera specifically (android.hardware.camera
requests a rear-facing camera)

Of these, the only one you should definitely include in your app is
android.hardware.camera.autofocus, once again because of the default effects
of requesting the CAMERA permission. In particular, if you do not absolutely
need auto-focus capabilities, you can use android:required="false" to reverse
the CAMERA default requirement.
Finding Out What Cameras Exist
Some devices will have just a rear-facing camera. Some will have just
a front-facing camera. Some will have both cameras. Some will have
no cameras. And, in theory at least, some could have yet more camera
options.
At some point, you are likely to need to find out what cameras exist
on the device that you are running on. Perhaps you need a particular
camera (e.g., a front-facing camera for your “selfie”-focused app).
Or, perhaps you want to allow your users to switch between cameras on
the fly.
android.hardware.Camera
The simplest way to choose a camera is to not choose at all, and arrange
to open the default camera. That default camera is the first rear-facing
camera on the device. However, devices that have no rear-facing cameras
effectively have no default camera, and so going with the default is rarely
the correct choice.
Instead, you should iterate over the available cameras, to find the one that
you want.
To find out how many cameras there are for the current device, you can
call the static getNumberOfCameras() method on the Camera class.
To find out details about a particular camera, you can call the static
getCameraInfo() method on Camera. This takes two parameters:

	the ID of the camera to open, which will be a number from 0 to the
number of available camera minus 1

	a Camera.CameraInfo object, into which getCameraInfo() will pour
details about the camera

The most notable field on Camera.CameraInfo is facing, which tells
you if this is a rear-facing (Camera.CameraInfo.CAMERA_FACING_BACK)
or front-facing (Camera.CameraInfo.CAMERA_FACING_FRONT) camera.
For example, the following code snippet could be used to identify
the first front-facing camera:

int chosen=-1;
int count=Camera.getNumberOfCameras();
Camera.CameraInfo info=new Camera.CameraInfo();

for (int cameraId=0; cameraId < count; cameraId++) {
 Camera.getCameraInfo(cameraId, info);

 if (info.facing==Camera.CameraInfo.CAMERA_FACING_FRONT) {
 chosen=cameraId;
 break;
 }
}

If chosen remains at a value of -1, you know that there is no
front-facing camera available to you, and you would need to decide
how you wish to proceed, if you really wanted such a camera.
android.hardware.camera2
With the original camera API, your main entry point is the Camera
class. With the Android 5.0+ camera API, your main entry
point is a CameraManager. This is another system service,
one you can retrieve by calling getSystemService() on a Context,
asking for the CAMERA_SERVICE:

CameraManager mgr=
 (CameraManager)ctxt.
 getApplicationContext().
 getSystemService(Context.CAMERA_SERVICE);

You will notice here that we are specifically calling getSystemService()
on the Application context. That is because there is a bug in Android 5.0
where CameraManager leaks the Context that creates it. This bug has been
fixed in Android 5.1. However, to be safe, you are better off retrieving
this system service via the singleton Application object, as there is
no risk of a memory leak (singletons are “pre-leaked”, as it were).
Given a CameraManager, you can call getCameraIdList() to get a list
of camera IDs. These are strings, not integers as they were with the
original camera API.
To learn more about the camera, you can ask the CameraManager to give
you a CameraCharacteristics object for a given camera ID. The
CameraCharacteristics object has all sorts of information about
the camera, including what direction it is facing. CameraCharacteristics
behaves a lot like a HashMap, in that you use get() and a key
to retrieve a value, such as CameraCharacteristics.LENS_FACING to
determine the camera’s facing direction.
So, the code snippet for the first
front-facing camera using a CameraManager named mgr, would be
something like:

String chosen=null;

for (String cameraId : mgr.getCameraIdList()) {
 CameraCharacteristics cc=mgr.getCameraCharacteristics(cameraId);

 if (cc.get(CameraCharacteristics.LENS_FACING)==CameraCharacteristics.LENS_FACING_FRONT) {
 chosen=cameraId;
 break;
 }
}

Here, a value of null would indicate that there is no available
front-facing camera.
Opening and Closing a Camera
Once you decide which camera you wish to use, you will eventually
need to “open” it. This gives your app access to that camera, and
blocks other app’s access while you have it open. You need to open
a camera before you can use that camera to take pictures, record
video, etc.
Eventually, when you are done with the camera, you should close it,
to allow other apps to have access to the camera again. If you fail to
close it, until your process is terminated, the camera is inaccessible.
android.hardware.Camera
Old code samples would open the camera by calling a zero-parameter static open()
method on the Camera class. This opens the default camera, and as noted
above, this is rarely a good idea. However, it is your only option on
API Level 8 and below, if you are still supporting such devices, as those
devices only supported a single camera.
Instead, if you have the ID of the camera that you wish to open, call
the one-parameter static open() method, passing in the ID of the camera.
Both flavors of open() return an instance of Camera, which you can
hold onto in your activity or fragment that is working with the camera.
While you have access to this camera, no other process can. Hence, it is
important to release the camera when you are no longer needing it. To
release the camera, call release() on your Camera instance, after which
it is no longer safe to use the camera. A common pattern is to
open() the camera in onStart() or onResume() and release() it
in onPause() or onStop(), so you tie up the camera only while you
are in the foreground.
android.hardware.camera2
Opening and closing a camera is a lot more complicated with the
Android 5.0+ camera API.
Partly, that complexity seems to be
due to a threading limitation with CameraManager — while we want
to do long tasks related to the camera on background threads,
CameraManager itself is not free-threaded when it comes to opening
and closing cameras. Hence, we need to use some form of thread
synchronization to make sure that we are not trying to open and
close cameras simultaneously.
Partly, that complexity is that the way that CameraManager deals with
background operations is via a Handler tied to a HandlerThread.
HandlerThread, as the name suggests, is a Thread which has all
the associated bits to support a Handler. The main application thread
itself is a HandlerThread (or, close enough), but we specifically
want to use a background thread, so we do not tie up the main application
thread. So, we need to create and manage our own HandlerThread and
Handler.
So, the first thing you will need to do is set up a HandlerThread,
such as in a data member of some class:

final private HandlerThread handlerThread=new HandlerThread(NAME,
 android.os.Process.THREAD_PRIORITY_BACKGROUND);

Here, NAME is some string to identify this thread (used in places
like the list of running threads in DDMS). The second parameter
is the thread priority; in general, you want your own HandlerThread
instances to have background priority.
Creating the HandlerThread instance does not actually start the thread,
any more than creating a Thread object starts the thread. Instead,
you need to call start() when you want the thread to begin working
its message loop. Any time after this point, it is safe to create a
Handler for that HandlerThread, by getting the Looper from the
HandlerThread and passing it to the Handler constructor:

handlerThread.start();
handler=new Handler(handlerThread.getLooper());

(You might wonder why a class named HandlerThread, designed to
work with a Handler, lacks any methods to give you such a Handler.
Lots of people wonder this, so you are not alone.)
Next, to actually open the camera, you will need to call openCamera()
on your CameraManager, supplying:

	the ID of the camera that you wish to open

	a CameraDevice.StateCallback instance

	the Handler that you created for your HandlerThread

But, we want to make sure that we are not trying to open or close another
camera while all of this is going on, so we need to use some sort of
Java thread synchronization for that, such as a Semaphore:

final private Semaphore lock=new Semaphore(1);

Then, we can consider opening the camera, once we obtain the lock:

if (!lock.tryAcquire(2500, TimeUnit.MILLISECONDS)) {
 throw new RuntimeException("Time out waiting to lock camera opening.");
}

mgr.openCamera(cameraId, new DeviceCallback(), handler);

You will notice that we do not release the lock here, as we need to keep
the lock until the camera has completed opening.
CameraDevice.StateCallback is an abstract class, so we usually have
to create some dedicated subclass for it. There are three abstract methods
that we will need to implement: onOpened(), onError(), and onDisconnected().
Plus, we will typically want to implement onClosed(), even though there
is a default implementation of this callback.
onOpened() will be called when the camera is open and is ours to use.
We are passed a CameraDevice object representing our open camera, and
it is our job to hold onto this device while we have the camera open.
The big thing that we need to do in onOpened() is release that
lock that we obtained when we tried opening the camera. This is also
a fine time to consider starting to show camera previews to the user, and we
will see how to do that in upcoming sections of the book.
onError() will be called if there is some serious error when trying
to open or use the camera. We are passed an error code to indicate
what sort of problem we encountered. It could be that the camera is already
in use (ERROR_CAMERA_IN_USE), or that while the camera exists, we do not
have access to it due to device policy (ERROR_CAMERA_DISABLED), or
that there was a general problem with this specific camera
(ERROR_CAMERA_DEVICE) or with the overall camera engine
(ERROR_CAMERA_SERVICE).
onDisconnected() will be called if we no longer can use the camera,
for reasons other than our closing it ourselves. We are supposed to
close the CameraDevice, if we have one, as the camera is no longer
usable.
To close the camera, whether in response to onDisconnected()
or because you are simply done with the camera, call close()
on the CameraDevice, inside of the lock:

try {
 lock.acquire();
 cameraDevice.close();
 cameraDevice=null;
}
finally {
 lock.release();
}

Note that close() is a synchronous call, and so we can release()
our lock in a finally block.
Our CameraDevice.StateCallback will be called with onClosed(), to
let us know that the close operation has completed.
Setting Up a Preview Surface
The camera preview is basically a stream of images, taken by the camera, usually at
less than full resolution. Mostly, that stream is to be presented to the user on the
screen, to help them “see what the camera sees”, so they can line up the right
picture.
For presenting the preview stream to the user, there are two typical solutions:
SurfaceView and TextureView.
SurfaceView for the Camera
SurfaceView is
used as a raw canvas for displaying all sorts of graphics outside of
the realm of your ordinary widgets. In this case, Android knows how
to display a live look at what the camera sees on a SurfaceView, to
serve as a preview pane. A SurfaceView is also used for
video playback, and a variation of SurfaceView called
GLSurfaceView is used for OpenGL animations.
That being said, SurfaceView is a subclass of View, and so it can
be added to your UI the same as any other widget:

	Include it in a layout

	Return it as the View from onCreateView() of a Fragment

	Instantiate it in Java and add it to some container via addView()

	Etc.

If your app will support API Level 10 and older, you will want to call
getSurfaceHolder().getType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS)
on the SurfaceView. A “push buffers” SurfaceView is one designed
to have images pushed to the surface, usually from video playback
or camera previews. A SurfaceHolder is a quasi-controller object
for the SurfaceView — most interactions with the SurfaceView
come by way of the SurfaceHolder. This bit of configuration is
not needed on API Level 11 and higher, as Android handles it for
us automatically as the SurfaceView is put to use.
TextureView for the Camera
SurfaceView, however, has some limitations. This is mostly tied back to the
way it works, by “punching a hole” in the UI to allow some lower-level
component (like the camera) to render stuff into it. While there is a
transparent layer on top of this “hole”, for use in alpha-compositing in
any overlapping widgets, the SurfaceView content is not rendered as
part of the normal view hierarchy. The net effect is that you cannot
readily move, animate, or otherwise transform a SurfaceView.
TextureView was added in API Level 14 and works for camera previews
as of API Level 15. TextureView serves much the same role as does
SurfaceView, for showing camera previews, playing videos, or rendering
OpenGL scenes. However, TextureView behaves as a regular View and
so therefore can be animated and such without issue.
However, the cost is in performance. TextureView relies upon the GPU
to do more work, and therefore TextureView is a bit less performant
than is a SurfaceView. Most camera apps will not show a difference.
Showing the Previews
To show previews, you need to create your surface (SurfaceView
or TextureView) and have it be part of your UI. Then, you can
teach your opened camera to show previews on that surface.
android.hardware.Camera
The biggest thing that we need to do in the original camera API
to configure the preview is determine
what size of preview images should be used. Devices cannot support arbitrary-sized
previews. Instead, we need to ask the camera what preview sizes it supports,
choose one, then configure the camera to use that specific preview size.
To do any of this, we need the Camera.Parameters associated with our
chosen and open Camera. Camera.Parameters serves two roles:

	It tells us what is possible, in terms of camera capabilities, above and
beyond the limited information reported by Camera.Info

	It is where we stipulate what behavior we want, by updating the parameters and
associating the updated parameters with the Camera

Getting the Camera.Parameters object from a Camera is a simple matter of
calling getParameters().
To find out what the valid preview sizes are, we can call getSupportedPreviewSizes()
on the Camera.Parameters object. This will return a List of Camera.Size objects,
with each Camera.Size holding a width and a height as integers.
Choosing a preview size is a bit of an art form. Too big of a preview size
is wasteful from a performance standpoint. Too small of a preview size
results in a grainy preview. And, as will be seen
later in this chapter, the difference in
aspect ratio between your surface and your preview size will need to be
taken into account. We will explore choosing preview sizes a bit more
later in this chapter. For the moment,
assume that we have sifted through the available preview sizes and have
chosen something suitable.
Whatever size you choose,
you can pass to setPreviewSize() on the Camera.Parameters.
Then, you can call setParameters() on the Camera, passing in your modified
Camera.Parameters object, to affect this change.
You will wind up with a block of code resembling:

Camera.Parameters parameters=camera.getParameters();
Camera.Size previewSize=chooseSomePreviewSize(parameters.getSupportedPreviewSizes());

parameters.setPreviewSize(previewSize.width, previewSize.height);

camera.setParameters(parameters);

(where chooseSomePreviewSize() is a method of your own design)
Given that, in principle, there are just three more steps:

	Attach your preview surface to the Camera by calling setPreviewDisplay()
(if you are using a SurfaceView) or setPreviewTexture() (if you are using
a SurfaceTexture)

	Show the preview on-screen by calling startPreview() on the Camera

	Stop showing the preview by calling stopPreview() on the Camera

However, timing is important.
You also cannot call setPreviewDisplay() or startPreview() before your
preview surface is ready. To know
when that is, you will need to register a listener with your surface:

	You can register a SurfaceHolder.Callback with the SurfaceHolder of your
SurfaceView by calling addCallback() on the SurfaceHolder. Your
SurfaceHolder.Callback will be called with surfaceChanged() when the
surface is ready for use, at which point it is safe to call setPreviewDisplay()
and startPreview().

	You can register a TextureView.SurfaceTextureListener with your
TextureView by means of the setSurfaceTextureListener() call. Your
TextureView.SurfaceTextureListener will be called with onSurfaceTextureAvailable()
at the point in time when it is safe to call setPreviewTexture() and
startPreview().

You also need to stop the preview before you release() the Camera. And,
as we will see later in this chapter,
you also need to restart your preview after taking a photo.
android.hardware.camera2
Once the camera is opened — even right from within the onOpened()
method of your CameraDevice.StateCallback — you can request to
have preview frames be pushed to your desired preview surface.
First, strangely enough, you are going to need to choose the resolution
of the picture that you wish to take. You might think that this would
be delayed until a later point, such as when we actually go to take
a picture, but the API seems to want it right away.
To find out the possible resolutions, you need to request a
StreamConfigurationMap from the CameraCharacteristics:

CameraCharacteristics cc=mgr.getCameraCharacteristics(cameraId);
StreamConfigurationMap map=
 cc.get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);

(where cameraId is the ID of the camera that you are working with)
From there, you can get an array of Size objects via a call
to getOutputSizes(). Curiously, getOutputSizes() takes a Java
class object, identifying the use case for the frames to be generated
by the camera. So, passing SurfaceTexture.class would give you
preview frame resolutions, but passing ImageFormat.JPEG would give you
picture resolutions (at least, for images to be encoded in JPEG format).
So, you can get your roster of available picture sizes via:

CameraCharacteristics cc=mgr.getCameraCharacteristics(cameraId);
StreamConfigurationMap map=
 cc.get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);
Size[] rawSizes=map.getOutputSizes(ImageFormat.JPEG);

From there, you will need to choose a size. This process can be a bit
interesting; some notes about it appear
later in this chapter. But, for example,
you might choose the size that is the highest resolution, as determined
by the total area (width times height).
Next, you are going to need to set up an ImageReader. Typically this
is done via the newInstance() factory method, which takes four parameters:

	The width and height of the desired resolution of the picture
that you wish to later take with the camera

	The image format to use (e.g., ImageFormat.JPEG) for those pictures

	How many simultaneous frames will be needed (typical value: 2)

ImageReader reader=ImageReader.newInstance(pictureSize.getWidth(),
 pictureSize.getHeight(), pictureFormat, 2);

Then, you need a Surface associated with your preview surface. For example,
you can call getSurfaceTexture() on a TextureView to get a
SurfaceTexture, then pass it to the Surface constructor to get the
associated Surface object.
Next, you can call createCaptureSession() on the CameraDevice representing
the opened camera. This takes three parameters:

	An ArrayList of Surface objects, for every places that the camera
driver needs to route frames towards. Typically, you will have two
elements in this list: the Surface for your preview surface and
the Surface that you get from your ImageReader by calling getSurface()
on it.

	A CameraCaptureSession.StateCallback instance, to be notified about
state changes in the frame-capturing process

	The Handler tied to your HandlerThread

cameraDevice
 .createCaptureSession(Arrays.asList(surface, reader.getSurface()),
 new PreviewCaptureSession(), handler);

(where PreviewCaptureSession is some subclass of
CameraCaptureSession.StateCallback)
That actually does not begin the previews. Instead, it configures
the camera to indicate that it is possible to do previews.
To continue the work for getting the previews rolling, in the onConfigured()
callback method on your CameraCaptureSession.StateCallback, you
can create a CaptureRequest.Builder that you can use for configuring
the camera to capture preview frames. You get one of those by calling
createCaptureRequest() on the CameraDevice, passing in an int
indicating the general type of request that you are creating, such as
TEMPLATE_PREVIEW for preview frames:

CaptureRequest.Builder b=
 cameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);

You then call addTarget() on the Builder, supplying the Surface
onto which the captured frames will be written. For previews, that
target is the Surface associated with your preview surface.
You can also call set() on the Builder to configure various options
that you would like for the camera, such as auto-focus modes, flash
modes, and the like. The code snippet shown below demonstrates
setting up “continuous picture” auto-focus mode and having the
auto-exposure mode engage the flash as needed.
Eventually, you ask the CaptureRequest.Builder to build()
you a CaptureRequest, and you pass that to setRepeatingRequest()
on the CameraCaptureSession that is passed into onConfigure()
of your CameraCaptureSession.StateCallback:

@Override
public void onConfigured(CameraCaptureSession session) {
 try {
 CaptureRequest.Builder b=
 cameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);

 b.addTarget(surface);
 b.set(CaptureRequest.CONTROL_AF_MODE,
 CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE);
 b.set(CaptureRequest.CONTROL_AE_MODE,
 CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);

 // other Builder configuration goes here

 CaptureRequest previewRequest=b.build();

 session.setRepeatingRequest(previewRequest, null, handler);
 }
 catch (CameraAccessException e) {
 // do something
 }
 catch (IllegalStateException e) {
 // do something
 }
}

setRepeatingRequest() takes three parameters:

	the CaptureRequest created by the Builder

	an optional CameraCaptureSession.CaptureCallback object to be
notified about frame captures

	the Handler associated with your HandlerThread

Note that you will want to hold onto the CaptureRequest.Builder
that you created here, as you will want it again when it comes time
to take a picture.
When you go to close() the CameraDevice, before you do so, you
must also close up the previews. You do this by calling close()
on the CameraCaptureSession and close() on your ImageReader.
Taking a Picture
At some point, you will want to take a picture. Typically, this is based
on user input, though it would not have to be. Taking a picture
not only involves telling the camera to capture a picture (typically at
a different resolution than the previews), but also to arrange to get
that written out to disk somewhere as a JPEG file.
android.hardware.Camera
Taking a photo with a Camera is a matter of calling takePicture() on the
Camera object. There are two flavors of takePicture(), for which three
parameters are in common:

	a Camera.ShutterCallback, which will be called the moment the picture
is taken, so that you can customize the “shutter” sound

	two Camera.PictureCallback objects, for raw (uncompressed) and JPEG
photo data, where relatively few devices support raw images using
the original camera API

The four-parameter version of takePicture() also takes a third
Camera.PictureCallback, to be called when “a scaled, fully processed
postview image is available”. This explanation probably means something
to somebody, but the author of this book has no idea what it means.
You cannot call takePicture() until after startPreview() has been
called to set up a preview pane. takePicture() will automatically
stop the preview. At some point, if you want to be able to take another
photo, you will need to call startPreview() again. Note, though, that you
cannot call startPreview() until after the final compressed photo
has been delivered to your Camera.PictureCallback object.
Before you call takePicture(), you are going to want to adjust
the Camera.Parameters to configure how the photo should be taken. The
primary setting to adjust is the size of the picture to take. Just as you
ask Camera.Parameters for available preview sizes and choose one,
you can call getSupportedPictureSizes(), which returns a List
of Camera.Size objects. You can then choose a size and pass its width
and height to setPictureSize() on the Camera.Parameters. Other things
to potentially adjust include:

	flash mode (getSupportedFlashModes() and setFlashMode())

	focus mode (getSupportedFocusModes() and setFocusMode())

	white balance (getSupportedWhiteBalance() and setWhiteBalance())

	geo-tagging (setGpsLatitude(), setGpsLongitude(), setGpsAltitude(), etc.)

	JPEG image quality (setJpegQuality())

	and so on

Note that calling setParameters() multiple times seems to lead to
camera instability. Ideally, you collect all your desired settings
from the user up front, then call setParameters() once when you set
up your preview size. If you need to change parameters, you may wish to
consider closing and re-opening the camera.
The Camera.PictureCallback will be called with onPictureTaken()
and will be handed a byte array representing the picture. Typically,
you will supply a PictureCallback for JPEG images, and so the byte
array will represent the photo encoded in JPEG. At this point, you
can hand that byte array off to a background thread to write it to disk,
upload it to some server, or whatever else you planned to do with
the picture.
Note that one thing you cannot readily do with the picture is hand it
to another activity. There is a 1MB limit on the size of an Intent
used with startActivity(), and usually the JPEG will be bigger than
that. Hence, you cannot readily pass the picture via an Intent extra
to another activity. If at all possible, use fragments or something
else to keep all your relevant bits of UI together in a single activity,
rather than try to get the images from activity to activity.
android.hardware.camera2
First, you should attach an ImageReader.OnImageAvailableListener
instance to your ImageReader, using setOnImageAvailableListener().
ImageReader.OnImageAvailableListener is an interface; you will be
called with onImageAvailable() when a new image is delivered
to the ImageReader. We will come back to that onImageAvailable()
method after quite a bit of additional coding.
Next, given the CaptureRequest.Builder you created when you set up
the previews, you need to adjust the builder to lock the auto-focus
(assuming that auto-focus is enabled):

b.set(CaptureRequest.CONTROL_AF_TRIGGER,
 CameraMetadata.CONTROL_AF_TRIGGER_START);

At that point, you can build() a fresh CaptureRequest and
call setRepeatingRequest() on the CameraCaptureSession, to change
the previews to switch to a locked focus:

captureSession.setRepeatingRequest(b.build(),
 new RequestCaptureTransaction(),
 handler);

Here, RequestCaptureTransaction is a subclass of
CameraCaptureSession.CaptureCallback, so you can be notified of how
the auto-focus locking is proceeding. You wind up having to implement a
fairly convoluted state machine to eventually find out it is time to
take a picture… or possibly to ask for a “precapture trigger” to
start on the auto-exposure system:

private class RequestCaptureTransaction extends CameraCaptureSession.CaptureCallback {
 private final Session s;
 boolean isWaitingForFocus=true;
 boolean isWaitingForPrecapture=false;
 boolean haveWeStartedCapture=false;

 RequestCaptureTransaction(CameraSession session) {
 this.s=(Session)session;
 }

 @Override
 public void onCaptureProgressed(CameraCaptureSession session,
 CaptureRequest request, CaptureResult partialResult) {
 capture(partialResult);
 }

 @Override
 public void onCaptureFailed(CameraCaptureSession session, CaptureRequest request, CaptureFailure failure) {
 // TODO: raise event
 }

 @Override
 public void onCaptureCompleted(CameraCaptureSession session, CaptureRequest request, TotalCaptureResult result) {
 capture(result);
 }

 private void capture(CaptureResult result) {
 if (isWaitingForFocus) {
 isWaitingForFocus=false;

 int autoFocusState=result.get(CaptureResult.CONTROL_AF_STATE);

 if (CaptureResult.CONTROL_AF_STATE_FOCUSED_LOCKED == autoFocusState ||
 CaptureResult.CONTROL_AF_STATE_NOT_FOCUSED_LOCKED == autoFocusState) {
 Integer state=result.get(CaptureResult.CONTROL_AE_STATE);

 if (state == null ||
 state == CaptureResult.CONTROL_AE_STATE_CONVERGED) {
 isWaitingForPrecapture=false;
 haveWeStartedCapture=true;
 capture(s);
 }
 else {
 isWaitingForPrecapture=true;
 precapture();
 }
 }
 }
 else if (isWaitingForPrecapture) {
 Integer state=result.get(CaptureResult.CONTROL_AE_STATE);

 if (state == null ||
 state == CaptureResult.CONTROL_AE_STATE_PRECAPTURE ||
 state == CaptureRequest.CONTROL_AE_STATE_FLASH_REQUIRED) {
 isWaitingForPrecapture=false;
 }
 }
 else if (!haveWeStartedCapture) {
 Integer state=result.get(CaptureResult.CONTROL_AE_STATE);

 if (state == null ||
 state != CaptureResult.CONTROL_AE_STATE_PRECAPTURE) {
 haveWeStartedCapture=true;
 capture();
 }
 }
 }

 private void precapture() {
 try {
 b.set(CaptureRequest.CONTROL_AE_PRECAPTURE_TRIGGER,
 CaptureRequest.CONTROL_AE_PRECAPTURE_TRIGGER_START);
 s.captureSession.capture(b.build(), this, handler);
 }
 catch (Exception e) {
 // do something
 }
 }

 private void capture() {
 try {
 CaptureRequest.Builder captureBuilder=
 cameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_STILL_CAPTURE);

 captureBuilder.addTarget(reader.getSurface());
 captureBuilder.set(CaptureRequest.CONTROL_AF_MODE,
 CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE);
 captureBuilder.set(CaptureRequest.CONTROL_AE_MODE,
 CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);

 captureSession.stopRepeating();
 captureSession.capture(captureBuilder.build(),
 new CapturePictureTransaction(), null);
 }
 catch (Exception e) {
 // do something
 }
 }
}

The author of this book wishes he understood what all this stuff
is for.
But, eventually, it will be time to take the picture, represented
by the capture() method in the above code dump. Here, we create a new
CaptureRequest.Builder, this time using TEMPLATE_STILL_CAPTURE
to indicate that we are trying to take a picture. We set up our target
(via addTarget()) to be the Surface from the ImageReader.
We re-establish our desired auto-focus and auto-exposure modes.
Then, we stop the previews, by calling stopRepeating() on the
CameraCaptureSession, undoing the prior setRepeatingRequest()
call where we asked for previews. Then, we call capture()
on the CameraCaptureSession, requesting a single-frame capture
rather than a repeating request. This, like setRepeatingRequest(),
takes our CaptureRequest from the Builder, a
CameraCaptureSession.CaptureCallback to find out the results of
the capture work, and our Handler.
The primary job of this CameraCaptureSession.CaptureCallback is
to restart the previews, in onCaptureCompleted(). First, we use
the preview edition of the CaptureRequest.Builder to undo some
of the changes made during the camera capture process. Then, given
the original preview CaptureRequest, we call setRepeatingRequest()
again, to get the previews showing once more:

@Override
public void onCaptureCompleted(CameraCaptureSession session, CaptureRequest request, TotalCaptureResult result) {
 try {
 b.set(CaptureRequest.CONTROL_AF_TRIGGER,
 CameraMetadata.CONTROL_AF_TRIGGER_CANCEL);
 b.set(CaptureRequest.CONTROL_AE_MODE,
 CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);
 s.captureSession.capture(b.build(), null, handler);
 s.captureSession.setRepeatingRequest(previewRequest, null, handler);
 }
 catch (CameraAccessException e) {
 // do something
 }
 catch (IllegalStateException e) {
 // do something
 }
}

As part of all of this work, your onImageAvailable() method on your
ImageReader.OnImageAvailableListener will be called when the picture
is ready. The
recipe for getting your JPEG image looks like this:

@Override
public void onImageAvailable(ImageReader imageReader) {
 Image image=imageReader.acquireNextImage();
 ByteBuffer buffer=image.getPlanes()[0].getBuffer();
 byte[] bytes=new byte[buffer.remaining()];

 buffer.get(bytes);
 image.close();

 // do something with the byte[] of JPEG data
}

Here, you are subject to the same sorts of limitations as were
described in the section on taking pictures with the original
camera API. Notably, that byte array may be large, too large to put
into an Intent extra and pass to another activity.
Recording a Video
Traditional Android video recording is handled via MediaRecorder.
This means that we need to hand control over the camera from the
regular camera API that we are using to MediaRecorder, record the video,
and then return control back to the camera API (e.g., for previews).
MediaRecorder itself then has its own API for configuring the
recorder, starting the recording, and stopping the recording.
android.hardware.Camera
To retain the camera access for your app, but allow MediaRecorder
to take over the camera, call stopPreview(), then unlock(),
on the Camera object:

camera.stopPreview();
camera.unlock();

When the recording is complete, you reverse the process, by calling
reconnect() and startPreview():

camera.reconnect();
camera.startPreview();

In between the unlock() and reconnect() calls is when you use
the MediaRecorder API.
android.hardware.camera2
This particular combination (video recording with the Android 5.0+ camera
API) will be covered in a future edition of this chapter.
Using MediaRecorder
Creating a MediaRecorder instance is simple enough: just use the
zero-argument constructor.
You then need to tell it what camera to use. With the original camera API,
that is a matter of calling setCamera() on the MediaRecorder, passing
in your Camera object.

MediaRecorder recorder=new MediaRecorder();

recorder.setCamera(camera);

Next, call setAudioSource() and setVideoSource() to indicate
where the audio and video to be recorded are coming from. The typical
value to use for the audio source is CAMCORDER. For the original
camera API, you will need to use CAMERA as the video source:

recorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER);
recorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);

Next, you need to configure how the video should be recorded,
in terms of things like resolution. The typical approach using
the original camera API
is to use setProfile(), passing in a CamcorderProfile to
the MediaRecorder. You can find out what profiles are supported
by calling methods like hasProfile() on CamcorderProfile.
There are some fairly generic profiles, like QUALITY_HIGH
and QUALITY_LOW, and some fairly specific profiles, like
QUALITY_2160P for 2K video. Not all devices will support
all profiles, based on Android version and camera driver capabilities.
So, you will need to be responsive to varying cameras and gracefully
degrade from the profile you want to a profile that you can get.
For example, the following code snippet tries QUALITY_HIGH, falls
back to QUALITY_LOW if QUALITY_HIGH is not available, and bails
out if neither of those profiles exist:

boolean canGoHigh=CamcorderProfile.hasProfile(cameraId,
 CamcorderProfile.QUALITY_HIGH);
boolean canGoLow=CamcorderProfile.hasProfile(cameraId,
 CamcorderProfile.QUALITY_LOW);

if (canGoHigh) {
 recorder.setProfile(CamcorderProfile.get(cameraId,
 CamcorderProfile.QUALITY_HIGH));
}
else if (canGoLow) {
 recorder.setProfile(CamcorderProfile.get(cameraId,
 CamcorderProfile.QUALITY_LOW));
}
else {
 throw new IllegalStateException(
 "cannot find valid CamcorderProfile");
}

Here, cameraId is the int identifying your open camera.
Then, you can configure:

	the file path to which the resulting video should be written

	the maximum file size you want, after which recording will
automatically stop (optional)

	the maximum duration that you want, after which recording will
automatically stop (optional)

	a hint for what orientation the video should be recorded in
(optional)

recorder.
 setOutputFile(new File(getExternalFilesDir(null), FILENAME).getAbsolutePath());
recorder.setMaxFileSize(5000000); // ~5MB max
recorder.setMaxDuration(10000); // ~10 seconds max
recorder.setOrientationHint(90); // rotate output 90 degrees

Optionally, you can call setInfoListener() and setErrorListener(),
supplying objects that will be invoked when certain events occur. Notably,
if you use setMaxFileSize() or setMaxDuration(), the OnInfoListener
object will be notified when recording automatically stops due to reaching
one of those limits.
You then call prepare(), followed by start(), and your video recording
will commence:

recorder.prepare();
recorder.start();

When it comes time to stop the recording manually (e.g., user taps a
“stop” button), just call stop(), then release(), on the MediaRecorder.
Configuring the Still Camera
In general, when using the camera classes in Android, you get reasonable
defaults for things like focus mode and flash mode. However, what might
be reasonable defaults may not be what the user wants in any given
circumstance. Other bits of configuration, like zoom, cannot really
be defaulted (other than to “no zoom”).
For these, you will need to provide some sort of UI to allow the user
to request settings, then apply them as part of your camera implementation.
Here, we will focus on applying the configuration.
(and, yes, that was a pun)
Focus Mode
Frequently, a user will want simple autofocus behavior, where the
camera attempts to focus on the content centered within the preview.
However, in some situations, the user may want autofocus to be disabled,
turning the camera into a fixed-focus camera. And there are some
specialty focus modes that may be available to you as well, depending
upon device and camera API.
Here is how you can set up the camera to use one of those focus
modes, for each of the camera APIs.
android.hardware.Camera
The Camera.Parameters object has a getSupportedFocusModes()
method. This returns a List of String objects, where each value
corresponds to a focus mode that is available on this camera (front-facing,
rear-facing) on this device. The possible strings are defined as
constants on Camera.Parameters:

	FOCUS_MODE_AUTO

	FOCUS_MODE_CONTINUOUS_PICTURE

	FOCUS_MODE_CONTINUOUS_VIDEO

	
FOCUS_MODE_EDOF (“extended depth of field”)

	FOCUS_MODE_FIXED

	FOCUS_MODE_INFINITY

	FOCUS_MODE_MACRO

In truth, few devices support all of these. However, every device
will support at least one; getSupportedFocusModes() is guaranteed
to not return null and not return an empty List.
To choose a focus mode, call setFocusMode() on the
Camera.Parameters, supplying the string of the desired mode.
And, of course, you will eventually need to call setParameters()
on the Camera, supplying your modified Camera.Parameters.
android.hardware.camera2
Similarly, you can get a list of supported auto-focus modes by calling
get(CameraCharacteristics.CONTROL_AF_AVAILABLE_MODES) on a
CameraCharacteristics object tied to your chosen camera. This
returns an array of int values, instead of a List of strings.
The possible values are defined as constants on CameraMetadata:

	CONTROL_AF_MODE_AUTO

	CONTROL_AF_MODE_CONTINUOUS_PICTURE

	CONTROL_AF_MODE_CONTINUOUS_VIDEO

	
CONTROL_AF_MODE_EDOF (“extended depth of field”)

	CONTROL_AF_MODE_MACRO

	CONTROL_AF_MODE_OFF

After the user chooses a value, you will need to call
set(CaptureRequest.CONTROL_AF_MODE, ...) on your
CaptureRequest.Builder, where ... is the int of the
desired focus mode. Note that you will need to do this
both for the CaptureRequest.Builder for preview frames
and for the CaptureRequest.Builder used when you take an actual
picture.
If the user is changing this value while you are already showing
the preview, you will need to
update the preview behavior, by calling build() on the
Builder to create the CameraRequest, then calling
setRepeatingRequest() to override your previous CameraRequest
with the new one with the new focus mode. As a result, you tend
to want to hang onto your CameraRequest.Builder for previews, so
you can make these sorts of incremental changes in behavior, without
having to create a fresh Builder from scratch with all of the
desired settings.
Flash Mode
Typically, users want flash when they need flash, due to insufficient
ambient lighting. However, once again, they may want specific flash
modes instead (definitely flash, definitely not flash, etc.).
As with focus modes, you can ask the camera APIs what flash modes
are available for a given camera. In this case, though, there is no
guarantee of any flash mode configurability, since not all cameras
have flash (and Android considers “off” and “flash does not exist”
to be different things). And, once the user has chosen a flash mode,
you can configure the camera APIs to use that particular mode.
Of course, the details vary by camera API.
android.hardware.Camera
Camera.Parameters has getSupportedFlashModes(), which returns a
List of strings representing the supported flash modes, or null
if flash modes cannot be configured for this camera. The string
values map to constants defined on Camera.Parameters:

	FLASH_MODE_AUTO

	FLASH_MODE_OFF

	FLASH_MODE_ON

	
FLASH_MODE_RED_EYE (“red-eye reduction mode”)

There is an additional flash mode, FLASH_MODE_TORCH, that will
keep the flash during the preview as well as flashing it during the
actual act of taking the picture. In truth, this setting is more often
used for flashlight apps.
Once the user has chosen a flash mode, you can call setFlashMode()
on the Camera.Parameters, then eventually call setParameters()
on the Camera.
android.hardware.camera2
To find out what flash modes are available for a camera2 camera,
you can call get(CameraCharacteristics.CONTROL_AE_AVAILABLE_MODES)
on the CameraCharacteristics for the camera in question. This returns
an array of int values, mapping to constants defined on
CameraCharacteristics:

	
CONTROL_AE_MODE_ON (which really means “off”)

	CONTROL_AE_MODE_ON_ALWAYS_FLASH

	CONTROL_AE_MODE_ON_AUTO_FLASH

	CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE

Here, AE is short for “auto-exposure”. CONTROL_AE_MODE_ON says
that auto-exposure is enabled, just without any flash. There is a
separate CONTROL_AE_MODE_OFF which totally disables the
auto-exposure capability. However, that will screw up auto-focus
and auto-white balance, and so rarely will camera apps want to
use CONTROL_AE_MODE_OFF.
Once the user chooses the desired flash mode, you can call
set(CaptureRequest.CONTROL_AE_MODE, ...) on your
CaptureRequest.Builder object, where ... is the desired
flash mode int. You will need to do this both for the preview
Builder and the Builder used when actually taking the picture.
If the user is changing this value on the fly, you will need to
update the preview behavior, by calling build() on the
Builder to create the CameraRequest, then calling
setRepeatingRequest() to override your previous CameraRequest
with the new flash-enabled one.
Zoom
Flash and focus modes might be the sort of thing that the user could
choose before you start up your camera preview, let alone take a picture.
Zoom, on the other hand, is the sort of thing that the user will want
to adjust on the fly, based on what they see in the preview.
Hence, your first challenge with implementing a zoom feature is
deciding how you want users to indicate that they want to zoom in or out,
given that probably most of your screen space is taken up by the preview
itself. Options include:

	Float a SeekBar over the preview along an edge, where the user
can slide the thumb or tap on the bar to move the thumb to indicate
an increase or decrease in the zoom

	Use a pinch-zoom gesture, via ScaleGestureDetector

	Use some other gesture, such as a vertical swipe, using a GestureDetector

	Have a pair of buttons to increase or decrease the zoom

Both Android camera APIs have the notion of a numeric zoom level. The bottom
end of the zoom range
is either 0 (for the classic camera API) or 1 (for the camera2 API).
The top end is found by from the camera APIs. Your job will be to
convert whatever input signals you get from the user into a zoom level,
then update the camera settings to zoom to that setting.
The code segments shown in this section assume that your input is
giving you a zoom level in the 0-100 range, such as via a SeekBar
with the default maximum value.
android.hardware.Camera
Camera.Parameters offers several methods related to zoom.
The big one is isZoomSupported(). false means that the camera does
not offer any sort of zoom (digital or optical). You might use that to
disable your zoom input option, so as not to offer something to the user
that will not work. Few devices will return false, though.
Assuming isZoomSupported() is true, then getMaxZoom() will tell you
the highest possible zoom value. Your overall range of zoom values will
be from 0 to this maximum.
If you are using some form of user input that only indicates incremental
changes in zoom (e.g., buttons for zoom in and zoom out), you can use
getZoom() to find out the current zoom value. You can then increment
or decrement that value and check your new value against the ends of the
range (0 and getMaxZoom()) to ensure that it is valid.
Given a new zoom value, you have two choices for applying it:

	
setZoom() on CameraParameters does a “smash cut”, jumping to the
new zoom value immediately upon applying those parameters to the camera
via setParameters().

	
startSmoothZoom() on Camera will “animate” the zoom change from
the current to the new value over a period of a second or two. However,
not all devices support this. Call isSmoothZoomSupported() on the
Camera.Parameters to see if smooth zoom is available to you.

The following code snippet takes a zoom level from 0 to 100 and zooms
the camera, assuming zoom is supported:

@Override
public boolean zoomTo(Camera camera, int zoomLevel) {
 Camera camera=descriptor.getCamera();
 Camera.Parameters params=camera.getParameters();
 int zoom=zoomLevel*params.getMaxZoom()/100;
 boolean result=false;

 if (params.isSmoothZoomSupported()) {
 camera.setZoomChangeListener(this);
 camera.startSmoothZoom(zoom);
 result=true;
 }
 else if (params.isZoomSupported()) {
 params.setZoom(zoom);
 camera.setParameters(params);
 }

 return(result);
}

You will notice that if isSmoothZoomSupported() returns true, we
not only call startSmoothZoom(), but we also call setZoomChangeListener().
This registers a listener to find out about how the smooth zoom is
progressing. In particular, you should disable further changes to the
zoom until the smooth zoom process completes. Your OnZoomChangeListener
will be called with onZoomChange() for each incremental change in the
zoom from start to finish, with stopped set to true when we are done
with the smooth zoom operation:

@Override
public void onZoomChange(int zoomValue, boolean stopped,
 Camera camera) {
 if (stopped) {
 // do something
 }
}

If you need to stop the smooth zoom before completion, there is a
stopSmoothZoom() method on Camera that you can call. For example,
instead of disabling zoom controls, you might stop the current smooth zoom
operation if the user chooses a new zoom level, then start a fresh
smooth zoom operation to the newly-requested level.
android.hardware.camera2
(the author would like to thank Daniel Albert for
helping with
this section)
On the surface, the camera2 API works much the same: you find out
the maximum zoom value, translate your user input into the valid
zoom value range (this time, from 1.0f to the maximum), and then
update the camera for that zoom value.
However, that last step is substantially different than before.
For digital zoom, rather than saying “zoom in to this value”, we say
“crop the camera inputs to this rectangle, and expand that rectangle
to fill the preview or the picture”. This is rather more complex, albeit
with potentially more power.
To find out the maximum digital zoom value, call
get(CameraCharacteristics.SCALER_AVAILABLE_MAX_DIGITAL_ZOOM) on the
CameraCharacteristics for the camera in question. That will be a
float value. 1.0f would indicate that the camera cannot perform
digital zoom. The range of possible digital zoom values is from 1.0f
to whatever the maximum is.
So, the first part of this edition of zoomTo() normalizes a 0-100
integer into a float representing the zoom value:

@Override
public boolean zoomTo(String cameraId,
 CaptureRequest.Builder previewRequestBuilder,
 CameraCaptureSession captureSession,
 int zoomLevel) {
 try {
 final CameraCharacteristics cc=
 mgr.getCameraCharacteristics(cameraId);
 final float maxZoom=
 cc.get(
 CameraCharacteristics.SCALER_AVAILABLE_MAX_DIGITAL_ZOOM);

 // if <=1, zoom not possible, so eat the event
 if (maxZoom>1.0f) {
 float zoomTo=1.0f+((float)zoomLevel*(maxZoom-1.0f)/100.0f);

 zoomRect=cropRegionForZoom(cc, zoomTo);

 previewRequestBuilder
 .set(CaptureRequest.SCALER_CROP_REGION, zoomRect);
 previewRequest=previewRequestBuilder.build();
 captureSession.setRepeatingRequest(previewRequest,
 null, handler);
 }
 }
 catch (CameraAccessException e) {
 // ummm... do something
 }

 return(false);
}

Given a zoom value, we need to determine the Rect that represents
the subset of the field of vision that we want to zoom into. The following
algorithm zooms into the center of the field:

private static Rect cropRegionForZoom(CameraCharacteristics cc,
 float zoomTo) {
 Rect sensor=
 cc.get(CameraCharacteristics.SENSOR_INFO_ACTIVE_ARRAY_SIZE);
 int sensorCenterX=sensor.width()/2;
 int sensorCenterY=sensor.height()/2;
 int deltaX=(int)(0.5f*sensor.width()/zoomTo);
 int deltaY=(int)(0.5f*sensor.height()/zoomTo);

 return(new Rect(
 sensorCenterX-deltaX,
 sensorCenterY-deltaY,
 sensorCenterX+deltaX,
 sensorCenterY+deltaY));
}

That Rect then gets used:

	Immediately, via a call to set() on the CaptureRequest.Builder,
to set the SCALER_CROP_REGION. That Builder then is used to re-establish
the preview repeating capture request.

	At the point in time when the user requests to take a picture. We will
need to call set() on that CaptureRequest.Builder, to reproduce the
same zoom.

	Later, if we have to set up the preview capture request again and we
still want this zoom value taken into account.

Note that this does not cover optical zoom. On Android 5.0, that is handled
as available focal lengths. You can get the list of available
focal lengths by requesting LENS_INFO_AVAILABLE_FOCAL_LENGTHS from
the CameraCharacteristics. Setting LENS_FOCAL_LENGTH on a
CaptureRequest.Builder will shift the camera’s focal length as
requested. This may take a moment, as optical zoom usually requires
mechanical changes in the camera configuration. The LENS_STATE
(on CaptureResult) will be reported as MOVING while the focal
length is changing, or STATIONARY once the focal length has reached
the requested value.
And Now, The Problems
Of course, taking pictures is not nearly this simple. The preceding
sections glossed over all sorts of problems that you will run into
in practice when trying to implement these APIs. The following sections
outline a few of those problems, particularly ones that will affect
both camera APIs.
Choosing a Preview Size
Camera drivers are capable of delivering preview images to your
preview surface in one of several resolutions. You have to sift through a
roster of resolutions and choose one.
Your gut instinct might be to choose the highest-available resolution.
After all, that should result in the highest-quality previews. However,
this can be wasteful, if the preview images are significantly bigger
than your preview surface. Plus, the larger the preview frames, the
slower the camera driver will be to deliver them, reducing your
possible frames-per-second (fps) for the previews. You might instead
elect to choose the largest preview that is smaller than the surface,
or some algorithm like that.
Previews and Aspect Ratios
Compounding the problem of choosing preview sizes is that the resolutions
of available preview sizes bear no relationship at all to the size of
your preview surface. After all, you might have a TextureView that fills
the screen, or you might have a TextureView that is rather tiny. That
is up to you from a UI design standpoint; the camera driver is oblivious
to such considerations.
In particular, the aspect ratios (width divided by height) of the
preview frames do not necessarily have to match the aspect ratio of
your preview surface. For example, few camera drivers support square
previews, yet for aesthetic reasons you might be aiming for a square
preview surface.
You have two main approaches for dealing with this: letterboxing and
cropping.
Letterboxing is where your preview frames retain their aspect ratio, but
do not fill up all the available space in the preview surface. Instead,
part of the preview surface is unused. For example, if your preview surface
is square, and your preview frames have a landscape aspect ratio (width
is greater than the height), letterboxing would show the landscape aspect
ratio within the square box of the preview surface, with black bars for
the unused portion of the square’s height. Typically, using gravity, you
try to have the preview frames be centered and the unused portion of the
surface be split to either side of the frames.
If you want to fill the preview surface, then letterboxing is not a viable
option. However, if you just take the preview frames and try to put them
into the surface, the surface will stretch the frames to fit the surface.
If the aspect ratio of the frames is significantly different than is the
aspect ratio of the surface, the subject matter in the preview will
seem significantly stretched, either vertically or horizontally.
The trick to deal with this, on API Level 14+ (with graphics acceleration
enabled, as is the default), is to have the surface be bigger than what
you really want, but then to have something overlapping the surface and
causing it to be visually cropped. You have your new, larger surface
match the aspect ratio of the preview frames, so there is no stretching.
However, now what the user sees in your preview surface may differ
substantially from what winds up in the picture or video, as you are
cropping off portions that do not fit your preview surface, where those
cropped areas might well show up in final output.
Choosing a Picture or Video Size
Choosing a picture or video size is reminiscent of choosing a preview size. While
many cases will call for as high of a resolution as you can muster,
some use cases will lead you towards choosing a lower resolution. For
example, situations requiring a rapid upload of the resulting media might
select a lower resolution, as that will reduce the file size and make the
upload process that much faster.
Also, bear in mind that the aspect ratio of the available picture
or video sizes do not necessarily match the aspect ratio of either
the preview frames or your preview surface. Emphasize to your users
that the preview surface is for aiming the camera; what actually gets
recorded may be somewhat different in scope but should be centered on
the same spot.
Picture Orientation
Your app may wish to take pictures in both landscape and portrait modes.
However, the camera drivers are designed around taking pictures
in landscape, particularly for rear-facing cameras.
You can hint to the camera driver what orientation you think the resulting
picture should have, such as via setRotation() on the
Camera.Parameters in the original camera API. However, as the documentation
for that method states:

The camera driver may set orientation in the EXIF header without rotating the picture. Or the driver may rotate the picture and the EXIF thumbnail. If the Jpeg picture is rotated, the orientation in the EXIF header will be missing or 1 (row #0 is top and column #0 is left side).

Many camera drivers take the approach of leaving the image alone and
setting the Orientation EXIF header. That header tells image viewers
to rotate the image. Unfortunately, not all image viewers or image
decoding libraries pay attention to this. Notably, Android usually
does not pay attention to this, as BitmapFactory ignores this EXIF
header. As a result, when you go to load in your own picture that
you took, your result may come out mis-oriented.
You have two major choices:

	Put more smarts in any logic that you are using to display images
that you take with the camera, where you read the EXIF headers yourself
and you arrange to rotate the image as needed, perhaps by rotating the
ImageView you are using to show the image.

	As part of post-processing the image before saving it, you rotate
the image based upon what is in the EXIF header, and save the image
with the proper rotation and no EXIF header. This has the advantage
of making the image “correct” for all image viewers. However, rotating
full-resolution photos is rather memory-intensive and slow. Using
NDK code, such as this library,
may be able to help.

Storage Considerations
Bear in mind that if you wish to save pictures or videos in common
locations on external storage, such as the standard location for
digital camera output (Environment.DIRECTORY_DCIM), you will need
the WRITE_EXTERNAL_STORAGE permission on all relevant API levels. As
of Android M, this is a dangerous permission handled via the runtime
permission system, so you will need to have the <uses-permission>
element in the manifest and ask the user for that permission at runtime.
Also, files written out to external storage will not be picked up
immediately by MediaStore, and so “gallery” and related apps that rely
upon the MediaStore will not see your pictures or videos. You can use
MediaScannerConnection to proactively have the MediaStore add your
newly-created files to the index, as was covered earlier in the book.
Configuration Changes
Opening and closing a camera each takes a fair amount of time. As a result,
if your app wants to support taking pictures and videos in either
portrait or landscape, this is a case where you will want to strongly
consider using a retained fragment to hold onto your Camera (or
combination of CameraManager and CameraDevice) across a configuration
change. That way, Android will not destroy and recreate the fragment,
and you can keep the camera open during the change.
Camera Peeking Attacks
(NOTE: this section is based upon
a blog post
from the author)
A research paper
points out an interesting Android attack vector, resulting in a possible
leak of private information. The paper’s authors refer to it as the
“camera peeking” attack.
An Android camera driver can only
be used by one app at a time. The attack is simple:

	monitor for when an app that might use the camera for something important
comes to the foreground

	at that point, start watching for the camera to become unavailable

	once the camera is unavailable, then available again, grab the camera
and take a picture, in hopes that the camera is still pointing at the private
information

The example cited by the paper’s authors is to watch for a banking app taking
a photo of a check, to try to take another photo of the check to send to those
who might use the information for various types of fraud.
Polling for camera availability is slow, simply because the primary way to see
if the camera is available is to open it, and that takes hundreds of
milliseconds. The paper’s specific technique helped to minimize the polling,
by knowing when the right activity was in the foreground and therefore the camera
was probably already in use. Then, it would be a matter of polling until the
camera is available again and taking a picture. Even without the paper’s
specific attack techniques, this general attack is possible, and
there may be more efficient ways to see if the camera is in
use.
On the other hand, the defense is simple: if your app is taking pictures, and
those pictures may be of sensitive documents, ask the user to point the camera
somewhere else before you release the camera. So long as you have
exclusive control over the camera, nothing else can use it, including any
attackers.
A sophisticated implementation of this might use image-recognition techniques
to see, based upon preview frames plus the taken picture, if the camera is pointing
somewhere else. For example, a banking app offering check-scanning might
determine if the dominant color in the camera field significantly changes,
as that would suggest that the camera is no longer pointed at a check, since
checks are typically fairly monochromatic.
Or, just ask the user to point the camera somewhere else, then close the
camera after some random number of seconds.
General-purpose camera apps might offer an “enhanced security” mode that does
this sort of thing, but having that on by default might annoy the user trying
to take pictures at the zoo, or at a sporting event. However, document-scanning
apps might want to have this mode on by default, and check-scanning apps might
simply always use this mode.
Media Routes
Android can send audio and video to a variety of places, such as:

	Bluetooth headsets or headphones

	External displays, like a TV or monitor

	External devices that themselves play back media, such as a Chromecast

There is a common API for determining which of these “places” are available and
allowing the user to choose which of these “places” should be used for a given
bit of media. This common API centers around a MediaRouter, which is the focus
of this chapter.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of the book. In addition, you should read the chapters on
advanced action bar techniques and
the appcompat-v7 action bar backport.
Terminology
First, we need to establish some common ground in terms of…, well, terms.
Media
In this chapter, “media” refers to audio or video. This includes both media
that may be stored on the device as well as media that may be streamed from some
other source, frequently over the Internet.
Route
A route indicates where media should be played. There are three categories of routes
that concern us:

	Where should we be playing live audio, in terms of speakers or headphones or other
things connected to the device?

	Where should we be playing live video: on the device’s own screen or on some other
screen connected via a cable?

	Is there any sort of “remote playback” device available, such as a Chromecast,
that can play back media on its own under our direction, rather than requiring our own
app to play back the media itself?

MediaRouter
MediaRouter is the name of a class (actually, two classes) that know what routes are
possible given the current environment and what routes are selected for the different
categories (by default or by user choice).
A Tale of Two MediaRouters
MediaRouter and its related classes represent a curious API. There are two versions
of the MediaRouter class related support
classes that will concern you as a developer.
android.media
MediaRouter debuted in Android in API Level 16, through classes added to the android.media
package. This version of MediaRouter can work with live audio and live video routes,
but not the Chromecast-style remote playback routes.
android.media also contains other classes that pertain to routes, such as
MediaRouteActionProvider, a way to allow the user to choose media routes via an
action bar item. The version of these classes in android.media work with native API Level 11
versions of the action bar and fragments.
android.support.v7.media
In 2013, an update to the Android Support package was released that contained another
version of MediaRouter and kin, in android.support.v7 packages. These are contained in a
dedicated Android library project that you can add to your app, found in the
extras/android/support/v7/mediarouter directory of your Android SDK installation, if you
have a current Android Support package installed.
While the native version of MediaRouter is a system service — obtained via getSystemService() –
the v7 version of MediaRouter is a singleton, obtained from a static getInstance()
method on the MediaRouter class.
The good news is that this updated version of MediaRouter can work with all three categories
of routes, including the Chromecast-style remote playback routes.
However, the bad news is that the v7 version of MediaRouter’s support classes
only support the Android Support backports of fragments and the action bar. This requires
you to inherit from ActionBarActivity and use the v4 version of Fragment and kin. This
is a rather annoying limitation, considering that many developers have specifically started
dropping support for older API levels to be able to avoid using this backport.
Attaching to MediaRouter
To be able to take advantage of all that MediaRouter has to offer,
we need to obtain an instance of it and connect to that instance, via
method calls and registering callbacks.
Getting a MediaRouter Instance
To get an instance of the android.support.v7.media.MediaRouter flavor
of MediaRouter, call getInstance() on MediaRouter.
This is in contrast to the android.media.MediaRouter variant, which
is a system service, obtained by calling getSystemService().
Note that the android.support.v7.media.MediaRouter flavor is global
for your process, but weakly held from a garbage collection standpoint.
You need to ensure that you hold onto your instance of MediaRouter
as long as you need it. Once your application code lets go of the
MediaRouter instance, it becomes eligible for garbage collection, disposing
of any registered callbacks and such along the way.
Working with Routes
MediaRouter has a getSelectedRoute() method that returns the
media route chosen by the user, or the overall default if the user has not
yet had a chance in your app to choose a route. This method returns
a MediaRouter.RouteInfo object, containing details about the route.
In particular, you can call supportsControlCategory() to determine
if the route is a live audio route, a live video route, or a remote
playback route, so you can take advantage of it accordingly.
There is also getDefaultRoute(), which, as the name suggests, returns
the MediaRouter.RouteInfo instance that is the overall default for
your app.
You can call getRoutes() to obtain a list of all routes known at the
present time. You might use this to allow the user to choose a route,
though MediaRouteActionProvider is generally a better choice, as will
be seen later in this chapter.
Given that you have a MediaRouter.RouteInfo instance from somewhere,
you can call selectRoute() to make this route the active one, replacing
whatever the previously-selected route was.
Registering a Callback
You can also call addCallback() to provide a MediaRouter.Callback
instance that will be invoked at various points in time based on the
changes in media routes. addCallback() also takes a
MediaRouteSelector, which describes what sorts of routes you are
interested in. We will examine MediaRouteSelector in greater
detail in the coverage of MediaRouteActionProvider
later in this chapter.
There are two flavors of addCallback(). Both take the MediaRouteSelector
and the MediaRouter.Callback, but one also takes an int supplying
flags to control the behavior of addCallback(). One flag of particular
importance is CALLBACK_FLAG_REQUEST_DISCOVERY. This tells MediaRouter
to not only set up the callback, but to attempt to find new routes
previously unknown to it. Mostly, this is for remote playback routes,
which require network I/O to find and are not necessarily known if not
specifically scanned for.
MediaRouter.Callback is a class, not an interface. You create your
own subclass of MediaRouter.Callback and override the callback
methods that interest you. Some noteworthy callback methods include:

	
onRouteAdded() and onRouteRemoved(), which are called when routes
are newly detected or have been lost, such as when a user plugs in or unplugs
an HDMI cable from the device

	
onRouteSelected() is called when a new route is selected, either
by the user (e.g., via MediaRouteActionProvider) or by you (e.g., via
selectRoute())

	
onRouteUnselected() is also called when a new route is selected,
but in this case, you are notified about the old route being
unselected

When you are done with the callback, call removeCallback() on the
MediaRouter, passing in the same MediaRouter.Callback instance you
supplied to addCallback().
We will see examples of using MediaRouter.Callback
in the next section.
User Route Selection with MediaRouteActionProvider
To give the user some measure of control over where media is played, you can add
a MediaRouteActionProvider to your action bar. This will add a button that, when
tapped, will allow the user to choose routes of relevance to your app (live audio,
live video, remote playback).
However, this does not really work the way you (or the user) might expect, simply
because some routes are automatically applied by the OS. Depending upon what the
Android device is connected to will determine what routes are automatically applied
and which ones the user can choose via MediaRouteActionProvider. For example, while
Android will route live video to an HDMI-connected external display automatically, the
user must opt into connecting to a Chromecast for remote playback capability.
This section outlines how to use MediaRouteActionProvider
and what the user will see for various circumstances. Most of
the sections will be focusing on the
MediaRouter/ActionProvider
sample project.
The Basic Project and Dependencies
The project has dependency on the mediarouter Android library project. Projects
that need mediarouter will need to have access to the Android Support library from
the SDK Manager and follow
the instructions to add it to your project.
Since mediarouter-v7 depends upon appcompat-v7, you will need both library projects.
The appcompat-v7 backport of the action bar requires that your activities use a
theme extending from Theme.AppCompat. Hence, we have a res/values/styles.xml resource
that defines AppTheme in the context of Theme.AppCompat.Light.DarkActionBar:

<resources>

 <style name="AppBaseTheme" parent="@style/Theme.AppCompat.Light.DarkActionBar"></style>

 <style name="AppTheme" parent="AppBaseTheme">
 <!-- All customizations that are NOT specific to a particular API-level can go here. -->
 </style>

</resources>

(from MediaRouter/ActionProvider/app/src/main/res/values/styles.xml)
And our <activity> in the manifest, pointing to MainActivity, refers to that
theme:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.mrap"
 android:versionCode="1"
 android:versionName="1.0">

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name="com.commonsware.android.mrap.MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from MediaRouter/ActionProvider/app/src/main/AndroidManifest.xml)
The Menu Resource
Since MediaRouteActionProvider is an action provider, we can add it to
our action bar via an actionProviderClass attribute in a menu resource. And, since
the Google implementation of MediaRouteActionProvider works with the appcompat-v7
action bar backport, we specifically need to use the appcompat-v7 approach to adding
actionProviderClass, putting it in our app’s custom XML namespace:

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/route_provider"
 android:title="@string/route_provider_title"
 app:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
 app:showAsAction="always"/>

</menu>

(from MediaRouter/ActionProvider/app/src/main/res/menu/main.xml)
Initializing the MediaRouter and Selector
Our activity (MainActivity) is an AppCompatActivity subclass, following the rules
for using the appcompat-v7 action bar backport:

package com.commonsware.android.mrap;

import android.os.Bundle;
import android.support.v4.view.MenuItemCompat;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.app.MediaRouteActionProvider;
import android.support.v7.media.MediaControlIntent;
import android.support.v7.media.MediaRouteSelector;
import android.support.v7.media.MediaRouter;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
 private MediaRouteSelector selector=null;
 private MediaRouter router=null;
 private TextView selectedRoute=null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 selectedRoute=(TextView)findViewById(R.id.selected_route);

 router=MediaRouter.getInstance(this);
 selector=
 new MediaRouteSelector.Builder().addControlCategory(MediaControlIntent.CATEGORY_LIVE_AUDIO)
 .addControlCategory(MediaControlIntent.CATEGORY_LIVE_VIDEO)
 .addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)
 .build();

 }

 @Override
 public void onStart() {
 super.onStart();

 router.addCallback(selector, cb,
 MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);
 }

 @Override
 public void onStop() {
 router.removeCallback(cb);

 super.onStop();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);

 MenuItem item=menu.findItem(R.id.route_provider);
 MediaRouteActionProvider provider=
 (MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

 provider.setRouteSelector(selector);

 return(true);
 }

 private MediaRouter.Callback cb=new MediaRouter.Callback() {
 @Override
 public void onRouteSelected(MediaRouter router,
 MediaRouter.RouteInfo route) {
 selectedRoute.setText(route.toString());
 }
 };
}

(from MediaRouter/ActionProvider/app/src/main/java/com/commonsware/android/mrap/MainActivity.java)
In onCreate() we obtain an instance of MediaRouter. More specifically, we obtain
an instance of android.support.v7.media.MediaRouter.
We also will need a MediaRouteSelector instance. MediaRouteSelector expresses rules
for what sorts of media routes we are interested in. The simplest way to set up a
MediaRouteSelector is to use the MediaRouteSelector.Builder inner class, which
follows the fluent API style of other Android Builder classes (e.g., Notification.Builder,
AlertDialog.Builder). Here, we call addControlCategory() three times, indicating
three categories of routes that we are interested in:

	MediaControlIntent.CATEGORY_LIVE_AUDIO

	MediaControlIntent.CATEGORY_LIVE_VIDEO

	MediaControlIntent.CATEGORY_REMOTE_PLAYBACK

Calling build() on the resulting Builder gives us our MediaRouteSelector, which we
will use elsewhere in the activity.
Configuring the ActionProvider
In onCreateOptionsMenu() of MainActivity, we inflate our menu resource and pull
out the MediaRouteActionProvider. To obtain an action provider from the appcompat-v7
action bar, the simplest solution is to use the MenuItemCompat helper class from
the Android Support package, calling its static getActionProvider() method. This will
work both with the appcompat-v7 backport of the action bar and with the native
API Level 11+ action bar, though you do not need to use MenuItemCompat for the latter
if you do not want.
We then call the setRouteSelector() method on our MediaRouteActionProvider instance,
passing in the MediaRouteSelector we configured back in onCreate(). This tells
the action provider what routes the user should be able to configure. In our case,
that is all three major categories of routes (live audio, live video, and remote
playback).
Registering for Route Changes
Interestingly enough, that is insufficient to make the MediaRouteActionProvider work.
We also need to register a MediaRouter.Callback with the MediaRouter, to
be informed about events related to media routes. Our cb private data member is an
instance of an anonymous inner class extending MediaRouter.Callback, overriding
the onRouteSelected() method. This method will be called whenever a new route is
selected, telling us the MediaRouter.RouteInfo of the newly-selected route. In
our case, we just update a TextView that is our activity’s UI with the details of
that route, courtesy of calling toString() on the RouteInfo object.
To inform MediaRouter about our desire for such callbacks, we need to call addCallback()
on the MediaRouter, and later on call removeCallback() when we no longer need
to know about such events. In MainActivity, these steps are done in onStart() and
onStop(), respectively.
Note that we provide the CALLBACK_FLAG_REQUEST_DISCOVERY flag in the
addCallback() method, to trigger a search for any Chromecast or other
remote playback-capable devices that can serve as media routes.
The Results
Running this on an emulator is largely pointless, as emulators do not emulate media
routes.
Running this on a device will give varying results, depending upon what other
media-related accessories are available to that device. If there are no user-selectable
media routes available, the MediaRouteActionProvider is marked as invisible, so the
user does not see the icon and perhaps get confused by why tapping on it has no effect.
However, our TextView will show some initial route that was chosen by the
device:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Default Route]

Figure 786: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Default Route
Live Audio Routes
If you launch the demo with some form of external headset or speakers attached,
such as via Bluetooth, you will see the route for that is automatically selected:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Live Audio Route]

Figure 787: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Live Audio Route
The MediaRouteActionProvider appears, with a blue highlight, indicating an active
selected route. More importantly, the blue highlight indicates that the route
is configurable by tapping on it to bring up a dialog:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Live Audio Route Configuration]

Figure 788: MediaRouter ActionProvider Demo, on a Nexus 4, Live Audio Route Configuration
Here, we can adjust the volume, plus disconnect from the route. Disconnecting
shows our MediaRouteActionProvider with the default white highlight:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Default Route and Provider]

Figure 789: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Default Route and Provider
The white highlight means that there are possible routes, though none in use.
Tapping the icon brings up a connection dialog:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Available Routes]

Figure 790: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Available Routes
Live Video Routes
If you launch the demo with some form of external display attached — HDMI, MHL,
SlimPort, etc. — you still will not see the MediaRouteActionProvider, as live
video routes are automatically selected, at least if there is only one such route.
However, onRouteSelected() will still be called as part of starting up the
activity, so the TextView will reflect the live video route:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Live Video Route]

Figure 791: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Live Video Route
Remote Playback Routes
Since the user has to opt into remote playback media routes, the MediaRouteActionProvider
will appear if you configure it to show such routes and a route is available:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing ActionProvider]

Figure 792: MediaRouter ActionProvider Demo, on a Nexus 4, Showing ActionProvider
The MediaRouteActionProvider, when tapped, will pop up a dialog of available routes
that the user can select:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Available Chromecast Route]

Figure 793: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Available Chromecast Route
Note that if the device has both a Bluetooth audio connection and access to a
remote playback route (like a Chromecast), and you requested both live audio and
remote playback routes, then the route selection dialog could have
multiple choices:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Multiple Available Routes]

Figure 794: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Multiple Available Routes
If the user chooses a route from the dialog, our onRouteSelected() method will be
called to reflect the new selection:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Selected Chromecast Route]

Figure 795: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Selected Chromecast Route
Also note that the MediaRouteActionProvider color changes from white to blue,
indicating an altered route.
Tapping the action provider again pops up a dialog to control the volume of the
route, plus a “Disconnect” button:

[image: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Route Dialog]

Figure 796: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Route Dialog
Tapping that “Disconnect” button returns everything to its original state.
Using Live Video Routes
A live video route is designed to be used with Presentation, a class
that enables you to render your own content on the external display, much
like how you would render your own content in a Dialog.
The use of Presentation is covered in an upcoming chapter.
Using Remote Playback Routes
In principle, RemotePlaybackClient allows you to work with remote
playback routes, to specify Uri values to play back.
In practice, not even Google’s own sample code for RemotePlaybackClient
works reliably, let alone as documented.
That being said, let’s take a look at the
MediaRouter/RemotePlayback
sample project, to see how RemotePlaybackClient works and where the current
problems lie.
Setting Up MediaRouteActionProvider
Much of the basic setup of this application mirrors the MediaRouteActionProvider
sample shown earlier in this chapter. One difference is
that the UI is now encapsulated in a PlaybackFragment, with MainActivity simply
setting up that fragment when needed:

package com.commonsware.android.remoteplayback;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new PlaybackFragment()).commit();
 }
 }
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/MainActivity.java)
PlaybackFragment, when it is created, opts into being retained on configuration changes,
tells Android that it wishes to add items to the action bar, and sets up a
MediaRouteSelector for CATEGORY_REMOTE_PLAYBACK routes:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);
 setHasOptionsMenu(true);
 selector=
 new MediaRouteSelector.Builder()
 .addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK).build();
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
Then, in onAttach() — called when the PlaybackFragment is attached to the hosting
activity — we obtain a MediaRouter instance:

 @Override
 public void onAttach(Activity host) {
 super.onAttach(host);

 router=MediaRouter.getInstance(host);
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
In onStart(), we hook a cb data member — an instance of MediaRouter.Callback up to the
MediaRouter, also requesting that the MediaRouter initiate discovery of available
routes. We remove our callback in onStop():

 @Override
 public void onStart() {
 super.onStart();

 router.addCallback(selector, cb,
 MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);
 }

 @Override
 public void onStop() {
 router.removeCallback(cb);

 super.onStop();
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
We will examine cb’s declaration later in this section.
Later on, as part of our onCreateOptionsMenu() processing, we configure the
MediaRouteActionProvider as before:

 MenuItem item=menu.findItem(R.id.route_provider);
 MediaRouteActionProvider provider=
 (MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

 provider.setRouteSelector(selector);

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
All of this is very similar to the earlier examples. From here, though, we will
actually use the route once the user selects it, to play back some media.
The Rest of the User Interface
The UI of the PlaybackFragment — other than the action bar — consists of a “transcript”.
This is a TextView inside of a ScrollView:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/transcript"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="20sp"/>

</ScrollView>

(from MediaRouter/RemotePlayback/app/src/main/res/layout/activity_main.xml)
As with most fragments, we inflate this layout in onCreateView(), holding onto
the TextView and ScrollView widgets:

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 scroll=
 (ScrollView)inflater.inflate(R.layout.activity_main, container,
 false);

 transcript=(TextView)scroll.findViewById(R.id.transcript);

 logToTranscript("Started");

 return(scroll);
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
The logToTranscript() method will append a String to the TextView contents
on a new line, plus scroll to the bottom to ensure that the new text is visible:

 private void logToTranscript(String msg) {
 if (client != null) {
 String sessionId=client.getSessionId();

 if (sessionId != null) {
 msg="(" + sessionId + ") " + msg;
 }
 }

 transcript.setText(transcript.getText().toString() + msg + "\n");
 scroll.fullScroll(View.FOCUS_DOWN);
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
The client data member referred to in logToTranscript() is our RemotePlaybackClient
instance, which will be covered in the next section.
What the user sees when first running the sample is the action bar (with our
MediaRouteActionProvider) and the transcript, with a simple “Started” message:

[image: RemotePlaybackClient Demo, on a Nexus 4, As Initially Launched]

Figure 797: RemotePlaybackClient Demo, on a Nexus 4, As Initially Launched
As before, tapping on the “cast” action bar item pops up our dialog of available
routes:

[image: RemotePlaybackClient Demo, on a Nexus 4, Showing Available Routes]

Figure 798: RemotePlaybackClient Demo, on a Nexus 4, Showing Available Routes
Connecting and Session Management
When the user selects a route, our MediaRouter.Callback (cb) is called with
onRouteSelected(). Similarly, if the user elects to disconnect via the
MediaRouteActionProvider, our Callback is called with onRouteUnselected().
In the MediaRouter.Callback implementation inside PlaybackFragment, those events
route to connect() and disconnect() methods, respectively, after logging a
message to the transcript:

 private MediaRouter.Callback cb=new MediaRouter.Callback() {
 @Override
 public void onRouteSelected(MediaRouter router,
 MediaRouter.RouteInfo route) {
 logToTranscript(getActivity().getString(R.string.route_selected));
 connect(route);
 }

 @Override
 public void onRouteUnselected(MediaRouter router,
 MediaRouter.RouteInfo route) {
 logToTranscript(getActivity().getString(R.string.route_unselected));
 disconnect();
 }
 };

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
The connect() method handles connecting to the remote playback device and
starting a session:

 private void connect(MediaRouter.RouteInfo route) {
 client=
 new RemotePlaybackClient(getActivity().getApplication(), route);

 if (client.isRemotePlaybackSupported()) {
 logToTranscript(getActivity().getString(R.string.connected));

 if (client.isSessionManagementSupported()) {
 client.startSession(null, new SessionActionCallback() {
 @Override
 public void onResult(Bundle data, String sessionId,
 MediaSessionStatus sessionStatus) {
 logToTranscript(getActivity().getString(R.string.session_started));
 updateMenu();
 }

 @Override
 public void onError(String error, int code, Bundle data) {
 logToTranscript(getActivity().getString(R.string.session_failed));
 }
 });
 }
 else {
 getActivity().supportInvalidateOptionsMenu();
 }
 }
 else {
 logToTranscript(getActivity().getString(R.string.remote_playback_not_supported));
 client=null;
 }
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
All of that, though, requires a bit more explanation.
What’s a Session?
The objective of the connect() method is to establish a “session” with the
RemotePlaybackClient. In Android’s terms, a “session” is the state associated with an
application’s interactions with the remote playback client. In principle, the session
could be shared among several instances of the app, such as several people contributing
tracks to a dynamic playlist for audio playback at a party. Here, though, we are simply
focused on having this one application instance have a session.
In principle, not all remote playback clients may support session management. In those
cases, everybody is considered to be part of the same session. The test device for this
sample (Chromecast) does support session management, however.
Connecting the Client
Connecting to the remote playback device is simply a matter of creating an instance
of RemotePlaybackClient, specifying the route to connect to:

 client=
 new RemotePlaybackClient(getActivity().getApplication(), route);

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
Here, we use getActivity().getApplication() in the RemotePlaybackClient
constructor. That is because we want to hold onto this RemotePlaybackClient instance
across configuration changes, so we can easily maintain our session. Since we do not
know what RemotePlaybackClient may hold onto given the supplied Context, and since
we do not want to leak our activity by retaining a reference to it, we use the
global Application instance, for a “leak-resistant” Context.
We also call isRemotePlaybackSupported() to confirm that, indeed, the
RemotePlaybackClient is connected to something that supports remote playback. This
should always return true in this case, as we are only interested in remote playback
routes. But, a little defensive programming never hurts.
Assuming that is all OK, we log a “connected” message to the transcript and continue
on to start our session.
Starting a Session
isSessionManagementSupported() on RemotePlaybackClient will indicate if the
device supports explicit session management or not. If not, we will use the default
implicit session and just continue on.
Otherwise, we call startSession() to explicitly start a session. This takes an
optional Bundle of additional information to send in the start-session request to
the device (or null if unused), plus a SessionActionCallback. The
SessionActionCallback is supposed to be called when the session is ready for use.
Surprisingly enough, this actually works… for startSession().
The SessionActionCallback will be called with onResult() for success and
onError() for failure. In either case, we log a message to the transcript indicating
the status.
In addition, if we have a session — either explicitly created via startSession()
or implicitly created for devices without explicit session management — we
call an updateMenu() method to update the action bar items.
About the Action Bar
The fragment maintains two boolean values representing key states in the operation
of the playback:

	
isPlaying indicates if playback was started and not yet stopped

	
isPaused indicates if playback was paused and not yet resumed

The aforementioned updateMenu() implementation uses those, plus the existence of a
non-null client, to configure the action bar items:

 private void updateMenu() {
 if (menu != null) {
 menu.findItem(R.id.stop).setVisible(client != null && isPlaying);
 menu.findItem(R.id.pause).setVisible(client != null && isPlaying
 && !isPaused);
 menu.findItem(R.id.play)
 .setVisible(client != null && (!isPlaying || isPaused));
 }
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
Specifically:

	When we are not playing, the play item is visible; when we are playing, the stop
item is visible

	When we are not paused, the pause item is visible (play serves “double duty”, handling
starting playback from a stopped state and resuming playback from a paused state)

This is based on a cached copy of the Menu object, saved in onCreateOptionsMenu() as
part of setting up the action bar:

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 this.menu=menu;
 inflater.inflate(R.menu.main, menu);

 updateMenu();

 MenuItem item=menu.findItem(R.id.route_provider);
 MediaRouteActionProvider provider=
 (MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

 provider.setRouteSelector(selector);
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
This is also where the logic shown previously for configuring the
MediaRouteActionProvider resides.
Session IDs
A session has a String identifier. In principle, this can be shared with other instances
of your application, to allow for shared management of the session.
In the case of this sample, the session ID is merely logged to the transcript for
all messages that are tied to an active session.
Hence, when the user chooses a remote playback route from the MediaRouteActionProvider,
the resulting UI should resemble:

[image: RemotePlaybackClient Demo, on a Nexus 4, Showing an Active Session]

Figure 799: RemotePlaybackClient Demo, on a Nexus 4, Showing an Active Session
We see that we have connected to the client and started our session, and the play
action bar item is now available to start playback of some media.
Playing
The play action bar item is tied to a play() method via onOptionsItemSelected(),
if we are not paused:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.play:
 if (isPlaying && isPaused) {
 resume();
 }
 else {
 play();
 }

 return(true);

 case R.id.stop:
 stop();
 return(true);

 case R.id.pause:
 pause();
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
play(), in turn, uses the play() method on RemotePlaybackClient to play back
a copy of “Elephants Dream”,
a Creative Commons-licensed video, hosted on CommonsWare’s corner of the Amazon S3
service:

 private void play() {
 logToTranscript(getActivity().getString(R.string.play_requested));

 ItemActionCallback playCB=new ItemActionCallback() {
 @Override
 public void onResult(Bundle data, String sessionId,
 MediaSessionStatus sessionStatus,
 String itemId, MediaItemStatus itemStatus) {
 logToTranscript(getActivity().getString(R.string.playing));
 isPlaying=true;
 updateMenu();
 }

 @Override
 public void onError(String error, int code, Bundle data) {
 logToTranscript(getActivity().getString(R.string.play_error)
 + error);
 }
 };

 client.play(Uri.parse("http://misc.commonsware.com/ed_hd_512kb.mp4"),
 "video/mp4", null, 0, null, playCB);
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
The play() method on RemotePlaybackClient takes a few parameters:

	The Uri of the media to be played back

	The MIME type of that media (or null if you do not know the MIME type)

	An optional Bundle of metadata about the media to be played, where the
Bundle keys come from MediaItemMetadata class (or null if none)

	The starting offset in the media to begin playback from (use 0 to start
from the beginning)

	An optional Bundle of additional data to pass to the device

	An instance of ItemActionCallback to be notified when playback has started
or has failed

ItemActionCallback is reminiscent of SessionActionCallback, in that onResult()
will be called when playback begins and onError() will return when playback ends.
The method signature of onResult() is slightly different, offering an ID and
status of this particular media item.
In our case, we log a message to the transcript before requesting playback, then
again on success or failure. On success, we also update isPlaying to be true
and refresh the action bar.
Hence, once the user begins playback by tapping the play action bar item,
the UI will look like this:

[image: RemotePlaybackClient Demo, on a Nexus 4, After Playback Has Started]

Figure 800: RemotePlaybackClient Demo, on a Nexus 4, After Playback Has Started
And, of course, the movie should be showing up on your remote playback device.
Stopping, and a Bug
The stop() action bar item is tied to a stop() method in PlaybackFragment.
You would think that this would be very similar to starting playback — call some stop()
method on RemotePlaybackClient and update the UI after playback has stopped.
And, indeed, that is what we do… except that we have to deal with a bug:

 private void stop() {
 logToTranscript(getActivity().getString(R.string.stop_requested));

 StopCallback stopCB=new StopCallback();

 client.stop(null, stopCB);
 transcript.postDelayed(stopCB, 1000);
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
The stop() Call, and the Bug
stop() on RemotePlaybackClient takes an optional Bundle (here, null) and a
SessionActionCallback. The SessionActionCallback is supposed to be called
when playback has stopped (onResult()) or if there was some error in processing
the request (onError()).
In practice,
neither happen when testing this on a Chromecast.
This same behavior can be seen with Google’s own sample code,
so it would not appear to be a problem with the author’s own sample.
What actually happens is that playback is indeed stopped, but the SessionActionCallback
is not called with onResult() or onError().
The Workaround: RunnableSessionActionCallback
Since we cannot rely upon onResult() to be called for us, if we have work that we need
to do in that case, we have to have some sort of fallback mechanism. One crude fallback
is to assume that the request succeeded if we have not received a specific response
after a period of time (say, 1000 milliseconds).
To that end, this sample has RunnableSessionActionCallback, a SessionActionCallback
that implements Runnable:

 abstract class RunnableSessionActionCallback extends
 SessionActionCallback implements Runnable {
 abstract protected void doWork();

 private boolean hasRun=false;

 @Override
 public void onResult(Bundle data, String sessionId,
 MediaSessionStatus sessionStatus) {
 transcript.removeCallbacks(this);
 run();
 }

 @Override
 public void run() {
 if (!hasRun) {
 hasRun=true;
 doWork();
 }
 }
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
The run() method sees whether or not the callback has already been run from a previous run()
call. If not, it does the work specified by the abstract doWork() method, to be implemented
in subclasses.
StopCallback, as seen in the stop() method above, extends RunnableSessionActionCallback
and overrides doWork():

 private class StopCallback extends RunnableSessionActionCallback {
 @Override
 protected void doWork() {
 isPlaying=false;
 isPaused=false;
 updateMenu();
 logToTranscript(getActivity().getString(R.string.stopped));
 }
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
stop() then not only passes the StopCallback to the stop() implementation on
RemotePlaybackClient, but also schedules it as a Runnable to be invoked in
1000 milliseconds, via a call to postDelayed() on the TextView portion of the
transcript. The onResult() implementation in RunnableSessionActionCallback
calls removeCallbacks(), so we do not bother invoking the posted Runnable if
that is not needed.
The doWork() implementation in StopCallback updates our flags, refreshes
the action bar, and logs a message to the transcript. The result will look like:

[image: RemotePlaybackClient Demo, on a Nexus 4, After Playback Has Stopped]

Figure 801: RemotePlaybackClient Demo, on a Nexus 4, After Playback Has Stopped
This sample also does not handle the case where the media completes playback on its
own, insofar as this event is not detected, to update the action bar. This will be added
in a future version of this sample, if further bugs allow such support to actually work.
Pausing and Resuming
Similarly, the pause action bar item forwards to a pause() method that calls
pause() on the RemotePlaybackClient:

 private void pause() {
 logToTranscript(getActivity().getString(R.string.pause_requested));

 PauseCallback pauseCB=new PauseCallback();

 client.pause(null, pauseCB);
 transcript.postDelayed(pauseCB, 1000);
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
That, in turn, uses PauseCallback:

 private class PauseCallback extends RunnableSessionActionCallback {
 @Override
 protected void doWork() {
 isPaused=true;
 updateMenu();
 logToTranscript(getActivity().getString(R.string.paused));
 }
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
This updates the action bar and logs messages to the transcript, similar to the
stop() behavior. It also should successfully pause playback on the remote device.
The play action bar item routes to resume() if playback is paused:

 private void resume() {
 logToTranscript(getActivity().getString(R.string.resume_requested));

 ResumeCallback resumeCB=new ResumeCallback();

 client.resume(null, resumeCB);
 transcript.postDelayed(resumeCB, 1000);
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
That, in turn, uses ResumeCallback:

 private class ResumeCallback extends RunnableSessionActionCallback {
 @Override
 protected void doWork() {
 isPaused=false;
 updateMenu();
 logToTranscript(getActivity().getString(R.string.resumed));
 }
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
This too updates the action bar and logs messages to the transcript, in addition to
resuming playback on the remote device.
Disconnecting
A call to disconnect() on PlaybackFragment is triggered from two locations:

	
onRouteUnselected() in our MediaRouter.Callback, such as when the user
uses the MediaRouteActionProvider to disconnect from the route

	
onDestroy(), as part of general cleanup of the fragment

disconnect() should reverse the work done in connect(), ending our session
and releasing the client:

 private void disconnect() {
 isPlaying=false;
 isPaused=false;

 if (client != null) {
 logToTranscript(getActivity().getString(R.string.session_ending));
 EndSessionCallback endCB=new EndSessionCallback();

 if (client.isSessionManagementSupported()) {
 client.endSession(null, endCB);
 }

 transcript.postDelayed(endCB, 1000);
 }
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
This simply calls the endSession() method on the RemotePlaybackClient, supplying
an EndSessionCallback to be notified (theoretically) of when the session has been
torn down. But it only calls endSession() if session management is supported; otherwise,
we would get a runtime error.
To be sure we complete the disconnection, though, we schedule the
EndSessionCallback as seen in the stop(), pause(), and resume() methods.
EndSessionCallback calls release() on the RemotePlaybackClient, to indicate that
we are done with it, before setting client to null, refreshing the action bar,
and logging something to the transcript:

 private class EndSessionCallback extends
 RunnableSessionActionCallback {
 @Override
 protected void doWork() {
 client.release();
 client=null;

 if (getActivity() != null) {
 updateMenu();
 logToTranscript(getActivity().getString(R.string.session_ended));
 }
 }
 }

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)
Other Remote Playback Features
There are other things that RemotePlaybackClient offers that are not shown
in this sample:

	
enqueue() allows you to build up a queue of media to be played back in the
current session. This could be used by an individual or, in principle, by several
people using the same app with a shared session ID. remove() allows you to remove
specific items from the playback queue. These methods only work if isQueueingSupported()
returns true.

	
getStatus() will return information about the currently-playing piece of
media, while getSessionStatus() will return information about the overall
session. You can also find out about these changes on the fly by registering with
setStatusCallback().

	
seek() allows you to move the playback to a new offset within the media, for
“rewind” and “fast-forward” functionality. The status APIs (above) can tell you where
you are in the playback, so you can determine the appropriate offset to seek to.

Supporting External Displays
Android 4.2 inaugurated support for applications to control what appears
on an external or “secondary” display (e.g., TV connected via HDMI), replacing the default
screen mirroring. This is largely handled through a Presentation object,
where you declare the UI that goes onto the external display, in parallel
with whatever your activity might be displaying on the primary screen.
In this chapter, we will review how Android supports these external displays,
how you can find out if an external display is attached, and how you can use
Presentation objects to control what is shown on that external display.
The author would like to thank Mark Allison, whose
“Multiple Screens” blog post series
helped to blaze the trail for everyone in this space.
Prerequisites
In addition to the core chapters, you should read
the chapter on dialogs and the chapter on MediaRouter
before reading this chapter.
A History of External Displays
In this chapter, “external displays” refers to a screen that is temporarily
associated with an Android device, in contrast with a “primary screen” that is
where the Android device normally presents its user interface. So, most Android
devices connected to a television via HDMI would consider the television to be
a “external display”, with the touchscreen of the device itself as the “primary
screen”. However, a Android TV box or a Fire TV connected
to a television via HDMI would consider the television to be the “primary
screen”, simply because there is no other screen. Some devices themselves may
have multiple screens, such as the
Sony Tablet P — what those
devices do with those screens will be up to the device.
Historically, support for external displays was manufacturer-dependent. Early
Android devices had no ability to be displayed on an external display except
through so-called “software projectors” like Jens Riboe’s
Droid@Screen. Some Android 2.x devices
had ports that allowed for HDMI or composite connections to a television or
projector. However, control for what would be displayed resided purely in the hands
of the manufacturer. Some manufacturers would display whatever was on the
touchscreen (a.k.a., “mirroring”). Some manufacturers would do that, but only for
select apps, like a built-in video player.
Android 3.0 marked the beginning of Android’s formal support for external
displays, as the Motorola XOOM supported mirroring of the LCD’s display via
an micro-HDMI port. This mirroring was supplied by the core OS, not via
device-dependent means. Any Android 3.0+ device with some sort of HDMI connection
(e.g., micro-HDMI port) should support this same sort of mirroring capability.
However, mirroring was all that was possible. There was no means for an application
to have something on the external display (e.g., a video) and something else
on the primary screen (e.g., playback controls plus IMDB content about the movie
being watched).
Android 4.2 changed that, with the introduction of Presentation.
What is a Presentation?
A Presentation is a container for displaying a UI, in the form of a View
hierarchy (like that of an activity), on an external display.
You can think of a Presentation as being a bit like a Dialog in that regard.
Just as a Dialog shows its UI separate from its associated activity, so does
a Presentation. In fact, as it turns out, Presentation inherits from
Dialog.
The biggest difference between a Presentation and an ordinary Dialog, of course,
is where the UI is displayed. A Presentation displays on an external display;
a Dialog displays on the primary screen, overlaying the activity. However, this
difference has a profound implication: the characteristics of the external
display, in terms of size and density, are likely to be different than those of a
primary screen.
Hence, the resources used by the UI on an external display may be different than
the resources used by the primary screen. As a result,
the Context of the Presentation is not the Activity. Rather, it is a
separate Context, one whose Resources object will use the proper resources
based upon the external display characteristics.
This seemingly minor bit of bookkeeping has some rippling effects on setting up
your Presentation, as we will see as this chapter unfolds.
Playing with External Displays
To write an app that uses an external display via a Presentation, you will need
Android 4.2 or higher.
Beyond that, though, you will also need an external display
of some form. Presently, you have three major options: emulate it,
use a screen connected via
some sort of cable, or use Miracast for wireless external displays (on Android 6.0 and older devices).
Emulated
Even without an actual external display, you can lightly test your
Presentation-enabled app via the Developer Options area of Settings on your
Android 4.2 device. There, in the Drawing category, you will see the
“Simulate secondary displays” preference:

[image: Nexus 10 Simulate secondary displays Preference]

Figure 802: Nexus 10 “Simulate secondary displays” Preference
Tapping that will give you various options for what secondary display to
emulate:

[image: Nexus 10 Simulate secondary displays Options]

Figure 803: Nexus 10 “Simulate secondary displays” Options
Tapping one of those will give you a small window in the upper-left corner, showing
the contents of the external display, overlaid on top of your regular screen:

[image: Nexus 10, Simulating a 720p external display]

Figure 804: Nexus 10, Simulating a 720p external display
Normally, that will show a mirrored version of the primary screen, but with
a Presentation-enabled app, it will show what is theoretically shown on the
real external display.
However, there are limits with this technology:

	You will see this option on an Android emulator, but it may not work, particularly
if you are not capable of using the “Host GPU Support” option. At the time
of this writing, it works on the x86 Android 4.2 emulator image, but not the
x86 Android 4.3 or 4.4 emulator image, and the ARM emulators are likely to be far too
slow.

	The external display is rather tiny, making it difficult for you to accurately
determine if everything is sized appropriately.

	The external display occludes part of the screen, overlaying your activities,
though you can at least drag it around the screen to move it out of your way
as needed.

In practice, before you ship a Presentation-capable app, you will want to test
it with an actual physical external display.
HDMI
If you have a device with HDMI-out capability, and you have the appropriate cable,
you can simply plug that cable between your device and the display. “Tuning” the
display to use that specific HDMI input port should cause your device’s screen
contents to be mirrored to that display. Once this is working, you should be able
to control the contents of that display using Presentation.
MHL
Mobile High-Definition Link, or MHL for short, is a relatively new option for
connections to displays. On many modern Android devices, the micro USB port supports
MHL as well. Some external displays have MHL ports, in which case a male-to-male
MHL direct cable will connect the device to the display. Otherwise, MHL can be
converted to HDMI via adapters, so an MHL-capable device can attach to any
HDMI-compliant display.
SlimPort
SlimPort is another take on the overload-the-micro-USB-port-for-video approach.
MHL is used on substantially more devices, but SlimPort appears on several
of the Nexus-series devices (Nexus 4, Nexus 5, and the 2013 generation of the
Nexus 7). Hence, while users will be more likely to have an MHL device,
developers may be somewhat more likely to have a SlimPort device, given the
popularity of Nexus devices among Android app developers.
From the standpoint of your programming work, MHL and SlimPort are largely
equivalent — there is nothing that you need to do with your Presentation
to address either of those protocols, let alone anything else like native HDMI.
USB 3.1 Type C
The new USB 3.1 Type C specification has enough hooks for video display that
we may see Android devices starting to use it (along with USB->HDMI adapters) for
supporting external displays.
Miracast
There are a few wireless display standards available. Android 4.2-6.0 supports Miracast,
based upon WiFiDirect. This is also supported by some devices running earlier
versions of Android, such as some Samsung devices (where Miracast is sometimes
referred to
as “AllShare Cast”). However, unless and until those devices get upgraded to
Android 4.2, you cannot control what they display, except perhaps through some
manufacturer-specific APIs.
On a Miracast-capable device,
going into Settings > Displays > Wireless display will give you
the ability to toggle on wireless display support and scan for available displays:

[image: Nexus 4 Wireless Display Settings]

Figure 805: Nexus 4 Wireless Display Settings
You can then elect to attach to one of the available wireless displays and get
your screen mirrored, and later use this with your Presentation-enabled app.
Of course, you also need some sort of Miracast-capable display, typically
via some form of add-on box that
connect to normal displays via HDMI and make them available via Miracast.
One such box is the
Netgear PTV3000,
whose current firmware supports Miracast along with other wireless display
protocols.
Note that Miracast uses a compressed protocol, to minimize the bandwidth
needed to transmit the video. This, in turn, can cause some lag.
Note that Intel’s WiDi is an extended version of Miracast.
WirelessHD
An up-and-coming competitor to Miracast is WirelessHD. WirelessHD has greater
bandwidth requirements. On the other hand, it avoids compression, and therefore the
lag that you experience with Miracast. At the time of this writing, though, no
WirelessHD-native Android devices are available.
Detecting Displays
Of course, we can only present a Presentation on an external display if there
is, indeed, such a screen available. There are two approaches for doing this:
using DisplayManager and using MediaRouter. We examined MediaRouter
for detecting live video routes in a preceding chapter,
so let’s focus here on DisplayManager.
DisplayManager is a system service, obtained by calling getSystemService() and
asking for the DISPLAY_SERVICE.
Once you have a DisplayManager, you can ask it to give you a list of all
available displays (getDisplays() with zero arguments) or all available displays
in a certain category (getDisplays() with a single String parameter). As of
API Level 17, the only available display category is DISPLAY_CATEGORY_PRESENTATION.
The difference between the two flavors of getDisplays() is just the sort order:

	The zero-argument getDisplays() returns the Display array in arbitrary order

	The one-argument getDisplays() will put the Display objects matching the
identified category earlier in the array

These would be useful if you wanted to pop up a list of available displays to ask
the user which Display to use.
You can also register a DisplayManager.DisplayListener with the DisplayManager
via registerDisplayListener(). This listener will be called when displays are
added (e.g., HDMI cable was connected), removed (e.g., HDMI cable was disconnected),
or changed. It is not completely clear what would trigger a “changed” call, though
possibly an orientation-aware display might report back the revised height and
width.
Note that while DisplayManager was added in API Level 17, Display itself has
been around since API Level 1, though some additions have been made in more recent
Android releases. But, this may mean that you can pass the Display object around
to code supporting older devices without needing to constantly check for SDK level
or add the @TargetApi() annotation.
Also note that the support-v4 library contains a DisplayManagerCompat,
allowing you to call DisplayManager-like methods going all the way back
to API Level 4. This does not give older devices the ability to work
with external displays — that would require a time machine — but it can
make it incrementally easier for you to write your app, without having to
worry about API level. DisplayManagerCompat just gracefully degrades to
returning information only about the device’s standard touchscreen.
A Simple Presentation
Let’s take a look at a small sample app that demonstrates how we can display custom
content on an external display using a Presentation. The app in question
can be found in the
Presentation/Simple
sample project.
The Presentation Itself
Since Presentation extends from Dialog, we provide the UI to be displayed on
the external display via a call to setContentView(), much like we would do
in an activity. Here, we just create a WebView widget in Java, point it to some
Web page, and use it:

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
 private class SimplePresentation extends Presentation {
 SimplePresentation(Context ctxt, Display display) {
 super(ctxt, display);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView wv=new WebView(getContext());

 wv.loadUrl("https://commonsware.com");

 setContentView(wv);
 }
 }

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)
However, there are two distinctive elements of our implementation:

	Our constructor takes a Context (typically the Activity), along with a
Display object indicating where the UI should be presented.

	Our call to the WebView constructor uses getContext(), instead of the
Activity object. In this case, that may have no real-world effect, as WebView
is not going to be using any of our resources. But, had we used a LayoutInflater
for inflating our UI, we would need to use one created from getContext(), not from
the activity itself.

Detecting the Displays
We need to determine whether there is a suitable external display when our
activity comes into the foreground. We also need to determine if an external
display was added or removed while we are in the foreground.
So, in onStart(), if we are on an Android 4.2 or higher device, we will get
connected to the MediaRouter to handle those chores:

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
 @Override
 protected void onStart() {
 super.onStart();

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
 if (cb==null) {
 cb=new RouteCallback();
 router=(MediaRouter)getSystemService(MEDIA_ROUTER_SERVICE);
 }

 handleRoute(router.getSelectedRoute(MediaRouter.ROUTE_TYPE_LIVE_VIDEO));
 router.addCallback(MediaRouter.ROUTE_TYPE_LIVE_VIDEO, cb);
 }
 }

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)
Specifically, we:

	Create an instance of RouteCallback, an inner class of our activity that
extends SimpleCallback

	Use getSystemService() to obtain a MediaRouter

	Call a handleRoute() method on our activity that will update our UI based
upon the current video route, obtained by calling getSelectedRoute() on the
MediaRouter

	Register the RouteCallback object with the MediaRouter via addCallback()

The RouteCallback object simply overrides onRoutePresentationDisplayChanged(),
which will be called whenever there is a change in what screens are available
and considered to be the preferred modes for video. There, we just call that
same handleRoute() method that we called in onStart():

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN)
 private class RouteCallback extends SimpleCallback {
 @Override
 public void onRoutePresentationDisplayChanged(MediaRouter router,
 RouteInfo route) {
 handleRoute(route);
 }
 }

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)
Hence, our business logic for showing the presentation is isolated in one
method, handleRoute().
Our onStop() method will undo some of the work done by onStart(), notably
removing our RouteCallback. We will examine that more closely in the next section.
Showing and Hiding the Presentation
Our handleRoute() method will be called with one of two parameter values:

	The RouteInfo of the active route we should use for displaying the Presentation

	
null, indicating that there is no route for such content, other than the
primary screen

If we are passed the RouteInfo, it may represent the route we are already using,
or possibly it may represent a different route entirely.
We need to handle all of those cases, even if some (switching directly from one
route to another) may not necessarily be readily testable.
Hence, our handleRoute() method does its best:

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
 private void handleRoute(RouteInfo route) {
 if (route == null) {
 clearPreso();
 }
 else {
 Display display=route.getPresentationDisplay();

 if (route.isEnabled() && display != null) {
 if (preso == null) {
 showPreso(route);
 Log.d(getClass().getSimpleName(), "enabled route");
 }
 else if (preso.getDisplay().getDisplayId() != display.getDisplayId()) {
 clearPreso();
 showPreso(route);
 Log.d(getClass().getSimpleName(), "switched route");
 }
 else {
 // no-op: should already be set
 }
 }
 else {
 clearPreso();
 Log.d(getClass().getSimpleName(), "disabled route");
 }
 }
 }

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)
There are five possibilities handled by this method:

	If the route is null, then we should no longer be displaying the
Presentation, so we call a clearPreso() method that will handle that

	If the route exists, but is disabled or is not giving us a Display object,
we also assume that we should no longer be displaying the
Presentation, so we call clearPreso()

	If the route exists and seems ready for use, and we are not already showing
a Presentation (our preso data member is null), we need to show the
Presentation, which we delegate to a showPreso() method

	If the route exists, seems ready for use, but we are already showing a
Presentation, and the ID of the new Display is different than the ID of the
Display our Presentation had been using, we use both clearPreso() and
showPreso() to switch our Presentation to the new Display

	If the route exists, seems ready for use, but we are already showing a
Presentation on this Display, we do nothing and wonder why handleRoute()
got called

Showing the Presentation is merely a matter of creating an instance of our
SimplePresentation and calling show() on it, like we would a regular Dialog:

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
 private void showPreso(RouteInfo route) {
 preso=new SimplePresentation(this, route.getPresentationDisplay());
 preso.show();
 }

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)
Clearing the Presentation calls dismiss() on the Presentation, then sets
the preso data member to null to indicate that we are not showing a Presentation:

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
 private void clearPreso() {
 if (preso != null) {
 preso.dismiss();
 preso=null;
 }
 }

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)
Our onPause() uses clearPreso() and removeCallback() to unwind everything:

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
 @Override
 protected void onStop() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
 clearPreso();

 if (router != null) {
 router.removeCallback(cb);
 }
 }

 super.onStop();
 }

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)
The Results
If you run this with no external display, you will just see a plain TextView
that is the UI for our primary screen:

[image: Nexus 10, No Emulated Secondary Display, Showing Sample App]

Figure 806: Nexus 10, No Emulated Secondary Display, Showing Sample App
If you run this with an external display, the external display will show our
WebView:

[image: Nexus 10, With Emulated Secondary Display, Showing Sample App]

Figure 807: Nexus 10, With Emulated Secondary Display, Showing Sample App
A Simpler Presentation
There was a fair bit of code in the previous sample for messing around with
MediaRouter and finding out about changes in the available displays.
To help simplify apps using Presentation, the author of this book maintains
a library, CWAC-Presentation,
with various reusable bits of code for managing Presentations.
One piece of this is PresentationHelper, which isolates all of the display
management logic in a single reusable object. In this section, we will examine
how to use PresentationHelper, then how PresentationHelper itself works, using
DisplayManager under the covers.
Getting a Little Help
Our
Presentation/Simpler
sample project uses the CWAC-Presentation artifact:

apply plugin: 'com.android.application'

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.commonsware.cwac:presentation:0.5.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 17
 targetSdkVersion 27
 }
}

(from Presentation/Simpler/app/build.gradle)
This gives
us access to PresentationHelper. Our MainActivity in the sample creates an
instance of PresentationHelper in onCreate(), stashing the object in a data
member:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);
 helper=new PresentationHelper(this, this);
 }

(from Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java)
The constructor for PresentationHelper takes two parameters:

	a Context object, one that should be valid for the life of the helper, typically
the Activity that creates the helper, and

	a implementation of PresentationHelper.Listener — in this case, the interface
is implemented on MainActivity itself

The activity that creates the helper must forward onPause() and onResume()
lifecycle methods to the equivalent methods on the helper:

 @Override
 public void onResume() {
 super.onResume();
 helper.onResume();
 }

 @Override
 public void onPause() {
 helper.onPause();
 super.onPause();
 }

(from Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java)
The implementer of PresentationHelper.Listener also needs to have showPreso() and
clearPreso() methods, much like the ones from the original Presentation sample
in this chapter. showPreso() will be passed a Display object and should
arrange to display a Presentation on that Display:

 @Override
 public void showPreso(Display display) {
 preso=new SimplerPresentation(this, display);
 preso.show();
 }

(from Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java)
clearPreso() should get rid of any outstanding Presentation. It is passed a
boolean value, which will be true if we simply lost the Display we were using
(and so the activity might want to display the Presentation contents elsewhere,
such as in the activity itself), or false if the activity is moving to the background
(triggered via onPause()):

 @Override
 public void clearPreso(boolean showInline) {
 if (preso != null) {
 preso.dismiss();
 preso=null;
 }
 }

(from Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java)
The implementations here are pretty much the same as the ones used in the previous
example. PresentationHelper has handled all of the Display-management events –
our activity can simply focus on showing or hiding the Presentation on demand.
Help When You Need It
In many respects, the PresentationHelper from the CWAC-Presentation project works a
lot like the logic in the original Presentation sample’s MainActivity, detecting
various states and calling showPreso() and clearPreso() accordingly. However,
PresentationHelper uses a different mechanism for this — DisplayManager.
The PresentationHelper constructor just stashes the parameters it is passed in data
members and obtains a DisplayManager via getSystemService(), putting it in another
data member:

 /**
 * Basic constructor.
 *
 * @param ctxt a Context, typically the activity that is planning on showing
 * the Presentation
 * @param listener the callback for show/hide events
 */
 public PresentationHelper(Context ctxt, Listener listener) {
 this.listener=listener;

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
 mgr=
 (DisplayManager)ctxt.getSystemService(Context.DISPLAY_SERVICE);
 }
 }

onResume() calls out to a private handlePreso() method to initialize our state,
and tells the DisplayManager to let it know as displays are attached and detached from
the device, by means of registerDisplayListener():

 /**
 * Call this from onResume() of your activity, so we can determine what
 * changes need to be made to the Presentation, if any
 */
 public void onResume() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
 handleRoute();
 mgr.registerDisplayListener(this, null);
 }
 }

The PresentationHelper itself implements the DisplayListener interface, which requires
three callback methods:

	
onDisplayAdded() is called when a new output display is available

	
onDisplayChanged() is called when an existing attached display changes its
characteristics

	
onDisplayRemoved() is called whenever a previously-attached output display
has been detached

In our case, all three methods route to the same handleRoute() method, to update
our state:

 /**
 * {@inheritDoc}
 */
 @Override
 public void onDisplayAdded(int displayId) {
 handleRoute();
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public void onDisplayChanged(int displayId) {
 handleRoute();
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public void onDisplayRemoved(int displayId) {
 handleRoute();
 }

handleRoute() is where the bulk of the “business logic” of PresentationHelper resides:

 private void handleRoute() {
 if (isEnabled()) {
 Display[] displays=
 mgr.getDisplays(DisplayManager.DISPLAY_CATEGORY_PRESENTATION);

 if (displays.length == 0) {
 if (current != null || isFirstRun) {
 listener.clearPreso(true);
 current=null;
 }
 }
 else {
 Display display=displays[0];

 if (display != null && display.isValid()) {
 if (current == null) {
 listener.showPreso(display);
 current=display;
 }
 else if (current.getDisplayId() != display.getDisplayId()) {
 listener.clearPreso(true);
 listener.showPreso(display);
 current=display;
 }
 else {
 // no-op: should already be set
 }
 }
 else if (current != null) {
 listener.clearPreso(true);
 current=null;
 }
 }

 isFirstRun=false;
 }
 }

We get the list of attached displays from the DisplayManager by calling
getDisplays(). By passing in DISPLAY_CATEGORY_PRESENTATION, we are asking for
returned array of Display objects to be ordered such that the preferred display
for presentations is the first element.
If the array is empty, and we already had a current Display from before (or if
this is the first time handlePreso() has run), we call clearPreso() to inform the
listener that there is no Display for presentation purposes.
If we do have a valid Display:

	If we were not displaying anything before, we call showPreso() to inform the
listener to start displaying things, plus keep track of the current Display in a
data member

	If we were displaying something before, but now the preferred Display for a
Presentation is different (the ID value of the Display objects differ), we
call clearPreso() and showPreso() to get the listener to switch to the new
Display

	Otherwise, this was a spurious call to handlePreso(), so we do not do anything
of note

If, for whatever reason, the best Display is not valid, we do the same thing as
if we had no Display at all: call clearPreso().
Finally, in onPause(), we call clearPreso() to ensure that we are no longer
attempting to display anything, plus call unregisterDisplayListener() so we are no
longer informed about changes to the mix of Display objects that might be available:

 /**
 * Call this from onPause() of your activity, so we can determine what
 * changes need to be made to the Presentation, if any
 */
 public void onPause() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
 listener.clearPreso(false);
 current=null;

 mgr.unregisterDisplayListener(this);
 }
 }

Presentations and Configuration Changes
One headache when using Presentation comes from the fact that it is a Dialog,
which is owned by an Activity. If the device undergoes a configuration change, the
activity will be destroyed and recreated by default, forcing you to destroy and
recreate your Dialog. This, in turn, causes flicker on the external display, as
the display briefly reverts to mirroring while this goes on.
Devices that support external displays may be orientation-locked to landscape
when an external display is attached (e.g., an HDMI cable is plugged in).
This reduces the odds of a configuration change considerably, as the #1 configuration
change is an orientation change.
However, that is not a guaranteed “feature” of Android external display support, and
there are other configuration changes that could go on (e.g., devices gets plugged
into a keyboard dock).
You can either just live with the flicker, or use android:configChanges to try
to avoid the destroy/re-create cycle for the configuration change. As was noted
back in the chapter on configuration changes, this is a risky
approach, as it requires you to remember all your resources that might change on
the configuration change and reset them to reflect the configuration change.
A “middle ground” approach is to ensure that your activity running the Presentation
is orientation-locked to landscape mode, by adding android:orientation="landscape"
to your <activity> in the manifest, then use android:configChanges to handle
the configuration changes related to orientation:

	orientation

	keyboardHidden

	screenSize

	screenLayout

For those configuration changes, nothing should be needed to be modified in your
activity, since you want to be displaying in landscape all of the time, and so you
will not need to modify your use of resources. This leaves open the possibility of
other configuration changes that would cause flicker on the external display, but
those are relatively unlikely to occur while your activity is in the foreground, and
so it may not be worth trying to address the flicker in all those cases.
Yet another possibility is to have your presentation be delivered by
a service, as we will discuss later in this chapter.
Presentations as Fragments
Curiously, the support for Presentation is focused on View. There is nothing
built into Android 4.2 that ties a Presentation to a Fragment. However, this
can be a useful technique, one we can roll ourselves… with a bit of difficulty.
The Reuse Reality
There will be a few apps that will only want to deliver content if there is a
external display on which to deliver it.
However, the vast majority of apps supporting external displays will do so
optionally, still supporting regular Android devices with only primary screens.
In this case, though, we have a problem: we need to show that UI somewhere
if there is no external display to show it on. Our only likely answer is to have it
be part of our primary UI.
Fragments would seem to be tailor-made for this. We could “throw” a fragment
to the external display if it exists, or incorporate it into our main UI (e.g.,
as another page in a ViewPager) if the external display does not exist, or
even have it be shown by some separate activity on smaller-screen devices like
phones. Our business logic will already have been partitioned between the
fragments — it is merely a question of where the fragment shows up.
Presentations as Dialogs
The nice thing is that Presentation extends Dialog. We already have a
DialogFragment as part of Android that knows how to display a Dialog
populated by a Fragment implementation of onCreateView(). DialogFragment
even knows how to handle either being part of the main UI or as a separate
dialog.
Hence, one could imagine a PresentationFragment that extends DialogFragment
and adds the ability to either be part of the main UI on the primary screen
or shown on an external display, should one be available.
And, in truth, it is possible to create such a PresentationFragment, though
there are some limitations.
The Context Conundrum
The biggest limitation comes back to the Context used for our UI. Normally,
there is only one Context of relevance: the Activity. In the case of
Presentation, though, there is a separate Context that is tied to the
display characteristics of the external display.
This means that PresentationFragment must manipulate two Context values:

	The Activity, if the fragment should be part of our main UI

	Some other Context supplied by the Presentation, if the fragment should be
displayed in the Presentation on the external display

This makes creating a PresentationFragment class a bit tricky… though not
impossible. After all, if it were impossible, these past several paragraphs
would not be very useful.
A PresentationFragment (and Subclasses)
The
Presentation/Fragment
sample project has the same UI as the Presentation/Simple project, if there
is an external display. If there is only the primary screen, though, we will
elect to display the WebView side-by-side with our TextView in the main UI
of our activity. And, to pull this off, we will create a PresentationFragment
based on DialogFragment.
Note that this sample project has its android:minSdkVersion set to 17, mostly
to cut down on all of the “only do this if we are on API Level 17” checks and
@TargetApi() annotations. Getting this code to work on earlier versions of
Android is left as an exercise for the reader.
In a simple DialogFragment, we might just override onCreateView() to provide
the contents of the dialog. The default implementation of onCreateDialog()
would create an empty Dialog, to be populated with the View returned by
onCreateView().
In our PresentationFragment subclass of DialogFragment, though,
we need to override onCreateDialog()
to use a Presentation instead of a Dialog… if we have a Presentation to
work with:

package com.commonsware.android.preso.fragment;

import android.app.Dialog;
import android.app.Presentation;
import android.content.Context;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;
import android.view.Display;

abstract public class PresentationFragment extends DialogFragment {
 private Display display=null;
 private Presentation preso=null;

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 if (preso == null) {
 return(super.onCreateDialog(savedInstanceState));
 }

 return(preso);
 }

 public void setDisplay(Context ctxt, Display display) {
 if (display == null) {
 preso=null;
 }
 else {
 preso=new Presentation(ctxt, display, getTheme());
 }

 this.display=display;
 }

 public Display getDisplay() {
 return(display);
 }

 public Context getContext() {
 if (preso != null) {
 return(preso.getContext());
 }

 return(getActivity());
 }
}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/PresentationFragment.java)
We also expose getDisplay() and setDisplay() accessors, to supply the Display
object to be used if this fragment will be thrown onto an external display.
setDisplay() also creates the Presentation object wrapped around the display,
using the three-parameter Presentation constructor that supplies the theme to
be used (in this case, using the getTheme() method, which a subclass could
override if desired).
PresentationFragment also implements a getContext() method. If this fragment
will be used with a Display and Presentation, this will return the Context
from the Presentation. If not, it returns the Activity associated with this
Fragment.
This project contains a WebPresentationFragment, that pours the same basic
Android source code used elsewhere in this book for a WebViewFragment into
a subclass of PresentationFragment:

package com.commonsware.android.preso.fragment;

import android.annotation.TargetApi;
import android.os.Build;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.webkit.WebView;

public class WebPresentationFragment extends PresentationFragment {
 private WebView mWebView;
 private boolean mIsWebViewAvailable;

 /**
 * Called to instantiate the view. Creates and returns the
 * WebView.
 */
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 if (mWebView != null) {
 mWebView.destroy();
 }

 mWebView=new WebView(getContext());
 mIsWebViewAvailable=true;
 return mWebView;
 }

 /**
 * Called when the fragment is visible to the user and
 * actively running. Resumes the WebView.
 */
 @TargetApi(11)
 @Override
 public void onPause() {
 super.onPause();

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 mWebView.onPause();
 }
 }

 /**
 * Called when the fragment is no longer resumed. Pauses
 * the WebView.
 */
 @TargetApi(11)
 @Override
 public void onResume() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 mWebView.onResume();
 }

 super.onResume();
 }

 /**
 * Called when the WebView has been detached from the
 * fragment. The WebView is no longer available after this
 * time.
 */
 @Override
 public void onDestroyView() {
 mIsWebViewAvailable=false;
 super.onDestroyView();
 }

 /**
 * Called when the fragment is no longer in use. Destroys
 * the internal state of the WebView.
 */
 @Override
 public void onDestroy() {
 if (mWebView != null) {
 mWebView.destroy();
 mWebView=null;
 }
 super.onDestroy();
 }

 /**
 * Gets the WebView.
 */
 public WebView getWebView() {
 return mIsWebViewAvailable ? mWebView : null;
 }
}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/WebPresentationFragment.java)
(note: the flawed comments came from the original Android open source code from which
this fragment was derived)
The only significant difference, besides the superclass, is that the onCreateView()
method uses getContext(), not getActivity(), as the Context to use when
creating the WebView.
And, the project has a SamplePresentationFragment subclass of WebPresentationFragment,
where we use the factory-method-and-arguments pattern to pass a URL into the
fragment to use for populating the WebView:

package com.commonsware.android.preso.fragment;

import android.content.Context;
import android.os.Bundle;
import android.view.Display;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class SamplePresentationFragment extends WebPresentationFragment {
 private static final String ARG_URL="url";

 public static SamplePresentationFragment newInstance(Context ctxt,
 Display display,
 String url) {
 SamplePresentationFragment frag=new SamplePresentationFragment();

 frag.setDisplay(ctxt, display);

 Bundle b=new Bundle();

 b.putString(ARG_URL, url);
 frag.setArguments(b);

 return(frag);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=
 super.onCreateView(inflater, container, savedInstanceState);

 getWebView().loadUrl(getArguments().getString(ARG_URL));

 return(result);
 }
}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/SamplePresentationFragment.java)
Using PresentationFragment
Our activity’s layout now contains not only a TextView, but also a FrameLayout
into which we will slot the PresentationFragment if there is no external display:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/prose"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:layout_weight="1"
 android:gravity="center"
 android:text="@string/secondary"
 android:textSize="40sp"/>

 <FrameLayout
 android:id="@+id/preso"
 android:layout_width="0px"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:visibility="gone"/>

</LinearLayout>

(from Presentation/Fragment/app/src/main/res/layout/activity_main.xml)
Note that the FrameLayout is initially set to have gone as its visibility,
meaning that only the TextView will appear. Based on the widths and weights,
the TextView will take up the full screen when the FrameLayout is gone,
or they will split the screen in half otherwise.
In the onCreate() implementation of our activity (MainActivity), we inflate
that layout and grab both the TextView and the FrameLayout,
putting them into data members:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 inline=findViewById(R.id.preso);
 prose=findViewById(R.id.prose);
 }

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)
Our onStart() method, and our RouteCallback, are identical to those
from the previous sample.
Our handleRoute() method is nearly identical to the original, as is our
onStop() method. The difference is that we need to distinguish whether we
have lost an external display (and therefore want to move the Web page into
the main UI) or if we are going away entirely (and therefore just wish to clean
up the external display, if any). Hence, clearPreso() takes a boolean
parameter (switchToInline), true if we want to show the fragment in the main
UI, false otherwise. And, our onStop() and handleRoute() methods pass
the appropriate value to clearPreso():

 @Override
 protected void onStop() {
 clearPreso(false);

 if (router != null) {
 router.removeCallback(cb);
 }

 super.onStop();
 }

 private void handleRoute(RouteInfo route) {
 if (route == null) {
 clearPreso(true);
 }
 else {
 Display display=route.getPresentationDisplay();

 if (route.isEnabled() && display != null) {
 if (preso == null) {
 showPreso(route);
 Log.d(getClass().getSimpleName(), "enabled route");
 }
 else if (preso.getDisplay().getDisplayId() != display.getDisplayId()) {
 clearPreso(true);
 showPreso(route);
 Log.d(getClass().getSimpleName(), "switched route");
 }
 else {
 // no-op: should already be set
 }
 }
 else {
 clearPreso(true);
 Log.d(getClass().getSimpleName(), "disabled route");
 }
 }
 }

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)
showPreso() is called when we want to display the Presentation on the
external display. Hence, we need to remove the WebPresentationFragment from the
main UI if it is there:

 private void showPreso(RouteInfo route) {
 if (inline.getVisibility() == View.VISIBLE) {
 inline.setVisibility(View.GONE);
 prose.setText(R.string.secondary);

 Fragment f=getSupportFragmentManager().findFragmentById(R.id.preso);

 getSupportFragmentManager().beginTransaction().remove(f).commit();
 }

 preso=buildPreso(route.getPresentationDisplay());
 preso.show(getSupportFragmentManager(), "preso");
 }

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)
Creating the actual PresentationFragment is delegated to a buildPreso()
method, which employs the newInstance() method on the SamplePresentationFragment:

 private PresentationFragment buildPreso(Display display) {
 return(SamplePresentationFragment.newInstance(this, display,
 "https://commonsware.com"));
 }

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)
clearPreso() is responsible for adding the PresentationFragment to the main
UI, if switchToInline is true:

 private void clearPreso(boolean switchToInline) {
 if (switchToInline) {
 inline.setVisibility(View.VISIBLE);
 prose.setText(R.string.primary);
 getSupportFragmentManager().beginTransaction()
 .add(R.id.preso, buildPreso(null)).commit();
 }

 if (preso != null) {
 preso.dismiss();
 preso=null;
 }
 }

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)
With an external display, the results are visually identical to the original
sample. Without an external display, though, our UI is presented side-by-side:

[image: Nexus 10, With Inline PresentationFragment]

Figure 808: Nexus 10, With Inline PresentationFragment
Limits
This implementation of PresentationFragment has its limitations, though.
First, we cannot reuse the same fragment instance for both the inline UI and
the Presentation UI, as they use different Context objects. Hence, production
code will need to arrange to get data out of the old fragment instance and into the
new instance when the screen mix changes. You might be able to leverage
onSaveInstanceState() for that purpose, with a more-sophisticated implementation
of PresentationFragment.
Also, depending upon the device and the external display, you may see
multiple calls to handleRoute(). For example, attaching an external display
may trigger three calls to your RouteCallback, for an attach, a detach, and
another attach event. It is unclear why this occurs. However, it may require some
additional logic in your app to deal with these events, if you encounter them.
Another Sample Project: Slides
At the 2013 Samsung Developer Conference, the author of this book delivered
a presentation on using Presentation.
Rather than use a traditional presentation
package driven from a notebook, the author used
the Presentation/Slides sample app.
This sample
app shows how to show slides on an external display, controlled by a ViewPager
on a device’s touchscreen.
What the audience saw, through most of the presentation, were simple slides.
What the presenter saw was a ViewPager, with tabs, along with action bar
items for various actions:

[image: PresentationSlidesDemo, Showing Overflow]

Figure 809: PresentationSlidesDemo, Showing Overflow
The Slides
The slides themselves are a series of 20 drawable resources (img0, img1, etc.),
put into the
res/drawable-nodpi/ resource directory, as there is no intrinsic “density”
that the slides were prepared for. As we use the slides in ImageView widgets,
their images will be resized to fit the available ImageView space alone, not
taking screen density into account.
There is a matching set of 20 string resources (title0, title1, etc.) containing
a string representation of the slide titles, for use with getPageTitle()
of a PagerAdapter.
The PagerAdapter
That PagerAdapter, named SlidesAdapter, has each slide be visually represented
by an ImageView widget. In this case, SlidesAdapter extends PagerAdapter
directly, skipping fragments:

package com.commonsware.android.preso.slides;

import android.content.Context;
import android.support.v4.view.PagerAdapter;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;

class SlidesAdapter extends PagerAdapter {
 private static final int[] SLIDES= { R.drawable.img0,
 R.drawable.img1, R.drawable.img2, R.drawable.img3,
 R.drawable.img4, R.drawable.img5, R.drawable.img6,
 R.drawable.img7, R.drawable.img8, R.drawable.img9,
 R.drawable.img10, R.drawable.img11, R.drawable.img12,
 R.drawable.img13, R.drawable.img14, R.drawable.img15,
 R.drawable.img16, R.drawable.img17, R.drawable.img18,
 R.drawable.img19 };
 private static final int[] TITLES= { R.string.title0,
 R.string.title1, R.string.title2, R.string.title3,
 R.string.title4, R.string.title5, R.string.title6,
 R.string.title7, R.string.title8, R.string.title9,
 R.string.title10, R.string.title11, R.string.title12,
 R.string.title13, R.string.title14, R.string.title15,
 R.string.title16, R.string.title17, R.string.title18,
 R.string.title19 };
 private Context ctxt=null;

 SlidesAdapter(Context ctxt) {
 this.ctxt=ctxt;
 }

 @Override
 public Object instantiateItem(ViewGroup container, int position) {
 ImageView page=new ImageView(ctxt);

 page.setImageResource(getPageResource(position));
 container.addView(page,
 new ViewGroup.LayoutParams(
 ViewGroup.LayoutParams.MATCH_PARENT,
 ViewGroup.LayoutParams.MATCH_PARENT));

 return(page);
 }

 @Override
 public void destroyItem(ViewGroup container, int position,
 Object object) {
 container.removeView((View)object);
 }

 @Override
 public int getCount() {
 return(SLIDES.length);
 }

 @Override
 public boolean isViewFromObject(View view, Object object) {
 return(view == object);
 }

 @Override
 public String getPageTitle(int position) {
 return(ctxt.getString(TITLES[position]));
 }

 int getPageResource(int position) {
 return(SLIDES[position]);
 }
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/SlidesAdapter.java)
The data for the SlidesAdapter consists of a pair of static int arrays, one
holding the drawable resource IDs, one holding the string resource IDs.
Of note, SlidesAdapter has a getPageResource() method, to return the drawable
resource ID for a given page position, which is used by instantiateItem() for
populating the position’s ImageView.
The PresentationFragment
We also want to be able to show the slide on an external display via a Presentation.
As with the preceding sample app, this one uses a PresentationFragment,
here named SlidePresentationFragment:

package com.commonsware.android.preso.slides;

import android.content.Context;
import android.os.Bundle;
import android.view.Display;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import com.commonsware.cwac.preso.PresentationFragment;

public class SlidePresentationFragment extends PresentationFragment {
 private static final String KEY_RESOURCE="r";
 private ImageView slide=null;

 public static SlidePresentationFragment newInstance(Context ctxt,
 Display display,
 int initialResource) {
 SlidePresentationFragment frag=new SlidePresentationFragment();

 frag.setDisplay(ctxt, display);

 Bundle b=new Bundle();

 b.putInt(KEY_RESOURCE, initialResource);
 frag.setArguments(b);

 return(frag);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 slide=new ImageView(getContext());

 setSlideContent(getArguments().getInt(KEY_RESOURCE));

 return(slide);
 }

 void setSlideContent(int resourceId) {
 slide.setImageResource(resourceId);
 }
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/SlidePresentationFragment.java)
Here, in addition to the sort of logic seen in the preceding sample app, we also
need to teach the fragment which image it should be showing at
any point in time. We do this in two ways:

	We pass in an int named initialResource to the factory method, where
initialResource represents the image to show when the fragment is first
displayed. That value is packaged into the arguments Bundle, and onCreateView()
uses that value.

	Actually putting the drawable resource into the ImageView for this
Presentation is handled by setSlideContent(). This is called by
onCreateView(), passing in the initialResource value.

The Activity
The rest of the business logic for this application can be found in its
overall entry point, MainActivity.
Setting Up the Pager
onCreate() of MainActivity is mostly focused on setting up the ViewPager:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 TabPageIndicator tabs=(TabPageIndicator)findViewById(R.id.titles);

 pager=(ViewPager)findViewById(R.id.pager);
 adapter=new SlidesAdapter(this);
 pager.setAdapter(adapter);
 tabs.setViewPager(pager);
 tabs.setOnPageChangeListener(this);

 helper=new PresentationHelper(this, this);
 }

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
The ViewPager and our SampleAdapter are saved in data members of the
activity, for later reference. We also wire in a TabPageIndicator, from
the ViewPagerIndicator library, and arrange to get control in our
OnPageChangeListener methods when the page changes (whether via the tabs
or via a swipe on the ViewPager itself).
onCreate() also hooks up a PresentationHelper, following the recipe
used elsewhere in this chapter. And, as PresentationHelper requires, we
forward along the onResume() and onPause() events to it:

 @Override
 public void onResume() {
 super.onResume();
 helper.onResume();
 }

 @Override
 public void onPause() {
 helper.onPause();
 super.onPause();
 }

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
Setting Up the Presentation
In the showPreso() method, required by the PresentationHelper.Listener
interface, we create an instance of SlidePresentationFragment, passing in
the resource ID of the current slide, as determined by the ViewPager:

 @Override
 public void showPreso(Display display) {
 int drawable=adapter.getPageResource(pager.getCurrentItem());

 preso=
 SlidePresentationFragment.newInstance(this, display, drawable);
 preso.show(getFragmentManager(), "preso");
 }

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
We then show() the PresentationFragment, causing it to appear on the attached
Display.
The corresponding clearPreso() method follows the typical recipe of calling
dismiss() on the PresentationFragment, if one exists:

 @Override
 public void clearPreso(boolean showInline) {
 if (preso != null) {
 preso.dismiss();
 preso=null;
 }
 }

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
Controlling the Presentation
However, the SlidesPresentationFragment now is showing the slide that was current
when the Display was discovered or attached. What happens if the user changes
the slide, using the ViewPager?
In that case, our OnPageChangeListener onPageSelected() method will be called,
and we can update the SlidesPresentationFragment to show the new slide:

 @Override
 public void onPageSelected(int position) {
 if (preso != null) {
 preso.setSlideContent(adapter.getPageResource(position));
 }
 }

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
Offering an Action Bar
The activity also sets up the action bar with three items:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/first"
 android:icon="@android:drawable/ic_media_previous"
 android:showAsAction="always"
 android:title="@string/first">
 </item>
 <item
 android:id="@+id/last"
 android:icon="@android:drawable/ic_media_next"
 android:showAsAction="always"
 android:title="@string/last">
 </item>
 <item
 android:id="@+id/present"
 android:checkable="true"
 android:checked="true"
 android:showAsAction="never"
 android:title="@string/show_presentation">
 </item>

</menu>

(from Presentation/Slides/app/src/main/res/menu/activity_actions.xml)
Two, first and last, simply set the ViewPager position to be the first
or last slide, respectively. This will also update the SlidesPresentationFragment,
as onPageSelected() is called when we call setCurrentItem() on the
ViewPager.

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_actions, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.present:
 boolean original=item.isChecked();

 item.setChecked(!original);

 if (original) {
 helper.disable();
 }
 else {
 helper.enable();
 }

 break;

 case R.id.first:
 pager.setCurrentItem(0);
 break;

 case R.id.last:
 pager.setCurrentItem(adapter.getCount() - 1);
 break;
 }

 return(super.onOptionsItemSelected(item));
 }

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)
The other action bar item, present, is a checkable action bar item, initially
set to be checked. This item controls what we are showing on the external
display:

	If it is checked, we want to show our Presentation

	If it is unchecked, we want to revert to default mirroring

The theory here is that, in a presentation, we could switch from showing the
slides to showing the audience what the presenter has been seeing all along.
Switching between Presentation and default mirroring is a matter of calling
enable() (to show a Presentation) or disable() (to revert to mirroring)
on the PresentationHelper.
Device Support for Presentation
Alas, there is a problem: not all Android 4.2 devices support Presentation, even
though they support displaying content on external displays. Non-Presentation
devices simply support classic mirroring.
Generally speaking, it appears that devices that shipped with Android 4.2
and higher will support Presentation, assuming that they have some sort of
external display support (e.g., MHL). Devices that were upgraded to Android 4.2
are less likely to support Presentation.
Unfortunately, at the present time, there is no known way to detect whether or not
Presentation will work, let alone any means of filtering on this capability in
the Play Store via <uses-feature>. With luck,
this issue
will be addressed in the future.
Presentations from a Service
Since Presentation inherits from Dialog, it also “inherits” one of the limitations
of Dialog: you can only show one from an Activity. In many cases, that is not a big
problem. If you are using the external display as an adjunct to your own app’s use of the
primary touchscreen, you would be using an activity anyway. However, it does prevent one
from using Presentation to, say, implement a video player app that plays on an external
display but does not tie up the touchscreen, so the user can use other apps while the video
plays.
However, as it turns out, it is possible to drive the content of an external display
from a background app… just not by using a Presentation.
The details of this are a bit tricky, derived from
one Stack Overflow answer and another
Stack Overflow question.
However, you do not need to deal with all of the details, courtesy of PresentationService.
PresentationService is a class in the
CWAC-Presentation library.
PresentationService clones some of the logic from Presentation and Dialog, enough
to allow you to define a View that will be shown on external display, driven by a Service.
PresentationService is an abstract base class for you to extend, where
PresentationService handles showing your content on an external display,
and you simply manage that content.
The CWAC-Presentation library has
a demoService/ directory
containing a sample use of PresentationService. The recipe is fairly simple and
is outlined in the following sections.
Step #1: Attach the Libraries
The CWAC-Presentation README contains
instructions for attaching the libraries to your project, whether via Gradle dependencies,
downloading a pair of JARs, or using the source form of the Android library project.
Step #2: Create a Stub PresentationService
As is noted above, PresentationService is an abstract class, so you will need to create
your own concrete subclass of it, under whatever name you wish. And, as with any service,
you will need a <service> element in the manifest. None of this is especially unusual.
The sample app is a service-based rendition of
the Presentation/Slides sample app
described earlier in this chapter. It has a SlideshowService that will display the
slideshow on an external display from the background, switching slides every five seconds.
Step #3: Return the Theme
One of the abstract methods that you will need to implement is getThemeId(). This
should return the value of the style resource that represents the theme that you wish
to use for the widgets you are going to show on the external display.
For example, if your project uses the @style/AppTheme approach that is code-generated for
you, you can simply return R.style.AppTheme from getThemeId(), as the
sample app does:

 @Override
 protected int getThemeId() {
 return(R.style.AppTheme);
 }

Step #4: Build the View
The other abstract method you need to implement is buildPresoView(). You are passed
a Context and a LayoutInflater, and your job is to use those to build your UI for the
external display, returning the root view. The LayoutInflater is already set up to use
the theme you provided via getThemeId().
Since this will be called shortly before showing the result on the external display, you can
also take this time to initialize other aspects of your presentation. For example, the
SlideshowService implements Runnable and has a Handler for the main application thread,
initialized in onCreate():

 @Override
 public void onCreate() {
 handler=new Handler(Looper.getMainLooper());
 super.onCreate();

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 startForeground(1338, buildForegroundNotification());
 }

buildPresoView() not only returns an ImageView for the slides, but also calls run(), which
populates the ImageView and calls postDelayed() on the Handler to schedule run()
to be called again in five seconds, thereby arranging to update the slide every five seconds:

 @Override
 protected View buildPresoView(Context ctxt, LayoutInflater inflater) {
 iv=new ImageView(ctxt);
 run();

 return(iv);
 }

 @Override
 public void run() {
 iv.setImageResource(SLIDES[iteration % SLIDES.length]);
 iteration+=1;

 handler.postDelayed(this, 5000);
 }

onDestroy() calls removeCallbacks() to break the Handler postDelayed() loop:

 @Override
 public void onDestroy() {
 handler.removeCallbacks(this);

 super.onDestroy();
 }

Step #5: Start and Stop the Service
Calling startService() on your service will then trigger the presentation. Or, more
accurately, it will trigger PresentationService to work with a PresentationHelper
to determine when a presentation should be shown. PresentationService will then
use buildPresoView() to populate the external display. Conversely, calling
stopService() will stop the presentation.
It is up to you to determine what is the trigger for these calls. The sample app simply
starts the service immediately when run and stops the service in response to an action bar
item click.
While the service is running, you are welcome to use an event bus or other
means to control the contents of the presentation, by manipulating the widgets you created
in buildPresoView().
Note that it is safe to call startService() on the service multiple times,
if you do not know whether the service is already running and need to ensure
that it is running now.
Hey, What About Chromecast?
In February 2014, Google released a long-awaited SDK to allow anyone to write
an app that connects to
Chromecast,
Google’s streaming-media HDMI stick. This Cast SDK also works with other
Google Cast-capable devices, like some Android TV models.
A natural question coming out of that
is whether Presentation and DisplayManager work with Chromecast.
The answer is: that depends on how you look at the problem.
While Chromecast may physically resemble a wireless display adapter, in truth
it is its own device, running a customized mashup of Android and ChromeOS.
Chromecast’s strength is in playing streaming media from any source, primarily
directly off of the Internet.
The classic approach for the Google Cast SDK is that
apps are telling the Chromecast what to stream from, not streaming to the
Chromecast itself. As such, the Cast API is distinctly different
from that of Presentation, and while the two both deal with what the Android
device would consider an external display, they are not equivalent solutions.
However:

	A Chromecast can also serve as a Miracast endpoint; if a user sets
that up, then your app can use Presentation with a Chromecast

	In 2015, the Cast SDK added a Presentation-workalike API, one that
presumably works with Chromecast without having to go through
the Miracast setup

More coverage of Chromecast can be found in the next chapter.
Google Cast and Chromecast
A popular target for MediaRouter, in some countries, is Chromecast, Google’s
lightweight streaming media player for televisions and other HDMI displays.
Originally, Chromecast was a “closed box”, with no official support for third-party
apps (and active work to block unofficial support). In early 2014, though,
Google finally opened up Chromecast to developers.
This chapter covers what it takes to enable an Android app to “cast” content
to a Chromecast, possibly as part of a broader external display strategy.
Prerequisites
In addition to the core chapters, you should read
the chapter on MediaRouter
before reading this chapter.
Here a Cast, There a Cast
You will see two terms used in this chapter and in the online literature
regarding all of this: Chromecast and “Google Cast”. Despite the similarities
in their names, these are fairly distinct items.
What is Chromecast?
Chromecast, as noted earlier in this chapter, is a streaming media receiver,
sold by Google under their own brand.

[image: Google Chromecast]

Figure 810: Google Chromecast
It plugs into an HDMI port of a television or similar display, plus uses micro USB
for supplying power.
However, rather than other streaming media receivers, that use Bluetooth or IR
(infrared) peripherals for controlling the playback, Chromecast appears to use
WiFi, designed to be controlled by a smartphone, tablet, or Chrome Web browser.
Chromecast itself runs its own OS, apparently a hybrid of Android and ChromeOS.
What is Google Cast?
Google Cast can be thought of as a control protocol for Google Cast-enabled
receivers. Through a Google-supplied SDK (or other means), Google Cast client
apps (“senders”) can direct a Google Cast-enabled receiver to play, pause, rewind,
fast-forward, etc. a stream.
Google Cast could, in theory, be “baked into” displays (such as a television),
in addition to being supported by dedicated media receivers like the Chromecast.
Google Cast does assume that, in general, the media receiver runs its own OS and
is capable of playing streaming media without ongoing assistance from the Google
Cast client. Hence, the client is not “locked into” having to keep feeding content
to the Google Cast client, allowing the user to go off and do other things with
that client while playback is going on.
Common Chromecast Development Notes
Chromecast goes to sleep if it detects that it is plugged into a television
or monitor that is turned off (or perhaps even not accepting input from the HDMI
port the Chromecast is using). While it is in this sleep mode, it may not appear
as an available route. You may need to keep the display active to allow Chromecast
to work properly. A 720p-capable pico projector, such as
the Vivitek Qumi series,
can be a handy way to have a test display for Chromecast (or for
live video media routes) at your development station, without the bulk of another
monitor, if you have a handy surface to project upon.
Also, note that a Chromecast “uses Google’s DNS regardless of what you have defined
locally”, according to a Google engineer.
That will preclude you from using any local domains on an organization’s own DNS
server, without some tricky firewall configuration to route Google DNS requests
to the in-house DNS server. Similarly, you cannot use machine names as pseudo-domain
names, the way you might be able to using a regular Web browser.
Your API Choices
Chromecast offers up remote playback media routes and works with RemotePlaybackClient,
as is discussed in the chapter on MediaRouter. The sample app
for RemotePlaybackClient was tested on a Chromecast.
If you want greater control than is offered via RemotePlaybackClient, though,
you can use the Cast SDK. This SDK is part
of the Play Services framework, not part of Android itself. It also works solely
with Google Cast devices, of which Chromecast is the only known example, whereas
other sorts of devices are able to publish remote playback media routes. Hence,
using the Cast SDK will tie you to Google Cast — and some of its restrictions,
both technical and legal — but will give you greater developer control over the
behavior of both the Google Cast device and your app.
This chapter will focus on the Cast SDK. See
the chapter on MediaRouter for coverage of RemotePlaybackClient.
Senders and Receivers
There are three major components to the Google Cast environment:

	The sources of streaming media, usually out on the Internet

	The software on the playback device that plays that streaming media (“receiver”)

	The software on the control device (phone, tablet, Chrome Web browser) that
directs the receiver about what to play and when (“sender”)

The Sender App
The sender app is responsible for allowing the user to choose some media to play,
then to control the actual playback (pause, start, stop, rewind, fast-forward,
etc.).
The details of how to choose some media will depend heavily on the nature
of the sender app. For example, a subscription-based streaming video service,
such as Netflix, would allow the user to browse and search eligible content
hosted by Netflix itself. Netflix presumably has its own Web service APIs that
its own sender app would use for this purpose, and it is up to Netflix to offer
a sensible UI for choosing a piece of media to watch.
Passing a reference (e.g., URL) to the receiver, and issuing control commands,
will either be handled by RemotePlaybackClient (on Android) or via a Google-supplied
SDK (for Android, iOS, or Chrome Web apps).
The Receiver
The details of how a receiver is implemented is up to the manufacturer of the
Google Cast-enabled device. In the case of Chromecast, it is a version of
the Chrome Web browser. In principle, the implementation could be anything;
in practice, it is likely that the same basic software stack will be used, courtesy
of licensing Google Cast technology from Google for streaming media devices.
Official Google Cast receiver software comes in three flavors: default, styled,
and custom.
Default Receiver
The default receiver is what you get by default, as you might have guessed. If
you do nothing else, your sender will be communicating with the default receiver.
In effect, the default receiver is a specific Chrome Web app, running on the
Chrome browser inside of the Chromecast, that is responsible for playback of your
chosen media.
Other than providing the URLs to the media, plus requests to pause, start, stop,
etc. the playback, you have no control over the default receiver, particularly
from a look-and-feel standpoint.
Styled Receiver
A styled receiver is one where you, the developer, supply light branding information
that is applied to what otherwise is the default receiver, such as a logo.
Whereas using the default receiver requires no explicit registration with Google,
using the styled receiver does require you to register your sender app with
Google, at which point you will be able to provide a URL pointing to a CSS file
that contains the custom styles.
Custom Receiver
If you would rather replace the default receiver functionality with your own,
either to offer more functionality, or to consume media types that may require
additional configuration (e.g., DRM), you can create a custom receiver. This, in
effect, is a Chrome Web app, where you provide not only CSS, but the HTML and
JavaScript as well. This is substantially more complicated, and it requires
registration with Google (as with the styled receiver). However, you have
far greater control over what appears on the television.
Supported Media Types
The list of supported media types
is likely to change over time. At present,
Google Cast-enabled devices are supposed to support major media types,
such as:

	MP4 and VP8 for video

	MP3, AAC, and Ogg Vorbis for audio

	PNG, JPEG, GIF, BMP, and WEBP for still images (e.g., photos)

	HLS and MPEG-DASH for streaming

Cast SDK Dependencies
Using the Cast SDK to develop for Google Cast devices has a fair number of dependencies…
and not just dependencies on particular libraries.
Developer Registration
If you are going to be using the default receiver, and you do not need to have
debugging access to the device (e.g., to examine JavaScript logs from the Web rendering
engine on the Google Cast device), you are welcome to develop your apps independently.
However, if you will use a styled or custom receiver, or you wish to gain debugging
access to the device, you will need to register with Google.
This process will involve you agreeing to some terms of service (see below), along
with paying a $5 registration fee.
The Terms of Service
The Google Cast SDK has separate Developer Terms of Service
from anything else. If you are going to use the Google Cast SDK,
you will be expected to agree to these terms
as part of the registration processes. You are strongly
encouraged to review these terms with qualified legal counsel. Failure to comply
with the terms may cause your app (or, more accurately, your styled or custom
receivers) to “be de-registered”, presumably meaning that it will no longer work.
These terms contain some curious clauses, worth discussing with your attorney,
including a requirement to adhere to a massive
design checklist,
controlling the look-and-feel of your sender and receiver. This includes a specific
requirement for the precise icon to be used for initiating communications with
the Google Cast receiver. Those agreeing to these terms are also barred
from doing things that might allow others to display content on a Google Cast
receiver without using the SDK or breaking through any access controls on the
Google Cast device (e.g., creating an exploit that roots it).
Device Registration and Development Setup
While registering your device is optional, it may be handy for custom receivers,
so that you can debug your custom HTML and JavaScript that is being rendered by the
Google Cast device.
First, you should configure your device to publish its serial number to Google
when it checks for Google Cast software updates. For the Chromecast, this
involves using whatever means you used to configure the Chromecast in the first
place for your network (e.g.,
the Chromecast Android app).
There should be an option for “Send this Chromecast’s serial number
when checking for updates” — in the Chromecast Android app, this will be in
the “Share Data” section of the device’s settings screen.
Once you have registered as a Cast SDK developer,
the Google Cast SDK Developer Console will have an option
for you to “Add New Device”. You will need the Google Cast device’s serial
number — in the case of the Chromecast, this is etched on the underside of the
device.
Note that it may take some time before your device registration will be complete,
as the device will not find out about the registration until it checks for another
update, and there does not appear to be a way to trigger this. Hence, you may need
to wait a few hours. You will know that you have access once you can successfully
connect, via a Web browser, to port 9222 on the IP address of the Google Cast
device. For the Chromecast, the easiest way to get that IP address is through your
Chromecast configuration tool (e.g., the Chromecast Android app). Note that the
Web page may not be much (e.g., “Inspectable WebContents”), but it will not return
a 404 or similar error code.
If you wish to use a styled or custom receiver, you will also need to register
your application, in the same Cast SDK Console area. This will be covered in a
future edition of this book.
The Official Libraries
You will need the Google Play Services SDK, which you may have used already for other
portions of the Play Services framework, such as GCM, Maps V2,
and so on.
You will also need the same mediarouter Android library project covered in
the chapter on MediaRouter, along with its dependencies
(e.g., the support-v4 library and the appcompat library).
The CastCompanionLibrary… Or Not
The Play Services SDK (and its dependencies) is all that you need to write
Cast SDK applications. However, Google has also published
the Cast Companion Library (CCL),
containing a lot of helper code to make it a bit easier for you to write
apps that adhere to the
design checklist
Developing Google Cast Apps
Coverage of the Cast SDK, including sample apps, will be added to this chapter
in a future edition of this book.
The “Ten-Foot UI”
Increasingly, Android devices are being used to drive screens that are
somewhat larger than those found on your average phone or tablet:

	Many Android phones and tablets
can directly deliver content to TVs, monitors, and projectors
via HDMI, MHL, SlimPort, Miracast, and similar
technologies

	Android devices can control the behavior of non-Android presentation
engines, like Chromecast

	Some Android devices themselves use a TV or other display as their
primary screen, from big names (Google and Amazon),
mid-range firms (OUYA), and firms you have never heard of (various Android
“HDMI sticks” available on eBay, Alibaba, etc.)

Technically, writing for these displays is a bit different than you
would do for a phone or tablet. In some cases, such as with Google Cast,
writing for these displays is more substantially different.
However, in all cases, the design of the UI needs to be different, owing
to different physical and usage characteristics of large screens. This
chapter will focus on this so-called “ten-foot UI” and help you understand
what sorts of changes will need to be considered.
Prerequisites
Understanding this chapter requires that you have read the chapter
on focus management.
The sample of the “leanback” UI is a revised version of a sample
app profiled in
the chapter on the MediaStore ContentProvider.
What is the “Ten-Foot UI”?
The “ten-foot UI” is not referring to a UI that is 3.048 meters high or
9.87789527 by 10^-17 parsecs wide.
Rather, the distance referred to by the “ten-foot UI” indicates the
approximate distance between the viewer and the screen. People usually
sit farther from TVs, monitors, and projectors than they do phones or tablets
when using them. Partly, that is because the screens are a lot bigger, so
they do not need to sit as closely. Partly, that is because often times
the screens are being “used” by more than one person (e.g., an audience
watching a presentation on a projector), and everybody needs to be able
to see the screen.
The expression “ten-foot UI” refers to the design constraints inherent
in developing user interfaces to be used across such a distance. Even
though the screen may be bigger, the apparent screen size (or
“visual angle” may be no
bigger than phones or tablets, or sometimes even less. That, plus user
input differences, technical differences between TVs and other displays,
and so on all go into the “ten-foot UI” design guidance that UI experts
give us.
Overscan
Television standards have been with us for several decades.
Television sets from the dawn of television had significantly lower
and more variable quality than today’s devices. The delivery of the
signal at the outset had significantly lower and more variable
quality than today’s over-the-air HDTV or cable connections. As a
result of these two characteristics, the engineers devising
television standards made some decisions that, while necessary at the
time, add some complexity to delivering apps to televisions, in the
form of overscan.
Simply put, not all televisions show exactly the same picture.
Depending on device and signal, a television may show up to 12% less
of the picture, as measured horizontally and vertically. Hence, the
theoretical ideal screen size (e.g., 720p = 1280 x 720 pixels) may be
achieved in some cases, but you may get less (e.g., 1128 x 634
pixels) in other cases.
Android TV and Fire TV ignore overscan,
relying upon developers to take it into account. As a result, the reported screen
resolution is not necessarily available to you. Instead, you need to avoid putting
anything important in the outer ~10% of the screen, centering the important stuff within
the available space.
So, for example, you might have a background for your game (e.g., a starfield). Make
sure that there is nothing essential on the background image that the user must see that
is along the outside edge. Then, if part of the background is lost due to overscan, there
is no particular problem.
The bigger issue, of course, is standard foreground widgets and containers. Android developers
are used to being able to have layouts that work edge-to-edge, with just a minor amount
of margin so text, icons, and the like do not run right into the edge of the screen.
Now, you need more than a “minor amount” of margin.
Google and Amazon recommend a 27dp margin on the top and
bottom sides of your activities, and a 48dp margin on the left and right sides
of your activities.
For activity and fragment layouts that are dedicated for TV presentation, you could elect to
put those margins in those layouts, or add them via a theme. However,
for activity and fragment layouts that may be used both for a touchscreen
device (phone or tablet) and a television, adding the margin on the touchscreen
device may be unsuitable.
For that, you could use dimension resources in different resource sets.
Define overscan_horizontal and overscan_vertical to be both 0dp (or whatever) in
res/values/dimens.xml. Define them to be 48dp and 27dp, respectively,
in res/values-television/dimens.xml, where -television is a resource
set qualifier that will be used in Android TV and other TV-based Android
devices. Then, you can refer to @dimen/overscan_horizontal and
@dimen/overscan_vertical in activity/fragment layouts, to take
overscan into account conditionally.
Navigation
Most televisions, monitors, and projectors are not touchscreens. Users will
be changing what is shown either by using some sort of remote control
(e.g., Fire TV, Android TV) or by using an app that runs on a touchscreen
device (e.g., direct monitor connection, Chromecast).
In the remote control scenarios, in-screen navigation becomes important.
Those remote controls usually focus on some sort of D-pad or arrow keys
for moving focus and clicking on widgets. This forces users into a
sequential-access model (e.g., click “left” three times then “enter” once) rather
than the random-access model that touchscreens offer.
The chapter on focus management covers these sorts of
concerns. Bear in mind that getting focus management implemented properly in
your app not only helps with the “ten-foot UI”, but also can help other
sorts of users, such as the visually impaired or motion impaired who cannot
readily use touchscreens.
Also note that text input is a significant chore when you try to do it using
a remote control. Hence, even to the extent it is possible, try to limit
the number of places that users have to type into EditText widgets and
the like in your UI. If possible, offer a way for users to do that sort
of thing via a separate app on their phone or tablet, or perhaps through
a Web browser that pushes the information to the TV set-top box.
Stylistic Considerations
In addition to structural issues like overscan and focus management,
there are some stylistic issues that you will need to take into account
when designing your ten-foot UI.
Fonts
With phones and tablets, if the user has some difficulty reading a bit
of text, they can usually fix the problem just by moving their hand a bit, to
bring the screen closer.
That becomes less likely of a solution as you get into larger screens. People
get annoyed if they have to get up off of their sofa to squint and try to read
text on a television. In a presentation setting, people may be unable to move
into a better viewing position.
To combat this:

	Err on the side of larger fonts, with a medium weight (i.e., not too light
or too heavy of strokes that make up the letters)

	Aim to use simpler fonts, particularly sans-serif fonts, as those tend
to be more readable at a distance

	Where practical, give the user control over font size within your application,
or allow some other sort of “zoom” mechanism, to help see details that they
might otherwise be unable to see

	Light text on a dark background tends to be easier to read on televisions,
so consider using a theme that supports this (e.g., Theme.Holo as opposed
to Theme.Holo.Light)

	Use fewer words

	Use more line spacing (e.g., via android:lineSpacingMultiplier on a
TextView), so descenders from one line are clearly distinguished from
the tops of characters on the next line

Padding and Margins
In addition to adding more line spacing, consider adding more padding and
margins to your ten-foot UIs.
Bear in mind that screen density calculations start to go astray as the
user moves further away from the screen. We are used to making those calculations
based on actual pixels on phones and tablets (a.k.a., “two-foot UI”).
The apparent size of a television may be no bigger than that of a tablet,
once the user’s distance from the screen is taken into account. However,
screen density has no good way to take that distance into account, other than
by effectively hard-coding the density (e.g., Fire TV considering everything
to be -xhdpi). Hence, particularly for padding and margins, you may need
to “finesse” your values a bit on televisions and the like.
In cases where Android is directly talking to the television (e.g., HDMI/MHL
from a phone or tablet, Fire TV, Android TV, Android HDMI sticks), you can
use -notouch qualifiers on resource sets to provide different values for
dimension resources.
Colors
Usually, with the ten-foot UI, we treat televisions, monitors, and projectors
equally. They do differ in one key area: color management.
Televisions, for historical reasons, tend to have different color responses
than do monitors or projectors. As Google puts it:

TV screens have higher contrast and saturation levels than computer monitors

Even to the extent that those settings could be adjusted, if the television
will be used as a television, the factory settings may be the proper
ones. Beyond that, few television owners think about changing such things.
As a result, you need to be careful with your color choices:

	Pure white (#FFFFFF) can cause problems, such as “ghosting”, so use a
very light gray (e.g., #F1F1F1, #EBEBEB) instead. Pure black (#000000)
is not a problem.

	Aim for more muted colors, particularly in the blue/green/violet end
of the color spectrum, as opposed to bright red or orange. Warm colors tend
to bleed more than cool colors.

Aspect Ratio
Bear in mind that different TVs (or other displays) may have different
aspect ratios. While many will be 16:9, also consider 4:3 and 21:9 (also known
as 2.35:1).
The Leanback UI
In 2014, Google added the leanback-v17 library to the Android Support
package. This contains code to help you create TV-focused user interfaces.
While the intention is for this library to help you create UIs for
Android TV, there is nothing strictly tied to the Android TV platform
in leanback-v17. Your user interfaces can work just fine on other
TV environments (e.g., Amazon Fire TV). And they still support touchscreen
events, and so they can be used on phones and tablets as well, though perhaps
not optimally.
Where to Get Leanback
Android Studio users can add a dependency on the leanback-v17 artifact
from the Android Support Repository:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.android.support:leanback-v17:27.1.1'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 17
 targetSdkVersion 27
 applicationId "com.commonsware.android.video.browse"
 }
}

(from Leanback/VideoBrowse/app/build.gradle)
This particular bit of Gradle configuration comes from
the
Leanback/VideoBrowse
sample application, which will be the focus of this “leanback” UI section.
This project depends not only upon leanback-v17, but also upon
the Picasso image loading library, profiled in
the chapter on Internet access.
If you read through the chapter on MediaStore,
this sample app will seem familiar. In the MediaStore chapter,
we created a sample app that would present a list of videos available
on the device in a ListView, using Picasso for handling the video
thumbnails. The VideoBrowse “leanback” sample app is the same app,
adjusted to use a “leanback” UI instead of a ListView.
BrowseSupportFragment
The primary UI element that we get from leanback-v17 is BrowseSupportFragment.
BrowseSupportFragment is a fragment designed to allow browsing of a roster
of content through a two-dimensional scrolling interface. There is a list
of “headers” (e.g., categories of videos), and within each header is a
horizontal scrolling list of items within that header.
This sort of UI pattern is fairly commonplace in TV-centric apps, as it
works well with TV-style remotes:

[image: VideoBrowse Sample App, As Initially Launched]

Figure 811: VideoBrowse Sample App, As Initially Launched
The VideoBrowse sample application consists of one activity, hosting
a BrowseSupportFragment, that will display the roster of available videos on
the device. Clicking on an individual video will bring up the device’s
default video player app, just as the VideoList sample did in the
chapter on the MediaStore.
Theme and Activity
There is very little specifically required of an activity that hosts
a BrowseSupportFragment, particularly on the Java side. So long as the
activity gets the BrowseSupportFragment onto the screen, the key work is
done.
In the case of our MainActivity, it uses a res/layout/main.xml file,
pointing to our VideosFragment, which is a subclass of BrowseSupportFragment:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/videos"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:name="com.commonsware.android.video.browse.VideosFragment"
/>

(from Leanback/VideoBrowse/app/src/main/res/layout/main.xml)
The Java code simply loads up the layout containing that static
fragment, plus has an onVideoSelected() method that will be called
if the user clicks on a video:

package com.commonsware.android.video.browse;

import android.content.Intent;
import android.net.Uri;
import android.widget.Toast;
import java.io.File;
import static android.Manifest.permission.READ_EXTERNAL_STORAGE;

public class MainActivity extends AbstractPermissionActivity {
 private static final String[] PERMS={READ_EXTERNAL_STORAGE};

 @Override
 protected String[] getDesiredPermissions() {
 return PERMS;
 }

 @Override
 protected void onPermissionDenied() {
 Toast
 .makeText(this, R.string.msg_no_perm, Toast.LENGTH_LONG)
 .show();
 finish();
 }

 @Override
 public void onReady() {
 setContentView(R.layout.main);
 }

 public void onVideoSelected(String uri, String mimeType) {
 Uri video=Uri.fromFile(new File(uri));
 Intent i=new Intent(Intent.ACTION_VIEW);

 i.setDataAndType(video, mimeType);
 startActivity(i);
 }
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/MainActivity.java)
However, there are two other requirements of the activity.
For this particular sample app, we want to show the videos that are available
locally on the device. That requires us to have the READ_EXTERNAL_STORAGE
permission, which in turn requires us to use runtime permissions. So, this
sample app uses the same sort of AbstractPermissionActivity seen elsewhere
in the book to handle the up-front permission request. Assuming that the user
grants the permission, onReady() loads the aforementioned layout, which
loads our fragment.
In terms of what goes in the manifest:

	The activity needs to use a theme that is, or inherits from, Theme.Leanback

	To show up as the “launcher activity” for an Android TV device,
the activity needs to have an <action> of MAIN and
a <category> of LEANBACK_LAUNCHER:

 <application
 android:allowBackup="false"
 android:hardwareAccelerated="true"
 android:icon="@drawable/ic_launcher"
 android:banner="@drawable/banner"
 android:label="@string/app_name">
 <activity
 android:name="MainActivity"
 android:configChanges="keyboard|keyboardHidden|orientation|screenSize|smallestScreenSize"
 android:label="@string/app_name"
 android:screenOrientation="sensorLandscape"
 android:theme="@style/Theme.Leanback">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 <category android:name="android.intent.category.LEANBACK_LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

(from Leanback/VideoBrowse/app/src/main/AndroidManifest.xml)
In our case, we match on either the LAUNCHER or the LEANBACK_LAUNCHER
category, as this particular activity can work on either form factor family
(touchscreens or TVs). However, other apps might have separate “launcher activity”
implementations for phones/tablets versus televisions, and so having a
separate LEANBACK_LAUNCHER category allows us to indicate which activities
serve which role.
This activity also sets its screenOrientation to sensorLandscape,
indicating that it will always present itself in landscape mode, no matter
how the device is held. It also uses a configChanges attribute to opt
out of configuration changes due to orientation changes, as the UI is
not changing in those cases.
Android TV wants a “banner” graphic as well, identified in the android:banner
attribute of either the <application> element or the LEANBACK_LAUNCHER
<activity> element. This graphic should be 320px by 180px, saved as an xhdpi
drawable. This will be used for the entry in the Android TV launcher, in lieu
of our regular launcher icon:

[image: Android TV Launcher, Showing VideoBrowse App Banner, Selected]

Figure 812: Android TV Launcher, Showing VideoBrowse App Banner, Selected
We also have two <uses-feature> elements:

	
android.software.leanback, saying that we would love to run on a leanback-style
device (e.g., Android TV), but it is not required

	
android.hardware.touchscreen, saying that we would love to run on a device
with a touchscreen, but it is not required

The latter element is particularly important for Android TV and similar devices.
By default, Android apps expect a touchscreen; this element opts out of that
requirement, so the app can be installed on a device that lacks a touchscreen.
Loading the Videos
VideosFragment is responsible for showing the roster of available
videos on the device, using a BrowseSupportFragment two-dimensional structure.
This means, though, that VideosFragment needs to be able to find out
what videos are available. As with the VideoList sample in
the MediaStore chapter, VideosFragment will
query the MediaStore ContentProvider to find out about the videos,
by means of a CursorLoader.
In onViewCreated(), VideosFragment calls initLoader() to start
loading the videos, in addition to indicating that the fragment itself
will serve as the controller handling clicks on individual videos,
via the setOnItemViewClickedListener() interface:

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 getLoaderManager().initLoader(0, null, this);
 setOnItemViewClickedListener(this);
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)
For those calls to work, VideosFragment needs to implement the LoaderManager.LoaderCallbacks<Cursor>
interface (for initLoader()) and the OnItemViewClickedListener
(for setOnItemViewClickedListener()).
The initLoader() call triggers a call to our onCreateLoader() method,
which queries the MediaStore roster of videos for all videos, ordered
by title:

 @Override
 public Loader<Cursor> onCreateLoader(int arg0, Bundle arg1) {
 return(new CursorLoader(
 getActivity(),
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 null, null, null,
 MediaStore.Video.Media.TITLE));
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)
That, in turn, will eventually trigger a call to onLoadFinished():

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 mapCursorToModels(c);

 setHeadersState(BrowseSupportFragment.HEADERS_ENABLED);
 setTitle(getString(R.string.app_name));

 ArrayObjectAdapter rows=new ArrayObjectAdapter(new ListRowPresenter());
 ArrayObjectAdapter listRowAdapter=
 new ArrayObjectAdapter(new VideoPresenter(getActivity()));

 for (Video v : videos) {
 listRowAdapter.add(v);
 }

 HeaderItem header=new HeaderItem(0, "Videos");

 rows.add(new ListRow(header, listRowAdapter));
 setAdapter(rows);
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)
We will get to much of the code in onLoadFinished() a bit later in this chapter.
However, the first thing that onLoadFinished() does is call a mapCursorToModels()
method. This method will be responsible for taking the data from the
Cursor we get back from MediaStore and using it to populate some
model objects that will drive what the BrowseSupportFragment displays to the user.
BrowseSupportFragment’s API is not especially well-suited for working with
a Cursor directly; it is simpler to have a separate collection of model
objects representing the results of the database query.
In our case, the model object will be a Video:

package com.commonsware.android.video.browse;

class Video {
 int id;
 String uri;
 String mimeType;
 String title;

 Video(int id, String uri, String mimeType, String title) {
 this.id=id;
 this.uri=uri;
 this.mimeType=mimeType;
 this.title=title;
 }

 @Override
 public String toString() {
 return(title);
 }
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/Video.java)
There are four pieces of data we need to track for the video:

	Its unique id, so we can get a thumbnail of the video later on

	Its Uri (here, held in a string representation), to be used to
play back the video

	Its MIME type, also to be used to play back the video

	Its title, which will be used along with its thumbnail when rendering
the video as part of the BrowseSupportFragment roster of content

VideosFragment holds onto a collection of these Video objects in a
data member named videos:

 private ArrayList<Video> videos=new ArrayList<Video>();

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)
mapCursorToModels() iterates over the Cursor rows and creates a
Video object for each row, adding the Video to the videos, and
closing the Cursor when done:

 private void mapCursorToModels(Cursor c) {
 videos.clear();

 int idColumn=c.getColumnIndex(MediaStore.Video.Media._ID);
 int uriColumn=c.getColumnIndex(MediaStore.Video.Media.DATA);
 int mimeTypeColumn=
 c.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);
 int titleColumn=
 c.getColumnIndex(MediaStore.Video.Media.TITLE);

 for (c.moveToFirst(); !c.isAfterLast(); c.moveToNext()) {
 videos.add(new Video(c.getInt(idColumn),
 c.getString(uriColumn),
 c.getString(mimeTypeColumn),
 c.getString(titleColumn)));
 }

 c.close();
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)
Headers and Contents
So, let’s look at the full onLoadFinished() method, called when we
have our Cursor of videos:

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 mapCursorToModels(c);

 setHeadersState(BrowseSupportFragment.HEADERS_ENABLED);
 setTitle(getString(R.string.app_name));

 ArrayObjectAdapter rows=new ArrayObjectAdapter(new ListRowPresenter());
 ArrayObjectAdapter listRowAdapter=
 new ArrayObjectAdapter(new VideoPresenter(getActivity()));

 for (Video v : videos) {
 listRowAdapter.add(v);
 }

 HeaderItem header=new HeaderItem(0, "Videos");

 rows.add(new ListRow(header, listRowAdapter));
 setAdapter(rows);
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)
As mentioned, the first thing that we do is map the Cursor contents
to Video objects.
We then make two general changes to the look of the BrowseSupportFragment:

	We enable the headers. In truth, that would not make sense for this
particular application, as we only have one header. However, we are
enabling the headers to show what that looks like, as many uses of
BrowseSupportFragment will need the full two-dimensional browsing experience.

	We set the title to be the app_name string resource. This title
goes in the upper-right corner and is used to remind the user of what
app they are in, much like the title in an action bar would on a phone
or tablet.

We then build up the two-dimensional data model and rendering rules for
the browsing experience. This involves creating instances of an
ObjectAdapter base class, supplied by leanback-v17. ObjectAdapter
fills a role reminiscent of Adapter with AdapterView, insofar as
it organizes model data and helps with the rendering. However, whereas
Adapter does that all itself, ObjectAdapter splits the roles out:
it handles the model data and delegates to Presenter implementations
for rendering individual items from the model data.
In the two-dimensional browsing model, we need an ObjectAdapter
that represents our rows, where each row has a header and a nested
ObjectAdapter for the items to appear in that row.
Just as ArrayAdapter is the easiest Adapter class to use,
ArrayObjectAdapter is the easiest ObjectAdapter to use.
ArrayObjectAdapter adapts arrays of objects, where in this case,
“array” really means ArrayList.
Unlike ArrayAdapter, where we primarily build up our array and
hand it to the adapter, ArrayObjectAdapter has us populate the
“array” via methods like add() on the ArrayObjectAdapter.
So, after calling setHeadersState() and setTitle() as described
above, we:

	Create an ArrayObjectAdapter, named rows, that uses the
ListRowPresenter supplied by leanback-v17 to render the row

	Create another ArrayObjectAdapter, named listRowAdapter, that
uses a custom VideoPresenter that we will examine later in this
chapter

	Iterate over the Video roster and add each to the listRowAdapter

	Create an instance of a HeaderItem, supplied by leanback-v17,
that represents the header entry itself, with a title for that
header

	Create an instance of a ListRow, supplied by leanback-v17,
that wraps around the HeaderItem and the listRowAdapter for the
items to show in that row

	Put the ListRow in the rows ArrayObjectAdapter, and pass
rows to setAdapter() to tell the BrowseSupportFragment what to
display

A more complex app might have several ListRow objects in rows,
one per header. For example, you might group videos by some sort
of categorization scheme, where each HeaderItem names the category
and the ListRow also contains the videos specific to that category.
Of the classes cited here, all are stock implementations from
leanback-v17, with the exception of VideoPresenter, which is
responsible for rendering a Video as an item in the horizontal
list of videos.
Presenting the Presenters
A Presenter, in the leanback-v17 system, is an object responsible
for converting some model object (e.g., a Video) into a visual
representation that will be used for an ObjectAdapter.
The Presenter abstract class enforces a “view holder” approach.
A view holder is simply a data structure holding onto a basket
of widgets. The idea is that the view holder represents all the widgets
for a particular instance of the Presenter. So, we now have two
levels of indirection over the Adapter approach used by ListView
and kin: not only does ObjectAdapter not do the rendering, but
Presenter alone does not do the rendering, but instead involves
a view holder.
As a result, a Presenter implementation will tend to be artificially
complex.
First, let’s look at the view holder, implemented as a static class
inside VideoPresenter, named Holder, that extends the stock
Presenter.ViewHolder class:

 static class Holder extends Presenter.ViewHolder {
 private final ImageCardView cardView;
 private int targetWidth, targetHeight;

 public Holder(View view) {
 super(view);

 cardView=(ImageCardView)view;

 Resources res=view.getContext().getResources();

 targetWidth=(int)res.getDimension(R.dimen.card_width);
 targetHeight=(int)res.getDimension(R.dimen.card_height);
 }

 protected void updateCardViewImage(Uri uri) {
 Picasso.with(cardView.getContext())
 .load(uri)
 .resize(targetWidth, targetHeight)
 .centerCrop()
 .onlyScaleDown()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(new Target() {
 @Override
 public void onBitmapLoaded(Bitmap bitmap,
 Picasso.LoadedFrom from) {
 Drawable bmpDrawable=
 new BitmapDrawable(
 cardView.getContext().getResources(),
 bitmap);

 cardView.setMainImage(bmpDrawable);
 }

 @Override
 public void onBitmapFailed(Drawable errorDrawable) {
 cardView.setMainImage(errorDrawable);
 }

 @Override
 public void onPrepareLoad(Drawable placeHolderDrawable) {
 cardView.setMainImage(placeHolderDrawable);
 }
 });
 }
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)
The Presenter will set up the UI, in the form of an ImageCardView –
another stock class provided by leanback-v17 that is an ImageView
with an associated caption. As we will want to pour video thumbnails
into the ImageView, this sample app uses Picasso,
the same way the VideoList sample does.
We also determine how big the
thumbnail should be, based on a pair of dimension resources, card_width and
card_height:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="card_width">400dp</dimen>
 <dimen name="card_height">300dp</dimen>
</resources>

(from Leanback/VideoBrowse/app/src/main/res/values/dimens.xml)
The updateCardViewImage() will be called when we are ready to use
this ViewHolder to present the contents of some particular
Video. We receive the Uri to the video and set up Picasso to:

	Load the image from that Uri (load())

	Resize it to the target dimensions (resize()), but only if the
image is larger (onlyScaleDown()), and then crop to get the image
centered in the desired size (centerCrop())

	Use the supplied ic_media_video_poster as a placeholder

Then, since Picasso has no knowledge of how to work with an ImageCardView
from leanback-v17, we have to use a different version of into(),
one that takes a Target as parameter. Here, we use an anonymous inner
class implementation of a Target. The key method is onBitmapLoaded(),
where we wrap the Bitmap in a BitmapDrawable and call setMainImage
on the ImageCardView to populate it. Similarly, there are onBitmapFailed()
and onPrepareLoad() methods for handling errors and the placeholder,
respectively.
Now, given the Holder, we can set up the rest of VideoPresenter,
starting with its constructor:

 VideoPresenter(Context ctxt) {
 super();

 this.ctxt=ctxt;
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)
Here, mostly, we are holding onto a supplied Context for eventually
creating our ImageCardView.
At the point in time that the VideoPresenter needs to create a view
holder to use for rendering an item, onCreateViewHolder() will
be called:

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent) {
 ImageCardView cardView=new ImageCardView(ctxt);

 cardView.setFocusable(true);
 cardView.setFocusableInTouchMode(true);

 return(new Holder(cardView));
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)
Here, we set up an ImageCardView, marking it as focusable both for
the D-pad and for touchscreens, and wrap that in our custom Holder.
At the point in time when we are ready to show a Video using the
widgets managed by the Holder, onBindViewHolder() is called:

 @Override
 public void onBindViewHolder(Presenter.ViewHolder viewHolder,
 Object item) {
 Video video=(Video)item;
 Holder h=(Holder)viewHolder;
 Resources res=ctxt.getResources();

 h.cardView.setTitleText(video.toString());
 h.cardView.setMainImageDimensions((int)res.getDimension(R.dimen.card_width),
 (int)res.getDimension(R.dimen.card_height));

 Uri thumbnailUri=
 ContentUris.withAppendedId(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 video.id);

 h.updateCardViewImage(thumbnailUri);
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)
We are passed in a generic Object that is the model data from our
ObjectAdapter — in this case, it will be a Video, as we are using
VideoPresenter with an ArrayObjectAdapter that holds the Video
instances. We update the ImageCardView caption based on the title
of the Video, then set the size of the ImageView based upon the
same dimension resources as we used with UIL’s ImageSize. We construct
a Uri pointing to the video as known to MediaStore (given the video’s id),
and pass the String representation of that into the Holder, which
will handle the UIL work.
There is one other abstract method that we need to override to
satisfy Presenter: onUnbindViewHolder():

 @Override
 public void onUnbindViewHolder(Presenter.ViewHolder viewHolder) {
 ((Holder)viewHolder).cardView.setMainImage(null);
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)
onUnbindViewHolder() can often be skipped. However, if you have
memory-intensive stuff in the view holder — like the bitmap in an
ImageView — this is a fine time to take steps to release that memory.
In our case, we null out the image in the ImageCardView. Ideally,
we would somehow work with UIL to arrange to recycle this Bitmap
object, since all of our Bitmap objects should be the same size.
Handling Clicks
BrowseSupportFragment automatically handles a lot of input events, such as:

	arrow key events in the list of headers, to move a selection bar
up and down the list

	click events on a header, to allow navigation into the row of items
for that header

	arrow key events on an item, to navigate to the next or previous item

	BACK button events on an item, to return to the list of headers

It also captures the click event on an item and routes that to the
onItemClicked() method of the BrowseSupportFragment, which we override
in VideosFragment:

 @Override
 public void onItemClicked(Presenter.ViewHolder viewHolder,
 Object o,
 RowPresenter.ViewHolder rowViewHolder,
 Row row) {
 Video video=(Video)o;
 ((MainActivity)getActivity()).onVideoSelected(video.uri,
 video.mimeType);
 }

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)
The Object passed as the second parameter to onItemClicked() is
the Object in our ObjectAdapter for the clicked-upon item. In
our case, the ObjectAdapter is our ArrayObjectAdapter wrapped around
our Video objects, and so the Object passed into onItemClicked()
is a Video. Given that, we can call out to the hosting activity and
its onVideoSelected() to go play back the selected video.
The Results
Launching the app shows our list of headers (with just the one header),
thumbnails of videos in that header, and the “Video Browse Demo” title:

[image: VideoBrowse Sample App, As Initially Launched]

Figure 813: VideoBrowse Sample App, As Initially Launched
Selecting a video slides the headers out of the way and shows the full
card for the video, including the video’s title:

[image: VideoBrowse Sample App, With First Video Selected]

Figure 814: VideoBrowse Sample App, With First Video Selected
Clicking on the selected video brings up the default video player for
the device.
Note that this UI is not tied strictly to TV-style displays. For example,
the screenshots shown in this section came from an Android tablet,
as you can tell by the status bar and navigation bar. The BrowseSupportFragment
UI is not completely out of place on a tablet, and it works with touch
events as well as the key events that would be emitted by a TV-style
remote control. On a phone, the BrowseSupportFragment UI gets a bit cramped,
particularly in portrait, though it still works.
Testing Your Theories
Ideally, you test your ten-foot UI in a ten-foot experience, using something
connected to a television.
This does not have to be expensive:

	If you have a phone or tablet that can connect to a TV via HDMI, MHL,
or Miracast, at most you might need a cable or a Miracast adapter

	Android “HDMI sticks” or other Android set-top boxes can be found
on eBay, Alibaba, or elsewhere

	The Fire TV line of devices are available in some markets fairly
inexpensively

	Some Android TV devices are not especially expensive

If you need to develop using more traditional hardware (phone or a tablet)
or an emulator, the big thing will be to make sure that you are estimating
the screen size properly. For example, a 10“ tablet, held fully at arm’s
length, will have the same visual angle as a modest television (~26”)
at a comfortable seating distance. While this will not help with color
saturation, using remote controls, or other aspects of the ten-foot UI,
you can at least get a sense of whether your text and UI controls will
be large enough to be usable.
Putting the TVs All Together: Decktastic
This book profiles many ways of getting content to a TV:

	By means of Presentation and related classes, for touchscreen-enabled devices
that also happen to presently have a connection to an external display

	By means of RemotePlaybackClient, for use with devices like the Chromecast

	By means of directly displaying output on a TV, for devices where the TV
is the primary display (e.g., Android TV devices, Amazon’s Fire TV and Fire TV Stick)

It is entirely possible to create one app that can support all of these
modes from one code base, though you are constrained by the most limited
option. In this case, RemotePlaybackClient is the most limited option, as its
API is designed to tell some external device to play some media, whereas the
other options can support comparatively arbitrary user interfaces rendered through
normal Android widgets.
In this chapter, we will review the
Presentation/Decktastic
sample application. This app is designed to give the user a roster of
slide-based presentations to choose from, then deliver one of those presentations.
The presentation will appear on the external display (e.g., TV or projector), while
the presenter will be able to control the presentation either from a touchscreen-equipped
Android device or a remote control.
Prerequisites
You should read the following chapters before this one:

	Supporting External Displays

	Media Routes

	The “10 Foot UI”

Reading up on specific hardware, like the Amazon Fire TV, is a good
idea but not as critical.
Introducing Decktastic
Before we get into discussing the implementation of Decktastic, we should first
review what the app looks like and how it functions.
Launcher UI
If you were to set up Decktastic on some test device and
run it, the first thing that you would see is a media browsing UI built from
the leanback-v17 support library, showing you a roster of the available
presentations to choose from:

[image: Decktastic Media Browser]

Figure 815: Decktastic Media Browser
This UI works fine on TVs and on tablets. On phones… it gets a bit cramped.
Tapping on a presentation selects it:

[image: Decktastic Media Browser, With Selected Presentation]

Figure 816: Decktastic Media Browser, With Selected Presentation
Presentation UI
Tapping on the presentation again opens it up into a ViewPager-based UI for
the presenter:

[image: Decktastic Main UI, Showing Presentation and Open Overflow]

Figure 817: Decktastic Main UI, Showing Presentation and Open Overflow
However, who sees what depends a bit upon the available hardware:

	If you are running this standalone on a phone or tablet, you will see the
ViewPager-based UI

	If you are running this on a phone or tablet with a connection to an external
display, you will see the ViewPager-based UI, but the audience (those looking
at the external display) will, by default, just see the slides

	If you are running this on a phone or tablet with a connection to a Chromecast
or similar remote playback device, we get the same results as with the external
display (you see the full UI, the audience sees the slides)

	If you are running this on an Android TV, Fire TV, or similar device, both
you and the audience only see the slides

To move through the slides, you can:

	Swipe the ViewPager

	Use the ViewPager tabs

	Use right or down keys to move forward, or left or up keys to move backward, whether
on a QWERTY keyboard (e.g., Bluetooth) or via the D-pad on some form of remote
(for TV-centric scenarios, like Android TV or Fire TV)

Implementing Decktastic
Decktastic is a pair of activities that “stand upon the shoulders of
giants”, in the form of using seven third-party libraries that provide
a lot of the utility code.
The Gradle Dependencies
The project’s build.gradle file specifies a fair number of dependencies:

dependencies {
 implementation 'com.android.support:leanback-v17:24.1.1'
 implementation 'com.android.support:mediarouter-v7:24.1.1'
 implementation 'com.android.support:design:24.1.1'
 implementation 'com.google.code.gson:gson:2.7'
 implementation 'org.greenrobot:eventbus:3.0.0'
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.commonsware.cwac:presentation:0.4.5'
}

(from Presentation/Decktastic/app/build.gradle)
The project uses:

	
cwac-presentation for PresentationHelper

	
design, for its TabLayout;
this library also pulls in
appcompat-v7 (for AppCompatActivity and kin) and support-v4
(for ViewPager and kin)

	Google’s Gson

	greenrobot’s EventBus

	Google’s leanback-v17 library, for “ten-foot UI” elements used in
our launcher activity

	Square’s Picasso, for asynchronously loading images

The Presentation Format
A Decktastic presentation consists of a JSON file and a series of image
files. The image files are the slides, perhaps exported from
a traditional presentation package like LibreOffice Impress. The JSON
file spells out what the image files are and their order of appearance.
For example, here is a JSON file from one of the presentations:

{
 "title": "Notifications, Front to Back",
 "duration": 70,
 "baseURL": "http://misc.commonsware.com/andevcon2014/preso2/",
 "slides": [
 {
 "title": "(title slide)",
 "image": "img0.png"
 },
 {
 "title": "Order of Battle",
 "image": "img1.png"
 }
]
}

The title is used on the initial “leanback” activity as part of displaying
the available presentations.
The duration is how long the presentation should run, in minutes. This
will be used for a countdown timer to help the presenter know how much
time remains in the presentation.
The baseURL is a URL to a directory on a Web server somewhere that
contains the same slide images as are available locally. This is needed
to support RemotePlaybackClient, as Chromecast and similar devices need
to be able to download their content over the network. We do not have an
easy way to deliver that content from the phone or tablet that runs
Decktastic and so we need a network-hosted copy of the slides as well.
If you were willing to dispense with Chromecast support, you would not
need this baseURL property.
The slides array contains JSON objects, each of which provides the
title for a slide and the image associated with that slide. The title
will be used for the ViewPager tabs, so the presenter knows the
upcoming slides and can rapidly switch to a specific slide. The images,
of course, are what the presenter and the audience see. Of particular
importance is the first slide in the array, as this will be used
as the “title slide”, shown on the initial “leanback” activity.
The JSON and slides are stored as assets. One full presentation
(“Your Android App. On TV.”) is stored in assets/preso1/, while
a stub presentation (“Notifications, Front to Back”) is stored in
assets/preso2/.
The Model Classes
Given that JSON, we need a model class that will represent it, caching
the parsed JSON so that we can use that information to render the
presentation. We also need a model class that represents the collection
of parsed presentations, so that we have the information necessary
to render the “leanback” activity that allows the user to find the
presentation to display.
There are two model classes in the book that handle this: PresoContents
and PresoRoster.
PresoContents
PresoContents represents the parsed JSON, along with a few other bits
of information about the presentation:

package com.commonsware.android.preso.decktastic;

import java.util.List;

public class PresoContents {
 String title;
 List<Slide> slides;
 int duration;
 String baseURL;
 String baseDir;
 int id=-1;

 static class Slide {
 String image;
 String title;
 }

 @Override
 public String toString() {
 return(title);
 }

 String getSlideImage(int position) {
 return(baseDir+slides.get(position).image);
 }

 String getSlideTitle(int position) {
 return(slides.get(position).title);
 }

 String getSlideURL(int position) {
 return(baseURL+slides.get(position).image);
 }
}

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoContents.java)
The title, slides, duration, and baseURL fields come straight
from the JSON. The baseDir field represents the directory in which
the presentation was loaded; all images will be assumed to be relative
to this directory. Finally, each presentation is given an id, so we can
distinguish one presentation from another in our collection of presentations.
PresoContents also has getter methods to retrieve the local image
file (getSlideImage()), title (getSlideTitle()), and remote
image URL (getSlideURL()) for a slide given its position in the
array of slides.
PresoRoster
PresoRoster is a singleton collection of the available presentations.
It also contains the model logic for loading the collection of
presentations and parsing the JSON to create an individual PresoContents
object for a single presentation:

package com.commonsware.android.preso.decktastic;

import android.content.Context;
import android.content.res.AssetManager;
import android.util.Log;
import com.google.gson.Gson;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;

class PresoRoster {
 private static final PresoRoster INSTANCE=new PresoRoster();
 private static String[] PRESO_ASSET_DIRS={"preso1/", "preso2/"};
 private List<PresoContents> presos=new ArrayList<PresoContents>();

 static PresoRoster getInstance() {
 return(INSTANCE);
 }

 private PresoRoster() {}

 int getPresoCount() {
 return(presos.size());
 }

 PresoContents getPreso(int position) {
 return(presos.get(position));
 }

 PresoContents getPresoById(int id) {
 return(getPreso(id));
 }

 void load(Context ctxt) {
 Gson gson=new Gson();
 AssetManager assets=ctxt.getAssets();

 for (String presoDir : PRESO_ASSET_DIRS) {
 PresoContents c=loadPreso(gson, assets, presoDir);

 if (c!=null) {
 c.id=presos.size();
 presos.add(c);
 }
 }
 }

 private PresoContents loadPreso(Gson gson, AssetManager assets,
 String presoDir) {
 PresoContents result=null;

 try {
 InputStream is=assets.open(presoDir+"preso.json");
 BufferedReader reader=
 new BufferedReader(new InputStreamReader(is));

 result=gson.fromJson(reader, PresoContents.class);
 result.baseDir=presoDir;
 is.close();
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
 }

 return(result);
 }
}

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoRoster.java)
The class includes:

	Getters to retrieve a presentation by index in the array of
presentations (getPreso()) and to retrieve a presentation by the
ID of the presentation (getPresoById())

	A getPresoCount() method that indicates how many presentations were
found

	A load() method that will iterate over known presentation
asset directories (defined in PRESO_ASSET_DIRS),
then attempt to parse a preso.json file in the asset directory for a presentation
(via a private loadPreso() method) using Gson

The result of load() is that the PresoRoster should be populated
with all known presentations in assets. Note,
though, that this work is done on the current thread, and therefore
load() needs to be called on a background thread. Also note that
PresoRoster makes no attempt at thread synchronization, and so
load() should be called before anything attempts to use the PresoRoster
getter methods like getPresoCount().
The Launcher Activity: LeanbackActivity
As noted previously, our launcher activity is one that implement’s
Google’s “leanback” user interface, specifically
a BrowseFragment for browsing media content. In this case, that
content consists of the roster of available presentations.
The LeanbackActivity itself is fairly short:

package com.commonsware.android.preso.decktastic;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

public class LeanbackActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getFragmentManager().findFragmentById(android.R.id.content) == null) {
 getFragmentManager()
 .beginTransaction()
 .add(android.R.id.content, new RosterFragment()).commit();
 }
 }

 public void showPreso(PresoContents preso) {
 startActivity(new Intent(this, MainActivity.class)
 .putExtra(MainActivity.EXTRA_PRESO_ID,
 preso.id));
 }
}

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/LeanbackActivity.java)
All it does is add a RosterFragment to the UI managed by the activity,
plus add a showPreso() method that will be called by that RosterFragment
when a presentation is selected. showPreso(), in turn, will start
a separate activity (MainActivity), supplying EXTRA_PRESO_ID with the
ID of the selected presentation, so MainActivity knows what presentation
to show.
Manifest Entry
To work properly with the leanback-v17 classes like BrowseFragment,
LeanbackActivity needs to use Theme.Leanback, supplied by leanback-v17:

 <activity
 android:name="com.commonsware.android.preso.decktastic.LeanbackActivity"
 android:configChanges="keyboard|keyboardHidden|orientation|screenSize|smallestScreenSize"
 android:label="@string/app_name"
 android:screenOrientation="sensorLandscape"
 android:theme="@style/Theme.Leanback">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 <category android:name="android.intent.category.LEANBACK_LAUNCHER" />
 </intent-filter>
 </activity>

(from Presentation/Decktastic/app/src/main/AndroidManifest.xml)
Other noteworthy items in the <activity> element in the manifest include:

	Locking the screen orientation to sensorLandscape, as we want to stick
with a landscape-style orientation, but it could either be “regular” or
“reverse” landscape without issue

	Handling orientation-related configuration changes, which are not needed
since we are locking the screen orientation to sensorLandscape, and therefore
the UI does not change on an orientation change

	Having the LEANBACK_LAUNCHER category as an option in the <intent-filter>,
as this will cause this activity to appear on Android TV’s home screen
launcher (as opposed to the LAUNCHER category used by normal Android
devices)

RosterFragment
RosterFragment is a BrowseFragment, designed to provide the two-dimensional
navigation of headers and items in a header. In this case, we will have
just one header, “Presentations”, containing all of the presentations found by
PresoRoster.
In onAttach(), we check to see how many presentations are known about.
If there are none, we make two assumptions:

	That this is the first time we have needed to look for presentations, and

	That there are presentations to be found

So, we fork a LoadThread to go load those presentations:

 @Override
 public void onAttach(Activity host) {
 super.onAttach(host);

 if (PresoRoster.getInstance().getPresoCount()==0) {
 new LoadThread(host).start();
 }
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/RosterFragment.java)
Of course, those assumptions are a gross simplification. It could be
that the user launched our LeanbackActivity, pressed BACK, then launched
it again for some reason, and therefore the first LoadThread did not
yet finish before we go and fork a second one. Or, it could be that there
are no presentations to be found, in which case we scan unnecessarily.
A production-grade version of this app should have a more sophisticated
means of ensuring a one- (and only one-) time initialization.
LoadThread drops our thread priority to background levels, then
tells the PresoRoster to load presentations from our app’s standard
spot on external storage. Then, we raise a RosterLoadedEvent on
greenrobot’s EventBus:

 private static class LoadThread extends Thread {
 private Context ctxt=null;

 LoadThread(Context ctxt) {
 super();

 this.ctxt=ctxt.getApplicationContext();
 }

 @Override
 public void run() {
 android.os.Process.setThreadPriority(android.os.Process.THREAD_PRIORITY_BACKGROUND);
 PresoRoster.getInstance().load(ctxt);

 EventBus.getDefault().postSticky(new RosterLoadedEvent());
 }
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/RosterFragment.java)
You will notice that we call postSticky(), not post() on the
EventBus instance. This says that we not only want to deliver this
event to any current registrants, but that the EventBus should cache
this event and hand it to future registrants.
To respond to the RosterLoadedEvent, we register the RosterFragment
on the bus in onResume() and unregister in onPause():

 @Override
 public void onResume() {
 super.onResume();

 EventBus.getDefault().register(this);
 }

 @Override
 public void onPause() {
 EventBus.getDefault().unregister(this);

 super.onPause();
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/RosterFragment.java)
We then have onRosterLoaded() set up with the @Subscribe annotation
to watch for the RosterLoadedEvent:

 @Subscribe(sticky=true, threadMode=ThreadMode.MAIN)
 public void onRosterLoaded(RosterLoadedEvent event) {
 setHeadersState(BrowseFragment.HEADERS_ENABLED);
 setTitle(getString(R.string.app_name));

 ArrayObjectAdapter rows=new ArrayObjectAdapter(new ListRowPresenter());
 PresoRoster roster=PresoRoster.getInstance();
 ArrayObjectAdapter listRowAdapter=new ArrayObjectAdapter(new PresoPresenter());

 for (int i=0; i < roster.getPresoCount(); ++i) {
 listRowAdapter.add(roster.getPreso(i));
 }

 HeaderItem header=new HeaderItem(0, "Presentations");
 rows.add(new ListRow(header, listRowAdapter));

 setAdapter(rows);
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/RosterFragment.java)
The sticky=true part of the annotation, in conjunction
with postSticky(), means that if events were sticky-posted in the past,
we are delivered those immediately, in addition to future events. This will
allow us to handle configuration changes — even though our activity
and fragment might be destroyed on a locale change, or if our device is
put into some sort of desk dock, we will get the RosterLoadedEvent
when our fragment is created anew.
The threadMode=ThreadMode.MAIN portion of the annotation indicates
that we want the event to be received on the main application thread,
even though it was raised via a background thread.
In onRosterLoaded(), we:

	Indicate that we do want headers (though, in reality, since this app
only has one header, you could easily skip the headers)

	Set the title to appear in the upper-right corner

	Create an ArrayObjectAdapter for the rows that make up the entirety
of the BrowseFragment contents, using the standard ListRowPresenter
for our headers and rows

	Create another ArrayObjectAdapter, wrapped around a PresoPresenter,
that will manage the presentations in our one-and-only row

	Pour our PresoContents instances into the ArrayObjectAdapter
for our row

	Attach the “Presentations” title to the row via a standard ListRow
object

	Tell the RosterFragment that the rows represents what it should
render

This is all covered in greater detail in the chapter
on the “ten-foot” UI.
In onViewCreated() of RosterFragment, we indicate that the
RosterFragment itself should be the listener for click events on
items (in our case, presentations):

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 setOnItemViewClickedListener(this);
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/RosterFragment.java)
This works because RosterFragment implements the OnItemViewClickedListener
interface and therefore implements the onItemClicked() method:

 @Override
 public void onItemClicked(Presenter.ViewHolder viewHolder,
 Object o,
 RowPresenter.ViewHolder rowViewHolder,
 Row row) {
 ((LeanbackActivity)getActivity()).showPreso((PresoContents)o);
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/RosterFragment.java)
Here, we ask the hosting LeanbackActivity to show the clicked-upon
presentation, which causes LeanbackActivity to launch a MainActvity
to do just that.
PresoPresenter
The role of PresoPresenter is to render the individual items
shown in the BrowseFragment. In this case, the items are PresoContents
model objects; PresoPresenter will pour the presentation information
into ImageCardView widgets. ImageCardView is supplied by the
leanback-v17 library and is designed to be used for rendering items
in a BrowseFragment.
The Presenter abstract class — which PresoPresenter extends — enforces
the view holder pattern. A Presenter is really responsible for
creating and updating Presenter.ViewHolder instances, which in turn
are responsible for updating the actual widgets themselves. To that
end, the PresoPresenter.Holder static class is a subclass of
Presenter.ViewHolder, one that is responsible for pouring a PresoContents
into an ImageCardView:

 static class Holder extends Presenter.ViewHolder {
 private ImageCardView cardView;
 private PicassoImageCardViewTarget viewTarget;

 public Holder(View view) {
 super(view);

 cardView=(ImageCardView)view;
 viewTarget=new PicassoImageCardViewTarget(cardView);
 }

 protected void updateCardViewImage(String path) {
 Picasso.with(cardView.getContext())
 .load("file:///android_asset/" + path)
 .resize(convertDpToPixel(cardView.getContext(), CARD_WIDTH),
 convertDpToPixel(cardView.getContext(), CARD_HEIGHT))
 .into(viewTarget);
 }
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoPresenter.java)
Here, we are going to use Picasso to load the initial slide off of disk
and put it in the ImageCardView. However, Picasso has no built-in
knowledge of ImageCardView, the way it has built-in knowledge of
ImageView. We need to teach Picasso how to populate an ImageCardView.
Picasso’s mechanism for this is to define a Target implementation
(PicassoImageCardViewTarget in this case) that is responsible for taking
a loaded bitmap and updating the UI with it:

 private static class PicassoImageCardViewTarget implements Target {
 private ImageCardView imageCardView;

 public PicassoImageCardViewTarget(ImageCardView imageCardView) {
 this.imageCardView=imageCardView;
 }

 @Override
 public void onBitmapLoaded(Bitmap bmp, Picasso.LoadedFrom lf) {
 Drawable bmpDrawable=
 new BitmapDrawable(imageCardView.getContext().getResources(),
 bmp);

 imageCardView.setMainImage(bmpDrawable);
 }

 @Override
 public void onBitmapFailed(Drawable d) {
 imageCardView.setMainImage(d);
 }

 @Override
 public void onPrepareLoad(Drawable d) {
 imageCardView.setMainImage(d);
 }
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoPresenter.java)
Target requires implementations of:

	
onBitmapLoaded(), where we take the image and put it as the “main image”
of the ImageCardView by means of setMainImage()

	
onBitmapFailed(), where we are given a failure Drawable and need to
use it, once again by setting it as the ImageCardView main image

	
onPrepareLoad(), where we are given a “loading” Drawable and need to
use it, once more by setting it as the ImageCardView main image

The PresoPresenter.Holder class creates an instance of a
PicassoImageCardViewTarget and uses that for the into() method of
the Picasso RequestBuilder (created via the with() static method
on the Picasso class).
The other thing interesting about our use of Picasso is in the
resize() call. Particularly since Picasso does not know about
ImageCardView and how big the image should be, we need to manually
tell Picasso what size to make the image. Here, we hard-code the sizes
of the card width and height in density-independent pixels:

 private static final int CARD_WIDTH=400;
 private static final int CARD_HEIGHT=300;

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoPresenter.java)
We then use a static convertDpToPixel() method to get the actual
number of hardware pixels to use, based upon the current screen
density:

 static int convertDpToPixel(Context ctxt, int dp) {
 float density=ctxt.getResources().getDisplayMetrics().density;

 return(Math.round((float)dp*density));
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoPresenter.java)
Back up in PresoPresenter itself, the Presenter abstract class
requires us to override onCreateViewHolder(), where we are responsible
for creating a Presenter.ViewHolder. In the case of PresoPresenter,
that comes in the form of the aforementioned PresoPresenter.Holder:

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent) {
 ImageCardView cardView=new ImageCardView(parent.getContext());

 cardView.setFocusable(true);
 cardView.setFocusableInTouchMode(true);

 return(new Holder(cardView));
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoPresenter.java)
We also have to override onBindViewHolder(), where we are given an
eligible Presenter.ViewHolder and need to populate its widgets
from a supplied item:

 @Override
 public void onBindViewHolder(Presenter.ViewHolder viewHolder,
 Object item) {
 PresoContents preso=(PresoContents)item;
 Holder h=(Holder)viewHolder;

 h.cardView.setTitleText(preso.toString());
 h.cardView.setMainImageDimensions(CARD_WIDTH, CARD_HEIGHT);
 h.updateCardViewImage(preso.getSlideImage(0));
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoPresenter.java)
Here, the item is a PresoContents and the Presenter.ViewHolder is
a PresoPresenter.Holder. We update the ImageCardView title and
image size based on the presentation, plus tell the Holder to
update the image itself, calling the updateCardViewImage() method
that contained our Picasso request.
Note that we are passing the density-independent pixels values
(CARD_WIDTH, CARD_HEIGHT) to setMainImageDimensions().
Unfortunately, this method is undocumented, and so what the units
of measure should be are not disclosed.
The Presenter abstract class also requires implementations of
onUnbindViewHolder() (called when we should no longer be populating
those widgets) and onViewAttachedToWindow() (called when the
widgets associated with a Presenter.ViewHolder are now “live”):

 @Override
 public void onUnbindViewHolder(Presenter.ViewHolder viewHolder) {
 ((Holder)viewHolder).cardView.setMainImage(null);
 }

 @Override
 public void onViewAttachedToWindow(Presenter.ViewHolder viewHolder) {
 // no-op
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresoPresenter.java)
The Guts: MainActivity
All of the above was just to handle the launcher activity, to allow the
user to choose a presentation. MainActivity is where we actually show
the presentation itself.
This is based upon
the Presentation/Slides sample app.
profiled in the chapter on Presentation, with
a replacement implementation of the tabs, and additional logic to handle
RemotePlaybackClient-compatible devices (e.g., Chromecast) and
TV-centric devices (e.g., Fire TV).
Basic Setup
onCreate() of MainActivity in responsible for basic setup.

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 preso=
 PresoRoster
 .getInstance()
 .getPresoById(getIntent().getIntExtra(EXTRA_PRESO_ID, 0));

 setContentView(R.layout.activity_main);

 pager=(ViewPager)findViewById(R.id.pager);
 helper=new PresentationHelper(this, this);

 selector=
 new MediaRouteSelector.Builder()
 .addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)
 .build();
 router=MediaRouter.getInstance(this);
 router.addCallback(selector, routeCB,
 MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);

 if (isDirectToTV()) {
 getSupportActionBar().hide();
 }

 setupPager();
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
First, we take the EXTRA_PRESO_ID value received via an Intent
extra and uses that to find the PresoContents object representing
the presentation to be shown. That PresoContents object is then
referenced by a data member named preso.
Next, we load up the activity_main layout resource, containing our
ViewPager and a TabLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:keepScreenOn="true"
 android:orientation="vertical">

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.design.widget.TabLayout
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:visibility="gone"
 app:tabMode="scrollable" />
 </android.support.v4.view.ViewPager>

</LinearLayout>

(from Presentation/Decktastic/app/src/main/res/layout/activity_main.xml)
Then, we create a PresentationHelper, so that we find out when we should
and should not be displaying a Presentation. As before, MainActivity
itself is the PresentationHelper.Listener for finding out about these
events. We will explore that more later in this chapter.
We then go through some logic for setting up remote playback device
support (MediaRouteSelector.Builder and kin) and direct-to-TV device
support (calling isDirectToTV()). Those will be explored later in
this chapter, in sections on
remote playback device support and
direct-to-TV device support.
Finally, we call setupPager(), to populate our ViewPager.
The ViewPager
The setupPager() method is responsible for putting a SlidesAdapter
into the ViewPager and otherwise setting things up to allow
the presenter to control what slide is shown and for us to find out
what slide the presenter selects:

 private void setupPager() {
 durationInSeconds=preso.duration * 60;

 if (rc!=null) {
 rc.setOverallDuration(durationInSeconds);
 }

 adapter=new SlidesAdapter(this, preso);
 pager.setAdapter(adapter);

 if (!isDirectToTV()) {
 TabLayout tabs=(TabLayout)findViewById(R.id.tabs);

 tabs.setVisibility(View.VISIBLE);
 tabs.setupWithViewPager(pager);
 tabs.addOnTabSelectedListener(this);
 }
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Some of this — specifically the SlidesAdapter
logic — is standard ViewPager setup work, with TabLayout being a
popular implementation of tabs for activities that, like this one,
extend from AppCompatActivity. The durationInSeconds
stuff at the top is for setting up a ReverseChronometer, as will
be discussed later in this chapter. The
isDirectToTV() call and if block will be explained more in the
section on direct-to-TV device support later
in this chapter.
SlidesAdapter is a fragment-free edition of a PagerAdapter, as the slides
are purely ImageView widgets:

package com.commonsware.android.preso.decktastic;

import android.content.Context;
import android.net.Uri;
import android.support.v4.view.PagerAdapter;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import com.squareup.picasso.Picasso;

class SlidesAdapter extends PagerAdapter {
 private PresoContents preso;
 private Context ctxt;

 SlidesAdapter(Context ctxt, PresoContents preso) {
 this.ctxt=ctxt;
 this.preso=preso;
 }

 @Override
 public Object instantiateItem(ViewGroup container, int position) {
 ImageView page=new ImageView(ctxt);
 ViewGroup.LayoutParams p=
 new ViewGroup.LayoutParams(ViewGroup.LayoutParams.MATCH_PARENT,
 ViewGroup.LayoutParams.MATCH_PARENT);

 container.addView(page, p);

 Picasso.with(ctxt).load(getSlideImageUri(position)).into(page);

 return(page);
 }

 @Override
 public void destroyItem(ViewGroup container, int position,
 Object object) {
 container.removeView((View)object);
 }

 @Override
 public int getCount() {
 return(preso.slides.size());
 }

 @Override
 public boolean isViewFromObject(View view, Object object) {
 return(view == object);
 }

 @Override
 public String getPageTitle(int position) {
 return(preso.getSlideTitle(position));
 }

 Uri getSlideImageUri(int position) {
 return(Uri.parse("file:///android_asset/"+preso.getSlideImage(position)));
 }
}

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/SlidesAdapter.java)
Of note:

	
instantiateItem() creates the ImageView, adds it to the supplied
container (set to fill that container), and tells Picasso to go
load the image asynchronously into the ImageView

	
destroyItem() removes the ImageView from the container

	
getCount() returns the number of pages, based on the number
of slides in the PresoContents supplied to the SlidesAdapter
via its constructor

	
getPageTitle() returns the page title, obtained from the PresoContents
object

	
getSlideImageUri() gets a Uri pointing to a local file from the
PresoContents, for use both by instantiateItem() and by the
Presentation object that we will use for external display support
(as will be covered later in this chapter)

Supporting the Direct-to-TV Scenario
To determine whether or not our activity is natively displaying on a TV-style
screen, we check to see whether the device has either FEATURE_TELEVISION
or FEATURE_LEANBACK, in the private isDirectToTV() method on MainActivity:

 private boolean isDirectToTV() {
 return(getPackageManager().hasSystemFeature(PackageManager.FEATURE_TELEVISION)
 || getPackageManager().hasSystemFeature(PackageManager.FEATURE_LEANBACK));
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Admittedly, not all Android direct-to-TV devices may advertise that they
have one of these features. In particular, minor-brand Android HDMI
sticks might just be using a fairly vanilla Android device profile, culled
from a tablet. There is no good way of detecting such a scenario, though
Decktastic could provide some manual option (e.g., checkable action item)
to go into direct-to-TV mode if this proved to be important.
We use isDirectToTV() in two places. First, in onCreate(), we hide
the action bar if we are going direct to a TV:

 if (isDirectToTV()) {
 getSupportActionBar().hide();
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Second, in setupPager(), we hide the TabLayout if we are going
direct to a TV:

 if (!isDirectToTV()) {
 TabLayout tabs=(TabLayout)findViewById(R.id.tabs);

 tabs.setVisibility(View.VISIBLE);
 tabs.setupWithViewPager(pager);
 tabs.addOnTabSelectedListener(this);
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
This eliminates the “chrome” from our activity, leaving us with just the
contents of the ViewPager itself, in the form of our slides. On the plus
side, this gives us the visual output we want. However, it comes at a cost:
there is no means for the presenter to change slides. After all, there
is no touchscreen in this scenario, and so even though the ViewPager
could be swiped, that is not possible without a touchscreen.
To support standard presentation remotes and similar mechanisms, MainActivity
overrides onKeyDown():

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 switch(keyCode) {
 case KeyEvent.KEYCODE_SPACE:
 case KeyEvent.KEYCODE_DPAD_RIGHT:
 case KeyEvent.KEYCODE_DPAD_DOWN:
 case KeyEvent.KEYCODE_PAGE_DOWN:
 case KeyEvent.KEYCODE_MEDIA_NEXT:
 if (pager.canScrollHorizontally(1)) {
 pager.setCurrentItem(pager.getCurrentItem()+1, true);
 }

 return(true);

 case KeyEvent.KEYCODE_DPAD_LEFT:
 case KeyEvent.KEYCODE_DPAD_UP:
 case KeyEvent.KEYCODE_PAGE_UP:
 case KeyEvent.KEYCODE_MEDIA_PREVIOUS:
 if (pager.canScrollHorizontally(-1)) {
 pager.setCurrentItem(pager.getCurrentItem()-1, true);
 }

 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Here, we will advance to the next slide if the user presses:

	the space bar or the Page Down key on a QWERTY keyboard

	right or down arrow keys, D-pad buttons, or the like

	a “next” media button on a media remote

Conversely, we will return to the preceding slide if the user presses:

	the Page Up key on a QWERTY keyboard

	left or up arrow keys, D-pad buttons, or the like

	a “previous” media button on a media remote

This should allow most remotes for direct-to-TV devices to control
our slides. Note that we are passing true as the second parameter
to the setCurrentItem() method, and therefore the audience will
see an animated transition to the next slide. That may or may not be
desirable; an enhanced edition of Decktastic might allow that to be
configured (e.g., via a checkable action item).
Note that this is still a bit limited compared to having touchscreen
access, as our onKeyDown() method only moves a slide at a time.
There is no facility to jump to an arbitrary spot, the way you could
by swiping and tapping upon ViewPager tabs on a touchscreen.
Supporting External Displays
As noted earlier, in onCreate() of MainActivity, we create an
instance of PresentationHelper, supplying the activity itself
as both the Context and the PresentationHelper.Listener for
presentation-related events:

 helper=new PresentationHelper(this, this);

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
That, in turn, requires us to forward along onPause() and onResume()
events from our activity to the PresentationHelper:

 @Override
 public void onResume() {
 super.onResume();
 helper.onResume();
 }

 @Override
 public void onPause() {
 helper.onPause();
 super.onPause();
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
We also have to implement showPreso() and clearPreso() methods
to satisfy the PresentationHelper.Listener interface:

 @Override
 public void clearPreso(boolean showInline) {
 if (presoFrag != null) {
 presoFrag.dismiss();
 presoFrag=null;
 }
 }

 @Override
 public void showPreso(Display display) {
 Uri slide=adapter.getSlideImageUri(pager.getCurrentItem());

 presoFrag=
 SlidePresentationFragment.newInstance(this, display, slide);
 presoFrag.show(getSupportFragmentManager(), "presoFrag");
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
In showPreso(), we obtain the Uri for the current slide by calling
the getSlideImageUri() method we conveniently implemented on the
SlidesAdapter. Then, we create an instance of a
SlidePresentationFragment, handing it the slide Uri, and we show()
that fragment. We only dismiss() the fragment in clearPreso().
The fragment itself is a PresentationFragment, with an ImageView
as the fragment’s UI, populated using Picasso, with the Uri
being transferred from the newInstance() factory method to the
fragment itself via the arguments Bundle:

package com.commonsware.android.preso.decktastic;

import android.content.Context;
import android.net.Uri;
import android.os.Bundle;
import android.view.Display;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import com.squareup.picasso.Picasso;

public class SlidePresentationFragment extends PresentationFragment {
 private static final String KEY_URI="u";
 private ImageView slide=null;

 public static SlidePresentationFragment newInstance(Context ctxt,
 Display display,
 Uri slideUri) {
 SlidePresentationFragment frag=new SlidePresentationFragment();

 frag.setDisplay(ctxt, display);

 Bundle b=new Bundle();

 b.putParcelable(KEY_URI, slideUri);
 frag.setArguments(b);

 return(frag);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 slide=new ImageView(getContext());

 setSlideContent((Uri)getArguments().getParcelable(KEY_URI));

 return(slide);
 }

 void setSlideContent(Uri slideUri) {
 Picasso.with(getContext()).load(slideUri).into(slide);
 }
}

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/SlidePresentationFragment.java)
While the cwac-presentation library contains a PresentationFragment,
it is set up for the native API Level 11 implementation of fragments.
Hence, Decktastic contains its own PresentationFragment, cloned
from the cwac-presentation implementation, that uses the fragment
backport, for use with our AppCompatActivity:

package com.commonsware.android.preso.decktastic;

import android.app.Dialog;
import android.app.Presentation;
import android.content.Context;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;
import android.view.Display;

abstract public class PresentationFragment extends DialogFragment {
 private Display display=null;
 private Presentation preso=null;

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 if (preso == null) {
 return(super.onCreateDialog(savedInstanceState));
 }

 return(preso);
 }

 public void setDisplay(Context ctxt, Display display) {
 if (display == null) {
 preso=null;
 }
 else {
 preso=new Presentation(ctxt, display, getTheme());
 }

 this.display=display;
 }

 public Display getDisplay() {
 return(display);
 }

 @Override
 public Context getContext() {
 if (preso != null) {
 return(preso.getContext());
 }

 return(getActivity());
 }
}

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/PresentationFragment.java)
This arranges to show the current slide, for whatever the current slide
is at the time showPreso() is called on MainActivity. However, we need
to update this fragment to reflect changes in the current slide. To accomplish
this, we set up MainActivity to implement the OnTabSelectedListener
interface, then call addOnTabSelectedListener() on the TabLayout
in setupPager() to have it forward tab-change events to the activity.
Of those events, we pay particular attention to onTabSelected(), updating
the SlidePresentationFragment if there is one around:

 @Override
 public void onTabReselected(TabLayout.Tab tab) {
 // unused
 }

 @Override
 public void onTabUnselected(TabLayout.Tab tab) {
 // unused
 }

 @Override
 public void onTabSelected(TabLayout.Tab tab) {
 if (presoFrag != null) {
 presoFrag
 .setSlideContent(adapter.getSlideImageUri(tab.getPosition()));
 }

 if (client!=null) {
 String url=preso.getSlideURL(tab.getPosition());

 client.play(Uri.parse(url), "image/png", null, 0, null, playCB);
 }
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
We will get into the client stuff from onTabSelected() in the next
section, as that pertains to supporting remote playback devices.
Supporting Chromecast and Remote Playback Devices
The key limitation of Chromecast and other remote playback devices is that
they can only play back media that they can access. While Chromecast supports
mirroring, that is handled via the Presentation API discussed previously;
devices limited to the RemotePlaybackClient API need URLs to media files.
That is why our JSON for the presentation contains a URL pointing to a copy
of each slide up on some public Web server. To push those URLs over
to the Chromecast at the appropriate points, we need to set up the
RemotePlaybackClient system.
First, in onCreate(), we define a MediaRouteSelector for
remote playback devices, set up a MediaRouter, and add a callback to
find out about selected route changes, asking MediaRouter to scan
for possible routes along the way:

 selector=
 new MediaRouteSelector.Builder()
 .addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)
 .build();
 router=MediaRouter.getInstance(this);
 router.addCallback(selector, routeCB,
 MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
All of this is using the mediarouter-v7 portion of the Android Support
package, as the native MediaRouter and kin do not support
remote playback devices.
Our menu resource for our action bar contains, among other things,
a MediaRouteActionProvider from mediarouter-v7:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/countdown"
 app:actionViewClass="com.commonsware.android.preso.decktastic.ReverseChronometer"
 app:showAsAction="always"
 tools:ignore="AlwaysShowAction,MenuTitle" />
 <item
 android:id="@+id/route_provider"
 android:title="@string/media_route_provider"
 app:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
 app:showAsAction="always" />
 <item
 android:id="@+id/first"
 android:icon="@android:drawable/ic_media_previous"
 android:title="@string/first"
 app:showAsAction="ifRoom" />
 <item
 android:id="@+id/last"
 android:icon="@android:drawable/ic_media_next"
 android:title="@string/last"
 app:showAsAction="ifRoom" />
 <item
 android:id="@+id/present"
 android:checkable="true"
 android:checked="true"
 android:title="@string/show_presentation"
 app:showAsAction="never" />

</menu>

(from Presentation/Decktastic/app/src/main/res/menu/activity_actions.xml)
As part of our work in setting up the action bar in onCreateOptionsMenu(),
we retrieve the MediaRouteActionProvider and configure it with the
same MediaRouteSelector that we used for the MediaRouter callback:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_actions, menu);

 rc=(ReverseChronometer)menu.findItem(R.id.countdown)
 .getActionView();

 rc.setWarningDuration(5 * 60);
 rc.setOnClickListener(this);
 rc.setOnLongClickListener(this);
 rc.setTextSize(TypedValue.COMPLEX_UNIT_SP, 24);
 rc.setTextColor(Color.WHITE);

 if (durationInSeconds>0) {
 rc.setOverallDuration(durationInSeconds);
 }

 MenuItem item=menu.findItem(R.id.route_provider);
 MediaRouteActionProvider provider=
 (MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

 provider.setRouteSelector(selector);

 return(super.onCreateOptionsMenu(menu));
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
(the lines in onCreateOptionsMenu() pertaining to the ReverseChronometer
will be explained later in this chapter)
If the user interacts with the MediaRouteActionProvider and elects
to connect to a remote playback device, our MediaRouter.Callback will
be notified about the change of route:

 private MediaRouter.Callback routeCB=new MediaRouter.Callback() {
 @Override
 public void onRouteSelected(MediaRouter router,
 MediaRouter.RouteInfo route) {
 connect(route);
 }

 @Override
 public void onRouteUnselected(MediaRouter router,
 MediaRouter.RouteInfo route) {
 disconnect();
 }
 };

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Here, we just delegate the onRouteSelected() and onRouteUnselected()
callbacks to connect() and disconnect() methods on MainActivity.
MediaRouter.Callback is an abstract class, not an interface — otherwise,
we would simply have implemented the interface on MainActivity and bypassed
this anonymous inner class instance.
The connect() method on MainActivity is responsible for sending over
the current slide to the remote playback device:

 private void connect(MediaRouter.RouteInfo route) {
 client=
 new RemotePlaybackClient(getApplicationContext(), route);

 if (client.isRemotePlaybackSupported()) {
 String url=preso.getSlideURL(pager.getCurrentItem());

 client.play(Uri.parse(url), "image/png", null, 0, null, playCB);
 }
 else {
 client=null;
 }
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Here, we:

	Create an instance of RemotePlaybackClient

	Confirm that the remote playback device supports the remote playback
protocol (isRemotePlaybackSupported())

	Call play(), passing over a URL pointing to the same slide that the
ViewPager is showing from a local file

The play() call requires an ItemActionCallback as the last parameter.
We really do not need the callback, but passing null does not work.
So, we have a do-nothing ItemActionCallback named playCB that we use:

 RemotePlaybackClient.ItemActionCallback playCB=
 new RemotePlaybackClient.ItemActionCallback() {
 @Override
 public void onResult(Bundle data, String sessionId,
 MediaSessionStatus sessionStatus,
 String itemId, MediaItemStatus itemStatus) {
 }

 @Override
 public void onError(String error, int code, Bundle data) {
 }
 };

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
That will show the slide that was current as of the time the user connected
to the remote playback device. We need to show a new slide when the presenter
switches to a new slide, just as we did in the Presentation scenario.
This too is handled in onTabSelected(), where we make the same sort
of play() call that we did in connect():

 @Override
 public void onTabSelected(TabLayout.Tab tab) {
 if (presoFrag != null) {
 presoFrag
 .setSlideContent(adapter.getSlideImageUri(tab.getPosition()));
 }

 if (client!=null) {
 String url=preso.getSlideURL(tab.getPosition());

 client.play(Uri.parse(url), "image/png", null, 0, null, playCB);
 }
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Not only is disconnect() called from MediaRouter.Callback, but it is
also called from onDestroy() of MainActivity, where we also remove that
callback from the MediaRouter:

 @Override
 public void onDestroy() {
 disconnect();
 router.removeCallback(routeCB);
 super.onDestroy();
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
disconnect() releases the RemotePlaybackClient and ensures that we are
back on our default route:

 private void disconnect() {
 if (client != null) {
 client.release();
 client=null;
 }

 router.getDefaultRoute().select();
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
The net effect of all of this is that the slides will update on the
remote playback device as the presenter switches slides, in addition to when
the presenter connects to the remote playback device originally. We are not
in control of any transition effects — we simply provide the slides, and it
is up to the remote playback device to download and show them, however that
device wishes.
The Rest of the Story
One common need of a presenter is to know how much time is remaining
in which to deliver the presentation. Presentations are usually time-limited,
to fit conference agendas and the like. The JSON structure for a presentation
contains the duration of the presentation, and it would be useful to let
the presenter know how much of that duration is remaining.
The chapter on custom views has a section outlining the implementation
of a ReverseChronometer widget. Chronometer is a
standard Android SDK class for counting up time (e.g., a stopwatch).
ReverseChronometer is for counting down time.
Decktastic puts a ReverseChronometer in the action bar as a custom view,
courtesy of our menu XML:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/countdown"
 app:actionViewClass="com.commonsware.android.preso.decktastic.ReverseChronometer"
 app:showAsAction="always"
 tools:ignore="AlwaysShowAction,MenuTitle" />
 <item
 android:id="@+id/route_provider"
 android:title="@string/media_route_provider"
 app:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
 app:showAsAction="always" />
 <item
 android:id="@+id/first"
 android:icon="@android:drawable/ic_media_previous"
 android:title="@string/first"
 app:showAsAction="ifRoom" />
 <item
 android:id="@+id/last"
 android:icon="@android:drawable/ic_media_next"
 android:title="@string/last"
 app:showAsAction="ifRoom" />
 <item
 android:id="@+id/present"
 android:checkable="true"
 android:checked="true"
 android:title="@string/show_presentation"
 app:showAsAction="never" />

</menu>

(from Presentation/Decktastic/app/src/main/res/menu/activity_actions.xml)
We customize the ReverseChronometer through a handful of lines in
the onCreateOptionsMenu() method:

 rc=(ReverseChronometer)menu.findItem(R.id.countdown)
 .getActionView();

 rc.setWarningDuration(5 * 60);
 rc.setOnClickListener(this);
 rc.setOnLongClickListener(this);
 rc.setTextSize(TypedValue.COMPLEX_UNIT_SP, 24);
 rc.setTextColor(Color.WHITE);

 if (durationInSeconds>0) {
 rc.setOverallDuration(durationInSeconds);
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Here we:

	Retrieve the ReverseChronometer from the action item

	Have it change to a “warning” presentation with five minutes remaining

	Set up the activity to respond to click and long-click events

	Set the appearance to be 24sp white text

And, if we already know the presentation’s overall duration, via the
durationInSeconds data member, we pour that into the ReverseChronometer
as well.
durationInSeconds is populated via a few lines at the top of setupPager():

 private void setupPager() {
 durationInSeconds=preso.duration * 60;

 if (rc!=null) {
 rc.setOverallDuration(durationInSeconds);
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
This way, no matter whether setupPager() or onCreateOptionsMenu() is called
first, we pour the duration into the ReverseChronometer.
By default, that ReverseChronometer does nothing other than show the
remaining time… which remains fixed by default. That is where the click
and long-click event handlers come into play:

 @Override
 public void onClick(View v) {
 ReverseChronometer rc=(ReverseChronometer)v;

 if (rc.isRunning()) {
 rc.stop();
 }
 else {
 if (isFirstRCClick) {
 isFirstRCClick=false;
 rc.reset();
 }

 rc.run();
 }
 }

 @Override
 public boolean onLongClick(View v) {
 ReverseChronometer rc=(ReverseChronometer)v;

 rc.reset();

 return(true);
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
There are three possibilities when the user taps on the ReverseChronometer:

	It was never clicked before (isFirstRCClick is true), in which case
we ensure that the ReverseChronometer is reset to the overall duration
before calling run() to start the countdown

	It is already running, in which case we call stop() to pause the countdown

	It was not already running (but was clicked before), in which case we call
run() again to resume the countdown

This gives us what from a media standpoint would be play, pause, and resume
logic.
A long-click will reset() the ReverseChronometer, returning the time
remaining to the overall duration.
Our action bar also has a few other action items, handled in
onOptionsItemSelected():

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.present:
 boolean original=item.isChecked();

 item.setChecked(!original);

 if (original) {
 helper.disable();
 }
 else {
 helper.enable();
 }

 break;

 case R.id.first:
 pager.setCurrentItem(0);
 break;

 case R.id.last:
 pager.setCurrentItem(adapter.getCount() - 1);
 break;
 }

 return(super.onOptionsItemSelected(item));
 }

(from Presentation/Decktastic/app/src/main/java/com/commonsware/android/preso/decktastic/MainActivity.java)
Specifically:

	There is a checkable action item to determine whether or not we should
be showing a Presentation. If this is unchecked, and an external display
is attached, we still disable the PresentationHelper. This will cause
normal display mirroring to begin, and the audience will see the same UI
that the presenter does, complete with the ViewPager, action bar, and so on.
Checking it re-enables the PresentationHelper, so if an external display
is available, we start showing the slides again.

	The first and last action bar items are “fast-forward” and “rewind”
options, allowing the presenter to quickly jump to the first or the last
slide in the presentation. This happens via calls to setCurrentItem()
on the ViewPager, which will in turn invoke onPageSelected(), causing
us to update our PresentationFragment or remote playback device, if needed.

Note that since the direct-to-TV mode hides the action bar, none of these
options are available to the presenter on a device like Android TV or a
Fire TV. This will require the presenter to use something else to track
the remaining time in a presentation, such as a countdown timer app
running on a separate Android device.
Creating a MediaRouteProvider
As was noted earlier in the book, you can use MediaRouter
to identify media routes, such as those published by devices like Google’s Chromecast.
Specifically, remote playback routes let you write apps that tell other devices,
like the Chromecast, to play back media on your behalf.
However, not only can you write clients for remote playback routes, you can
write providers of those routes. Perhaps you are working with a hardware manufacturer
that is creating a Chromecast-like device. Perhaps you want to allow your app, running
on a Fire TV or an Android HDMI stick, to be controlled by a user’s
phone or tablet. Or perhaps you are trying to tie Android into specialized media
hardware that does not communicate by conventional means (e.g., wireless speakers
that do not use normal Bluetooth profiles).
This chapter will outline how you can create code that will publish media routes
to users of MediaRouter, so that you can then take those requests and forward them
to a remote device.
Prerequisites
This chapter assumes that you have read the chapter on MediaRouter.
Terminology
For the purposes of this chapter:

	The “client device” refers to a phone or tablet that runs an app that should be
able to direct what is shown on a streaming media player

	The “player device” refers to the streaming media player itself, which may or may
not be running Android

	The “player app” refers to an Android app running on an Android-powered player device

DIY Chromecast
Google’s Chromecast is a nice little device. However, it has issues:

	The device itself is not especially open.

	The Cast SDK that Google encourages for writing Chromecast-enabled apps is not
especially open.

	The terms and conditions for using the Cast SDK may be
troublesome for many developers.

	Chromecast is not available globally.

	Chromecast is only one device, and there are plenty of other streaming media devices
available that need to be considered.

Some of these issues can be mitigated by the use of MediaRouter and RemotePlaybackClient
instead of the proprietary Cast SDK. You are not bound by any particular license
terms (beyond the norm for Android development) and the implementation of the media framework
is open.
However, to make this work, the client device needs to know how to talk to the player
device.
The good news is that the media routing framework in Android supports plug-in media
route providers for just this purpose. The OS ships with such a provider for the
Chromecast, and you can create your own providers to talk to whatever else you would
like to talk to. The user can then install a small app on their client device that
implements this media route provider, and any apps already on their client device that
use classes like RemotePlaybackClient will automatically be able to cast their
desired content to the player device.
MediaRouteProvider
The guts of this come in the form of a MediaRouteProvider. Your custom subclass
of MediaRouteProvider will:

	Tell Android what general capabilities you support, such as remote playback,
session management, and the like

	Advertise what sorts of content your player device is capable of playing (e.g.,
certain video MIME types, certain URL schemes like http and rtsp)

	Serve as the recipient of commands from MediaRouter, RemotePlaybackClient, and the
like, for you to forward along asynchronously to the player device

Depending upon your use case, you could elect to keep the MediaRouteProvider
private to your application. That way, your app can cast to the player device, but
no other apps can. Or, you can make your MediaRouteProvider available to all apps
on the device, with the media routing framework taking care of the IPC details to
have those apps tell your MediaRouteProvider what the player device should do.
Player Device… and Maybe a Player App
Of course, this assumes the existence of some player device that is not supported
by Android out of the box. Since Android only really supports Chromecast, external displays
(e.g., HDMI, MHL, Miracast), and some Bluetooth options (e.g., external speakers) for
media routes, there are countless player devices that need additional help. These will
run the gamut from devices from major players (e.g., Amazon’s Fire TV) to no-name
devices (e.g., Android HDMI “sticks”).
Some player devices will run Android. In that case, you would be writing a player app
that would run on the player device that would be the recipient of commands sent to
it from your MediaRouteProvider on the client device. For example, if you write a
video player app, you could augment it with remote control capability driven by a
MediaRouteProvider on a client device, turning your player app and anything it can
run on (e.g., Fire TV, OUYA game console) into a Chromecast-like environment.
Some player devices will not run Android. If they offer some existing remote control
over-the-air protocol, you could create a MediaRouteProvider that speaks that protocol.
Or, perhaps the player devices are programmable, just not via Android (e.g., a Linux
program for XMBC), in which case you might be able to write both ends of the communications
channel.
Communications Protocol
Somehow, the data from the MediaRouteProvider needs to get to the player device
(and, where relevant, the player app). Likely candidates include Bluetooth, regular
WiFi (if both devices are on the same network), and WiFi Direct.
However, in principle, anything is possible. For example, there is nothing stopping you
from sending MediaRouteProvider commands to some Web server out on the Internet,
which forwards them to some distant location for use. That would be a bit unusual –
normally, the user of the client device is controlling something she can see — but it
certainly could be done.
The biggest thing to watch out for is the addressability of the media to be played
back. There is little point in connecting a MediaRouteProvider to some player device,
then not have the ability for the player device to access the media that the
client device is requesting. The expected pattern is that the media is hosted in some
(relatively) central location, like a Web server. However, once again, anything is
possible. If you want to have some sort of server on the client device, to allow the player
device to play back media from it, and you believe that you can adequate secure this,
you are welcome to do so.
Creating the MediaRouteProvider
As noted earlier, the core of all of this is a custom MediaRouteProvider. Google
supplies a sample application
for creating such a MediaRouteProvider. However, it is overly complex, and it is undocumented.
This chapter will focus instead on the
MediaRouter/RouteProvider
sample project. This is a clone of the MediaRouter/RemotePlayback sample project
covered earlier in this book, with the addition of a custom
MediaRouteProvider.
Defining the Supported Actions
A MediaRouteProvider advertises — whether to its own app’s MediaRouter or to the
entire device — what sorts of actions it can perform. For example, a remote playback
route provider needs to support actions like play, pause, resume, and stop of some piece
of media.
The way this is handled in the media routing framework is via a series of IntentFilter
objects.
Since IntentFilter objects do not need a Context to be created, it is safe to define
them statically, if desired. That’s what we do in DemoRouteProvider, a custom subclass
of MediaRouteProvider. It declares a pair of static final IntentFilter objects,
ifPlay and ifControl, which are then configured in a static initialization block:

 private static final IntentFilter ifPlay=new IntentFilter();
 private static final IntentFilter ifControl=new IntentFilter();

 static {
 ifPlay.addCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK);
 ifPlay.addAction(MediaControlIntent.ACTION_PLAY);
 ifPlay.addDataScheme("http");
 ifPlay.addDataScheme("https");
 ifPlay.addDataScheme("rtsp");

 try {
 ifPlay.addDataType("video/*");
 }
 catch (MalformedMimeTypeException e) {
 throw new RuntimeException("Exception setting MIME type", e);
 }

 ifControl.addCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK);
 ifControl.addAction(MediaControlIntent.ACTION_PAUSE);
 ifControl.addAction(MediaControlIntent.ACTION_RESUME);
 ifControl.addAction(MediaControlIntent.ACTION_STOP);
 ifControl.addAction(MediaControlIntent.ACTION_GET_STATUS);
 ifControl.addAction(MediaControlIntent.ACTION_SEEK);
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java)
Both stipulate that they are looking for Intent objects in the
MediaControlIntent.CATEGORY_REMOTE_PLAYBACK category. This category is used for all
media routing Intents that form the foundation of the routing framework.
ifPlay is defined as supporting MediaControlIntent.ACTION_PLAY, stating that we know
how to play back some content. The qualifications for “some content” are handled via
scheme and type constraints placed on the IntentFilter. Here, we limit the content
to be URLs that might be reachable by a playback device (http, https, rtsp) and
have a MIME type matching video/*. Hence, we are stating that we can play back streaming
video.
ifControl sets up the remaining actions that we support:

	MediaControlIntent.ACTION_PAUSE

	MediaControlIntent.ACTION_RESUME

	MediaControlIntent.ACTION_STOP

	MediaControlIntent.ACTION_GET_STATUS

	MediaControlIntent.ACTION_SEEK

These are placed on an independent IntentFilter because, technically, we can support
these actions on any type of media. In the case of this specific example, the only media
we support is streaming video. But, we could configure other IntentFilter objects, like
ifPlay was, stating yet other media types that we handle.
To fully comply with the RemotePlaybackClient API, we must advertise that we handle
all of those actions… even if our intended client will not use all of them.
We could also:

	Advertise that we support session management actions, like
MediaControlIntent.ACTION_START_SESSION

	Advertise that we support the “enqueue” operation for stacking up media to be played
(e.g., MediaControlIntent.ACTION_ENQUEUE) and manipulating that queue
(e.g., MediaControlIntent.ACTION_REMOVE)

	Define a custom category for other actions that we support that are “out of band”
with respect to the standard media routing actions

All of those are demonstrated in Google’s sample app.
Creating the Descriptors
Just because we have some static IntentFilter objects does not mean that anything will
pay attention to them. We need to actually register them with the media routing framework,
wrapped in a pair of “descriptor” objects. DemoRouteProvider calls a private
handleDiscovery() method from the constructor, where handleDiscovery() sets up
the descriptors:

 private void handleDiscovery() {
 MediaRouteDescriptor.Builder mrdBuilder=
 new MediaRouteDescriptor.Builder(DEMO_ROUTE_ID, "Demo Route");

 mrdBuilder.setDescription("The description of a demo route")
 .addControlFilter(ifPlay)
 .addControlFilter(ifControl)
 .setPlaybackStream(AudioManager.STREAM_MUSIC)
 .setPlaybackType(MediaRouter.RouteInfo.PLAYBACK_TYPE_REMOTE)
 .setVolumeHandling(MediaRouter.RouteInfo.PLAYBACK_VOLUME_FIXED);

 MediaRouteProviderDescriptor.Builder mrpdBuilder=
 new MediaRouteProviderDescriptor.Builder();

 mrpdBuilder.addRoute(mrdBuilder.build());

 setDescriptor(mrpdBuilder.build());
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java)
In the end, we need to provide a MediaRouteProviderDescriptor to the MediaRouteProvider
by means of a setDescriptor() method. MediaRouteProviderDescriptor is, in effect,
metadata about the MediaRouteProvider itself. At the present time, the only thing this
holds is a set of MediaRouteDescriptor objects, one for each media route that the
MediaRouteProvider claims to support.
A MediaRouteProvider is made up of several pieces of information, including:

	The IntentFilter(s) representing the supported actions and, where relevant, MIME types
and schemes

	A locally-unique ID of the route, to distinguish it from any other one that we might
configure

	A name and description, which the user will see when they try to connect to this route
(e.g., via a MediaRouteActionProvider)

	What audio stream is being used for the playback, from the standpoint of volume
management, audio ducking, and the like

	Whether the playback is occurring locally on the device to some peripheral (e.g.,
speaker) or if the playback is occurring remotely on a player device (e.g., Chromecast)

	Whether playback volume is controlled here on the client device or on the player
device

	Etc.

These are all configured on a MediaRouteProvider by creating a MediaRouteProvider.Builder
and supplying the values either in the Builder constructor or via fluent setter methods.
In the particular case of our simple demo provider, we:

	Use various strings for the ID, name, and description

	Use the two IntentFilter objects defined earlier to indicate what actions we can
perform

	Indicate that the playback stream is STREAM_MUSIC, that the playback type
is PLAYBACK_TYPE_REMOTE, and that the volume handling is PLAYBACK_VOLUME_FIXED
(i.e., volume should be managed on the TV or whatever the media is being played upon)

It is very likely that you will elect to have several MediaRouteDescriptor objects
for different client application scenarios. Google’s sample app uses a total of four
MediaRouteDescriptor objects:

	One set up largely like the one in this sample

	One set up with PLAYBACK_VOLUME_VARIABLE (so volume is controllable by a client app)

	One set up with variable volume plus queuing actions

	One set up with variable volume plus queuing and session management actions

Receiving the Actions
Now, we have told the media routing framework what actions we support. Some app will then
try to use RemotePlaybackClient and ask us to perform those actions. Hence, we need to
find out when this happens, so we can do the actual work of having the playback device
actually play back the media, pause the media, etc.
To do this, we need to create a custom subclass of MediaRouteProvider.RouteController.
This contains a series of callback methods which we can override to find out when various
events occur.
There are four such callback methods that the DemoRouteController subclass of
MediaRouteProvider.RouteController implements:

	
onSelect(), which will be called when a client app has selected our
MediaRouteProvider to handle some media on behalf of that client app

	
onUnselect() and onRelease(), which will be called when the client app
disconnects from our MediaRouteProvider

	
onControlRequest(), which will be called when some specific action that we advertised
is requested, such as playing back a piece of media

The DemoRouteController just logs a message to Logcat for the first three callbacks:

 @Override
 public void onRelease() {
 Log.d(getClass().getSimpleName(), "released");
 }

 @Override
 public void onSelect() {
 Log.d(getClass().getSimpleName(), "selected");
 }

 @Override
 public void onUnselect() {
 Log.d(getClass().getSimpleName(), "unselected");
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)
The onControlRequest() method is a bit more complex, as all control requests route
through here: play, pause, resume, stop, etc. onControlRequest() is passed the Intent
identifying the particular action that should be performed, and we can examine the Intent
action string to determine what needs to be done. In this case, onControlRequest() delegates
the real work to action-specific methods like onPlayRequest():

 @Override
 public boolean onControlRequest(Intent i, ControlRequestCallback cb) {
 if (i.hasCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)) {
 if (MediaControlIntent.ACTION_PLAY.equals(i.getAction())) {
 return(onPlayRequest(i, cb));
 }
 else if (MediaControlIntent.ACTION_PAUSE.equals(i.getAction())) {
 return(onPauseRequest(i, cb));
 }
 else if (MediaControlIntent.ACTION_RESUME.equals(i.getAction())) {
 return(onResumeRequest(i, cb));
 }
 else if (MediaControlIntent.ACTION_STOP.equals(i.getAction())) {
 return(onStopRequest(i, cb));
 }
 else if (MediaControlIntent.ACTION_GET_STATUS.equals(i.getAction())) {
 return(onGetStatusRequest(i, cb));
 }
 else if (MediaControlIntent.ACTION_SEEK.equals(i.getAction())) {
 return(onSeekRequest(i, cb));
 }
 }

 Log.w(getClass().getSimpleName(), "unexpected control request"
 + i.toString());

 return(false);
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)
onControlRequest() should return true if we agree to perform the action and will
use the supplied ControlRequestCallback object to asynchronously deliver our results.
If onControlRequest() returns false, that means that we are rejecting the action
for some reason, such as it being one that is unrecognized. In DemoRouteController,
that will occur if the category or the action on the Intent is not one of the supported options.
Note that if you opted into variable volume, there are onSetVolume() and onUpdateVolume()
callback methods that will give you access to those events.
Handling the Actions
For those actions that you advertise and receive in onControlRequest(), you need
to actually do the work for those actions. The details of this will vary widely depending
upon your playback device and playback app that you are supporting. For example, you might
establish a WiFi Direct connection in onSelect(), then use that connection in handling
play, pause, etc. actions.
However, a few aspects of handling these actions will be in common across all
implementations:

	
onControlRequest() must return true or false as was described in the preceding
section

	You must call onResult() or onError() on the ControlRequestCallback object to
indicate if the action succeeded or failed

	You must supply an appropriate Bundle to those methods, particularly to onResult(),
containing the right set of values to provide more details about the results of the action

The details of what that Bundle must contain are documented on the MediaControlIntent
class, on the definition of each action string (e.g., ACTION_PLAY).
With that in mind, let’s look at the six actions supported by DemoRouteController.
Play
The Bundle passed to onResult() of the ControlRequestCallback, when the action
is ACTION_PLAY, needs three values:

	
EXTRA_SESSION_ID: if you are implementing session management, this will be the
unique session ID (String) for the session you are playing the media in. If you are not
implementing session management, then what you are supposed to return is undocumented
and (hopefully) unused

	
EXTRA_ITEM_ID: if you are implementing “enqueue” support, this will be the
item ID (String) for managing this item in the queue of available items. If you are not supporting
a playback queue, then what you are supposed to return is undocumented
and (hopefully) unused

	
EXTRA_ITEM_STATUS: this should point to a Bundle created from a MediaItemStatus
object where you indicate what the status is of the playback of this item

You create a MediaItemStatus object via a MediaItemStatus.Builder, where you can
pass into the constructor a value indicating the overall status
(e.g., MediaItemStatus.PLAYBACK_STATE_PLAYING), plus use fluent setter methods to
define additional characteristics of the status, such as the current seek position.
The DemoRouteController logic for ACTION_PLAY, in the onPlayRequest() method,
logs the event to Logcat and crafts a valid-but-meaningless result Bundle for use
with onResult():

 private boolean onPlayRequest(Intent i, ControlRequestCallback cb) {
 Log.d(getClass().getSimpleName(), "play: "
 + i.getData().toString());

 MediaItemStatus.Builder statusBuilder=
 new MediaItemStatus.Builder(
 MediaItemStatus.PLAYBACK_STATE_PLAYING);

 Bundle b=new Bundle();

 b.putString(MediaControlIntent.EXTRA_SESSION_ID, DemoRouteProvider.DEMO_SESSION_ID);
 b.putString(MediaControlIntent.EXTRA_ITEM_ID, DemoRouteProvider.DEMO_ITEM_ID);
 b.putBundle(MediaControlIntent.EXTRA_ITEM_STATUS,
 statusBuilder.build().asBundle());

 cb.onResult(b);

 return(true);
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)
Pause, Resume, and Stop
The Bundle passed to onResult() of the ControlRequestCallback, when the action
is ACTION_PAUSE, ACTION_RESUME, or ACTION_STOP, does not need any particular values
at the present time. Hence, the DemoRouteController methods for those actions just
log the event to Logcat and pass an empty Bundle to onResult():

 private boolean onPauseRequest(Intent i, ControlRequestCallback cb) {
 Log.d(getClass().getSimpleName(), "pause");

 cb.onResult(new Bundle());

 return(true);
 }

 private boolean onResumeRequest(Intent i, ControlRequestCallback cb) {
 Log.d(getClass().getSimpleName(), "resume");

 cb.onResult(new Bundle());

 return(true);
 }

 private boolean onStopRequest(Intent i, ControlRequestCallback cb) {
 Log.d(getClass().getSimpleName(), "stop");

 cb.onResult(new Bundle());

 return(true);
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)
Get Status and Seek
The Bundle passed to onResult() of the ControlRequestCallback, when the action
is ACTION_GET_STATUS or ACTION_SEEK, must contain the same sort of MediaItemStatus-built
nested Bundle representing the current status. For ACTION_GET_STATUS, the only “work” to
be done is to pass back the status; for ACTION_SEEK, you should move the playback position
to the location indicated by an extra on the Intent, then return the revised status.
In the case of DemoRouteController, both just log a message to Logcat and return a
fairly pointless status:

 private boolean onGetStatusRequest(Intent i,
 ControlRequestCallback cb) {
 Log.d(getClass().getSimpleName(), "get-status");

 MediaItemStatus.Builder statusBuilder=
 new MediaItemStatus.Builder(
 MediaItemStatus.PLAYBACK_STATE_PLAYING);

 Bundle b=new Bundle();

 b.putBundle(MediaControlIntent.EXTRA_ITEM_STATUS,
 statusBuilder.build().asBundle());

 cb.onResult(b);

 return(true);
 }

 private boolean onSeekRequest(Intent i, ControlRequestCallback cb) {
 Log.d(getClass().getSimpleName(), "seek");

 MediaItemStatus.Builder statusBuilder=
 new MediaItemStatus.Builder(
 MediaItemStatus.PLAYBACK_STATE_PLAYING);

 Bundle b=new Bundle();

 b.putBundle(MediaControlIntent.EXTRA_ITEM_STATUS,
 statusBuilder.build().asBundle());

 cb.onResult(b);

 return(true);
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)
Publishing the Controller
While we have defined our RouteController, we still need to teach our MediaRouteProvider
about it. That is through overriding the onCreateRouteController() method and returning
an instance of RouteController:

 @Override
 public RouteController onCreateRouteController(String routeId) {
 return(new DemoRouteController());
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java)
onCreateRouteController() is passed the route ID String used in the MediaRouteDescriptor.
You can either use that to instantiate a different RouteProvider, pass the String into
a common RouteProvider so it knows what to do, or ignore it entirely if you have only
one published route. In the case of DemoRouteProvider, we ignore the route ID and always
return a DemoRouteController.
Handling Discovery Requests
DemoRouteProvider is always available, largely because it does not do much of anything.
In the real world, your MediaRouteProvider may not always be relevant. For example, the
TV you are set up to talk to may be powered down. Or, the user may not be at home where
the TV is, so the client device and the TV are not on the same network.
Rather than constantly polling the outside world to see if a route is possible, we only
do this when a client app requests “route discovery”, such as by providing
the MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY flag on an addCallback() call to
a MediaRouter. That in turn triggers an onDiscoveryRequestChanged() call on our
MediaRouteProvider.
There, and in our constructor-triggered setup, we should do work to determine if a route
is currently possible and set up our descriptors. This work should be done
in a background thread if it involves network I/O.
Note that onDiscoveryRequestChanged() is passed a MediaRouteDiscoveryRequest object,
describing what the consuming app is looking for. If the request is irrelevant for your
provider (e.g., the app wants a local audio route, and you provide remote playback routes),
simply ignore it.
The onDiscoveryRequestChanged() implementation in DemoRouteProvider just calls
the same handleDiscovery() method that the constructor does.
Consuming the MediaRouteProvider
Having a MediaRouteProvider is nice, but it is useless if apps are not going to know
about it.
You have two main options for consuming the MediaRouteProvider: use it only within your
own app, or publish it to all apps on the device.
Private Provider
Using a MediaRouteProvider for your own app is very simple. Just add a single call
to addProvider() on your MediaRouter, supplying an instance of your MediaRouteProvider.
Since our sample project is a fork of the original RemotePlaybackClient sample, we still
have a PlaybackFragment that sets up the MediaRouter and MediaRouteActionProvider.
In onAttach() of that PlaybackFragment, we can configure our MediaRouterProvider
after obtaining the MediaRouter instance:

 @Override
 public void onAttach(Activity host) {
 super.onAttach(host);

 router=MediaRouter.getInstance(host);
 provider=new DemoRouteProvider(getActivity());
 router.addProvider(provider);
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/PlaybackFragment.java)
At this point, our DemoRouteProvider will be available as an option for the user,
along with any other eligible media routes:

[image: MediaRouteProvider Demo, on a Nexus 4, Showing Available Routes]

Figure 818: MediaRouteProvider Demo, on a Nexus 4, Showing Available Routes
Choosing the DemoRouteProvider (“Demo Route” in the screenshot) will allow you to use
it just like you do a Chromecast… if you do not mind the fact that nothing shows up on
your television:

[image: MediaRouteProvider Demo, on a Nexus 4, After Several Commands]

Figure 819: MediaRouteProvider Demo, on a Nexus 4, After Several Commands
As it turns out, the DemoRouteProvider works better than Google’s own MediaRouteProvider
for the Chromecast, insofar as more of the callbacks work. Specifically, we actually
receive callbacks for pause, resume, and stop events, as opposed to having to just assume
that those events completed.
Also, we remove the demo provider in onDetach():

 @Override
 public void onDetach() {
 router.removeProvider(provider);

 super.onDetach();
 }

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/PlaybackFragment.java)
Among other things, this allows us to correctly handle configuration changes — if we fail
to call removeProvider() and blindly add another provider in onAttach(), we wind up
with multiple providers, because our MediaRouter is a framework-provided singleton
and is not re-created with the new fragment.
Public Provider
If you want your MediaRouteProvider to be used by other apps, you will need to create
one more Java class: a subclass of MediaRouteProviderService. This requires only one
method, onCreateMediaRouteProvider(), where you return an instance of your MediaRouteProvider:

package com.commonsware.android.mrp;

import android.support.v7.media.MediaRouteProvider;
import android.support.v7.media.MediaRouteProviderService;

public class DemoRouteProviderService extends MediaRouteProviderService {
 @Override
 public MediaRouteProvider onCreateMediaRouteProvider() {
 return(new DemoRouteProvider(this));
 }
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProviderService.java)
This also needs to be added to your manifest, like any other Service. Give it an
<intent-filter> looking for the android.media.MediaRouteProviderService action, so the
media routing framework knows that it can obtain a MediaRouteProvider from it:

<service
 android:name="DemoRouteProviderService"
 tools:ignore="ExportedService">
 <intent-filter>
 <action android:name="android.media.MediaRouteProviderService"/>
 </intent-filter>
</service>

However, do not do both addProvider() and have the <service> element. If you use
the <service> element, your app can use the MediaRouteProvider, just as can any other
app on the device. Hence, in the published source code for this sample, the <service>
element is commented out — you will need to uncomment it, and comment out the addProvider()
call, to test the DemoRouteProvider with other apps.
Implementing This “For Realz”
Of course, DemoRouteProvider is just a demo and does not actually play any media anywhere.
It is here to give you the basic steps for responding to RemotePlaybackClient requests.
For a production MediaRouteProvider, in addition to the usual tightening-up of the code
(e.g., better exception handling), you will need to work on other areas as well, ones that
are beyond the scope of the sample app.
Communicating with the Playback Device
Of course, the big one is passing the actions over to the playback device, so you actually
do play back media.
If you are the developer of the playback device and its protocols (e.g., it is an Android
device, and you are writing the playback app for it), then you can choose how you wish to
handle the communications. You can work with low-level socket protocols directly, or
you can leverage libraries like AllJoyn or
ZeroMQ.
If the playback device “is what it is”, and you cannot change it, then you will need
to determine what protocols it offers and how best to map the MediaControlIntent
actions to that protocol.
Also note that onControlRequest() is designed for asynchronous operation. The
sample app just invoked the ControlRequestCallback during the onControlRequest()
processing. Usually, though, your communications with the playback device will not be
as fast as a call to Log.d(). You should arrange to do those communications in
a background thread, perhaps via a single-thread thread pool as an ExecutorService.
Simply pass the ControlRequestCallback to that thread along with the rest of the
action’s data (e.g., the URL of the media to load), and the thread can call onResult()
or onError() as needed.
Handling Other Actions/Protocols
As was noted in the description of the sample app, that app avoids:

	volume control

	session management

	queue management

Any of those may be of interest to your users, and so you may need to consider offering
them at some point. Also note that some potential client apps might need those capabilities
and therefore will not see or use your published media routes without them.
Custom Actions
When setting up the MediaRouteProvider, we create one or more MediaRouteDescriptor
objects wrapped around one or more IntentFilter objects. Those IntentFilter
objects indicate what actions we support. The DemoRouteProvider uses standard
actions (e.g., ACTION_PLAY) in a standard category (CATEGORY_REMOTE_PLAYBACK).
However, you are not limited to that.
You are welcome to also support custom actions in a custom category, to represent
other things that your particular MediaRouteProvider offers. You can then
use those actions from your own client app, or document them for use by third-party
apps.
The client app can use supportsControlRequest() and sendControlRequest()
to determine whether a particular media route supports a particular Intent
that represents an action to be performed by that route’s MediaRouteProvider.
This way, a client app can work both with your custom MediaRouteProvider
(taking advantage of your custom actions) and with regular providers that lack
such support, assuming that the client can gracefully degrade its functionality.
Google’s sample app defines a custom ACTION_GET_STATISTICS action that
their sample client requests where available and their sample provider implements.
The Media Projection APIs
Android 5.0 debuted the ability for Android apps to take screenshots
of whatever is in the foreground. It further allows apps to record
full-resolution video of whatever is in the foreground, for screencasts,
product demo videos, and the like. For whatever reason, this is
called “media projection”, and is based around classes like
MediaProjectionManager.
In this chapter, we will explore how to use the media projection APIs
to record screenshots and screencast-style videos.
Prerequisites
Understanding this chapter requires that you have read the core chapters.
Having read the chapter on using the camera APIs
would not be a bad idea, particularly for video recording,
though it is not essential.
Requesting Screenshots
Here, “screenshot” (or “screen capture”) refers to generating an
ordinary image file (e.g., PNG) of the contents of the screen. Most likely,
you have created such screenshots yourself for a desktop OS (e.g., using
the PrtSc key on Windows or Linux). Android’s development tools allow
you to take screenshots of devices and emulators, and there is a
cumbersome way for users to take screenshots using the volume and
power keys.
The media projection APIs allow you to take a screenshot of whatever
is in the foreground… which does not necessarily have to be your own
app. Indeed, you can take screenshots of any app, plus of system-supplied
UI, such as the pull-down notification shade.
Not surprisingly, this has privacy and security issues. As such, in order
to be able to take screenshots, the user must agree to allow it.
In particular, instead of a durable permission that the user might grant
once and forget about, the user has to agree to allow your app to take
screenshots every time you want to do so.
The
MediaProjection/andshooter
sample project allows you to take screenshots on demand, whether from a Notification
or from a broadcast, such as one triggered from the command line.
Asking for Permission
To get permission from the user, we get an instance of the MediaProjectionManager
system service and call createScreenCaptureIntent():

package com.commonsware.android.andshooter;

import android.app.Activity;
import android.content.Intent;
import android.media.projection.MediaProjectionManager;
import android.os.Bundle;

public class MainActivity extends Activity {
 private static final int REQUEST_SCREENSHOT=59706;
 private MediaProjectionManager mgr;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mgr=(MediaProjectionManager)getSystemService(MEDIA_PROJECTION_SERVICE);

 startActivityForResult(mgr.createScreenCaptureIntent(),
 REQUEST_SCREENSHOT);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode==REQUEST_SCREENSHOT) {
 if (resultCode==RESULT_OK) {
 Intent i=
 new Intent(this, ScreenshotService.class)
 .putExtra(ScreenshotService.EXTRA_RESULT_CODE, resultCode)
 .putExtra(ScreenshotService.EXTRA_RESULT_INTENT, data);

 startService(i);
 }
 }

 finish();
 }
}

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/MainActivity.java)
This is designed for use with startActivityForResult(). Starting that
activity brings up a dialog for the user to confirm that we should be allowed
to take screenshots and record screencasts:

[image: andshooter Permission Dialog]

Figure 820: andshooter Permission Dialog
In onActivityResult(), if our request for permission was granted,
we pass the details along via Intent extras to a ScreenshotService
that we start using startService().
MainActivity uses Theme.Translucent.NoTitleBar to have no UI, so once
we get our result, we finish() the activty.
Setting Up the Notification
The onCreate() method of the ScreenshotService simply obtains access
to the WindowManager and MediaProjectionManager system services, plus
sets up a HandlerThread that the MediaProjectionManager will want:

 @Override
 public void onCreate() {
 super.onCreate();

 mgr=(MediaProjectionManager)getSystemService(MEDIA_PROJECTION_SERVICE);
 wmgr=(WindowManager)getSystemService(WINDOW_SERVICE);

 handlerThread.start();
 handler=new Handler(handlerThread.getLooper());
 }

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ScreenshotService.java)
onStartCommand() performs different work based upon the Intent
action used to start this service:

 @Override
 public int onStartCommand(Intent i, int flags, int startId) {
 if (i.getAction()==null) {
 resultCode=i.getIntExtra(EXTRA_RESULT_CODE, 1337);
 resultData=i.getParcelableExtra(EXTRA_RESULT_INTENT);
 foregroundify();
 }
 else if (ACTION_RECORD.equals(i.getAction())) {
 if (resultData!=null) {
 startCapture();
 }
 else {
 Intent ui=
 new Intent(this, MainActivity.class)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(ui);
 }
 }
 else if (ACTION_SHUTDOWN.equals(i.getAction())) {
 beeper.startTone(ToneGenerator.TONE_PROP_NACK);
 stopForeground(true);
 stopSelf();
 }

 return(START_NOT_STICKY);
 }

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ScreenshotService.java)
In the case where there is no action string, this must be the Intent
from the startService() call in MainActivity. So, we grab and hold
onto that result code and result Intent passed in via extras, then call
foregroundify() to set up a the service as a foreground service with
an associated Notification:

 private void foregroundify() {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL);

 b.setContentTitle(getString(R.string.app_name))
 .setSmallIcon(R.mipmap.ic_launcher)
 .setTicker(getString(R.string.app_name));

 b.addAction(R.drawable.ic_record_white_24dp,
 getString(R.string.notify_record),
 buildPendingIntent(ACTION_RECORD));

 b.addAction(R.drawable.ic_eject_white_24dp,
 getString(R.string.notify_shutdown),
 buildPendingIntent(ACTION_SHUTDOWN));

 startForeground(NOTIFY_ID, b.build());
 }

 private PendingIntent buildPendingIntent(String action) {
 Intent i=new Intent(this, getClass());

 i.setAction(action);

 return(PendingIntent.getService(this, 0, i, 0));
 }

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ScreenshotService.java)
That Notification, in turn, has “record” and “shutdown” actions that
will trigger ScreenshotService with custom action strings, to trigger
other branches within onStartCommand().
The downside of relying upon a foreground Notification is that
the user has to interact with that Notification to request
the screenshot. As a result, that Notification — and the rest of the
notification tray — will be visible in the screenshot. While this could be addressed by delaying
the screenshot, we do not know how long to wait. It would be nice to be able
to operate andshooter without affecting the screen.
Fortunately, we can, courtesy of adb.
As is covered in the chapter on ADB,
it is possible to use the adb shell am command to start an
activity, start a service, and send a broadcast. In this case,
since we are using a service for managing the recording process, we
can use adb shell am to trigger the same actions that the
Notification does.
This, however, requires that our ScreenshotService be exported.
For the PendingIntent objects used in the Notification, we would
not need to export the service. Invoking the service from the command
line, however, does require an exported service, since the command line
is not the app itself and therefore is considered to be a third-party
client of the app. Moreover, there is no obvious way to validate that
the commands were sent from adb shell am, which means that
when andshooter is installed, any app could send commands to ScreenshotService.
From a security standpoint, this is not great. The user still has to be
involved to grant permission to record the screen, which limits the security
risk a little bit. However, in general,
you should not run andshooter on your own personal device, due to this
security hole. Or, at minimum, run andshooter, then uninstall it immediately
when you are done with it, so it does not linger where malware might try
to use it.
The andshooter project contains a bash script to invoke
the ScreenshotService. This should be able to be trivially converted
to Windows command file; the proof of this is left as an exercise for
the reader:

#!/bin/bash

adb shell am startservice -n com.commonsware.android.andshooter/.ScreenshotService \
-a com.commonsware.android.andshooter.RECORD
sleep 2s

adb pull /storage/emulated/0/Android/data/com.commonsware.android.andshooter/files/screenshot.png $1
adb shell rm /storage/emulated/0/Android/data/com.commonsware.android.andshooter/files/screenshot.png

NOTE: the backslashes indicate where a line break was added to allow
these lines to fit on the width of the page
Capturing a Screenshot
If the user asks to record a screenshot — via the Notification or
the shell script — startCapture() is called:

 private void startCapture() {
 projection=mgr.getMediaProjection(resultCode, resultData);
 it=new ImageTransmogrifier(this);

 MediaProjection.Callback cb=new MediaProjection.Callback() {
 @Override
 public void onStop() {
 vdisplay.release();
 }
 };

 vdisplay=projection.createVirtualDisplay("andshooter",
 it.getWidth(), it.getHeight(),
 getResources().getDisplayMetrics().densityDpi,
 VIRT_DISPLAY_FLAGS, it.getSurface(), null, handler);
 projection.registerCallback(cb, handler);
 }

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ScreenshotService.java)
We start by asking our MediaProjectionManager to give us a MediaProjection
object, using the permission that we obtained from createScreenCaptureIntent(),
as embodied in the result code and result Intent we were given in onActivityResult().
We then ask the MediaProjection to create
a VirtualDisplay, tied to an ImageTransmogrifier and its ImageReader. We will
see more about the ImageTransmogrifier shortly. The VirtualDisplay
basically is a fake screen which is used for collecting screenshots and screencasts.
To create a VirtualDisplay need to provide:

	a name for this virtual display, primarily for logging purposes

	the size of the virtual display, in terms of width and height, where
we use the scaled width and height computed by the ImageTransmogrifier

	the density of the virtual display, which we set to match the density
of the actual device screen

	a set of flags (VIRT_DISPLAY_FLAGS), where the magic values that seem
to work are VIRTUAL_DISPLAY_FLAG_OWN_CONTENT_ONLY
and VIRTUAL_DISPLAY_FLAG_PUBLIC:

 static final int VIRT_DISPLAY_FLAGS=
 DisplayManager.VIRTUAL_DISPLAY_FLAG_OWN_CONTENT_ONLY |
 DisplayManager.VIRTUAL_DISPLAY_FLAG_PUBLIC;

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ScreenshotService.java)

	a Surface representing the virtual display, in this case retrieved
from the ImageReader inside the ImageTransmogrifier

	an optional VirtualDisplay.Callback to be notified about events
in the lifecycle of the VirtualDisplay (unused here, so we pass null)

	a Handler from a HandlerThread, to be used for that callback
(presumably unused here, but since we have the right Handler anyway,
we use it)

We also need to know about events surrounding the MediaProjection
itself, so we create and register a MediaProjection.Callback.
The ImageTransmogrifier

ImageTransmogrifier, in its constructor, sets about determining the
screen size (using WindowManager and getDefaultDisplay()). Since
high-resolution displays will wind up with very large bitmaps, and
therefore slow down the data transfer, we scale the width and height
until such time as each screenshot will contain no more than 512K pixels.

 ImageTransmogrifier(ScreenshotService svc) {
 this.svc=svc;

 Display display=svc.getWindowManager().getDefaultDisplay();
 Point size=new Point();

 display.getRealSize(size);

 int width=size.x;
 int height=size.y;

 while (width*height > (2<<19)) {
 width=width>>1;
 height=height>>1;
 }

 this.width=width;
 this.height=height;

 imageReader=ImageReader.newInstance(width, height,
 PixelFormat.RGBA_8888, 2);
 imageReader.setOnImageAvailableListener(this, svc.getHandler());
 }

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ImageTransmogrifier.java)
Then we create a new ImageReader, which boils down to a class
that manages a bitmap Surface that can be written to, using our
specified width, height, and bit depth. In particular, we are saying
that there are two possible outstanding bitmaps at a time, courtesy
of the 2 final parameter, and that we should be notified when a new
image is ready, by registering the ImageTransmogrifier as the listener.
The Handler is used so that we are informed about image availability
on our designated background HandlerThread.
We find out when a screenshot is available via the ImageReader.Callback
we set up in ImageTransmogrifier, specifically its onImageAvailable()
callback. Since ImageTransmogrifier itself is implementing the
ImageReader.Callback interface, ImageTransmogrifier has the onImageAvailable()
implementation:

 @Override
 public void onImageAvailable(ImageReader reader) {
 final Image image=imageReader.acquireLatestImage();

 if (image!=null) {
 Image.Plane[] planes=image.getPlanes();
 ByteBuffer buffer=planes[0].getBuffer();
 int pixelStride=planes[0].getPixelStride();
 int rowStride=planes[0].getRowStride();
 int rowPadding=rowStride - pixelStride * width;
 int bitmapWidth=width + rowPadding / pixelStride;

 if (latestBitmap == null ||
 latestBitmap.getWidth() != bitmapWidth ||
 latestBitmap.getHeight() != height) {
 if (latestBitmap != null) {
 latestBitmap.recycle();
 }

 latestBitmap=Bitmap.createBitmap(bitmapWidth,
 height, Bitmap.Config.ARGB_8888);
 }

 latestBitmap.copyPixelsFromBuffer(buffer);
 image.close();

 ByteArrayOutputStream baos=new ByteArrayOutputStream();
 Bitmap cropped=Bitmap.createBitmap(latestBitmap, 0, 0,
 width, height);

 cropped.compress(Bitmap.CompressFormat.PNG, 100, baos);

 byte[] newPng=baos.toByteArray();

 svc.processImage(newPng);
 }
 }

 Surface getSurface() {
 return(imageReader.getSurface());

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ImageTransmogrifier.java)
This is complex.
First, we ask the ImageReader for the latest image, via acquireLatestImage().
If, for some reason, there is no image, there is nothing for us to do,
so we skip all the work.
Otherwise, we have to go through some gyrations to get the actual bitmap
itself from Image object. The recipe for that probably makes sense
to somebody, but that “somebody” is not the author of this book.
Suffice it to say, the first six lines of the main if block in
onImageAvaialble() get access to the bytes of the bitmap
(as a ByteBuffer named buffer) and determine the width of the bitmap
that was handed to us (as an int named bitmapWidth).
Because Bitmap objects are large and therefore troublesome to allocate,
we try to reuse one where possible. If we do not have a Bitmap
(latestBitmap), or if the one we have is not the right size, we
create a new Bitmap of the appropriate size. Otherwise, we use the
Bitmap that we already have. Regardless of where the Bitmap came
from, we use copyPixelsFromBuffer() to populate it from the
ByteBuffer we got from the Image.Plane that we got from the Image
that we got from the ImageReader.
You might think that this Bitmap would be the proper size. However,
it is not. For inexplicable reasons, on some devices, it will be a bit larger, with
excess unused pixels on each row on the end. This
is why we need to use Bitmap.createBitmap() to create a cropped
edition of the original Bitmap, for our actual desired width.
We then compress() the cropped Bitmap into a PNG file, get the
byte array of pixel data from the compressed result, and hand
that off to the ProjectorService via processImage().
Saving the Screenshot
In processImage(), we write the
PNG to a file, update the MediaStore so it knows about the image,
play an acknowledgment tone to let the user know the screenshot is ready,
and call stopCapture():

 void processImage(final byte[] png) {
 new Thread() {
 @Override
 public void run() {
 File output=new File(getExternalFilesDir(null),
 "screenshot.png");

 try {
 FileOutputStream fos=new FileOutputStream(output);

 fos.write(png);
 fos.flush();
 fos.getFD().sync();
 fos.close();

 MediaScannerConnection.scanFile(ScreenshotService.this,
 new String[] {output.getAbsolutePath()},
 new String[] {"image/png"},
 null);
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(), "Exception writing out screenshot", e);
 }
 }
 }.start();

 beeper.startTone(ToneGenerator.TONE_PROP_ACK);
 stopCapture();
 }

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ScreenshotService.java)
All stopCapture() does is close down the MediaProjection and associated
virtual display, to clean things up in preparation for the next screenshot:

 private void stopCapture() {
 if (projection!=null) {
 projection.stop();
 vdisplay.release();
 projection=null;
 }
 }

(from MediaProjection/andshooter/app/src/main/java/com/commonsware/android/andshooter/ScreenshotService.java)
Recording the Screen
Here, a “screencast” refers to a full-motion video of what goes on
the screen. You can think of it as a series of screenshots all written
to one video file (e.g., an MP4). Many apps on the Play Store have
screencasts as part of their product profile, so you can see what the
app looks like when it is run.
Android’s media projection APIs allow you to capture screencasts,
using a mechanism similar to the one used to take screenshots. You
have to ask permission from the user to be able to record the screen,
and that permission will last for the duration of one screen recording.
During that period of time, you can direct Android to make a duplicate
copy of what goes on the screen to a video file. This winds up using
the MediaRecorder API along with dedicated media projection APIs,
which is a bit awkward, since MediaRecorder is really aimed at using
the device camera to record videos of the world outside the device.
Jake Wharton, with his open source
Telecine app, helped blaze the
trail in how these APIs are supposed to work, since the documentation,
as usual, is limited.
The
MediaProjection/andcorder
sample project offers screen recording through the media projection APIs. In the
end, andcorder does the same basic stuff as does Telecine, with fewer bells
and whistles. Also, the control channel is different: Telecine uses a screen
overlay, while andcorder uses a foreground Notification or the command
line.
Requesting Media Projection… Without a GUI
As with andshooter, andcorder has a MainActivity that uses
MediaProjectionManager and createScreenCaptureIntent() to get
permission from the user to record the screen, passing the results along
to a RecorderService:

package com.commonsware.android.andcorder;

import android.app.Activity;
import android.content.Intent;
import android.media.projection.MediaProjectionManager;
import android.os.Bundle;

public class MainActivity extends Activity {
 private static final int REQUEST_SCREENCAST=59706;
 private MediaProjectionManager mgr;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mgr=(MediaProjectionManager)getSystemService(MEDIA_PROJECTION_SERVICE);

 startActivityForResult(mgr.createScreenCaptureIntent(),
 REQUEST_SCREENCAST);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode==REQUEST_SCREENCAST) {
 if (resultCode==RESULT_OK) {
 Intent i=
 new Intent(this, RecorderService.class)
 .putExtra(RecorderService.EXTRA_RESULT_CODE, resultCode)
 .putExtra(RecorderService.EXTRA_RESULT_INTENT, data);

 startService(i);
 }
 }

 finish();
 }
}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/MainActivity.java)
Implementing a Control Channel… Without a GUI
And, as with andshooter, andcorder uses a Notification tied to a foreground
service that manages the actual screen recording, to allow the user to request
to start and stop the screen recording.
We will use action strings, in the Intent used to start the RecorderService,
to indicate what is to be done. Those action strings will be the
application ID plus a segment at the end that is the specific operation
we want:

 static final String ACTION_RECORD=
 BuildConfig.APPLICATION_ID+".RECORD";
 static final String ACTION_STOP=
 BuildConfig.APPLICATION_ID+".STOP";
 static final String ACTION_SHUTDOWN=
 BuildConfig.APPLICATION_ID+".SHUTDOWN";

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)
Here, we use BuildConfig.APPLICATION_ID, a faster, no-Context way
to get our application ID, as part of building up these strings. We
have three actions: to start recording (RECORD), to stop recording
(STOP), and to shut down the RecorderService (SHUTDOWN). An Intent
with no action string will be used on the initial launch of the service,
from MainActivity.
onStartCommand() is where all of these commands, triggered by
startService() calls, will come in:

 @Override
 public int onStartCommand(Intent i, int flags, int startId) {
 if (i.getAction()==null) {
 resultCode=i.getIntExtra(EXTRA_RESULT_CODE, 1337);
 resultData=i.getParcelableExtra(EXTRA_RESULT_INTENT);

 if (recordOnNextStart) {
 startRecorder();
 }

 foregroundify(!recordOnNextStart);
 recordOnNextStart=false;
 }
 else if (ACTION_RECORD.equals(i.getAction())) {
 if (resultData!=null) {
 foregroundify(false);
 startRecorder();
 }
 else {
 Intent ui=
 new Intent(this, MainActivity.class)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(ui);
 recordOnNextStart=true;
 }
 }
 else if (ACTION_STOP.equals(i.getAction())) {
 foregroundify(true);
 stopRecorder();
 }
 else if (ACTION_SHUTDOWN.equals(i.getAction())) {
 stopSelf();
 }

 return(START_NOT_STICKY);
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)
If we have no action string, this should be the command from MainActivity,
so we grab the resultCode and resultData out of the Intent and
stash them in simple fields on the service:

 private int resultCode;
 private Intent resultData;
 private boolean recordOnNextStart=false;

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)
We also:

	Call startRecorder() if recordOnNextStart is set to true

	Call foregroundify(), with a boolean that indicates whether we
should give the user the option to begin recording (true) or to
stop existing recording (false)

	Clear the recordOnNextStart flag

We will discuss more about that recordOnNextStart, its role, and why
it exists, later in this chapter.
If, instead, a RECORD action string was on the Intent, then ideally
we should begin recording the screen contents. The “ideally” part is because
there will be scenarios in which the RECORD action is invoked before
we actually have permission from the user to record the screen (more on this
later).
So, if a RECORD action comes in, and we have permission from the user
to record the screen (resultData is not null), we call startRecorder()
to start recording, plus call foregroundify() to put up a Notification
with an action for STOP. If, on the other hand, we do not presently
have permission from the user (resultData is null), we start up
MainActivity to get that permission, plus set recordOnNextStart to
true.
The other two cases are simpler:

	If we get a STOP Intent, we call stopRecorder(), plus call
foregroundify() to change the foreground service Notification to one
that has an action for RECORD

	If we get a SHUTDOWN Intent, we call stopSelf() to go away entirely

foregroundify() is invoked for most of those cases, to put the service
in the foreground (if it is not in the foreground already) and show a
Notification with the appropriate mix of actions:

 private void foregroundify(boolean showRecord) {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL);

 b.setContentTitle(getString(R.string.app_name))
 .setSmallIcon(R.mipmap.ic_launcher)
 .setTicker(getString(R.string.app_name));

 if (showRecord) {
 b.addAction(R.drawable.ic_videocam_white_24dp,
 getString(R.string.notify_record), buildPendingIntent(ACTION_RECORD));
 }
 else {
 b.addAction(R.drawable.ic_stop_white_24dp,
 getString(R.string.notify_stop), buildPendingIntent(ACTION_STOP));
 }

 b.addAction(R.drawable.ic_eject_white_24dp,
 getString(R.string.notify_shutdown), buildPendingIntent(ACTION_SHUTDOWN));

 if (isForeground) {
 mgr.notify(NOTIFY_ID, b.build());
 }
 else {
 startForeground(NOTIFY_ID, b.build());
 isForeground=true;
 }
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)
In addition to generic NotificationCompat.Builder configuration, we:

	add an action to shut down the service, tied to the SHUTDOWN
action string

	either add an action to RECORD or STOP the recording, based
upon the boolean passed into foregroundify()

	either use startForeground() to move the service into the foreground
and show the Notification or use NotificationManager to update the
existing Notification (if we are already in the foreground)

The latter distinction may not be necessary. Calling startForeground()
multiple times does not seem to have any harm, and it also updates
the foreground Notification. Using NotificationManager directly for
the already-in-the-foreground scenario, though, may be superfluous.
The addAction() calls delegate to a buildPendingIntent() method,
to create the PendingIntent to be triggered when the action
is tapped:

 private PendingIntent buildPendingIntent(String action) {
 Intent i=new Intent(this, getClass());

 i.setAction(action);

 return(PendingIntent.getService(this, 0, i, 0));
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)
This creates an explicit Intent, tied to RecorderService itself, but
also adds the action string. This Intent will always resolve to our
RecorderService; the action string is just part of the payload.
That foreground Notification provides the visual way of starting
recording:

[image: andcorder Notification, Showing Record and Shutdown Actions]

Figure 821: andcorder Notification, Showing Record and Shutdown Actions
…and stopping recording once started:

[image: andcorder Notification, Showing Stop and Shutdown Actions]

Figure 822: andcorder Notification, Showing Stop and Shutdown Actions
In addition, onDestroy() stops the recording and removes us from the
foreground, plus we have the obligatory onBind() implementation:

 @Override
 public void onDestroy() {
 stopRecorder();
 stopForeground(true);

 super.onDestroy();
 }

 @Override
 public IBinder onBind(Intent intent) {
 throw new IllegalStateException("go away");
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)
Using the Control Channel… From the Command Line
As with andshooter, andcorder is designed to use command-line scripts
to start and stop recording.
The andcorder project contains three bash scripts to invoke
the RecorderService. These should be able to be converted
to Windows command files for those that need them.
All three scripts use adb shell am startservice, and all point to the
same component (-n com.commonsware.android.andcorder/.RecorderService).
What varies is the action string supplied to the -a switch.
NOTE: the shell script code listings are word-wrapped due to
line length limitations in the books; the files themselves have the
adb shell commands all on one line.
So, the record script, for example, passes
com.commonsware.android.andcorder.RECORD as the action string:

#!/bin/bash

adb shell am startservice -n com.commonsware.android.andcorder/.RecorderService
-a com.commonsware.android.andcorder.RECORD

The stop script passes the STOP action string; the shutdown
script passes the SHUTDOWN action string.
These, therefore, replicate the Intent structures used in the
PendingIntent objects for the Notification actions.
However, there is one key usage difference: it would be nice to be
able to run the record script without having to think about whether
or not you ran andcorder from the home screen launcher or not. The
RECORD action cannot actually do the recording without the result
data from the startActivityForResult() call in MainActivity.
This is why the RECORD action logic detects this case and starts
up MainActivity — so we can just run the record script and,
if we do not presently have screen-recording permission, request it from
the user.
The recordOnNextStart flag indicates whether or not RECORD started
up MainActivity. If it did, when we get the result data in the no-action
onStartCommand() call, we should go ahead and begin recording. This
prevents the user from having to run the record script twice, once to
pop up the permission dialog and once to actually begin recording.
Starting the Recording
The startRecorder() method on RecorderService is called when it is
time to begin screen recording, either because the user asked us to record
just now or the user asked us to record (via the command-line script)
and we just now got permission from the user to do that.

 synchronized private void startRecorder() {
 if (session==null) {
 MediaProjectionManager mgr=
 (MediaProjectionManager)getSystemService(MEDIA_PROJECTION_SERVICE);
 MediaProjection projection=
 mgr.getMediaProjection(resultCode, resultData);

 session=
 new RecordingSession(this, new RecordingConfig(this),
 projection);
 session.start();
 }
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)
Here, as with the andshooter sample, we use a MediaProjectionManager
to turn the resultCode int and resultData Intent into a
MediaProjection. Then, we create a RecordingSession, wrapped
around a RecordingConfig and the MediaProjection, and call start()
on the RecordingSession.
Both RecordingSession and RecordingConfig are classes that are part
of the app, not the Android SDK. RecordingConfig holds onto information
about the nature of what is being recorded (notably, the video resolution)
to capture. RecordingSession handles the stateful work of actually
recording the video.
Of the two, you might expect RecordingSession to be far more complex.
In truth, it is decidedly more straightforward than is RecordingConfig.
Determining the resolution and other information about our screen recording
is annoyingly complicated.
Deciding How Big Our Recording Is
The job of RecordingConfig is to derive and hold onto five pieces
of data regarding the screen recording that we are about to initiate:

	The width and height of the video, in pixels

	The bit rate at which the video should be recorded

	The frame rate (frames per second) at which the video should be recorded

	The screen density

These are held in five final int fields, as RecordingConfig
is designed to be immutable:

 final int width;
 final int height;
 final int frameRate;
 final int bitRate;
 final int density;

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)
All five of these values will be initialized in the constructor (since
they are final). In fact, all the business logic for RecordingSession
is just in the constructor, to derive these five values.
That constructor starts off simple enough:

 RecordingConfig(Context ctxt) {
 DisplayMetrics metrics=new DisplayMetrics();
 WindowManager wm=(WindowManager)ctxt.getSystemService(Context.WINDOW_SERVICE);

 wm.getDefaultDisplay().getRealMetrics(metrics);

 density=metrics.densityDpi;

 Configuration cfg=ctxt.getResources().getConfiguration();

 boolean isLandscape=
 (cfg.orientation==Configuration.ORIENTATION_LANDSCAPE);

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)
Here, we:

	Populate a DisplayMetrics data structure, given a WindowManager

	Save the screen density in its final field

	Get the current Configuration and determine if we are in landscape
mode or not

Where things start to get messy is with the other four fields, as they
need to be populated based on the device’s video recording capabilities.
For various reasons, screen recording is actually handled mostly by
MediaRecorder, the same class used to
record videos from a device camera. Hence, we are
limited by not only the actual resolution of the screen but by the
capabilities of the video recording engine.
The classic way to handle this is by using CamcorderProfile
objects. These standardize video recording support for various resolutions.
We can find out which of these profiles the device supports and use that
to help determine our video resolution, frame rate, and bitrate.
However, we also have to take into account the resolution of the screen
itself. If MediaRecorder is capable of 1080p (1920 x 1080) video
recording, but the device has a low-end WXGA (1280 x 800) screen, we will
waste a lot of space recording that screen at 1080p. What we want is
the smallest resolution that is bigger than the screen, to minimize wasted
space while not losing data. If, for some reason, we do not have a
CamcorderProfile that is bigger than the screen, we will have to settle
for one that is as big as we can manage.
To that end, the CAMCORDER_PROFILES static field on RecordingConfig
lists the major CamcorderProfile IDs, in descending order based on resolution:

 private static final int[] CAMCORDER_PROFILES={
 CamcorderProfile.QUALITY_2160P,
 CamcorderProfile.QUALITY_1080P,
 CamcorderProfile.QUALITY_720P,
 CamcorderProfile.QUALITY_480P,
 CamcorderProfile.QUALITY_CIF,
 CamcorderProfile.QUALITY_QVGA,
 CamcorderProfile.QUALITY_QCIF
 };

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)
If we simply iterate over this list and choose either the first one we find,
or one that is smaller yet is bigger than the screen, we will get the
right CamcorderProfile for our use case:

 CamcorderProfile selectedProfile=null;

 for (int profileId : CAMCORDER_PROFILES) {
 CamcorderProfile profile=null;

 try {
 profile=CamcorderProfile.get(profileId);
 }
 catch (Exception e) {
 // not documented to throw anything, but does
 }

 if (profile!=null) {
 if (selectedProfile==null) {
 selectedProfile=profile;
 }
 else if (profile.videoFrameWidth>=metrics.widthPixels &&
 profile.videoFrameHeight>=metrics.heightPixels) {
 selectedProfile=profile;
 }
 }
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)
To get a CamcorderProfile given its ID, you call the static get()
method on CamcorderProfile. This is supposed to return the CamcorderProfile
if it is supported or null if it is not. In actuality, it may throw
an exception if the profile is not supported, which is why we have to
wrap the get() call in a try/catch block. Then, if profile exists,
we hold onto it as the selectedProfile if either:

	
selectedProfile is null, meaning this is the largest available
profile, or

	the profile has a resolution bigger than the screen on both axes

If, after all that is done, we have a null selectedProfile, that
means that none of the CamcorderProfile values were available.
That is very strange, and rather than take a random guess as to what will
work, we just blow up with an IllegalStateException. Obviously, a
production-grade app would need to blow up more nicely.
Otherwise, we can collect our remaining data… which once again is
more complex than you might expect:

 if (selectedProfile==null) {
 throw new IllegalStateException("No CamcorderProfile available!");
 }
 else {
 frameRate=selectedProfile.videoFrameRate;
 bitRate=selectedProfile.videoBitRate;

 int targetWidth, targetHeight;

 if (isLandscape) {
 targetWidth=selectedProfile.videoFrameWidth;
 targetHeight=selectedProfile.videoFrameHeight;
 }
 else {
 targetWidth=selectedProfile.videoFrameHeight;
 targetHeight=selectedProfile.videoFrameWidth;
 }

 if (targetWidth>=metrics.widthPixels &&
 targetHeight>=metrics.heightPixels) {
 width=metrics.widthPixels;
 height=metrics.heightPixels;
 }
 else {
 if (isLandscape) {
 width=targetHeight*metrics.widthPixels/metrics.heightPixels;
 height=targetHeight;
 }
 else {
 width=targetWidth;
 height=targetWidth*metrics.heightPixels/metrics.widthPixels;
 }
 }
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)
Getting the frame rate and the bitrate are easy enough, as they are just
fields on the CamcorderProfile. Where things start to get strange
is in determining what we should tell the MediaRecorder that we want
recorded in terms of resolution.
Partly, this is a problem of orientation. MediaRecorder thinks that
everything is recorded in landscape, but we may well want to record
the screen held in portrait mode.
Partly, this is a problem of aspect ratios. There is no requirement
that the MediaRecorder advertise support for resolutions that match
the screen size, or even match the screen’s aspect ratio. So, if the
MediaRecorder is capable of recording our full screen, we ask it to
record the full screen (as determined from the DisplayMetrics). If,
however, we are on some odd device whose MediaRecorder is not capable
of recording video at the screen’s own resolution, we try to at least
maintain the aspect ratio of the screen when deriving the resolution
to use for recording.
The net of all that work is that we have the details of how we want
the screen recording to be done, encapsulated in the RecordingConfig
object, ready for use by the RecordingSession.
Actually Recording Stuff
None of that actually records the screen, though. That is the responsibility
of the RecordingSession.
In the RecordingSession constructor, we:

	Hold onto the RecordingConfig and MediaProjection

	Hold onto the application Context, as we will need a Context later on

	Create an instance of a ToneGenerator to use for audible feedback
about the state of the recording

	Create a File object pointing at our desired output: an andcorder.mp4
file in our app’s portion of external storage

 RecordingSession(Context ctxt, RecordingConfig config,
 MediaProjection projection) {
 this.ctxt=ctxt.getApplicationContext();
 this.config=config;
 this.projection=projection;
 this.beeper=new ToneGenerator(
 AudioManager.STREAM_NOTIFICATION, 100);

 output=new File(ctxt.getExternalFilesDir(null), "andcorder.mp4");
 output.getParentFile().mkdirs();
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java)
The actual work to record the video is handled in the start() method
on RecordingSession, where we set up the MediaRecorder and a
VirtualDisplay, the latter being the same thing that we used in the
andshooter sample:

 void start() {
 recorder=new MediaRecorder();
 recorder.setVideoSource(MediaRecorder.VideoSource.SURFACE);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);
 recorder.setVideoFrameRate(config.frameRate);
 recorder.setVideoEncoder(MediaRecorder.VideoEncoder.H264);
 recorder.setVideoSize(config.width, config.height);
 recorder.setVideoEncodingBitRate(config.bitRate);
 recorder.setOutputFile(output.getAbsolutePath());

 try {
 recorder.prepare();
 vdisplay=projection.createVirtualDisplay("andcorder",
 config.width, config.height, config.density,
 VIRT_DISPLAY_FLAGS, recorder.getSurface(), null, null);
 beeper.startTone(ToneGenerator.TONE_PROP_ACK);
 recorder.start();
 }
 catch (IOException e) {
 throw new RuntimeException("Exception preparing recorder", e);
 }
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java)
First, we create an instance of MediaRecorder and configure it. As
is discussed in the chapter on working with the camera,
MediaRecorder is a very fussy class, requiring a fairly specific order
of method calls to configure it without messing things up too bad. The
values for the configuration come from:

	the RecordingConfig, notably the requested resolution, frame rate,
and bitrate

	the output File created in the RecordingSession constructor

	hardcoded values for the video source, output format, and encoder
format

Of particular interest is the call to setVideoSource(). Usually,
you would set this to CAMERA, to record from a device-supplied
camera. Here, though, we set it to SURFACE, indicating that
MediaRecorder should supply a Surface onto which we can render
what should get recorded.
We then:

	Prepare the MediaRecorder, which might throw an IOException
if there is some problem with the output file

	Create a VirtualDisplay, as we did in andshooter, tied to the
details of the display we got from DisplayMetrics by way of the
RecordingConfig

	Play a tone using ToneGenerator to let the user know that recording
has begun

	Actually begin the recording, via a call to start() on the
MediaRecorder

The VIRT_DISPLAY_FLAGS used here are the same ones used for andshooter:

 static final int VIRT_DISPLAY_FLAGS=
 DisplayManager.VIRTUAL_DISPLAY_FLAG_OWN_CONTENT_ONLY |
 DisplayManager.VIRTUAL_DISPLAY_FLAG_PUBLIC;

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java)
And, at this point, the screen is being recorded.
Stopping the Recording
Eventually, we will want to stop that recording, whether triggered via
the Notification or the command-line script. That eventually results
in a call to stopRecorder() on the RecorderService, which just calls
stop on the RecordingSession before setting the field to null:

 synchronized private void stopRecorder() {
 if (session!=null) {
 session.stop();
 session=null;
 }
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)
The stop() method on RecordingSession unwinds everything we set up,
via stop() and release() calls on the MediaProjection, MediaRecorder,
and VirtualDisplay. stop() also calls scanFile() on MediaScannerConnection,
so that our video gets indexed by the MediaStore and therefore can be
seen in on-device video players and via the MTP connection to your developer machine:

 void stop() {
 projection.stop();
 recorder.stop();
 recorder.release();
 vdisplay.release();

 MediaScannerConnection.scanFile(ctxt,
 new String[]{output.getAbsolutePath()}, null, this);
 }

 @Override
 public void onScanCompleted(String path, Uri uri) {
 beeper.startTone(ToneGenerator.TONE_PROP_NACK);
 }

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java)
When the scan is complete, another beep signals to the user that the
screen recording is finished.
Usage Notes
On the plus side, andcorder has no built-in duration limitation, the way
that adb shell screenrecord does.
However, it does not optimize configuration changes. If you rotate the
device during the recording, the recording will continue, but the
screen will be shrunk to fit within the original dimensions. So, for
example, if you start recording in landscape, then rotate the device
to portrait, the video will still be landscape, with part of the video
showing a small portrait rendition of the screen.
AlarmManager and the Scheduled Service Pattern
Many applications have the need to get control every so often to do a
bit of work. And, many times, those applications need to get control
in the background, regardless of what the user may be doing (or not doing)
at the time.
The solution, in some cases, is to use AlarmManager, which is roughly
akin to cron on Linux and macOS and Scheduled Tasks in Windows. You
teach AlarmManager when you want to get control back, and AlarmManager
will give you control at that time.
Android 5.0 added a separate JobScheduler. Like AlarmManager, JobScheduler
is designed for background work. JobScheduler is more sophisticated than
is AlarmManager. For example, if you need an Internet
connection to do your work, JobScheduler will only give you control
if there is an Internet connection. If your app’s minSdkVersion is 21 or higher, you
might consider using JobScheduler instead of AlarmManager. JobScheduler
is covered in an upcoming chapter.
Prerequisites
This chapter requires you to have read the core chapters of the book, in
particular the chapter on services.
Scenarios
The two main axes to consider with scheduled work are frequency and
foreground (vs. background).
If you have an activity that needs to get control every second, the
simplest approach is to use a postDelayed() loop, scheduling a Runnable
to be invoked after a certain delay, where the Runnable reschedules itself
to be invoked after the delay in addition to doing some work. We saw this
in the chapter on threads.
This has the advantages of giving you control back on the main application
thread and avoiding the need for any background threads.
On the far other end of the spectrum, you may need to get control on a somewhat
slower frequency (e.g., every 15 minutes), and do so in the background,
even if nothing of your app is presently running. You might need to poll
some Web server for new information, such as downloading updates to an RSS
feed. This is the scenario that AlarmManager excels at. While postDelayed()
works inside your process (and therefore does not work if you no longer
have a process), AlarmManager maintains its schedule outside of your
process. Hence, it can arrange to give you control, even if it has to
start up a new process for you along the way.
Options
There are a variety of things you will be able to configure about your
scheduled alarms with AlarmManager.
Wake Up… Or Not?
The biggest one is whether or not the scheduled event should wake up the
device.
A device goes into a sleep mode shortly after the screen goes dark.
During this time, nothing at the application layer will run, until
something wakes up the device. Waking up the device does not necessarily
turn on the screen — it may just be that the CPU starts running your process
again.
If you choose a “wakeup”-style alarm, Android will wake up the device
to give you control. This would be appropriate if you need this work to
occur even if the user is not actively using the device, such as your app
checking for critical email messages in the middle of the night. However,
it does drain the battery some.
Alternatively, you can choose an alarm that will not wake up the device.
If your desired time arrives and the device is asleep, you will not get
control until something else wakes up the device.
Repeating… Or Not?
You can create a “one-shot” alarm, to get control once at a particular time
in the future. Or, you can create an alarm that will give you control
periodically, at a fixed period of your choice (e.g., every 15 minutes).
If you need to get control at multiple times, but the schedule is irregular,
use a “one-shot” alarm for the nearest time, where you do your work and
schedule a “one-shot” alarm for the next-nearest time. This would be
appropriate for scenarios like a calendar application, where you need to
let the user know about upcoming appointments, but the times for those
appointments may not have any fixed schedule.
However, for most polling operations (e.g., checking for new messages
every NN minutes), a repeating alarm will typically be the better answer.
Inexact… Or Not?
If you do choose a repeating alarm, you will have your choice over having
(relatively) precise control over the timing of event or not.
If you choose an “inexact” alarm, while you will provide Android with a
suggested time for the first event and a period for subsequent events,
Android reserves the right to shift your schedule somewhat, so it can
process your events and others around the same time. This is particularly
important for “wakeup”-style alarms, as it is more power-efficient to
wake up the device fewer times, so Android will try to combine multiple
apps’ events to be around the same time to minimize the frequency of waking
up the device.
However, inexact alarms are annoying to test and debug, simply because you
do not have control over when they will be invoked. Hence, during
development, you might start with an exact alarm, then switch to inexact
alarms once most of your business logic is debugged.
Note that Android 4.4 changes the behavior of AlarmManager, such that
it is more difficult to actually create an exact-repeating alarm schedule.
This will be examined in greater detail shortly, as we review the various
methods and flags for scheduling AlarmManager events.
Absolute Time… Or Not?
As part of the alarm configuration, you will tell Android when the event
is to occur (for one-shot alarms) or when the event is to first occur
(for repeating alarms). You can provide that time in one of two ways:

	An absolute “real-time clock” time (e.g., 4am tomorrow), or

	A time relative to now

For most polling operations, particularly for periods more frequent than once
per day, specifying the time relative to now is easiest. However, some alarms
may need to tie into “real world time”, such as alarm clocks and calendar
alerts — for those, you will need to use the real-time clock (typically
by means of a Java Calendar object) to indicate when the event should
occur.
What Happens (Or Not???)
And, of course, you will need to tell Android what to do when each of these
timer events occurs. You will do that in the form of supplying
a PendingIntent. First mentioned in the chapter on services,
a PendingIntent is a Parcelable object, one that indicates an operation
to be performed upon an Intent:

	start an activity

	start a service

	send a broadcast

	call onActivityResult() of an existing activity (created via createPendingResult())

A Simple Example
A trivial sample app using AlarmManager can be found in
AlarmManager/Simple.
This application consists of a single activity, SimpleAlarmDemoActivity,
that will both set up an alarm schedule and respond to alarms:

package com.commonsware.android.alarm;

import android.app.Activity;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.os.SystemClock;
import android.util.Log;
import android.widget.Toast;

public class SimpleAlarmDemoActivity extends Activity {
 private static final int ALARM_ID=1337;
 private static final int PERIOD=5000;
 private PendingIntent pi=null;
 private AlarmManager mgr=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr=(AlarmManager)getSystemService(ALARM_SERVICE);
 pi=createPendingResult(ALARM_ID, new Intent(), 0);
 mgr.setRepeating(AlarmManager.ELAPSED_REALTIME,
 SystemClock.elapsedRealtime() + PERIOD, PERIOD, pi);
 }

 @Override
 public void onDestroy() {
 mgr.cancel(pi);

 super.onDestroy();
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == ALARM_ID) {
 Toast.makeText(this, R.string.toast, Toast.LENGTH_SHORT).show();
 Log.d(getClass().getSimpleName(), "I ran!");
 }
 }
}

(from AlarmManager/Simple/app/src/main/java/com/commonsware/android/alarm/SimpleAlarmDemoActivity.java)
In onCreate(), in addition to setting up the “hello, world”-ish UI, we:

	Obtain an instance of AlarmManager, by calling getSystemService(),
asking for the ALARM_SERVICE, and casting the result to be an AlarmManager

	Create a PendingIntent by calling createPendingResult(), supplying
an empty Intent as our “result” (since we do not really need it here)

	Calling setRepeating() on AlarmManager

The call to setRepeating() is a bit complex, taking four parameters:

	The type of alarm we want, in this case ELAPSED_REALTIME, indicating
that we want to use a relative time base for when the first event should
occur (i.e., relative to now) and that we do not need to wake up the device
out of any sleep mode

	The time when we want the first event to occur, in this case specified
as a time delta in milliseconds (PERIOD) added to “now” as determined
by SystemClock.elapsedRealtime() (the number of milliseconds since the
device was last rebooted)

	The number of milliseconds to occur between events

	The PendingIntent to invoke for each of these events

When the event occurs, since we used createPendingResult() to create
the PendingIntent, our activity gets control in onActivityResult(),
where we simply display a Toast (if the event is for our alarm’s request
ID). This continues until the activity is destroyed (e.g., pressing the
BACK button), at which time we cancel() the alarm, supplying a
PendingIntent to indicate which alarm to cancel. While here we use the
same PendingIntent object as we used for scheduling the alarm, that is
not required — it merely has to be an equivalent PendingIntent, meaning:

	The Intent inside the PendingIntent matches the scheduled alarm’s
Intent, in terms of component, action, data (Uri), MIME type, and
categories

	The ID of the PendingIntent (here, ALARM_ID) must also match

Running this simply brings up a Toast every five seconds until you BACK
out of the activity… except on Android 5.1 and higher, where it will appear
every minute. That is due to a limitation of setRepeating() that we will see
in the next section.
The Five set…() Varieties
There are five methods that you can call on AlarmManager to establish
an alarm, including the setRepeating() demonstrated above.
On Android 4.4 (API Level 19) and higher,
setExact() is used for a one-shot alarm, where you want to get control at
one specific time in the future. This would be used for specific events or
for irregular alarm schedules.
On Android 4.3 and below, and for apps whose targetSdkVersion is
set to 18 or lower, set() has the same behavior as setExact(). However,
on Android 4.4 and above, apps with their targetSdkVersion set
to be 19 or higher will have different, inexact behavior for set().
The time of the event is considered a minimum — your PendingIntent
will not be invoked before your desired time, but it can occur any time
thereafter… and you do not have control over how long that delay will
be. As with all “inexact” schedules, the objective is for Android to be
able to “batch” these events, to do several around the same time, for
greater efficiency, particularly when waking up the device.
On Android 4.4 and higher, you have a setWindow() option
that is a bit of a hybrid between the new-style set() and setExact().
Here, you specify the time you want the event to occur and an amount
of time that Android can “flex” the actual event. So, for example, you might
set up an event to occur every hour, with a “window” of five minutes, to
allow Android the flexibility to invoke your PendingIntent within that
five-minute window. This allows for better battery optimization than
with setExact(), while still giving you some control over how far “off
the mark” the event can occur.
On Android 4.3 and below, and for apps whose targetSdkVersion is
set to 18 or lower,
setRepeating() is used for an alarm that should occur at specific points
in time at a specific frequency. In addition to specifying the time of the
first event, you also specify the period for future events. Android will
endeavor to give you control at precisely those times, though since Android
is not a real-time operating system (RTOS), microsecond-level accuracy is
certainly not guaranteed. However, note that as of Android 5.1, your
minimum period is one minute (60000ms) — values less than that will be
rounded up to one minute. This minimum period is enforced regardless
of your targetSdkVersion value.
setInexactRepeating() is used for an alarm that should occur on a general
frequency, such as every 15 minutes. In addition to specifying the time of the
first event, you also specify a general frequency, as one of the following
public static data members on AlarmManager:

	INTERVAL_FIFTEEN_MINUTES

	INTERVAL_HALF_HOUR

	INTERVAL_HOUR

	INTERVAL_HALF_DAY

	INTERVAL_DAY

Android guarantees that it will give your app control somewhere during that time
window, but precisely when within that window is up to Android.
Note that on Android 4.4 and above, for apps with their targetSdkVersion set
to be 19 or higher, setRepeating() behaves identically to setInexactRepeating() –
in other words, all repeating alarms are inexact. The only way to get exact
repeating would be to use setExact() and to re-schedule the event yourself, rather
than relying upon Android doing that for you automatically. Ideally, you use
setInexactRepeating(), to help extend battery life.
And, note that on Android 5.1 and higher, alarms must be set to occur
at least 5 seconds in the future from now. You cannot trigger an alarm to
occur in the future sooner than 5 seconds.
The Four Types of Alarms
In the above sample, we used ELAPSED_REALTIME as the type of alarm. There
are three others:

	ELAPSED_REALTIME_WAKEUP

	RTC

	RTC_WAKEUP

Those with _WAKEUP at the end will wake up a device out of sleep mode
to execute the PendingIntent — otherwise, the alarm will wait until the
device is awake for other means.
Those that begin with ELAPSED_REALTIME expect the second parameter
to setRepeating() to be a timestamp based upon SystemClock.elapsedRealtime().
Those that begin with RTC, however, expect the second parameter to be
based upon System.currentTimeMillis(), the classic Java “what is the
current time in milliseconds since the Unix epoch” method.
When to Schedule Alarms
The sample, though, begs a bit of a question: when are we supposed to
set up these alarms? The sample just does so in onCreate(), but is that
sufficient?
For most apps, the answer is “no”. Here are the three times that you will
need to ensure that your alarms get scheduled:
When User First Runs Your App
When your app is first installed, none of your alarms are set up, because
your code has not yet run to schedule them. There is no means of setting
up alarm information in the manifest or something that might automatically
kick in.
Hence, you will need to schedule your alarms when the user first runs
your app.
As a simplifying measure — and to cover another scenario outlined
below — you might be able to simply get away with scheduling your alarms
every time the user runs your app, as the sample app shown above does.
This works for one-shot alarms (using set())
and for alarms with short polling periods,
and it works because setting up a new alarm schedule for an equivalent
PendingIntent will replace the old schedule. However, for repeating
alarms with slower polling periods, it may excessively delay your events.
For example, suppose you have an alarm set to go off every 24 hours,
and the user happens to run your app 5 minutes before the next event was
to occur — if you blindly reschedule the alarm, instead of going off in
5 minutes, it might not go off for another 24 hours.
There are more sophisticated approaches for this (e.g., using a
SharedPreferences value to determine if your app has run before or not).
On Boot
The alarm schedule for alarm manager is wiped clean on a reboot, unlike
cron or Windows Scheduled Tasks. Hence, you will need to get control
at boot time to re-establish your alarms, if you want them to start up again
after a reboot. We saw how to get control at boot time, via an
ACTION_BOOT_COMPLETED BroadcastReceiver, back in
the chapter on broadcasts.
After a Force-Stop
There are other events that could cause your alarms to become unscheduled.
The best example of this is if the user goes into the Settings app and
presses “Force Stop” for your app. At this point, on Android 3.1+, nothing
of your code will run again, until the user manually launches some activity
of yours.
If you are rescheduling your alarms every time your app runs, this will
be corrected the next time the user launches your app. And, by definition,
you cannot do anything until the user runs one of your activities, anyway.
If you are trying to avoid rescheduling your alarms on each run, though,
you have a couple of options.
One is to record the time when your alarm-triggered events occur, each time
they occur, such as by updating a SharedPreference. When the user launches
one of your activities, you check the last-event time — if it was too long
ago (e.g., well over your polling period), you assume that the alarm had been
canceled, and you reschedule it.
Another is to rely on FLAG_NO_CREATE. You can pass this as a parameter
to any of the PendingIntent factory methods, to indicate that Android should
only return an existing PendingIntent if there is one, and not create one
if there is not:

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, PendingIntent.FLAG_NO_CREATE);

If the PendingIntent is null, your alarm has been canceled — otherwise,
Android would already have such a PendingIntent and would have returned it
to you. This feels a bit like a side-effect, so we cannot rule out the
possibility that, in future versions of Android, this technique could result
in false positives (null PendingIntent despite the scheduled alarm) or
false negatives (non-null PendingIntent despite a canceled alarm).
Archetype: Scheduled Service Polling
The classic AlarmManager scenario is where you want to do a chunk of
work, in the background, on a periodic basis. This is fairly simple to set
up in Android, though perhaps not quite as simple as you might think.
Back to the Main Application Thread
When an AlarmManager-triggered event occurs, it is very likely that your
application is not running. This means that the PendingIntent is going to
have to start up your process to have you do some work. Since everything that
a PendingIntent can do intrinsically gives you control on your main application
thread, you are going to have to determine how you want to move your work
to a background thread.
One approach is to use a PendingIntent created by getService(), and have
it send a command to an IntentService that you write. Since IntentService
does its work on a background thread, you can take whatever time you need,
without interfering with the behavior of the main application thread. This
is particularly important when:

	The AlarmManager-triggered event happens to occur when the user happens
to have one of your activities in the foreground, so you do not freeze the
UI, or

	You want the same business logic to be executed on demand by the user,
such as via an action bar item, as once again you do not want to freeze the UI

Problem: Keeping the Device Awake
However, this approach has a flaw: the device might fall asleep before our service can
complete its work, if we woke it up out of sleep mode to process the event.
For a _WAKEUP-style alarm, Android makes precisely one guarantee: if
the PendingIntent supplied to AlarmManager for the alarm is one created
by getBroadcast() to send a broadcast Intent, Android will ensure that
the device will stay awake long enough for onReceive() to be completed.
Anything beyond that is not guaranteed.
While sending the command directly to the service
via a getService() PendingIntent is straightforward, Android makes no guarantees about
what happens after AlarmManager wakes up the device, and the device could
fall back asleep before our IntentService completes processing of
onHandleIntent().
So, we have two problems:

	How do we ensure that the service itself keeps the device awake while it
is doing its work?

	How do we ensure that we can actually get that service started, without
the device falling asleep after we return from onReceive()?

Return of the JobIntentService
JobIntentService neatly solves both of those problems. It takes responsibility
for keeping the device awake, both to set up the work, and to process the work.
So, what we need to do is put our business logic in a JobIntentService, then
use a broadcast PendingIntent to trigger enqueuing work to that JobIntentService.
JobIntentService will take it from there.
Examining a Sample
An incrementally-less-trivial sample app using AlarmManager for the
scheduled service pattern can be found in
AlarmManager/Scheduled.
This application consists of three components: a BroadcastReceiver, a
JobIntentService, and an Activity.
This sample demonstrates scheduling your alarms at two points in your app:

	At boot time

	When the user runs the activity

For the boot-time scenario, we need a BroadcastReceiver set up to receive
the ACTION_BOOT_COMPLETED broadcast, with the appropriate permission. So,
we set that up, along with our other components, in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.wakesvc"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.WAKE_LOCK" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name="ScheduledServiceDemoActivity"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <receiver android:name="PollReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>

 <service
 android:name="ScheduledService"
 android:permission="android.permission.BIND_JOB_SERVICE" />
 </application>

</manifest>

(from AlarmManager/Scheduled/app/src/main/AndroidManifest.xml)
The PollReceiver has its onReceive() method, to be called at boot
time, which delegates its work to a scheduleAlarms() static method, so that
logic can also be used by our activity:

package com.commonsware.android.wakesvc;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;

public class PollReceiver extends BroadcastReceiver {
 private static final int PERIOD=900000; // 15 minutes
 private static final int INITIAL_DELAY=5000; // 5 seconds

 @Override
 public void onReceive(Context ctxt, Intent i) {
 if (i.getAction() == null) {
 ScheduledService.enqueueWork(ctxt);
 }
 else {
 scheduleAlarms(ctxt);
 }
 }

 static void scheduleAlarms(Context ctxt) {
 AlarmManager mgr=
 (AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
 Intent i=new Intent(ctxt, PollReceiver.class);
 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

 mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime() + INITIAL_DELAY,
 PERIOD, pi);

 }
}

(from AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/wakesvc/PollReceiver.java)
The scheduleAlarms() method retrieves our AlarmManager, creates a
PendingIntent designed to call startService() on our ScheduledService,
and schedules an exact repeating alarm to have that command be sent every
five seconds.
The ScheduledService itself is the epitome of “trivial”, simply logging a
message to Logcat on each command:

package com.commonsware.android.wakesvc;

import android.content.Context;
import android.content.Intent;
import android.support.v4.app.JobIntentService;
import android.util.Log;

public class ScheduledService extends JobIntentService {
 private static final int UNIQUE_JOB_ID=1337;

 static void enqueueWork(Context ctxt) {
 enqueueWork(ctxt, ScheduledService.class, UNIQUE_JOB_ID,
 new Intent(ctxt, ScheduledService.class));
 }

 @Override
 public void onHandleWork(Intent i) {
 Log.d(getClass().getSimpleName(), "I ran!");
 }
}

(from AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/wakesvc/ScheduledService.java)
That being said, because this is an JobIntentService, we could do much more
in onHandleWork() and not worry about tying up the main application thread.
Our activity — ScheduledServiceDemoActivity — is set up with Theme.Translucent.NoTitleBar
in the manifest, never calls setContentView(), and calls finish() right
from onCreate(). As a result, it has no UI. It simply calls scheduleAlarms()
and raises a Toast to indicate that the alarms are indeed scheduled:

package com.commonsware.android.wakesvc;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Toast;

public class ScheduledServiceDemoActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 PollReceiver.scheduleAlarms(this);

 Toast.makeText(this, R.string.alarms_scheduled, Toast.LENGTH_LONG)
 .show();
 finish();
 }
}

(from AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/wakesvc/ScheduledServiceDemoActivity.java)
On Android 3.1+, we also need this activity to move our application out of
the stopped state and allow that boot-time BroadcastReceiver to work.
If you run this app on a device or emulator, after seeing the initial Toast, messages
will appear in Logcat every 15 minutes, even though you have no activity
running.
How the Magic Works
A JobIntentService keeps the device awake by using a WakeLock. A
WakeLock allows a “userland” (e.g., Android SDK) app to tell the Linux
kernel at the heart of Android to keep the device awake, with the CPU powered
on, indefinitely, until the WakeLock is released.
This can be a wee bit dangerous, as you can accidentally keep the device
awake much longer than you need to. That is why using existing code like
JobIntentService can be useful — to use more-tested code rather than
rolling your own.
Also note that to request a WakeLock — from your code or code from a library –
you need to request the WAKE_LOCK permission, as we saw in the manifest:

 <uses-permission android:name="android.permission.WAKE_LOCK" />

(from AlarmManager/Scheduled/app/src/main/AndroidManifest.xml)
Warning: Not All Android Devices Play Nice
Some Android devices take liberties with the way AlarmManager works, in ways
that may affect your applications.
One example of this today is the SONY Xperia Z. It has a
“STAMINA mode”
that the user
can toggle on via the “Power Management” screen in Settings. This mode will be
entered when the device’s screen turns off, if the device is not plugged in and
charging. The user can add apps to a whitelist (“Apps active in standby”),
where STAMINA mode does not affect those apps’ behavior.
_WAKEUP style alarms do not wake up the device when it
is in STAMINA mode. The behavior is a bit reminiscent of non-_WAKEUP
alarms. Alarms that occur while the device is asleep are suppressed,
and you get one invocation of your PendingIntent at the point
the device wakes back up. At that point, the schedule continues as
though the alarms had been going off all along. Apps on the whitelist
are unaffected.
Mostly, you need to be aware of this from a support standpoint.
If Xperia Z owners complain that your app behaves oddly, and you
determine that your alarms are not going off, see if they have
STAMINA mode on, and if they do, ask them to add your app to the
whitelist.
If you are using “if my alarm has not gone off in X amount of time,
the user perhaps force-stopped me, so let me reschedule my alarms”
logic, you should be OK. Before one of your activities gets a chance
to make that check, your post-wakeup alarm should have been invoked,
so you can update your event log and last-run timestamp. Hence,
you should not be tripped up by STAMINA and accidentally
reschedule your alarms (potentially causing duplicates, depending
upon your alarm-scheduling logic).
Other devices with similar characteristics include Sony’s Xperia P,
Xperia U, Xperia sola, and Xperia go.
Debugging Alarms
If you are encountering issues with your alarms, the first thing to do is
to ensure that the alarm schedule in AlarmManager is what you expect it
to be. To do that, run adb shell dumpsys alarm from a command prompt.
This will dump a report of all the scheduled alarms, including when they are
set to be invoked next (with portions replaced by vertical ellipses to keep
this listing from being too long):

Current Alarm Manager state:

 Realtime wakeup (now=2013-03-09 07:49:51):
 RTC_WAKEUP #11: Alarm{429c6028 type 0 com.android.providers.calendar}
 type=0 when=+21h40m9s528ms repeatInterval=0 count=0
 operation=PendingIntent{42ec2f40: PendingIntentRecord{434fb2f8 com.android.providers.calendar broadcastIntent}}
 RTC_WAKEUP #10: Alarm{42e17e28 type 0 com.google.android.gms}
 type=0 when=+18h10m8s480ms repeatInterval=86400000 count=1
 operation=PendingIntent{42e15d20: PendingIntentRecord{42e0cc28 com.google.android.gms startService}}
.
.
.

 Elapsed realtime wakeup (now=+6d15h50m2s672ms):
 ELAPSED_WAKEUP #16: Alarm{42cf26f0 type 2 com.google.android.apps.maps}
 type=2 when=+999d23h59m59s999ms repeatInterval=0 count=0
 operation=PendingIntent{42de2dc0: PendingIntentRecord{42ac73e8 com.google.android.apps.maps broadcastIntent}}
 ELAPSED_WAKEUP #15: Alarm{42c4a638 type 2 com.google.android.apps.maps}
 type=2 when=+1d18h10m8s894ms repeatInterval=0 count=0
 operation=PendingIntent{42ab50c8: PendingIntentRecord{42e2c020 com.google.android.apps.maps broadcastIntent}}
.
.
.

 Broadcast ref count: 0

 Top Alarms:
 +14m24s97ms running, 0 wakeups, 9567 alarms: android
 act=android.intent.action.TIME_TICK
 +1m15s72ms running, 4890 wakeups, 4890 alarms: com.android.phone
 act=com.android.server.sip.SipWakeupTimer@42626830
 +1m13s465ms running, 0 wakeups, 320 alarms: android
 act=com.android.server.action.NETWORK_STATS_POLL
 +45s803ms running, 0 wakeups, 639 alarms: com.google.android.deskclock
 act=com.android.deskclock.ON_QUARTER_HOUR
 +42s830ms running, 0 wakeups, 19 alarms: com.android.phone
 act=com.android.phone.UPDATE_CALLER_INFO_CACHE cmp={com.android.phone/com.android.phone.CallerInfoCacheUpdateReceiver}
 +35s479ms running, 0 wakeups, 954 alarms: android
 act=com.android.server.ThrottleManager.action.POLL
 +14s28ms running, 1609 wakeups, 1609 alarms: com.android.phone
 act=com.android.internal.telephony.gprs-data-stall
 +11s98ms running, 171 wakeups, 171 alarms: com.android.providers.calendar
 act=com.android.providers.calendar.intent.CalendarProvider2
 +8s380ms running, 893 wakeups, 893 alarms: android
 act=android.content.syncmanager.SYNC_ALARM
 +8s353ms running, 569 wakeups, 569 alarms: com.google.android.apps.maps
 cmp={com.google.android.apps.maps/com.google.googlenav.prefetch.android.PrefetcherService}

 Alarm Stats:
 com.google.android.location +120ms running, 12 wakeups:
 +73ms 7 wakes 7 alarms: act=com.google.android.location.nlp.ALARM_WAKEUP_CACHE_UPDATER
 +47ms 5 wakes 5 alarms: act=com.google.android.location.nlp.ALARM_WAKEUP_LOCATOR
 android +15m32s920ms running, 1347 wakeups:
 +14m24s97ms 0 wakes 9567 alarms: act=android.intent.action.TIME_TICK
 +1m13s465ms 0 wakes 320 alarms: act=com.android.server.action.NETWORK_STATS_POLL
 +35s479ms 0 wakes 954 alarms: act=com.android.server.ThrottleManager.action.POLL
 +8s380ms 893 wakes 893 alarms: act=android.content.syncmanager.SYNC_ALARM
 +7s734ms 159 wakes 159 alarms: act=android.appwidget.action.APPWIDGET_UPDATE cmp={com.guywmustang.silentwidget/com.guywmustang.silentwidgetlib.SilentWidgetProvider}
 +1s144ms 151 wakes 151 alarms: act=android.app.backup.intent.RUN
 +922ms 0 wakes 6 alarms: act=android.intent.action.DATE_CHANGED
 +479ms 66 wakes 66 alarms: act=com.android.server.WifiManager.action.DEVICE_IDLE
 +383ms 56 wakes 56 alarms: act=com.android.server.WifiManager.action.DELAYED_DRIVER_STOP
 +101ms 14 wakes 14 alarms: act=com.android.server.action.UPDATE_TWILIGHT_STATE
 +100ms 7 wakes 7 alarms: act=com.android.internal.policy.impl.PhoneWindowManager.DELAYED_KEYGUARD
 +9ms 1 wakes 1 alarms: act=android.net.wifi.DHCP_RENEW
 +3ms 0 wakes 1 alarms: act=com.android.server.NetworkTimeUpdateService.action.POLL
 com.google.android.apps.maps +14s742ms running, 911 wakeups:
 +8s353ms 569 wakes 569 alarms: cmp={com.google.android.apps.maps/com.google.googlenav.prefetch.android.PrefetcherService}
 +2s211ms 85 wakes 85 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_LOCATOR
 +1s206ms 103 wakes 103 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_SENSOR_UPLOADER
 +807ms 2 wakes 2 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_BURST_COLLECTION_TRIGGER
 +759ms 56 wakes 56 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_S_COLLECTOR
 +566ms 10 wakes 10 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_CACHE_UPDATER
 +385ms 39 wakes 39 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_IN_OUT_DOOR_COLLECTOR
 +308ms 31 wakes 31 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_ACTIVE_COLLECTOR
 +77ms 8 wakes 8 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_ACTIVITY_DETECTION
 +42ms 4 wakes 4 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_PASSIVE_COLLECTOR
 +28ms 4 wakes 4 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_CALIBRATION_COLLECTOR
.
.
.

You are given details of each outstanding alarm, including the all-important
when value indicating the time the alarm should be invoked next, if it is not
canceled first (e.g., when=+5d15h10m7s782ms), along with the package requesting
the alarm. You can use this to identify your app’s alarms and see when they should
be invoked next.
You are also given:

	Per-app details about how frequently their alarms have gone off, which can be
useful for battery impact analysis

	A list of “top alarms” by number of occurrences, also for device performance
analysis

Note, though, that for inexact alarms, the when value may not indicate when the
event will actually occur.
Android 6.0 and the War on Background Processing
Android 6.0 introduced some changes to the behavior of AlarmManager
that significantly affect its use on Android 6.0+ devices. These changes
also affect JobScheduler, and so this topic is covered in grand detail
at the end of the JobScheduler chapter.
Android 7.0 and OnAlarmListener
Android 7.0 introduced a curious variant of the existing set(),
setExact(), and setWindow() methods. Rather than taking a PendingIntent,
they take an implementation of OnAlarmListener. That listener’s
onAlarm() method then gets called when the alarm is scheduled to go
off.
These methods are only useful if the app has a process running and that
process is likely to be running when the time for the alarm is to
occur. If the app’s process is terminated after the OnAlarmListener
is registered, the alarms are canceled, as the OnAlarmListener no
longer exists.
For RTC and ELAPSED_REALTIME alarms, it is unclear what value there
is in these AlarmManager methods over using some other in-process
timing mechanism, such as Java’s ScheduledExecutorService.
However, for RTC_WAKEUP and ELAPSED_REALTIME_WAKEUP alarms, the
new OnAlarmListener methods may be useful, if you expect the device
to be asleep but the process still running, and you want to get control
to go do something. However, they still only make sense if you only
want to get control if you already have a process running, and if
your process goes away you do not mind the alarms going away.
There may be a set of apps that could use this. The author cannot quite
figure out what such an app would be.
To illustrate the use of OnAlarmListener, we can turn to the
AlarmManager/Listener
sample app. This is reminiscent of the AlarmManager/Simple app shown
in the beginning of this chapter, where we want an activity to get
control every five seconds to show a Toast However, in this case,
rather than use setRepeating() and createPendingResult(), we will
use setWindow() and OnAlarmListener:

package com.commonsware.android.alarm;

import android.app.Activity;
import android.app.AlarmManager;
import android.os.Bundle;
import android.os.SystemClock;
import android.util.Log;
import android.widget.Toast;

public class SimpleAlarmDemoActivity extends Activity
 implements AlarmManager.OnAlarmListener {
 private static final int PERIOD=5000;
 private static final int WINDOW=10000;
 private AlarmManager mgr=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr=getSystemService(AlarmManager.class);
 schedule();
 }

 @Override
 public void onDestroy() {
 mgr.cancel(this);

 super.onDestroy();
 }

 @Override
 public void onAlarm() {
 Toast.makeText(this, R.string.toast, Toast.LENGTH_SHORT).show();
 Log.d(getClass().getSimpleName(), "I ran!");
 schedule();
 }

 private void schedule() {
 mgr.setWindow(AlarmManager.ELAPSED_REALTIME,
 SystemClock.elapsedRealtime()+PERIOD, WINDOW,
 getClass().getSimpleName(), this, null);
 }
}

(from AlarmManager/Listener/app/src/main/java/com/commonsware/android/alarm/SimpleAlarmDemoActivity.java)
onCreate() gets an AlarmManager as before. However, since this
version of the app has a minSdkVersion of 24, we can use
the version of getSystemService() that takes the desired system service
Class object as a parameter and returns the system service instance
in the proper data type.
Then, onCreate() calls schedule(), which in turn calls setWindow().
The version of setWindow() that we are using takes:

	the type of alarm (ELAPSED_REALTIME)

	the time the alarm event should fire first (PERIOD milliseconds from now)

	the window in which we are willing to allow Android to “flex” the actual
time of the event, to perhaps save battery

	a String representing some tag to be used for battery usage logging
purposes

	our OnAlarmListener implementation, which in this case happens to be
the activity itself

	
null, indicating that we want onAlarm() of the OnAlarmListener
to be called on the main application thread

The alternative to null for the latter parameter would be a Handler
from a HandlerThread, indicating that onAlarm() should be called
on that thread.
Eventually, onAlarm() is called, where we show a Toast, log a message
to Logcat,… and call schedule() again, so our alarm repeats.
Later, when the activity is destroyed, we call cancel(), passing in
our OnAlarmListener, so all alarms tied to that listener will be discontinued.
PowerManager and WakeLocks
There are going to be times when you want the device to keep running,
even though it ordinarily would go into a sleep mode, with the CPU
powered down and the screen turned off. Sometimes, that will be based
upon user interactions, or the lack thereof, such as keeping the screen
on while playing back a video. Sometimes, that will be to allow background
scheduled work to run to completion, as was introduced in the chapter
on AlarmManager.
This chapter looks a bit more at the details of this sort of power
management, including coverage of how AlarmManager works.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on AlarmManager.
Keeping the Screen On, UI-Style
If your objective is to keep the screen (and CPU) on while your activity
is in the foreground, the simplest solution is to add
android:keepScreenOn="true" to something in the activity’s layout.
So long as that widget or container is visible, the screen will stay
on.
If you wish to do this conditionally, setKeepScreenOn() allows you
to toggle this setting at runtime.
Once your activity is no longer in the foreground, or the widget or
container is no longer visible, the effect lapses, and screen operation
returns to normal.
The Role of the WakeLock
Most of the time in Android, you are developing code that will run while
the user is actually using the device. Activities, for example, only really
make sense when the device is fully awake and the user is tapping on the
screen or keyboard.
Particularly with scheduled background tasks, though, you need to bear in
mind that the device will eventually “go to sleep”. In full sleep mode, the
display, main CPU, and keyboard are all powered off, to maximize battery
life. Only on a low-level system event, like an incoming phone call, will
anything wake up the device.
Another thing that will partially wake up the phone is an Intent raised by
the AlarmManager. So long as broadcast receivers are processing that Intent,
the AlarmManager ensures the CPU will be running (though the screen and
keyboard are still off). Once the broadcast receivers are done, the
AlarmManager lets the device go back to sleep.
You can achieve the same effect in your code via a WakeLock.
One of the changes that the core Android team made to the Linux kernel was
to introduce the concept of the “wakelock”. In simple terms, a wakelock allows
a Linux userland application — such as our Android SDK apps — to control
whether or not the CPU can be powered down as part of a sleep mode. While
a wakelock is in force, the CPU will remain on and processing instructions
from the processes and threads that are on the device.
From the SDK, to access a wakelock, you use a WakeLock object,
obtained from the PowerManager system service. When you call acquire() on that
WakeLock, the CPU will remain on; when you call release() on that WakeLock,
the CPU can fall back asleep, if there are no other outstanding WakeLocks from
SDK apps or the operating system itself.
There are four types of WakeLock objects. All will keep the CPU on. They vary
in their effects on the screen (leave it off, have it display with dim
backlight, have it display with normal backlight) and any physical keys (ignore
or accept). You will pass a flag into newWakeLock() on the PowerManager
system service to indicate what type of WakeLock you want. The most common
is the PARTIAL_WAKE_LOCK, which keeps the CPU on but leaves the screen and keyboard
off — ideal for periodic background work triggered by an AlarmManager event.
What WakefulIntentService Does
For a _WAKEUP alarm, the AlarmManager will arrange for the device
to stay awake, via a WakeLock, for as long as the
BroadcastReceiver’s onReceive() method is executing. For some
situations, that may be all that is needed. However, onReceive() is
called on the main application thread, and Android will kill off the
receiver if it takes too long.
Your natural inclination in this case is to have the
BroadcastReceiver arrange for a Service to do the long-running work
on a background thread, since BroadcastReceiver objects should not be
starting their own threads. Perhaps you would use an IntentService,
which packages up this “start a Service to do some work in the
background” pattern. And, given the preceding section, you might try
acquiring a partial WakeLock at the beginning of the work and release
it at the end of the work, so the CPU will keep running while your
IntentService does its thing.
This strategy will work… some of the time.
The problem is that there is a gap in WakeLock coverage, as depicted
in the following diagram:

[image: The WakeLock Gap]

Figure 823: The WakeLock Gap
The BroadcastReceiver will call startService() to send work to the
IntentService, but that service will not start up until after
onReceive() ends. As a result, there is a window of time between the
end of onReceive() and when your IntentService can acquire its own
WakeLock. During that window, the device might fall back asleep.
Sometimes it will, sometimes it will not.
What you need to do, instead, is arrange for overlapping WakeLock
instances. You need to acquire a WakeLock in your
BroadcastReceiver, during the onReceive() execution, and hold onto
that WakeLock until the work is completed by the IntentService:

[image: The WakeLock Overlap]

Figure 824: The WakeLock Overlap
Then you are assured that the device will stay awake as long as the
work remains to be done.
The WakefulIntentService recipe described in its chapter does
not have you manage your own WakeLock. That is because
WakefulIntentService handles it for you. One reason why
WakefulIntentService exists is to manage that WakeLock, because
WakeLocks suffer from one major problem: they are not Parcelable,
and therefore cannot be passed in an Intent extra. Hence, for our
BroadcastReceiver and our WakefulIntentService to use the same
WakeLock, they have to be shared via a static data member… which is
icky. WakefulIntentService is designed to hide this icky part from
you, so you do not have to worry about it.
WakefulIntentService also handles various edge and corner cases, such
as:

	What happens if Android elects to get rid of your process due to low
memory conditions?

	What happens if your doWakefulWork() crashes, so we do not leak the
acquired WakeLock?

	What if your UI also sends commands to the WakefulIntentService, or
your processing takes longer than your polling period in AlarmManager, so
that we have more than one piece of work outstanding at a point in time?

The one requirement related to a WakeLock that WakefulIntentService
imposes upon you is the WAKE_LOCK permission. Any code in your process
that is directly manipulating WakeLock objects needs this permission,
even if that code is from a third-party JAR like WakefulIntentService.
JobScheduler
AlarmManager was our original solution for doing work on a periodic basis.
However, AlarmManager can readily be misused, in ways that impact the
battery — this is why API Level 19 put renewed emphasis on “inexact” alarm
schedules. Worse, AlarmManager will give us control at points in time that
may be useless to us, such as giving us control when there is no Internet
access, when the point of the scheduled work is to transfer some data over
the Internet.
Android 5.0 introduced JobScheduler, which offers a more sophisticated
API for handling these sorts of scenarios. This chapter will explore how to
set up JobScheduler and use it for one-off and periodic work.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on AlarmManager. Also, you should
have read the chapter on PowerManager and wakelocks.
The Limitations of AlarmManager
AlarmManager does its job, and frequently does it well. However, it is far
from perfect:

	It does not persist its alarm schedule across reboots, forcing us to implement
an ACTION_BOOT_COMPLETED BroadcastReceiver to re-establish our alarms

	It does not keep the device awake after waking it up with a _WAKEUP
alarm, forcing us to use tools like WakefulBroadcastReceiver to make sure
that we can get our work done without the device falling back asleep

	It gives us control even if the work we want to do is not possible, such as
wanting to download material from the Internet but being woken up at points
in time when we lack a working Internet connection (e.g., a WiFi-only tablet in
a location for which it does not recognize any access points)

	In cases where the criteria we want cannot be met, we cannot readily implement
any sort of back-off policy, except by doing the calculations ourselves and perhaps
abandoning the convenient “repeating” API outright

And so on. AlarmManager is nice, but it would be better to have another solution.
Enter the JobScheduler
JobScheduler was designed to handle those four problems outlined above:

	It persists its roster of jobs and will re-establish them automatically after
a reboot. Note, though, that you still have to hold the RECEIVE_BOOT_COMPLETED
permission for this to work. Also note that you do not have to have jobs
be persisted — this is an opt-in capability of JobScheduler.

	It handles “wakefulness” for us, via its own WakeLock, so we do not have to
worry about it ourselves.

	It offers an API where we can specify criteria to be satisfied before we
should be given control, notably a criteria indicating that we need a working
network connection.

	If our criteria cannot be met, JobScheduler implements a configurable back-off
policy, so we can slow down our attempts to get control when those attempts
are regularly failing.

Employing JobScheduler
The
JobScheduler/PowerHungry
sample project demonstrates the use of JobScheduler, by way of comparing its
use to that of AlarmManager.
The UI for JobScheduler allows you to pick from three types of event schedules:
exact alarm, inexact alarm, and JobScheduler. You can also choose from one of
four polling periods: 1 minute, 15 minutes, 30 minutes, and 60 minutes:

[image: PowerHungry Demo, As Initially Launched]

Figure 825: PowerHungry Demo, As Initially Launched
A Switch allows you to determine whether you
are simply getting control at those points in time to just log to Logcat, or whether
you are going to try to do some work at those points in time. Specifically, the “work”
is to download a file, using HttpUrlConnection.
The bottom Switch toggles on and off the event schedules. When the event schedules
are toggled on, you cannot manipulate the rest of the UI — you need to turn off the
events in order to change the event configuration.
Note that none of this information is persisted. This is a lightweight demo; it is
expected that you are keeping this UI in the foreground while a test is running.
Defining and Scheduling the Job
The “job” is defined as an instance of JobInfo, typically created using
an instance of JobInfo.Builder to configure a JobInfo using a fluent
builder-style API. We teach the JobInfo the work to do and when to do it,
then use a JobScheduler to actually schedule the job.
In the sample app, this work is mostly accomplished via a manageJobScheduler()
method on the MainActivity class:

 private void manageJobScheduler(boolean start) {
 if (start) {
 JobInfo.Builder b=new JobInfo.Builder(JOB_ID,
 new ComponentName(this, DemoJobService.class));
 PersistableBundle pb=new PersistableBundle();

 if (download.isChecked()) {
 pb.putBoolean(KEY_DOWNLOAD, true);
 b.setExtras(pb).setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY);
 } else {
 b.setRequiredNetworkType(JobInfo.NETWORK_TYPE_NONE);
 }

 b.setPeriodic(getPeriod()).setPersisted(false)
 .setRequiresCharging(false).setRequiresDeviceIdle(true);

 jobs.schedule(b.build());
 }
 else {
 jobs.cancel(JOB_ID);
 }
 }

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)
The start parameter to manageJobScheduler() is driven by the bottom Switch
widget. A start value of true means that we should start up the job; a
value of false means that we should cancel any existing job.
If start is true, we begin by creating a JobInfo.Builder, supplying two
key pieces of data:

	an int that will serve as the job ID, which needs to be unique to our app
but does not have to be unique for the whole device

	a ComponentName identifying the JobService that will actually implement
the work of the job itself

The primary way of passing data from the scheduling code (our activity) and
the job-implementing code (JobService) is by means of a PersistableBundle –
a Bundle-like object that can be persisted to disk. PersistableBundle
was introduced in API Level 21, but at that time it inexplicably lacked
support for boolean values. API Level 22 added getBoolean() and putBoolean() to
PersistableBundle, and this sample project has minSdkVersion of
22 to be able to take advantage of it. If you wanted to use this sample
on API Level 21, you would need to convert the boolean into something
else, such as 0 and 1 int values.
Our PersistableBundle can have more data than just
this one extra, though that is all we need in this case. We attach the
PersistableBundle to the JobInfo via the setExtras() method on the
JobInfo.Builder.
We can also call methods on the JobInfo.Builder to configure the criteria
that should be satisfied before giving us control. In our case, one criterion
that we need is to have a network connection, but only
if we are supposed to be downloading a file. So, we call setRequiredNetworkType()
in either case, indicating that we either want ANY type of network connection
(metered or unmetered) or NONE.
Other criteria-defining methods that we invoke include setRequiresCharging()
(set to false to indicate we want control even if we are on battery) and
setRequiresDeviceIdle() (set to true to indicate that we want control
only if the user is not using it).
In the case of this sample, we want to do this work every so often, based upon
the period chosen by the user in the bottom Spinner and retrieved via the
getPeriod() method. So, we call setPeriodic() on the JobInfo.Builder
to request getting control with that frequency, bearing in mind that this is
merely a hint, not a requirement, and we may get control more or less frequently
than this.
We also call setPersisted(false) to indicate that we do not need for this
job to be persisted, so it will be lost on a reboot. If we instead called
setPersisted(true), the manifest would need to request the
RECEIVE_BOOT_COMPLETED permission to have the job be re-created at boot time.
Finally, we call schedule() on a JobScheduler instance named jobs to
schedule the job.
The jobs data member is populated up in onReady() of the activity, where
onReady() is a callback from the AbstractPermissionActivity:

 jobs=(JobScheduler)getSystemService(JOB_SCHEDULER_SERVICE);

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)
AbstractPermissionActivity, seen elsewhere in this book, handles requesting
the runtime permission for external storage that we are going to need later on.
If the start parameter to manageJobScheduler() is false, we call
cancel() on the JobScheduler, passing in our unique job ID (JOB_ID)
to indicate what job to cancel. Or, we could have called cancelAll(),
which would cancel all jobs scheduled by our application.
Implementing the Job
The work for the job itself is handled by a JobService. This is a
subclass of Service that we, in turn, extend ourselves, overriding
two job-specific callback methods to actually do the work: onStartJob()
and onStopJob().
The JobService in our sample app is DemoJobService:

package com.commonsware.android.job;

import android.app.job.JobParameters;
import android.app.job.JobService;
import android.os.PersistableBundle;
import android.util.Log;

public class DemoJobService extends JobService {
 private volatile Thread job=null;

 @Override
 public boolean onStartJob(JobParameters params) {
 PersistableBundle pb=params.getExtras();

 if (pb.getBoolean(MainActivity.KEY_DOWNLOAD, false)) {
 job=new DownloadThread(params);
 job.start();

 return(true);
 }

 Log.d(getClass().getSimpleName(), "job invoked");

 return(false);
 }

 @Override
 synchronized public boolean onStopJob(JobParameters params) {
 if (job!=null) {
 Log.d(getClass().getSimpleName(), "job interrupted");
 job.interrupt();
 }

 return(false);
 }

 synchronized private void clearJob() {
 job=null;
 }

 private class DownloadThread extends Thread {
 private final JobParameters params;

 DownloadThread(JobParameters params) {
 this.params=params;
 }

 @Override
 public void run() {
 Log.d(getClass().getSimpleName(), "job begins");
 new DownloadJob().run();
 Log.d(getClass().getSimpleName(), "job ends");
 clearJob();
 jobFinished(params, false);
 }
 }
}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/DemoJobService.java)
onStartJob() is passed a JobParameters. This serves both as a
“handle” identifying a particular job invocation and giving us
access to the job ID (getJobId()) and PersistableBundle of
extras (getExtras()) that were
set up by our JobInfo when we scheduled the job.
onStartJob() needs to return true if we have successfully forked
a background thread to do the work, or false if no work needs to be
done. In our case, this is determined by whether or not we want to try
to download a file. In a production-grade app, this may be determined
by whether there is any work to be done (e.g., “do we have entries in
the upload queue?”).
In onStartJob(), we check the PersistableBundle to see if we are
supposed to download a file. If we are, we fork a DownloadThread
to do that work, then return true. Otherwise, we return false.
Because this sample app illustrates the difference in behavior
between JobScheduler and AlarmService, we want to isolate the actual
download-the-file logic into a common implementation that can be used
from either code path. That takes the form of a DownloadJob, which
implements Runnable and does the download work when it is run():

package com.commonsware.android.job;

import android.net.Uri;
import android.os.Environment;
import android.util.Log;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

class DownloadJob implements Runnable {
 static final Uri TO_DOWNLOAD=
 Uri.parse("https://commonsware.com/Android/excerpt.pdf");

 @Override
 public void run() {
 try {
 File root=Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

 root.mkdirs();

 File output=new File(root, TO_DOWNLOAD.getLastPathSegment());

 if (output.exists()) {
 output.delete();
 }

 URL url=new URL(TO_DOWNLOAD.toString());
 HttpURLConnection c=(HttpURLConnection)url.openConnection();

 FileOutputStream fos=new FileOutputStream(output.getPath());
 BufferedOutputStream out=new BufferedOutputStream(fos);

 try {
 InputStream in=c.getInputStream();
 byte[] buffer=new byte[8192];
 int len=0;

 while ((len=in.read(buffer)) >= 0) {
 out.write(buffer, 0, len);
 }

 out.flush();
 }
 finally {
 fos.getFD().sync();
 out.close();
 c.disconnect();
 }
 }
 catch (IOException e2) {
 Log.e("DownloadJob", "Exception in download", e2);
 }
 }
}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/DownloadJob.java)
DownloadThread delegates to DownloadJob to do the actual work.
However, when the work is complete, it then calls jobFinished()
on the DemoJobService. jobFinished(), as the name suggests,
tells the framework that we are finished doing the work associated
with this job. If the job succeeded, we pass false as the second
parameter, to indicate that this job does not need to be rescheduled.
If, on the other hand, we were unable to actually do the work (e.g.,
we cannot connect to the desired server, perhaps due to server
maintenance), we would pass true as the second parameter, to request
that this job be rescheduled to be invoked again shortly, so that we
can retry the operation.
Our onStopJob() method will be called by Android if environmental
conditions have changed and we should stop the background work that
we are doing. For example, we asked to do this work when the device
was idle — if the user picks up the device and starts using it,
we should stop our background work. In this case, if the job thread is still
outstanding, we interrupt() it. onStopJob() should return true if
this job is still needed and should be retried, or false otherwise.
Most short-period periodic jobs should return false, to just worry about the
next job in the next period, and that is what onStopJob() does here.
One-time jobs, or jobs with long periods (e.g., a day), may wish to
return true to ensure that they will get another chance to do the
desired work. We will cover more about this issue
later in this chapter.
Wiring in the Job Service
Since a JobService is a Service, we need the corresponding <service>
element in the manifest. For a JobService, the <service> element is
perfectly normal… with one exception:

 <service
 android:name=".DemoJobService"
 android:permission="android.permission.BIND_JOB_SERVICE" />

(from JobScheduler/PowerHungry/app/src/main/AndroidManifest.xml)
You need to defend the service with the BIND_JOB_SERVICE permission.
This only allows code that holds the BIND_JOB_SERVICE permission to start
or bind to this service, which should limit it to the OS itself.
The Rest of the Sample
As noted earlier, the UI for our activity is a pair of Spinner widgets,
along with a pair of Switch widgets:

<?xml version="1.0" encoding="utf-8"?>

<GridLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="8dp"
 android:useDefaultMargins="true">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/type_label"
 android:layout_row="0"
 android:layout_column="0"/>

 <Spinner
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/type"
 android:layout_row="0"
 android:layout_column="1"/>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/period_label"
 android:layout_row="1"
 android:layout_column="0"/>

 <Spinner
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/period"
 android:layout_row="1"
 android:layout_column="1"/>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/download_label"
 android:layout_row="2"
 android:layout_column="0"/>

 <Switch
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/download"
 android:layout_row="2"
 android:layout_column="1"/>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/scheduled_label"
 android:layout_row="3"
 android:layout_column="0"/>

 <Switch
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/scheduled"
 android:layout_row="3"
 android:layout_column="1"/>
</GridLayout>

(from JobScheduler/PowerHungry/app/src/main/res/layout/main.xml)
onReady() of MainActivity sets up the UI, including populating the two
Spinner widgets based on <string-array> resources and hooking up the activity
to respond to changes in the checked state of the scheduled Switch widget:

 @SuppressWarnings("ResourceType")
 @Override
 public void onReady(Bundle savedInstanceState) {
 setContentView(R.layout.main);
 type=findViewById(R.id.type);

 ArrayAdapter<String> types=
 new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 getResources().getStringArray(R.array.types));

 types.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 type.setAdapter(types);

 period=findViewById(R.id.period);

 ArrayAdapter<String> periods=
 new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 getResources().getStringArray(R.array.periods));

 periods.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 period.setAdapter(periods);

 download=findViewById(R.id.download);
 scheduled=findViewById(R.id.scheduled);
 scheduled.setOnCheckedChangeListener(this);

 alarms=(AlarmManager)getSystemService(ALARM_SERVICE);
 jobs=(JobScheduler)getSystemService(JOB_SCHEDULER_SERVICE);
 }

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)
When the user toggles the scheduled Switch widget, we examine the type
Spinner and route control to a method dedicated for handling that particular
type of periodic request, such as the manageJobScheduler() method we saw
earlier in this chapter:

 private void manageJobScheduler(boolean start) {
 if (start) {
 JobInfo.Builder b=new JobInfo.Builder(JOB_ID,
 new ComponentName(this, DemoJobService.class));
 PersistableBundle pb=new PersistableBundle();

 if (download.isChecked()) {
 pb.putBoolean(KEY_DOWNLOAD, true);
 b.setExtras(pb).setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY);
 } else {
 b.setRequiredNetworkType(JobInfo.NETWORK_TYPE_NONE);
 }

 b.setPeriodic(getPeriod()).setPersisted(false)
 .setRequiresCharging(false).setRequiresDeviceIdle(true);

 jobs.schedule(b.build());
 }
 else {
 jobs.cancel(JOB_ID);
 }
 }

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)
Our onCheckedChanged() for the schedule Switch also calls a toggleWidgets()
method that enables or disables the other widgets, depending upon whether the
schedule Switch is checked or unchecked:

 private void toggleWidgets(boolean enable) {
 type.setEnabled(enable);
 period.setEnabled(enable);
 download.setEnabled(enable);
 }

 private void manageExact(boolean start) {
 if (start) {
 long period=getPeriod();

 PollReceiver.scheduleExactAlarm(this, alarms, period,
 download.isChecked());
 }
 else {
 PollReceiver.cancelAlarm(this, alarms);
 }
 }

 private void manageInexact(boolean start) {
 if (start) {
 long period=getPeriod();

 PollReceiver.scheduleInexactAlarm(this, alarms, period,
 download.isChecked());
 }
 else {
 PollReceiver.cancelAlarm(this, alarms);
 }
 }

 private void manageJobScheduler(boolean start) {
 if (start) {
 JobInfo.Builder b=new JobInfo.Builder(JOB_ID,
 new ComponentName(this, DemoJobService.class));
 PersistableBundle pb=new PersistableBundle();

 if (download.isChecked()) {
 pb.putBoolean(KEY_DOWNLOAD, true);
 b.setExtras(pb).setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY);
 } else {
 b.setRequiredNetworkType(JobInfo.NETWORK_TYPE_NONE);
 }

 b.setPeriodic(getPeriod()).setPersisted(false)
 .setRequiresCharging(false).setRequiresDeviceIdle(true);

 jobs.schedule(b.build());
 }
 else {
 jobs.cancel(JOB_ID);
 }
 }

 private long getPeriod() {
 return(PERIODS[period.getSelectedItemPosition()]);
 }
}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)
If the user had chosen an exact alarm, onCheckedChanged() routes control
to manageExact():

 private void manageExact(boolean start) {
 if (start) {
 long period=getPeriod();

 PollReceiver.scheduleExactAlarm(this, alarms, period,
 download.isChecked());
 }
 else {
 PollReceiver.cancelAlarm(this, alarms);
 }
 }

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)
It, in turn, routes control over to a PollReceiver, a BroadcastReceiver that is
set up for handling our alarms:

package com.commonsware.android.job;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;

public class PollReceiver extends BroadcastReceiver {
 static final String EXTRA_PERIOD="period";
 static final String EXTRA_IS_DOWNLOAD="isDownload";

 @Override
 public void onReceive(Context ctxt, Intent i) {
 boolean isDownload=i.getBooleanExtra(EXTRA_IS_DOWNLOAD, false);

 DemoScheduledService.enqueueWork(ctxt,
 new Intent(ctxt, DemoScheduledService.class)
 .putExtra(EXTRA_IS_DOWNLOAD, isDownload));

 long period=i.getLongExtra(EXTRA_PERIOD, -1);

 if (period>0) {
 scheduleExactAlarm(ctxt,
 (AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE),
 period, isDownload);
 }
 }

 static void scheduleExactAlarm(Context ctxt, AlarmManager alarms,
 long period, boolean isDownload) {
 Intent i=new Intent(ctxt, PollReceiver.class)
 .putExtra(EXTRA_PERIOD, period)
 .putExtra(EXTRA_IS_DOWNLOAD, isDownload);
 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

 alarms.setExact(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime()+period, pi);
 }

 static void scheduleInexactAlarm(Context ctxt, AlarmManager alarms,
 long period, boolean isDownload) {
 Intent i=new Intent(ctxt, PollReceiver.class)
 .putExtra(EXTRA_IS_DOWNLOAD, isDownload);
 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

 alarms.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime()+period, period, pi);
 }

 static void cancelAlarm(Context ctxt, AlarmManager alarms) {
 Intent i=new Intent(ctxt, PollReceiver.class);
 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

 alarms.cancel(pi);
 }
}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/PollReceiver.java)
This sample app has a targetSdkVersion of 21. Hence, on Android 5.0 devices — the
ones that have JobScheduler, we cannot set up exact repeating alarms. Our only option
is to handle the repeating work ourselves.
Hence, scheduleExactAlarm() creates a broadcast PendingIntent, on an Intent
pointing at our PollReceiver, with a pair of extras indicating the polling
period and whether or not we should be downloading a file. It then uses setExact()
on an AlarmManager to schedule a one-off event to occur one polling period from
now.
That, in turn, will trigger onReceive() of the PollReceiver. Here, we call
startWakefulService() to have our work be done by a DemoScheduledService. In addition,
if we have a polling period, that means that this is an exact alarm, and we
call scheduleExactAlarm() to set up the next occurrence of this “repeating” event.
DemoScheduledService is simply a JobIntentService wrapper around the DownloadJob
that we used with DemoJobService.
cancelAlarm() on PollReceiver — called by manageExact() when we are stopping
the repeating event — creates an equivalent PendingIntent to the ones used for
the AlarmManager events, and uses that with cancel() on AlarmManager to cancel
those events.
If the user had chosen an inexact alarm, onCheckedChanged() routes control
to manageInexact():

 private void manageInexact(boolean start) {
 if (start) {
 long period=getPeriod();

 PollReceiver.scheduleInexactAlarm(this, alarms, period,
 download.isChecked());
 }
 else {
 PollReceiver.cancelAlarm(this, alarms);
 }
 }

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)
It uses the same recipe as manageExact(), except that it calls scheduleInexactAlarm()
on PollReceiver. scheduleInexactAlarm(), in turn, uses setInexactRepeating()
on AlarmManager to arrange to get control every so often.
Pondering Backoff Criteria
Sometimes, even with the Internet-availability checks offered by JobScheduler,
you find that you cannot actually do the job you scheduled. Perhaps the server
is down for maintenance, or has been replaced by a honeycomb frame,
or something. In this case, while you failed to do the job now, you may want
to try again later.
Sometimes, “later” can just be handled by your existing JobScheduler setup.
If the job in question is a periodic job, and missing a whole period is not a big
problem, you might just continue on normally.
However, sometimes you will want the job to be retried, either because:

	it was a one-shot job, not a periodic one, or

	the period of the job is fairly long (e.g., once per day) and you want to retry
well before the job is scheduled to happen again

Requesting that a job be retried is handled by the boolean parameter to
jobFinished() or the boolean return value from onStopJob(). true means that
you want the job to be rescheduled; false means that it is OK to skip the job
entirely.
Given that you use true for either jobFinished() or onStopJob(),
there are three possible options for how to request and retry a failed job:

	What happens for a job which you requested only run when the device is idle

	What happens for other jobs by default

	How you can influence the timing of when the job is retried, known as the
“backoff criteria”

Idle Jobs
If you requested idle-only jobs, if the user wakes up the device while the job
is going on, you will be called with onStopJob(). Ideally, you then stop
the background work and return true or false from onStopJob() to determine
if the job should be rescheduled.
If you request a job be rescheduled, when that job is set up to only run when
the device is idle, the job is simply “put back in the queue” to be tried again
during the next idle window.
Default Behavior
If, for a non-idle-only job, you use true for jobFinished() or onStopJob(),
the next time to try will be calculated using the default backoff criteria,
which has a time of 30 seconds and a policy of BACKOFF_POLICY_EXPONENTIAL.
What this means is that the first time you use true, your job will be tried
again 30 seconds later. If you use true again for that job, it will be tried
again 60 seconds later. If you use true again, it would be
tried 120 seconds later — in other words, each job failure
will reschedule using the formula 2n-1t, where n is the
number of failures and t is 30 seconds.
However, there is a cap of 18,000,000 milliseconds, or what normal people would
refer to as “5 hours”. That is the most your job will be delayed, regardless
of how many failures you have.
Custom Backoff Criteria
You can change the backoff criteria for non-idle-only jobs via a call to
setBackoffCriteria() on your JobInfo.Builder, where you provide your own
time (measured in milliseconds) and policy (BACKOFF_POLICY_EXPONENTIAL
or BACKOFF_POLICY_LINEAR).
As noted above, the formula for exponential backoff rescheduling is
2n-1t, where n is the
number of failures and t is your chosen time.
The formula for linear backoff rescheduling is n*t, where n is the
number of failures and t is your chosen time.
Other JobScheduler Features
There are a few other options for scheduling jobs that may be of use to you
in select circumstances:

	
JobInfo.Builder has setOverrideDeadline(), which indicates a maximum delay
for this job before it will be executed even if other criteria (e.g., idleness)
have not been met. Note that this is only available on one-shot jobs, not periodic jobs.

	The JobParameters passed to onStartJob() has an isOverrideDeadlineExpired()
method. This will return true if the job was executed early due to a
setOverrideDeadline() value being met. This will indicate to you that your
requirements may not be met (e.g., Internet access) and you will need to double-check
those things yourself.

	
JobInfo.Builder has setMinimumLatency() which sets a minimum delay time; the
job will not be considered until at least this amount of time has elapsed.
Note that this is only available on one-shot jobs, not periodic jobs.

Also, JobScheduler has a getAllPendingJobs() method, that returns a List
of JobInfo objects representing “the jobs registered by this package that
have not yet been executed”. Presumably, this includes the next occurrence
of any periodic jobs and any jobs that are blocked pending a backoff delay,
though the documentation is unclear on this point.
JobScheduler Period Limits
As of Android 7.0,
JobScheduler does not support jobs running more frequently
than once every 15 minutes.
GcmNetworkManager
As noted earlier in this chapter, Android 5.0 added JobScheduler.
However, Google
did not release any sort of backport of this, as that would be difficult
to do on a whole-device basis. They did not even implement a
JobSchedulerCompat, hampering adoption.
Firebase now has
a GcmNetworkManager
that, despite
the name, is basically a backport of JobScheduler. In fact, it will
delegate to JobScheduler on Android 5.0+ devices. It is unclear how
old of an Android OS version GcmNetworkManager supports, but it is likely
to work on more devices than does JobScheduler.
However, it does introduce a tie to Google Play Services, which will not
be appropriate for all apps.
Periodic Work, Across Device Versions
Of course, all of this is a pain. And, where there is pain, somebody
eventually creates a library to try to ease that pain.
Evernote — the NSaaS (note storage as a service) provider — has released
android-job, a library that offers a single API that uses
GcmNetworkManager (if you opt into it), JobScheduler (on API Level 21+,
for inexact jobs), or AlarmManager (for API Level 19 and below, plus
for exact jobs). This library can simplify your code, by handling the
version-specific logic for you.
The
JobScheduler/Dispatcher
sample project demonstrates the use of android-job. It is based upon
the PowerHungry sample app, adding in a new option for using this
new library.
The Dependency
Evernote publishes android-job as an artifact, so adding it to your
project is as simple as a single line in your build.gradle file:

dependencies {
 implementation 'com.android.support:support-v13:27.0.2'
 implementation 'com.evernote:android-job:1.2.1'
}

(from JobScheduler/Dispatcher/app/build.gradle)
The Job
With AlarmManager, usually your periodic work is handled by a combination
of a WakefulBroadcastReceiver and an IntentService. With JobScheduler,
your work is handled by a JobService. With android-job, your work
is handled by custom subclasses of a library-supplied Job class.
Your Job subclass needs to override onRunJob(). Akin to onStartJob()
of a JobService, you get a Params object that you can use to identify
the details of this specific job. Based on the library’s implementation
and JavaDocs, you should do the work for your job directly in onRunJob(),
returning one of three values:

	
Result.SUCCESS, meaning that life is good

	
Result.RESCHEDULE, meaning that you did not do the work, and it should
be rescheduled to be tried again shortly

	
Result.FAILURE, meaning that you did not do the work, but there
is no reason to reschedule the job

The sample app has a DemoUnifiedJob that handles all of this:

package com.commonsware.android.job;

import android.support.annotation.NonNull;
import android.util.Log;
import com.evernote.android.job.Job;

public class DemoUnifiedJob extends Job {
 static final String JOB_TAG=
 DemoUnifiedJob.class.getCanonicalName();

 @NonNull
 @Override
 protected Result onRunJob(Params params) {
 Log.d(getClass().getSimpleName(), "scheduled unified work begins");

 if (getParams()
 .getExtras()
 .getBoolean(PollReceiver.EXTRA_IS_DOWNLOAD, false)) {
 new DownloadJob().run(); // do synchronously, as we are on
 // a background thread already
 }

 Log.d(getClass().getSimpleName(), "scheduled unified work ends");

 return(Result.SUCCESS);
 }
}

(from JobScheduler/Dispatcher/app/src/main/java/com/commonsware/android/job/DemoUnifiedJob.java)
As will be seen later when we schedule this work, we add in
our EXTRA_IS_DOWNLOAD boolean value, akin to how we handled this
with JobScheduler, to know whether or not we are supposed to download
the file or not.
The JobCreator
While executing jobs is similar to JobScheduler (just simpler), actually
setting up jobs is quite a bit more cumbersome.
The first step towards setting up jobs is to create a JobCreator.
This class is simply a way to tie a String to a Job subclass. In
the create() method, given a String, you return an instance of the
associated Job subclass, as is done in the sample app’s DemoUnifiedJobCreator:

package com.commonsware.android.job;

import com.evernote.android.job.Job;
import com.evernote.android.job.JobCreator;

public class DemoUnifiedJobCreator implements JobCreator {
 @Override
 public Job create(String tag) {
 if (DemoUnifiedJob.JOB_TAG.equals(tag)) {
 return(new DemoUnifiedJob());
 }

 throw new IllegalArgumentException("Job tag not recognized: "+tag);
 }
}

(from JobScheduler/Dispatcher/app/src/main/java/com/commonsware/android/job/DemoUnifiedJobCreator.java)
The Application
The recommended pattern for setting up android-job is to use a custom
Application subclass. It needs to set up a JobManager singleton and
register any JobCreator classes that you might have.
The sample app does this in DemoUnifiedApplication:

package com.commonsware.android.job;

import android.app.Application;
import com.evernote.android.job.JobManager;

public class DemoUnifiedApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();

 JobManager
 .create(this)
 .addJobCreator(new DemoUnifiedJobCreator());
 }
}

(from JobScheduler/Dispatcher/app/src/main/java/com/commonsware/android/job/DemoUnifiedApplication.java)
That, in turn, is set up as our app’s Application subclass via the
android:name attribute on the <application> element in the manifest:

 <application
 android:name=".DemoUnifiedApplication"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">

(from JobScheduler/Dispatcher/app/src/main/AndroidManifest.xml)
Scheduling Jobs
Given all of that prep work, we can now actually schedule jobs to be
executed. The flow is very similar to that of JobScheduler:

	Create and populate a JobRequest.Builder with the details
of the job, notably the String to identify which Job subclass to
use (by way of the JobCreator)

	
build() the JobRequest using that Builder, and call
schedule() on it to schedule the job

	Hold onto the int returned by schedule() and use that to
cancel() the job later on, if needed

 private void manageUnified(boolean start) {
 if (start) {
 final JobRequest.Builder b=
 new JobRequest.Builder(DemoUnifiedJob.JOB_TAG);
 PersistableBundleCompat extras=new PersistableBundleCompat();

 if (download.isChecked()) {
 extras.putBoolean(KEY_DOWNLOAD, true);
 b
 .setExtras(extras)
 .setRequiredNetworkType(JobRequest.NetworkType.CONNECTED);
 }
 else {
 b.setRequiredNetworkType(JobRequest.NetworkType.ANY);
 }

 b
 .setPeriodic(getPeriod())
 .setRequiresCharging(false)
 .setRequiresDeviceIdle(true);

 unifiedJobId=b.build().schedule();
 }
 else {
 JobManager.instance().cancel(unifiedJobId);
 }
 }

(from JobScheduler/Dispatcher/app/src/main/java/com/commonsware/android/job/MainActivity.java)
Enabling GcmNetworkManager Support
By default, android-job will use JobScheduler and/or AlarmManager.
However, if you add the play-services-gcm dependency to your project
(version 9.4.0 or higher), and configure a specific <service> element
in your manifest, then android-job will also consider using
GcmNetworkManager. Details for this are available in
the project documentation.
Android 6.0 and “the War on Background Processing”
Google has been increasingly aggressive about trying to prevent background
work, particularly while the device is deemed to be idle, in an effort
to improve battery life. In Android 4.4 (API Level 19), we were given a
strong “nudge” to use inexact alarms. In Android 5.0 (API Level 21),
we were given JobScheduler as a smarter AlarmManager, but one that
also emphasizes inexact schedules.
In Android 6.0, Google broke out more serious weaponry
in the war against background work, in ways that are going to cause
a fair bit of pain and confusion for users.
Doze Mode
If the device’s screen is off, the device is not being charged,
and the device does not appear to be moving (as determined via
sensors, like the accelerometer), an Android 6.0+ device will go into “Doze mode”.
This mode is reminiscent of similar modes used by specific device
manufacturers, such as SONY’s STAMINA mode.
While in “Doze mode”, your
scheduled alarms (with AlarmManager), jobs (with JobScheduler),
and syncs (with SyncManager) will be ignored by default, except
during occasional “idle maintenance windows”.
In short, much of what your user thinks will happen in the background
will not happen.
App Standby Mode
Further compounding the problem from “Doze mode” is “app standby”.
After some undefined period of time, an app that has not been in the
foreground (or is showing a Notification) will be put into “standby” state.
While the app is in “standby”:

	If the device is unplugged, the app behaves as though the device
is in “Doze mode”, with background access degrading over time to a point
where the app will only get network access in the background around once
per day

	If the device is plugged in, the app behaves normally

How to Win the War
The vision behind “the war on background processing” is to improve battery
life, particularly while the device is not being used (Doze mode) or
for apps that are not being used (app standby). However, any number
of apps will have their behavior severely compromised by these changes.
Here are some techniques for helping your app behave better on Android 6.0+.
GCM
If you are using
Google Cloud Messaging (GCM), and you send a “high-priority tickle”
to the app on a device, that may allow you to run then, despite being
in Doze mode or app standby mode.
However, this implies that you have all the plumbing set
up for GCM, that the device has an active network connection, etc. Also,
this requires you to adopt GCM, which has its issues (no service-level
agreement, Google has access to all of the messages, etc.).
…AndAllowWhileIdle()
AlarmManager now has two additional methods:

	setAndAllowWhileIdle()

	setExactAndAllowWhileIdle()

These work better in Doze mode and app standby mode, allowing you to get control briefly
even if otherwise you would not. However:

	While in those modes, these alarms will occur at most once every
15 minutes, except during the aforementioned “idle maintenance windows”

	There is no guarantee of how long you will be able to keep the device
awake

	There is no guarantee that you can access the Internet

Use a Foreground Service
While not officially documented, Dianne Hackborn (a core Android developer)
wrote in a comment on a Google+ post:

Apps that have been running foreground services (with the associated notification) are not restricted by doze.

The Whitelist
Users have the ability to disable these “battery optimizations” for an individual app,
allowing it to run closer to normally.
On the “Apps” screen in Settings, there is now a gear icon in the action
bar:

[image: Android 6.0, Settings App, Apps Screen]

Figure 826: Android 6.0, Settings App, Apps Screen
Tapping that brings up a “Configure apps” screen. On there is a
“Battery optimization” entry. Tapping on that
will initially show the apps for which battery optimizations
will be ignored (a.k.a., “Not optimized”):

[image: Android 6.0, Settings App, Battery Optimization Screen]

Figure 827: Android 6.0, Settings App, Battery Optimization Screen
If the user toggles the “Not optimized” drop-down to “All apps” and taps on
one of those apps, the user can elect to decide whether to “optimize”
the app (and cause app standby to trigger) or not:

[image: Android 6.0, Settings App, Battery Optimization Options Dialog]

Figure 828: Android 6.0, Settings App, Battery Optimization Options Dialog
This “whitelist” of apps allows you to hold wakelocks and access the
network. It does not change the behavior of AlarmManager, JobScheduler,
or SyncManager — those things will still fire far less frequently in
Doze mode or in app standby.
To determine if your app is already on the whitelist, you can call
isIgnoringBatteryOptimizations() on a PowerManager instance.
If you would like to lead the user over to the screen where they can
generally configure the whitelist, use an
ACTION_IGNORE_BATTERY_OPTIMIZATION_SETTINGS Intent with
startActivity():

startActivity(new Intent(Settings.ACTION_IGNORE_BATTERY_OPTIMIZATION_SETTINGS));

If you would like to drive the user straight to the screen where they
can add your specific app to the whitelist:

	Request the REQUEST_IGNORE_BATTERY_OPTIMIZATIONS permission via
a <uses-permission> element in the manifest

	Create a package: Uri pointing to your app

	Wrap that Uri in an ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
Intent

	Call startActivity() with that Intent

 Intent i=new Intent(Settings.ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS,
 Uri.parse("package:" + getPackageName()));

 startActivity(intent);

Note, though, that using this
may cause your app to be banned on the Play Store,
even though it is a legitimate part of the Android SDK.
While the whitelist existed in the first developer preview of Android 6.0,
its role was expanded very late in the process, as originally it did not
affect Doze mode. The rationale appears to be for apps that cannot use
GCM as the trigger mechanism to do background work, particularly if they
need something else network-based as the trigger. For example, SIP
clients, XMPP clients, MQTT clients, and so on are idle until a message
comes in on an open network connection, yet none of those can be readily
converted to use GCM. The whitelist allows apps to behave as they did
prior to Android 6.0, though it requires user involvement.
However, any app can use this whitelist approach to return to more-normal
behavior. The biggest limitation is for apps that relied upon AlarmManager,
JobScheduler, or SyncAdapter as their triggers, as those are still
crippled, regardless of whitelist status. The best you can get is ~15 minute
periods, via setExactAndAllowWhileIdle().
If you are sure that you need polling more frequently than that, and you
are sure that the user will value that polling, your primary option is
to use a foreground Service (or whitelisted app)
and Java’s ScheduledExecutorService to
get control every so often, using a partial wakelock to keep the CPU
powered on all the time. From a battery standpoint, this is horrible,
far worse than the behavior you would get on Android 5.1 and earlier using
AlarmManager. But, it’s the ultimate workaround, which is why it is
demonstrated in the
AlarmManager/AntiDoze
sample application.
The AntiDoze sample is based off of the greenrobot’s EventBus sample
from the chapter on event bus alternatives.
In that app, we used AlarmManager to get control every 15 seconds
to either update a fragment (if the UI was in the foreground) or show
a Notification (if not). AntiDoze gets rid of the every-event Notification,
replacing it with appending an entry to a log file. And, it replaces
AlarmManager with ScheduledExecutorService inside of a foreground
Service, trying to run forever and get control every 15 seconds
along the way.
This app has two product flavors defined in its app/build.gradle file,
normal and foreground:

apply plugin: 'com.android.application'

dependencies {
 implementation 'org.greenrobot:eventbus:3.0.0'
 implementation "com.android.support:support-v13:27.0.2"
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 }

 flavorDimensions "default"

 productFlavors {
 foreground {
 dimension "default"
 buildConfigField "boolean", "IS_FOREGROUND", "true"
 }

 normal {
 dimension "default"
 buildConfigField "boolean", "IS_FOREGROUND", "false"
 }
 }
}

(from AlarmManager/AntiDoze/app/build.gradle)
A normal build will use a regular Service; a foreground
build will use a foreground Service.
The launcher activity is EventDemoActivity. Its onCreate() method
will do three things:

	If we are on Android 6.0 or higher, it will use isIgnoringBatteryOptimizations()
on PowerManager to see if we are already on the battery optimization
whitelist, and if not, display a system-supplied dialog-themed activity
to ask the user to add our app to the whitelist

	If we do not already have the EventLogFragment, add it

	If we do not already have the EventLogFragment, also start up the
ScheduledService, as probably it is not already running

package com.commonsware.android.antidoze;

import android.support.v4.app.FragmentActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Build;
import android.os.Bundle;
import android.os.PowerManager;
import android.provider.Settings;

public class EventDemoActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (Build.VERSION.SDK_INT>Build.VERSION_CODES.LOLLIPOP_MR1) {
 String pkg=getPackageName();
 PowerManager pm=getSystemService(PowerManager.class);

 if (!pm.isIgnoringBatteryOptimizations(pkg)) {
 Intent i=
 new Intent(Settings.ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS)
 .setData(Uri.parse("package:"+pkg));

 startActivity(i);
 }
 }

 if (getSupportFragmentManager().findFragmentById(android.R.id.content)==null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new EventLogFragment()).commit();
 startService(new Intent(this, ScheduledService.class));
 }
 }
}

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/EventDemoActivity.java)
To be able to use ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS, we need
to request and hold the REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
permission, which we handle in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest
 package="com.commonsware.android.antidoze"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.WAKE_LOCK"/>
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <uses-permission android:name="android.permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Holo.Light.DarkActionBar">
 <activity
 android:name="EventDemoActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <receiver android:name="PollReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>

 <receiver android:name="StopReceiver"/>

 <service android:name="ScheduledService"/>
 </application>

</manifest>

(from AlarmManager/AntiDoze/app/src/main/AndroidManifest.xml)
The rest of the UI layer is unchanged. Where the differences really
creep in is with ScheduledService. This used to be a WakefulIntentService,
triggered by an alarm event. Now, it is a regular service, designed
to run all the time.
As part of initializing the ScheduledService class, we create an
instance of ScheduledExecutorService, through the
newSingleThreadScheduledExecutor() static method on the Executors
utility class:

 private ScheduledExecutorService sched=
 Executors.newSingleThreadScheduledExecutor();

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)
In onCreate(), we:

	Acquire a partial wakelock

	Call a private foregroundify() method to make our service be a
foreground service with a suitable Notification, if our IS_FOREGROUND
value is true based upon on our product flavor

	Set up a File for use with logging (named log), including creating
the directory for it if needed

	Call scheduleAtFixedRate() on the ScheduledExecutorService
to get control every 15 seconds

 @Override
 public void onCreate() {
 super.onCreate();

 PowerManager mgr=(PowerManager)getSystemService(POWER_SERVICE);

 wakeLock=mgr.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
 getClass().getSimpleName());
 wakeLock.acquire();

 if (BuildConfig.IS_FOREGROUND) {
 foregroundify();
 }

 log=new File(getExternalFilesDir(null), "antidoze-log.txt");
 log.getParentFile().mkdirs();
 sched.scheduleAtFixedRate(this, 0, 15, TimeUnit.SECONDS);
 }

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)
We can pass the service itself to scheduleAtFixedRate() because it
implements the Runnable interface. Its run() method uses greenrobot’s
EventBus to tell the UI layer about our event, plus it calls an append()
method to log that event to our log file:

 @Override
 public void run() {
 RandomEvent event=new RandomEvent(rng.nextInt());

 EventBus.getDefault().post(event);
 append(log, event);
 }

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)
append() simply uses Java file I/O to append a line to the log file:

 private void append(File f, RandomEvent event) {
 try {
 FileOutputStream fos=new FileOutputStream(f, true);
 Writer osw=new OutputStreamWriter(fos);

 osw.write(event.when.toString());
 osw.write(" : ");
 osw.write(Integer.toHexString(event.value));
 osw.write('\n');
 osw.flush();
 fos.flush();
 fos.getFD().sync();
 fos.close();

 Log.d(getClass().getSimpleName(),
 "logged to "+f.getAbsolutePath());
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception writing to file", e);
 }
 }

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)
The foregroundify() method, called from onCreate(), creates a Notification
and calls startForeground() to make the service be a foreground service:

 private void foregroundify() {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);
 Intent iActivity=new Intent(this, EventDemoActivity.class);
 PendingIntent piActivity=
 PendingIntent.getActivity(this, 0, iActivity, 0);
 Intent iReceiver=new Intent(this, StopReceiver.class);
 PendingIntent piReceiver=
 PendingIntent.getBroadcast(this, 0, iReceiver, 0);

 b.setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle(getString(R.string.app_name))
 .setContentIntent(piActivity)
 .setSmallIcon(R.drawable.ic_launcher)
 .setTicker(getString(R.string.app_name))
 .addAction(R.drawable.ic_stop_white_24dp,
 getString(R.string.notif_stop),
 piReceiver);

 startForeground(NOTIFY_ID, b.build());
 }

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)
The Notification includes a “stop” action, pointing to a StopReceiver,
which just uses stopService() to stop the service. This allows the user
to shut down our background service at any point, just via the Notification.
When the service is stopped, onDestroy() tidies things up, notably
releasing the wakelock:

 @Override
 public void onDestroy() {
 sched.shutdownNow();
 wakeLock.release();
 stopForeground(true);

 super.onDestroy();
 }

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)
Running this overnight on an Android 6.0 device shows that, indeed,
we get control every 15 seconds, as desired. The device’s battery drains
commensurately, considering that we are keeping the CPU powered on all
of the time. Either the whitelist keeps us going (normal flavor) or the
foreground service keeps us going (foreground flavor).
setAlarmClock()
AlarmManager also has a setAlarmClock() method, added in API Level
21. This works a bit like setExact() (and, hence,
setExactAndAllowWhileIdle()), in that you provide a time to get control
and a PendingIntent to be invoked at that time. From the standpoint
of power management, Doze mode leaves setAlarmClock() events alone,
and so they are executed at the appropriate time regardless of device
state. However, at the same time, setAlarmClock() has some user-visible
impacts that make it suitable for certain apps (e.g., calendar reminders)
and unsuitable for others (e.g., polling).
Hope Somebody Else Does Something
Doze mode is for the entire device. Hence, your app may wind up getting
control more frequently than you might expect, even without any code
changes, simply because somebody else is doing something to get
control more frequently.
Scheduling Content Monitoring
One long-standing challenge in Android is finding out when content
changes in other apps. While ContentObserver is great for this
purpose, you have to have a running process for it to work. As a result,
some apps try desperately to keep a process running all the time to
find out about changes to foreign ContentProviders, tying up system
RAM as a result.
JobScheduler, as of Android 7.0, has an option to effectively register a
ContentObserver for you. You indicate the Uri to monitor, and it invokes
your JobService when the data at that Uri changes. This way, you do not
need to keep a process around.
To do that, you create a JobInfo.TriggerContentUri object, identifying
what to monitor. You pass that to addTriggerContentUri() on your
JobInfo.Builder, and schedule the resulting JobInfo with the
JobScheduler as before.
For example, the
JobScheduler/Content
sample project asks JobScheduler to monitor the ContactsContract
provider for new contacts.
MainActivity has virtually nothing to do with any of this, but instead
goes through all the work to set up runtime permission access to the
READ_CONTACTS permission:

package com.commonsware.android.jobsched.content;

import android.app.Activity;
import android.content.pm.PackageManager;
import android.os.Bundle;
import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.view.View;
import android.widget.Toast;
import static android.Manifest.permission.READ_CONTACTS;

public class MainActivity extends Activity {
 private static final String[] PERMS_ALL={
 READ_CONTACTS
 };
 private static final int RESULT_PERMS_INITIAL=1339;
 private static final String STATE_IN_PERMISSION=
 "com.commonsware.android.jobsched.content.inPermission";
 private boolean isInPermission=false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (savedInstanceState!=null) {
 isInPermission=
 savedInstanceState.getBoolean(STATE_IN_PERMISSION, false);
 }

 if (!isInPermission) {
 if (hasPermission(READ_CONTACTS)) {
 configureJob();
 }
 else {
 isInPermission=true;
 ActivityCompat.requestPermissions(this, PERMS_ALL,
 RESULT_PERMS_INITIAL);
 }
 }
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
 }

 @Override
 public void onRequestPermissionsResult(int requestCode,
 String[] permissions,
 int[] grantResults) {
 boolean sadTrombone=true;

 isInPermission=false;

 if (requestCode==RESULT_PERMS_INITIAL) {
 if (hasPermission(READ_CONTACTS)) {
 configureJob();
 sadTrombone=false;
 }
 }

 if (sadTrombone) {
 Toast.makeText(this, R.string.msg_no_perm,
 Toast.LENGTH_LONG).show();
 }
 }

 private void configureJob() {
 Toast.makeText(this, R.string.msg_add,
 Toast.LENGTH_LONG).show();
 DemoJobService.schedule(this);
 finish();
 }

 private boolean hasPermission(String perm) {
 return(ContextCompat.checkSelfPermission(this, perm)==
 PackageManager.PERMISSION_GRANTED);
 }
}

(from JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/MainActivity.java)
Eventually, though, if the user agrees to the permission, MainActivity
calls a static schedule() method on DemoJobService, to set up
the content monitor:

 static void schedule(Context ctxt) {
 ComponentName cn=
 new ComponentName(ctxt, DemoJobService.class);
 JobInfo.TriggerContentUri trigger=
 new JobInfo.TriggerContentUri(CONTENT_URI,
 JobInfo.TriggerContentUri.FLAG_NOTIFY_FOR_DESCENDANTS);
 JobInfo.Builder b=
 new JobInfo.Builder(ME_MYSELF_AND_I, cn)
 .addTriggerContentUri(trigger);
 JobScheduler jobScheduler=
 (JobScheduler)ctxt.getSystemService(Context.JOB_SCHEDULER_SERVICE);

 jobScheduler.schedule(b.build());
 }

(from JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/DemoJobService.java)
Here, we:

	Create a ComponentName identifying our JobService

	Create a TriggerContentUri, asking for ContactsContract.Contacts.CONTENT_URI
(imported via import static), and asking to be notified about changes
in any “descendants” (i.e., already-existing contacts)

	Pass those two values, plus a job ID, to JobInfo.Builder

	Get a JobScheduler via getSystemService()

	Build the JobInfo and schedule() it with the JobScheduler

The rest of DemoJobService handles the results, in this case just
raising a Notification:

 @Override
 public boolean onStartJob(JobParameters params) {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER)
 .setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_ALL)
 .setContentTitle("You added a contact!")
 .setSmallIcon(android.R.drawable.stat_notify_more);

 mgr.notify(NOTIFY_ID, b.build());

 return(false);
 }

 @Override
 synchronized public boolean onStopJob(JobParameters params) {
 return(false);
 }

(from JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/DemoJobService.java)
However, if we wanted, the JobParameters passed into onStartJob()
contains information about what changed.
getTriggeredContentAuthorities() returns a String array of the
names of the authorities whose changes triggered this job, if any.
It will return null if the job triggered for some other reason, such
as a deadline.
If getTriggeredContentAuthorities() returns a non-null value, then
you can try calling getTriggeredContentUris() to find out the
specific Uri values that changed. However, this may be null, if
there were too many changes to report (the limit is ~50).
Note that there are limitations on these content-monitoring jobs:

	They cannot be persisted, and so you need to re-request them after
a reboot

	They cannot be periodic, though other job restrictions may still
work (e.g., must be on a charger, must have a network connection)

	The job is a one-shot event — if you want continuous updates,
you need to schedule a fresh job after this one is invoked (either
with matches or due to hitting the deadline)

One problem with monitoring content for changes is that those changes
may occur too frequently. In Android 7.0, you have two
new JobInfo.Builder methods that you can use to manage this:

	
setTriggerContentUpdateDelay() indicates how long after the
last content change before the job will be invoked. For example,
suppose that through some sort of sync operation, a provider that you
are monitoring is updated 10 times within a second, then is quiet.
By default, your job would be invoked 10 times. But, if you
pass something like 3000 to setTriggerContentUpdateDelay(),
your job would be invoked once, 3000 milliseconds after the last
of that burst of updates.

	
setTriggerContentMaxDelay() puts an upper bound for how long you
are willing to wait before the job is invoked. If the provider is very
busy, and your setTriggerContentUpdateDelay() counter keeps getting
reset due to updates, it may be quite some time after the burst
began before you finally have your job run. setTriggerContentMaxDelay()
sets a limit for how long we will wait; if this time elapses, your
job will be run even if updates are ongoing.

JobScheduler as Work Queue
Android 8.0 adds a work queue mode to JobScheduler. IntentService had such a queue,
after a fashion, in that it would process one Intent at a time through
onHandleIntent(), queuing up other Intent objects that arrive while onHandleIntent()
is busy. JobScheduler now offers a similar capability for your JobService,
where you can post jobs and have your JobService end when the work is completed.
The
JobScheduler/WorkQueue
sample project illustrates this. We have a JobService that will download
files as its “work”, posting the results on an event bus. Our client is an
instrumentation test that will confirm that the downloads work as expected.
Defining Some “Work”
The “work” to be enqueued comes in the form of a JobWorkItem, which is a thin
wrapper around an Intent. That Intent is used for payload, such as filling
in extras. That Intent is not used for actually starting or binding to a service.
The sample project has a WorkService which is the JobService for handling
these jobs. It has a static buildWorkItem() method that will help create a
JobWorkItem from the two pieces of data that we want as our “work”:

	A URL identifying something to download

	An int identifying which piece of work this is

 public static JobWorkItem buildWorkItem(int workIndex, String url) {
 Intent i=new Intent();

 i.setData(Uri.parse(url));
 i.putExtra(EXTRA_WORK_INDEX, workIndex);

 return(new JobWorkItem(i));
 }

(from JobScheduler/WorkQueue/app/src/main/java/com/commonsware/android/job/work/WorkService.java)
Enqueuing the Work
JobScheduler in Android 8.0 has an enqueue() method. It takes a JobInfo, the
way you normally schedule jobs, along with a JobWorkItem. It arranges to start
the JobService if it is not already running and adds the JobWorkItem to its
work queue.
One strong recommendation outlined in the documentation is to try to use the
same (or an equivalent) JobInfo object for each enqueue() call. Changing the
job characteristics — in particular, tightening constraints, like now needing
to be on a charger — will cause Android to have to stop your running JobService
(if it is running) and restart it, perhaps later.
WorkService has a static enqueueWork() method that handles all of the details:

 public static JobInfo enqueueWork(Context ctxt, JobInfo jobInfo, List<JobWorkItem> work) {
 JobScheduler jobScheduler=ctxt.getSystemService(JobScheduler.class);

 if (jobInfo==null) {
 ComponentName cn=new ComponentName(ctxt, WorkService.class);

 jobInfo=new JobInfo.Builder(JOB_ID, cn)
 .setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY)
 .build();
 }

 for (JobWorkItem item : work) {
 jobScheduler.enqueue(jobInfo, item);
 }

 return(jobInfo);
 }

(from JobScheduler/WorkQueue/app/src/main/java/com/commonsware/android/job/work/WorkService.java)
enqueueWork() takes three parameters:

	A Context

	A JobInfo returned from a previous enqueueWork() call, or null if we
do not have one

	The instances of JobWorkItem to enqueue, in this case in the form of a List

enqueueWork() will create a JobInfo object if needed, but otherwise it will
reuse the passed-in JobInfo. That JobInfo requires a network connection, as
we will be downloading a file, but otherwise sets no constraints. Then,
enqueueWork() simply iterates over the JobWorkItem objects and calls enqueue()
to register each of them. enqueueWork() returns the JobInfo object that we
created or used, for later reuse.
Working Off the Queue
As with any JobService, onStartJob() is our entry point for doing the work requested by whoever
scheduled the job. In this case, it delegates the real work to a scheduleWork()
method, then returns true to indicate that the work is ongoing.

 @Override
 public boolean onStartJob(JobParameters params) {
 scheduleWork(params);

 return(true);
 }

(from JobScheduler/WorkQueue/app/src/main/java/com/commonsware/android/job/work/WorkService.java)
scheduleWork(), in turn, calls dequeueWork() on the JobParameters, until it
returns null to indicate that there is no more queued work:

 private void scheduleWork(final JobParameters params) {
 if (!threadPool.isShutdown()) {
 JobWorkItem item;

 while ((item=params.dequeueWork())!=null) {
 final int workIndex=item.getIntent().getIntExtra(EXTRA_WORK_INDEX, -1);
 final String url=item.getIntent().getData().toString();
 final JobWorkItem itemToDo=item;

 threadPool.execute(new Runnable() {
 @Override
 public void run() {
 download(workIndex, url);
 params.completeWork(itemToDo);
 scheduleWork(params);
 }
 });
 }
 }
 }

(from JobScheduler/WorkQueue/app/src/main/java/com/commonsware/android/job/work/WorkService.java)
dequeueWork() returns a JobWorkItem object if there is one. We can retrieve
values out of it and arrange for a ThreadPoolExecutor to perform the actual
work. Remember: onStartJob() is called on the main application thread, so you
cannot process the work directly in most cases.
That ThreadPoolExecutor is a simple field on the WorkService, initialized
via Executors.newFixedThreadPool():

 private ExecutorService threadPool=Executors.newFixedThreadPool(3);

(from JobScheduler/WorkQueue/app/src/main/java/com/commonsware/android/job/work/WorkService.java)
For each JobWorkItem, the ThreadPoolExecutor does three things on a background
thread:

	It calls a download() method to download the file identified by the supplied
URL

	It calls completeWork() on the JobParameters, to indicate that this work
item is complete and can be removed from the queue

	It calls scheduleWork() again, in case more jobs arrived while we were busy
downloading the file

The result is that we keep calling scheduleWork() until we are out of
JobWorkItem instances to process. At that point, the final dequeueWork()
call will not only return null but also arrange to shut down our JobService.
In particular, we do not call jobFinished() to do that ourselves.
download() uses OkHttp to download the content identified by the URL, then
uses Okio’s HashingSource to compute the SHA-256 hash of the content:

 private void download(int workIndex, String url) {
 try {
 Response response=ok.newCall(new Request.Builder().url(url).build()).execute();
 HashingSource hashingSource=HashingSource.sha256(response.body().source());

 EventBus.getDefault().post(new Result(hashingSource.hash(), workIndex, null));
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception from OkHttp", e);
 EventBus.getDefault().post(new Result(null, workIndex, e));
 }
 }

(from JobScheduler/WorkQueue/app/src/main/java/com/commonsware/android/job/work/WorkService.java)
download() posts the results — either the hash or an Exception, along with
the int identifying this piece of work — on an event bus, wrapped in a Result
object:

 public static class Result {
 public final ByteString hash;
 public final int workIndex;
 public final Exception e;

 Result(ByteString hash, int workIndex, Exception e) {
 this.hash=hash;
 this.workIndex=workIndex;
 this.e=e;
 }
 }

(from JobScheduler/WorkQueue/app/src/main/java/com/commonsware/android/job/work/WorkService.java)
However, it is possible that while our downloads are going on, that we lose
connectivity. Not only will OkHttp start throwing errors, but JobScheduler
will trigger a call to onStopJob() on our WorkService. There, we just
shutdown() the thread pool, as we do when all of the work is done:

 @Override
 public boolean onStopJob(JobParameters params) {
 threadPool.shutdown();

 return(true);
 }

(from JobScheduler/WorkQueue/app/src/main/java/com/commonsware/android/job/work/WorkService.java)
Testing the Service
The sample project has no significant UI — the MainActivity just shows a Toast
telling you to run the instrumentation tests. There, you will find a WorkTests
class that:

	Schedules two batches of work items, one second apart, to download the
URL contents a random number of times

	Waits for all of the events to be received on the event bus

	Fails if either we get an exception or we missed a work item (based on its
index)

@RunWith(AndroidJUnit4.class)
public class WorkTests {
 private static final String URL=
 "https://commonsware.com/Android/Android-1_0-CC.pdf";
 private static final String EXPECTED_HASH_HEX=
 "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855";
 private CountDownLatch latch;
 private Exception e=null;
 private HashSet<Integer> workIndices=new HashSet<>();

 @Test
 public void testWork() throws Exception {
 Random r=new Random();
 int firstBatchCount=4+r.nextInt(4);
 int secondBatchCount=4+r.nextInt(4);

 latch=new CountDownLatch(firstBatchCount+secondBatchCount);

 EventSink sink=new EventSink();

 EventBus.getDefault().register(sink);

 try {
 JobInfo jobInfo=null;
 ArrayList<JobWorkItem> items=new ArrayList<>();

 for (int i=0;i<firstBatchCount;i++) {
 items.add(WorkService.buildWorkItem(i, URL));
 }

 jobInfo=WorkService.enqueueWork(InstrumentationRegistry.getTargetContext(),
 jobInfo, items);

 SystemClock.sleep(1000);

 items.clear();

 for (int i=0;i<secondBatchCount;i++) {
 items.add(WorkService.buildWorkItem(i+firstBatchCount, URL));
 }

 WorkService.enqueueWork(InstrumentationRegistry.getTargetContext(),
 jobInfo, items);

 latch.await(firstBatchCount+secondBatchCount, TimeUnit.SECONDS);

 if (e!=null) {
 throw e;
 }
 }
 finally {
 EventBus.getDefault().unregister(sink);
 }

 assertEquals(firstBatchCount+secondBatchCount, workIndices.size());
 }

 private class EventSink {
 @Subscribe(threadMode =ThreadMode.ASYNC)
 public void onWorkResult(WorkService.Result result) {
 workIndices.add(result.workIndex);

 if (result.e!=null) {
 WorkTests.this.e=result.e;
 }
 else {
 String hash=result.hash.hex();

 if (!EXPECTED_HASH_HEX.equals(hash)) {
 WorkTests.this.e=
 new IllegalStateException(String.format("Expected hash of %s, received %s",
 EXPECTED_HASH_HEX, hash));
 }
 }

 latch.countDown();
 }
 }
}

(from JobScheduler/WorkQueue/app/src/androidTest/java/com/commonsware/android/job/work/test/WorkTests.java)
Work Limits
As noted previously, the work queue system with JobScheduler relies on your
using the same or an equivalent JobInfo for each piece of work. Otherwise,
our JobService needs to stop processing jobs and restart them, perhaps after
some delay.
Accessing Location-Based Services
A popular feature on current-era mobile devices is GPS capability, so
the device can tell you where you are at any point in time. While the
most popular use of GPS service is mapping and directions, there are
other things you can do if you know your location. For example, you
might set up a dynamic chat application where the people you can chat
with are based on physical location, so you are chatting with those you
are nearest. Or, you could automatically “geotag” posts to Twitter or
similar services.
GPS is not the only way a mobile device can identify your location.
Alternatives include:

	Cell tower triangulation, where your position is determined based on
signal strength to nearby cell towers

	Proximity to public WiFi “hotspots” that have known geographic
locations

	GPS alternatives, such as
GLONASS (Russia),
Galileo
(European Union, still under development), and
Compass
(China, still under development)

Android devices may have one or more of these services available to
them. You, as a developer, can ask the device for your location, plus
details on what providers are available. There are even ways for you to
simulate your location in the emulator, for use in testing your
location-enabled applications.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on threads.
Location Providers: They Know Where You’re Hiding
Android devices can have access to several different means of
determining your location. Some will have better accuracy than others.
Some may be free, while others may have a cost associated with them.
Some may be able to tell you more than just your current position, such
as your elevation over sea level, or your current speed.
Android, therefore, has abstracted all this out into a set of
LocationProvider objects. Your Android environment will have zero or
more LocationProvider instances, one for each distinct locating
service that is available on the device. Providers know not only your
location, but also their own characteristics, in terms of accuracy, cost,
etc. There are two main providers: GPS_PROVIDER (which uses GPS)
and NETWORK_PROVIDER (which uses cell tower triangulation and WiFi
hotspot proximity).
You, as a developer, will use a LocationManager, which holds the
LocationProvider set, to figure out which LocationProvider is right
for your particular circumstance. You will also need a permission in
your application, or the various location APIs will fail due to a
security violation.
Depending on which location providers you wish to
use, you may need ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION.
Note that ACCESS_COARSE_LOCATION may intentionally “fuzz” or filter out
location fixes that are “too good” (i.e., more accurate than a city block),
such as those obtained from being near a known WiFi hotspot. The
GPS_PROVIDER specifically requires ACCESS_FINE_LOCATION to work, at
least on modern versions of Android.
Also note that these permissions are dangerous, and therefore if
your targetSdkVersion is 23 or higher, you need to ask for these
permissions at runtime.
Finding Yourself
The obvious thing to do with a location service is to figure out where
you are right now.
To do that, you need to get a LocationManager — call
getSystemService(LOCATION_SERVICE) from your activity or service and
cast it to be a LocationManager.
The next step to find out where you are is to get the name of the
LocationProvider you want to use. Here, you have two main options:

	Ask the user to pick a provider

	Find the best-match provider based on a set of criteria

If you want the user to pick a provider, calling getProviders() on
the LocationManager will give you a List of providers, which you
can then present to the user for selection.
Or, you can create and populate a Criteria object, stating the
particulars of what you want out of a LocationProvider, such as:

	
setAltitudeRequired() to indicate if you need the current altitude
or not

	
setAccuracy() to set a minimum level of accuracy, in meters, for
the position

	
setCostAllowed() to control if the provider must be free or if it
can incur a cost on behalf of the device user

Given a filled-in Criteria object, call getBestProvider() on your
LocationManager, and Android will sift through the criteria and give
you the best answer. Note that not all of your criteria may be met
– all but the monetary cost criterion might be relaxed if nothing
matches.
You are also welcome to hard-wire in a LocationProvider name (e.g.,
GPS_PROVIDER), perhaps just for testing purposes.
Once you know the name of the LocationProvider, you can call
getLastKnownLocation() to find out where you were recently. However,
unless something else is causing the desired provider to collect fixes
(e.g., unless the GPS radio is on), getLastKnownLocation() will
return null, indicating that there is no known position. On the other
hand, getLastKnownLocation() incurs no monetary or power cost, since
the provider does not need to be activated to get the value.
This method returns a Location object, which can give you the
latitude and longitude of the device in degrees as a Java double. If
the particular location provider offers other data, you can get at that
as well:

	For altitude, hasAltitude() will tell you if there is an altitude
value, and getAltitude() will return the altitude in meters.

	For bearing (i.e., compass-style direction), hasBearing() will
tell you if there is a bearing available, and getBearing() will
return it as degrees east of true north.

	For speed, hasSpeed() will tell you if the speed is known and
getSpeed() will return the speed in meters per second.

A more likely approach to getting the Location from a
LocationProvider, though, is to register for updates, as described in
the next section.
On the Move
Not all location providers are necessarily immediately responsive. GPS,
for example, requires activating a radio and getting a fix from the
satellites before you get a location. That is why Android does not
offer a getMeMyCurrentLocationNow() method. Combine that with the
fact that your users may well want their movements to be reflected in
your application, and you are probably best off registering for
location updates and using that as your means of getting the current
location.
The
Location/Classic
sample application
shows how to register for updates and use them when they arrive. It
also shows how to deal with the runtime permissions that we need
for locations.
Getting Permission
Our UI is implemented in MainActivity and its associated WeatherFragment.
However, MainActivity extends AbstractPermissionActivity,
which handles the basics of ensuring that we have the ACCESS_FINE_LOCATION
permission that our app needs in order to get a location fix. This
is a variation on the AbstractPermissionActivity covered in
the material on runtime permissions earlier in the book.
Subclasses of AbstractPermissionActivity need to implement three methods:

	
getDesiredPermissions(), returning the array of permission names that
the activity needs in order to proceed

	
onReady(), called by AbstractPermissionActivity once we get all
of the requested permissions

	
onPermissionDenied(), called by AbstractPermissionActivity if
the user did not grant us all of the requested permissions when we asked
for them

In the case of MainActivity, getDesiredPermissions() asks
for ACCESS_FINE_LOCATION, onReady() displays the WeatherFragment,
and onPermissionDenied() shows a Toast and finishes the activity:

package com.commonsware.android.weather2;

import android.Manifest;
import android.widget.Toast;

public class MainActivity extends AbstractPermissionActivity {
 private static final String[] PERMS=
 {Manifest.permission.ACCESS_FINE_LOCATION};

 @Override
 protected String[] getDesiredPermissions() {
 return(PERMS);
 }

 @Override
 protected void onPermissionDenied() {
 Toast
 .makeText(this, R.string.msg_no_perm, Toast.LENGTH_LONG)
 .show();
 finish();
 }

 @Override
 protected void onReady() {
 if (getFragmentManager().findFragmentById(android.R.id.content) == null) {
 getFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new WeatherFragment()).commit();
 }
 }
}

(from Location/Classic/app/src/main/java/com/commonsware/android/weather2/MainActivity.java)
The result is that by the time WeatherFragment is
displayed, we now have ACCESS_FINE_LOCATION, and it is safe for us to
use LocationManager.
Modelling the Weather
This app will use the US National Weather Service (NWS) to get weather details
for a given location. This may not work outside the US. And even inside the
US, the National Weather Service’s servers seem to have issues sometimes. But,
it is free, with no registration or API keys required, at least at the present
time.
The NWS REST Web service
serves data in a variety of formats, including JSON.
The WeatherResponse POJO models the subset of that JSON that we need for displaying
basic weather details to the user:

package com.commonsware.android.weather2;

import java.util.List;

public class WeatherResponse {
 public final Properties properties=null;

 public static class Properties {
 public final List<Period> periods=null;
 }

 public static class Period {
 public final String startTime=null;
 public final int temperature;
 public final String temperatureUnit=null;
 public final String icon=null;

 public Period() {
 temperature=0;
 }
 }
}

(from Location/Classic/app/src/main/java/com/commonsware/android/weather2/WeatherResponse.java)
The JSON object that gets returned has a properties field, which in turn
has a periods field. The periods are a List of Period objects,
each of which has the time for the forecast, the projected temperature
(and unit of measure, such as “F” for Fahrenheit), and a URL to an icon
representing the type of weather (sunny, cloudy, rain, snow, zombie invasion,
etc.).
Requesting Updates
In onCreate() of WeatherFragment, we get our hands on a LocationManager
via a call to getSystemService():

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);

 mgr=(LocationManager)getActivity()
 .getSystemService(Context.LOCATION_SERVICE);

 Retrofit retrofit=
 new Retrofit.Builder()
 .baseUrl("https://api.weather.gov")
 .addConverterFactory(GsonConverterFactory.create())
 .build();

 nws=retrofit.create(NWSInterface.class);
 }

(from Location/Classic/app/src/main/java/com/commonsware/android/weather2/WeatherFragment.java)
We also create a Retrofit instance, pointing to the API endpoint of
the NWS. Retrofit is a library for accessing
REST-style Web services, and it is profiled
earlier in the book.
We then use the Retrofit instance to create an instance of NWSInterface.
This interface is augmented with Retrofit annotations to describe how we should
request a weather forecast:

package com.commonsware.android.weather2;

import retrofit2.Call;
import retrofit2.http.GET;
import retrofit2.http.Headers;
import retrofit2.http.Path;

public interface NWSInterface {
 @Headers("Accept: application/geo+json")
 @GET("/points/{lat},{lon}/forecast")
 Call<WeatherResponse> getForecast(@Path("lat") double latitude,
 @Path("lon") double longitude);
}

(from Location/Classic/app/src/main/java/com/commonsware/android/weather2/NWSInterface.java)
Here, we have a getForecast() method that takes a latitude and longitude and
pours them into the path portion of the URL for our REST request. We also indicate
that we want a GeoJSON response (application/geo+json); WeatherResponse
models a small bit of what a GeoJSON response might contain.
In onStart(), we request location updates:

 @Override
 @SuppressWarnings({"MissingPermission"})
 public void onStart() {
 super.onStart();

 mgr.requestLocationUpdates(LocationManager.GPS_PROVIDER, 3600000,
 1000, this);
 }

(from Location/Classic/app/src/main/java/com/commonsware/android/weather2/WeatherFragment.java)
requestLocationUpdates() on LocationManager takes four parameters:

	The name of the location provider you wish to use

	How long, in milliseconds, should have elapsed before we might get
a location update

	How far, in meters, must the device have moved before we might get a
location update

	An implementation of the LocationListener interface that will be
notified of key location-related events

In our case, we are asking for updates from the GPS_PROVIDER once an
hour, where the device has moved a least 1 kilometer, with our fragment
serving as the LocationListener implementation.
Bear in mind that the time parameter is only a guide to help steer
Android from a power consumption standpoint. You may get many more
location updates than this. To get the maximum number of location
updates, supply 0 for both the time and distance constraints.
In onStop(), we call removeUpdates(), so we only get location updates
while we are visible:

 @Override
 @SuppressWarnings({"MissingPermission"})
 public void onStop() {
 mgr.removeUpdates(this);

 super.onStop();
 }

(from Location/Classic/app/src/main/java/com/commonsware/android/weather2/WeatherFragment.java)
The @SuppressWarnings({"MissingPermission"}) annotation on onStart()
and onStop() are because Android Studio cannot determine for certain
that we have implemented runtime permissions properly. Since the IDE does not
know if we hold ACCESS_FINE_LOCATION, it complains. However, we have
implemented runtime permissions — this fragment will not exist until we
have that permission. So, we suppress the Lint warning.
Implementing the Listener
LocationListener requires four methods, the big one being onLocationChanged(),
where you will receive your Location object when an update is ready:

 @Override
 public void onLocationChanged(Location location) {
 double roundedLat=(double)Math.round(location.getLatitude()*10000d)/10000d;
 double roundedLon=(double)Math.round(location.getLongitude()*10000d)/10000d;

 nws.getForecast(roundedLat, roundedLon)
 .enqueue(new Callback<WeatherResponse>() {
 @Override
 public void onResponse(Call<WeatherResponse> call,
 Response<WeatherResponse> response) {
 if (response.code()==200) {
 adapter=new ForecastAdapter(response.body().properties.periods);
 setListAdapter(adapter);
 }
 else {
 Toast.makeText(getActivity(), R.string.msg_nws,
 Toast.LENGTH_LONG).show();
 }
 }

 @Override
 public void onFailure(Call<WeatherResponse> call, Throwable t) {
 Toast.makeText(getActivity(), t.getMessage(),
 Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(),
 "Exception from Retrofit request to National Weather Service", t);
 }
 });
 }

(from Location/Classic/app/src/main/java/com/commonsware/android/weather2/WeatherFragment.java)
Here, we:

	Round the location to four decimal places, as the NWS REST Web service
will not accept more precise values than this and fails with an HTTP 500
response if you provide more decimal places

	Call the getForecast() on our Retrofit-supplied NWSInterface and
enqueue() the resulting Call, so the network I/O is done on a background
thread

	In onResponse(), if we got an HTTP 200 response from the Web service,
we pass that List of Period objects to a ForecastAdapter and attach
it to the ListView

	In onResponse() shows that we got some error from the Web service, or
if there was a problem that triggered onFailure() (e.g., no Internet
connection), we show a Toast

Displaying the Results
ForecastAdapter shows the time and temperature directly, by updating
the associated TextView widgets. It delegates the icon-loading
process to Picasso, discussed back in the chapter on Internet access.

 private class ForecastAdapter extends ArrayAdapter<WeatherResponse.Period> {
 private int size;
 private java.text.DateFormat dateFormat;
 private java.text.DateFormat timeFormat;

 ForecastAdapter(List<WeatherResponse.Period> items) {
 super(getActivity(), R.layout.row, R.id.date, items);

 size=getActivity()
 .getResources()
 .getDimensionPixelSize(R.dimen.icon);
 dateFormat=DateFormat.getDateFormat(getActivity());
 timeFormat=DateFormat.getTimeFormat(getActivity());
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 WeatherResponse.Period item=getItem(position);

 if (!TextUtils.isEmpty(item.icon)) {
 ImageView icon=row.findViewById(R.id.icon);

 Picasso.with(getActivity()).load(item.icon)
 .resize(size, size).centerCrop().into(icon);
 }

 TextView title=row.findViewById(R.id.date);

 try {
 Date parsedStartTime=ISO8601.parse(item.startTime);
 String date=dateFormat.format(parsedStartTime);
 String time=timeFormat.format(parsedStartTime);

 title.setText(date+" "+time);
 }
 catch (ParseException e) {
 title.setText(item.startTime);
 }

 TextView temp=row.findViewById(R.id.temp);

 temp.setText(getString(R.string.temp, item.temperature,
 item.temperatureUnit));

 return(row);
 }
 }

(from Location/Classic/app/src/main/java/com/commonsware/android/weather2/WeatherFragment.java)
The result is a ListView showing the weather forecast… at least
if your location is somewhere covered by the US National Weather
Service:

[image: Weather in Eastern Pennsylvania]

Figure 829: Weather in Eastern Pennsylvania
Getting Locations via PendingIntent
There is another version of requestLocationUpdates() that takes a
PendingIntent rather than a LocationListener. This is useful if you
want to be notified of changes in your position even when your code is
not running. For example, if you are logging movements, you could use a
PendingIntent that triggers a BroadcastReceiver (getBroadcast())
and have the BroadcastReceiver add the entry to the log. This way,
your code is only in memory when the position changes, so you do not
tie up system resources while the device is not moving.
Are We There Yet? Are We There Yet? Are We There Yet?
Sometimes, you want to know not where you are now, or even when you
move, but when you get to where you are going. This could be an end
destination, or it could be getting to the next step on a set of
directions, so you can give the user the next turn.
To accomplish this, LocationManager offers addProximityAlert().
This registers a PendingIntent, which will be fired off when the
device gets within a certain distance of a certain location. The
addProximityAlert() method takes, as parameters:

	The latitude and longitude of the position that you are interested in

	A radius, specifying how close you should be to that position for
the Intent to be raised

	A duration for the registration, in milliseconds — after this
period, the registration automatically lapses. A value of -1 means
the registration lasts until you manually remove it via
removeProximityAlert().

	The PendingIntent to be raised when the device is within the
“target zone” expressed by the position and radius

Note that it is not guaranteed that you will actually receive an
Intent, if there is an interruption in location services, or if the
device is not in the target zone during the period of time the
proximity alert is active. For example, if the position is off by a
bit, and the radius is a little too tight, the device might only skirt
the edge of the target zone, or go by so quickly that the device’s
location isn’t sampled while in the target zone.
It is up to you to arrange for an activity or receiver to respond to
the Intent you register with the proximity alert. What you then do
when the Intent arrives is up to you: set up a notification (e.g.,
vibrate the device), log the information to a content provider, post a
message to a Web site, etc. Note that you will receive the Intent
whenever the position is sampled and you are within the target zone
– not just upon entering the zone. Hence, you will get the
Intent several times, perhaps quite a few times depending on the size
of the target zone and the speed of the device’s movement.
Testing… Testing…
The Android emulator does not have the ability to get a fix from GPS,
triangulate your position from cell towers, or identify your location
by some nearby WiFi signal. So, if you want to simulate a moving
device, you will need to have some means of providing mock location
data to the emulator.
You can send location fixes via telnet to an emulator. The port
number is in your emulator’s title bar (usually 5554 for the first
running emulator instance). You can then run:

telnet localhost 5554

to access the Android Console within the emulator. Running the geo fix NNN NNN
command, where NNN NNN is your latitude and longitude, will have the
emulator respond as if those coordinates came from GPS.
Alternative Flavors of Updates
There are more ways to get updates from LocationManager than the versions
of requestLocationUpdates() we have seen so far. There are four major
axes of difference:

	Some versions of requestLocationUpdates() take a Criteria object, having
Android give you fixes based on the best-available provider given the requirements
stipulated in the Criteria

	Some versions of requestLocationUpdates() take a Looper as a parameter,
allowing you to receive updates on a background HandlerThread instead of the main
application thread

	Some versions of requestLocationUpdates() take a PendingIntent which will
be executed, instead of calling your LocationListener

	There are a few flavors of requestSingleUpdate(), which, as the name suggests,
gives you just one location fix, rather than a stream until you remove the request
for updates

For the Criteria-flavored versions of requestLocationUpdates() and
requestSingleUpdate(), bear in mind that your code will still crash if there are
no possible providers for your Criteria. For example, even if you use an empty
Criteria object (for maximum possible matches), but GPS is disabled and the
device lacks telephony (e.g., a tablet), you can get a crash like this one:

02-09 13:29:21.549: E/AndroidRuntime(2236): FATAL EXCEPTION: main
02-09 13:29:21.549: E/AndroidRuntime(2236): java.lang.RuntimeException: Unable to resume activity {com.commonsware.android.mapsv2.location/com.commonsware.android.mapsv2.location.MainActivity}: java.lang.IllegalArgumentException: no providers found for criteria
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.app.ActivityThread.performResumeActivity(ActivityThread.java:2564)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.app.ActivityThread.handleResumeActivity(ActivityThread.java:2607)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2088)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.app.ActivityThread.access$600(ActivityThread.java:134)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1233)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.os.Handler.dispatchMessage(Handler.java:99)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.os.Looper.loop(Looper.java:137)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.app.ActivityThread.main(ActivityThread.java:4699)
02-09 13:29:21.549: E/AndroidRuntime(2236): at java.lang.reflect.Method.invokeNative(Native Method)
02-09 13:29:21.549: E/AndroidRuntime(2236): at java.lang.reflect.Method.invoke(Method.java:511)
02-09 13:29:21.549: E/AndroidRuntime(2236): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:787)
02-09 13:29:21.549: E/AndroidRuntime(2236): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:554)
02-09 13:29:21.549: E/AndroidRuntime(2236): at dalvik.system.NativeStart.main(Native Method)
02-09 13:29:21.549: E/AndroidRuntime(2236): Caused by: java.lang.IllegalArgumentException: no providers found for criteria
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.os.Parcel.readException(Parcel.java:1331)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.os.Parcel.readException(Parcel.java:1281)
02-09 13:29:21.549: E/AndroidRuntime(2236): ... 19 more

Hence, you will still want to use getProviders() or getBestProvider() to ensure
that your Criteria will resolve to something before you try using the
Criteria to actually request fixes.
The Fused Option
Google Play Services — the proprietary API set supported by many Android devices –
offers a fused location provider that simplifies location tracking. This capability
is covered in the next chapter.
Locations and Features
Sometimes, requesting a permission implies that your app requires a certain
hardware feature. For example, having a <uses-permission> element for
the CAMERA permission implies that your app requires a camera. To undo
that requirement, you use a <uses-feature> element, with
android:required="false" to stipulate that you do not necessarily need
the hardware, though you may use it if it is available:

<uses-feature android:name="android.hardware.camera" android:required="false" />

When it comes to the location permissions, the behavior depends on your
targetSdkVersion:

 	Permission
 	targetSdkVersion
 	Implied Feature Requirement

 	ACCESS_FINE_LOCATION
 	<=20
 	
android.hardware.location and android.hardware.location.gps

 	ACCESS_FINE_LOCATION
 	>=21
 	android.hardware.location

 	ACCESS_COARSE_LOCATION
 	<=20
 	
android.hardware.location and android.hardware.location.network

 	ACCESS_COARSE_LOCATION
 	>=21
 	android.hardware.location

In other words, a device with any sort of location technology will
be able to install your app if you request ACCESS_FINE_LOCATION, not
necessarily one with GPS capability.
This leads to two directions for applying <uses-feature> elements to
control this behavior:

	If you can live without location technology, consider having
a <uses-feature> element to say that android.hardware.location
is not required

	If you want to ensure that the device has GPS capability, add a
<uses-feature> element to say that android.hardware.location.gps
is required

The Fused Location Provider
At the 2013 Google I|O conference, Google announced an update to Google Play
Services that offers a “fused location provider”, one that seamlessly uses
all available location data to give you as accurate of a location as possible,
as quickly as possible, with as little power consumption as possible. This
serves as an adjunct to the traditional LocationManager approach for finding
one’s position. The fused location provider has a different API, though one that
is similar in some respects to the LocationManager API. However, this provider
is part of the Play Services SDK, not part of Android itself.
In this chapter, we will examine how to use the fused location provider, in
its latest incarnation, sporting a new API that debuted in 2017.
Prerequisites
This chapter assumes that you have read the preceding chapter
on location-based services, along with that chapter’s
prerequisites.
Why Use the Fused Location Provider?
The traditional recipes for using location providers are a bit complicated,
if you want to maximize results. Simply asking for a GPS fix is not that hard,
but:

	What if GPS is disabled?

	What if GPS signals are unavailable (e.g., the device is indoors)?

	What about the GPS power drain?

The fused location provider is designed to address these sorts of concerns.
Its implementation will blend data from GPS, cell tower triangulation, and
WiFi hotspot proximity to determine the device’s location, without your having
to manually set all of that up. The fused location provider will also take
advantage of sensor data, so it does not try to update your location as frequently
if the accelerometer indicates that you are not moving.
The net result is better location data, delivered more quickly, with (reportedly)
less power consumption.
Why Not Use the Fused Location Provider?
The fused location provider is part of Google Play Services. Google Play Services
is available on hundreds of millions of Android devices. However:

	It is closed source, and so we do not know what the Play Services all do, and
whether anything that it does might be detrimental.

	Play Services is only available on devices that have the Play Store, as opposed
to devices like the Kindle Fire series and many devices in China

If you are aiming to distribute your app solely through the Play Store, relying upon
the Play Services framework is reasonable. If, however, you are distributing through
other channels, you will either need to conditionally use the fused location provider
on devices that offer it, or avoid the fused location provider entirely, falling
back to the traditional LocationManager solution.
Finding Our Location, Once
This section will review the
Location/LocationServices
sample application, which is akin to the Location/Classic sample application
from the previous chapter, revised to use the fused location provider
to get a one-off weather forecast.
Adding Dependencies
Currently, the Play Services SDK is distributed through Google’s Maven repository,
the same as with the Support Library. Most likely, your Android Studio project
is already set up to use that, so all you need is to add an entry in your
dependencies closure that pulls in the com.google.android.gms:play-services-location
artifact:

apply plugin: 'com.android.application'

dependencies {
 implementation 'com.google.android.gms:play-services-location:11.8.0'
 implementation 'com.android.support:support-v4:27.1.0'
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.squareup.retrofit2:converter-gson:2.3.0'
 implementation 'com.squareup.okhttp3:okhttp:3.9.1'
}

android {
 compileSdkVersion 27

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 applicationId 'com.commonsware.android.weather2.fused'
 }
 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
}

(from Location/LocationServices/app/build.gradle)
Deal With Runtime Permissions
As with the Location/Classic sample, we need to handle runtime permissions.
And, as with the Location/Classic sample, we use an AbstractPermissionActivity
to handle all of the permission-related bits, so we can focus on the task at hand.
Confirm Locations Are Available
It is entirely possible that the user has disabled location access on the device.
If so, we are doomed.
Hence, it would be nice to know if we are doomed. Even better would be to ask
the user if they would enable location access, so our app can be moderately less
doomed.
This is possible, but it works a bit like how runtime permissions works, which
means that it is a pain.
As part of our work in onReady() — after we have obtained the location
runtime permission from the user — we create a LocationSettingsRequest
via a Builder:

 LocationSettingsRequest request=new LocationSettingsRequest.Builder()
 .addLocationRequest(LocationRequest.create())
 .build();
 LocationServices.getSettingsClient(this)
 .checkLocationSettings(request)
 .addOnCompleteListener(this::handleSettingsResponse);

(from Location/LocationServices/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
A LocationSettingsRequest makes a request of Play Services
to find out if the location settings on the device matches the requirements
of a supplied LocationRequest. As it turns, we do not have a LocationRequest
elsewhere — we will see that coming up later in this chapter, when we start
requesting periodic location updates. So, we create a fairly basic LocationRequest
via LocationRequest.create() and supply that to the Builder as part
of building the LocationSettingsRequest.
Then, we call LocationServices.getSettingsClient() and ask it to
checkLocationSettings(). We arrange to have a handleSettingsResponse()
method on our activity be called when the settings request has completed,
via addOnCompleteListener() and a Java 8 method reference.
The job of the handleSettingsResponse() method is to either proceed
with requesting the location or asking the user to enable locations:

 private void handleSettingsResponse(Task<LocationSettingsResponse> task) {
 try {
 LocationSettingsResponse response=task.getResult(ApiException.class);
 LocationSettingsStates states=response.getLocationSettingsStates();

 if (states.isLocationPresent() && states.isLocationUsable()) {
 findLocation();
 }
 else {
 unavailable();
 }
 }
 catch (ApiException e) {
 copeWithFailure(e);
 }
 }

(from Location/LocationServices/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
The somewhat strange API that Play Services offers here has us call
getResult() on the supplied Task object, and from there call getLocationSettingsStates()
to get a LocationSettingsStates object. There are three basic possibilities
at this point.
First, we could find out that locations seem to be usable, via checks
of isLocationPresent() and isLocationUsable(). In that case, we can
request our location, which is handled by a findLocation() method that we
will examine shortly.
Second, we could find out that locations are not usable at this point. In that
case, we call an unavailable() method, which just shows a Toast and exits
the activity:

 private void unavailable() {
 Toast.makeText(this, R.string.msg_not_avail, Toast.LENGTH_LONG)
 .show();
 finish();
 }

(from Location/LocationServices/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
The third possibility is that our call to getResult() throws an ApiException.
In that case, we call copeWithFailure() to examine that exception:

 private void copeWithFailure(Exception e) {
 if (e instanceof ResolvableApiException) {
 try {
 ((ResolvableApiException)e).startResolutionForResult(this, REQUEST_RESOLUTION);
 return;
 }
 catch (IntentSender.SendIntentException e1) {
 e=e1;
 }
 }

 Toast.makeText(this, e.getMessage(), Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(), "Exception getting location", e);
 finish();
 }

(from Location/LocationServices/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
If the exception is a ResolvableApiException, then while there is a problem,
it is something that the user can address. Typically, this will be if locations
are not enabled in Settings, as the user can fix that. If that is what
we receive, we call startResolutionForResult() on the ResolvableApiException.
Under the covers, this calls startActivityForResult() to display a Play Services-supplied
activity, typically to ask the user to enable location settings:

[image: Location Settings Dialog]

Figure 830: Location Settings Dialog
If the exception is not a ResolvableApiException, or we run into a problem
calling startResolutionForResult(), we show a Toast and bail out of the activity.
So, that this point, if our activity is still around, either we can findLocation()
or we will be called with onActivityResult(), to find out the results of the
problem-resolution process that we triggered with startResolutionForResult().
onActivityResult() looks at the result code and calls findLocation() or unavailable()
depending on what we got:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==REQUEST_RESOLUTION) {
 isInResolution=false;

 if (resultCode==RESULT_OK) {
 findLocation();
 }
 else {
 unavailable();
 }
 }
 else {
 super.onActivityResult(requestCode, resultCode, data);
 }
 }

(from Location/LocationServices/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
You will notice, though, that we set an isInResolution field to false.
startResolutionForResult() behaves much like requestPermissions() in the
runtime permission system: it displays a dialog-themed activity from another
app. If we undergo a configuration change while that activity is in the foreground,
since our activity is still visible, our activity will be destroyed and recreated.
In that case, we do not want to start this whole process again, as we will wind
up with a second dialog.
So, we use a similar recipe to the one that AbstractPermissionActivity uses
for dealing with requesting permissions when the activity starts up:

	Keep track of whether we are in the process of resolving a problem via
an isInResolution field, initially set to false

	Hold onto that value in the saved instance state Bundle:

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 outState.putBoolean(STATE_IN_RESOLUTION, isInResolution);
 }

(from Location/LocationServices/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)

	Restore that value from the Bundle in onCreate(), and only make
the LocationSettingsRequest if we are not already handling one from a
configuration change:

 @Override
 protected void onReady(Bundle state) {
 if (state!=null) {
 isInResolution=state.getBoolean(STATE_IN_RESOLUTION, false);
 }

 fragment=
 (WeatherFragment)getSupportFragmentManager().findFragmentById(android.R.id.content);

 if (fragment==null) {
 fragment=new WeatherFragment();
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content, fragment).commit();
 }

 if (!isInResolution) {
 isInResolution=true;
 LocationSettingsRequest request=new LocationSettingsRequest.Builder()
 .addLocationRequest(LocationRequest.create())
 .build();
 LocationServices.getSettingsClient(this)
 .checkLocationSettings(request)
 .addOnCompleteListener(this::handleSettingsResponse);
 }
 }

(from Location/LocationServices/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)

	Flip isInResolution back to false when we handle the resolution in
onActivityResult()

And, after all of that, either we will call findLocation() or our activity
will be finished.
Request the Location
So, eventually, we wind up at findLocation():

 private void findLocation() {
 FusedLocationProviderClient client=
 LocationServices.getFusedLocationProviderClient(this);

 client.getLastLocation()
 .addOnCompleteListener(this, this::useResult)
 .addOnFailureListener(this, this::copeWithFailure);
 }

(from Location/LocationServices/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
The Play Services SDK offers a LocationServices class, which has a
getFusedLocationProviderClient() method. This gives us a FusedLocationProviderClient
instance that we can use to find out the current location.
However, calling getLastLocation() on the FusedLocationProviderClient does
not hand over the current location. The Play Services SDK talks to a separate
Play Services Framework app, which in turn handles all of the Play Services work.
That app may or may not be running, and even if it is, there may or may not be
a current location. So, getLastLocation() returns a Task object instead.
The two big things that you can do with a Task is call addOnCompletionListener()
and addOnFailureListener(). The former is called if your request succeeds, and
in this case it gives us a Location via getResult() on the passed-in Task
that we can hand over to the fragment. The
latter is called if there is some unrecoverable problem, where we are handed
an Exception to use to inform the user about what went wrong. In this case,
we are using lambda expressions to replace the OnCompletionListener and
OnFailureListener interfaces.
You will notice that we did not use addOnFailureListener() with the previous Task
usage: the checkLocationSettings() call. There, we just used addOnCompleteListener().
There is nothing stopping you from adding a failure listener there. However, due
to what may be bugs in Play Services, for a recoverable problem (e.g., locations
not enabled), both the completion listener and the failure listener get called.
You might accidentally wind up calling startResolutionForResult() in both
cases, which will give you two dialogs. Since we have to catch the ApiException
in the completion listener anyway, in the checkLocationSettings() scenario
we only use the completion listener.
Both addOnCompletionListener()
and addOnFailureListener() have a few different flavors; in this case, we are using ones that
take an Activity as the first parameter. This causes the Play Services SDK
to pay attention to the activity lifecycle, and if the activity is stopped before
the request is completed, the Play Services SDK will abandon the request.
Using the Location
WeatherFragment has a subset of the original sample’s logic, mostly
focused on fetchForecast() and the work to display the weather forecast.
WeatherFragment itself no longer has any logic to get the location itself –
it relies on the activity to push over the location when it is ready.
Similarly, WeatherFragment is no longer retained. On a configuration change,
the activity and fragment start over from scratch. That is simple but not
the most efficient option. A production app probably has both the location
retrieval and the forecast Web service call be managed by some sort of “repository”
object that is independent of the activity/fragment lifecycle. Coverage
of the repository pattern can be found in the companion volume,
Android’s Architecture Components.
Getting Periodic Locations
Getting periodic location data is only incrementally more complex than is getting
a single update. While this particular sample app does not need periodic updates,
we can still use it to experiment with the API. The
Location/LocationPeriodic
sample application is a clone of the Location/LocationServices sample,
modified to request “periodic” updates… though we will only use the first
one.
Defining a Location Request
Core to both finding out whether we can use the fused location provider,
and later getting location fixes, will be to define a LocationRequest
object. This is a pure POJO, without any ties to any
Context or other existing Play Services SDK objects:

 private LocationRequest buildLocationRequest() {
 return new LocationRequest()
 .setNumUpdates(1)
 .setExpirationDuration(60000)
 .setInterval(5000)
 .setPriority(LocationRequest.PRIORITY_LOW_POWER);
 }

(from Location/LocationPeriodic/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
Here, we indicate that the LocationRequest:

	Only needs to provide us with a single location fix (setNumUpdates(1))

	Can give up automatically if we do not get a location fix within
the first minute (setExpirationDuration(60000))

	Should start working fairly quickly to get us our fix (setInterval(5000))

	Can optimize for power over accuracy (setPriority(LocationRequest.PRIORITY_LOW_POWER))

The setInterval() call may seem odd, given that we are only seeking one fix.
Leaving this out, though, means that you may never get a fix, for unclear reasons.
Also, while we are requesting PRIORITY_LOW_POWER, and we do not need
a particularly accurate fix just to get a weather forecast, we still
request ACCESS_FINE_LOCATION in the manifest. Without this, once again we
seem to never get a fix.
Another issue comes with the expiration value. setExpirationDuration()
calculates the expiration time based on when the LocationRequest
object is created,
not when it is used. If we declared this as a constant with a static initializer,
our LocationRequest would be created when the WeatherDemo class is loaded.
However, if we do not hold the runtime permissions, we cannot request location
updates without user interaction, and that may take some time, which eats
into our requested duration. So, instead, we wait to create the LocationRequest
until we can use it, as we will see shortly.
Requesting Location Updates
We use buildLocationRequest() in the new findLocation() method:

 private void findLocation() {
 request=buildLocationRequest();

 client.requestLocationUpdates(request, cb, Looper.getMainLooper())
 .addOnFailureListener(this, e -> {
 Toast.makeText(this, e.getMessage(), Toast.LENGTH_LONG).show();
 Log.e(getClass().getSimpleName(), "Exception getting location", e);
 });
 }

(from Location/LocationPeriodic/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
We use the same FusedLocationProviderClient object as before. This time,
we call a requestLocationUpdates() method on the FusedLocationProviderClient.
There are two flavors of this method, both taking the LocationRequest as the
first parameter. The flavor that we are using here takes a LocationCallback
and a Looper as the other parameters. The other flavor takes a PendingIntent and
is designed for background use, where your process might not be around at the
time the location request is ready and timely.
The LocationCallback is defined here as a cb field:

 private final LocationCallback cb=new LocationCallback() {
 @Override
 public void onLocationResult(LocationResult locationResult) {
 if (fragment!=null && locationResult.getLastLocation()!=null) {
 fragment.fetchForecast(locationResult.getLastLocation());
 }
 }

 @Override
 public void onLocationAvailability(LocationAvailability avail) {
 super.onLocationAvailability(avail);

 // unused
 }
 };

(from Location/LocationPeriodic/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
In onLocationResult(), we get a LocationResult, rather than a simple Location
object as we did before. Regardless, we can get that Location via getLastLocation().
If we have our fragment and we have our location, we tell the fragment to fetch
the forecast for that location. The onLocationAvailability() method would let
us know if our ability to obtain locations changes (e.g., user disables GPS); for
this sample, we ignore that.
The Looper indicates the thread on which we want to receive the onLocationResult()
call. In this case, we want to get that call on the main application thread,
so we use Looper.getMainLooper() to get the Looper tied to that thread.
Otherwise, we could fork a separate HandlerThread and use its Looper to get
calls delivered on that particular thread.
If you call requestLocationUpdates(), you also need to call removeLocationUpdates()
passing in the same LocationCallback object (or an equivalent PendingIntent
to the original one, if you used that flavor of requestLocationUpdates()).
In this case, we do that in onStop(), and we re-request location updates in
onStart() if we have our FusedLocationProviderClient object already:

 @Override
 protected void onStart() {
 super.onStart();

 if (client!=null && request==null) {
 findLocation();
 }
 }

 @Override
 protected void onStop() {
 client.removeLocationUpdates(cb);
 request=null;

 super.onStop();
 }

(from Location/LocationPeriodic/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)
We use the request object as a flag to indicate whether or not we need to
request the updates. For example, if onReady() is triggered as a part
of onCreate(), we will have requested location updates already by the time
onStart() is called.
As before, this sample app is less-than-optimal in its handling of configuration
changes. Everything works, but we wind up re-requesting location updates
on each configuration change.
Working with the Clipboard
Being able to copy and paste is something that mobile device users
seem to want almost as much as their desktop brethren. Most of the
time, we think of this as copying and pasting text, but one could
copy and paste other things, such as Uri values pointing to more
elaborate forms of content.
In this chapter, we will explore how to work with the modern clipboard APIs.
Here, “modern” refers to android.content.ClipboardManager. Android
1.x and 2.x used android.text.ClipboardManager, which still exists in
the Android SDK for backwards-compatibility reasons. However, most modern
development should use android.content.ClipboardManager.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Working with the Clipboard
ClipboardManager can be obtained via a call to getSystemService() on
any handy Context.
The old Android 1.x/2.x API was dominated by three methods, all focused on
plain text:

	
setText(), to put text on the clipboard

	
hasText(), to indicate if the clipboard has something on it

	
getText(), to retrieve the text on the clipboard

Those methods still exist, but they have been deprecated as of API Level 11.
Their replacements are:

	
setPrimaryClip(), to put something on the clipboard

	
hasPrimaryClip(), to indicate if the clipboard has something on it

	
getPrimaryClip(), to retrieve something from the clipboard

Here, the “something” winds up being in the form of ClipData objects, which
can hold:

	plain text

	a Uri (e.g., to a piece of music)

	an Intent

The Uri means that you can put anything on the clipboard that can
be referenced by a Uri… and if there is nothing in Android that
lets you reference some data via a Uri, you can invent your own
content provider to handle that chore for you. Furthermore, a single
ClipData can actually hold as many of these as you want, each
represented as individual ClipData.Item objects. As such, the
possibilities are endless.
There are static factory methods on ClipData, such as newUri(),
that you can use to create your ClipData objects. In fact, that is
what we use in the
SystemServices/ClipMusic
sample project and the
MusicClipper activity.
MusicClipper has the classic two-big-button layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:onClick="pickMusic"
 />
 <Button android:id="@+id/view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:text="Play"
 android:onClick="playMusic"
 />
</LinearLayout>

(from SystemServices/ClipMusic/app/src/main/res/layout-land/main.xml)

[image: The Music Clipper main screen]

Figure 831: The Music Clipper main screen
In onCreate(), we get our hands on our ClipboardManager system service:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 clipboard=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
 }

(from SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java)
Tapping the “Pick” button will let you pick a piece of music,
courtesy of the pickMusic() method wired to that Button object:

 public void pickMusic(View v) {
 Intent i=new Intent(Intent.ACTION_GET_CONTENT);

 i.setType("audio/*");
 startActivityForResult(i, PICK_REQUEST);
 }

(from SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java)
Here, we tell Android to let us pick a piece of music from any
available audio MIME type (audio/*). Fortunately, Android has an
activity that lets us do that:

[image: The XOOM tablets music track picker]

Figure 832: The XOOM tablet’s music track picker
We get the result in onActivityResult(), since we used
startActivityForResult() to pick the music. There, we package up
the content:// Uri to the music into a ClipData object and put
it on the clipboard:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == PICK_REQUEST) {
 if (resultCode == RESULT_OK) {
 ClipData clip=
 ClipData.newUri(getContentResolver(), "Some music",
 data.getData());

 try {
 clipboard.setPrimaryClip(clip);
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(), "Exception clipping Uri", e);
 Toast.makeText(this, "Exception: " + e.getMessage(),
 Toast.LENGTH_SHORT).show();
 }
 }
 }
 }

(from SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java)
Note that there is a significant bug in Android 4.3 that, until it is
fixed, will require you to do a bit more error-handling with your clipboard
operations. That is why we have our setPrimaryClip() call wrapped in a try/catch
blog, even though setPrimaryClip() does not throw a checked exception.
The rationale for this will be discussed later in this chapter.
The catch with rich data on the clipboard is that somebody has to
know about the sort of information you are placing on the clipboard.
Eventually, the Android development community will work out common
practices in this area. Right now, though, you can certainly use it
within your own application (e.g., clipping a note and pasting it
into another folder).
Since putting ClipData onto the clipboard involves a call to
setPrimaryClip(), it should not be surprising that the reverse
operation — getting a ClipData from the clipboard —
uses getPrimaryClip(). However, since you do not know where this
clip came from, you need to validate that it has what you expect and
to let the user know when the clipboard contents are not something
you can leverage.
The “Play” button in our UI is wired to a playMusic() method. This
will only work when we have pasted a Uri ClipData to the
clipboard pointing to a piece of music. Since we cannot be sure that
the user has done that, we have to sniff around:

 public void playMusic(View v) {
 ClipData clip=clipboard.getPrimaryClip();

 if (clip == null) {
 Toast.makeText(this, "There is no clip!", Toast.LENGTH_LONG)
 .show();
 }
 else {
 ClipData.Item item=clip.getItemAt(0);
 Uri song=item.getUri();

 if (song != null
 && getContentResolver().getType(song).startsWith("audio/")) {
 startActivity(new Intent(Intent.ACTION_VIEW, song));
 }
 else {
 Toast.makeText(this, "There is no song!", Toast.LENGTH_LONG)
 .show();
 }
 }
 }

(from SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java)
First, there may be nothing on the clipboard, in which case the
ClipData returned by getPrimaryClip() would be null. Or, there
may be stuff on the clipboard, but it may not have a Uri associated
with it (getUri() on ClipData). Even then, the Uri may point to
something other than music, so even if we get a Uri, we need to use
a ContentResolver to check the MIME type
(getContentResolver().getType()) and make sure it seems like it is
music (e.g., starts with audio/). Then, and only then, does it make
sense to try to start an ACTION_VIEW activity on that Uri and
hope that something useful happens. Assuming you clipped a piece of
music with the “Pick” button, “Play” will kick off playback of that
song.
ClipData and Drag-and-Drop
API Level 11 also introduced Android’s first built-in drag-and-drop
framework. One might expect that this would be related entirely to
View and ViewGroup objects and have nothing to do with the
clipboard. In reality, the drag-and-drop framework leverages
ClipData to say what it is that is being dragged and dropped. You
call startDrag() on a View, supplying a ClipData object, along
with some objects to help render the “shadow” that is the visual
representation of this drag operation. A View that can receive
objects “dropped” via drag-and-drop needs to register an
OnDragListener to receive drag events as the user slides the shadow
over the top of the View in question. If the user lifts their finger,
thereby dropping the shadow, the recipient View will get an
ACTION_DROP drag event, and can get the ClipData out of the event.
The chapter on drag-and-drop goes into this in much
greater detail.
Monitoring the Clipboard
API Level 11 added the capability for an app to monitor what is put on
the clipboard, including things put on the clipboard by other apps.
This is a somewhat esoteric feature, but one that perhaps has some valid
use cases. Mostly, it would be used by something not in the foreground,
since the foreground activity is probably what is adding material to the
clipboard. A service, or perhaps an activity that has moved to the background,
could use this feature to find out about new clipboard entries.
To monitor the clipboard, you simply call addPrimaryClipChangedListener()
on ClipboardMonitor, passing an implementation of an OnPrimaryClipChangedListener
interface. That object, in turn, will be called with onPrimaryClipChanged()
whenever there is a new clipboard entry. Later on, you can call
removePrimaryClipChangedListener() to stop being notified about new clipboard
entries.
For example, here is MainActivity from the
SystemServices/ClipboardMonitor
sample project:

package com.commonsware.android.clipmon;

import android.app.Activity;
import android.content.ClipboardManager;
import android.content.ClipboardManager.OnPrimaryClipChangedListener;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity implements
 OnPrimaryClipChangedListener {
 private ClipboardManager cm=null;
 private TextView lastClip=null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 lastClip=(TextView)findViewById(R.id.last_clip);
 cm=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
 }

 @Override
 public void onStart() {
 super.onStart();
 cm.addPrimaryClipChangedListener(this);
 }

 @Override
 public void onStop() {
 cm.removePrimaryClipChangedListener(this);
 super.onStop();
 }

 @Override
 public void onPrimaryClipChanged() {
 lastClip.setText(cm.getPrimaryClip().getItemAt(0)
 .coerceToText(this));
 }
}

(from SystemServices/ClipboardMonitor/app/src/main/java/com/commonsware/android/clipmon/MainActivity.java)
Here, we:

	Retrieve the ClipboardManager in onCreate()

	Register for clipboard events via addPrimaryClipChangedListener() in
onStart()

	Unregister from clipboard events via removePrimaryClipChangedListener()
in onStop()

	Convert the first item (getItemAt(0)) of the primary clip (getPrimaryClip())
to text (coerceToText(this)), and stuff the results into a TextView

In theory, this activity will display new clipboard entries as they arrive.
In practice, it will only do so while it is in the foreground, and so it would
require something in the background to add something to the clipboard. That
is not a particularly useful example… except to test the bug outlined in the
next section.
The Android 4.3 Clipboard Bug
AndroidPolice
reported on
a fairly unpleasant bug in Android 4.3.
While this bug was fixed in Android 4.4, there is little evidence that
Google will be releasing a fix for Android 4.3 devices, which means that this
problem will plague developers into 2015 and perhaps beyond.
The bug stems from the clipboard monitoring facility.
If an app has used addPrimaryClipChangedListener(), any other app
that tries to paste to the clipboard will crash.
The first crash will be a SecurityException:

java.lang.SecurityException: uid ... does not have android.permission.UPDATE_APP_OPS_STATS

The second and subsequent times this occurs on the device, it will be
an IllegalStateException:

java.lang.IllegalStateException: beginBroadcast() called while already in a broadcast

The only resolution is to unregister the clipboard listener… and hope
that the first crash has not occurred. If it has, a
full reboot of the device is required to fix the broken system.
If Your App Monitors the Clipboard…
If you have a component, such as a long-running service, that is
monitoring the clipboard,
please ensure that the users have an easy way to stop that behavior,
even if it means stopping your whole service. While this may mean that
your app has seriously degraded functionality, the alternative
is that the user has to keep rebooting their device while your app
is installed.
If Your App Pastes to the Clipboard…
If you are pasting to the clipboard, with setPrimaryClip() or the
older setText(), you will want to throw a try/catch block
around those calls, so you catch the RuntimeExceptions that will
be thrown.
However, you will need to tell your users that they are now fairly
well screwed, needing to both find the clipboard-monitoring app
and learn how to control it (or uninstall/disable it, if needed),
plus reboot their device, in order to paste to the clipboard again.
Telephony
Many, if not most, Android devices will be phones. As such, not only
will users be expecting to place and receive calls using Android, but
you will have the opportunity to help them place calls, if you wish.
Why might you want to?

	Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the
ability to call prospects with a single button click, and without them
having to keep those contacts both in your application and in the
phone’s contacts application

	Maybe you are writing a social networking application, and the
roster of phone numbers that you can access shifts constantly, so
rather than try to “sync” the social network contacts with the phone’s
contact database, you let people place calls directly from your
application

	Maybe you are creating an alternative interface to the existing
contacts system, perhaps for users with reduced motor control (e.g.,
the elderly), sporting big buttons and the like to make it easier for
them to place calls

Whatever the reason, Android has the means to let you manipulate the
phone just like any other piece of the Android system.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on working with multiple activities.
Report To The Manager
To get at much of the phone API, you use the TelephonyManager. That
class lets you do things like:

	Determine if the phone is in use via getCallState(), with return
values of CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING
(call requested but still being connected), and CALL_STATE_OFFHOOK
(call in progress)

	Find out the SIM ID (IMSI) via getSubscriberId()

	Find out the phone type (e.g., GSM) via getPhoneType() or find out
the data connection type (e.g., GPRS, EDGE) via getNetworkType()

You Make the Call!
You can also initiate a call from your application, such as from a
phone number you obtained through your own Web service. To do this,
simply craft an ACTION_DIAL Intent with a Uri of the form
tel:NNNNN (where NNNNN is the phone number to dial) and use that
Intent with startActivity(). This will not actually dial the phone;
rather, it activates the dialer activity, from which the user can then
press a button to place the call.
For example, let’s look at the
Phone/Dialer
sample application.
Here’s the crude-but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Number to dial:"
 />
 <EditText android:id="@+id/number"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 />
 </LinearLayout>
 <Button android:id="@+id/dial"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Dial It!"
 android:onClick="dial"
 />
</LinearLayout>

(from Phone/Dialer/app/src/main/res/layout/main.xml)
We have a labeled field for typing in a phone number, plus a button for
dialing said number.
The Java code simply launches the dialer using the phone number from
the field:

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class DialerDemo extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 }

 public void dial(View v) {
 EditText number=(EditText)findViewById(R.id.number);
 String toDial="tel:"+number.getText().toString();

 startActivity(new Intent(Intent.ACTION_DIAL, Uri.parse(toDial)));
 }
}

(from Phone/Dialer/app/src/main/java/com/commonsware/android/dialer/DialerDemo.java)
The activity’s own UI is not that impressive:

[image: The DialerDemo sample application, as initially launched]

Figure 833: The DialerDemo sample application, as initially launched
However, the dialer you get from clicking the dial button is better,
showing you the number you are about to dial:

[image: The Android Dialer activity, as launched from DialerDemo]

Figure 834: The Android Dialer activity, as launched from DialerDemo
No, Really, You Make the Call!
The good news is that ACTION_DIAL works without any special
permissions. The bad news is that it only takes the user to the Dialer
– the user still has to take action (pressing the green call
button) to actually place the phone call.
An alternative approach is to use ACTION_CALL instead of
ACTION_DIAL. Calling startActivity() on an ACTION_CALL Intent
will immediately place the phone call, without any other UI steps
required. However, you need the CALL_PHONE
permission in order to use ACTION_CALL.
Working With SMS

Oh, what a tangled web we weave

When first we practice to work with SMS on Android, Eve

(with apologies to Sir Walter Scott)
Android devices have had SMS capability since Android 1.0. However,
from a programming standpoint, for years, SMS and Android were
intensely frustrating. When the Android SDK was developed, some
aspects of working with SMS were put into the SDK, while others
were held back. This, of course, did not stop many an intrepid
developer from working with the undocumented, unsupported SMS
APIs, with varying degrees of success.
After much wailing and gnashing of teeth by developers,
Google finally formalized
a more complete SMS API in Android 4.4. However, this too has its
issues, where some apps that worked fine with the undocumented API
will now fail outright, in irreparable fashion, on Android 4.4+.
This chapter starts with the one thing you can do reasonably reliably
across Android device versions –
send an SMS, either directly or by invoking the user’s choice
of SMS client. The chapter then examines how to monitor or receive
SMS messages (both pre-4.4 and 4.4+) and the SMS-related ContentProvider
(both pre-4.4 and 4.4+).
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents.
One of the samples uses the ContactsContract provider,
so reading that chapter will help you understand that particular sample.
Sending Out an SOS, Give or Take a Letter
While much of Android’s SMS capabilities are not in the SDK, sending
an SMS is. You have two major choices for doing this:

	Invoke the user’s choice of SMS client application, so they can
compose a message, track its progress, and so forth using that tool

	Send the SMS directly yourself, bypassing any existing client

Which of these is best for you depends on what your desired user
experience is. If you are composing the message totally within your
application, you may want to just send it. However, as we will see,
that comes at a price: an extra permission.
Sending Via the SMS Client
Sending an SMS via the user’s choice of SMS client is very similar to
the use of ACTION_SEND described
elsewhere in this book. You craft an appropriate Intent,
then call
startActivity() on that Intent to bring up an SMS client (or
allow the user to choose between clients).
The Intent differs a bit from the ACTION_SEND example:

	You use ACTION_SENDTO, rather than ACTION_SEND

	Your Uri needs to begin with smsto:, followed by the mobile
number you want to send the message to

	Your text message goes in an sms_body extra on the Intent

For example, here is a snippet of code from the
SMS/Sender
sample project:

 Intent sms=new Intent(Intent.ACTION_SENDTO,
 Uri.parse("smsto:"+c.getString(2)));

 sms.putExtra("sms_body", msg.getText().toString());

 startActivity(sms);

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java)
Here, our phone number is coming out of the third column of a
Cursor, and the text message is coming from an EditText —
more on how this works later in this section, when we review the
Sender sample more closely.
Sending SMS Directly
If you wish to bypass the UI and send an SMS directly, you can do so
through the SmsManager class, in the android.telephony package.
Unlike most Android classes ending in Manager, you obtain an
SmsManager via a static getDefault() method on the SmsManager
class. You can then call sendTextMessage(), supplying:

	The phone number to send the text message to

	The “service center” address — leave this null unless you
know what you are doing

	The actual text message

	A pair of PendingIntent objects to be executed when the SMS has
been sent and delivered, respectively

If you are concerned that your message may be too long, use
divideMessage() on SmsManager to take your message and split it
into individual pieces. Then, you can use
sendMultipartTextMessage() to send the entire ArrayList of
message pieces.
For this to work, your application needs to hold the SEND_SMS
permission, via a child element of your <manifest> element in your
AndroidManifest.xml file.
For example, here is code from Sender that uses SmsManager to
send the same message that the previous section sent via the user’s
choice of SMS client:

 SmsManager
 .getDefault()
 .sendTextMessage(c.getString(2), null,
 msg.getText().toString(),
 null, null);

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java)
Inside the Sender Sample
The Sender example application is fairly straightforward, given the
aforementioned techniques.
The manifest has both the SEND_SMS and READ_CONTACTS permissions,
because we want to allow the user to pick a mobile phone number from
their list of contacts, rather than type one in by hand:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.sms.sender"
 android:installLocation="preferExternal"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.READ_CONTACTS"/>
 <uses-permission android:name="android.permission.SEND_SMS"/>

 <uses-sdk
 android:minSdkVersion="7"
 android:targetSdkVersion="11"/>

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name="Sender"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from SMS/Sender/app/src/main/AndroidManifest.xml)
If you noticed the android:installLocation attribute in the root
element, that is to allow this application to be installed onto
external storage, such as an SD card.
The layout has a Spinner (for a drop-down of available mobile phone
numbers), a pair of RadioButton widgets (to indicate which way to
send the message), an EditText (for the text message), and a “Send”
Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
>
 <Spinner android:id="@+id/spinner"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
 <RadioGroup android:id="@+id/means"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 >
 <RadioButton android:id="@+id/client"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="Via Client" />
 <RadioButton android:id="@+id/direct"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Direct" />
 </RadioGroup>
 <EditText
 android:id="@+id/msg"
 android:layout_width="match_parent"
 android:layout_height="0px"
 android:layout_weight="1"
 android:singleLine="false"
 android:gravity="top|left"
 />
 <Button
 android:id="@+id/send"
 android:text="Send!"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="sendTheMessage"
 />
</LinearLayout>

(from SMS/Sender/app/src/main/res/layout/main.xml)
Sender uses the same technique for obtaining mobile phone numbers
from our contacts as is seen in the
chapter on contacts. To support Android 1.x and Android 2.x
devices, we implement an abstract class and two concrete
implementations, one for the old API and one for the new. The
abstract class then has a static method to get at an instance
suitable for the device the code is running on:

package com.commonsware.android.sms.sender;

import android.app.Activity;
import android.os.Build;
import android.widget.SpinnerAdapter;

abstract class ContactsAdapterBridge {
 abstract SpinnerAdapter buildPhonesAdapter(Activity a);

 public static final ContactsAdapterBridge INSTANCE=buildBridge();

 private static ContactsAdapterBridge buildBridge() {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk<5) {
 return(new OldContactsAdapterBridge());
 }

 return(new NewContactsAdapterBridge());
 }
}

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/ContactsAdapterBridge.java)
The Android 2.x edition uses ContactsContract to find just the
mobile numbers:

package com.commonsware.android.sms.sender;

import android.app.Activity;
import android.database.Cursor;
import android.provider.ContactsContract.Contacts;
import android.provider.ContactsContract.CommonDataKinds.Phone;
import android.widget.SpinnerAdapter;
import android.widget.SimpleCursorAdapter;

class NewContactsAdapterBridge extends ContactsAdapterBridge {
 SpinnerAdapter buildPhonesAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts._ID,
 Contacts.DISPLAY_NAME,
 Phone.NUMBER
 };
 String[] ARGS={String.valueOf(Phone.TYPE_MOBILE)};
 Cursor c=a.managedQuery(Phone.CONTENT_URI,
 PROJECTION, Phone.TYPE+"=?",
 ARGS, Contacts.DISPLAY_NAME);

 SimpleCursorAdapter adapter=new SimpleCursorAdapter(a,
 android.R.layout.simple_spinner_item,
 c,
 new String[] {
 Contacts.DISPLAY_NAME
 },
 new int[] {
 android.R.id.text1
 });

 adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);

 return(adapter);
 }
}

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/NewContactsAdapterBridge.java)
… while the Android 1.x edition uses the older Contacts provider
to find the mobile numbers:

package com.commonsware.android.sms.sender;

import android.app.Activity;
import android.database.Cursor;
import android.provider.Contacts;
import android.widget.SimpleCursorAdapter;
import android.widget.SpinnerAdapter;

@SuppressWarnings("deprecation")
class OldContactsAdapterBridge extends ContactsAdapterBridge {
 SpinnerAdapter buildPhonesAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts.Phones._ID,
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 };
 String[] ARGS={String.valueOf(Contacts.Phones.TYPE_MOBILE)};
 Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,
 PROJECTION,
 Contacts.Phones.TYPE+"=?", ARGS,
 Contacts.Phones.NAME);

 SimpleCursorAdapter adapter=new SimpleCursorAdapter(a,
 android.R.layout.simple_spinner_item,
 c,
 new String[] {
 Contacts.Phones.NAME
 },
 new int[] {
 android.R.id.text1
 });

 adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);

 return(adapter);
 }
}

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/OldContactsAdapterBridge.java)
For more details on how those providers work, please see the
chapter on contacts.
The activity then loads up the Spinner with the appropriate list of
contacts. When the user taps the Send button, the sendTheMessage()
method is invoked (courtesy of the android:onClick attribute in the
layout). That method looks at the radio buttons, sees which one is
selected, and routes the text message accordingly:

package com.commonsware.android.sms.sender;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.telephony.SmsManager;
import android.view.View;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.Spinner;

public class Sender extends Activity {
 Spinner contacts=null;
 RadioGroup means=null;
 EditText msg=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 contacts=(Spinner)findViewById(R.id.spinner);

 contacts.setAdapter(ContactsAdapterBridge
 .INSTANCE
 .buildPhonesAdapter(this));

 means=(RadioGroup)findViewById(R.id.means);
 msg=(EditText)findViewById(R.id.msg);
 }

 public void sendTheMessage(View v) {
 Cursor c=(Cursor)contacts.getSelectedItem();

 if (means.getCheckedRadioButtonId()==R.id.client) {
 Intent sms=new Intent(Intent.ACTION_SENDTO,
 Uri.parse("smsto:"+c.getString(2)));

 sms.putExtra("sms_body", msg.getText().toString());

 startActivity(sms);
 }
 else {
 SmsManager
 .getDefault()
 .sendTextMessage(c.getString(2), null,
 msg.getText().toString(),
 null, null);
 }
 }
}

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java)
SMS Sending Limitations
Apps running on Android 1.x and 2.x devices are limited to sending 100 SMS messages an
hour, before the user starts getting prompted with each SMS message request to confirm
that they do indeed wish to send it.
Apps running on Android 4.x devices, the limits are now 30 SMS messages in 30 minutes,
according to some source code analysis by Al Sutton.
Monitoring and Receiving SMS
For the purposes of this section, “monitoring” refers to the ability
to inspect incoming SMS messages, including reading their contents.
In contrast, “receiving” SMS messages is actually consuming the message
and storing it somewhere for the user to use.
As it turns out, “monitoring” and “receiving” are much the same thing
prior to Android 4.4, but are significantly different in the new API
made available in Android 4.4
The Undocumented, Unsupported, Pre-Android 4.4 Way
It is possible for an application to monitor or receive an incoming SMS
message… if you are willing to listen on the undocumented
android.provider.Telephony.SMS_RECEIVED broadcast Intent. That is
sent by Android whenever an SMS arrives, and it is up to an
application to implement a BroadcastReceiver to respond to that
Intent and do something with the message. The Android open source
project has such an application — Messaging — and device
manufacturers can replace it with something else.
Note that to listen for this broadcast, your app must hold the RECEIVE_SMS
permission.
The BroadcastReceiver can then turn around and use the SmsMessage
class, in the android.telephony package, to get at the message
itself, through the following undocumented recipe:

	Given the received Intent (intent), call
intent.getExtras().get("pdus") to get an Object array representing
the raw portions of the message

	For each of those “pdus” objects, call
SmsMessage.createFromPdu() to convert the Object into an
SmsMessage — though to make this work, you need to cast the
Object to a byte array as part of passing it to the createFromPdu()
static method

The resulting SmsMessage object gets you access to the text of the
message, the sending phone number, etc.
The SMS_RECEIVED broadcast Intent is broadcast a bit differently
than most others in Android. It is an “ordered broadcast”, meaning
the Intent will be delivered to one BroadcastReceiver at a time.
This has two impacts of note:

	In your receiver’s <intent-filter> element, you can have an
android:priority attribute. Higher priority values get access to
the broadcast Intent earlier than will lower priority values. The
standard Messaging application has the default priority
(undocumented, appears to be 0 or 1), so you can arrange to get
access to the SMS before the application does.

	Your BroadcastReceiver can call abortBroadcast() on itself to
prevent the Intent from being broadcast to other receivers of lower
priority. In effect, this causes your receiver to consume the
SMS — the Messaging application will not receive it. So, aborting
the broadcast means that your app chose to “receive” the SMS; not
aborting the broadcast means that your app is merely “monitoring” the
SMS messages that come in.

However, just because the Messaging application has the default
priority does not mean all SMS clients will, and so you cannot
reliably intercept SMS messages this way. That, plus the undocumented
nature of all of this, means that applications you write to receive
SMS messages are likely to be fragile in production, breaking on
various devices due to device manufacturer-installed apps,
third-party apps, or changes to Android itself… such as the changes
that came about in Android 4.4.
The Android 4.4+ Way: Monitoring SMS
The code described above still works on Android 4.4, though the
formerly-hidden android.provider.Telephony class is now part of
the SDK.
The biggest difference, though, is that even if you call abortBroadcast(),
the user’s chosen SMS messaging client will still receive the message.
It is not possible for an app listening for SMS_RECEIVED broadcasts
to prevent the user’s chosen SMS messaging client from receiving those
same messages. This is a substantial change, one that will break or
make obsolete many Android applications.
Regardless, if monitoring SMS fits your needs, SMS_RECEIVED can do it.
So, for example, the
SMS/Monitor
sample project implements a BroadcastReceiver for SMS_RECEIVED, one
with slightly elevated priority:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.commonsware.android.sms.monitor" android:versionCode="1" android:versionName="1.0">

 <supports-screens android:largeScreens="true" android:normalScreens="true" android:smallScreens="false"/>

 <uses-permission android:name="android.permission.RECEIVE_SMS"/>

 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="19"/>

 <application android:icon="@drawable/ic_launcher" android:label="@string/app_name">
 <receiver android:name="Monitor" android:permission="android.permission.BROADCAST_SMS">
 <intent-filter android:priority="2">
 <action android:name="android.provider.Telephony.SMS_RECEIVED"/>
 </intent-filter>
 </receiver>

 <activity android:name="BootstrapActivity" android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from SMS/Monitor/app/src/main/AndroidManifest.xml)
You will notice that the BroadcastReceiver not only has the slightly-elevated
priority (android:priority="2"), but also a required permission
(android:permission="android.permission.BROADCAST_SMS"). Only apps that
hold this permission can send this broadcast in a way that will be picked
up by the receiver. Since this permission can only be held by the device
firmware, you are protected from “spoof” SMS messages from rogue apps on
the device, sending the SMS_RECEIVED themselves.
The app also has a do-nothing activity, solely there to activate
the manifest-registered BroadcastReceiver, which will not work until
some component of the app is manually started.
The bulk of the business logic — what little there is of it — lies in the
Monitor class that is the BroadcastReceiver:

package com.commonsware.android.sms.monitor;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.telephony.SmsMessage;
import android.util.Log;

public class Monitor extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Object[] rawMsgs=(Object[])intent.getExtras().get("pdus");

 for (Object raw : rawMsgs) {
 SmsMessage msg=SmsMessage.createFromPdu((byte[])raw);

 if (msg.getMessageBody().toUpperCase().contains("SEKRIT")) {
 Log.w("SMS:"+msg.getOriginatingAddress(),
 msg.getMessageBody());

 abortBroadcast();
 }
 }
 }
}

(from SMS/Monitor/app/src/main/java/com/commonsware/android/sms/monitor/Monitor.java)
Here, we retrieve the raw messages from the Intent extra, iterate over
them, and convert each to an SmsMessage. Those that have the magic word
in their message body will result in the message being dumped to Logcat, plus
the broadcast is aborted. On Android 4.3 and below, this will prevent
lower-priority receivers from receiving the SMS. On Android 4.4, the abort
request is ignored.
The Android 4.4+ Way: Receiving SMS
Receiving SMS messages, on Android 4.4+, means that you are implementing
an SMS client application, one the user might be willing to set as
their default SMS client application in Settings. There are other sorts
of apps that may temporarily want to be the default SMS client,
such as a backup/restore utility, as only the default SMS client
will be able to work with the SMS ContentProvider suite, such as the
inbox.
Receiving the Broadcasts
The default SMS client should be able to handle both SMS and MMS. This
is a problem, as while supporting SMS is poorly documented, supporting
MMS has almost no documentation whatsoever. However, unless the default
SMS client handles MMS, nobody else can (at least, while saving MMS
details to the ContentProvider suite.
Hence, Google is expecting you to have two BroadcastReceivers
registered in the manifest: one for SMS and one for MMS. Unfortunately,
these cannot readily be combined into a single receiver, because each
has its own permission requirement:

	the SMS receiver should require senders to hold BROADCAST_SMS

	the MMS receiver should require senders to hold BROADCAST_WAP_PUSH

In practice, probably both are held by the OS component that is sending
these broadcasts in response to incoming messages of either type.
In principle, though, they could be separate, and an individual
<receiver> can only specify one such permission.
The Android documentation
illustrates the <receiver> elements that
Google expects your SMS client application to have:

<!-- BroadcastReceiver that listens for incoming SMS messages -->
<receiver android:name=".SmsReceiver"
 android:permission="android.permission.BROADCAST_SMS">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_DELIVER" />
 </intent-filter>
</receiver>

<!-- BroadcastReceiver that listens for incoming MMS messages -->
<receiver android:name=".MmsReceiver"
 android:permission="android.permission.BROADCAST_WAP_PUSH">
 <intent-filter>
 <action android:name="android.provider.Telephony.WAP_PUSH_DELIVER" />
 <data android:mimeType="application/vnd.wap.mms-message" />
 </intent-filter>
</receiver>

Notice that the MMS receiver has both an <action> and a <data> element
in its <intent-filter>, which is rather unusual.
On the SMS side, the Intent you receive should be the same as the
Intent you would receive for the SMS_RECEIVED broadcast, where you can
decode the message(s) and deal with them as you see fit. On the MMS side…
there is little documentation.
Other Expectations
Google expects the default SMS client to be able to handle ACTION_SEND
and ACTION_SENDTO for relevant schemes:

<!-- Activity that allows the user to send new SMS/MMS messages -->
<activity android:name=".ComposeSmsActivity" >
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <action android:name="android.intent.action.SENDTO" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="sms" />
 <data android:scheme="smsto" />
 <data android:scheme="mms" />
 <data android:scheme="mmsto" />
 </intent-filter>
</activity>

That may not be terribly surprising. What is surprising is that Google
also expects you to have an exported service for handling
“quick response” requests. These requests come when the user receives a
phone call and taps on an icon to reply with a text message, rather than
accept the call. In those cases, Android will invoke a service in the
default SMS client, with an action of
android.intent.action.RESPOND_VIA_MESSAGE. The Intent that you receive
in onStartCommand() (or onHandleIntent(), if you elect to use an
IntentService) will have an EXTRA_TEXT and optionally an EXTRA_SUBJECT
as extras, representing the message to be sent. The Uri in the Intent
will indicate the intended recipient of the message. Your job is to
use SmsManager to actually send the message.
The Android documentation cites this as the relevant <service> element:

<!-- Service that delivers messages from the phone "quick response" -->
<service android:name=".HeadlessSmsSendService"
 android:permission="android.permission.SEND_RESPOND_VIA_MESSAGE"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.RESPOND_VIA_MESSAGE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="sms" />
 <data android:scheme="smsto" />
 <data android:scheme="mms" />
 <data android:scheme="mmsto" />
 </intent-filter>
</service>

Note:

	The <service> requires that the sender have the SEND_RESPOND_VIA_MESSAGE
permission, to reduce spoofing

	The android:exported="true" shown in the sample should be superfluous,
as since the <service> has an <intent-filter], it should be exported
by default

	The <category>, and possibly the <data>, elements may be erroneous…
and since the author cannot find anything in the OS that uses
RESPOND_VIA_MESSAGE, the author cannot validate that these elements should
be here or represent copy-and-paste errors in the documentation

Handling Both Receive Options
If you want to support receiving SMS using both the legacy approach and
the Android 4.4+ approach, you can have two BroadcastReceiver implementations,
one for android.provider.Telephony.SMS_RECEIVED and one for
android.provider.Telephony.SMS_DELIVER. However, you will only need the
latter one on Android 4.4, and by default you would receive both broadcasts.
To handle that, you can define a boolean resource in the res/values-v19/
directory (e.g., isPreKitKat) to be false, with a default definition in
res/values/ of true for the same resource. Then, in your manifest, you
can have android:enabled="@bool/isPreKitKat" on your SMS_RECEIVED
<receiver> element. This will only enable this component on API Level 18
and below, disabling it on API Level 19+.
You can also define a counterpart resource for the positive case
(e.g., @bool/isKitKat), and use that to selectively enable the SMS and MMS
receivers, if desired.
The SMS Inbox
Many users keep their text messages around, at least for a while. These
are stored in an “inbox”, represented by a ContentProvider. How you
work with this ContentProvider — or if you can work with it at all,
varies upon whether you are running on Android 4.4+ or not.
The Undocumented, Unsupported, Pre-Android 4.4 Way
When perusing the Internet, you will find various blog posts and such
referring to the SMS inbox ContentProvider, represented by the
content://sms/inbox Uri.
This ContentProvider is undocumented and is not part of the Android
SDK, because it is not part of the Android OS.
Rather, this ContentProvider is used by the aforementioned
Messaging application, for storing saved SMS messages. And, as noted,
this application may or may not exist on any given Android device. If
a device manufacturer replaces Messaging with their own application,
there may be nothing on that device that responds to that Uri, or
the schemas may be totally different. Plus, Android may well change
or even remove this ContentProvider in future editions of Android.
For all those reasons, developers should not be relying upon this
ContentProvider.
The Android 4.4+ Way
Android 4.4 has exposed a series of ContentProviders, in the
android.provider.Telephony namespace, for storing SMS and MMS messages.
These include:

	the Inbox for received messages

	the Outbox for a log of sent messages

	the Draft for messages that were written but have not yet been sent

	etc.

Some are duplicated, such as separate providers for the SMS inbox versus
the MMS inbox. Some are distinct, such as Sms.Conversations and
Mms.Rate.
All are largely undocumented.
The user’s chosen default SMS client can write to these providers.
Apps with READ_SMS
permission should be able to read from them.
Asking to Change the Default
There are many areas in Android where the user must do two things to use
an app:

	Install the app (from the Play Store or elsewhere)

	Go into Settings (or sometimes elsewhere)
and indicate that a certain capability of the
newly-installed app should become active

You see this with app widgets, input method editors, device administrators,
and many others.
On Android 4.4+, you also see this with SMS/MMS clients. Devices usually
ship with one. If the user wants a replacement, the user must indicate in
Settings that this new SMS/MMS client should be the default, so it can
write to the SMS/MMS ContentProvider suite.
Your app can determine what the default client is by calling
getDefaultSmsPackage() on the Telephony.Sms class. This will return
the package name of the current default client.
If this is not your package, and you would like the user to make you
the default, you can start an activity to request this change:

Intent i = new Intent(Sms.Intents.ACTION_CHANGE_DEFAULT);
i.putExtra(Sms.Intents.EXTRA_PACKAGE_NAME, getPackageName());
startActivity(i);

The EXTRA_PACKAGE_NAME will trigger the UI to ask the user if the user
wishes to change the current default to your package (versus anything else
on the device that might also be a possible SMS/MMS client).
Hence, the recommended flow for a backup/restore app is to:

	Make note of the current default, via getDefaultSmsPackage()

	Request to the user to make you the default, via ACTION_CHANGE_DEFAULT

	Confirm that they did this, via getDefaultSmsPackage()

	If they did, do your backup or restore work

	Request to the user to restore the original default, via ACTION_CHANGE_DEFAULT

SMS and the Emulator
The “Emulator Control” view in DDMS allows you to send fake SMS messages
to a running emulator. This is very useful for light testing.
You can also send fake SMS messages to an emulator via the emulator
console. This can be accessed via telnet, where the console is available
on localhost on your development machine, via the port number that appears
in the title bar of your emulator window (e.g., 5554). In the telnet
session, you can enter sms send [sendingNumber> <txt>, replacing
<sendingNumber> with the phone number of the pretend sender of the SMS,
and replacing <txt> with the text message itself.
SMS Tokens
The changes that Android made in 4.4 to limit who can delete SMS messages
all but eliminated one common bit of app functionality: sending an SMS from
the server to a user’s device to validate that the user’s phone number is
what was expected. This is still possible, but the app can no longer delete
that SMS message, meaning that it will clutter up the user’s SMS inbox.
Android 8.0+ provides “app-specific SMS tokens”, via a createAppSpecificSmsToken()
method on SmsManager. You supply a PendingIntent, and you get a unique
string back. If an SMS is received by the device containing that string, the
PendingIntent is invoked, instead of the message being delivered to the user’s
SMS client.
Hence, phone number validation flow is once again possible:

	Call createAppSpecificSmsToken() on the SmsManager

	Send that token, along with the phone number, to your server

	Have your server trigger an SMS message containing that token, sent to the
device

Your PendingIntent that you gave to createAppSpecificSmsToken() will get
triggered as a result, invoking whatever component that you identified in the
underlying Intent.
The
SMS/Token
sample project demonstrates this flow. It consists of two activities:
one to show you a generated token, and one that will be displayed when that
token is received in an SMS message.
MainActivity is responsible for showing you the token:

package com.commonsware.android.sms.token;

import android.app.Activity;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.telephony.SmsManager;
import android.widget.TextView;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 SmsManager mgr=SmsManager.getDefault();
 String token=mgr.createAppSpecificSmsToken(buildPendingIntent());
 TextView tv=(TextView)findViewById(R.id.text);

 tv.setText(getString(R.string.msg, token));
 }

 private PendingIntent buildPendingIntent() {
 return(PendingIntent.getActivity(this, 1337,
 new Intent(this, ResultActivity.class), 0));
 }
}

(from SMS/Token/app/src/main/java/com/commonsware/android/sms/token/MainActivity.java)
Here, we:

	Get the SmsManager by calling the getDefault() static method

	Build an activity PendingIntent identifying ResultActivity

	Generate an SMS token associated with that PendingIntent

	Display that token as part of a message on the screen

The token itself is not really designed for manual user entry:

[image: Token Sample App, Showing a Token]

Figure 835: Token Sample App, Showing a Token
If another device sends an SMS message containing that token (along with perhaps
other information), ResultActivity will be displayed:

package com.commonsware.android.sms.token;

import android.app.Activity;
import android.app.PendingIntent;
import android.os.Bundle;
import android.provider.Telephony;
import android.telephony.SmsManager;
import android.telephony.SmsMessage;
import android.widget.TextView;

public class ResultActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 TextView tv=(TextView)findViewById(R.id.text);

 for (SmsMessage pdu :
 Telephony.Sms.Intents.getMessagesFromIntent(getIntent())) {
 tv.append(pdu.getDisplayMessageBody());
 }
 }
}

(from SMS/Token/app/src/main/java/com/commonsware/android/sms/token/ResultActivity.java)
The actual SMS message is included in the Intent extras, filled into a copy
of the Intent that you supplied in the PendingIntent. The
getMessagesFromIntent() method on Telephony.Sms.Intents offers a convenient
way to get the actual SmsMessage objects. Here, we assume that they represent
a text message, and we concatenate their messages together to display in a
TextView:

[image: Token Sample App, Showing a Received Message with the Token]

Figure 836: Token Sample App, Showing a Received Message with the Token
Usually, rather than show the token to the user, you will send it programmatically
where it needs to go (e.g., a Web service call). Since the SMS message containing
the token does not wind up in the user’s SMS client, the message containing
the token does not need to be human-readable. It does need to contain the token
verbatim, without any compression, encryption, or other conversions placed upon it.
Also:

	There can only be one outstanding token per app per device. If you call
createAppSpecificSmsToken() twice in succession, the first token will be invalidated
and ignored.

	A token is only good for one message. If you try sending messages to the device
twice with the same token, the second message will be delivered to the user’s
SMS client, rather than invoke your PendingIntent.

	For a demo like this sample app, hardware is not required. You can use the
emulator’s extended controls to send a fake SMS message to the emulator, and
that will go through normal SMS processing, including token analysis.

NFC
NFC, courtesy of high-profile boosters like Google Wallet, is poised
to be a significant new capability in Android devices. While at the
time of this writing, only a handful of Android devices have NFC built in,
other handsets are slated to be NFC-capable in the coming months.
Google is hoping that developers will write NFC-aware applications to
help further drive adoption of this technology by device
manufacturers.
This, of course, raises the question: what is NFC? Besides being where
the Green Bay Packers play, that is?
(For those of you from outside of the United States, that was an
American football joke. We now return you to your regularly-scheduled
chapter.)
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents and
services.
What Is NFC?
NFC stands for Near-Field Communications. It is a wireless standard
for data exchange, aimed at very short range transmissions — on
the order of a couple of centimeters. NFC is in wide use today, for
everything from credit cards to passports. Typically, the NFC data
exchange is for simple data — contact information, URLs, and
the like.
In particular, NFC tends to be widely used where one side of the
communications channel is “passive”, or unpowered. The other side
(the “initiator”) broadcasts a signal, which the passive side
converts into power enough to send back its response. As such, NFC
“tags” containing such passive targets can be made fairly small and
can be embedded in a wide range of containers, from stickers to cards
to hats.
The objective is “low friction” interaction — no pairing like
with Bluetooth, no IP address shenanigans as with WiFi. The user just
taps and goes.
… Compared to RFID?
NFC is often confused with or compared to RFID. It is simplest to
think of RFID as being an umbrella term, under which NFC falls. Not
every RFID technology is NFC, but many things that you hear of being
“RFID” may actually be NFC-compliant devices or tags.
… Compared to QR Codes?
In many places, NFC will be used in ways you might consider using QR
codes. For example, a restaurant could use either technology, or
both, on a sign to lead patrons to the restaurant’s
Yelp page, as a way of soliciting reviews.
Somebody with a capable device could either tap the NFC tag on the
sign to bring up Yelp or take a picture of the QR code and use that
to bring up Yelp.
NFC’s primary advantage over QR codes is that it requires no user
intervention beyond physically moving their device in close proximity
to the tag. QR codes, on the other hand, require the user to launch a
barcode scanning application, center the barcode in the viewfinder,
and then get the results. The net effect is that NFC will be faster.
QR’s advantages include:

	No need for any special hardware to generate the code, as opposed
to needing a tag and something to write information into the tag for
NFC

	The ability to display QR codes in distant locations (e.g., via
Web sites), whereas NFC requires physical proximity

To NDEF, Or Not to NDEF
RFID is a concept, not a standard. As such, different vendors created
their own ways of structuring data on these tags or chips, making one
vendor’s tags incompatible with another vendor’s readers or writers.
While various standards bodies, like ISO, have gotten involved, it’s
still a bit of a rat’s nest of conflicting formats and approaches.
The NFC offshoot of RFID has had somewhat greater success in
establishing standards. NFC itself is an ISO and ECMA standard,
covering things like transport protocols and transfer speeds. And a
consortium called the NFC Forum created NDEF — the NFC Data
Exchange Format — for specifying the content of tags.
However, not all NFC tags necessarily support NDEF. NDEF is much
newer than NFC, and so lots of NFC tags are out in the wild that were
distributed before NDEF even existed.
You can roughly divide NFC tags into three buckets:

	Those that support NDEF “out of the box”

	Those that can be “formatted” as NDEF

	Those that use other content schemes

Android has some support for non-NDEF tags, such as the MIFARE
Classic. However, the hope and expectation going forward is that NFC
tags will coalesce around NDEF.
NDEF, as it turns out, maps neatly to Android’s Intent system, as
you will see as we proceed through this chapter.
NDEF Modalities
Most developers interested in NFC will be interested in reading NFC
tags and retrieving the NDEF data off of them. In Android, tapping an
NDEF tag with an NFC-capable device will trigger an activity to be
started, based on a certain IntentFilter.
Some developers will be interested in writing to NFC tags, putting
URLs, vCards, or other information on them. This may or may not be
possible for any given tag.
And while the “traditional” thinking around NFC has been that one
side of the communication is a passive tag, Android will help promote
the “peer-to-peer” approach — having two Android devices
exchange data via NFC and NDEF. Basically, putting the two devices
back-to-back will cause each to detect the other device’s “tag”, and
each can read and write to the other via this means. This is
referred to as “Android Beam” and will be discussed
later in this chapter.
Of course, all of these are only available on hardware. At the
present time, there is no emulator for NFC, nor any means of
accessing a USB NFC reader or writer from the emulator.
NDEF Structure and Android’s Translation
NDEF is made up of messages, themselves made up of a series of
records. From Android’s standpoint, each tag consists of one such
message.
Each record consists of a binary (byte array) payload plus metadata to
describe the nature of the payload. The metadata primarily consists
of a type and a subtype. There are quite a few combinations of these,
but the big three for new Android NFC uses are:

	A type of TNF_WELL_KNOWN and a subtype of RTD_TEXT, indicating
that the payload is simply plain text

	A type of TNF_WELL_KNOWN and a subtype of RTD_URI, indicating
that the payload is a URI, such as a URL to a Web page

	A type of TNF_MIME_MEDIA, where the subtype is a standard MIME
type, indicating that the payload is of that MIME type

When Android scans an NDEF tag, it will use this information to
construct a suitable Intent to use with startActivity(). The
action will be android.nfc.action.NDEF_DISCOVERED, to distinguish
the scanned-tag case from, say, something simply asking to view some
content. The MIME type in the Intent will be text/plain for the
first scenario above or the supplied MIME type for the third scenario
above. The data (Uri) in the Intent will be the supplied URI for
the second scenario above. Once constructed, Android will invoke
startActivity() on that Intent, bringing up an activity or an
activity chooser, as appropriate.
NFC-capable Android devices have a Tags application pre-installed
that will handle any NFC tag not handled by some other app. So, for
example, an NDEF tag with an HTTP URL will fire up the Tags
application, which in turn will allow the user to open up a Web
browser on that URL.
The Reality of NDEF
The enthusiasm that some have with regards to Android and NFC
technology needs to be tempered by the reality of NDEF, NFC tags in
general, and Android’s support for NFC. It is easy to imagine all
sorts of possibilities that may or may not be practical when current
limitations are reached.
Some Tags are Read-Only
Some tags come “from the factory” read-only. Either you arrange for
the distributor to write data onto them (e.g., blast a certain URL
onto a bunch of NFC stickers to paste onto signs), or they come with
some other pre-established data. Touchatag, for example, distributes
NFC tags that have Touchatag URLs on them — they then help you
set up redirects from their supplied URL to ones you supply.
While these tags will be of interest to consumers and businesses,
they are unlikely to be of interest to Android developers, since
their use cases are already established and typically do not need
custom Android application support. Android developers seeking
customizable tags will want ones that are read-write, or at least
write-once.
Some Tags Can’t Be Read-Only
Conversely, some tags lack any sort of read-only flag. An ideal tag
for developers is one that is write-once: putting an NDEF message on
the tag and flagging it read-only in one operation. Some tags do not
support this, or making the tag read-only at any later point. The
MIFARE Classic 1K tag is an example — while technically it can
be made read-only, it requires a key known only to the tag
manufacturer.
Some Tags Need to be Formatted
The MIFARE Classic 1K NFC tag is NDEF-capable, but must be
“formatted” first, supplying the initial NDEF message contents. You
have the option of formatting it read-write or read-only (turning the
Classic 1K a write-once tag).
This is not a problem — in fact, the write-once option may be
compelling. However, it is something to keep in mind.
Also, note that the MIFARE Classic 1K, while it can be formatted as
NDEF, uses a proprietary protocol “under the covers”. Not all Android
devices will support the Classic 1K, as the device manufacturers
elect not to pay the licensing fee. Where possible, try to stick to
tags that are natively NDEF-compliant (so-called “NFC Forum Tag Types
1-4”).
Tags Have Limited Storage
The “1K” in the name “MIFARE Classic 1K” refers to the amount of
storage on the tag: 1 kilobyte of information.
And that’s far larger than other tags, such as the MIFARE Ultralight
C, some of which have ~64 bytes of storage.
Clearly, you will not be writing an MP3 file or JPEG photo to these
tags. Rather, the tags will tend to either be a “launcher” into
something with richer communications (e.g., URL to a Web site) or
will use the sorts of data you may be used to from QR codes, such as
a vCard or iCalendar for contact and event data, respectively.
NDEF Data Structures Are Documented Elsewhere
The Android developer documentation is focused on the
Android
classes
related to NFC and on
the Intent mechanism used for scanned tags.
It does not focus on the actual structure of the payloads.
For TNF_MIME_MEDIA and RTD_TEXT, the payload is whatever you
want. For RTD_URI, however, the byte array has a bit more structure
to it, as the NDEF specification calls for a single byte to represent
the URI prefix (e.g., http://www. versus http:// versus
https://www.). The objective, presumably, is to support
incrementally longer URLs on tags with minuscule storage. Hence, you
will need to convert your URLs into this sort of byte array if you
are writing them out to a tag.
Generally speaking, the rules surrounding the structure of NDEF
messages and records is found at the
NFC Forum site.
Tag and Device Compatibility
Different devices will have different NFC chipsets. Not all NFC chipsets can
read and write all tags. The expectation is that NDEF-formatted tags will
work on all devices, but if you wander away from that, things get dicier.
For example, NXP’s Mifare Classic tag can only be read and written by
NXP’s NFC chip.
This is increasingly a challenge for Android developers, as a Broadcom
NFC chip is becoming significantly more popular. Many new major
Android devices, such as the Samsung Galaxy S4, the Nexus 4, the Nexus 10,
and the 2013/2nd generation version of the Nexus 7, all use the Broadcom
chip. Those devices are incompatible with the Mifare tags, such as the
popular Mifare Classic 1K.
That is because NXP is the maker of the Mifare Classic series, and
those tags broke the NFC Forum’s standards to create a tag that was
NXP-specific.
Right now, NTAG203 and Topaz tags (like the Topaz 512), are likely
candidate tags that will work across all NFC-capable Android devices,
due to their adherence to NFC standard protocols.
Sources of Tags
NFC tags are not the sort of thing you will find on your grocer’s
shelves. In fact, few, if any, mainstream firms sell them today.
Here are some online sites from which you can order rewritable NFC
tags, listed here in alphabetical order:

	Andytags

	Buy NFC Tags

	Smartcard Focus

	tagstand

Note that not all may ship to your locale.
Writing to a Tag
So, let’s see what it takes to write an NDEF message to a tag,
formatting it if needed. The code samples shown in this chapter are
from the
NFC/URLTagger
sample application. This application will
set up an activity to respond to ACTION_SEND activity Intents,
with an eye towards receiving a URL from a browser, then waiting for
a tag and writing the URL to that tag. The idea is that this sort of
application could be used by non-technical people to populate tags
containing URLs to their company’s Web site, etc.
Getting a URL
First, we need to get a URL from the browser. As we saw in the
chapter on integration, the standard Android browser uses
ACTION_SEND of text/plain contents when the user chooses the
“Share Page” menu. So, we have one activity, URLTagger, that will
respond to such an Intent:

 <activity
 android:name="URLTagger"
 android:label="@string/app_name">
 <intent-filter android:label="@string/app_name">
 <action android:name="android.intent.action.SEND"/>

 <data android:mimeType="text/plain"/>

 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>

(from NFC/URLTagger/app/src/main/AndroidManifest.xml)
Of course, lots of other applications support ACTION_SEND of
text/plain contents that are not URLs. A production-grade version
of this application would want to validate the EXTRA_TEXT Intent
extra to confirm that, indeed, this is a URL, before putting in an
NDEF message claiming that it is a URL.
Detecting a Tag
When the user shares a URL with our application, our activity is
launched. At that point, we need to go into “detect a tag” mode
– the user should then tap their device to a tag, so we can
write out the URL.
First, in onCreate(), we get access to the NfcAdapter, which is
our gateway to much of the NFC functionality in Android:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 nfc=NfcAdapter.getDefaultAdapter(this);
 }

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)
We use a boolean data member — inWriteMode — to keep
track of whether or not we are set up to write to a tag. Initially,
of course, that is set to be false. Hence, when we are first
launched, by the time we get to onResume(), we can go ahead and
register our interest in future tags:

 @Override
 public void onResume() {
 super.onResume();

 if (!inWriteMode) {
 IntentFilter discovery=new IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED);
 IntentFilter[] tagFilters=new IntentFilter[] { discovery };
 Intent i=new Intent(this, getClass())
 .addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP|
 Intent.FLAG_ACTIVITY_CLEAR_TOP);
 PendingIntent pi=PendingIntent.getActivity(this, 0, i, 0);

 inWriteMode=true;
 nfc.enableForegroundDispatch(this, pi, tagFilters, null);
 }
 }

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)
When an NDEF-capable tag is within signal range of the device,
Android will invoke startActivity() for the
NfcAdapter.ACTION_TAG_DISCOVERED Intent action. However, it can
do this in one of two ways:

	Normally, it will use a chooser (via Intent.createChooser()) to
allow the user to pick from any activities that claim to support this
action.

	The foreground application can request via
enableForegroundDispatch() for it to handle all tag events while it
is in the foreground, superseding the normal startActivity() flow.
In this case, while Android still will invoke an activity, it will be
our activity, not any other one.

We want the second approach right now, so the next tag brought in
range is the one we will try writing to.
To do that, we need to create an array of IntentFilter objects,
identifying the NFC-related actions that we want to capture in the
foreground. In this case, we only care about ACTION_TAG_DISCOVERED
– if we were supporting non-NDEF NFC tags, we might also need
to watch for ACTION_TECH_DISCOVERED.
We also need a PendingIntent identifying the activity that should
be invoked when such a tag is encountered while we are in the
foreground. Typically, this will be the current activity. By adding
FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to the
Intent as flags, we ensure that our current specific instance of
the activity will be given control again via onNewIntent().
Armed with those two values, we can call enableForegroundDispatch()
on the NfcAdapter to register our request to process tags via the
current activity instance.
In onPause(), if the activity is finishing, we call
disableForegroundDispatch() to undo the work done in onResume():

 @Override
 public void onPause() {
 if (isFinishing()) {
 nfc.disableForegroundDispatch(this);
 inWriteMode=false;
 }

 super.onPause();
 }

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)
We have to see if we are finishing, because even though our activity
never leaves the screen, Android still calls onPause() and
onResume() as part of delivering the Intent to onNewIntent().
Our approach, though, has flaws — if the user presses HOME, for
example, we never disable the NFC dispatch logic. A production-grade
application would need to handle this better.
For any of this code to work, we need to hold the NFC permission via
an appropriate line in the manifest:

<uses-permission android:name="android.permission.NFC"/>

Also note that if you have several activities that the user can reach
while you are trying to also capture NFC tag events, you will need to
call enableForegroundDispatch() in each activity — it’s a
per-activity request, not a per-application request.
Reacting to a Tag
Once the user brings a tag in range, onNewIntent() will be invoked
with the ACTION_TAG_DISCOVERED Intent action:

 @Override
 protected void onNewIntent(Intent intent) {
 if (inWriteMode &&
 NfcAdapter.ACTION_TAG_DISCOVERED.equals(intent.getAction())) {
 Tag tag=intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 byte[] url=buildUrlBytes(getIntent().getStringExtra(Intent.EXTRA_TEXT));
 NdefRecord record=new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_URI,
 new byte[] {}, url);
 NdefMessage msg=new NdefMessage(new NdefRecord[] {record});

 new WriteTask(this, msg, tag).execute();
 }
 }

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)
If we are in write mode and the delivered Intent is indeed an
ACTION_TAG_DISCOVERED one, we can get at the Tag object
associated with the user’s NFC tag via the NfcAdapter.EXTRA_TAG
Parcelable extra on the Intent.
Writing an NDEF message to the tag, therefore, is a matter of
crafting the message and actually writing it. An NDEF message
consists of one or more records (though, typically, only one record
is used), with each record wrapping around a byte array of payload
data.
Getting the Shared URL
We did not do anything to get the URL out of the Intent back in
onCreate(), when our activity was first started up. Now, of course,
we need that URL. You might think it is too late to get it, since our
activity was effectively started again due to the tag and
onNewIntent().
However, getIntent() on an Activity always returns the Intent
used to create the activity in the first place. The getIntent()
value is not replaced when onNewIntent() is called.
Hence, as part of the buildUrlBytes() method to create the binary
payload, we can go and call
getIntent().getStringExtra(Intent.EXTRA_TEXT) to retrieve the URL.
Creating the Byte Array
Given the URL, we need to convert it into a byte array suitable for
use in a TNF_WELL_KNOWN, RTD_URI NDEF record. Ordinarily, you
would just call toByteArray() on the String and be done with it.
However, the byte array we need uses a single byte to indicate the
URL prefix, with the rest of the byte array for the characters after
this prefix.
This is efficient. This is understandable. This is annoying.
First, we need the roster of prefixes, defined in URLTagger as a
static data member cunningly named PREFIXES:

 static private final String[] PREFIXES={"http://www.", "https://www.",
 "http://", "https://",
 "tel:", "mailto:",
 "ftp://anonymous:anonymous@",
 "ftp://ftp.", "ftps://",
 "sftp://", "smb://",
 "nfs://", "ftp://",
 "dav://", "news:",
 "telnet://", "imap:",
 "rtsp://", "urn:",
 "pop:", "sip:", "sips:",
 "tftp:", "btspp://",
 "btl2cap://", "btgoep://",
 "tcpobex://",
 "irdaobex://",
 "file://", "urn:epc:id:",
 "urn:epc:tag:",
 "urn:epc:pat:",
 "urn:epc:raw:",
 "urn:epc:", "urn:nfc:"};

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)
Then, in buildUrlBytes(), we need to find the prefix (if any) and
use it:

 private byte[] buildUrlBytes(String url) {
 byte prefixByte=0;
 String subset=url;
 int bestPrefixLength=0;

 for (int i=0;i<PREFIXES.length;i++) {
 String prefix = PREFIXES[i];

 if (url.startsWith(prefix) && prefix.length() > bestPrefixLength) {
 prefixByte=(byte)(i+1);
 bestPrefixLength=prefix.length();
 subset=url.substring(bestPrefixLength);
 }
 }

 final byte[] subsetBytes = subset.getBytes();
 final byte[] result = new byte[subsetBytes.length+1];

 result[0]=prefixByte;
 System.arraycopy(subsetBytes, 0, result, 1, subsetBytes.length);

 return(result);
 }

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)
We iterate over the PREFIXES array and find a match, if any,
and the best possible match if there is more than one. If
there is a match, we record the NDEF value for the first byte (our
PREFIXES index plus one) and create a subset string containing the
characters after the prefix. If there is no matching prefix, the
prefix byte is 0 and we will include the full URL.
Given that, we construct a byte array containing our prefix byte in
the first slot, and the rest taken up by the byte array of the subset
of our URL.
Creating the NDEF Record and Message
Given the result of buildUrlBytes(), our onNewIntent()
implementation creates a TNF_WELL_KNOWN, RTD_URI NdefRecord
object, and pours that into an NdefMessage object.
The third parameter to the NdefRecord constructor is a byte array
representing the optional “ID” of this record, which is not necessary
here.
Finally, we delegate the actual writing to a WriteTask subclass of
AsyncTask, as writing the NdefMessage to the Tag is…
interesting.
Writing to a Tag
Here is the aforementioned WriteTask static inner class:

 static class WriteTask extends AsyncTask<Void, Void, Void> {
 Activity host=null;
 NdefMessage msg=null;
 Tag tag=null;
 String text=null;

 WriteTask(Activity host, NdefMessage msg, Tag tag) {
 this.host=host;
 this.msg=msg;
 this.tag=tag;
 }

 @Override
 protected Void doInBackground(Void... arg0) {
 int size=msg.toByteArray().length;

 try {
 Ndef ndef=Ndef.get(tag);

 if (ndef==null) {
 NdefFormatable formatable=NdefFormatable.get(tag);

 if (formatable!=null) {
 try {
 formatable.connect();

 try {
 formatable.format(msg);
 }
 catch (Exception e) {
 text="Tag refused to format";
 }
 }
 catch (Exception e) {
 text="Tag refused to connect";
 }
 finally {
 formatable.close();
 }
 }
 else {
 text="Tag does not support NDEF";
 }
 }
 else {
 ndef.connect();

 try {
 if (!ndef.isWritable()) {
 text="Tag is read-only";
 }
 else if (ndef.getMaxSize()<size) {
 text="Message is too big for tag";
 }
 else {
 ndef.writeNdefMessage(msg);
 }
 }
 catch (Exception e) {
 text="Tag refused to connect";
 }
 finally {
 ndef.close();
 }
 }
 }
 catch (Exception e) {
 Log.e("URLTagger", "Exception when writing tag", e);
 text="General exception: "+e.getMessage();
 }

 return(null);
 }

 @Override
 protected void onPostExecute(Void unused) {
 if (text!=null) {
 Toast.makeText(host, text, Toast.LENGTH_SHORT).show();
 }

 host.finish();
 }
 }

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)
In doInBackground(), after making note of how big the message is in
bytes, we first try to get the Ndef aspect of the Tag object, by
calling the static get() method on the Ndef class. If the tag is
an NDEF tag, this should return an Ndef instance. If it does not,
we try to get an NdefFormatable aspect by calling get() on the
NdefFormatable class. If the tag is not NDEF now but can be
formatted as NDEF, this should give us an NdefFormatable object. If
both aspect attempts fail, we bail out, displaying a Toast to let
the user know that while the tag they used is NFC, it is not
NDEF-compliant.
If the tag turned out to be NdefFormatable, to put the
NdefMessage on it, we first connect() to the tag, then format()
it, supplying the message. NdefFormatable also supports
formatReadOnly() for tags that support that mode — this will
write the message on the tag, then block it from further updates.
When we are done, we close() the connection.
If the tag turned out to be Ndef already, we connect() to it,
then see if it is writable and has enough room. If it meets both of
those criteria, we can emit the message via writeNdefMessage(),
which overwrites the NDEF message that had already existed on the tag
(if any). If the tag supported it, a call to makeReadOnly() would
block further updates to the tag. Again, when we are done, we
close() the connection.
All of the actual NFC I/O is performed in doInBackground(), because
this I/O may take some time, and we do not want to block the main
application thread while doing it.
Responding to a Tag
Writing to a tag is a bit complicated. Responding to an NDEF message
on a tag is significantly easier.
If the foreground activity is not consuming NFC events — as
URLTagger does in write mode — then Android will use normal
Intent resolution with startActivity() to handle the tag. To
respond to the tag, all you need to do is have an activity set up to
watch for an android.nfc.action.NDEF_DISCOVERED Intent. To get
control ahead of the built-in Tags application, also have a <data>
element that describes the sort of content or URL you are expecting
to find on the tag.
For example, suppose you used the Android browser to visit
some page on the CommonsWare Web site, and
you wrote that to a tag using URLTagger. The URLTagger application
has another activity, URLHandler, that will respond when you tap
the newly-written tag from the home screen or anywhere else. It
accomplishes this via a suitable <intent-filter>:

 <activity
 android:name="URLHandler"
 android:label="@string/app_name">
 <intent-filter android:label="@string/app_name">
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>

 <data
 android:host="commonsware.com"
 android:scheme="http"/>

 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>

(from NFC/URLTagger/app/src/main/AndroidManifest.xml)
The URLHandler activity can then use getIntent() to retrieve the
key pieces of data from the tag itself, if needed. In particular, the
EXTRA_NDEF_MESSAGES Parcelable array extra will return an array
of NdefMessage objects. Typically, there will only be one of these.
You can call getRecords() on the NdefMessage to get at the array
of NdefRecord objects (again, typically only one). Methods like
getPayload() will allow you to get at the individual portions of
the record.
The nice thing is that the URL still works, even if URLTagger is not
on the device. In that case, the Tags application would react to the
tag, and the user could tap on it to bring up a browser on this URL.
A production application might create a Web page that tells the user
about this great and wonderful app she can install, and provide links
to the Play Store (or elsewhere) to go get the app.
Expected Pattern: Bootstrap
Tags tend to have limited capacity. Even in peer-to-peer settings,
the effective bandwidth of NFC is paltry compared to anything outside
of dial-up Internet access.
As a result, NFC will be used infrequently as the complete
communications solution between a publisher and a device. Sometimes
it will, when the content is specifically small, such as a contact
(vCard) or event (iCalendar). But, for anything bigger than that, NFC
will serve more as a convenient bootstrap for more conventional
communications options:

	Embedding a URL in a tag, as the previous sample showed, allows an
installed application to run or a Web site to be browsed

	Embedding a Play Store URL in a tag allows for easy access to
some specialized app (e.g., menu for a restaurant)

	A multi-player game might use peer-to-peer NFC to allow local
participants to rapidly connect into the same shared game area, where
the game is played over the Internet or Bluetooth

	And so on.

Mobile Devices are Mobile
Reading and writing NFC tags is a relatively slow process, mostly due
to low bandwidth. It may take a second or two to actually complete
the operation.
Users, however, are not known for their patience.
If a user moves their device out of range of the tag while Android is
attempting to read it, Android simply will skip the dispatch. If,
however, the tag leaves the signal area of the device while you are
writing to it, you will get an IOException. At this point, the
state of the tag is unknown.
You may wish to incorporate something into your UI to let the user
know that you are working with the tag, encouraging them to leave the
phone in place until you are done.
Enabled and Disabled
There are two separate system settings that control NFC behavior:

	The user could have NFC disabled outright, which you would detect by calling
isEnabled() on your NfcAdapter

	The user could have NFC enabled but have Android Beam disabled, which you
would detect by calling isNdefPushEnabled() on your NfcAdapter

As with most enabled/disabled settings, you cannot change these values yourself.
On newer Android SDK versions, though, you can try to bring up the relevant
Settings screens for the user to enable these features, by using the following
activity action strings from the android.provider.Settings class:

	
ACTION_NFC_SETTINGS for the main NFC settings screen (added in API Level 16)

	
ACTION_NFCSHARING_SETTINGS for the Android Beam settings screen (added in
API Level 14)

Android Beam
Android Beam is Google’s moniker for peer-to-peer NFC messaging, with
an emphasis — obviously — on Android apps. Rather than you tapping
your NFC-capable Android device on a smart tag, you put it back-to-back
with another NFC-capable Android device, and romance ensues.
Partially, this is simply one side of the exchange “pushing” an NDEF
record, in a fashion that makes the other side of the exchange think
that it is picking up a smart tag.
Partially, this is the concept of the “Android Application Record” (AAR),
another NDEF record you can place in the NDEF message being pushed. This
will identify the app you are trying to push the message to. If nothing
on the device can handle the rest of the NDEF message, the AAR will
lead Android to start up an app, or even lead the user to the Play Store
to go download said app.
As the basis for explaining further how this all works, let’s take a look
at the
NFC/WebBeam
sample application. The UI consists of a WebViewFragment, in which we
can browse to some Web page. Then, running this app on two NFC-capable
devices, one app can “push” the URL of the currently-viewed Web page
to the other app, which will respond by displaying that page. In this
fashion, we are “sharing” a URL, without one side having to type it in
by hand. And, while we are using this to share a URL, you could use
Android Beam to share any sort of bootstrapping data, such as the user IDs
of each person, for use in connecting to some common game server.
The Fragment
The fragment that implements our UI, BeamFragment, extends from
WebViewFragment. In onViewCreated(), we
configure the WebView and load up Google’s home page:

 @SuppressLint("SetJavaScriptEnabled")
 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 getWebView().setWebViewClient(new BeamClient());
 getWebView().getSettings().setJavaScriptEnabled(true);
 loadUrl("https://google.com");
 }

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java)
To keep all links within the WebView, we attached a WebViewClient
implementation, named BeamClient, that just loads all requested URLs
back into the WebView:

 class BeamClient extends WebViewClient {
 @Override
 public boolean shouldOverrideUrlLoading(WebView wv, String url) {
 wv.loadUrl(url);

 return(true);
 }
 }

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java)
We add one item to the action bar: a toolbar button (R.id.beam)
that will be used to
indicate we wish to beam the URL in our WebView to another copy of this
application running on another NFC-capable Android device:

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 if (getContract().hasNFC()) {
 inflater.inflate(R.menu.actions, menu);
 }

 super.onCreateOptionsMenu(menu, inflater);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == R.id.beam) {
 getContract().enablePush();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java)
So, when the app is initially launched, it will look something like this:

[image: The WebBeam UI]

Figure 837: The WebBeam UI
The user can use Google to find a Web page worth beaming.
Requesting the Beam
Our hosting activity, WebBeamActivity, gets access to our NfcAdapter,
as we did in the previous example:

 adapter=NfcAdapter.getDefaultAdapter(this);

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)
When the user taps on our action bar item, the fragment calls enablePush()
on the activity. WebBeamActivity, in turn, calls setNdefPushMessageCallback()
on the NfcAdapter, supplying two parameters:

	An implementation of the NfcAdapter.CreateNdefMessageCallback interface,
used to let us know when another device is in range for us to beam to
(in our case, WebBeamActivity implements this interface)

	Our activity that is participating in this push

If something else comes to the foreground, onStop() will call a corresponding
disablePush(), which also calls setNdefPushMessageCallback(), specifying
a null first parameter, to turn off our request to beam:

 void enablePush() {
 adapter.setNdefPushMessageCallback(this, this);
 }

 void disablePush() {
 adapter.setNdefPushMessageCallback(null, this);
 }

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)
In between the calls to enablePush() and disablePush(), if another
NFC device comes in range that supports the NDEF push protocols, we’re beamin’.
Sending the Beam
When our beam-enabled device encounters another beam-capable device,
our NfcAdapter.CreateNdefMessageCallback is called with createNdefMessage(),
where we need to prepare the NfcMessage to beam to the other party:

 @Override
 public NdefMessage createNdefMessage(NfcEvent arg0) {
 NdefRecord uriRecord=
 new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 MIME_TYPE.getBytes(Charset.forName("US-ASCII")),
 new byte[0],
 beamFragment.getUrl()
 .getBytes(Charset.forName("US-ASCII")));
 NdefMessage msg=
 new NdefMessage(
 new NdefRecord[] {
 uriRecord,
 NdefRecord.createApplicationRecord("com.commonsware.android.webbeam") });

 return(msg);
 }

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)
We first create a typical NfcRecord, in this case of TNF_MIME_MEDIA,
with a MIME type defined in a static data member and payload consisting
of the URL from our WebView:

 private static final String MIME_TYPE=
 "application/vnd.commonsware.sample.webbeam";

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)
You might wonder why we are using TNF_MIME_MEDIA, instead of
TNF_WELL_KNOWN and a subtype of RTD_URI, since our payload is a URL.
The reason is that we need to have a unique MIME type for our message for
the whole beam process to work properly, and TNF_WELL_KNOWN does not
support MIME types. This is also why the MIME type is something distinctive,
and not just text/plain — it has to be something only we will pick up.
Our NfcMessage then consists of two NfcRecord objects: the one we
just created, and one created via the static createApplicationRecord()
method on NfcRecord. This helper method creates an AAR record, identifying
our application by its Android package name. This record must go last –
Android will try to find an app to work with based on the other records
first, before “failing over” to use the AAR.
Receiving the Beam
To receive our beam, our WebBeamActivity must be configured in the manifest
to respond to NDEF_DISCOVERED actions with our unique MIME type:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.webbeam"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk
 android:minSdkVersion="14"
 android:targetSdkVersion="14"/>

 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.NFC"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Holo.Light.DarkActionBar">
 <activity
 android:name=".WebBeamActivity"
 android:label="@string/app_name"
 android:launchMode="singleTask"
 android:screenOrientation="landscape">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="application/vnd.commonsware.sample.webbeam"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from NFC/WebBeam/app/src/main/AndroidManifest.xml)
You will also notice that we set android:launchMode="singleTask" on this
activity. That is so we will only have one instance of this activity,
regardless of whether it is in the foreground or not. Otherwise, if we
already have an instance of this activity, and we receive a beam, Android
will create a second instance of this activity — when the user later
presses BACK, they return to our first instance, and wonder why our app
is broken.
If we receive the beam, we will get the Intent for the NDEF_DISCOVERED
action either in onCreate() (if we were not already running) or
onNewIntent() (if we were). In either case, we want to handle it the
same way: pass the URL from the first record’s payload to our BeamFragment.
However, we cannot do that from onCreate() — the fragment will not
have created the WebView yet. So, we use a trick: calling post() with
a Runnable puts that Runnable on the end of the work queue for
the main application thread. We can delay our processing of the Intent
by this mechanism, so we can safely assume the WebView exists.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 beamFragment=
 (BeamFragment)getSupportFragmentManager().findFragmentById(android.R.id.content);

 if (beamFragment == null) {
 beamFragment=new BeamFragment();

 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content, beamFragment)
 .commit();
 }

 adapter=NfcAdapter.getDefaultAdapter(this);

 findViewById(android.R.id.content).post(new Runnable() {
 public void run() {
 handleIntent(getIntent());
 }
 });
 }

 @Override
 public void onNewIntent(Intent i) {
 handleIntent(i);
 }

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)

 private void handleIntent(Intent i) {
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(i.getAction())) {
 Parcelable[] rawMsgs=
 i.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);
 NdefMessage msg=(NdefMessage)rawMsgs[0];
 String url=new String(msg.getRecords()[0].getPayload());

 beamFragment.loadUrl(url);
 }
 }

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)
The Scenarios
There are three possible scenarios, when we try beaming from one device
to another:

	The other device has our application installed, and it is running. In that case,
our activity is brought to the foreground and the Intent is delivered
to it, courtesy of our NDEF_DISCOVERED <intent-filter> with our unique
MIME type.

	The other device has our application installed, but it is not running.
Android’s Intent system handles this in the same general fashion as the
first scenario, though it starts up a process for us and creates our
activity instance anew in this case.

	The other device does not have our application installed. Since nothing
(hopefully) claims to support our unique MIME type, the AAR takes effect,
and the user is led to the Play Store to go download our app (or, in this
case, display an error message, as WebBeam is not in the Play Store).

Beaming Files
Android 4.1 (a.k.a., Jelly Bean) added in a far simpler facility for an app to beam
a file to another device using the Android Beam system. You can use setBeamPushUris()
or setBeamPushUrisCallback() on an NfcAdapter to hand Android one or more Uri
objects representing files to be transferred. While the initial connection will be
made via NFC and Android Beam, the actual data transfer will be via Bluetooth or
WiFi, much more suitable than NFC for bulk data.
The difference between the two approaches is mostly when you provide the array of
Uri objects. With setBeamPushUris(), you initiate the beam operation and supply
the Uri values immediately. With setBeamPushUrisCallback(), you initiate the beam
but do not supply the Uri values until the beam connection is established with the
peer app.
The
NFC/FileBeam
sample application shows file-based beaming in action.
In our activity (MainActivity), in onCreate(), we check to make sure that Android
Beam is enabled, via a call to isNdefPushEnabled() on our NfcAdapter. If it is,
then we use ACTION_GET_CONTENT to retrieve some file from the user (MIME type
wildcard of */*):

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 adapter=NfcAdapter.getDefaultAdapter(this);

 if (!adapter.isNdefPushEnabled()) {
 Toast.makeText(this, R.string.sorry, Toast.LENGTH_LONG).show();
 finish();
 }
 else {
 Intent i=new Intent(Intent.ACTION_GET_CONTENT);

 i.setType("*/*").addCategory(Intent.CATEGORY_OPENABLE);
 startActivityForResult(i, 0);
 }
 }

(from NFC/FileBeam/app/src/main/java/com/commonsware/android/filebeam/MainActivity.java)
In onActivityResult(), if we actually got a file (e.g., the result is ACTION_OK),
we turn around and call setBeamPushUris() to pass that file to some peer device.
We also set up a Button as our UI — clicking the Button will finish() the
activity:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==0 && resultCode==RESULT_OK) {
 adapter.setBeamPushUris(new Uri[] {data.getData()}, this);

 Button btn=new Button(this);

 btn.setText(R.string.over);
 btn.setOnClickListener(this);
 setContentView(btn);
 }
 }

(from NFC/FileBeam/app/src/main/java/com/commonsware/android/filebeam/MainActivity.java)
That is all there is to it. If you run this app and pick a file, then hold the device
up to another Android 4.1+ device, you will be prompted to “Touch to Beam” — doing
so will kick off the transfer. Once the transfer is shown on the receiving device,
you can pull the devices apart a bit, as the transfer will be proceeding over Bluetooth
or WiFi. However, while Bluetooth ranges are much longer than NFC, you still need to
keep the devices within a handful of meters of one another.
Note that the receiving device is not running our app. The OS handles the receipt of
the transferred file, not our code. Similarly, the OS on the sending device is
really the one responsible for the file transfer, so our app does not need the INTERNET
or BLUETOOTH permissions. The downside is that we have no control over anything
on the receiving side — the file is stored wherever the OS elects to put it, and the
Notification it displays when complete will simply launch ACTION_VIEW on the
pushed file.
Another Sample: SecretAgentMan
To provide another take on using these features of NfcAdapter, let’s examine the
NFC/SecretAgentMan
sample application, originally written for a presentation at the 2012 droidcon UK
conference. This combines writing to tags, directly beaming text to another device,
and using Uri-based beaming, all in one app.
The UI of the app is a large EditText widget with an action bar:

[image: The SecretAgentMan UI]

Figure 838: The SecretAgentMan UI
There are three action bar items, one each for the three operations: writing to a tag,
directly beaming to another device, and beaming a file (represented via a Uri).
Configuration and Initialization
Our app is comprised of a single activity, named MainActivity. As part of our manifest
setup, we request the NFC permission. And, since the app needs NFC to be useful, we
also have a <uses-feature> element, stipulating that the device needs to have NFC,
otherwise the app should not be shown in the Play Store:

 <uses-permission android:name="android.permission.NFC"/>

 <uses-feature
 android:name="android.hardware.nfc"
 android:required="true"/>

(from NFC/SecretAgentMan/app/src/main/AndroidManifest.xml)
In onCreate() of MainActivity, we can then safely get access to an NfcAdapter,
since the NFC hardware should exist and we have rights to use NFC:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 nfc=NfcAdapter.getDefaultAdapter(this);
 secretMessage=(EditText)findViewById(R.id.secretMessage);

 nfc.setOnNdefPushCompleteCallback(this, this);

 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {
 readFromTag(getIntent());
 }
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
We also get our hands on the EditText widget, storing a reference to it in a data member
named secretMessage. We will cover the rest of the initialization work in onCreate()
later in this section, as we cover the code that needs that initialization.
Writing to the Tag
If the user chooses the “Write to Tag” action bar item, we call a setUpWriteMode() method
from onOptionsItemSelected() of MainActivity. We maintain an inWriteMode boolean data member to track
whether or not we are already trying to write to an NFC tag. If inWriteMode is false, we
go ahead and take control over the NFC hardware to attempt to write to the next tag we see:

 void setUpWriteMode() {
 if (!inWriteMode) {
 IntentFilter discovery=
 new IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED);
 IntentFilter[] tagFilters=new IntentFilter[] { discovery };
 Intent i=
 new Intent(this, getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP
 | Intent.FLAG_ACTIVITY_CLEAR_TOP);
 PendingIntent pi=PendingIntent.getActivity(this, 0, i, 0);

 inWriteMode=true;
 nfc.enableForegroundDispatch(this, pi, tagFilters, null);
 }
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
To do that, we:

	Create an IntentFilter for ACTION_TAG_DISCOVERED

	Create a PendingIntent for an Intent pointing back to this same activity instance
(using getClass() to identify the instance, plus FLAG_ACTIVITY_SINGLE_TOP and
FLAG_ACTIVITY_CLEAR_TOP to route control back to our running instance)

	Call enableForegroundDispatch() on our NfcAdapter, to route newly-discovered
tags to us, with the IntentFilter identifying the tag-related events we are interested
in, and the PendingIntent identifying what to do when such a tag is encountered

Once our activity is finishing (e.g., the user presses BACK), we need to clean up
our write-to-tag logic. This is kicked off in onPause() of MainActivity:

 @Override
 public void onPause() {
 if (isFinishing()) {
 cleanUpWritingToTag();
 }

 super.onPause();

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
All we do in cleanUpWritingToTag() is discontinue our foreground control over the NFC
hardware:

 void cleanUpWritingToTag() {
 nfc.disableForegroundDispatch(this);
 inWriteMode=false;
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
If, before that occurs, the device is tapped on a tag, our activity should regain
control in onNewIntent() as a result of our PendingIntent having been executed:

 @Override
 protected void onNewIntent(Intent i) {
 if (inWriteMode
 && NfcAdapter.ACTION_TAG_DISCOVERED.equals(i.getAction())) {
 writeToTag(i);
 }
 else if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(i.getAction())) {
 readFromTag(i);
 }
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
If we are in write mode, and if the Intent that was just used with startActivity()
was ACTION_TAG_DISCOVERED, we call our writeToTag() method to actually start writing
information to the tag:

 void writeToTag(Intent i) {
 Tag tag=i.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 NdefMessage msg=
 new NdefMessage(new NdefRecord[] { buildNdefRecord() });

 new WriteTagTask(this, msg, tag).execute();
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
To write to the tag, we get our Tag out of its Intent extra (keyed by EXTRA_TAG). Then,
we build an NfcMessage to write to the tag, getting its NfcRecord from buildNdefRecord():

 NdefRecord buildNdefRecord() {
 return(new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 MIME_TYPE.getBytes(), new byte[] {},
 secretMessage.getText().toString().getBytes()));
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
Our NDEF record will be of a specific MIME type, represented by a static data member named
MIME_TYPE:

 private static final String MIME_TYPE="vnd.secret/agent.man";

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
The payload of the NDEF record is our “secret message” from the secretMessage EditText
widget.
The writeToTag() method then kicks off the same WriteTagTask that we used earlier in this
chapter:

package com.commonsware.android.jimmyb;

import android.nfc.NdefMessage;
import android.nfc.Tag;
import android.nfc.tech.Ndef;
import android.nfc.tech.NdefFormatable;
import android.os.AsyncTask;
import android.util.Log;
import android.widget.Toast;

class WriteTagTask extends AsyncTask<Void, Void, Void> {
 MainActivity host=null;
 NdefMessage msg=null;
 Tag tag=null;
 String text=null;

 WriteTagTask(MainActivity host, NdefMessage msg, Tag tag) {
 this.host=host;
 this.msg=msg;
 this.tag=tag;
 }

 @Override
 protected Void doInBackground(Void... arg0) {
 int size=msg.toByteArray().length;

 try {
 Ndef ndef=Ndef.get(tag);

 if (ndef == null) {
 NdefFormatable formatable=NdefFormatable.get(tag);

 if (formatable != null) {
 try {
 formatable.connect();

 try {
 formatable.format(msg);
 }
 catch (Exception e) {
 text=host.getString(R.string.tag_refused_to_format);
 }
 }
 catch (Exception e) {
 text=host.getString(R.string.tag_refused_to_connect);
 }
 finally {
 formatable.close();
 }
 }
 else {
 text=host.getString(R.string.tag_does_not_support_ndef);
 }
 }
 else {
 ndef.connect();

 try {
 if (!ndef.isWritable()) {
 text=host.getString(R.string.tag_is_read_only);
 }
 else if (ndef.getMaxSize() < size) {
 text=host.getString(R.string.message_is_too_big_for_tag);
 }
 else {
 ndef.writeNdefMessage(msg);
 text=host.getString(R.string.success);
 }
 }
 catch (Exception e) {
 text=host.getString(R.string.tag_refused_to_connect);
 }
 finally {
 ndef.close();
 }
 }
 }
 catch (Exception e) {
 Log.e("URLTagger", "Exception when writing tag", e);
 text=host.getString(R.string.general_exception) + e.getMessage();
 }

 return(null);
 }

 @Override
 protected void onPostExecute(Void unused) {
 host.cleanUpWritingToTag();

 if (text != null) {
 Toast.makeText(host, text, Toast.LENGTH_SHORT).show();
 }
 }
}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/WriteTagTask.java)
The net result is that if the user taps the “Write to Tag” action bar item, then taps and holds
the device to a tag, we will write a message to the tag and display a Toast when we are done.
And, yes, this is a surprising amount of code for what really should be a simple operation…
Reading from the Tag
We can set up MainActivity to respond to tags similar to the one we wrote — ones that have
the desired MIME Type — via an android.nfc.action.NDEF_DISCOVERED <intent-filter>:

 <intent-filter android:label="@string/app_name">
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>

 <data android:mimeType="vnd.secret/agent.man"/>

 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>

(from NFC/SecretAgentMan/app/src/main/AndroidManifest.xml)
In both onCreate() and onNewIntent(), if the Intent that started our activity is
an NDEF_DISCOVERED Intent, we route control to a readFromTag() method:

 void readFromTag(Intent i) {
 Parcelable[] msgs=
 (Parcelable[])i.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

 if (msgs.length > 0) {
 NdefMessage msg=(NdefMessage)msgs[0];

 if (msg.getRecords().length > 0) {
 NdefRecord rec=msg.getRecords()[0];

 secretMessage.setText(new String(rec.getPayload(), US_ASCII));
 }
 }
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
In principle, there could be several NDEF messages on the tag, but we only pay attention to the
first element, if any, of the EXTRA_NDEF_MESSAGES array of Parcelable objects on the Intent.
Similarly, in principle, there could be several NDEF records in the first message, but we only
examine the first element out of the array of NdefRecord objects contained in the NdefMessage.
From there, we extract our secret message and display it by means of putting it in the EditText
widget.
Beaming the Text
This sample only supports beaming — whether of NDEF messages directly or of a file — if we are
on API Level 16 or higher. Hence, in onCreateOptionsMenu(), we check our version and only enable
our default-disabled beam action bar items if:

	We are on API Level 16 or higher, and

	NDEF push mode is enabled, via a call to isNdefPushEnabled() on our NfcAdapter:

 @TargetApi(16)
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN) {
 menu.findItem(R.id.simple_beam)
 .setEnabled(nfc.isNdefPushEnabled());
 menu.findItem(R.id.file_beam).setEnabled(nfc.isNdefPushEnabled());
 }

 return(super.onCreateOptionsMenu(menu));
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
If the user taps on the “Beam” action bar item, we call an enablePush() method from onOptionsItemSelected(),
which simply enables push mode:

 void enablePush() {
 nfc.setNdefPushMessageCallback(this, this);
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
We arrange for the activity itself to be the CreateNdefMessageCallback necessary for push mode. That
requires us to implement createNdefMessage(), which will be called if we are in push mode and a
push-compliant device comes within range:

 @Override
 public NdefMessage createNdefMessage(NfcEvent event) {
 return(new NdefMessage(
 new NdefRecord[] {
 buildNdefRecord(),
 NdefRecord.createApplicationRecord("com.commonsware.android.jimmyb") }));
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
Here, we create an NdefMessage similar to the one we wrote to the tag earlier in this sample.
However, we also attach an Android Application Record (AAR), by means of the static
createApplicationRecord() method on NdefRecord. This, in theory, will help route the push to our
app on the other device, including downloading it from the Play Store if needed (and, of course,
if it actually existed on the Play Store, which it does not).
Back up in onCreate(), we call setOnNdefPushCompleteCallback(), to be notified of when a push
operation is completed. Once again, we set up MainActivity to be the callback, this time by implementing the
OnNdefPushCompleteCallback interface. That, in turn, requires us to implement onNdefPushComplete(),
where we disable push mode via a call to setNdefPushMessageCallback() with a null listener:

 @Override
 public void onNdefPushComplete(NfcEvent event) {
 nfc.setNdefPushMessageCallback(null, this);
 }

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
To receive the beam, we only need our existing logic to read from the tag, as on the receiving
side, a push is indistinguishable from reading a tag, and we are using the same MIME type for both
the message written to the tag and the message we are pushing.
Beaming the File
If the user taps the “Beam File” action bar item, we find some file to beam, by means of an
ACTION_GET_CONTENT request and startActivityForResult():

 case R.id.file_beam:
 Intent i=new Intent(Intent.ACTION_GET_CONTENT);

 i.setType("*/*").addCategory(Intent.CATEGORY_OPENABLE);
 startActivityForResult(i, 0);
 return(true);

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)
In onActivityResult(), if the request succeeded, we use setBeamPushUris() to tell Android to beam
the selected file to another device. Nothing more is needed on our side, and the receipt of the file is
handled entirely by the OS, not our application code, so there is nothing to be written for that.
This code assumes the NFC adapter is enabled. We could check that via a call to isEnabled()
on our NfcAdapter. If it is not enabled, we could — on user request — bring up the Settings
activity for configuring NFC, via startActivity(new Intent(Settings.ACTION_NFC_SETTINGS)).
However, oddly, this Intent action is only available on Android 4.1 (API Level 16) and
higher, despite NFC having been available for some time previously.
This code ignores the possibility of doing the simple beam (not the file-based beam) on
Android 4.0.x devices. That is because the isNdefPushEnabled() method was not added until
Android 4.1, and therefore we do not know whether or not we can actually do a beam.
If isNdefPushEnabled() returns false, we simply disable some action bar items. Alternatively,
we could use startActivity(new Intent(Settings.ACTION_NFCSHARING_SETTINGS)), on API Level
14 and higher, to bring up the beam screen in Settings, to allow the user to toggle beam
support on.
Additional Resources
To help make sense of the tags that you are trying to use with your
app, you may wish to grab the
NFC TagInfo
application off of the Google Play Store. This application
simply scans a tag and allows you to peruse all the details of that
tag, including the supported technologies (e.g., does it support
NDEF? is it NdefFormatable?), the NDEF records, and so on.
To learn more about NFC on Android — beyond this chapter or the
Android developer documentation –
this Google I|O 2011 presentation
is recommended.
Device Administration
Balding authors of Android books often point out that enterprises and malware
authors have the same interests: they want to take control of a device away
from the person that is holding it and give that control to some other
party. Android, being a consumer operating system, is designed to defend
against malware, and so enterprises can run into issues.
However, Android does have a growing area of device administration APIs,
that allow carefully-constructed and installed applications to exert some
degree of control over the device, how it is configured, and how it operates.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on broadcast Intents.
Objectives and Scope
One might read the phrase “device administration” and assume that somebody,
using these APIs, could do anything they want on the device.
That’s not quite what “device administration” means in this case.
Rather, the device administration APIs serve three main roles:

	They allow an application to dictate how well a device is secured,
from the password required in the OS lock screen to whether the device
should have full-disk encryption

	They allow an application to find out when security issues might
arise, notably failed password attempts

	They allow an application to lock the device, disable its cameras,
or even perform a “wipe” (i.e., factory reset)

The user, however, has to agree to enable a device administration app.
It does not magically get all these powers simply by being installed.
What the user gets from agreeing to this is access to something that
otherwise would be denied (e.g., to use Enterprise App X, you must agree
to allow it to be a device administrator).
Defining and Registering an Admin Component
There are four pieces for defining and registering a device administration
app: creating the metadata, adding the <receiver> to the manifest,
implementing that BroadcastReceiver, and telling Android to ask the
user to agree to allow the app to a device administrator.
Here, we will take a peek at the
DeviceAdmin/LockMeNow
sample application.
The Feature
Apps implementing device administrators should add a <uses-feature> element
with a name of android.software.device_admin, indicating whether or not
they require this device feature to exist. This can be used by the Play Store
to filter your app from being available on devices that, for one reason
or another, do not offer this capability.
The Metadata
As with app widgets and other Android facilities, you
will need to define a metadata file as an XML resource, describing in greater
detail what your device administration app wishes to do. This information
will determine what you will be allowed to do once the user approves
your app, and what you list here will be displayed to the user when you
request such approval.
The DeviceAdminInfo class has a series of static data members
(e.g., USES_ENCRYPTED_STORAGE) that represent specific policies that your
device administrator app could use. The documentation for each of those
static data members lists the corresponding element that goes in this
XML metadata file (e.g., <encrypted-storage>). These elements are wrapped
in a <uses-policies> element, which itself is wrapped in a <device-admin]
element. The range of possible policies is shown in the following sample
XML metadata file:

<device-admin xmlns:android="http://schemas.android.com/apk/res/android">
 <uses-policies>
 <disable-camera />
 <encrypted-storage />
 <expire-password />
 <force-lock />
 <limit-password />
 <reset-password />
 <watch-login />
 <wipe-data />
 </uses-policies>
</device-admin>

Here, we:

	Intend to disable the cameras, if needed

	Will ask the user to encrypt their device storage, if it has not been done
already

	Will set an expiration time for the user’s password, after which they
will need to set up a new one

	Intend to lock the device, if needed

	Will set criteria for password quality, such as minimum length

	Intend to forcibly reset the user’s password, if needed

	Intend to monitor for failed and successful login attempts

	Intend to wipe the device, if needed

Choose which of those policies you need — the fewer you request, the more
likely it is the user will not wonder about your intentions. In your
project’s res/xml/ directory, create a file that looks like the above with
the policies you wish. You can name this file whatever you want
(e.g., device_admin.xml), within standard Android resource naming rules.
The Manifest
In the manifest, you will need to declare a <receiver> element for the
DeviceAdminReceiver component that you will write. This component
not only is the embodiment of the device admin capabilities of your app,
but it will be the one notified of failed logins and other events.
For example, here is the <receiver> element from the LockMeNow sample
app:

 <receiver
 android:name="AdminReceiver"
 android:permission="android.permission.BIND_DEVICE_ADMIN">
 <meta-data
 android:name="android.app.device_admin"
 android:resource="@xml/device_admin"/>

 <intent-filter>
 <action android:name="android.app.action.DEVICE_ADMIN_ENABLED"/>
 </intent-filter>
 </receiver>

(from DeviceAdmin/LockMeNow/app/src/main/AndroidManifest.xml)
There are three things distinctive about this element compared to your
usual <receiver> element:

	It requires that whoever sends broadcasts to it hold the BIND_DEVICE_ADMIN
permission. Since that permission is protected and can only be held by
apps signed with the firmware’s signing key, you can be reasonably assured
that any events sent to you are real.

	It has the <meta-data> child element pointing to our device administration
metadata from the previous section.

	It registers for android.app.action.DEVICE_ADMIN_ENABLED broadcasts via
its <intent-filter> — this is the broadcast that will be used to notify
you when your app gains device administration privileges

The Receiver
The DeviceAdminReceiver itself needs to exist as a component in your
app, registered in the manifest as shown above. At minimum, though, it
does not need to override any methods, such as the implementation from
the LockMeNow sample app:

package com.commonsware.android.lockme;

import android.app.admin.DeviceAdminReceiver;

public class AdminReceiver extends DeviceAdminReceiver {
}

(from DeviceAdmin/LockMeNow/app/src/main/java/com/commonsware/android/lockme/AdminReceiver.java)
By requesting the DEVICE_ADMIN_ENABLED broadcasts, we could get control
when we are enabled by overriding an onEnabled() method. We could also
register for other broadcasts (e.g., ACTION_PASSWORD_FAILED) and implement
the corresponding callback method on our DeviceAdminReceiver
(e.g., onPasswordFailed()).
The Demand for Device Domination
Simply having this component in our manifest, though, is insufficient. The
user must proactively agree to allow us to administer their device. And,
since this is potentially very dangerous, a simple permission was deemed
to also be insufficient. Instead, we need to ask the user to approve us
as a device administrator from our app, typically from an activity.
In the case of LockMeNow, the UI is just a really big button, tied to a
lockMeNow() method on our LockMeNowActivity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <Button
 android:id="@+id/Button1"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:onClick="lockMeNow"
 android:text="@string/lock_me"
 android:textColor="#FFFF0000"
 android:textSize="40sp"
 android:textStyle="bold"/>

</LinearLayout>

(from DeviceAdmin/LockMeNow/app/src/main/res/layout/main.xml)
In onCreate() of the activity, in addition to loading up the UI via
setContentView(), we create a ComponentName object identifying our
AdminReceiver component. We also request access to the DevicePolicyManager,
via a call to getSystemService(). DevicePolicyManager is our gateway
for making direct requests for device administration operations, such as
locking the device:

package com.commonsware.android.lockme;

import android.app.Activity;
import android.app.admin.DevicePolicyManager;
import android.content.ComponentName;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class LockMeNowActivity extends Activity {
 private DevicePolicyManager mgr=null;
 private ComponentName cn=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 cn=new ComponentName(this, AdminReceiver.class);
 mgr=(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);
 }

 public void lockMeNow(View v) {
 if (mgr.isAdminActive(cn)) {
 mgr.lockNow();
 }
 else {
 Intent intent=
 new Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);
 intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN, cn);
 intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,
 getString(R.string.device_admin_explanation));
 startActivity(intent);
 }
 }
}

(from DeviceAdmin/LockMeNow/app/src/main/java/com/commonsware/android/lockme/LockMeNowActivity.java)
In lockMeNow(), we ask the DevicePolicyManager if we have already been
registered as a device administrator, by calling isAdminActive(), supplying
the ComponentName of our DeviceAdminReceiver that should be so
registered. If that returns false, then the user has not approved us as
a device administrator yet, so we need to ask them to do so. To do that,
you:

	Create an Intent for the DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN
action

	Add the ComponentName of our DeviceAdminReceiver as an extra, keyed as
DevicePolicyManager.EXTRA_DEVICE_ADMIN

	Add another extra, DevicePolicyManager.EXTRA_ADD_EXPLANATION, which is
some text to show the user as part of the authorization screen, to explain
why we need to be a device admin

	Start up an activity using that Intent, via startActivity()

If you run this on a device, then tap the button, the first time you do so
the user will be prompted to agree to making the app be a device
administrator:

[image: The Activate Device Administrator Screen]

Figure 839: The Activate Device Administrator Screen
The “For experimentation purposes only” is the value of our
DevicePolicyManager.EXTRA_ADD_EXPLANATION extra, loaded from a string
resource.
If the user clicks “Activate”, and you overrode onEnabled() in your
DeviceAdminReceiver, that will be called to let you know that you have
been approved and can perform device administration functions. Your component
will also appear in the list of device administrators in the Settings app:

[image: The Device Administrator List]

Figure 840: The Device Administrator List
The user can, at any time, uncheck you in this list and disable you. You can
find out about this by having your DeviceAdminReceiver listen for
ACTION_DEVICE_ADMIN_DISABLE_REQUESTED broadcasts and overriding the
onDisableRequested() method, where you can return the text of a message
to be displayed to the user confirming that they do indeed wish to go ahead
with the disable operation. To find out if they go through with it,
your DeviceAdminReceiver can listen for
ACTION_DEVICE_ADMIN_DISABLED broadcasts and override onDisabled().
Going Into Lockdown
Given that the user has approved your device administration request,
and given that you requested <force-lock> in your metadata, you
can call lockNow() on a DevicePolicyManager. That will immediately lock
the device and (generally) turn off the screen. It is as if the user pressed
the POWER button on the device. If anything, lockNow() will offer
tighter security.
The LockItNow sample app does this if, when the user clicks the really
big button, it detects that it is already a device administrator. If you
test this on a device, it will behave as though the user pressed POWER; on
an emulator, you will need to press the HOME button to “power on” the screen
and be able to re-enter your emulator.
You can also call:

	
setCameraDisabled() to disable all cameras, if you requested
<disable-camera> in the metadata. Note that this disables all cameras;
there is no provision at this time to disable individual cameras separately.

	
wipeData(), which performs what amounts to a factory reset — it leaves
external storage alone but wipes the contents of internal storage as part
of a reboot. This requires the <wipe-data> policy in the metadata.

	
setKeyguardDisabledFeatures(), to control whether or not the lockscreen
allows direct access to the camera and/or app widgets (lockscreen app widgets
are described in the chapter on app widgets)

For example, the latter feature, while available in the Android SDK, is not
built into the Settings app of Android 4.2. As a result, users need a third-party
app to toggle on or off lockscreen access to the camera and app widgets. One
such third-party app is
LockscreenLocker,
released as open source by the author
of this book.
Basically, the app presents you with two Switch widgets to control the camera
and app widgets on the lock screen. First, though, it shows you a message and
a Button, if the app is not set up as a device administrator:

[image: LockscreenLocker, On Initial Run]

Figure 841: LockscreenLocker, On Initial Run
Once that is complete, the Switch widgets become enabled and usable:

[image: LockscreenLocker, After Being Made a Device Admin]

Figure 842: LockscreenLocker, After Being Made a Device Admin
The device admin metadata for this app specifies that we want to control
keyguard features:

<device-admin xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-policies>
 <disable-keyguard-features/>
 </uses-policies>

</device-admin>

Note that, at the time of this writing, there is a flaw in the Android
developer documentation — the correct element to have in the metadata is
[disable-keyguard-features/>, not <disable-keyguard-widgets]. You can track
this issue to see
when this documentation bug has been repaired.
Our device admin component, LockscreenAdminReceiver, is empty, because
there are no events that we are trying to listen to:

public class LockscreenAdminReceiver extends DeviceAdminReceiver {
}

However, we still need the LockscreenAdminReceiver, as it is the component
that is tied to our device admin metadata and indicates to the system that we
should be an option in Settings for available device administrators.
Our activity layout contains all the requisite widgets: a TextView for the message,
a Button to jump to the Settings app, a View to serve as a divider,
and a pair of Switch widgets to manage the lockscreen settings:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:id="@+id/setupMessage"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/setup_message"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:visibility="gone"/>

 <Button
 android:id="@+id/setup"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="showSettings"
 android:text="@string/visit_settings"
 android:visibility="gone"/>

 <View
 android:id="@+id/divider"
 android:layout_width="match_parent"
 android:layout_height="2dip"
 android:layout_marginBottom="4dip"
 android:layout_marginTop="4dip"
 android:background="#FF000000"
 android:visibility="gone"/>

 <Switch
 android:id="@+id/camera"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/allow_camera"/>

 <Switch
 android:id="@+id/widgets"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="4dip"
 android:text="@string/allow_widgets"/>

</LinearLayout>

In onCreate() of our activity (MainActivity), we request a DevicePolicyManager,
set up a ComponentName identifying our DeviceAdminReceiver implementation
(LockscreenAdminReceiver), and hook up the activity to know about changes in the
state of the Switch widgets:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mgr=(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);
 cn=new ComponentName(this, LockscreenAdminReceiver.class);

 camera=(CompoundButton)findViewById(R.id.camera);
 camera.setOnCheckedChangeListener(this);

 widgets=(CompoundButton)findViewById(R.id.widgets);
 widgets.setOnCheckedChangeListener(this);
 }

In onResume(), we check to see if our DeviceAdminReceiver is active — in other
words, whether the user has set us up as being a device administrator or not:

 @Override
 public void onResume() {
 super.onResume();

 if (mgr.isAdminActive(cn)) {
 toggleWidgets(true);

 int status=mgr.getKeyguardDisabledFeatures(cn);

 camera.setChecked(!((status & DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA) == DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA));
 widgets.setChecked(!((status & DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL) == DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL));
 }
 else {
 toggleWidgets(false);
 }
 }

We toggle the visibility and enabled settings of our widgets based upon whether
we are a device administrator or not, in a toggleWidgets() private method:

 private void toggleWidgets(boolean enable) {
 int visibility=(enable ? View.GONE : View.VISIBLE);

 camera.setEnabled(enable);
 widgets.setEnabled(enable);

 findViewById(R.id.divider).setVisibility(visibility);
 findViewById(R.id.setup).setVisibility(visibility);
 findViewById(R.id.setupMessage).setVisibility(visibility);
 }

onResume() also sets the state of our Switch widgets based upon the current
state of the keyguard features, by calling getKeyguardDisabledFeatures() on the
DevicePolicyManager. This returns a bit set of which features are disabled, with
DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA and/or
DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL possibly being set.
At the outset, after being installed, we will not be a device administrator, so
the Switch widgets will be disabled and the Button will be visible. We simply
send the user to the security screen in the Settings app if they click that button:

 public void showSettings(View v) {
 startActivity(new Intent(Settings.ACTION_SECURITY_SETTINGS));
 }

When the user toggles a Switch, our activity will be called with
onCheckedChanged(). There, we need to call setKeyguardDisabledFeatures() with
a new bit set, toggling on or off a bit based on the user’s chosen values in the
UI:

 @Override
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 int status=mgr.getKeyguardDisabledFeatures(cn);

 if (buttonView == camera) {
 if (isChecked) {
 mgr.setKeyguardDisabledFeatures(cn, status
 & ~DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA);
 }
 else {
 mgr.setKeyguardDisabledFeatures(cn, status
 | DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA);
 }
 }
 else {
 if (isChecked) {
 mgr.setKeyguardDisabledFeatures(cn, status
 & ~DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL);
 }
 else {
 mgr.setKeyguardDisabledFeatures(cn, status
 | DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL);
 }
 }
 }

Note that we have the Switch widgets set up for positive statements (e.g.,
“enable the camera”), while the bit set uses negative statements (e.g.,
“disable the camera”). That makes toggling the bit set a “bit” more complicated,
to ensure that we are applying the user’s choices correctly.
Passwords and Device Administration
One popular facet of the device administration APIs is for an app to mandate
a certain degree of password quality. The app might then fail to operate if
the current password does not meet the requested quality standard.
Mandating Quality of Security
You can call various setters on DevicePolicyManager to dictate your
minimum requirements for the password that the user uses to get past
the lock screen. Examples include:

	setPasswordMinimumLength()

	
setPasswordQuality() (with an integer flag describing the type of “quality”
you seek, such as PASSWORD_QUALITY_NUMERIC if a PIN is OK, or
PASSWORD_QUALITY_COMPLEX if you require mixed case and numbers and such)

	
setPasswordMinimumLowerCase() (indicating how many lowercase letters
are required at minimum in the user’s password)

All of these require the <limit-password> policy be requested in the metadata.
Then, you can call isActivePasswordSufficient() to determine if the current
password meets your requirements. If it does not, you might elect to disable
certain functionality. Or, if you requested the <reset-password> policy
in the metadata, you can call resetPassword() to force the user to come
up with a password meeting your requirements.
Similarly, you can also call getStorageEncryptionStatus() on DevicePolicyManager
to find out whether full-disk encryption is active, inactive, or unavailable
on this particular device. If it is inactive, and you requested the
<encrypted-storage> policy in your metadata, you can call setStorageEncryption()
to demand it, and start the encryption process via starting the
ACTION_START_ENCRYPTION activity.
Establishing Password Requirements
To see password quality enforcement in action, let us examine the
DeviceAdmin/PasswordEnforcer
sample application.
The activity (MainActivity) is fairly short, and much of its code is based on
the earlier LockMeNow sample:

package com.commonsware.android.pwenforce;

import android.app.Activity;
import android.app.admin.DevicePolicyManager;
import android.content.ComponentName;
import android.content.Intent;
import android.os.Bundle;
import android.widget.Toast;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ComponentName cn=new ComponentName(this, AdminReceiver.class);
 DevicePolicyManager mgr=
 (DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);

 if (mgr.isAdminActive(cn)) {
 int msgId;

 if (mgr.isActivePasswordSufficient()) {
 msgId=R.string.compliant;
 }
 else {
 msgId=R.string.not_compliant;
 }

 Toast.makeText(this, msgId, Toast.LENGTH_LONG).show();
 }
 else {
 Intent intent=
 new Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);
 intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN, cn);
 intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,
 getString(R.string.device_admin_explanation));
 startActivity(intent);
 }

 finish();
 }
}

(from DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/MainActivity.java)
In onCreate(), after obtaining a DevicePolicyManager, we see if our app
has been designated by the user as a device administrator. If not — which will
be the case when the app is first installed — we use an ACTION_ADD_DEVICE_ADMIN
Intent and startActivity() to steer the user towards making our app be
a device administrator.
If the user does make our app be a device administrator, our AdminReceiver
will get control in onEnabled(), as we have registered it for DEVICE_ADMIN_ENABLED
broadcasts in the manifest. In onEnabled(), we mandate that the password
for the device must be alphanumeric, via a call to setPasswordQuality()
on the DevicePolicyManager:

 @Override
 public void onEnabled(Context ctxt, Intent intent) {
 ComponentName cn=new ComponentName(ctxt, AdminReceiver.class);
 DevicePolicyManager mgr=
 (DevicePolicyManager)ctxt.getSystemService(Context.DEVICE_POLICY_SERVICE);

 mgr.setPasswordQuality(cn,
 DevicePolicyManager.PASSWORD_QUALITY_ALPHANUMERIC);

 onPasswordChanged(ctxt, intent);
 }

(from DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/AdminReceiver.java)
We will see the role of the onPasswordChanged() method, called late in
onEnabled(), later in this chapter.
Back in onCreate() of our MainActivity, if we are a device administrator,
then we know that the setPasswordQuality() call has been made, and so we can check
to see if the current password meets our standards via a call to
isActivePasswordSufficient() on the DevicePolicyManager. The app displays
a Toast showing whether the password is or is not currently “sufficient”.
Password-Related Events
Via appropriate actions in our <intent-filter> for our DeviceAdminReceiver,
and associated callback methods, we can find out other things that go on with
respect to the password:

	
ACTION_PASSWORD_CHANGED informs us when the user has changed her
password

	
ACTION_PASSWORD_FAILED informs us when somebody tries to enter a
password, and the password was incorrect

	
ACTION_PASSWORD_SUCCEEDED informs us when the user has successfully
entered the password and unlocked the device… after an attempt
had previously failed

The PasswordEnforcer sample registers for all of these in the manifest:

 <receiver
 android:name="AdminReceiver"
 android:permission="android.permission.BIND_DEVICE_ADMIN">
 <meta-data
 android:name="android.app.device_admin"
 android:resource="@xml/device_admin"/>

 <intent-filter>
 <action android:name="android.app.action.DEVICE_ADMIN_ENABLED"/>
 <action android:name="android.app.action.ACTION_PASSWORD_CHANGED"/>
 <action android:name="android.app.action.ACTION_PASSWORD_FAILED"/>
 <action android:name="android.app.action.ACTION_PASSWORD_SUCCEEDED"/>
 </intent-filter>
 </receiver>

(from DeviceAdmin/PasswordEnforcer/app/src/main/AndroidManifest.xml)
The implementations of the corresponding onPasswordChanged(),
onPasswordFailed(), and onPasswordSucceeded() methods simply display
Toast messages about those events:

 @Override
 public void onPasswordChanged(Context ctxt, Intent intent) {
 DevicePolicyManager mgr=
 (DevicePolicyManager)ctxt.getSystemService(Context.DEVICE_POLICY_SERVICE);
 int msgId;

 if (mgr.isActivePasswordSufficient()) {
 msgId=R.string.compliant;
 }
 else {
 msgId=R.string.not_compliant;
 }

 Toast.makeText(ctxt, msgId, Toast.LENGTH_LONG).show();
 }

 @Override
 public void onPasswordFailed(Context ctxt, Intent intent) {
 Toast.makeText(ctxt, R.string.password_failed, Toast.LENGTH_LONG)
 .show();
 }

 @Override
 public void onPasswordSucceeded(Context ctxt, Intent intent) {
 Toast.makeText(ctxt, R.string.password_success, Toast.LENGTH_LONG)
 .show();
 }

(from DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/AdminReceiver.java)
However, these will illustrate some quirks in the behavior of the
device administration APIs:

	
onPasswordSucceeded() is not called on every successful password
entry, only those that come after a prior onPasswordFailed() call.
One imagines that perhaps onPasswordSucceededAfterItHadFailedBefore() was
deemed to be too wordy.

	
isActivePasswordSufficient() will return a value based on the
previous password in onPasswordChanged(), not the newly-changed
password. Since the system will prevent the user from entering a new
password that is insufficient, you should not need to call
isActivePasswordSufficient() from onPasswordChanged().

	A Toast cannot display over the lockscreen, and so the
onPasswordFailed() Toast will never be seen.

Getting Along with Others
Bear in mind that you might not be the only device administrator on any given
device. If there are multiple administrators, the most secure requirements
are in force. So, for example, if Admin A requests a minimum password length
of 7, and Admin B requests a minimum password length of 10, the user will have
to supply a password that is at least 10 characters long, to meet both
device administrators’ requirements.
This also means that certain requests you make may fail. For example, if you
decide to say that you do not need encryption (setStorageEncryption() with
a value of false), if something else needs encryption, the user will still
need to encrypt their device.
Basic Use of Sensors
“Sensors” is Android’s overall term for ways that Android can detect
elements of the physical world around it, from magnetic flux to the
movement of the device. Not all devices will have all possible
sensors, and other sensors are likely to be added over time. In this
chapter, we will explore the general concept of Android sensors and
how to receive data from them.
Note, however, that this chapter will not get into details of
detecting movement via the accelerometer, etc.
Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on threads. Having experience
with other system-service-and-listener patterns, such as
fetching locations with LocationManager, is helpful
but not strictly required.
The Sensor Abstraction Model
When fetching locations from LocationManager, you do not have dedicated APIs
per location-finding technology (e.g., GPS vs. WiFi hotspot proximity vs.
cell-tower triangulation vs. …). Instead, you work with a LocationManager
system service, asking for locations using a single API, where location
technologies are identified by name (e.g., GPS_PROVIDER).
Similarly, when working with sensors, you do not have dedicated APIs to get
sensor readings from each sensor. Instead, you work with a SensorManager
system service, asking for sensor events using a single API, where sensors
are identified by name (e.g., TYPE_LINEAR_ACCELERATION).
Note, though, that there are some dedicated methods on SensorManager to
help you interpret some of the sensors, particularly the accelerometer.
However, those are merely helper methods; getting at the actual accelerometer
data uses the same APIs that you would use to, say, access the barometer for
atmospheric pressure.
Considering Rates
Usually, when working with sensors, you want to find out about changes in
the sensor reading over a period of time. For example, in a driving game, where
the user holds their device like a steering wheel and uses it to “turn” their
virtual car, you need to know information about acceleration and positioning
so long as game play is going on.
Hence, when you request a feed of sensor readings from SensorManager, you
will specify a desired rate at which you should receive those readings.
You do that by specifying an amount of delay in between readings; Android will
drop sensor readings that arrive before the delay period has elapsed.
There are four standard delay periods, defined as constants on the SensorManager
class:

	
SENSOR_DELAY_NORMAL, which is what most apps would use for broad changes,
such as detecting a screen rotating from portrait to landscape

	
SENSOR_DELAY_UI, for non-game cases where you want to update the UI
continuously based upon sensor readings

	
SENSOR_DELAY_GAME, which is faster (less delay) than SENSOR_DELAY_UI, to
try to drive a higher frame rate

	
SENSOR_DELAY_FASTEST, which is the “firehose” of sensor readings, without
delay

The more sensor readings you get, the faster your code has to be for using those
readings, lest you take too long and starve your thread of time to do anything
else. This is particularly important given that you receive these sensor events
on the main application thread, and therefore the time you spend processing
these events is time unavailable for screen updates. Hence, choose the slowest
rate that you can that will give you acceptable granularity of output.
Reading Sensors
Sensors are event-driven. You cannot ask Android for the value of a sensor
at a point in time. Rather, you register a listener for a sensor, then process
the sensor events as they come in. You can unregister the listener when you are
done, either because you have the reading that you need, or the user has done
something (like move to another activity) that indicates that you no longer need
the sensor events.
To demonstrate this, we will examine the
Sensor/Monitor
sample application, which will list all of the available sensors, plus show the
incoming readings from a selected sensor.
This app uses a pair of fragments: SensorsFragment for showing the list,
and SensorLogFragment for showing the log of sensor readings. These are
wrapped in a SlidingPaneLayout, so both fragments will appear
side-by-side if there is enough room, otherwise the list of sensors will be in a
sliding pane that overlaps the list of log events:

<android.support.v4.widget.SlidingPaneLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/panes"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment
 android:id="@+id/sensors"
 android:name="com.commonsware.android.sensor.monitor.SensorsFragment"
 android:layout_width="300sp"
 android:layout_height="match_parent"/>

 <fragment
 android:id="@+id/log"
 android:name="com.commonsware.android.sensor.monitor.SensorLogFragment"
 android:layout_width="400dp"
 android:layout_height="match_parent"
 android:layout_weight="1"/>

</android.support.v4.widget.SlidingPaneLayout>

(from Sensor/Monitor/app/src/main/res/layout/activity_main.xml)
Obtaining a SensorManager
The gateway to the sensor roster on the device is the SensorManager system service.
You obtain one of these by calling getSystemService() on any Context, asking
for the SENSOR_SERVICE, and casting the result to be a SensorManager, as seen
in the onCreate() method of our MainActivity:

 mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)
We do this before the setContentView() call, as in some situations, setContentView()
with static fragments will inflate the fragments and call onViewCreated() on
them before setContentView() returns. As you will see, SensorsFragment calls
back into MainActivity to get the list of sensors. Since that needs the SensorManager,
we need to get our hands on the SensorManager before it is safe to load our layout.
Identifying a Sensor of Interest
There are sensor types, and then there are sensors.
You might think that there would be a one-to-one mapping between these. In truth,
there might be more than one sensor for a given type, the way the SensorManager
API is set up. Regardless, somewhere along the line, you will need to identify the
Sensor that you want to work with.
The most common pattern, if you know the type of sensor that you want, is to call
getDefaultSensor() on SensorManager, supplying the type of the sensor (e.g.,
TYPE_ACCELEROMETER, TYPE_GYROSCOPE), where the type names are constants defined
on the Sensor class. If there is more than one possible Sensor for that type,
Android will give you the “default” one, which is usually a reasonable choice.
Another approach, and the one used by this sample application, is to call
getSensorList() on SensorManager, which returns a List of all Sensor objects available on this
device. The sample’s MainActivity has a getSensorList() that returns this
list, after a bit of manipulation:

 @Override
 public List<Sensor> getSensorList() {
 List<Sensor> unfiltered=
 new ArrayList<>(mgr.getSensorList(Sensor.TYPE_ALL));
 List<Sensor> result=new ArrayList<>();

 for (Sensor s : unfiltered) {
 if (Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT
 || !isTriggerSensor(s)) {
 result.add(s);
 }
 }

 Collections.sort(result, new Comparator<Sensor>() {
 @Override
 public int compare(final Sensor a, final Sensor b) {
 return(a.toString().compareTo(b.toString()));
 }
 });

 return(result);
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)
Android 4.4 started introducing some “trigger sensors”, ones that are designed
to deliver a single reading, then automatically become unregistered. This sample
app is designed to display results from more traditional sensors that provide
ongoing readings. So, getSensorList() calls an isTriggerSensor() method on
API Level 19+ devices, and throws out sensors that are trigger sensors. The
isTriggerSensor() method simply checks the sensor type against a list of
trigger sensors:

 @TargetApi(Build.VERSION_CODES.KITKAT)
 private boolean isTriggerSensor(Sensor s) {
 int[] triggers=
 { Sensor.TYPE_SIGNIFICANT_MOTION, Sensor.TYPE_STEP_DETECTOR,
 Sensor.TYPE_STEP_COUNTER };

 return(Arrays.binarySearch(triggers, s.getType()) >= 0);
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)
The reason for isolating isTriggerSensor() into a separate method, and not
having the array of sensor types as a static final array, is because these
sensor types are not available in all Android versions. Having the array
of sensor types as a static final data member would require putting
the @TargetApi annotation on the entire class, which is unwise if the
class will be used on older devices. This way, we can isolate the
new-target code into a dedicated method, with a more locally-scoped
@TargetApi annotation.
Getting Sensor Events
To get sensor events, you need a SensorEventListener. This is an interface,
calling for two method implementations:

	
onAccuracyChanged(), where you are informed about a significant change in
the accuracy of the readings that you are going to get from the sensor

	
onSensorChanged(), where you are passed a SensorEvent representing one of
those readings

To receive events for a given Sensor, you call registerListener() on the
SensorManager, supplying the Sensor, the SensorEventListener, and one of the
SENSOR_DELAY_* values to control the rate of events. Later on, you need to call
unregisterListener(), supplying the same SensorEventListener, to break the
connection. Failing to unregister the listener is bad. The sensor subsystem
is oblivious to things like activity lifecycles, and so if you leak a listener, not
only will you perhaps leak the component that registered the listener, but you will
continue to get sensor events until the process is terminated. As active sensors
do consume power, users will not appreciate the battery drain your leaked listener
will incur.
The List of Sensor objects from that getSensorList() method shown previously
will be used to populate a ListView. When the user taps on a Sensor in the list,
an onSensorSelected() method is called on the MainActivity. Here, we
unregister our listener (a SensorLogFragment that we will discuss more in a bit),
in case we were registered for
a prior Sensor choice, before registering for the newly-selected Sensor:

 @Override
 public void onSensorSelected(Sensor s) {
 mgr.unregisterListener(log);
 mgr.registerListener(log, s, SensorManager.SENSOR_DELAY_NORMAL);
 log.init(isXYZ(s));
 panes.closePane();
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)
We will discuss the remainder of the onSensorSelected() method a bit later in this
chapter.
Since SensorLogFragment implements SensorEventListener — so we can use it with
registerListener() — we need to implement onAccuracyChanged() and onSensorChanged():

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // unused
 }

 @Override
 public void onSensorChanged(SensorEvent e) {
 Float[] values=new Float[3];

 values[0]=e.values[0];
 values[1]=e.values.length>1 ? e.values[1] : 0.0f;
 values[2]=e.values.length>2 ? e.values[2] : 0.0f;

 adapter.add(values);
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)
Once again, we will get into the implementation of onSensorChanged() a bit later
in this chapter.
The big thing to note now about onSensorChanged(), though, is that
the SensorEvent object comes from an object pool and gets recycled.
It is not safe for you to hold
onto this SensorEvent object past the call to onSensorChanged(). Hence, you need to
do something with the data in the SensorEvent, then let go of the SensorEvent itself,
so that instance can be used again later. This is to help prevent excessive garbage
collection, particularly for low-delay requests for sensor readings
(e.g., SENSOR_DELAY_FASTEST).
Interpreting Sensor Events
The key piece of data in the SensorEvent object is values. This is a six-element
float array containing the actual sensor reading. What those values mean will
vary by sensor. For example:

	For accelerometer readings (e.g., TYPE_ACCELEROMETER), the first three elements
of the array represent the reported acceleration, in m/s2, along the X,
Y, and Z axes respectively (X = out the right side of the device, Y = out the top
edge of the device, Z = out the screen towards the user’s eyes)

	
TYPE_PRESSURE uses the first element of the values array to report the barometric
pressure in millibars

	
TYPE_LIGHT uses the first element of the values array to report the light level
in lux

And so on.
The SensorEvent documentation contains instructions on how to interpret these
events on a per-sensor-type basis.
That being said, sensors can be roughly divided into two groups:

	Sensors whose readings take into account three axes (X/Y/Z). These include
TYPE_ACCELEROMETER, TYPE_GRAVITY, TYPE_GYROSCOPE, TYPE_LINEAR_ACCELERATION,
and TYPE_MAGNETIC_FIELD.

	Sensors that have simple single-value readings, such as TYPE_PRESSURE and
TYPE_LIGHT

The isXYZ() method on MainActivity simply returns a boolean indicating whether
or not this particular Sensor is one that uses all three axes (true) or not
(false). As the roster of sensors has changed over the years, it also does some
checks based on API level:

 @TargetApi(Build.VERSION_CODES.KITKAT)
 private boolean isXYZ(Sensor s) {
 switch (s.getType()) {
 case Sensor.TYPE_ACCELEROMETER:
 case Sensor.TYPE_GRAVITY:
 case Sensor.TYPE_GYROSCOPE:
 case Sensor.TYPE_LINEAR_ACCELERATION:
 case Sensor.TYPE_MAGNETIC_FIELD:
 case Sensor.TYPE_ROTATION_VECTOR:
 return(true);
 }

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
 if (s.getType() == Sensor.TYPE_GAME_ROTATION_VECTOR
 || s.getType() == Sensor.TYPE_GYROSCOPE_UNCALIBRATED
 || s.getType() == Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED) {
 return(true);
 }
 }

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 if (s.getType() == Sensor.TYPE_GEOMAGNETIC_ROTATION_VECTOR) {
 return(true);
 }
 }

 return(false);
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)
Wiring Together the Sample
Overall, this sample app uses the SlidingPaneLayout first seen back
in the chapter on large-screen support. We have two
fragments, in a master-detail pattern, where the “master” will be a list of all
available sensors, and the “detail” will be a log of sensor readings from a
selected sensor.
Our layout (res/layout/activity_main.xml) wires in a SensorsFragment (master)
and SensorLogFragment (detail) in a SlidingPaneLayout:

<android.support.v4.widget.SlidingPaneLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/panes"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment
 android:id="@+id/sensors"
 android:name="com.commonsware.android.sensor.monitor.SensorsFragment"
 android:layout_width="300sp"
 android:layout_height="match_parent"/>

 <fragment
 android:id="@+id/log"
 android:name="com.commonsware.android.sensor.monitor.SensorLogFragment"
 android:layout_width="400dp"
 android:layout_height="match_parent"
 android:layout_weight="1"/>

</android.support.v4.widget.SlidingPaneLayout>

(from Sensor/Monitor/app/src/main/res/layout/activity_main.xml)
The SensorsFragment is reminiscent of CountriesFragment from the
SlidingPaneLayout variant of the EU4You sample. The biggest differences are that
we use a SensorListAdapter for representing the list of sensors, that we
use getSensorList() on our SensorsFragment.Contract class to retrieve the
model data, and that we call onSensorSelected() on the contract to report of selections:

package com.commonsware.android.sensor.monitor;

import android.hardware.Sensor;
import android.os.Bundle;
import android.view.View;
import android.widget.ListView;
import java.util.List;

public class SensorsFragment extends
 ContractListFragment<SensorsFragment.Contract> {
 static private final String STATE_CHECKED=
 "com.commonsware.android.sensor.monitor.STATE_CHECKED";
 private SensorListAdapter adapter=null;

 @Override
 public void onViewCreated(View view, Bundle state) {
 super.onViewCreated(view, state);

 adapter=new SensorListAdapter(this);
 getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 setListAdapter(adapter);

 if (state != null) {
 int position=state.getInt(STATE_CHECKED, -1);

 if (position > -1) {
 getListView().setItemChecked(position, true);
 getContract().onSensorSelected(adapter.getItem(position));
 }
 }
 }

 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
 l.setItemChecked(position, true);

 getContract().onSensorSelected(adapter.getItem(position));
 }

 @Override
 public void onSaveInstanceState(Bundle state) {
 super.onSaveInstanceState(state);

 state.putInt(STATE_CHECKED, getListView().getCheckedItemPosition());
 }

 interface Contract {
 void onSensorSelected(Sensor s);

 List<Sensor> getSensorList();
 }
}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorsFragment.java)
SensorListAdapter illustrates another approach for handling the difference in
“activated” row support. The EU4You samples used an activated style to apply
the “activated” support on Android 3.0 and higher. Here, our custom ArrayAdapter
subclass dynamically chooses between android.R.layout.simple_list_item_activated_1
(an activated-capable built-in row layout) and the classic android.R.layout.simple_list_item_1
based upon API level:

package com.commonsware.android.sensor.monitor;

import android.hardware.Sensor;
import android.os.Build;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.TextView;

class SensorListAdapter extends ArrayAdapter<Sensor> {
 SensorListAdapter(SensorsFragment sensorsFragment) {
 super(sensorsFragment.getActivity(), getRowResourceId(),
 sensorsFragment.getContract().getSensorList());
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View result=super.getView(position, convertView, parent);

 ((TextView)result).setText(getItem(position).getName());

 return(result);
 }

 private static int getRowResourceId() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
 return(android.R.layout.simple_list_item_activated_1);
 }

 return(android.R.layout.simple_list_item_1);
 }
}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorListAdapter.java)
We also have to override getView(), as our model is Sensor, whose toString() is
not what we want, so we have to manually populate the list row with getName() instead.
SensorLogFragment is another ListFragment. In particular, though, we set it
up for TRANSCRIPT_MODE_NORMAL, which means that Android will automatically scroll the
ListView to the bottom if we add new rows to the list and the user has not scrolled
up in the list to view past data:

 @Override
 public void onViewCreated(View view, Bundle state) {
 super.onViewCreated(view, state);

 getListView().setTranscriptMode(ListView.TRANSCRIPT_MODE_NORMAL);
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)
However, we do not initialize our ListAdapter in onViewCreated(), as we might
normally do. Instead, we have a dedicated init() method, to be called by MainActivity,
where we set up the SensorLogAdapter and keep track of whether the Sensor that
we are logging is designed to report three-dimensional values (isXYZ is true) or not:

 void init(boolean isXYZ) {
 this.isXYZ=isXYZ;
 adapter=new SensorLogAdapter(this);
 setListAdapter(adapter);
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)
The init() method, in turn, was called by onSensorSelected() of MainActivity.
Hence, whenever the user taps on a sensor, we set up a fresh log. init() can do this
because MainActivity retrieved our SensorLogFragment up in onCreate(), stashing
it in a log data member:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);

 setContentView(R.layout.activity_main);

 log=
 (SensorLogFragment)getSupportFragmentManager().findFragmentById(R.id.log);

 panes=findViewById(R.id.panes);
 panes.openPane();
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)
Our onSensorChanged() method in SensorLogFragment
copies the values from the SensorEvent into a separate Float array that is
our list’s model data:

 @Override
 public void onSensorChanged(SensorEvent e) {
 Float[] values=new Float[3];

 values[0]=e.values[0];
 values[1]=e.values.length>1 ? e.values[1] : 0.0f;
 values[2]=e.values.length>2 ? e.values[2] : 0.0f;

 adapter.add(values);
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)
Most of the sensors will have three readings in the values array, but not
all will. We are guaranteed at least one element in values. So, we normalize
our Float array to use up to three values from values, substituting in 0.0f
for missing elements.
SensorLogAdapter uses the isXYZ value to determine how it should format the rows:

	For single-value sensors, we just show the first Float from the array

	For three-dimensional sensors, we show all three dimensions, plus the “net”
(square root of the sum of the squares), separated by slashes

 private class SensorLogAdapter extends ArrayAdapter<Float[]> {
 SensorLogAdapter(SensorLogFragment sensorLogFragment) {
 super(sensorLogFragment.getActivity(),
 android.R.layout.simple_list_item_1,
 new ArrayList<Float[]>());
 }

 @SuppressLint("DefaultLocale")
 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 TextView row=
 (TextView)super.getView(position, convertView, parent);
 String content=null;
 Float[] values=getItem(position);

 if (isXYZ) {
 content=
 String.format("%7.3f / %7.3f / %7.3f / %7.3f",
 values[0],
 values[1],
 values[2],
 Math.sqrt(values[0] * values[0] + values[1]
 * values[1] + values[2] * values[2]));
 }
 else {
 content=String.format("%7.3f", values[0]);
 }

 row.setText(content);

 return(row);
 }
 }

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)
The rest of MainActivity simply manages the SlidingPaneLayout, much like the
EU4YouSlidingPane sample did.
The Results
When the user taps on a sensor in the list, we get a log of readings:

[image: SensorMonitor, On a Nexus 10, Showing Gravity Readings While Being Wiggled by the Author]

Figure 843: SensorMonitor, On a Nexus 10, Showing Gravity Readings While Being Wiggled by the Author
Batching Sensor Readings
API Level 19 (Android 4.4) added a new feature to the sensor subsystem: batched sensor
events. Now, registerListener() can take a batch period in microseconds, and Android
may elect to deliver events to you delayed by up to that amount of time. The objective
will be to reduce the power draw of the sensors, for sensor hardware that supports
this sort of batching behavior. Not all hardware will, in which case your requested
batch latency will be ignored.
Printing and Document Generation
Mobile devices are continuing to close the gap on capabilities that had
formerly been the sole province of desktop systems or servers. After all,
if the vision is that people should be able to use phones and tablets
instead of desktops and notebooks, phones and tablets need to do whatever
it is that those people need to have done.
One such capability is the ability to print to networked printers.
While
various third-party printing options had been available for some time,
it is only starting with the Android 4.4 release that the OS and framework itself
has support for printing. Hence, at this time, a significant majority of
Android devices will be natively capable of printing, and so users will
be more likely to expect that your app supports such printing.
As it turns out, the print engine in Android is centered upon the PDF
document format, and Android supports converting HTML into PDF, albeit on a
somewhat limited basis.
The API seems simple and clean. It actually is simple and clean… so long
as you are printing very simple contents (bitmaps or HTML). Once you get
into anything more complicated than that, the threading alone starts to make
things rather messy.
This chapter describes how to use the Android 4.4 print system, including
how to print HTML and PDF files. It will also cover how to generate HTML
and PDF files, whether for printing or for other purposes (e.g., reports
to be emailed or uploaded somewhere).
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book. Also, you should read
the chapter on advanced uses of WebView.
The Android Print System
Writing programs that print on desktop operating systems historically has
been tedious. The fine-grained control that is needed for high-quality
output makes the APIs complicated, and these tend to be only partially
masked by high-level wrappers to simplify common scenarios.
Android’s print system is no different.
Starting with Android 4.4, you can request access to a PrintManager system
service (via getSystemService(), called on any Context). It offers a
print() method that lets you describe what should be printed, in the form of
a PrintAttributes (e.g., what size paper are you looking for?) and a
PrintDocumentAdapter. The latter is responsible for working with Android
to actually create the content to be printed.
print() returns a PrintJob, which you can use to examine the status of
the print request. PrintManager also offers a getPrintJobs() method that
returns all of your outstanding print requests. Note that you cannot access
print jobs from other applications.
Hence, the real complexity of printing lies in the PrintDocumentAdapter
implementation. This class is responsible for generating a PDF that represents
the content to be printed. This leads to four basic ways of working with
a PrintDocumentAdapter:

	Have one created for you, such as via a WebView for printing HTML content

	Create one that takes a PDF generated elsewhere and uses it for the
output

	Create one that uses Android’s Canvas-based PDF generation class, called
PrintedPdfDocument

	Use APIs that avoid all of this entirely, such as printBitmap() on
PrintHelper

About the Sample App
The
Printing/PrintManager
sample project demonstrates all but the Canvas option.
The UI is just a large EditText, designed for you to type in a message.
The action bar overflow contains four options:

	“Bitmap”, to print an image from your device or emulator

	“Web Page”, to print the Web page for this book

	“TPS Report”, which prints a report containing the message from the EditText

	“PDF”, which prints a copy of the cover of Version 5.8 of this book, which
is packaged in the app as an asset

[image: Print Demo App, Showing Overflow]

Figure 844: Print Demo App, Showing Overflow
Printing a Bitmap
Google helpfully supplies a PrintHelper class in the Android Support
package that makes it trivially easy to print a bitmap. Just call printBitmap()
on the PrintHelper, after some minor configuration, and it takes over from
there.
In onOptionsItemSelected() of the sample app’s MainActivity, when
the user chooses the “Bitmap” item, we call
startActivityForResult() on an ACTION_GET_CONTENT Intent, to allow
the user to pick an image from the device or emulator:

 case R.id.bitmap:
 Intent i=
 new Intent(Intent.ACTION_GET_CONTENT)
 .addCategory(Intent.CATEGORY_OPENABLE)
 .setType("image/*");

 startActivityForResult(i, IMAGE_REQUEST_ID);

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
This, in turn, will trigger a call to onActivityResult(), once the user has
(presumably) chosen an image:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == IMAGE_REQUEST_ID
 && resultCode == Activity.RESULT_OK) {
 try {
 PrintHelper help=new PrintHelper(this);

 help.setScaleMode(PrintHelper.SCALE_MODE_FIT);
 help.printBitmap("Photo!", data.getData());
 }
 catch (FileNotFoundException e) {
 Log.e(getClass().getSimpleName(), "Exception printing bitmap",
 e);
 }
 }
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
If the user did indeed choose an image, we create an instance of PrintHelper,
call setScaleMode() to tell it fit the image to the page, and then call
printBitmap() to print the image.
setScaleMode() takes one of two values:

	
SCALE_MODE_FIT will show the entire image, blown up as big as possible

	
SCALE_MODE_FILL will fill the entire page, at the cost of cropping the
image along one axis, if the image’s aspect ratio does not match the paper’s
aspect ratio

printBitmap() takes the name of the print job (so the user, when reviewing the
outstanding print jobs, knows what it is) and either a Uri or a Bitmap for
the image itself. In the case of a Uri, the Uri could be malformed, in which
case the FileNotFoundException may be thrown, which is why we catch it.
What the user sees, after choosing an image to print (and a printer, if the
user has more than one available),
is a print configuration dialog appear, much like those you
might see in a desktop OS:

[image: HP Print Configuration Dialog]

Figure 845: HP Print Configuration Dialog
The dialog itself is provided by Android; the contents of the dialog is provided
by a PrintService that is responsible for taking our print job and actually
dispatching it to the printer.
Here, the user can make typical changes, like portrait/landscape printing and
the number of copies, before pressing the “Print” button. At that point, the
user’s chosen image will be printed.
Note that, in Android 4.4, the print dialog does not work especially well in
landscape on smaller screen sizes, forcing the user to scroll to get to all
of the widgets, including the “Print” button.
Printing an HTML Document
Printing a bitmap is nice. It is not especially useful, as it implies that we
have a bitmap worth printing by itself. That is certainly
possible, but it is unlikely. Even in the case where we want to print a photo,
there is a very good chance that we will need to print some additional information
along with the photo (caption, date when photo was taken, etc.).
Being able to print something over which we have greater control of the rendering
would be more useful. The easiest way to do that is to print some HTML.
Later in this chapter we will cover how to generate some
dynamic HTML representing what you want to print. For the moment, though, let’s
focus on the printing itself.
Printing and WebView
Starting in API Level 19, WebView is capable of participating in the
print process. You can load up a WebView with your desired content, then
print that content.
Some apps will already be using a WebView as part of the UI, and that WebView
will contain what needs to be printed. For example, a Web browser can easily
add a “Print” action bar overflow item that would print the contents of the
active WebView in the browser.
For cases where you want to print something, but you are not using the WebView
for anything but printing, you do not need to add the WebView to the UI.
You can create a WebView instance via its constructor, passing in your Activity
as the Context required by that constructor. You can then populate that WebView
with what needs to be printed, then print it. That is the technique that the
sample application demonstrates, in part because it is likely to be the more
common scenario — only so many apps use a WebView in the UI, and more are likely
to need to print.
Printing a URL
The sample app’s “Web Page” action bar overflow item is tied to an R.id.web
MenuItem. When that is tapped by the user, onOptionsItemSelected() calls
printWebPage() to print a Web page loaded from a URL:

 private void printWebPage() {
 WebView print=prepPrintWebView(getString(R.string.web_page));

 print.loadUrl("https://commonsware.com/Android");
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
Here, getString(R.string.web_page) is returning a string resource that will
be used for the name of a print job. prepPrintWebView() returns the WebView
that will be used for printing. loadUrl() is the standard WebView method
for populating the WebView from a URL. Note that this causes the sample app
to need the INTERNET permission, since we are downloading a Web page and its
related assets (CSS, images) from the Internet.
You will notice that we are not actually printing anything directly in
printWebPage(), which may seem a bit odd given the name of the method. That
is because we cannot print anything until the page is loaded — after all, it is
only then that we have what we want to print.
The job of prepPrintWebView() is to arrange to get control when the page
is loaded and actually print the desired page:

 private WebView prepPrintWebView(final String name) {
 WebView result=getWebView();

 result.setWebViewClient(new WebViewClient() {
 @Override
 public void onPageFinished(WebView view, String url) {
 print(name, view.createPrintDocumentAdapter(),
 new PrintAttributes.Builder().build());
 }
 });

 return(result);
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
getWebView() is just a lazy-initialization method, populating a wv data
member of the activity with a WebView. This way, we avoid creating the WebView
up front, as if the user does not elect to print any HTML, we do not need the
WebView, and a WebView is expensive to initialize:

 private WebView getWebView() {
 if (wv == null) {
 wv=new WebView(this);
 }

 return(wv);
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
We are holding onto the WebView in a data member to ensure that it will
not be garbage-collected. A WebView that is part of our UI is being strongly
held by its parent in the View hierarchy, so we do not normally need to worry
about this. However, in this case, we are creating a WebView dynamically and
are not adding it to the UI, so we are responsible for holding onto it, at least
as long as is needed. In this sample, we just hold onto it for the rest of the life
of the activity.
Back in prepPrintWebView(), we call setWebViewClient(), to attach an anonymous
inner class extending WebViewClient to the WebView. Back in
the chapter introducing WebView, we saw WebViewClient in the
context of shouldOverrideUrlLoading(). Another popular method to override on a
WebViewClient is onPageFinished(). This is called when the HTML and related
assets (CSS, images, etc.) have been loaded and rendered within the WebView. At
this point, for the particular URL we are loading, it is safe to print the
page.
In onPageFinished(), we call a print() method on MainActivity itself:

 private PrintJob print(String name, PrintDocumentAdapter adapter,
 PrintAttributes attrs) {
 startService(new Intent(this, PrintJobMonitorService.class));

 return(mgr.print(name, adapter, attrs));
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
The first line of print() calls startService() to start a PrintJobMonitorService.
We will see more about why we are doing that later in this chapter.
For the moment, take it on faith that this service will help ensure that our process
stays around long enough for our print job to finish.
The second line of print() calls a print() method on
a mgr data member. Here,
mgr is a PrintManager, initialized up in onCreate() of the activity,
by calling getSystemService(), asking for the PRINT_SERVICE, and casting the
result to be a PrintManager.

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 prose=findViewById(R.id.prose);
 mgr=(PrintManager)getSystemService(PRINT_SERVICE);
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
The print() method tells the PrintManager to go print something. print()
takes three parameters:

	The name of the print job, which is kept along with the print job itself in
case something (e.g., the print driver) wishes to show the user a roster of print
jobs. In our case, this is that string resource passed in as the name parameter
to prepPrintWebView(). That parameter is marked final, so the call to
setWebViewClient() will include the value of that parameter in the
anonymous inner class’ implementation of onPageFinished().

	A PrintDocumentAdapter. For the case of printing HTML, we get one of those
by calling createPrintDocumentAdapter() on our populated WebView.

	A PrintAttributes object, describing any particular requirements that you
have for the printed output (e.g., media size, margins, color/monochrome). If you
will let the user control all of that via the print dialog, an empty PrintAttributes
is fine to use with print(). You typically create a PrintAttributes by
creating a PrintAttributes.Builder, calling setters on the Builder to configure
the PrintAttributes, and getting the resulting PrintAttributes via a call
to build().

And that’s it. Android — in particular, WebView and its PrintDocumentAdapter –
takes over from here and prints the Web page.
Limitations and Concerns
Alas, we do not have infinite flexibility with printing HTML from a WebView.
Here are some limitations and potential problem areas that you will encounter:

	While you can use JavaScript in the loaded HTML, it cannot trigger the print
itself using any standard DOM methods.

	Also, if your JavaScript is going to fire off some
asynchronous operations, like an AJAX request, bear in mind that onPageFinished()
does not take those operations into account. You will need to use
addJavascriptInterface() to inject a Java object into the JavaScript realm,
then have your asynchronous work arrange to call some method on that Java
object, to signal to you that the document is ready for printing.

	Print CSS rules, like headers, footers, page numbers, landscape properties,
and the like are ignored at present.

	A WebView can only do one print job at a time. Printing occurs asynchronously,
and so you have to be careful that you do not accidentally start off a second
print job while an earlier one is in process. The print() method returns a
PrintJob that you can use to monitor the print job status, and this object
will be covered in a bit more detail later in this chapter.
You may wish to set up a WebView pool, where you reuse an existing WebView
only if its associated PrintJob is completed, creating a new WebView
instance if there is no available WebView at the moment. Or, you might disable
printing options in the UI until the PrintJob is done, so you can reuse the
WebView. The sample app does none of this, to keep things simpler.

	Printing HTML is “an all-or-nothing affair”. You cannot print a subset of the
HTML, whether denoted by HTML constructs (e.g., <div> IDs) or by page numbers.
Hence, you need to load into the WebView exactly what you want to print, no
more, no less.

Also, any direct use of PrintManager will only work on API Level 19. You will
need to ensure that you only try using it on API Level 19+ devices, using Java
version guard blocks. You will also need to set your build target
(i.e., compileSdkVersion in Android Studio) to at least
API Level 19 to be able to reference the PrintManager and related classes.
Finally, while loading and printing HTML are both intrinsically asynchronous,
generating HTML locally is not. We will discuss this issue a bit more
later in this chapter.
Printing a PDF File
As will be seen in the next section, even if we “hand-roll”
our printed output using a Canvas, the result seems to be a PDF file. Hence,
you would think that the printing framework would provide convenience code to
print a PDF file that we obtained by other means.
Alas, that is not the case.
The sample app contains some code demonstrating how this is possible,
inspired by this Stack Overflow answer,
though
it may cut a few corners that Google would prefer not be cut. However, it also
illustrates how to create your own PrintDocumentHandler, which you will need
for any print job not involving a bitmap or HTML.
The PrintDocumentAdapter Protocol
We supply a PrintDocumentAdapter to the print() method on PrintManager. In
the HTML case, we got a PrintDocumentAdapter from the WebView, and so it
is Google’s job to implement that adapter. Similarly, PrintHelper has its
own internal implementation of a PrintDocumentAdapter that it uses for printing
the bitmap.
For anything else, you need to create your own PrintDocumentAdapter, or
find a third-party implementation that you can perhaps reuse.
PrintDocumentAdapter’s job is to supply the PrintManager with the content
to be printed, in the form of a PDF file. To do that, there are four callback
methods that PrintManager (and related classes) will call on the
PrintDocumentAdapter:

	
onStart() is called first. If you are planning on using the same
PrintDocumentAdapter instance for multiple print jobs, this would be a spot
to initialize the work for a new job. Otherwise, if you were only planning
on using a PrintDocumentAdapter instance once, you may as well just put your
initialization logic in the constructor.

	
onLayout() is called next. Here is where you do enough work to determine
what the resulting output will be later on as printing continues. In particular,
if you want to provide an accurate page count, this is where you will need
to perform the necessary calculations to determine that.

	
onWrite() is called next, asking you to write one or more PDF pages out to
a supplied ParcelFileDescriptor (on which you can create an OutputStream).

	
onFinish() is called last, when the printing request is completed, so you
can free up any necessary resources.

Introducing ThreadedPrintDocumentAdapter
All four of those callback methods are called on the main application thread.
Your onStart() and onFinish() methods need to be fast enough to complete
their work on that thread, and that may not be a problem. The work that
onLayout() and onWrite() do may take a while, though, and so the protocol
is designed to allow you to do that work on a background thread. Both methods
are passed a callback object that you use to pass along the results of your work,
and both are passed a CancellationSignal to indicate if the user cancels the
print job while you are doing the work.
What PrintDocumentAdapter does not do is actually give you a thread to use.
So, the sample app contains a ThreadedPrintDocumentAdapter that moves
the onLayout() and onFinish() work to a background thread:

package com.commonsware.android.print;

import android.content.Context;
import android.os.Bundle;
import android.os.CancellationSignal;
import android.os.ParcelFileDescriptor;
import android.print.PageRange;
import android.print.PrintAttributes;
import android.print.PrintDocumentAdapter;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

abstract class ThreadedPrintDocumentAdapter extends
 PrintDocumentAdapter {
 abstract LayoutJob buildLayoutJob(PrintAttributes oldAttributes,
 PrintAttributes newAttributes,
 CancellationSignal cancellationSignal,
 LayoutResultCallback callback,
 Bundle extras);

 abstract WriteJob buildWriteJob(PageRange[] pages,
 ParcelFileDescriptor destination,
 CancellationSignal cancellationSignal,
 WriteResultCallback callback,
 Context ctxt);

 private Context ctxt=null;
 private ExecutorService threadPool=Executors.newFixedThreadPool(1);

 ThreadedPrintDocumentAdapter(Context ctxt) {
 this.ctxt=ctxt;
 }

 @Override
 public void onLayout(PrintAttributes oldAttributes,
 PrintAttributes newAttributes,
 CancellationSignal cancellationSignal,
 LayoutResultCallback callback, Bundle extras) {
 threadPool.submit(buildLayoutJob(oldAttributes, newAttributes,
 cancellationSignal, callback,
 extras));
 }

 @Override
 public void onWrite(PageRange[] pages,
 ParcelFileDescriptor destination,
 CancellationSignal cancellationSignal,
 WriteResultCallback callback) {
 threadPool.submit(buildWriteJob(pages, destination,
 cancellationSignal, callback, ctxt));
 }

 @Override
 public void onFinish() {
 threadPool.shutdown();

 super.onFinish();
 }

 protected abstract static class LayoutJob implements Runnable {
 PrintAttributes oldAttributes;
 PrintAttributes newAttributes;
 CancellationSignal cancellationSignal;
 LayoutResultCallback callback;
 Bundle extras;

 LayoutJob(PrintAttributes oldAttributes,
 PrintAttributes newAttributes,
 CancellationSignal cancellationSignal,
 LayoutResultCallback callback, Bundle extras) {
 this.oldAttributes=oldAttributes;
 this.newAttributes=newAttributes;
 this.cancellationSignal=cancellationSignal;
 this.callback=callback;
 this.extras=extras;
 }
 }

 protected abstract static class WriteJob implements Runnable {
 PageRange[] pages;
 ParcelFileDescriptor destination;
 CancellationSignal cancellationSignal;
 WriteResultCallback callback;
 Context ctxt;

 WriteJob(PageRange[] pages, ParcelFileDescriptor destination,
 CancellationSignal cancellationSignal,
 WriteResultCallback callback, Context ctxt) {
 this.pages=pages;
 this.destination=destination;
 this.cancellationSignal=cancellationSignal;
 this.callback=callback;
 this.ctxt=ctxt;
 }
 }
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/ThreadedPrintDocumentAdapter.java)
This class uses a single-thread thread pool, managed by an ExecutorService.
In principle, a well-written PrintDocumentAdapter could handle multiple
print jobs in parallel — if you attempt this and are using
ThreadedPrintDocumentAdapter for inspiration, simply increase the size
of the thread pool.
The onLayout() and onWrite() methods package up their parameters
(described in the next section) into job objects.
Those objects implement Runnable, and they are then handed to the ExecutorService
to be run on the next-available thread. onFinish() shuts down the ExecutorService,
though if you wanted to use the ThreadedPrintDocumentAdapter for multiple
print jobs, you would come up with some other logic to clean up the
ExecutorService when you were done with all of the jobs.
Subclasses of ThreadedPrintDocumentAdapter need to:

	Create subclasses of the LayoutJob and WriteJob static inner classes,
implementing their respective
run() methods, to do the work required of onLayout() and onWrite()

	Implement buildLayoutJob() and buildWriteJob() methods that return
instances of those custom subclasses

(fans of dependency injection no doubt can find better solutions for wiring
up a ThreadedPrintDocumentAdapter)
A PdfDocumentAdapter
However, we still need to actually be able to print a PDF, which
ThreadedPrintDocumentAdapter does not do on its own. The sample app
also has a PdfDocumentAdapter, which extends ThreadedPrintDocumentAdapter
and demonstrates a crude way of printing a PDF through the PrintDocumentAdapter
protocol.
PdfDocumentAdapter does not use onStart() or onFinish(). And, since
the onLayout() and onWrite() methods are handled by
ThreadedPrintDocumentAdapter, PdfDocumentAdapter does not have those either.
It does, however, have the buildLayoutJob() and buildWriteJob() methods
required by ThreadedPrintDocumentAdapter. These return instances of a
PdfLayoutJob and PdfWriteJob, respectively:

 @Override
 LayoutJob buildLayoutJob(PrintAttributes oldAttributes,
 PrintAttributes newAttributes,
 CancellationSignal cancellationSignal,
 LayoutResultCallback callback, Bundle extras) {
 return(new PdfLayoutJob(oldAttributes, newAttributes,
 cancellationSignal, callback, extras));
 }

 @Override
 WriteJob buildWriteJob(PageRange[] pages,
 ParcelFileDescriptor destination,
 CancellationSignal cancellationSignal,
 WriteResultCallback callback, Context ctxt) {
 return(new PdfWriteJob(pages, destination, cancellationSignal,
 callback, ctxt));
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java)
PdfLayoutJob needs to fulfill the bulk of the onLayout() contract:

	Monitor the CancellationSignal and call onLayoutCancelled() on
the supplied LayoutResultCallback if the job has been canceled

	Populate a PrintDocumentInfo object to provide metadata about the document
to be printed, and pass that to onLayoutFinished() on the
LayoutResultCallback

 private static class PdfLayoutJob extends LayoutJob {
 PdfLayoutJob(PrintAttributes oldAttributes,
 PrintAttributes newAttributes,
 CancellationSignal cancellationSignal,
 LayoutResultCallback callback, Bundle extras) {
 super(oldAttributes, newAttributes, cancellationSignal, callback,
 extras);
 }

 @Override
 public void run() {
 if (cancellationSignal.isCanceled()) {
 callback.onLayoutCancelled();
 }
 else {
 PrintDocumentInfo.Builder builder=
 new PrintDocumentInfo.Builder("CHANGE ME PLEASE");

 builder.setContentType(PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)
 .setPageCount(PrintDocumentInfo.PAGE_COUNT_UNKNOWN)
 .build();

 callback.onLayoutFinished(builder.build(),
 !newAttributes.equals(oldAttributes));
 }
 }
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java)
PdfLayoutJob also has access to two PrintAttributes objects, the “old”
attributes and the “new” attributes. In principle, onLayout() could be called
a couple of times, perhaps based upon changes the user makes in the print dialog.
These PrintAttributes objects describe the nature of the output, including
things like page size and margins. PdfLayoutJob totally ignores these, because
the PDF is a packaged asset in this case and cannot be changed. If you are
dynamically generating a PDF file, you may wish to pay attention to the
new PrintAttributes and take them into account.
PdfLayoutJob also has access to a Bundle of “extras”, not unlike the “extras”
associated with an Intent. At the present time, there is only one semi-documented
“extra”, EXTRA_PRINT_PREVIEW, which will be true if onLayout() is being
called to generate a print preview of the printed output, false otherwise.
What PdfLayoutJob does do is create a PrintDocumentInfo.Builder to set up
a PrintDocumentInfo object indicating that:

	The output is a “document” (CONTENT_TYPE_DOCUMENT) versus a “photo”
(CONTENT_TYPE_PHOTO) or “unknown” (CONTENT_TYPE_UNKNOWN). This information
is passed to the PrintService that functions as a bridge between PrintManager
and the printer, and the PrintService might optimize output based upon this
setting (e.g., lower quality print output for a “document” instead of
a “photo”).

	The page count of the output is unknown (PAGE_COUNT_UNKNOWN). In principle,
the page count is known, insofar as the PDF that will be printed is an asset
baked into the app, and so we could hard-code the page count in addition to
hard-coding other details (like the asset’s filename).

The boolean second parameter to onLayoutFinished() is supposed to be true
if the layout changed, false otherwise. In practice, the value does not seem
to matter on the first onLayout() call. The implementation here compares
the two PrintAttributes objects using equals().
The last piece is the PdfWriteJob, which performs the work required of the
onWrite() callback:

 private static class PdfWriteJob extends WriteJob {
 PdfWriteJob(PageRange[] pages, ParcelFileDescriptor destination,
 CancellationSignal cancellationSignal,
 WriteResultCallback callback, Context ctxt) {
 super(pages, destination, cancellationSignal, callback, ctxt);
 }

 @Override
 public void run() {
 InputStream in=null;
 OutputStream out=null;

 try {
 in=ctxt.getAssets().open("cover.pdf");
 out=new FileOutputStream(destination.getFileDescriptor());

 byte[] buf=new byte[16384];
 int size;

 while ((size=in.read(buf)) >= 0
 && !cancellationSignal.isCanceled()) {
 out.write(buf, 0, size);
 }

 if (cancellationSignal.isCanceled()) {
 callback.onWriteCancelled();
 }
 else {
 callback.onWriteFinished(new PageRange[] { PageRange.ALL_PAGES });
 }
 }
 catch (Exception e) {
 callback.onWriteFailed(e.getMessage());
 Log.e(getClass().getSimpleName(), "Exception printing PDF", e);
 }
 finally {
 try {
 in.close();
 out.close();
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(),
 "Exception cleaning up from printing PDF", e);
 }
 }
 }
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java)
At its core, PdfWriteJob simply writes our PDF (culled from a cover.pdf asset)
to an OutputStream. The OutputStream is built from the ParcelFileDescriptor,
indicating where the PDF content should be written to.
The InputStream-to-OutputStream “bucket brigade” is augmented with checks on
the CancellationSignal, to abandon the loop if the print job was canceled by
the user. At the end, we call one of three methods on the WriteResultCallback:

	
onWriteCancelled() if the CancellationSignal indicates that the job
was canceled

	
onWriteFinished() if everything succeeded

	
onWriteFailed() (with an error message) if there was some problem, such as
failed I/O

PdfWriteJob has access to a PageRange array, representing the particular pages
out of a larger document to be printed. The parameter to onWriteFinished()
is another PageRange array that should indicate what pages were printed. Once
again, since the PDF is fixed, PdfWriteJob ignores the input PageRange array,
and it indicates that we wrote all pages (PageRange.ALL_PAGES) in the output.
In principle, if you have more control over your environment, you should only
print the requested pages, in which case the output parameter to onWriteFinished()
might be the same array as was passed into onWrite().
Using PdfDocumentAdapter
Back in MainActivity, the “PDF” action bar overflow item triggers a call to
print() on the PrintManager, supplying our PdfDocumentAdapter and another
empty PrintAttributes:

 case R.id.pdf:
 print("Test PDF",
 new PdfDocumentAdapter(getApplicationContext()),
 new PrintAttributes.Builder().build());

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
The PdfDocumentAdapter needs a Context, in order to access the cover.pdf
asset. If your PDF file is being generated, or is saved as a file on external
storage, you would not need this. Since it is theoretically possible that our
activity could be destroyed while the printing is going on in background threads,
rather that briefly leak an Activity, we provide the Application Context
to PdfDocumentAdapter, as that is a singleton and cannot be leaked.
The result of all of this is that when the user chooses the “PDF” action bar
overflow item, the book cover copy is printed.
Printing Using a Canvas
What Google really wants you to do — if bitmaps and HTML are insufficient –
is to create PDF documents using PrintedPdfDocument and a Canvas.
The concept is simple:

	Create a PrintedPdfDocument instance, given a PrintAttributes that describes
the page size, margins, etc.

	Call startPage() to add a page to the document, which returns a
PdfDocument.Page

	Call getCanvas() on the Page and use the standard Android 2D drawing APIs
to draw lines, text, shaded areas, and so forth

	Call finishPage() on the PdfPrintedDocument when you are done rendering
that page

	Repeat the preceding three steps for all needed pages

	Call writeTo() on the PrintedPdfDocument to write the PDF to an OutputStream,
such as the one you get from the ParcelFileDescriptor in the onWrite()
callback of your PrintDocumentAdapter

	Call close() on the PrintedPdfDocument when you are done

For example, let’s look at the onWrite() implementation used by PrintHelper
to print a bitmap:

@Override
public void onWrite(PageRange[] pageRanges, ParcelFileDescriptor fileDescriptor,
 CancellationSignal cancellationSignal,
 WriteResultCallback writeResultCallback) {
 PrintedPdfDocument pdfDocument = new PrintedPdfDocument(mContext,
 mAttributes);
 try {

 Page page = pdfDocument.startPage(1);
 RectF content = new RectF(page.getInfo().getContentRect());

 // Compute and apply scale to fill the page.
 Matrix matrix = getMatrix(mBitmap.getWidth(), mBitmap.getHeight(),
 content, fittingMode);

 // Draw the bitmap.
 page.getCanvas().drawBitmap(mBitmap, matrix, null);

 // Finish the page.
 pdfDocument.finishPage(page);

 try {
 // Write the document.
 pdfDocument.writeTo(new FileOutputStream(
 fileDescriptor.getFileDescriptor()));
 // Done.
 writeResultCallback.onWriteFinished(
 new PageRange[]{PageRange.ALL_PAGES});
 } catch (IOException ioe) {
 // Failed.
 Log.e(LOG_TAG, "Error writing printed content", ioe);
 writeResultCallback.onWriteFailed(null);
 }
 } finally {
 if (pdfDocument != null) {
 pdfDocument.close();
 }
 if (fileDescriptor != null) {
 try {
 fileDescriptor.close();
 } catch (IOException ioe) {
 /* ignore */
 }
 }
 }
}

(note: the preceding code snippet is Copyright (C) 2013 The Android Open Source Project)
Here, they:

	Create the PrintedPdfDocument

	Add a page using startPage()

	Calculate a scaling Matrix based upon the image size, the page size,
and the scale type (FIT or FILL)

	Draw the bitmap on the Canvas using that Matrix

	Finish the page

	Write the result to an OutputStream for the supplied ParcelFileDescriptor

	Close the document

Curiously, they do not do this work in a background thread, though the
onLayout() implementation does use a background thread (since the image
Uri may require an Internet download).
If you are comfortable with the Canvas API, writing PDF pages is much
the same as drawing to your custom View. On the other hand, Android’s
Canvas API is not the same as any other drawing system’s API, so
there will be distinct differences from any other 2D drawing API that
you might have used previously.
Print Jobs
The print() method that we have been calling on PrintManager returns
a PrintJob, representing the print job. This object has a number of
status inquiry methods, including (in rough order of when the events occur):

	isStarted()

	
isQueued() (i.e., waiting for the print system to process it)

	
isBlocked() (i.e., permanently stuck, but needs to be canceled)

	isCompleted()

	isFailed()

	isCancelled()

It also has a cancel() method that you can call to cancel the print job (e.g.,
based on user request). PrintJob also offers a restart() method that
you can use to re-try a failed (but not canceled) print job.
What PrintJob does not have is a listener interface to be proactively notified
when the job changes state.
PrintManager also has getPrintJobs(), which will return a list of the
PrintJob objects representing the jobs you have requested in this process,
rather than having to keep track of all of those yourself.
Printing, Threads, and Services
If you are going to create a report in HTML,
you will want to consider doing that work in an AsyncTask’s doInBackground()
method, so the I/O involved in creating the report happens in the background.
However, PrintManager requires that print() be called on the main application
thread, so you would call print() from onPostExecute() of the AsyncTask.
Similarly, if you are creating your own PrintDocumentAdapter, you will want
to consider moving the onLayout() and onWrite() work into background
threads, such as is illustrated in the sample app via ThreadedPrintDocumentAdapter.
The problem with bare threads or an AsyncTask is that they do not indicate
to Android that your process is still doing some work. It is possible that the
user could request that you print something, then switch to another app (e.g., HOME,
recent-tasks list). Android might consider your process to be relatively
low priority and could terminate it before your print job completes.
The obvious solution is to involve a service, perhaps even a foreground service,
to indicate to Android that your process is doing work that the user will notice
if it does not complete. You could start the service when you do the print job,
and then stop the service when the print job is completed, to return your process
to normal priority.
However, actually having a service do the printing is a serious pain:

	
WebView’s PrintDocumentAdapter really wants the Context that created
the WebView to be an Activity

	The key parameters to onLayout() and onWrite() are not Parcelable and
so cannot be passed in Intent extras via startService() to the service

One possibility would be to create a PrintJobMonitorService, which is what
the sample app does. PrintJobMonitorService takes advantage of that
listPrintJobs() method on PrintManager to keep tabs on all of our
requested print jobs. So long as there is one or more print jobs in an active
state, the service keeps running. Otherwise, the service stops. Hence, while
the service is not actually doing the printing, it is running while the printing
is going on, flagging to the OS to leave our process alone during this critical
juncture.

package com.commonsware.android.print;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.SystemClock;
import android.print.PrintJob;
import android.print.PrintJobInfo;
import android.print.PrintManager;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;

public class PrintJobMonitorService extends Service implements Runnable {
 private static final int POLL_PERIOD=3;
 private PrintManager mgr=null;
 private ScheduledExecutorService executor=
 Executors.newSingleThreadScheduledExecutor();
 private long lastPrintJobTime=SystemClock.elapsedRealtime();

 @Override
 public void onCreate() {
 super.onCreate();

 mgr=(PrintManager)getSystemService(PRINT_SERVICE);
 executor.scheduleAtFixedRate(this, POLL_PERIOD, POLL_PERIOD,
 TimeUnit.SECONDS);
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 return(super.onStartCommand(intent, flags, startId));
 }

 @Override
 public void onDestroy() {
 executor.shutdown();

 super.onDestroy();
 }

 @Override
 public void run() {
 for (PrintJob job : mgr.getPrintJobs()) {
 if (job.getInfo().getState() == PrintJobInfo.STATE_CREATED
 || job.isQueued() || job.isStarted()) {
 lastPrintJobTime=SystemClock.elapsedRealtime();
 }
 }

 long delta=SystemClock.elapsedRealtime() - lastPrintJobTime;

 if (delta > POLL_PERIOD * 2) {
 stopSelf();
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(null);
 }
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PrintJobMonitorService.java)
PrintJobMonitorService uses a single-thread ScheduledExecutorService, to get
control every three seconds in its run() method. The run() method iterates
over the PrintJob objects associated with our app and looks for any that are
in one of three states:

	“started”, meaning that printing has begun

	“queued”, meaning that the user has accepted the print dialog values, but
printing has not yet started

	“created”, meaning that the job has been created, but it is not yet considered
queued, such as when the print dialog is up on the screen

The first two states have simple test methods on PrintJob (isStarted() and
isQueued()). The “created” state does not, for some reason, so we have to get
the underlying PrintJobInfo object and manually check its state (getState())
to see if it is started (PrintJobInfo.STATE_STARTED).
PrintJobMonitorService tracks the last time we saw an in-progress print job.
If we have gone through two three-second polling periods without any in-progress
print jobs, the service assumes that it is no longer needed and calls stopSelf().
Printing Prior to Android 4.4
Before Android 4.4, printing in Android was limited and clunky.
The primary approach was to use Google Cloud Print. In effect, Google Cloud
Print is a Web-managed print server. You would teach Google how to talk to
your printers, and then any authorized device could print to those
printers. By sharing your content (particularly PDFs) via ACTION_SEND,
the user could choose Google Cloud Print as an option if they had
Google Cloud Print set up for their device and printer. Note that
the Android 4.4 printing framework includes a PrintService that works
with Google Cloud Print, so users who have set up Google Cloud Print can
still use it even with the new printing framework.
Various printer manufacturers or third parties also created their own
apps that would fill a similar role, albeit perhaps working with printers
on the local network. Or, you could write your own low-level code to talk
to a network printer via relevant printing protocols like IPP, though
this would be unpleasant at best.
HTML Generation
Earlier in this chapter, we saw how to print HTML. However,
the HTML we printed was loaded from a URL. That is fine, but, as with printing
bitmaps, it may not be a very popular scenario. What will be more likely is that
you want to print some sort of report, generated on the device. And, since
printing using the Canvas is a bit complicated, creating the report via HTML
may be an easier route to take.
The typical approach for this involves creating an HTML template that sets up
the basic page (e.g., references to CSS), then uses some sort of “macros” in the
template to indicate portions that should be replaced dynamically with something
from outside of the template.
This approach has been used since the early days of the original “dot-com revolution”
of the 1990’s, pioneered by tools like Cold Fusion. In Java, there are any number
of available template engines.
However, for HTML, it is reasonably likely that a Web designer is going to want to
get involved, to style the report. Ideally, you choose a template engine that
is either something the designer is already using, or is one that is something the
designer might wish to use elsewhere in the future. Forcing the designer to learn
some new template syntax, just for the purposes of creating these reports, may not
be the best use of the designer’s time (or your time, for answering all of the
designer’s questions).
One of the more popular template structures used today use braces (a.k.a., curly
brackets) as the macro delimiters (e.g., {{ something }}). In particular,
the macro syntax popularized by mustache is used
by many template engine implementations. There is a very good chance that your
Web designer already has used mustache-style templates, or at least has heard
about them.
And, conveniently enough, there is a Java implementation –
jmustache — that is Android-friendly.
The sample app in this chapter implements a “TPS Report”
that is generated from a mustache template using jmustache.
Adding jmustache To Your App
The “Get It” section of the jmustache documentation
contains up-to-date instructions for adding it to a project.
Developers using the Android Gradle Plugin — including Android Studio users –
should reference the Maven Central artifact (com.samskivert:jmustache) from
build.gradle.
Writing the Report Template
A report template for jmustache can be a String or a Reader, with the latter
allowing you to pull in files, assets, or raw resources (the latter two via an
InputStreamReader).
In the case of the sample app, the template is small, and is packaged as a string
resource. However, since the template involves HTML tags, we have to use CDATA
notation to allow those tags to be left alone within the XML of the string
resource:

[image: TPS Report Mustache Template]

Figure 846: TPS Report Mustache Template
The template contains {{reportDate}} and {{message}} variables to be replaced
at runtime with dynamic data from our app. Also note that, despite the CDATA,
we still need to escape the apostrophe with a leading backslash (\').
Creating a Report Context
What will fill in the {{reportDate}} and {{message}} variables will be values
from a “context”. Here, “context” is not referring to Context, but rather an
object that we pass to jmustache to serve as the source of data to blend into
the report.
jmustache has fairly flexible rules for how it can resolve template variables,
including calling Java getter methods based on the variable names. Hence,
we can create a “context” that has getReportDate() and getMessage()
methods, such as the TpsReportContext class in the sample app:

 private static class TpsReportContext {
 private static final SimpleDateFormat fmt=
 new SimpleDateFormat("yyyy-MM-dd", Locale.US);
 String msg;

 TpsReportContext(String msg) {
 this.msg=msg;
 }

 @SuppressWarnings("unused")
 String getReportDate() {
 return(fmt.format(new Date()));
 }

 @SuppressWarnings("unused")
 String getMessage() {
 return(msg);
 }
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
Printing the Report
The “TPS Report” action bar overflow item eventually routes to a
printReport() method on MainActivity:

 private void printReport() {
 Template tmpl=
 Mustache.compiler().compile(getString(R.string.report_body));
 WebView print=prepPrintWebView(getString(R.string.tps_report));

 print.loadData(tmpl.execute(new TpsReportContext(prose.getText()
 .toString())),
 "text/html; charset=UTF-8", null);
 }

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)
The first statement creates a jmustache Template object representing the
report template. This is created by getting the singleton compiler() from
Mustache, and calling compile() on it to interpret the string resource.
Note that since this Template only depends upon the string resource, we could
cache the Template, rebuilding it only on configuration changes, if desired.
Note that we load the template on the main application thread, as printReport()
is called from onOptionsItemSelected(). For a small string resource, that is OK.
If you are loading a more complex report template, you will want to do that in
a background thread.
The second statement mirrors one from printing the Web page from before, where
we call prepPrintWebView() to lazy-create our WebView and set it up to print
when the page is loaded. Here, we use a different print job name than before, one
reflecting the fact that this is a TPS report.
Finally, we use execute() on the Template to generate our HTML for printing,
then pass that HTML to the loadData() method on WebView. execute() takes
our “context” Object, which in this case is an instance of our TpsReportContext
class, with the value typed into the EditText widget in our UI as the “message”
to go into the report.
Note that we execute() the Template on the main application thread as well as
having loaded it on that thread in the first place. Once again, the more complex
the report, the more likely it is that you will want to move this logic into a
background thread. However, remember that print() needs to be called on the main
application thread.
The result is that the user gets a printed TPS report, containing today’s date and
whatever message they typed into the EditText.
PDF Generation Options
Perhaps you feel that generating HTML does not give you enough control,
yet using the Canvas options directly was too much control. Perhaps you
then think that generating a PDF to print, using something other than PdfDocument,
is the right answer. Or perhaps you are generating a PDF for other reasons, such
as to use with ACTION_SEND as output from your app.
You have two basic options for getting this PDF: generate it on the device,
or offload the generation to a server.
There are various open source and commercial libraries
for generating PDF on Android. The best-known open source Java PDF library –
iText — has as dedicated Android version
(iTextG), though the AGPL license
may make it unsuitable for your use case. The commercial libraries range
from fixed-price to per-device licenses. How much advantage these have over
using PrintedPdfDocument from the Android SDK depends upon your needs.
If the bulk of the data needed for generating the PDF resides on a server,
rather than downloading that data and using an underpowered Android device to
create the PDF, you could upload the device-specific data to the server, have
it create the PDF, and download the result from the server. There are plenty
of server-side PDF generation tools, ranging from open source (e.g.,
wkhtmltopdf,
unoconv,
prawn) to commercial (e.g.,
Prince, used to generate the PDF edition of this
book). You also get to work in your preferred programming language, in case
that is not Java, and perhaps leverage the PDF generation logic for other
uses (e.g., generate reports from your Web app).
Basic Bluetooth RFCOMM
For short-range communications, Bluetooth is fairly popular. It is widespread,
available on mobile devices, notebooks, and many Internet of Things platforms.
It performs reasonably well, at least for moderate amounts of data. Android
has a variety of classes in the Android SDK for adding Bluetooth communications
to an app.
However, Bluetooth overall is a vast topic. The documentation for the Android
SDK classes is spotty. And it can be fairly difficult to make sense of how
all the different pieces are supposed to plug in together.
In this chapter, we will explore a sample app that demonstrates Bluetooth
communications between two Android devices and use that to see how to work
with Bluetooth on Android. For extra fun, we will also peek a bit at how things
differ when you try to use Bluetooth on an Android Things device,
such as a Raspberry Pi.
Prerequisites
This chapter makes use of RxJava, foreground services,
RecyclerView, and data binding.
If you want to run the sample app, you will need two Android 5.0+ devices,
each with working Bluetooth.
A Quick Bit of Scope
As mentioned, Bluetooth is vast, much more than can be covered in a single
chapter.
This chapter will focus on Bluetooth, not Bluetooth Low Energy (BLE). When most
people think of Bluetooth, they are thinking of “full” Bluetooth. BLE is designed
for low-power environments and lower data throughput.
This chapter will focus on RFCOMM. Bluetooth is based around “profiles”, which
describe particular standards of data exchange between parties. If you think
of Bluetooth as being HTTPS, a Bluetooth profile is a particular Web service
API. RFCOMM is a general-purpose mechanism designed for communications that fall
outside any standard profile.
And, this chapter will focus on one particular recipe for using Bluetooth. As with
many of the book examples, the code shown here is not bulletproof, but is
here to illustrate the use of various APIs and concepts. A production-grade
app will need to handle concerns that lie outside the scope of the chapter, such
as:

	What if we try sending significant amounts of data, not just short strings,
between the devices?

	What if the devices that had been in communication move out of range of
one another?

	What if Bluetooth is turned off on one of the devices, or if that device
goes into airplane mode?

	How many simultaneous Bluetooth connections can an app manage, and how do we
handle cases where we hit the limit?

About the Sample App
The sample app –
Bluetooth/RxEcho –
is somewhat more complex than are many in this book. The explanation of how
the app works may be somewhat clearer if we take a look at the app overall
first, before diving in the details.
The User Experience
When you launch the app, Android will prompt you to allow the app
to detect the device’s location. As we will see later in the chapter,
Bluetooth has some interesting permission requirements.
If you agree to the permission, you then may get a dialog asking you if
you want to enable Bluetooth, if it is not already enabled. If you decline, the
app shuts down, as it cannot really do anything useful.
If you grant the location permission and enable Bluetooth, the app will present a largely empty UI.
The fun begins with the action bar overflow menu, where there is a “Server” checkable item,
a “Discover” item, and an “Allow Discovery” item.
Designate one of your two test devices as the “client” and the other as the
“server”. Both will need the app up and running.
On the server, click the “Server” action bar item. This will spawn a Notification
letting you know that something is running… a bit loudly:

[image: RxEcho Service Notification]

Figure 847: RxEcho Service Notification
Later, when you are done with the sample app, you can stop the server either
through the action bar overflow item (unchecking it) or by clicking the “Stop Server”
action in the Notification.
Then, on the server, from the action bar overflow menu, choose “Allow Discovery”. This will pop
up a dialog box asking you if you are willing to allow other devices to discover
this one, for 120 seconds. If you accept the dialog… nothing visible happens, but
your device will now be discoverable by other Bluetooth devices.
During those 120 seconds, on the client, choose “Discover” from the action bar
overflow menu. You should see an entry pop up with the Bluetooth MAC address
of the server device:

[image: RxEcho Client, Showing Discovered Device]

Figure 848: RxEcho Client, Showing Discovered Device
You have no good way of knowing that this is the Bluetooth MAC address of
your other device, but most likely there is nothing else discoverable right
now that matches what the app is looking for, and so most likely what you find
will be your server device.
Then, tap on that MAC address, to bring up a screen dedicated to that device:

[image: RxEcho Client, Showing the Selected Device]

Figure 849: RxEcho Client, Showing the Selected Device
Click the “Connected” switch. After a short delay, you should see a pairing
dialog appear on both devices:

[image: RxEcho Client, Showing the Pairing Dialog]

Figure 850: RxEcho Client, Showing the Pairing Dialog
Click “Pair” on both devices, though you do not need to grant rights for
accessing contacts via the checkbox on the dialog.
At this point, the “Connected” switch should be in the “on” state. More importantly,
the field at the bottom of the screen should be enabled. Tap on the field,
type in a short message, and click the “send” action button. You should see
an entry appear on the screen with your message echoed back to you in all
caps:

[image: RxEcho Client, Showing the Echoed Response From the Server]

Figure 851: RxEcho Client, Showing the Echoed Response From the Server
Your message was sent via Bluetooth RFCOMM to the server, which sent back
the all-caps echo.
If you type in other messages, they will be added to the list. You can disconnect
at any time, either by clicking the “Connected” switch again to toggle it off,
or by pressing BACK to return to the list of device MAC addresses.
Once you have paired a device, you no longer need to discover it. So, for example,
if you exit the sample app on the client and terminate its process (e.g., press the
square “stop” toolbar button in Android Studio), then start it again, your
server device should appear in the list immediately, even though the 120-second
discoverability window may have elapsed and you have not asked the client
to discover devices in any case. Your devices are paired, and you will see that
pairing not only in the app on both devices, but in the Bluetooth screen
in Settings as well.
The Code
The app consists of a single activity, called MainActivity. It uses two
fragments:

	
RosterFragment for showing the paired and discovered devices in a
RecyclerView

	
DeviceFragment for showing the “Connected” Switch, EditText for
message entry, and RecyclerView for the responses

There is also ShoutingEchoService, which is a foreground Service that
handles our incoming requests and their associated responses.
The Bluetooth logic is wrapped up in RxBluetooth.
As the name suggests, this puts an RxJava wrapper around many of the
Bluetooth APIs, to make it easier for us to handle thread management.
The prose in this chapter will cover both the Android SDK classes and methods
plus RxBluetooth; the sample just uses RxBluetooth.
Bluetooth and Permissions
A Bluetooth app usually will need three permissions:

	
BLUETOOTH, for general Bluetooth operations

	
BLUETOOTH_ADMIN, for Bluetooth discovery operations… which nearly every
Bluetooth app will need

	either ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION, in order to be
able to get the Bluetooth MAC addresses of discovered or paired devices

The latter requirement is for privacy:

	Apps cannot use Bluetooth discovery and MAC addresses to determine that
two users are nearby without user permission

	Apps cannot build a database of MAC addresses and physical locations,
then use such a database to guess the user’s location given a nearby MAC
address, without user permission

BLUETOOTH and BLUETOOTH_ADMIN permissions have a protectionLevel
of normal, and so all you need to do is request them in the manifest.
The location permissions are dangerous, though, and so on Android 6.0+
devices, with a targetSdkVersion of 23 or higher, you need to request those
at runtime. The RxBluetooth library has the <uses-permission> elements
for BLUETOOTH, BLUETOOTH_ADMIN, and ACCESS_COARSE_LOCATION, which is
all that we need, and therefore we do not need our own manifest entries for those.
However, we do need to request ACCESS_COARSE_LOCATION at runtime. Hence, this
app uses the same AbstractPermissionActivity seen elsewhere in the book,
to manage our permission request on first run of the app. MainActivity
declares that it needs ACCESS_COARSE_LOCATION and exits with a Toast
if the user declines to grant the permission.
The Rx for Your Bluetooth
RxBluetooth is available as a com.github.ivbaranov:rxbluetooth2 artifact, which
we pull in using our dependencies closure:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 27

 defaultConfig {
 applicationId "com.commonsware.android.bluetooth.rxecho"
 minSdkVersion 21
 targetSdkVersion 27
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 dataBinding {
 enabled = true
 }
}

def supportVer="27.1.1"

dependencies {
 implementation("com.android.support:support-v4:$supportVer") {
 exclude group: 'com.android.support', module: 'support-media-compat'
 } // for https://issuetracker.google.com/issues/64909326
 implementation "com.android.support:recyclerview-v7:$supportVer"
 implementation "com.android.support.constraint:constraint-layout:1.1.0"
 implementation "com.github.ivbaranov:rxbluetooth2:2.0.1"
 implementation "io.reactivex.rxjava2:rxjava:2.1.7"
 implementation "io.reactivex.rxjava2:rxandroid:2.0.1"
 implementation "com.github.davidmoten:rxjava2-extras:0.1.18"
 implementation "android.arch.lifecycle:extensions:1.1.1"
}

(from Bluetooth/RxEcho/app/build.gradle)
We will discuss some of those other dependencies later in this chapter.
The entry point to the RxBluetooth library is an RxBluetooth class. Its constructor
takes a Context, which RxBluetooth holds onto directly. As a result, it
is safest to pass in the Application singleton, so we do not wind up with
memory leaks. Both fragments and the ShoutingEchoService need to use Bluetooth,
so each have their own RxBluetooth instances, held in rxBluetooth fields,
initialized as those fragments and service are created, such as:

 rxBluetooth=new RxBluetooth(getActivity().getApplicationContext());

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
I Can Haz Bluetooth?
Roughly speaking, there are three possibilities with respect to Bluetooth
on the device:

	The device lacks Bluetooth hardware

	The device has Bluetooth hardware, but it is disabled by the user

	The device has Bluetooth hardware that is ready for us to use

The first scenario should not happen. Our request of Bluetooth permissions
triggers an implicit requirement of Bluetooth hardware. We would have to
have [uses-feature android:name="android.hardware.bluetooth" android:required="false" /]
in our manifest to say that Bluetooth is not required, if we were willing to work
without it. As it stands, our app should not be installable on devices that
lack Bluetooth.
That being said, for illustration purposes, the sample code checks
to see whether we have Bluetooth hardware, by calling isBluetoothAvailable()
on the RxBluetooth object:

 if (!rxBluetooth.isBluetoothAvailable()) {
 Toast.makeText(getActivity(), R.string.msg_no_bt, Toast.LENGTH_LONG).show();
 }
 else {
 enableBluetooth(false);
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
Under the covers, RxBluetooth works with BluetoothAdapter, the entry point
into the Bluetooth APIs in the Android SDK. BluetoothAdapter has
a getDefaultAdapter() method that returns its singleton instance. If that
returns null or has an empty address, then we do not have Bluetooth hardware.
If isBluetoothAvailable() returns true, we then go and see if Bluetooth
is enabled, via an enableBluetooth() method. There are three possibilities
that this method needs to handle:

	Bluetooth is enabled, in which case we can start using it

	Bluetooth is not enabled, and so we want to ask the user to enable it

	Bluetooth is not enabled, we asked the user to enable it, and the user declined
to do so

We need to handle that latter case so that we can exit gracefully, rather
than continuously popping up demands that the user enable Bluetooth.
The boolean parameter to enableBluetooth() indicates whether this is the
first call (as we are starting up) or the second call (after we asked the user
to enable Bluetooth). The code snippet shown above — from the onViewCreated()
method of RosterFragment — has the first call. enableBluetooth(), then,
takes over:

 void enableBluetooth(boolean didWeAskAlready) {
 if (rxBluetooth.isBluetoothEnabled()) {
 bluetoothReady();
 }
 else if (isThing()) {
 rxBluetooth.enable();

 subs.add(rxBluetooth.observeBluetoothState()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .filter(state -> (BluetoothAdapter.STATE_CONNECTED==state))
 .subscribe(state -> bluetoothReady()));
 }
 else if (didWeAskAlready) {
 Toast.makeText(getActivity(), R.string.msg_away, Toast.LENGTH_LONG).show();
 getActivity().finish();
 }
 else {
 rxBluetooth.enableBluetooth(getActivity(), MainActivity.REQUEST_ENABLE_BLUETOOTH);
 }
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
We first call isBluetoothEnabled() on the RxBluetooth instance. That
just calls isEnabled() on the BluetoothAdapter, and returns a simple boolean
status. If Bluetooth is enabled, we call a bluetoothReady() method to get
things started — we will examine this method in detail shortly.
If Bluetooth is not enabled, and we are running on an Android Things device,
we will handle Bluetooth a bit differently, which we will examine
later in this chapter.
If Bluetooth is not enabled, and we are not on an Android Things devices,
and this is the first call (didWeAskAlready is
false), we call enableBluetooth() on the RxBluetooth instance. This, in turn,
will call startActivityForResult(), for an Intent with the
BluetoothAdapter.ACTION_REQUEST_ENABLE action string. This will cause the
system to display a dialog-themed activity prompting the user to enable Bluetooth.
So, we pass an Activity and a request code into enableBluetooth(), and those
are used to make the startActivityForResult() call.
The catch is that enableBluetooth() takes an Activity as a parameter and
calls startActivityForResult() on it. Hence, the result goes to the Activity.
This code is in RosterFragment, and so we cannot implement onActivityResult()
here, as that will not be used. Instead, onActivityResult() goes on MainActivity,
which then turns around and calls enableBluetooth() again, this time with a
true parameter:

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode==REQUEST_ENABLE_BLUETOOTH && roster!=null) {
 roster.enableBluetooth(true);
 }
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/MainActivity.java)
Here, roster is the RosterFragment instance, set up in onCreate().
Back in enableBluetooth() in RosterFragment, if Bluetooth is not
available, and we already asked the user — we are being called again
by that onActivityResult() from MainActivity — we show a Toast and
exit, since the user does not want to enable Bluetooth.
Ideally, eventually, the user enables Bluetooth, so our app can work.
I Feel a Bond Between Us
Next, we need to provide the user with a list of devices that might be running
our app. This list comes from two sources:

	The list of Bluetooth devices paired with this one

	The list of Bluetooth devices discovered by our app

However, this list will also need to be filtered, so we do not present clearly
silly options to the user, such as suggesting that our app is running on a
Bluetooth-connected speaker.
Getting the Paired Devices
BluetoothAdapter has a getBondedDevices() method; RxBluetooth wraps
that in its own getBondedDevices() method. This returns the list of
“bonded” devices, which pretty much everyone else would refer to as the “paired”
devices.
Specifically, we get back a list of BluetoothDevice objects. We will need those
objects later on for connecting to and communicating with the other device,
so we will maintain a model collection of these objects.
The bluetoothReady() method is called when we know that Bluetooth is
ready for use. There, part of its work is to call initAdapter():

 private void initAdapter() {
 adapter.setItems(rxBluetooth.getBondedDevices());
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
Here, we call getBondedDevices() and pass that to a setItems() method
on an adapter. adapter is a DevicesAdapter instance that we set up
when we create the fragment. DevicesAdapter is a RecyclerView.Adapter,
tied to a RowHolder for our list rows:

 private class DevicesAdapter extends RecyclerView.Adapter<RowHolder> {
 private final ArrayList<BluetoothDevice> devices=new ArrayList<>();

 @Override
 public RowHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 return(new RowHolder(RosterRowBinding.inflate(getLayoutInflater(), parent, false)));
 }

 @Override
 public void onBindViewHolder(RowHolder holder, int position) {
 holder.bind(devices.get(position));
 }

 @Override
 public int getItemCount() {
 return(devices.size());
 }

 void setItems(Collection<BluetoothDevice> devices) {
 this.devices.clear();

 for (BluetoothDevice device : devices) {
 if (isCandidateDevice(device)) {
 this.devices.add(device);
 }
 }

 notifyDataSetChanged();
 }

 void addDevice(BluetoothDevice device) {
 if (isCandidateDevice(device) && !devices.contains(device)) {
 devices.add(device);
 notifyItemInserted(devices.size()-1);
 }
 }

 boolean isCandidateDevice(BluetoothDevice device) {
 int deviceClass=device.getBluetoothClass().getDeviceClass();

 return(((deviceClass & BluetoothClass.Device.Major.COMPUTER)==
 BluetoothClass.Device.Major.COMPUTER) ||
 ((deviceClass & BluetoothClass.Device.Major.PHONE)==
 BluetoothClass.Device.Major.PHONE) ||
 ((deviceClass & BluetoothClass.Device.Major.AUDIO_VIDEO)==
 BluetoothClass.Device.Major.AUDIO_VIDEO));
 }
 }

 public class RowHolder extends RecyclerView.ViewHolder {
 private final RosterRowBinding binding;

 RowHolder(RosterRowBinding binding) {
 super(binding.getRoot());

 this.binding=binding;
 }

 void bind(BluetoothDevice device) {
 binding.setDevice(device);
 binding.setController(this);
 binding.executePendingBindings();
 }

 public void onClick(BluetoothDevice device) {
 ((Contract)(getActivity())).showDevice(device);
 }
 }
}

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
Filtering the Devices
Most of the above code follows from what we saw with RecyclerView
and the data binding framework elsewhere in the book.
What’s a little strange is the filtering going on in methods like the
setItems() that initAdapter() calls.
Bluetooth devices have classes. Computers are a different class than are
audio devices, which are in a different class than are toys, and so on.
An Android device might discover, or be paired with, other devices
from a variety of classes. Rather than present all possible devices, it makes
sense to limit the devices to things that are reasonably likely to have our
app.
BluetoothDevice has a getBluetoothClass() method, which returns a BluetoothClass
object. That, in turn, has a getDeviceClass() method, which returns an int
that represents the device class.
There are three classes (at least) that Android devices can fall in, identified
by constants defined on the BluetoothClass.Device.Major class:

	Some phones and tablets report themselves as being a COMPUTER

	Some phones report themselves as being a PHONE

	An Android Things device inexplicably reports itself as being AUDIO_VIDEO

So, isCandidateDevice() does some bit-checking to see if the device we
are bonded to is in one of those three major classes, rejecting any others.
Listing the Devices
The onViewCreated() method of RosterFragment sets up that RecyclerView,
as well as creating the RxBluetooth instance, seeing if we have Bluetooth
hardware, and triggering the initial call to enableBluetooth():

 @Override
 public void onViewCreated(View view, @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 rv=view.findViewById(R.id.devices);

 rv.setLayoutManager(new LinearLayoutManager(getActivity()));
 rv.addItemDecoration(new DividerItemDecoration(getActivity(),
 LinearLayoutManager.VERTICAL));
 rv.setAdapter(adapter);

 rxBluetooth=new RxBluetooth(getActivity().getApplicationContext());

 if (!rxBluetooth.isBluetoothAvailable()) {
 Toast.makeText(getActivity(), R.string.msg_no_bt, Toast.LENGTH_LONG).show();
 }
 else {
 enableBluetooth(false);
 }
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
A Voyage of Discovery
Before we can connect to a Bluetooth device, we need to pair with it. And
before we can pair with it, we need to discover it. So, while the preceding
section outlined how we can show the user already-paired devices, we also
have to allow the user to discover devices to pair with.
This is a three-part process:

	One device — the server — has to become discoverable, as devices are not
discoverable by default, for security reasons

	The other device — the client — has to scan for discoverable devices

	If and when any devices are discovered, we need to add them to our list
of devices to potentially connect to

Enabling Discoverability
In the Android SDK, to allow other devices to discover the one your app is running
on, you use startActivityForResult() on a BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE
Intent. This will pop up a system-supplied dialog-themed activity to confirm
that the user really wants the device to be discoverable. If the user agrees,
then the device will be discoverable… for a short while.
The default discoverability duration in 120 seconds. You can add a
BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION extra to the Intent, with a
value in seconds (up to 300) of how long you would like the device to be discoverable.
RxBluetooth hides all of this behind a pair of enableDiscoverability() methods.
Both take an Activity and a request code, for use with the
startActivityForResult() call. One of the enableDiscoverability() methods
also takes a duration, to pass along via EXTRA_DISCOVERABLE_DURATION.
As with enableBluetooth(), the startActivityForResult() call is made on the
supplied Activity, not any fragment. If you want the result, you will need
to implement onActivityResult() on the same Activity that you supplied to the
enableDiscoverability() call. Here, the result is contained entirely in the
result code, which will be RESULT_CANCELED if the user declined to enable
discoverability… or the duration in seconds that the device will be discoverable.
RESULT_OK is not the value indicating success in this case.
In RosterFragment, if the user taps on the “Allow Discovery” action bar item,
we just call enableDiscoverability():

 rxBluetooth.enableDiscoverability(getActivity(), REQUEST_ENABLE_DISCOVERY);

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
In our case, we are ignoring the result, as we have no behavior to invoke
based upon that result.
There is no way to cancel discoverability — it will simply time out on its
own.
Discovering Other Devices
In the Android SDK, BluetoothAdapter has three methods tied to discovery (the
act of discovering discoverable devices):

	startDiscovery()

	isDiscovering()

	cancelDiscovery()

RxBluetooth has its own versions of those methods, which just call the corresponding
method on the wrapped BluetoothAdapter.
The three methods do pretty much what you would expect from their names:
start searching for discoverable devices, report if a discovery search is
ongoing, and stop the search.
In RosterFragment, if the user taps the “Discover” action bar item, we just
call startDiscovery():

 rxBluetooth.startDiscovery();

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
As part of cleanup, we call cancelDiscovery() in onDestroy(), so a discovery
operation will not continue past the lifetime of the fragment instance.
Reacting to Discovery Results
However, somewhere along the line, it would be very useful if we actually found
out about the discovery results. If the scan finds devices, we need to know about
them. We also need to know when the discovery scan stops of its own accord,
as it will not run forever.
To that end, as part of our work in bluetoothReady() in RosterFragment,
we set up two RxJava chains. One will use observeDevices() on RxBluetooth
to find out about discovered devices. The other will use observeDiscovery()
on RxBluetooth to find out about the status of the discovery scan itself:

 subs.add(rxBluetooth.observeDevices()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(this::addDevice));

 subs.add(rxBluetooth.observeDiscovery()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(s ->
 discover.setEnabled(!BluetoothAdapter.ACTION_DISCOVERY_STARTED.equals(s))));

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
observeDiscovery(), under the covers, uses a BroadcastReceiver to listen for
BluetoothAdapter.ACTION_DISCOVERY_STARTED and
BluetoothAdapter.ACTION_DISCOVERY_FINISHED broadcasts, forwarding them along
to our chain. We simply enable and disable the “Discovery” MenuItem depending
upon the scan state.
Similarly, observeDevices() uses a BroadcastReceiver for
BluetoothDevice.ACTION_FOUND devices, forwarding the BluetoothDevice
extra (EXTRA_DEVICE) along to our chain. We call addDevice(), which will
add the device to our RecyclerView, if that device is not already in the list.
It might already be in the list because:

	We were paired to it, but it happened to be discoverable during our scan, or

	We had it in the list from a previous scan

Serving and Shouting
Given all of that, our client device can find our server device. Now, we need
to set up the actual communications between them.
First, let’s look at how our server listens for incoming connections from
clients. That is managed by the ShoutingEchoService, so that we can
listen for connections and respond to requests from the background, if desired.
Service Scaffolding
ShoutingEchoService is a foreground service, partly so the user can stop
the service from the Notification, and partly so that the service can run
for an extended period of time. So, in onCreate(), among other things,
we set up our notification channel and call startForeground():

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 startForeground(1338, buildForegroundNotification());

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
startForeground() relies on a buildForegroundNotification() method to
create the Notification:

 private Notification buildForegroundNotification() {
 NotificationCompat.Builder b=
 new NotificationCompat.Builder(this, CHANNEL_WHATEVER);

 b.setOngoing(true)
 .setContentTitle(getString(R.string.msg_foreground))
 .setSmallIcon(R.drawable.ic_stat_ping)
 .addAction(android.R.drawable.ic_media_pause, getString(R.string.msg_stop),
 buildStopPendingIntent());

 return(b.build());
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
buildForegroundNotification(), in turn, calls buildStopPendingIntent(),
to craft a PendingIntent to be tied to the “stop” action added to the Notification.
buildStopPendingIntent() uses a service PendingIntent, wrapped around
an explicit Intent (identifying our service) to which we also happen to
attach a custom action string (ACTION_STOP):

 private PendingIntent buildStopPendingIntent() {
 Intent i=new Intent(this, getClass()).setAction(ACTION_STOP);

 return(PendingIntent.getService(this, 0, i, 0));
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
onStartCommand() then examines the Intent used to start the service,
sees if it is ACTION_STOP, and calls stopSelf() if so:

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 if (ACTION_STOP.equals(intent.getAction())) {
 stopSelf();
 }

 return(START_NOT_STICKY);
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
As a result, if the user taps the “Stop Server” notification action, the service
will stop itself.
A Quick Word About MutableLiveData
The RosterFragment has a checkable action bar item, “Server”, used to start
and stop the ShoutingEchoService. To make that work, the RosterFragment needs
to know about the status of the service, and changes to the status of the service.
For example, if the user stops the service through the notification action, we
need to uncheck the MenuItem if our UI is still around.
We could use an event bus, such as greenrobot’s EventBus. In this case, we
are using MutableLiveData.
MutableLiveData is from the Architecture Components family of libraries.
LiveData is a bit like a very tiny subset of RxJava, allowing you to observe
on a stream of data. MutableLiveData is a subclass of LiveData that allows
external parties to post events to observers. As a result, MutableLiveData can
be used a bit like an event bus. The main “claim to fame” for LiveData — beyond
it coming from Google — is that its mechanism for observing changes is lifecycle-aware,
so we do not need to register and unregister from activity or fragment
lifecycle methods.
You can learn a lot more about MutableLiveData, LiveData, and the rest
of the Architecture Components in the companion volume, Android’s Architecture Components.
Keeping the UI in the Loop
To keep the UI layer informed about the status of the service, ShoutingEchoService
has a MutableLiveData that publishes Status objects:

 static final MutableLiveData<Status> STATUS=new MutableLiveData<>();

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
Here, Status is a simple wrapper around a boolean:

 static class Status {
 static final Status IS_RUNNING=new Status(true);
 static final Status NOT_RUNNING=new Status(false);
 final boolean isRunning;

 private Status(boolean isRunning) {
 this.isRunning=isRunning;
 }
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
This could be replaced by an enum or Boolean, but you might have more complex data that
you want to publish as part of the status.
Then, in onCreate(), we use postValue() on MutableLiveData to publish
that the service is running:

 @Override
 public void onCreate() {
 super.onCreate();

 rxBluetooth=new RxBluetooth(getApplicationContext());
 acceptConnections();

 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 mgr.getNotificationChannel(CHANNEL_WHATEVER)==null) {
 mgr.createNotificationChannel(new NotificationChannel(CHANNEL_WHATEVER,
 "Whatever", NotificationManager.IMPORTANCE_DEFAULT));
 }

 startForeground(1338, buildForegroundNotification());

 STATUS.postValue(Status.IS_RUNNING);
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
In onDestroy(), among other things, we publish that the service is no longer
running:

 STATUS.postValue(Status.NOT_RUNNING);

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
RosterFragment sets up a lambda expression to observe these status changes
and update the checked state of a server MenuItem:

 ShoutingEchoService.STATUS.observe(this,
 status -> {
 if (server!=null && status!=null) server.setChecked(status.isRunning);
 });

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
That informs us in real time about status changes. To find out the current
status, we have to call getValue() on the MutableLiveData, which RosterFragment
wraps in an isServerRunning() method:

 private boolean isServerRunning() {
 ShoutingEchoService.Status status=ShoutingEchoService.STATUS.getValue();

 return(status!=null && status.isRunning);
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
That can then be used to control what happens when the user taps that “Server”
action bar item:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.server:
 if (isServerRunning()) {
 getActivity().stopService(new Intent(getActivity(),
 ShoutingEchoService.class));
 }
 else {
 getActivity().startService(new Intent(getActivity(),
 ShoutingEchoService.class));
 }

 return(true);

 case R.id.discover:
 rxBluetooth.startDiscovery();
 return(true);

 case R.id.allow_disco:
 rxBluetooth.enableDiscoverability(getActivity(), REQUEST_ENABLE_DISCOVERY);
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
Services with Services
Of course, none of this has anything much to do with Bluetooth. It would be nice
if our server actually used Bluetooth somewhere.
Up in onCreate(), in addition to initializing our RxBluetooth instance, we
call acceptConnections(). That is where the Bluetooth fun starts with our service:

 private void acceptConnections() {
 connectionSub=rxBluetooth
 .observeBluetoothSocket(getString(R.string.app_name), SERVICE_ID)
 .subscribeOn(Schedulers.io())
 .observeOn(Schedulers.computation())
 .subscribe(this::operateServer,
 throwable -> Log.e(getClass().getSimpleName(),
 "Exception from Bluetooth", throwable));
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
In the Android SDK, a server can start listening for RFCOMM connection requests
by calling listenUsingRfcommWithServiceRecord() on the BluetoothAdapter
instance. That is wrapped by observeBluetoothSocket() on RxBluetooth, so
we can observe the results of that work.
listenUsingRfcommWithServiceRecord() takes two parameters:

	Some sort of display name, for unknown reasons

	A UUID identifying the Bluetooth service that we are publishing

Clients that try to connect to us will need to use that same UUID, to distinguish
our Bluetooth service from other ones. In our case, the UUID is SERVICE_ID:

 static final UUID SERVICE_ID=
 UUID.fromString("20c6de08-2cf5-4ca2-96af-cb0a45055d37");

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
listenUsingRfcommWithServiceRecord() returns a BluetoothServerSocket.
Calling accept() on it blocks until a connection is made, at which time
accept() returns a BluetoothSocket that can be used for communicating with
that connected client. At this point, you close() the BluetoothServerSocket,
as a given instance of BluetoothServerSocket is used for establishing just
one connection. All of that work is wrapped up inside of RxBluetooth, so we
can just set up an RxJava chain, using background threads both for listening
for incoming connections and consuming the resulting BluetoothSocket.
Once we get a BluetoothSocket, we call operateServer(). Among other things,
operateServer() turns around and calls acceptConnections() again, so we can
accept the next incoming client connection request. So that we do not wind
up with a bunch of RxJava subscriptions piling up, we keep track of the outstanding
one in a connectionSub field, disposing of it both in onDestroy() (as we
no longer need it then) and in acceptConnections() (as we no longer need the
previous subscription, since we already received our BluetoothSocket).
Reach Out and Touch Someone
Given that our server has its service to respond to connections, our client
has to make those connections.
On the client side, this is managed by the DeviceFragment. We create
and show one of these when the user clicks on a device in the list
displayed in the RosterFragment. As it turns out, BluetoothDevice
is Parcelable, so we can pass that over to the DeviceFragment using
the arguments Bundle:

 public static Fragment newInstance(BluetoothDevice device) {
 DeviceFragment result=new DeviceFragment();
 Bundle args=new Bundle();

 args.putParcelable(ARG_DEVICE, device);
 result.setArguments(args);

 return(result);
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)

 private BluetoothDevice getDevice() {
 return(getArguments().getParcelable(ARG_DEVICE));
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)
Finding Out When We Should Connect
The DeviceFragment UI is mediated by the data binding framework. The fragment’s
layout — res/layout/device.xml — injects the fragment itself as a controller
and has the Switch invoke onConnectionChange() on the fragment when the
Switch state changes:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <data>

 <variable
 name="controller"
 type="com.commonsware.android.bluetooth.rxecho.DeviceFragment" />
 </data>

 <android.support.constraint.ConstraintLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="@dimen/padding_main">

 <Switch
 android:id="@+id/connected"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onCheckedChanged="@{() -> controller.onConnectionChange()}"
 android:text="@string/switch_connected"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <android.support.v7.widget.RecyclerView
 android:id="@+id/transcript"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layoutManager="LinearLayoutManager"
 app:layout_constraintBottom_toTopOf="@+id/entry"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/connected"
 app:stackFromEnd="true" />

 <EditText
 android:id="@+id/entry"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:ems="10"
 android:enabled="false"
 android:hint="@string/hint_entry"
 android:inputType="text"
 android:imeOptions="actionSend"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.627"
 app:layout_constraintStart_toStartOf="parent" />
 </android.support.constraint.ConstraintLayout>
</layout>

(from Bluetooth/RxEcho/app/src/main/res/layout/device.xml)
onCreateView() then sets up the DeviceBinding, holding onto it in a binding
field:

 @Nullable
 @Override
 public View onCreateView(LayoutInflater inflater,
 @Nullable ViewGroup container,
 @Nullable Bundle savedInstanceState) {
 binding=DeviceBinding.inflate(inflater, container, false);
 binding.setController(this);

 return(binding.getRoot());
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)
Connecting and Disconnecting
That onConnectionChange() method then checks to see if the Switch
is checked. If it is, we disable the Switch, so the disabled state indicates
that we are in a “connecting” state, as opposed to a “disconnected” or “connected”
state:

 public void onConnectionChange() {
 if (binding.connected.isChecked()) {
 binding.connected.setEnabled(false);
 connectionSub=rxBluetooth.observeConnectDevice(getDevice(), ShoutingEchoService.SERVICE_ID)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(this::onConnected, this::onConnectionError);
 }
 else {
 disconnect();
 }
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)
More importantly, we set up an RxJava chain based on observeConnectDevice()
on our RxBluetooth object. This will try to connect to our service, given
the BluetoothDevice of the server’s device and the UUID of the service.
observeConnectDevice() wraps a call to createRfcommSocketToServiceRecord()
on BluetoothDevice. This creates a BluetoothSocket representing the client
side of the connection to the UUID-identified service running on the designated
device. A call to connect() will block until we successfully connect
to that service or it throws some form of IOException indicating that we could
not connect.
Our RxJava chain routes successful connections to an onConnected() method. Among
other things, it enables the Switch (to show that we are connected) and
the EditText (initially disabled, since we cannot send messages until we are
connected). The rest has to do with data exchange, which we will look at in the
next section.
Our RxJava chain routes exceptions to onConnectionError(), which unchecks
the Switch (since we are not connected), logs the details to LogCat (in case
this error was unexpected), and shows a Toast.
The fact that we uncheck the Switch triggers a fresh call to onConnectionChange().
If the Switch is unchecked, we call a disconnect() method, which,
among other things, will dispose() the connectionSub subscription, as we no
longer need that RxJava chain for our failed connection attempt.
There is nothing in this code specific to pairing. That happens automatically
when we try to connect to the service on the other device. If we are already
paired, getting our BluetoothSocket is relatively quick. If we are not paired,
we need to wait for the user to agree to pair the devices, which may take some
time or possibly never happen (e.g., user declines, user fails to notice the
dialog and it times out).
Ping and Pong
Once our client has connected to the server, we can start exchanging messages.
Technically, there is nothing in Bluetooth that requires a request/response
protocol. Both sides can communicate as needed to the other. However, a
request/response pattern is easy to write, which is why we use it here.
Getting Our Client Streams
A BluetoothSocket has getInputStream() and getOutputStream() methods
for receiving and sending data to the other party, respectively. RxBluetooth
does not add anything for these — you are on your own for determining when
and how to use those streams.
The onConnected() method, in addition to adjusting the state of some widgets:

	Holds onto our BluetoothSocket

	Create a PrintWriter tied to the output stream from the BluetoothSocket

	Arranges to process the data arriving on the input stream using an RxJava chain

 private void onConnected(BluetoothSocket socket) throws IOException {
 binding.connected.setEnabled(true);
 binding.entry.setEnabled(true);
 this.socket=socket;
 out=new PrintWriter(new OutputStreamWriter(socket.getOutputStream()));
 responseSub=Bytes.from(socket.getInputStream())
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(bytes -> post(new String(bytes)),
 throwable -> out.close());
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)
We will examine that RxJava chain in greater detail a bit later in this chapter.
Sending the Message
The DeviceFragment layout, shown above, has android:imeOptions="actionSend",
to ask for a “send” button on any soft keyboard. In onViewCreated(),
we tie the EditText to a send() method by means of a lambda expression
supplied to setOnEditorActionListener(), to find out when the user taps
that “send” button:

 @Override
 public void onViewCreated(View view, @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 binding.entry.setOnEditorActionListener((v, actionId, event) -> (send()));
 binding.entry.setEnabled(socket!=null);

 RecyclerView rv=view.findViewById(R.id.transcript);

 rv.setAdapter(adapter);
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)
send(), in turn, uses the PrintWriter to send the entered text to the
server:

 public boolean send() {
 Single.just(binding.entry.getText().toString())
 .observeOn(Schedulers.io())
 .subscribe(message -> {
 out.print(message);
 out.flush();
 });

 return(true);
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)
We want to do that work on a background thread, as we always want to do I/O
on a background thread. To stick to a single thread pool, we wrap the text
that the user types in into a Single (a “one-shot” RxJava type otherwise
reminiscent of Observable), observe the data on the io() thread, and
in there print() the text to the PrintWriter and flush() it to make
sure that it goes out.
Processing the Request
Back in ShoutingEchoService, the operateServer() method gets the
BluetoothSocket representing the server side of the connection and sets
up its own RxJava chain to work with it:

 private void operateServer(BluetoothSocket socket) throws IOException {
 disconnect();
 this.socket=socket;
 acceptConnections();

 final PrintWriter out=
 new PrintWriter(new OutputStreamWriter(socket.getOutputStream()));

 Bytes.from(socket.getInputStream())
 .subscribeOn(Schedulers.io())
 .observeOn(Schedulers.computation())
 .subscribe(bytes -> {
 out.print(new String(bytes).toUpperCase());
 out.flush();
 }, throwable -> out.close());
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
First, though, we call disconnect(), which closes any existing BluetoothSocket
that we might have:

 private void disconnect() {
 if (socket!=null) {
 try {
 socket.close();
 }
 catch (IOException e) {
 Log.e(TAG, "Exception from Bluetooth", e);
 }
 }
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/ShoutingEchoService.java)
As noted above, we also call acceptConnections(), so we can accept a connection
from the next client. We only support one client at a time, closing the BluetoothSocket
from the previous client as part of accepting the next one here. That’s mostly
a limitation of the sample app, to try to keep this sample from being
excessively complex.
RxJava does not provide anything that works directly with Java’s stream
classes, like InputStream or OutputStream. However, David Moten offers
the rxjava2-extras library
which adds more Java-specific bridges to RxJava. Here, we use the Bytes
class, which sets up RxJava chains for data coming in from an InputStream.
We want to receive the message on a background thread, and we also want to send
the response on a background thread. To prevent sending the response from
blocking future input, we use separate threads, with the io() thread for
reading the data off of the InputStream and the computation() thread
for sending the response.
Actually sending the response then is simply a matter of:

	Converting the bytes into a String

	Capitalizing the String using toUpperCase(), so the service appears to be shouting

	Using print() and flush() on our PrintWriter to send the response back to the client

If there is an IOException, we just close the PrintWriter, which closes the
associated OutputStream. Bytes automatically closes our InputStream when
the stream is closed from the sending side.
Receiving the Response
In DeviceFragment, part of what onConnected() does is set up a similar
Bytes-based RxJava chain to listen for the responses from the server:

 private void onConnected(BluetoothSocket socket) throws IOException {
 binding.connected.setEnabled(true);
 binding.entry.setEnabled(true);
 this.socket=socket;
 out=new PrintWriter(new OutputStreamWriter(socket.getOutputStream()));
 responseSub=Bytes.from(socket.getInputStream())
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(bytes -> post(new String(bytes)),
 throwable -> out.close());
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)
Here, we get the data on the main application thread, using AndroidSchedulers.mainThread(),
so we can take the bytes, convert them into a String, and call a post() method.
post(), in turn, clears out the EditText (to prepare for the next message)
and adds the response message to a TranscriptAdapter that populates
the RecyclerView that dominates this fragment’s UI:

 private void post(String message) {
 binding.entry.setText("");
 adapter.add(message);
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/DeviceFragment.java)
The result is that when we get the response, it appears in the list of responses,
reminiscent of a chat client.
Differences with Android Things
There are a couple of differences in how the RxEcho app runs on an Android
Things platform.
First, we need to know that we are on an Android Things platform. To determine
that, we have an isThing() method that checks to see if we have
the FEATURE_EMBEDDED system feature or not:

 private boolean isThing() {
 return(Build.VERSION.SDK_INT>=Build.VERSION_CODES.O &&
 (getActivity().getPackageManager().hasSystemFeature(PackageManager.FEATURE_EMBEDDED)));
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
In enableBluetooth(), if we are on an Android Thing, and we do not already
have Bluetooth enabled, we can enable it directly ourselves, by calling enable()
on the RxBluetooth instance (which, in turn, calls enable() on the BluetoothAdapter).
This is frowned
upon in conventional Android apps, where we should ask the user if it is OK
to enable Bluetooth. In the case of an Android Thing, we have no way to ask
the user — not only might the Thing not have a screen, but the system-supplied
confirmation activity does not even exist.
However, enable() is asynchronous. We get control right away, and Bluetooth
will not yet be powered on. We need to find out when it is ready, so we can
continue. RxBluetooth offers an observeBluetoothState() method to allow
us to set up an RxJava chain to find out about state changes in Bluetooth itself.
As with some of the other observe...() methods, this wraps around a BroadcastReceiver,
in this case one that watches for BluetoothAdapter.ACTION_STATE_CHANGED
events, passing to us the state as an Integer. There are a few constants
out on BluetoothAdapter for different possible states; the one that we want
is STATE_CONNECTED. We use an RxJava filter() operator to only pass along
STATE_CONNECTED to our subscriber, which then calls bluetoothReady() to
set up the rest of the Bluetooth support.
bluetoothReady() itself behaves substantially differently depending on whether
we are on a Thing or not:

 private void bluetoothReady() {
 isReady=true;

 if (isThing()) {
 getActivity().startService(new Intent(getActivity(),
 ShoutingEchoService.class));
 rxBluetooth.enableDiscoverability(getActivity(), REQUEST_ENABLE_DISCOVERY,
 300);
 Toast.makeText(getActivity(), R.string.msg_disco, Toast.LENGTH_LONG).show();
 }
 else {
 updateMenu();
 initAdapter();

 subs.add(rxBluetooth.observeDevices()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(this::addDevice));

 subs.add(rxBluetooth.observeDiscovery()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(s ->
 discover.setEnabled(!BluetoothAdapter.ACTION_DISCOVERY_STARTED.equals(s))));
 }
 }

(from Bluetooth/RxEcho/app/src/main/java/com/commonsware/android/bluetooth/rxecho/RosterFragment.java)
If we are not on a Thing, we:

	Make sure our action bar overflow items are enabled as appropriate

	Populate our RecyclerView with paired devices

	Set up the RxJava chain to add discovered devices to the list as well

On a Thing, we do not need any of that, as we do not necessarily have a screen
to work with. Instead, we:

	Start the ShoutingEchoService directly

	Enable discoverability for 300 seconds, so there is a five-minute window in
which clients can find our Thing

	Show a Toast about the discoverability, in case we do happen to have a
screen (as might be the case on a Raspberry Pi)

The net is that on a Thing, we immediately set up the echo server and make it
possible for clients to pair with it, since we cannot rely on the user to
request those things from the action bar.
Dealing with Different Hardware
While a lot of focus is placed on screen sizes, there are many
other possible hardware differences among different Android
devices. For example, some have telephony features, while others
do not.
There is a three-phase plan for dealing with these variations:

	
Filter out devices that cannot possibly run your app
successfully, so your app will not appear to them in the Play Store
and they will be unable to install your app if obtained by other
means

	
React to varying hardware that you can support, but perhaps
might support differently (e.g., choosing a particular flash mode
for a device having a camera with a flash)

	
Cope with device bugs or regressions that impact your
application

This chapter will go through each of these topics.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Filtering Out Devices
There are a few manifest entries that
will serve to filter out devices that cannot run your app:

	
android:minSdkVersion in the <uses-sdk> element,
to stipulate
that devices must run a certain version of Android (or higher)

	
<supports-screens> and <compatible-screens],
which indicate
which screens sizes and densities you are capable of supporting

This section outlines other “advertisements” that you can put
in the manifest to restrict which devices run your app.
uses-feature
The <uses-feature> element restricts your app to devices that
have certain hardware features. For each element, you supply the
name of a feature (e.g., android.hardware.telephony) and whether
or not it is required:

<uses-feature
 android:name="android.hardware.camera"
 android:required="false" />

By default, android:required is set to true, so typically you
will only see it in a manifest when it is set to false.
You might wonder why we would bother ever setting android:required
to false. After all, that should have the same effect as not
listing it at all. In practice, though, it has two major uses.
First, markets like the Play Store might highlight the fact that
you can use a particular hardware capability, even though you
do not strictly require it.
More importantly, you can use android:required="false" to undo
a requirement that Android infers from your permissions. Requesting
some permissions causes Android to assume — for backwards-compatibility
reasons — that your app needs the affiliated hardware. For example,
requesting the CAMERA permission causes Android to assume that
you need a camera (android.hardware.camera) and that the camera
support auto-focus (android.hardware.camera.autofocus). If, however,
you are requesting the permission because you would like to use the
hardware if available, but can live without it, you need to
expressly add a <uses-feature> element declaring that the hardware
feature is not required.
For example, in February 2010, the Motorola XOOM tablet was released.
This was the first Android device that had the Play Store on it
and truly had no telephony capability. As such, the XOOM would be
filtered out of the then-Android Market (now Play Store) for any
app that required permissions like SEND_SMS. Many developers
requested this permission, even though their apps could survive
without SMS-sending capability. However, their apps were still filtered
out if they did not have the <uses-feature> element declaring
that telephony was not required.
You can find a table listing Android permissions and assumed
hardware feature requirements in
the Android developer documentation.
uses-configuration
The <uses-configuration> element is very reminiscent of
<uses-feature>: it dictates hardware requirements. The difference
is two-fold:

	It focuses on hardware elements that represent different
device configurations, meaning that you might use different
resources for them

	It allows you to specify combinations of capabilities that
you need

There are three capabilities that you can require via
<uses-configuration>:

	The existence of a five-way navigation control, whether a
specific type (D-pad, trackball, etc.) or any such control

	The existence of a physical keyboard, whether a specific
type (QWERTY, 12-key numeric keypad, etc.) or any such
keyboard

	A touchscreen

You can have as many <uses-configuration> elements as you need
– any device that matches at least one such configuration will
be eligible to install your app.
For example, the following <uses-configuration> element restricts
your app to devices that have some sort of navigation control but
do not necessarily have a touchscreen, such as a Android TV device:

<uses-configuration
 android:reqFiveWayNav="true"
 android:reqTouchScreen="notouch" />

uses-library
The <uses-library> element tells Android that your application wishes to use a
particular firmware-supplied library. The most common case for this was
Maps V1, which is shipped in the form of an SDK add-on and firmware
library. This, however, has been deprecated for quite some time.
However, there are other firmware libraries that you might need. These will
typically be manufacturer-specific libraries, allowing your application
to take advantage of particular beyond-the-Android-SDK capabilities of a
particular device. This is very uncommon nowadays.
The Google Play Store will filter out your application from devices that
lack a firmware library that you require via <uses-library>. If the user
tries installing your app by some other means (e.g., download from a Web site),
your app will fail to install on devices that lack the firmware library.
If you conditionally want the firmware library — you will use it if available
but can cope if it is not — you can add android:required="false" to your
<uses-library> element. That will allow your app to install and run on
devices missing the library in question. Detecting whether or not the
library exists in your process at runtime is a matter if using Class.forName()
to see if you have access to some class from that library, where a
ClassNotFoundException means that you do not have the library.
Runtime Capability Detection
Reacting to device capabilities is the second phase of dealing with
different devices. Some features you might want (e.g., telephony
for sending SMSes) but can live without. Other features may have
subtle variations that you cannot filter against and therefore
need to adapt to at runtime (e.g., possible picture resolutions
off of a camera).
This section will cover various techniques for determining what
a device can do, at runtime, so you can react accordingly.
Features
Any feature you do not make required via <uses-feature> can be
detected at runtime by calling hasSystemFeature() on
PackageManager. For example, if you would like to send SMS messages,
but only on telephony-capable devices, you could have the
following <uses-feature> element:

<uses-feature
 android:name="android.hardware.telephony"
 android:required="false" />

Then, at runtime, you can call hasSystemFeature(PackageManager.FEATURE_TELEPHONY)
on a PackageManager instance to find out if, indeed, the device
has telephony capability and sending SMSes should work.
Other Capabilities
Various subsystems have their own means of helping you determine
what is possible or not:

	The camera APIs can
let you know the capabilities of a camera (e.g., whether or not it
has a flash, and what specific flash modes are supported).

	The LocationManager will help you determine
what location providers are available that meet your Criteria.

	The sensor subsystem lets you find out what sensors are installed,
either overall or for a particular type (e.g., accelerometer).

Dealing with Device Bugs
Alas, devices are not perfect. Even though
the Compatibility Test Suite
attempts to ensure that all Android devices legitimately running
the Play Store faithfully implement the Android SDK, some device
manufacturers make changes that introduce bugs.
Just as Web developers can “sniff” on the User-Agent HTTP header
to determine what sort of browser is requesting a page, you can
use the Build class to determine what sort of device is running
your app. If you encounter problems with a specific device, you
may be able to use Build to identify that device at runtime and
“route around the damage”.
Writing and Using Parcelables
Parcelable is a marker interface, reminiscent of
Serializable, that shows up in many places in the Android SDK.
Parcelable objects can be put into Intent extras or
Bundle objects, for example. Making your own custom classes
implement Parcelable greatly increases their flexibility.
At the same time, Parcelable is something that can be overused.
In most Android apps, few if any custom classes really need to have
Parcelable capabilities.
In this chapter, we will review how to modify classes to implement
Parcelable and what the limitations are on using Parcelable.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
The Role of Parcelable
A Parcelable object is one that can be placed into a Parcel. A
Parcel is the primary vehicle for passing data between processes
in Android’s inter-process communication (IPC) framework.
IPC abounds in Android, even in places where you may not expect it.
Every time you call startActivity(), for example, IPC occurs, even
if the activity that calls startActivity() and the activity to be
started are in the same process. A core OS process is the one that
is responsible for identifying the activity to be started and routing
control to it, so startActivity() performs IPC from the original
activity’s process to a core OS process. The core OS process then
eventually performs IPC to the target process for the activity to be
started.
If you see an Intent or a Bundle in the Android SDK, odds are
that those objects are involved in IPC. That is not always the
case — LocalBroadcastManager, for example, uses Intent objects
purely in-process — but it is a reasonable rule of thumb. Hence,
there is keen interest in being able to implement Parcelable on
specific classes, either to pass to other components via Intent
extras, or to become part of the saved instance state Bundle.
Parcelable objects are also important for use with
remote services via the binding pattern.
Writing a Parcelable
You have three major approaches for adding Parcelable
capabilities to your classes in Android:

	Use an annotation processor that will add in the appropriate
bits of magic for you

	Use a code generator site or tool that will take your existing class
as input and give you the Parcelable-enabled rendition as output

	Just do it yourself

By Annotations
Enterprising developers have created annotation processing libraries
that can be used to add Parcelable capabilities to a Java class
in an Android app.
One approach is used by Parceler.
Here, you just add a @Parcel annotation to the Java class, and it
code generates what is needed. However, it does not actually make
the Java class Parcelable. Rather, it creates a runtime wrapper class
that is Parcelable and that knows how to convert instances of your
own Java class to and from the wrapper. You wind up calling static
wrap() and unwrap() methods on a Parcels class to handle
the conversion between your class and the generated Parcelable
class.
AutoParcel
takes a slightly different approach. In this case, you need to:

	Add the @AutoParcel annotation to the class

	Make the class abstract and have it implement Parcelable

	Write abstract method signatures for getters for the data members

AutoParcel then code-generates a Java class that implements the getters,
data members, and Parcelable logic, along with other niceties like
equals() and hashCode(). That Java class will be named AutoParcel_,
followed by the name of the class with the @AutoParcel annotation
(e.g., annotating a Foo class gives you an AutoParcel_Foo class).
The AutoParcel-generated class is a concrete subclass of the abstract
base class, and so you can just work with the abstract class’ public
API and let AutoParcel handle the details.
However, neither of these give you classes that play well with the
other children. Other code that expects to work with your
classes — whether that is passing a Parceler-defined Parcelable
to a third-party app or using something like Gson to handle JSON
parsing — will not like either Parceler or AutoParcel that much.
By Code Generator Sites and Tools
The Parcelabler Web site is a code generator.
You paste in a simple Java class, with the class declaration and data
members:

class Book {
 String isbn;
 String title;
 int pubYear;
}

and it gives you an output class that adds the Parcelable
logic:

class Book implements Parcelable {
 String isbn;
 String title;
 int pubYear;

 protected Book(Parcel in) {
 isbn = in.readString();
 title = in.readString();
 pubYear = in.readInt();
 }

 @Override
 public int describeContents() {
 return 0;
 }

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 dest.writeString(isbn);
 dest.writeString(title);
 dest.writeInt(pubYear);
 }

 @SuppressWarnings("unused")
 public static final Parcelable.Creator<Book> CREATOR = new Parcelable.Creator<Book>() {
 @Override
 public Book createFromParcel(Parcel in) {
 return new Book(in);
 }

 @Override
 public Book[] newArray(int size) {
 return new Book[size];
 }
 };
}

We will see in the next section what all of that code does for us,
as part of understanding how to build it by hand.
However, the Parcelabler Web site has some limitations in its Java
parsing, and so the more complex your Java class, the more likely it
is that the Parcelabler site will have difficulty understanding it and
blending in the Parceable logic.
The ParcelableCodeGenerator project
implements a command-line code
generator that takes a JSON schema and gives you a Java class that,
among other things, has the Parcelable implementation.
By Hand
Adding Parcelable support yourself is not especially difficult, though
it is a bit tedious.
The Parcelable Interface
The first steps is to add implements Parcelable to the class. Immediately,
your IDE should start complaining that you need to implement two methods
to satisfy the Parcelable interface.
The easier of the two methods is describeContents(), where you will
return 0, most likely.
The other method you will need to implement is writeToParcel().
You are passed in two parameters: a very important Parcel, and a
usually-ignored int named flags.
Your job, in writeToParcel(), is to call a series of write...() methods
on the Parcel to write out all data members of this object that
should be considered part of the object as it is passed across
process boundaries. There are dozens of type-safe methods for writing
data into the Parcel:

	methods that write individual primitives (e.g., writeInt()) or
Java arrays of primitives (e.g., writeStringArray())

	
writeBundle(), for writing out a Bundle

	
writeParcelable() and writeParcelableArray(), for writing
out other objects that implement Parcelable

	
writeFileDescriptor(), for putting a FileDescriptor into the
Parcel, with an eye towards allowing whoever reconstitutes the
Parcelable to be able to read or write a stream based on that
FileDescriptor

	methods to write other “active objects”, such as IBinder
objects from a remote service binding

	various specialized methods for particular data types (e.g., writeSizeF())
or interfaces (e.g., writeSerializable())

If, in writeToParcel(), you called writeFileDescriptor(), you will want
to have describeContents() return CONTENTS_FILE_DESCRIPTOR instead
of 0, as apparently the Parcelable support logic needs to know that
a file descriptor is in the Parcel.
In the case of the generated Book code shown earlier in this chapter,
writeToParcel() writes out the two String and one int data member:

@Override
public int describeContents() {
 return 0;
}

@Override
public void writeToParcel(Parcel dest, int flags) {
 dest.writeString(isbn);
 dest.writeString(title);
 dest.writeInt(pubYear);
}

The CREATOR
When Android tries reading objects in from a Parcel, and it encounters
an instance of your Parcelable class, it will retrieve a static
CREATOR object that must be defined on that class. The CREATOR
is an instance of Parcelable.Creator, using generics to tie it to the
type of your class:

@SuppressWarnings("unused")
public static final Parcelable.Creator<Book> CREATOR = new Parcelable.Creator<Book>() {
 @Override
 public Book createFromParcel(Parcel in) {
 return new Book(in);
 }

 @Override
 public Book[] newArray(int size) {
 return new Book[size];
 }
};

The @SuppressWarnings("unused") annotation is because the IDE will think
that this CREATOR instance is not referred to anywhere. That is because
it will only be used via Java reflection.
The CREATOR will need two methods. createFromParcel(), given a Parcel,
needs to return an instance of your class populated from that Parcel.
newArray(), given a size, needs to return a type-safe array of your
class.
The typical implementation of createFromParcel() will delegate the
actual work to a protected or private constructor on your class that
takes the Parcel as input:

protected Book(Parcel in) {
 isbn = in.readString();
 title = in.readString();
 pubYear = in.readInt();
}

You need to read in the same values that you wrote out to the
Parcel, and in the same order.
By Hand, With a Little Bit of Help
Android Studio 1.3 and higher have a template for a new Parcelable
class. Right-click over your desired Java package and choose New > Other >
New Parcelable Type from the context menu. Fill in your class and
the template will create a new standalone Java class, akin to this one:

import android.os.Parcel;
import android.os.Parcelable;

public class Item implements Parcelable {

 // TODO declare your real class members
 // Members must be either primitives, primitive arrays or parcelables
 private int mFoo;
 private String mBar;

 // TODO implement your constructors, getters & setters, methods

 private Item(Parcel in) {
 // TODO read your class members from the parcel
 // Note: order is important - you must read in the same order
 // you write in writeToParcel!
 mFoo=in.readInt();
 mBar=in.readString();
 }

 @Override
 public void writeToParcel(Parcel out, int flags) {
 // TODO write your class members to the parcel
 // Note: order is important - you must write in the same order
 // you read in your private parcelable constructor!
 out.writeInt(mFoo);
 out.writeString(mBar);
 }

 @Override
 public int describeContents() {
 // TODO return Parcelable.CONTENTS_FILE_DESCRIPTOR if your class members
 // include a FileDescriptor, otherwise you can simply return 0
 return 0;
 }

 public static final Parcelable.Creator<Item> CREATOR=new Parcelable.Creator<Item>() {
 public Item createFromParcel(Parcel in) {
 return new Item(in);
 }

 public Item[] newArray(int size) {
 return new Item[size];
 }
 };

}

You would have to adjust the stock fields (mFoo, mBar) to be what
you need, and adjust the writeToParcel() and private constructor
to match.
However, this template is designed for starting from scratch; it is
not that useful when you have an existing class and wish to now
make it be Parcelable.
The ParcelablePlease library
saves you from having to do all of the reading and writing to and from
the Parcel yourself. Putting the @ParceablePlease annotation on the
class generates a class for you (your class name followed by ParcelablePlease,
so FooParcelablePlease for a Foo class). This class only marshals
your data members to and from a Parcel, via static readFromParcel()
and writeToParcel() methods. You still have to have the rest of the
Parcelable boilerplate. Hence, this library is not as powerful
as the annotation processors mentioned earlier in this chapter, but you
wind up with a “real” complete Java class that can work better with
other annotation-based libraries like Gson. On the other hand, it still
makes it difficult for you to distribute your code to third parties, as
they will need to also have this annotation processing library in their
project builds.
The Limitations of Parcelable
While the mechanics of writing a Parcelable are not hard, this does
not mean that every model object or other POJO in your app should be
made Parcelable. Overuse of Parcelable is a bit of a code smell,
as it suggests that the developer is not necessarily considering all
of the limitations and effects of the use of Parcelable.
The 1MB Limit
The biggest one (pun lightly intended) is the size limitation. A Parcel –
the IPC structure that is used to pass Parcelable objects across
process boundaries — has a 1MB size limit. If you get over this limit,
you will likely crash with a “Failed Binder Transaction” message as part
of the exception’s stack trace.
There are two main ways you can reach this limit:

	Have a Parcelable that individually is too large. A common case for
this is wrapping a Bitmap or other large byte array in some
Parcelable object.

	Have too many Parcelable objects. For example, you might have performed
a database query, converted the results into a collection of model objects,
then tried to pass that collection to another activity via an Intent
extra. Syntactically, this can work fine, if the collection and its model
objects are all Parcelable. But now your risk of hitting the 1MB limit
is determined by how many rows there are in the query’s result set, and that
can vary by user.

Large data like this need to be managed by singletons or other static
data members and shared among your application components, rather than
passed via Parcelable objects.
Pass-By-Value
Suppose we have two activities, A and B. Activity A calls startActivity(), identifying
activity B in the Intent. The Intent also includes a custom Parcelable
object, one that takes up 1KB of space.
Question: how much system RAM is taken up by that Parcelable?
Wrong Answer: 1KB.
Right Answer: At least 3KB, as there are at least three copies of the
Parcelable data:

	One copy is the original Parcelable object, the one that is stored
as an extra in the Intent

	Another copy is the one in the Parcel that is held by a core OS
process, for handling things like configuration changes and the recent-tasks
list, where that Intent (and its extras, including your Parcelable) are
needed

	A third copy is the one in the Intent that Activity B receives

Parcelable is, in effect “pass-by-value”, as the Parceable object
is copied as part of getting it across the process boundary twice,
once from your process to the core OS, and once from the core OS back
to your process.
This means that modifications that Activity B makes to the Parcelable
object will not be seen by Activity A, as they are working on separate
copies of the object. Similarly, changes that Activity B makes to the
Parcelable will not affect the copy held by the core OS process and
re-delivered to Activity B on a configuration change.
The safest way to help defend against mistakes related to this is to
consider a Parcelable object to be an immutable
object. Only configure it through a constructor (possibly with the assistance
of some Builder if you want a cleaner API). Offer getters for the
values in the Parcelable, but do not offer any setters, so once the
instance is created, it cannot be changed.
Also note that these copies magnify the effects of having a large
Parcelable object, or too many Parcelable objects in a Parcel. A
900KB Parcel might fit within the 1MB size limit, but it would
consume at least 2.7MB if the Parcel is part of some IPC.
Conversely, there are cases where Intent objects are not passed
across process boundaries, such as LocalBroadcastManager. In those
cases, neither the 1MB limit nor the pass-by-value effect are an issue.
Only if the Intent is “flattened” into a Parcel, and later converted
back into an Intent, do these extra copies and the 1MB limit come into play.
The ClassLoader Conundrum
Sometimes, weird stuff happens, particularly when trying to read in
other Parcelable objects that you wrote to the Parcel. In this case,
the Parcel system needs to use Java reflection to find the Java class
associated with the Parcelable objects, and sometimes it gets a bit
lost.
When you use readParcelable() to read in the Parcelable objects
out of the Parcel, you may need to supply the ClassLoader that
you know has those Parcelable classes:

Foo(Parcel in) {
 this.someField=in.readParcelable(getClass().getClassLoader());
 this.anotherField=in.readParcelable(getClass().getClassLoader());
}

Here, we are using the same ClassLoader that has this Foo class.
Sharing Between Apps
Parcelable objects need to read and write the same values to and from
the Parcel. This sounds simple, but it gets into some nasty issues
when multiple code bases need to work with the Parcelable.
For example, suppose your app offers an SDK, such as a remote service.
You have some custom Parcelable objects that you can either give
to third-party clients of your app or get as input from those clients.
Now, your SDK needs to ship implementations of the Parcelable classes;
without them, clients cannot use you exposed service API.
What happens now, if you change the definition of the Parcelable? Bear
in mind that:

	You may not be able to control when third-party developers take on
some new version of your SDK

	You may not be able to control when end users update your app

	You may not be able to control when end users update third-party client
apps

As a result, it is reasonably likely that your Parcelable implementations
will be out of sync on a user’s device, with your app having one
implementation and a third-party app having another implementation.
The results of this may not be pretty.
This is not a problem for purely internal uses of Parcelable, such
as for holding onto data across a configuration change.
Beware the PendingIntent
Custom Parcelable objects are fine for use as extras in Intent objects
used with LocalBroadcastManager or otherwise limited to your own
process. Custom Parcelable objects should work when placed in the
saved instance state Bundle.
The further you get from these scenarios,
though, the more likely it is that you will run into cases where your
custom Parcelable will cause problems. That is because other apps — and
core OS processes — have no access to your Parcelable class. Any
attempt to work with Intent extras will result in a crash in that
other process, probably interrupting whatever it was that you were
trying to do.
One example of this is using a custom Parcelable in an extra for an
Intent, wrapped in a PendingIntent. The party that executes the
PendingIntent has the ability to add extras to the Intent inside
the PendingIntent. That, in turn, causes problems, as Android does not
have access to your Parcelable class. You get a stack trace like this
one:

E/Parcel: Class not found when unmarshalling: com.commonsware.android.parcelable.marshall.Thingy
 java.lang.ClassNotFoundException: com.commonsware.android.parcelable.marshall.Thingy
 at java.lang.Class.classForName(Native Method)
 at java.lang.Class.forName(Class.java:400)
 at android.os.Parcel.readParcelableCreator(Parcel.java:2507)
 at android.os.Parcel.readParcelable(Parcel.java:2461)
 at android.os.Parcel.readValue(Parcel.java:2364)
 at android.os.Parcel.readArrayMapInternal(Parcel.java:2717)
 at android.os.BaseBundle.unparcel(BaseBundle.java:269)
 at android.os.Bundle.putAll(Bundle.java:226)
 at android.content.Intent.fillIn(Intent.java:8171)
 at com.android.server.am.PendingIntentRecord.sendInner(PendingIntentRecord.java:255)
 at com.android.server.am.PendingIntentRecord.sendWithResult(PendingIntentRecord.java:216)
 at com.android.server.am.ActivityManagerService.sendIntentSender(ActivityManagerService.java:7151)
 at android.app.PendingIntent.send(PendingIntent.java:836)
 at com.android.server.AlarmManagerService$DeliveryTracker.deliverLocked(AlarmManagerService.java:2984)
 at com.android.server.AlarmManagerService.deliverAlarmsLocked(AlarmManagerService.java:2424)
 at com.android.server.AlarmManagerService$AlarmThread.run(AlarmManagerService.java:2543)

One workaround for cases like this is to still use a custom Parcelable,
but instead of putting it directly as an Intent extra, use the Parcel
system to convert it into a byte array, and store that as the extra.
Foreign processes have no idea what the byte array is for and will
not try to convert it into anything. When you get the byte array, you can
then use the Parcel system to get your Parcelable back.
The
Parcelable/Marshall
sample project demonstrates this technique. It is a clone of the
EventBus/GreenRobot3 sample app, discussed in
the chapter on event buses. The app uses AlarmManager
to get control every minute, posting an event on a greenrobot EventBus.
That event adds a row in a ListView if the UI is in the foreground;
otherwise, the WakefulIntentService triggered by the alarm event will
show a Notification.
This sample app does not really need a custom Parcelable. However, lots
of programs have lots of things that they do not really need. So, the
Parcelable/Marshall project adds a custom Parcelable class,
named Thingy:

package com.commonsware.android.parcelable.marshall;

import android.os.Parcel;
import android.os.Parcelable;

public class Thingy implements Parcelable {
 final String something;
 final int anotherThing;

 public Thingy(String something, int anotherThing) {
 this.something=something;
 this.anotherThing=anotherThing;
 }

 protected Thingy(Parcel in) {
 something=in.readString();
 anotherThing=in.readInt();
 }

 @Override
 public int describeContents() {
 return(0);
 }

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 dest.writeString(something);
 dest.writeInt(anotherThing);
 }

 @SuppressWarnings("unused")
 public static final Parcelable.Creator<Thingy> CREATOR=
 new Parcelable.Creator<Thingy>() {
 @Override
 public Thingy createFromParcel(Parcel in) {
 return(new Thingy(in));
 }

 @Override
 public Thingy[] newArray(int size) {
 return(new Thingy[size]);
 }
 };
}

(from Parcelable/Marshall/app/src/main/java/com/commonsware/android/parcelable/marshall/Thingy.java)
It is fairly vanilla Parcelable class, wrapped around a string and
an integer.
In theory, we could put a Thingy into the Intent used with
AlarmManager via a PendingIntent. However, that will run into the
problem outlined in this section, as Android does not have a Thingy.
In fact, the stack trace shown above comes from this sample project,
if you try putting a Thingy into the Intent.
The revised version of the project instead puts a byte array in the
Intent as an extra, by way of the Parcelables utility class:

package com.commonsware.android.parcelable.marshall;

import android.os.Parcel;
import android.os.Parcelable;

// inspired by http://stackoverflow.com/a/18000094/115145

public class Parcelables {
 public static byte[] toByteArray(Parcelable parcelable) {
 Parcel parcel=Parcel.obtain();

 parcelable.writeToParcel(parcel, 0);

 byte[] result=parcel.marshall();

 parcel.recycle();

 return(result);
 }

 public static <T> T toParcelable(byte[] bytes,
 Parcelable.Creator<T> creator) {
 Parcel parcel=Parcel.obtain();

 parcel.unmarshall(bytes, 0, bytes.length);
 parcel.setDataPosition(0);

 T result=creator.createFromParcel(parcel);

 parcel.recycle();

 return(result);
 }
}

(from Parcelable/Marshall/app/src/main/java/com/commonsware/android/parcelable/marshall/Parcelables.java)
Parcelables mirrors standard Java utility classes like Arrays
(static utility methods for Java arrays) and Collections
(static utility methods for subclasses of Collection). Parcelables
has two static utility methods for working with Parcelable objects:

	
toByteArray() converts the Parcelable to a byte array

	
toParcelable() converts the byte array back into a Parcelable

Both work by way of a Parcel object. You can get one of these from
an instance pool by calling the static obtain() method on Parcel.
toByteArray() gets a Parcel, uses writeToParcel() to put your
Parcelable into the Parcel, then uses marshall() to get a
byte array representation of the Parcel contents. Before returning
that result, though, we recycle() the Parcel, returning it to the
instance pool for later use.
toParcelable() needs not only the byte array representing your object,
but also your Parcelable.Creator, which knows how to convert a Parcel
back into your Parcelable. So, toParcelable():

	gets a Parcel via obtain()

	calls unmarshall() to populate the Parcel with the byte array contents

	calls setDataPosition(0) to effectively “rewind” the Parcel back
to the beginning

	calls createFromParcel() on your Parcelable.Creator to get the
Parcelable out of the Parcel

	recycles the Parcel

	and returns your Parcelable

The scheduleAlarms() method on PollReceiver is responsible for creating
the Intent to schedule some alarm events. It adds a Thingy to the
Intent, but uses toByteArray() to add the extra, rather than putting
the raw Thingy in as the extra:

 static void scheduleAlarms(Context ctxt) {
 AlarmManager mgr=
 (AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
 Thingy thingy=
 new Thingy(mgr.getClass().getCanonicalName(), mgr.hashCode());
 Intent i=
 new Intent(ctxt, PollReceiver.class)
 .putExtra(EXTRA_THINGY, Parcelables.toByteArray(thingy));
 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

 mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime() + INITIAL_DELAY,
 PERIOD, pi);
 }

(from Parcelable/Marshall/app/src/main/java/com/commonsware/android/parcelable/marshall/PollReceiver.java)
When the alarm event occurs, PollReceiver can get the Thingy back
by retrieving the byte array extra and using toParcelable():

 @Override
 public void onReceive(Context ctxt, Intent i) {
 Thingy thingy=
 Parcelables.toParcelable(i.getByteArrayExtra(EXTRA_THINGY),
 Thingy.CREATOR);

 if (i.getAction() == null) {
 ScheduledService.enqueueWork(ctxt);
 }
 else {
 scheduleAlarms(ctxt);
 }
 }

(from Parcelable/Marshall/app/src/main/java/com/commonsware/android/parcelable/marshall/PollReceiver.java)
While this approach will add a few lines of code to your project, it
should not incur significant additional overhead. All the work that
is being done here is part and, um, parcel of passing a Parcelable
between processes anyway. We are just doing it proactively, to eliminate
any references in the Parcel to our custom Parcelable class.
Responding to URLs
You may have noticed that Android supports a market: URL scheme.
Web pages can use such URLs so that, if they are viewed on an Android
device’s browser, the user can be transported to a Play Store
page, perhaps for a specific app or a list of apps for a publisher.
Fortunately, that mechanism is not limited to Android’s code —
you can get control for various other types of links as well. You do
this by adding certain entries to an activity’s <intent-filter> for
an ACTION_VIEW Intent.
However, be forewarned that this capability is browser-specific. What
works on the original Android “Browser” app and Google’s Chrome may
not necessarily work on Firefox for Android or other browsers.
Prerequisites
Understanding this chapter requires that you have read the chapter on
Intent filters.
Manifest Modifications
First, any <intent-filter> designed to respond to browser links
will need to have a <category> element with a name of
android.intent.category.BROWSABLE. Just as the LAUNCHER category
indicates an activity that should get an icon in the launcher, the
BROWSABLE category indicates an activity that wishes to respond to
browser links.
You will then need to further refine which links you wish to respond
to, via a <data> element. This lets you describe the URL and/or
MIME type that you wish to respond to. For example, here is the
AndroidManifest.xml file from the
Introspection/URLHandler
sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.commonsware.android.urlhandler" android:versionCode="1" android:versionName="1.0">

 <uses-sdk android:minSdkVersion="14" android:targetSdkVersion="19"/>

 <supports-screens android:largeScreens="true" android:normalScreens="true" android:smallScreens="false"/>

 <application android:icon="@drawable/ic_launcher" android:label="@string/app_name">
 <activity android:name="URLHandler" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>

 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>

 <data android:mimeType="application/pdf"/>
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>

 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>

 <data android:host="www.this-so-does-not-exist.com" android:path="/something" android:scheme="http"/>
 </intent-filter>
 <intent-filter>
 <action android:name="com.commonsware.android.MY_ACTION"/>

 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Introspection/URLHandler/app/src/main/AndroidManifest.xml)
Here, we have four <intent-filter> elements for our one activity:

	The first is a standard “put an icon for me in the launcher,
please” filter, with the LAUNCHER category

	The second claims that we handle PDF files (MIME type of
application/pdf), and that we will respond to browser links
(BROWSABLE category)

	The third claims that we will handle any HTTP request (scheme of
"http") for a certain Web site (host of
"www.this-so-does-not-exist.com" and path of /something),
and that we will respond to
browser links (BROWSABLE category)

	The last is a custom action, for which we will generate a URL that
Android will honor, and that we will respond to browser links
(BROWSABLE category) — we will examine this more closely in
the next section

What happens for the first two links varies based on browser.
The original Android “Browser” app, and Google Chrome, will
do the following:

	Tapping the link to the PDF, on
Android 2.3+, will trigger a download of the PDF. When the user taps on the
downloaded file (e.g., from the Notification in the status bar),
the user will have URLHandler as one of the options in the chooser
to view the PDF file.

	Tapping the link to http://www.this-so-does-not-exist.com/something
will bring up a chooser showing all available Web browser, plus
URLHandler, as expected

Firefox for Android will treat the PDF link the same way. However,
Firefox for Android does not check the URL for the second link to see
if there is anything else supporting ACTION_VIEW for the URL, and so it
always loads up the Web page.
Creating a Custom URL
Responding to MIME types makes complete sense… if we implement
something designed to handle such a MIME type.
Responding to certain schemes, hosts, paths, or file extensions is
certainly usable, but other than perhaps the file extension approach,
it makes your application a bit fragile. If the site changes domain
names (even a sub-domain) or reorganizes its site with different URL
structures, your code will break.
If the goal is simply for you to be able to trigger your own
application from your own Web pages, though, the safest approach is
to use an intent: URL. These can be generated from an Intent
object by calling toUri(Intent.URI_INTENT_SCHEME) on a
properly-configured Intent, then calling toString() on the
resulting Uri.
For example, the intent: URL for the fourth <intent-filter> from
above is:

intent:#Intent;action=com.commonsware.android.MY_ACTION;end

This is not an official URL scheme, any more than market: is, but
it works for Android devices. When the Android built-in Browser
encounters this URL, it will create an Intent out of the
URL-serialized form and call startActivity() on it, thereby
starting your activity. Chrome also supports this URL structure.
Firefox for Android does not, indicating instead that it cannot
recognize the URL.
Reacting to the Link
Your activity can then examine the Intent that launched it to
determine what to do. In particular, you will probably be interested
in the Uri corresponding to the link — this is available via
the getData() method. For example, here is the URLHandler
activity for this sample project:

package com.commonsware.android.urlhandler;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;

public class URLHandler extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView uri=(TextView)findViewById(R.id.uri);

 if (Intent.ACTION_MAIN.equals(getIntent().getAction())) {
 String intentUri=(new Intent("com.commonsware.android.MY_ACTION"))
 .toUri(Intent.URI_INTENT_SCHEME)
 .toString();

 uri.setText(intentUri);
 Log.w("URLHandler", intentUri);
 }
 else {
 Uri data=getIntent().getData();

 if (data==null) {
 uri.setText("Got com.commonsware.android.MY_ACTION Intent");
 }
 else {
 uri.setText(getIntent().getData().toString());
 }
 }
 }

 public void visitSample(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse("https://commonsware.com/sample")));
 }
}

(from Introspection/URLHandler/app/src/main/java/com/commonsware/android/urlhandler/URLHandler.java)
This activity’s layout has a TextView (uri) for showing a Uri and
a Button to launch a page of links, found on the CommonsWare site
(https://commonsware.com/sample). The Button is wired to call
visitSample(), which just calls startActivity() using the
aforementioned URL to display it in the user’s chosen Web browser.
When the activity starts up, though, it first loads up the
TextView. What goes in there depends on how the activity was
launched:

	If it was launched via the launcher (e.g., the action is MAIN),
then we display in the TextView the intent: URL shown in the
previous section, generated from an Intent object designed to
trigger our fourth <intent-filter>. This also gets dumped to
Logcat, and is how the author got this URL in the first place to put
on the sample Web page of links.

	If it was not launched via the launcher, it was launched from a
Web link. If the Uri from the launching Intent is null, though,
that means the activity was launched via the custom intent: URL
(which only has an action string), so we put a message in the
TextView to match.

	Otherwise, the Uri from the launching Intent will have
something we can use to process the link request. For the PDF file,
it will be the local path to the downloaded PDF, so we can open it.
For the www.this-so-does-not-exist.com URL, it will be the URL
itself, so we can process it our own way.

Note that for the PDF case, clicking the PDF link in the Browser will
download the file in the background, with a Notification indicating
when it is complete. Tapping on the entry in the notification drawer
will then trigger the URLHandler activity.
Also, bear in mind that the device may have multiple handlers for
some URLs. For example, a device with a real PDF viewer will give the
user a choice of whether to launch the downloaded PDF in the real
view or URLHandler.
App Links
We have had the ability to have activities with <intent-filter> elements
that support custom schemes (e.g., myapp://) since Android 1.0. The
benefit that this offers over using a custom scheme is that, if it is unique on the device,
an Intent for that custom scheme will go straight to the desired activity.
However, this approach had a lot of flaws:

	There is no guarantee of uniqueness

	Few apps would recognize the custom scheme and issue an ACTION_VIEW
Intent on the desired Uri

	If the user did encounter a link that would try to issue the
ACTION_VIEW Intent, and the app handling that custom scheme was not
installed, the request would simply fail

Using an <intent-filter> advertising support for some http or
https URL would improve the results for the latter two issues, as
many more apps would recognize the URL as being a URL, and usually
the fallback would be to have a browser open up on that URL. However,
now it is guaranteed that the scheme is not unique. Users would
initially get a chooser, to determine what activity should handle
the request. This can be confusing, particularly since the chooser
does not really indicate the scope of the choice (would I be saying
that XYZ app is now handling all Web links?).
Android 6.0 added an interesting solution for this. If you
use a <intent-filter> for a domain that you control, you can publish
a bit of metadata, as a JSON file, on the Web server. Android can be
taught to sniff for that metadata and use it to validate that the app
was developed by the same person or group that runs the server for the
identified domain. In that case, Android will bypass the chooser
and go straight to the activity with the domain-specific <intent-filter>.
The cited example would be Twitter doing this, so any link click on a
twitter.com URL would bring up the Twitter app, not a Web browser.
Of course, these links are only so useful. They are fine for when a
link appears in an ordinary app. Web browsers, however, tend not to
actually see whether a URL they encounter is handled by some on-device
app. Android 6.0 does not change this behavior. So,
links on Web pages viewed in 2015 versions of Firefox will not honor your
desired <intent-filter> regardless of whether you are using this
new app link system or not. Chrome’s behavior varies by version.
That being said, app links still have their uses (e.g., responding to
links from social media posts).
Setting Up the IntentFilter
Supporting an <intent-filter> for some http or https URL has
been possible since Android 1.0. The only thing that is different is that
now you can add an android:autoVerify="true" to the <intent-filter>
element, to tell Android that you would like it to verify the connection
between the app and the domain used in the <intent-filter>, to skip the
chooser when URLs for that domain trigger your <intent-filter>.
For example, the
Introspection/URLHandlerMNC
sample project is a revised version of the URLHandler sample, one that
switches its http <intent-filter> to look for https://commonsware.com
URLs, and it incorporates android:autoVerify="true":

 <intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />

 <data
 android:host="commonsware.com"
 android:scheme="https" />
 </intent-filter>

(from Introspection/URLHandlerMNC/app/src/main/AndroidManifest.xml)
On pre-Marshmallow versions of Android, this attribute will be ignored, as it will
not be recognized. But, on Android 6.0+, this attribute will be used to attempt
to validate that your app was written by somebody who owns the specified
domain.
The author of this book owns the commonsware.com domain.
To actually run this project
and have the updated app linking work, you would need to switch this to
be some domain that you control.
Note that while android:autoVerify="true" is written at the scope
of a single <intent-filter>, it affects all activities and all
<intent-filter> structures. All of them that use http or
https as the android:scheme must support the app links protocol
described in this chapter. You cannot have some filters supporting
app links and others not — either they all support app links, or none
will.
Setting Up the JSON
When Android installs an app that has one or more <intent-filter>
elements with android:autoVerify="true", it will attempt to find
a JSON file on the identified server. Specifically, for the sample
app, Android will create a URL of the form:

https://commonsware.com/.well-known/assetlinks.json

In your app, commonsware.com would be replaced with the
domain you have in your <intent-filter>.
This URL is part of a
proposed IETF standard
that unfortunately does not appear to be formally documented.
Android 6.0+ will use HTTPS to retrieve your assetlinks.json file, regardless of the scheme
that you use in the <intent-filter>. Also, the JSON needs to be publicly accessible, without any forms of
authentication. And, the JSON needs to be served with a MIME type
of application/json.
The JSON content itself is an array of JSON objects, one object per
application ID that you publish as an app:

[
 {
 "relation": ["delegate_permission/common.handle_all_urls"],
 "target": {
 "namespace": "android_app",
 "package_name": "com.commonsware.android.urlhandler",
 "sha256_cert_fingerprints": ["A9:99:84:D8:...:60:5B:CB:E3"]
 }
 }
]

(the sha256_cert_fingerprints value is shown truncated for easier reading)
Here, the only two variable bits are:

	The package_name, which will be your application ID, and

	The sha256_cert_fingerprints array, which will list the SHA256
hashes of your public signing keys, for whatever keystores you might
be using for this app (e.g., your debug keystore and your production
keystore)

To get the SHA256 hash of your public signing key, you will need to use
the keytool command from your Java SDK (Java 7 or higher required):

keytool -list -v -keystore ...

where ... is the path to your keystore (e.g., ~/.android/debug.keystore
for your debug keystore on macOS and Linux).
You will need to provide the password to the keystore. For the debug
keystore, this is android.
As part of the output, you will get the SHA256 hash:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: androiddebugkey
Creation date: Aug 7, 2011
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate<1>:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 4e3f2684
Valid from: Sun Aug 07 19:57:56 EDT 2011 until: Tue Jul 30 19:57:56 EDT 2041
Certificate fingerprints:
 MD5: 98:84:0E:36:F0:B3:48:9C:CD:13:EB:C6:D8:7F:F3:B1
 SHA1: E6:C5:81:EB:8A:F4:35:B0:04:84:3E:6E:C3:88:BD:B2:66:52:E7:09
 SHA256: A9:99:84:D8:...:60:5B:CB:E3
 Signature algorithm name: SHA1withRSA
 Version: 3

(the SHA256 value is shown truncated for easier reading)
That long set of hex digits will need to go in the
sha256_cert_fingerprints JSON array.
The rest of the JSON is fixed. Try not to introduce other JSON properties and
such into this file, as they may cause your file to fail validation.
However, you can have multiple JSON objects for multiple apps, each
providing the relation and target properties.
Results
Our URLHandler activity not only responds to http://misc.commonsware.com
URLs, but it uses one if the user taps the “view-sample” button:

package com.commonsware.android.urlhandler;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;

public class URLHandler extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 if (Intent.ACTION_VIEW.equals(getIntent().getAction())) {
 findViewById(R.id.visit).setEnabled(false);
 }
 }

 public void visitSample(View v) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse("https://commonsware.com/Android/")));
 }
}

(from Introspection/URLHandlerMNC/app/src/main/java/com/commonsware/android/urlhandler/URLHandler.java)
There, we launch an ACTION_VIEW Intent on a
http://commonsware.com/Android URL via startActivity().
On a pre-Marshmallow device, this startActivity() request will normally bring
up a chooser, offering the URLHandler activity along with Web
browsers and potentially other apps.
On an Android 6.0+ device, in the normal case, if the server is configured properly with the above
JSON, and if the app was compiled by the author of this book, the chooser
is bypassed, and the user gets another instance of URLHandler. The
“another instance” part can be controlled via Intent flags
or manifest entries, as is covered in the chapter on tasks.
However, this is not assured:

	If you compile and run the app, your signing key should not match
the JSON-published fingerprint, and so the validation will fail and
normal chooser behavior will return. You would have to substitute some
URL of your own with a corresponding JSON file on that server that
contains your hash.

	If the server is mis-configured (e.g., JSON not available via HTTPS),
the validation will fail and
normal chooser behavior will return.

	If the app is not signed with the correct signing key — such as the
user is really running a copy of your app with injected malware and
somebody else’s signing key — the validation will fail and
normal chooser behavior will return.

	If there is no connectivity at the time the user installs the app
(e.g., they are side-loading it), the validation will fail and
normal chooser behavior will return. The device may try to validate
again in the future, though.

User Intervention
Another thing that can change the behavior to return is if
the user revokes the app link. Users can do this by going to the app’s
screen in the Settings app and clicking the “Open by default” option:

[image: URLHandlerMNC in Settings, Open by default Visible]

Figure 852: URLHandlerMNC in Settings, “Open by default” Visible
If the user taps that entry, one section of the next screen is entitled
“App links” and gives the user the option to toggle the app link
behavior off:

[image: URLHandlerMNC in Settings, Open by default Screen]

Figure 853: URLHandlerMNC in Settings, “Open by default” Screen
Unfortunately, the labeling here does not seem to work properly.
The “Ask every time” choice shown selected here actually bypasses
the chooser. The available choices are “open in this app”, “ask every
time”, and “don’t open in this app”:

[image: URLHandlerMNC in Settings, Open supported links Options]

Figure 854: URLHandlerMNC in Settings, “Open supported links” Options
Testing Your Setup
You can confirm that other parties can see your assetlinks.json file
by visiting the following URL:

https://digitalassetlinks.googleapis.com/v1/statements:list?
 source.web.site=https://DDDDD&
 relation=delegate_permission/common.handle_all_urls

(NOTE: the URL shown above is split across several lines
for readability but should be all on one line when actually
using the URL)
Replace DDDDD with the domain name for your site, and you should
get a JSON document back that, among other things, contains
the details from your assetlinks.json file:

{
 "statements": [
 {
 "source": {
 "web": {
 "site": "https://commonsware.com."
 }
 },
 "relation": "delegate_permission/common.handle_all_urls",
 "target": {
 "androidApp": {
 "packageName": "com.commonsware.android.urlhandler",
 "certificate": {
 "sha256Fingerprint": "A9:99:84:D8:...:60:5B:CB:E3"
 }
 }
 }
 }
],
 "maxAge": "3213.779933024s"
}

(sha256Fingerprint truncated for readability)
If you try visiting that URL, and there is no assetlinks.json
file available for that domain, you will get a JSON response back
containing a debugString indicating the nature of the problem.
You can see if an Android device in your lab has successfully performed
the app link validation by running the adb shell dumpsys package domain-preferred-apps
command. This will list all of the apps that have app links, and your
app should appear among them, in a stanza like this one:

 Package: com.commonsware.android.urlhandler
 Domains: commonsware.com
 Status: never

The status will reflect the user’s choice of how to handle your
app link inside of Settings (the never shown above indicates that
the user decided to ignore your app link and have your app never
handle such URLs).
App Shortcuts
Your app probably has a single activity that appears in the user’s home
screen launcher. It is the activity that has the <intent-filter>
for the MAIN action and the LAUNCHER category.
For years, many home screens for Android have allowed the user to
make “shortcuts” to that activity, typically by long-pressing the icon
in the launcher, then dragging it to the desired spot on the home screen.
This is reminiscent of similar capabilities in many desktop operating
systems.
However, some desktops have gone beyond that. For example, with the Unity
desktop in Linux, right-clicking a launcher icon in the Unity dock may
bring up specific ways to get into the app identified by that icon.
For example, an email client might offer “Compose New Message” from the
icon’s context menu, so whereas a simple click on the icon would bring
up the inbox, right-clicking and choosing “Compose New Message” would
bring up a message composer.
Android 7.1 adds the awkwardly-named “app shortcuts” to mimic this sort
of feature. There are two ways of adding these shortcuts: via a resource
tied into the manifest, and via Java code. The former approach has no
particular ties to Android 7.1, and third-party home screen implementations
are already adopting it.
In this chapter, we will explore what app shortcuts are, how to add them
to the manifest, and how to offer “dynamic” app shortcuts from Java.
Prerequisites
Understanding this chapter requires that you have read the chapter on
Intent filters.
Enabling Deep Dives
Google has been steadily increasing the ways in which users can drive
directly into specific portions of your app, as opposed to always
getting into it via a home screen launcher or perhaps the overview
screen, such as:

	Notifications allow you to offer several actions in addition to the
“main” action of tapping on your tile in the notification shade, to
let the user go directly to where they want to go (or take action straight
from the notification, bypassing your activity-based UI)

	
App links allow specific URLs to drive directly
into whatever portion of your app makes sense, perhaps even bypassing
the normal chooser

	
Direct share targets allow you to
drive the user to some specific portion of your app when they elect
to “share” some content via ACTION_SEND

All of these are designed to make it a bit easier for power users to get where
they want to go quickly, saving some taps, swipes, or other forms of input.
The app shortcuts added by Android 7.1 work much the same way.
App Shortcuts, from the User’s POV
It will help to understand what you are supposed to be adding to your
app if you see what the user experience is for apps with app shortcuts.
However, technically, a home screen can do whatever it wants with app
shortcuts, from a presentation standpoint. So, let’s focus on the Pixel
Launcher first, which is the launcher that Google shipped with their
2016 Pixel phones and offers app shortcut support. The Android 7.1
emulator has a similar launcher.
Ad-Hoc Requests
The user can long-press on an app icon and pull up a list of available
app shortcuts:

[image: App Shortcuts for Settings App]

Figure 855: App Shortcuts for Settings App
If the icon does not support app shortcuts, the long-press simply does
whatever it ordinarily would have done prior to app shortcuts. For
example, long-pressing an icon in the launcher would allow the user to
drag it to be a shortcut on the main home screen. To do those sorts of
things with an icon that does support app shortcuts, you not only need
to long-press but also start dragging the icon somewhere.
Pinning
Each of those app shortcuts has a small “grab handle” (looks like =).
The user can drag that and use it to create a shortcut on the home screen
for that particular app shortcut:

[image: Pinned Battery App Shortcut from Settings App]

Figure 856: Pinned Battery App Shortcut from Settings App
Tapping that icon directly launches whatever the app shortcut has specified.
Alternatives
However, developers are limited only by their imaginations in terms
of presentation of app shortcuts. Home screens have easy access to app
shortcut information via the LauncherApps utility class, and there
is little stopping other apps from doing the same. So, you can imagine:

	An app widget that makes app shortcuts available for a particular
app, without having to manually pin them

	A launcher for a mouse-centric device offering a floating panel of
app shortcuts when the user hovers a mouse over a launcher icon

	A launcher for a keyboard-centric device offering users the ability
to “pin” app shortcuts to key combinations

	An app that converts an app shortcut into
a notification shade tile

And so on.
Offering Manifest App Shortcuts
The “low-hanging fruit” of app shortcuts is to offer some static options
via the manifest. This takes very little time to implement, including no
mandatory Java code changes. Furthermore, while the Android 7.1 APIs for
working with app shortcuts may not exist on older devices, home screens
and other apps could still support manifest app shortcuts with a bit
of additional code. Hence, the app shortcuts that you offer via the manifest
will become available to the users of many popular alternative home
screen implementations, in addition to users of Android 7.1+ devices.
The
AppShortcuts/WeakBrowser
sample project demonstrates the use of both manifest and dynamic app
shortcuts. This app implements a silly little Web browser, allowing
the user to visit a handful of hard-coded sites.
Identify the Destinations
First, you need to decide where these app shortcuts should send users.
From a navigation flow standpoint, an app shortcut:

	Should improve efficiency of power users, saving them clicks elsewhere

	Should not be uniquely accessible via app shortcuts, for users who
lack them or do not know about them

For example, suppose that a common bit of existing navigation in your app
is:

	User taps on launcher icon

	User taps on a tab in the activity, which leads them to a particular
destination

Adding an app shortcut to that same destination is easy but not that
useful, as it will be no faster — and perhaps slower — to activate
the app shortcut than it would to be to just go into the activity and
tap on the desired tab.
But, the navigation might be more complex, where getting to the destination:

	Requires opening a navigation drawer

	Requires scrolling through a list or grid, which might be lengthy

	Requires executing some sort of search

Now offering rapid access to the destination via an app shortcut may
be useful, as it may be faster than the ordinary navigation options.
Of course, WeakBrowser, being weak, has one manifest app shortcut:
to allow the user to visit a search engine. This same page is available
by tapping a “search” action bar item. This is not an especially
effective use of manifest app shortcuts, but it helps to simplify
the example.
Ensure the Destination is “Evergreen”
App shortcuts offered via the manifest are static. You cannot modify them
at runtime, the way that you can with dynamic app shortcuts.
Hence, they cannot really be personalized.
Also, if the user pins one of these app shortcuts, and some future
version of your app eliminates the app shortcut, the pinned app shortcut may
remain on the user’s home screen. Tapping it would display some sort of
“you cannot do this anymore” message. From a user experience standpoint,
this will not be popular.
So, try to have your manifest app shortcuts be “evergreen”, ones that
are unlikely to need to be changed or removed in the future.
Add Entry Points for Destination in Manifest
An app shortcut triggers a call to startActivity() on some Intent.
With manifest app shortcuts, you describe the Intent in XML, and some
other process creates that Intent and passes it to startActivity().
This means that any destination that you want to offer needs to be able
to be reached by some startActivity() call, with an Intent that can be
built out of
some combination of the following:

	action string

	a Uri (the data facet of an Intent)

	a MIME type

	a target class and package name of the desired activity

Notably, it appears that you cannot use extras or categories to distinguish
this Intent from any other that starts up the same activity.
Also, this activity will need to be exported, as third-party apps will
need to be able to start up the activity. If the activity has an
<intent-filter>, it will be exported. Otherwise, you will need to add
android:exported="true" to the <activity> in the manifest.
Write the XML
The manifest app shortcuts are defined via an XML resource, usually
residing in res/xml/ within your module’s main/ source set. This
will contain a root <shortcuts> element, which itself contains
one or more <shortcut> elements:

<?xml version="1.0" encoding="utf-8"?>
<shortcuts xmlns:android="http://schemas.android.com/apk/res/android">
 <shortcut
 android:icon="@drawable/ic_search_black_24dp"
 android:shortcutId="search"
 android:shortcutLongLabel="@string/search_long_desc"
 android:shortcutShortLabel="@string/search">
 <intent
 android:action="android.intent.action.SEARCH"
 android:targetClass="com.commonsware.android.appshortcuts.MainActivity"
 android:targetPackage="com.commonsware.android.appshortcuts" />
 </shortcut>
</shortcuts>

(from AppShortcuts/WeakBrowser/app/src/main/res/xml/shortcuts.xml)
Here, we have a single app shortcut. The required attributes are:

	
android:shortcutId, for a unique identifier for this app shortcut

	
android:icon, for a launcher-style icon for this app shortcut

	
androdid:shortcutShortLabel, which will be the caption for the
app shortcut icon

android:shortcutLongLabel is optional. In theory, it will be used
in places where a longer description of the app shortcut may be useful.
In practice, it is unclear where this would be used.
The other required piece of a shortcut definition is the nested
<intent> element. This describes what Intent should be used with
startActivity() to take the user to where this app shortcut advertises
as its destination. Typically, you will use the three attributes
shown in the above sample:

	
android:action, for an action string, as this is required, even if
it is totally useless

	
android:targetClass and android:targetPackage, to provide the
pieces of the ComponentName to identify the activity to be started

A shortcut can have several <intent> elements, which will cause Android
to create a fake back stack for the user (i.e., pressing BACK from the
last <intent> will take the user to whatever activity was identified
in the preceding <intent>). And, a <shortcuts> element can have
one or several <shortcut> elements. However, bear in mind that a
launcher may not use many app shortcuts — for example, the Pixel Launcher seems to
cap the presentation at three app shortcuts. These results will vary
by launcher (or other app shortcuts client) but you should assume that
you only have so many app shortcut “slots” to display to the user.
Add to the Manifest
Then, you need to add a <meta-data> element to your <activity>
element for your launcher activity in the manifest, pointing Android
to your XML resource:

 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <meta-data
 android:name="android.app.shortcuts"
 android:resource="@xml/shortcuts" />
 </activity>

(from AppShortcuts/WeakBrowser/app/src/main/AndroidManifest.xml)
Only app shortcuts declared on launcher activities will be honored.
If you try putting this <meta-data> element on other activities, it
will be ignored. If your app is one of the few with multiple launcher icons,
each could have its own app shortcuts. Or, you might take this opportunity
to consolidate those launcher icons into a single one, with the secondary
launcher icons turning into app shortcuts.
The fact that this is just a <meta-data> element and an XML resource
is why existing home screens could adopt manifest app shortcuts.
All of this information is available via PackageManager, going back
to the earliest Android versions.
Results
If you install this app on a device with a compatible home screen
implementation, the manifest app shortcut should be available, such as
what you get on the Pixel:

[image: Manifest App Shortcut for WeakBrowser]

Figure 857: Manifest App Shortcut for WeakBrowser
The biggest problem comes with the icons. There are no instructions
at all as what these icons should look like, or what size they should
be. The author’s assumption is that they should be launcher-style icons
is made in part by the behavior of when you use other types of icons,
such as the simple action bar-style search icon:

[image: Pinned Manifest App Shortcut for WeakBrowser]

Figure 858: Pinned Manifest App Shortcut for WeakBrowser
Here, the app shortcut was pinned to the home screen, and the icon
looks… unpleasant.
Also note that while the Pixel Launcher superimposes your app’s icon
over the app shortcut icon, it is unclear if that is something that
is required by the framework or merely a Pixel Launcher convention.
Disabling Manifest App Shortcuts
So, you ship an update to your app, where you declare some manifest
app shortcuts. Some time later, you revamp the UI of your app, and
one of those app shortcuts no longer makes sense. It might not even
work anymore — for example, you might have removed support for the
activity that the app shortcut pointed to.
You might think that whatever shortcut XML you use in the new app version
is what the device will use, once the user upgrades to the new app
version. That is true, with one noteworthy exception: pinned app shortcuts.
Google does not want these to vanish into thin air based on an app
update, as that might confuse the user.
You have two main options for how to handle this gracefully:

	Your revised shortcut XML might repurpose the existing app
shortcut. Have a <shortcut> with the same android:shortcutId attribute,
but give it whatever icon, labels, and <intent> are appropriate.
Users who upgrade your app will have their pinned shortcut updated
to reflect the new settings. This works well in cases where the
app shortcut has changed a bit but still closely resembles its original
role.

	Your revised shortcut XML might disable the existing app shortcut.
This would happen if your shortcut XML lacked any <shortcut> for the
old ID. Preferably, though, you have a <shortcut> for the to-be-disabled
ID. On that element, you can have android:enabled="false" to indicate
that the app shortcut is now disabled, and you can have
android:shortcutDisabledMessage pointing to a string resource where
you explain why that app shortcut has been disabled. If the user taps
on the app shortcut, this message should appear.

Offering Dynamic App Shortcuts
Truly personalized app shortcuts usually cannot be specified in the
manifest. For example, you may want to allow the user to have an app
shortcut to their favorite “friend” in your social network client. The
identity of that friend varies by user and time. While you could offer
a manifest-registered app shortcut for “Favorite Friend”, the user will
not know necessarily who that friend is.
With dynamic shortcuts, you can craft one that uses the name and avatar
of that specific friend.
Offering dynamic app shortcuts is more powerful and correspondingly more
complex.
Our WeakBrowser sample app, on initial install, only has the one
manifest app shortcut. However, the user can visit a Settings activity
within the app and elect to enable “bookmarks”:

[image: WeakBrowser Settings Activity]

Figure 859: WeakBrowser Settings Activity
The user can choose which bookmarks to use from a multi-selection
preference:

[image: WeakBrowser Settings Activity, Showing Bookmarks]

Figure 860: WeakBrowser Settings Activity, Showing Bookmarks
If the user checks some bookmarks, they get added as dynamic app shortcuts,
to go along with the existing manifest app shortcut:

[image: WeakBrowser Manifest and Dynamic App Shortcuts]

Figure 861: WeakBrowser Manifest and Dynamic App Shortcuts
Grok the Adjectives
An app shortcut is “pinned” if, by one means or another, the user has
indicated that they want long-term direct access to whatever that app
shortcut represents. In the Pixel Launcher, an app shortcut is pinned
if the user grabs the grab handle and drags it as a shortcut onto
the home screens. Different home screens will have different visual
metaphors for “pinned”.
An app shortcut is “immutable” if it cannot be changed by the app
that provided (“published”) the app shortcut. Manifest app shortcuts are
immutable. Conversely, an app shortcut is “mutable” if its contents can
be changed. Dynamic app shortcuts are mutable.
Ponder the IDs
Each app shortcut has a unique ID. For manifest app shortcuts, that is set
via the android:shortcutId attribute in the <shortcut> element.
Dynamic app shortcuts have an equivalent means of establishing their ID.
As you manipulate dynamic app shortcuts, what happens depends upon:

	What operation are you doing (setting? adding? updating? removing?)

	Whether the app shortcut ID(s) associated with the operation matches
existing app shortcut ID(s) from your app

	Whether those app shortcuts are mutable or immutable

	Whether the user has pinned any of those app shortcuts

Identify the Destinations
As with manifest app shortcuts, you need to know where you are going
to send the user within your app when the user chooses one of your dynamic app
shortcuts. However, in this case, you will be able to provide a full
Intent associated with the app shortcut. In principle, you could use
things like extras, whereas that is not documented to be supported for
manifest app shortcuts.
Craft the Intent
As with manifest app shortcuts, the destination for your dynamic app shortcuts
needs to be identifiable by an Intent that will be used with startActivity()
to take the user to that destination. However, unlike with manifest app
shortcuts, you have full control over the setup of the Intent that is
used for dynamic app shortcuts.
In particular, you may want to consider what Intent flags to use.
A manifest app shortcut will have FLAG_ACTIVITY_NEW_TASK and
FLAG_ACTIVITY_CLEAR_TASK added to the Intent constructed from the
shortcut XML. This will send the user to your destination, wiping out
the back stack from that task. You might elect to use other flags, or
control things using <activity> manifest attributes like android:taskAffinity,
to get the flow that you want.
For the bookmarks, our sample app has a model class, named Bookmark,
much to nobody’s surprise:

package com.commonsware.android.appshortcuts;

import java.util.HashMap;

class Bookmark implements Comparable<Bookmark> {
 static final HashMap<String, Bookmark> MODEL=new HashMap<>();
 final String url;
 final String title;
 final String id;

 static {
 add(new Bookmark("Android Developer Home",
 "https://developer.android.com",
 "687a9ea6-f0c0-448c-9cc9-a4aa6e10a1af"));
 add(new Bookmark("Android Open Source Project",
 "https://source.android.com",
 "0ee37e25-2dac-4602-8aa2-3709ac4037c8"));
 add(new Bookmark("AOSP Source Search",
 "http://xref.opersys.com/",
 "405ba533-337e-40be-abe0-fb86cd04bf7d"));
 add(new Bookmark("Stack Overflow Android Questions",
 "https://stackoverflow.com/questions/tagged/android",
 "c9599794-cb9f-46a1-ad61-971ff2a8a172"));
 add(new Bookmark("The CommonsBlog",
 "https://commonsware.com/blog/",
 "948fe25a-44d4-49d0-a23f-2783f786040d"));
 add(new Bookmark("CWAC Community",
 "https://community.commonsware.com/c/cwac",
 "4c7fac0f-fc86-4c68-8ad8-99198fc3d433"));
 }

 private static void add(Bookmark b) {
 MODEL.put(b.id, b);
 }

 Bookmark(String title, String url, String id) {
 this.url=url;
 this.title=title;
 this.id=id;
 }

 @Override
 public int compareTo(Bookmark bookmark) {
 return(title.compareTo(bookmark.title));
 }
}

(from AppShortcuts/WeakBrowser/app/src/main/java/com/commonsware/android/appshortcuts/Bookmark.java)
Here, to keep the example simple, the “database” of bookmarks is merely
hardcoded roster, stored in a HashMap, keyed by a UUID serving as a
unique identifier. In addition to its id, each Bookmark has a
title and a url.
When it comes time to build an Intent for a given Bookmark, we use
that url as the “data” facet of the Intent, to deliver it to our
MainActivity:

 private Intent buildIntent(Bookmark item) {
 return(new Intent(getActivity(), MainActivity.class)
 .setAction("i.can.haz.reason.why.this.is.REQUIRED")
 .setData(Uri.parse(item.url)))
 .putExtra(MainActivity.EXTRA_BOOKMARK_ID, item.id)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK|Intent.FLAG_ACTIVITY_CLEAR_TASK);
 }

(from AppShortcuts/WeakBrowser/app/src/main/java/com/commonsware/android/appshortcuts/SettingsFragment.java)
We also:

	Set the component to identify our MainActivity

	Set the action string because, if we do not, our app shortcut will
not work

	Add the same flags to the Intent that are used by manifest app
shortcuts, to synchronize the behavior between our one manifest app
shortcut and any dynamic app shortcuts that we create

	Save the bookmark’s ID in an extra

Define the Shortcuts
Android 7.1’s SDK offers a ShortcutInfo.Builder, which lets you create
ShortcutInfo objects, each of which represents one dynamic app shortcut.
Given a Set of Bookmark IDs, we can craft the corresponding
ShortcutInfo objects via builders:

 private List<ShortcutInfo> buildShortcuts(Set<String> ids) {
 List<Bookmark> items=new ArrayList<>();

 for (String id: ids) {
 items.add(Bookmark.MODEL.get(id));
 }

 if (items.size()>0) Collections.sort(items);

 List<ShortcutInfo> shortcuts=new ArrayList<>();

 for (Bookmark item : items) {
 shortcuts.add(new ShortcutInfo.Builder(getActivity(), item.id)
 .setShortLabel(item.title)
 .setIcon(buildIcon(item))
 .setIntent(buildIntent(item))
 .build());
 }

 return(shortcuts);
 }

(from AppShortcuts/WeakBrowser/app/src/main/java/com/commonsware/android/appshortcuts/SettingsFragment.java)
The ShortcutInfo.Builder constructor takes a Context for resource
resolution, plus a unique ID of the app shortcut. In our case, we just
use the unique ID of the Bookmark, since a Bookmark corresponds 1:1
with our dynamic app shortcuts.
The builder methods that we use here mirror the XML that we used
in the manifest app widget:

 	Manifest App Widget XML
 	Builder Method

 	android:shortcutShortLabel
 	setShortLabel()

 	android:icon
 	setIcon()

 	<intent>
 	setIntent()

Our setIntent() call uses the buildIntent() method shown in the
preceding section. In theory, our corresponding buildIcon() method
would craft an icon for each bookmark, perhaps using the favicon
of the site. Here, we just use a simple resource image, the same one
for each bookmark:

 private Icon buildIcon(Bookmark item) {
 return(Icon.createWithResource(getActivity(),
 R.drawable.ic_bookmark_border_black_24dp));
 }

(from AppShortcuts/WeakBrowser/app/src/main/java/com/commonsware/android/appshortcuts/SettingsFragment.java)
This buildShortcuts() method simply creates the ShortcutInfo objects.
To apply them, we need to get our hands on a ShortcutManager, via
getSystemService():

 shortcuts=getActivity().getSystemService(ShortcutManager.class);

(from AppShortcuts/WeakBrowser/app/src/main/java/com/commonsware/android/appshortcuts/SettingsFragment.java)
Then, we can call setDynamicShortcuts() on the ShortcutManager,
supplying our list of ShortcutInfo objects, to specify that this list
of ShortcutInfo objects represents the current roster of dynamic app
shortcuts to offer to the user:

 private void showBookmarks() {
 updateBookmarks(bookmarks.getValues());
 }

 private void updateBookmarks(Set<String> ids) {
 shortcuts.setDynamicShortcuts(buildShortcuts(ids));
 }

(from AppShortcuts/WeakBrowser/app/src/main/java/com/commonsware/android/appshortcuts/SettingsFragment.java)
All of this code is appearing in a SettingsFragment that shows the
SwitchPreference and MultiSelectListPreference for manipulating
the bookmarks. showBookmarks() is called if the user toggles on the
SwitchPreference, and updateBookmarks() is called when the user
changes which items are checked in the MultiSelectListPreference
(held in the bookmarks field).
Remove the Shortcuts
It is possible that you will want to remove some existing dynamic app
shortcuts. In the case of the sample app, there are two possibilities:

	The user changes the mix of bookmarks to be something other than it
was before, including perhaps unchecking some previously-checked
bookmarks

	The user turns off the SwitchPreference, meaning that no dynamic app
shortcuts should be offered

Scenario #1 is handled just by calling setDynamicShortcuts()
on the ShortcutManager, as this
removes any existing app shortcuts.
Scenario #2 is handled by removeAllDynamicShortcuts()
on the ShortcutManager, which does pretty
much what the method name suggests and removes all dynamic app
shortcuts:

 private void hideBookmarks() {
 shortcuts.removeAllDynamicShortcuts();
 }

(from AppShortcuts/WeakBrowser/app/src/main/java/com/commonsware/android/appshortcuts/SettingsFragment.java)
Another option is the removeShortcuts() method on the ShortcutManager.
This takes a List of ID values and removes those app shortcuts.
However, bear in mind that:

	You cannot remove immutable app shortcuts, so you cannot use this
to remove a manifest app shortcut

	This does not affect any pinned app shortcuts, which will remain even
after you have “removed” the app shortcut

What these methods are doing is changing the roster of dynamic app
shortcuts that are available to the user from the launcher icon. They
do not affect any existing pinned app shortcuts.
Grok the Other Verbs
ShortcutManager has a handful of other methods that allow you to
manipulate the roster of dynamic app shortcuts that your app produces.
addDynamicShortcuts() will update any dynamic app shortcuts with the
same IDs as the ones that you supply, and any new dynamic app shortcuts
will be added. Where setDynamicShortcuts() says “replace the existing roster
with this one”, addDynamicShortcuts() says “update or augment the
existing roster with these, and leave everything else alone”.
updateShortcuts() is like addDynamicShortcuts(), except that it will
only update existing dynamic app shortcuts, not add new ones.
reportShortcutUsed() should be called, with the ID of a shortcut, whenever
that app shortcut gets used by the app. In theory, this information might
help Android optimize the presentation of app shortcuts to the user, though
it is unclear if this is being used at the moment. This is why we put
the bookmark ID in the EXTRA_BOOKMARK_ID extra: so MainActivity
can report the usage of this app shortcut.

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.N_MR1) {
 String id=i.getStringExtra(EXTRA_BOOKMARK_ID);

 if (id!=null) {
 getSystemService(ShortcutManager.class)
 .reportShortcutUsed(id);
 }
 }

(from AppShortcuts/WeakBrowser/app/src/main/java/com/commonsware/android/appshortcuts/MainActivity.java)
(here, i is the Intent used to display this activity)
disableShortcuts() — where you supply it with a list of dynamic app
shortcut IDs — allows you to stop pinned dynamic app shortcuts from working.
While setDynamicShortcuts(), removeDynamicShortcuts(), and
removeAllDynamicShortcuts() affect the roster of available dynamic app
shortcuts, they do not affect any pinned dynamic app shortcuts. Those will
still work. If the reason why you are removing some dynamic app shortcuts
is that the user is no longer eligible for those things (e.g., the user
failed to renew a subscription), disableShortcuts() allows you to block
those dynamic app shortcuts from working. The user will be shown a message
instead of having the pinned dynamic app shortcut launch an activity, and
you can tailor that message if desired.
Contemplate Update vs. Replace
setDynamicShortcuts(), updateShortcuts(), and addDynamicShortcuts()
all do the same thing if there is an existing dynamic app shortcut with
the same ID: update its contents to reflect whatever you passed in to those
methods. This includes “updating” it to have the same information as it
already has, if you have not changed anything. These not only update
the roster that will be shown to the user, but they also update
any pinned editions of those dynamic app shortcuts.
This introduces a potential area of confusion for the user.
For example, a Web browser that is more sophisticated than is WeakBrowser
could keep track of which sites the user visits most often. Then,
the browser could offer a dynamic app shortcut to visit that specific
site. Let’s pretend for a moment that, at some point in time, the user’s
most-visited site is the CommonsWare site.
The browser would have a dynamic app shortcut for “CommonsWare”, which
the user could pin.
Some time later, as the user continues using the browser, the browser
realizes that some new site has supplanted the CommonsWare site as the
one that the user has visited the most. So, the browser will want its
dynamic app shortcut roster to reflect this change.
There are two ways of going about this:

	The browser could reuse the existing app shortcut ID (e.g., mostPopular)
and change its label and Intent to reflect the new most-popular site.
However, this will not only change what the user sees when looking at
the available app shortcuts, but it also changes the pinned app shortcut.
Now that home screen shortcut would bring up some other site, while the
user had pinned the CommonsWare site.

	The browser could use app shortcut IDs that are unique not for the
role, but for the site (e.g., use the actual URL). If the browser uses
setDynamicShortcuts() now, the list of shortcuts would contain one
with the new app shortcut ID and would not contain one with the old app
shortcut ID. The list of dynamic app shortcuts that the user sees will
reflect this change. But, since the browser did not change any data
with the old app shortcut ID, the pinned one remains as it was, still
pointing to the CommonsWare site.

If this sort of thing sounds like it might be plausible for your planned
use of dynamic app shortcuts, you probably want to consider the
app shortcut ID to be tied to the content (e.g., the site URL),
not the role the content is being applied to (e.g., the most-popular site URL).
Get the Existing Shortcuts
There are three getter methods that allow you to find out what app
shortcuts are outstanding and are related to your app:

	getDynamicShortcuts()

	getManifestShortcuts()

	getPinnedShortcuts()

The latter, as the name suggests, lets you know which app shortcuts
(manifest or dynamic) have been pinned by the user.
Note that the ShortcutInfo objects that you get back from these methods
may not have all of their details filled in (e.g., may be missing the icon).
Mostly, you will be looking for the shortcut IDs, so you can make determinations
of how to manipulate the app shortcut roster (e.g., do you need to disable
anything?).
Deal with Reality
Unfortunately, there are some aspects of dynamic app shortcuts which
will require additional work.
If your labels for the dynamic app shortcuts have translations for other languages,
you need to replace the dynamic app shortcuts when the user switches the
device to a different locale. For example, you could have a manifest-registered
BroadcastReceiver, listening for the ACTION_LOCALE_CHANGED system
broadcast. There, you could call setDynamicShortcuts() or updateShortcuts()
to reflect the new labels.
However, outside of locale changes, you need to be careful about
updating dynamic app shortcut information when your app is in the
background. There is a “rate limit” established that will prevent
you from changing those shortcuts too frequently. addDynamicShortcuts(),
setDynamicShortcuts(), and updateShortcuts() each return a boolean;
false indicates that your request failed due to rate-limiting. You can also
call isRateLimitingActive() on the ShortcutManager to find out in
advance whether your app is being rate-limited and would not be able
to affect dynamic app shortcut changes.
Also, there is a limit of how many app shortcuts you can have at any
one time. geMaxShortcutCountPerActivity() on ShortcutManager
reports this limit. Attempting to go past that will result in an exception.
Android 7.1 appears to have a limit of five; if you try enabling all six
bookmarks in the sample app, you will crash.
Privacy, Security, and App Shortcuts
Bear in mind that information contained in app shortcuts will be visible
to home screens and anything else using LauncherApps to get at the possible
app shortcuts. As such, please be careful to avoid putting sensitive information
in app shortcuts (e.g., labels).
PackageManager Tricks
PackageManager is your primary means of introspection at the component
level, to determine what else is installed on the device and what
components they export (activities, etc.). As such, there are many
ways you can use PackageManager to determine if something you want
is possible or not, so you can modify your behavior accordingly
(e.g., disable action bar items that are not possible).
This chapter will outline some ways you can use PackageManager to
find out what components are available to you on a device.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Asking Around
The ways to find out whether there is an activity that will respond
to a given Intent are by means of queryIntentActivityOptions() and
the somewhat simpler queryIntentActivities().
The queryIntentActivityOptions() method takes the caller
ComponentName, the “specifics” array of Intent instances, the
overall Intent representing the actions you are seeking, and the
set of flags. It returns a List of Intent instances matching the
stated criteria, with the “specifics” ones first.
If you would like to offer alternative actions to users, but by means
other than addIntentOptions(), you could call
queryIntentActivityOptions(), get the Intent instances, then use
them to populate some other user interface (e.g., a toolbar).
A simpler version of this method, queryIntentActivities(), is used
by the
Introspection/Launchalot
sample application. This presents a
“launcher” — an activity that starts other activities —
but uses a ListView rather than a grid like the Android default
home screen uses.
Here is the Java code for Launchalot itself:

package com.commonsware.android.launchalot;

import android.app.ListActivity;
import android.content.ComponentName;
import android.content.Intent;
import android.content.pm.ActivityInfo;
import android.content.pm.PackageManager;
import android.content.pm.ResolveInfo;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Collections;
import java.util.List;

public class Launchalot extends ListActivity {
 AppAdapter adapter=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 PackageManager pm=getPackageManager();
 Intent main=new Intent(Intent.ACTION_MAIN, null);

 main.addCategory(Intent.CATEGORY_LAUNCHER);

 List<ResolveInfo> launchables=pm.queryIntentActivities(main, 0);

 Collections.sort(launchables,
 new ResolveInfo.DisplayNameComparator(pm));

 adapter=new AppAdapter(pm, launchables);
 setListAdapter(adapter);
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 ResolveInfo launchable=adapter.getItem(position);
 ActivityInfo activity=launchable.activityInfo;
 ComponentName name=new ComponentName(activity.applicationInfo.packageName,
 activity.name);
 Intent i=new Intent(Intent.ACTION_MAIN);

 i.addCategory(Intent.CATEGORY_LAUNCHER);
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
 i.setComponent(name);

 startActivity(i);
 }

 class AppAdapter extends ArrayAdapter<ResolveInfo> {
 private PackageManager pm=null;

 AppAdapter(PackageManager pm, List<ResolveInfo> apps) {
 super(Launchalot.this, R.layout.row, apps);
 this.pm=pm;
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 if (convertView==null) {
 convertView=newView(parent);
 }

 bindView(position, convertView);

 return(convertView);
 }

 private View newView(ViewGroup parent) {
 return(getLayoutInflater().inflate(R.layout.row, parent, false));
 }

 private void bindView(int position, View row) {
 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(getItem(position).loadLabel(pm));

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 icon.setImageDrawable(getItem(position).loadIcon(pm));
 }
 }
}

(from Introspection/Launchalot/app/src/main/java/com/commonsware/android/launchalot/Launchalot.java)
In onCreate(), we:

	Get a PackageManager object via getPackageManager()

	Create an Intent for ACTION_MAIN in CATEGORY_LAUNCHER, which
identifies activities that wish to be considered “launchable”

	Call queryIntentActivities() to get a List of ResolveInfo
objects, each one representing one launchable activity

	Sort those ResolveInfo objects via a
ResolveInfo.DisplayNameComparator instance

	Pour them into a custom AppAdapter and set that to be the
contents of our ListView

AppAdapter is an ArrayAdapter subclass that maps the icon and
name of the launchable Activity to a row in the ListView, using a
custom row layout.
Finally, in onListItemClick(), we construct an Intent that will
launch the clicked-upon Activity, given the information from the
corresponding ResolveInfo object. Not only do we need to populate
the Intent with ACTION_MAIN and CATEGORY_LAUNCHER, but we also
need to set the component to be the desired Activity. We also set
FLAG_ACTIVITY_NEW_TASK and FLAG_ACTIVITY_RESET_TASK_IF_NEEDED
flags, following Android’s own launcher implementation from the Home
sample project. Finally, we call startActivity() with that
Intent, which opens up the activity selected by the user.
The result is a simple list of launchable activities:

[image: The Launchalot sample application]

Figure 862: The Launchalot sample application
There is also a resolveActivity() method that takes a template
Intent, as do queryIntentActivities() and
queryIntentActivityOptions(). However, resolveActivity() returns
the single best match, rather than a list.
NOTE: On modern versions of Android, there is a
LauncherApps class that simplifies a lot of this and takes
things like Android Work profiles into account. For really
implementing a home screen-style launcher, you will probably want
to use LauncherApps. However, using PackageManager to find
what can handle certain Intent structures is used for other
purposes beyond home screen launchers.
Preferred Activities
Users, when presented with a default activity chooser, usually have
the option to make
their next choice be the default for this action for now on. The next
time they do whatever they did to bring up the chooser, it should go
straight to this default. This is known in the system as the “preferred
activity” for an Intent structure, and is stored in the system
as a set of pairs of IntentFilter objects and the corresponding
ComponentName of the preferred activity.
To find out what the preferred activities are on a given device,
you can ask PackageManager to getPreferredActivities(). You pass
in a List<IntentFilter> and a List<ComponentName>, and Android fills
in those lists with the preferred activity information.
To see this in action, take a look at the
Introspection/PrefActivities
sample application. This simply loads all of the information into a
ListView, using android.R.layout.simple_list_item_2 as a row layout
for a title-and-description pattern.
The PackageManager logic is confined to onCreate():

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 PackageManager mgr=getPackageManager();

 mgr.getPreferredActivities(filters, names, null);
 setListAdapter(new IntentFilterAdapter());
 }

(from Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java)
In this case, the two lists are data members of the activity:

 ArrayList<IntentFilter> filters=new ArrayList<IntentFilter>();
 ArrayList<ComponentName> names=new ArrayList<ComponentName>();

(from Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java)
Most of the logic is in formatting the ListView contents. IntentFilter,
unfortunately, does not come with a method that gives us a human-readable
dump of its definition. As a result, we need to roll that ourselves.
Compounding the problem is that IntentFilter tends to return Iterator
objects for its collections (e.g., roster of actions), rather than
something Iterable. The activity leverages an Iterator-to-Iterable
wrapper culled from
a Stack Overflow answer
to help with this. The
IntentFilterAdapter and helper code looks like this:

 // from http://stackoverflow.com/a/8555153/115145

 public static <T> Iterable<T> in(final Iterator<T> iterator) {
 class SingleUseIterable implements Iterable<T> {
 private boolean used=false;

 @Override
 public Iterator<T> iterator() {
 if (used) {
 throw new IllegalStateException("Already invoked");
 }
 used=true;
 return iterator;
 }
 }
 return new SingleUseIterable();
 }

 class IntentFilterAdapter extends ArrayAdapter<IntentFilter> {
 IntentFilterAdapter() {
 super(PreferredActivitiesDemoActivity.this,
 android.R.layout.simple_list_item_2, android.R.id.text1,
 filters);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row=super.getView(position, convertView, parent);
 TextView filter=(TextView)row.findViewById(android.R.id.text1);
 TextView name=(TextView)row.findViewById(android.R.id.text2);

 filter.setText(buildTitle(getItem(position)));
 name.setText(names.get(position).getClassName());

 return(row);
 }

 String buildTitle(IntentFilter filter) {
 StringBuilder buf=new StringBuilder();
 boolean first=true;

 if (filter.countActions() > 0) {
 for (String action : in(filter.actionsIterator())) {
 if (first) {
 first=false;
 }
 else {
 buf.append('/');
 }

 buf.append(action.replaceAll("android.intent.action.", ""));
 }
 }

 if (filter.countDataTypes() > 0) {
 first=true;

 for (String type : in(filter.typesIterator())) {
 if (first) {
 buf.append(" : ");
 first=false;
 }
 else {
 buf.append('|');
 }

 buf.append(type);
 }
 }

 if (filter.countDataSchemes() > 0) {
 buf.append(" : ");
 buf.append(filter.getDataScheme(0));

 if (filter.countDataSchemes() > 1) {
 buf.append(" (other schemes)");
 }
 }

 if (filter.countDataPaths() > 0) {
 buf.append(" : ");
 buf.append(filter.getDataPath(0));

 if (filter.countDataPaths() > 1) {
 buf.append(" (other paths)");
 }
 }

 return(buf.toString());
 }
 }

(from Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java)
The resulting activity shows a simple description of the IntentFilter
along with the class name of the corresponding activity in each row:

[image: Preferred Activities on a Stock HTC One S]

Figure 863: Preferred Activities on a Stock HTC One S
Another way to think about preferred activities is to determine what
specific activity will handle a startActivity() call on some Intent.
If there is only one alternative, or the user chose a preferred activity,
that activity should handle the Intent. Otherwise, the activity
handling the Intent should be one implementing a chooser. The
resolveActivity() method on PackageManager can let us know what will
handle the Intent.
To examine what resolveActivity() returns, take a look at the
Introspection/Resolver
sample application.
The activity — which uses Theme.Translucent.NoTitleBar and so has no UI of its
own — is fairly short:

package com.commonsware.android.resolver;

import android.app.Activity;
import android.content.Intent;
import android.content.pm.PackageManager;
import android.content.pm.ResolveInfo;
import android.net.Uri;
import android.os.Bundle;
import android.widget.Toast;

public class ResolveActivityDemoActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 PackageManager mgr=getPackageManager();
 Intent i=
 new Intent(Intent.ACTION_VIEW,
 Uri.parse("https://commonsware.com"));
 ResolveInfo ri=
 mgr.resolveActivity(i, PackageManager.MATCH_DEFAULT_ONLY);

 Toast.makeText(this, ri.loadLabel(mgr), Toast.LENGTH_LONG).show();

 startActivity(i);
 finish();
 }
}

(from Introspection/Resolver/app/src/main/java/com/commonsware/android/resolver/ResolveActivityDemoActivity.java)
We get a PackageManager, create an Intent to test, and pass the
Intent to resolveActivity(). We include MATCH_DEFAULT_ONLY so we
only get activities that have CATEGORY_DEFAULT in their <intent-filter>
elements. We then use loadLabel() on the resulting ResolveInfo
object to get the display name of the activity, toss that in a Toast,
and invoke startActivity() on the Intent to confirm the results.
On a device with only one option, or with a default chosen, the
Toast will show the name of the preferred activity (e.g., Browser).
On most devices with more than one option, the startActivity()
call will display a chooser, and the Toast will show the display
name of the chooser (e.g., “Android System”).
However, on some devices — notably newer models from HTC distributed
in the US — resolveActivity() indicates that HTCLinkifyDispatcher
is the one that will handle ACTION_VIEW on a URL… even if there
is more than one browser installed and no default has been specified.
This is part of a workaround that HTC added in 2012 to help deal with
a patent dispute with Apple.
Middle Management
The PackageManager class offers much more than merely
queryIntentActivities() and queryIntentActivityOptions(). It is
your gateway to all sorts of analysis of what is installed and
available on the device where your application is installed and
available. If you want to be able to intelligently connect to
third-party applications based on whether or not they are around,
PackageManager is what you will want.
Finding Applications and Packages
Packages are what get installed on the device — a package is
the in-device representation of an APK. An application is defined
within a package’s manifest. Between the two, you can find out all
sorts of things about existing software installed on the device.
Specifically, getInstalledPackages() returns a List of
PackageInfo objects, each of which describes a single package.
Here, you can find out:

	The version of the package, in terms of a monotonically increasing
number (versionCode) and the display name (versionName)

	Details about all of the components — activities, services,
etc. — offered by this package

	Details about the permissions the package requires

Similarly, getInstalledApplications() returns a List of
ApplicationInfo objects, each providing data like:

	The user ID that the application will run as

	The path to the application’s private data directory

	Whether or not the application is enabled

In addition to those methods, you can call:

	
getApplicationIcon() and getApplicationLabel() to get the icon
and display name for an application

	
getLaunchIntentForPackage() to get an Intent for something
launchable within a named package

	
setApplicationEnabledSetting() to enable or disable an
application

Finding Resources
You can access resources from another application, apparently without
any security restrictions. This may be useful if you have multiple
applications and wish to share resources for one reason or another.
The getResourcesForActivity() and getResourcesForApplication()
methods on PackageManager return a Resources object. This is just
like the one you get for your own application via getResources() on
any Context (e.g., Activity). However, in this case, you identify
what activity or application you wish to get the Resources from
(e.g., supply the application’s package name as a String).
There are also getText() and getXml() methods that dive into the
Resources object for an application and pull out specific String
or XmlPullParser objects. However, these require you to know the
resource ID of the resource to be retrieved, and that may be
difficult to manage between disparate applications.
Finding Components
Not only does Android offer “query” and “resolve” methods to find
activities, but it offers similar methods to find other sorts of
Android components:

	queryBroadcastReceivers()

	queryContentProviders()

	queryIntentServices()

	resolveContentProvider()

	resolveService()

For example, you could use resolveService() to determine if a
certain remote service is available, so you can disable certain UI
elements if the service is not on the device. You could achieve the
same end by calling bindService() and watching for a failure, but
that may be later in the application flow than you would like.
There is also a setComponentEnabledSetting() to toggle a component
(activity, service, etc.) on and off. While this may seem esoteric,
there are a number of possible uses for this method, such as:

	Flagging a launchable activity as disabled in your manifest, then
enabling it programmatically after the user has entered a license
key, achieved some level or standing in a game, or any other criteria

	Controlling whether a BroadcastReceiver registered in the
manifest is hooked into the system or not, replicating the level of
control you have with registerReceiver() while still taking
advantage of the fact that a manifest-registered BroadcastReceiver
can be started even if no other component of your application is
running

Remote Services and the Binding Pattern
Earlier in this book, we covered using services by sending commands
to them to be processed. That “command pattern” is one of two
primary means of interacting with a service — the binding pattern is
the other. With the binding pattern, your service exposes a more
traditional API, in the form of a “binder” object with methods of your
choosing. On the plus side, you get a richer interface. However, it
more tightly ties your activity to your service, which may cause
you problems with configuration changes.
Either the command pattern or the binding pattern can be used, if
desired, across process boundaries, with the client being some
third-party application. In either case, you will need to export
your service via an <intent-filter>. And, in the case of the binding
pattern, your “binder” implementation will have some restrictions.
This chapter covers the binding pattern for local services, plus
inter-process commands and binding (a.k.a., remote services).
Prerequisites
Understanding this chapter requires that you have read the chapters on:

	broadcast Intents

	service theory

The Binding Pattern
Implementing the binding pattern requires work on both the service
side and the client side. The service will need to have a full
implementation of the onBind() method, which typically just returns
null or throws some sort of runtime exception
for a service solely implementing the command pattern. And,
the client (e.g., an activity) will need to ask to bind to the service,
instead of (or perhaps in addition to) starting the service.
What the Service Does
The service implements a subclass of Binder that represents the service’s
exposed API. For a local service, your Binder can have pretty much whatever
methods you want: method names, parameters, return types, and exceptions
thrown are up to you. When you get into remote services, your Binder
implementation will be substantially more constrained, to support
inter-process communication.
Then, your onBind() method returns an instance of the Binder.
What the Client Does
Clients call bindService(), supplying the Intent that identifies the service, a
ServiceConnection object representing the client side of the binding, and an
optional BIND_AUTO_CREATE flag. As with startService(), bindService() is
asynchronous. The client will not know anything about the status of the
binding until the ServiceConnection object is called with
onServiceConnected(). This not only indicates the binding has been
established, but for local services it provides the Binder object that the
service returned via onBind(). At this point, the client can use the Binder to
ask the service to do work on its behalf.
Note that if the service is not
already running, and if you provide BIND_AUTO_CREATE, then the service will
be created first before being bound to the client. If you skip
BIND_AUTO_CREATE, and the service is not already running,
bindService() is supposed to return false, indicating there was no
existing service to bind to. However, in actuality, Android returns true,
due to an apparent bug.
Eventually, the client will need to call unbindService(), to indicate it no
longer needs to communicate with the service. For example, an activity
might call bindService() in its onCreate() method, then call unbindService()
in its onDestroy() method. Once you call unbindService(), your Binder object
is no longer safe to be used by the client. If there are no other bound clients
to the service, Android will shut down the service as well, releasing its
memory. Hence, we do not need to call stopService() ourselves — Android
handles that, if needed, as a side effect of unbinding.
Your ServiceConnection object will also need an onServiceDisconnected()
method. This will be called only if there is an unexpected disconnection,
such as the service crashing with an unhandled exception.
A Binding Sample
In the chapter introducing services, we saw a sample app that would
download a file off of a Web server. That sample
used the command pattern, telling the service what to download via an
Intent extra. In this chapter, we will review a few variations of that
sample, all of which use the binding pattern instead of the command
pattern.
Right now, we are focused on local services, and so the
Binding/Local
sample project does the download via a local bound service.
We start by defining an interface that will serve as the “contract” between
the client (fragment) and service. This interface, IDownload, contains a single
download() method:

package com.commonsware.android.advservice.binding;

// Declare the interface.
interface IDownload {
 void download(String url);
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/IDownload.java)
Our service, DownloadService, implements just one method, onBind(), which
returns an instance of a DownloadBinder:

package com.commonsware.android.advservice.binding;

import android.app.Service;
import android.content.Intent;
import android.net.Uri;
import android.os.Binder;
import android.os.Environment;
import android.os.IBinder;
import android.util.Log;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class DownloadService extends Service {
 @Override
 public IBinder onBind(Intent intent) {
 return(new DownloadBinder());
 }

 private static class DownloadBinder extends Binder implements IDownload {
 @Override
 public void download(String url) {
 new DownloadThread(url).start();
 }
 }

 private static class DownloadThread extends Thread {
 String url=null;

 DownloadThread(String url) {
 this.url=url;
 }

 @Override
 public void run() {
 try {
 File root=
 Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

 root.mkdirs();

 File output=new File(root, Uri.parse(url).getLastPathSegment());

 if (output.exists()) {
 output.delete();
 }

 HttpURLConnection c=(HttpURLConnection)new URL(url).openConnection();

 FileOutputStream fos=new FileOutputStream(output.getPath());
 BufferedOutputStream out=new BufferedOutputStream(fos);

 try {
 InputStream in=c.getInputStream();
 byte[] buffer=new byte[8192];
 int len=0;

 while ((len=in.read(buffer)) >= 0) {
 out.write(buffer, 0, len);
 }

 out.flush();
 }
 finally {
 fos.getFD().sync();
 out.close();
 c.disconnect();
 }
 }
 catch (IOException e2) {
 Log.e("DownloadJob", "Exception in download", e2);
 }
 }
 }
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadService.java)
DownloadBinder implements the IDownload interface. Its download()
method, in turn, forks a DownloadThread to perform the download
in the background — remember, for local services, the methods you
invoke on the Binder are executed on whatever thread you call
them on.
Our fragment, DownloadFragment, loads our layout, res/layout/main.xml, containing
a Button to trigger the download:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/go"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="@string/go"/>

(from Binding/Local/app/src/main/res/layout/main.xml)
The implementation of onCreateView() simply loads that layout, gets the
Button, sets up the fragment as being the click listener for the Button,
and disables the Button:

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.main, container, false);

 btn=(Button)result.findViewById(R.id.go);
 btn.setOnClickListener(this);
 btn.setEnabled(binding!=null);

 return(result);
 }

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)
The reason why we disable the Button is because we are not connected to our
service at this point, and until we are, we cannot allow the user to try to
download a file.
In onCreate() of our fragment, we mark the fragment as retained and bind to the service:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 appContext=(Application)getActivity().getApplicationContext();
 appContext.bindService(new Intent(getActivity(),
 DownloadService.class),
 this, Context.BIND_AUTO_CREATE);
 }

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)
You will notice something curious here: getApplicationContext(). Technically,
we could bind to the service directly from the Activity, by calling bindService()
on it, as bindService() is a method on Context. However, our service binding
represents some state, and it is possible that this state will hold a reference
to the Context that created the binding. In that case, we run the risk of
leaking our original activity during a configuration change. The
getApplicationContext() method returns the global Application singleton,
which is a Context suitable for binding, but one that cannot be leaked, since
it is already in a global scope. In effect, it is “pre-leaked”.
The call to setRetainInstance() allows the fragment –
serving as our ServiceConnection — to survive a
configuration change, so we can cleanly unbind from the service later on, when onDestroy()
is called.
Some time after onCreate() is called and we call bindService(), our
onServiceConnected() method will be called, as we designated our fragment to
be the ServiceConnection. Here, we can cast the IBinder object we receive
to be our IDownload interface to the service, and we can enable the Button:

 @Override
 public void onServiceConnected(ComponentName className, IBinder binder) {
 binding=(IDownload)binder;
 btn.setEnabled(true);
 }

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)
Since we are implementing the ServiceConnection interface, our fragment
also needs to implement the onServiceDisconnected() method, invoked if our
service crashes. Here, we delegate responsibility to a disconnect() private
method, which removes our link to the IDownload object and disables our Button:

 @Override
 public void onServiceDisconnected(ComponentName className) {
 disconnect();
 }

 private void disconnect() {
 binding=null;
 btn.setEnabled(false);
 }
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)
And, when our fragment is destroyed, we unbind from the service (using
the same Context as before, from getApplicationContext()) and disconnect():

 @Override
 public void onDestroy() {
 appContext.unbindService(this);
 disconnect();

 super.onDestroy();
 }

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)
However, in between onServiceConnected() and either onServiceDisconnected()
or onDestroy(), the user can click the Button, which will trigger the
download via a call to download() on our IDownload instance:

 @Override
 public void onClick(View view) {
 binding.download(TO_DOWNLOAD);
 }

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)
The DownloadBindingDemo activity adds our DownloadFragment
via a FragmentTransaction:

package com.commonsware.android.advservice.binding;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class DownloadBindingDemo extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content) == null) {
 getSupportFragmentManager().beginTransaction()
 .add(android.R.id.content,
 new DownloadFragment()).commit();
 }
 }
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadBindingDemo.java)
Starting and Binding
Some developers will use both startService() and bindService() at the same
time. The typical argument is that they need frequent updates from the service
(e.g., percentage of progress, for updating a ProgressBar) in the client and
are concerned about the overhead of sending broadcasts.
With the advent of
LocalBroadcastManager and other event bus implementations,
binding to a service
you are using with startService() should no longer be necessary.
When IPC Attacks!
If you wish to extend the binding pattern to serve in the role of IPC,
whereby other processes can get at your Binder and call its methods,
you will need to use AIDL: the Android Interface Description Language.
If you have used
IPC mechanisms like SOAP, XML-RPC, DCOM, CORBA, or the like, you will recognize the
notion of IDL. AIDL describes the public IPC interface, and Android
supplies tools to build the client and server side of that interface.
With that in mind, let’s take a look at AIDL and IPC.
Write the AIDL
IDLs are frequently written in a “language-neutral” syntax. AIDL, on
the other hand, looks a lot like a Java interface file. For example, here
is some AIDL:

package com.commonsware.android.advservice.remotebinding;

// Declare the interface.
interface IDownload {
 void download(String url);
}

(from Binding/Remote/Service/app/src/main/aidl/com/commonsware/android/advservice/remotebinding/IDownload.aidl)
As you will notice, this looks suspiciously like the regular Java
interface we used in the simple binding example earlier in this chapter.
As with a Java interface, you declare a package at the top. As with a
Java interface, the methods are wrapped in an interface declaration
(interface IDownload { ... }). And, as with a Java interface, you
list the methods you are making available.
The differences, though, are critical.
First, not every Java type can be used as a parameter. Your choices
are:

	Primitive values (int, float, double, boolean, etc.)

	
String and CharSequence

	
List and Map (from java.util)

	Any other AIDL-defined interfaces

	Any Java classes that implement the Parcelable or Serializable interface

In the case of the latter two categories, you need to include
import statements referencing the names of the classes or
interfaces that you are using (e.g., import com.commonsware.android.ISomething).
This is true even if these
classes are in your own package — you have to import them
anyway.
Next, parameters can be classified as in, out, or inout. Values
that are out or inout can be changed by the service and those
changes will be propagated back to the client. Primitives (e.g.,
int) can only be in.
Also, you cannot throw any exceptions. You will need to catch all
exceptions in your code, deal with them, and return failure
indications some other way (e.g., error code return values).
Name your AIDL files with the .aidl extension and place them in the
proper directory based on the package name:

	For native Android Studio projects, this will be an aidl/ directory
in your src/ source set, as a peer of your java/ directory,
with the same sort of subdirectories-based-on-the-Java-package
approach as you use for regular Java source code

	For Eclipse-compatible projects, the .aidl files will go alongside your
.java files in the src/ directory tree

When you build your project, either via an IDE or via command-line build tools, the aidl
utility from the Android SDK will translate your AIDL into a server
stub and a client proxy.
Implement the Interface
Given the AIDL-created server stub, now you need to implement the
service, either directly in the stub, or by routing the stub
implementation to other methods you have already written.
The mechanics of this are fairly straightforward:

	Create a subclass of the AIDL-generated .Stub class
(e.g., IDownload.Stub)

	Implement methods matching up with each of the methods you placed
in the AIDL

	Return an instance of this subclass from your onBind() method in the
Service subclass

Note that AIDL IPC calls are synchronous, and so the caller is
blocked until the IPC method returns. Hence, your services need to be
quick about their work.
We will see examples of service stubs later in this chapter.
Service From Afar
So, given our AIDL description, let us examine a sample implementation,
using AIDL for a remote service.
Our sample applications — shown in the
Binding/Remote/Service
and
Binding/Remote/Client
sample projects — simply move the service logic into a separate project
from the client logic.
Service Names
To bind to a service’s AIDL-defined API, you need to craft an Intent
that can identify the service in question. In the case of a local
service, that Intent can use the local approach of directly
referencing the service class.
Obviously, that is not possible in a remote service case, where the
service class is not in the same process, and may not even be known
by name to the client.
When you define a service to be used by remote, you need to add an
<intent-filter> element to your service declaration in the manifest,
indicating how you want that service to be referred to by clients.
The manifest for RemoteService is shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.advservice.remotebinding.svc"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk
 android:minSdkVersion="14"
 android:targetSdkVersion="14" />

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Holo.Light.DarkActionBar">
 <service android:name=".DownloadService">
 <intent-filter>
 <action android:name="com.commonsware.android.advservice.remotebinding.IDownload" />
 </intent-filter>
 </service>
 </application>

</manifest>

(from Binding/Remote/Service/app/src/main/AndroidManifest.xml)
Here, we say that the service can be identified by the name
com.commonsware.android.advservice.remotebinding.IDownload. So long as the client
uses this name to identify the service, it can bind to that service’s
API.
In this case, the name is not an implementation, but the AIDL API, as
you will see below. In effect, this means that so long as some
service exists on the device that implements this API, the client
will be able to bind to something.
Remote Services and Implicit Intents
We are used to a device having multiple activities that can respond to the same
<intent-filter>. In that case, by default, the user will see a chooser if we
try to start one of those activities.
We are used to a device having multiple BroadcastReceiver components that can
respond to the same <intent-filter> (or IntentFilter). In that case, in a
regular broadcast, all eligible receivers will receive it.
We are used to it being impossible to have multiple ContentProvider components
with the same authority, as the second one fails on install with an
INSTALL_FAILED_CONFLICTING_PROVIDER error.
What happens if there are two (or more) services installed on
the device that claim to support the same <intent-filter>, but have different
package names? You might think that this would fail on install, as happens
with providers with duplicate authorities. Alas, it does not… prior to
Android 5.0. Instead, the
higher-priority <intent-filter> gets it (set via the android:priority
attribute). If 2+ implementations have the same priority, the first one
installed wins.
So, if we have BadService and GoodService, both responding to the same
<intent-filter>, and a client app tries to communicate to GoodService
via the implicit Intent matching that <intent-filter>, it
might actually be communicating with BadService, simply because BadService
was installed first. The user is oblivious to this.
Android 5.0 solves this by preventing binding using an implicit Intent.
This, however, presents a conundrum:

	We cannot bind using an implicit Intent

	We do not know how to construct an explicit Intent identifying the
desired service, as that might be from a third-party app

As you will see, when we examine the client side of this sample, we have
to use PackageManager to convert an implicit Intent into a valid
explicit Intent for our service. This not only allows us to comply with
the Android 5.0 binding restriction, but it gives us an opportunity to
detect and handle the cases where there is no matching service (e.g., the
service app has not yet been installed) or when there is more than one
matching service (e.g., BadService and GoodService). And the techniques
that all of this uses works on pretty much any version of Android, so
while we need them for Android 5.0 and higher, we can use them
anywhere.
The Service
Beyond the manifest, the service implementation is not too unusual.
There is the AIDL interface, IDownload:

package com.commonsware.android.advservice.remotebinding;

// Declare the interface.
interface IDownload {
 void download(String url);
}

(from Binding/Remote/Service/app/src/main/aidl/com/commonsware/android/advservice/remotebinding/IDownload.aidl)
And there is the actual service class itself, DownloadService:

package com.commonsware.android.advservice.remotebinding.svc;

import android.app.Service;
import android.content.Intent;
import android.net.Uri;
import android.os.Environment;
import android.os.IBinder;
import android.util.Log;
import com.commonsware.android.advservice.remotebinding.IDownload;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class DownloadService extends Service {
 @Override
 public IBinder onBind(Intent intent) {
 return(new DownloadBinder());
 }

 private static class DownloadBinder extends IDownload.Stub {
 @Override
 public void download(String url) {
 new DownloadThread(url).start();
 }
 }

 private static class DownloadThread extends Thread {
 String url=null;

 DownloadThread(String url) {
 this.url=url;
 }

 @Override
 public void run() {
 try {
 File root=
 Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

 root.mkdirs();

 File output=new File(root, Uri.parse(url).getLastPathSegment());

 if (output.exists()) {
 output.delete();
 }

 HttpURLConnection c=(HttpURLConnection)new URL(url).openConnection();

 FileOutputStream fos=new FileOutputStream(output.getPath());
 BufferedOutputStream out=new BufferedOutputStream(fos);

 try {
 InputStream in=c.getInputStream();
 byte[] buffer=new byte[8192];
 int len=0;

 while ((len=in.read(buffer)) >= 0) {
 out.write(buffer, 0, len);
 }

 out.flush();
 }
 finally {
 fos.getFD().sync();
 out.close();
 c.disconnect();
 }
 }
 catch (IOException e2) {
 Log.e("DownloadJob", "Exception in download", e2);
 }
 }
 }
}

(from Binding/Remote/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/svc/DownloadService.java)
This is identical to the local binding example, with one key difference:
DownloadBinder now extends IDownload.Stub rather than the generic
Binder class.
The Client
The client — a revised version of DownloadFragment — connects to the
remote service to ask it to download the file on the user’s behalf.
This has three changes of note over our original local implementation.
First, when we call download() on the IDownload object, we need
to catch a RemoteException. This will be thrown if the service crashes
during our request or otherwise is unable to return properly:

 @Override
 public void onClick(View view) {
 try {
 binding.download(TO_DOWNLOAD);
 }
 catch (RemoteException e) {
 Log.e(getClass().getSimpleName(), "Exception requesting download", e);
 Toast.makeText(getActivity(), e.getMessage(), Toast.LENGTH_LONG).show();
 }
 }

(from Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java)
Second, our onServiceConnected() uses IDownload.Stub.asInterface() to convert
the raw IBinder into an IDownload object for use:

 @Override
 public void onServiceConnected(ComponentName className, IBinder binder) {
 binding=IDownload.Stub.asInterface(binder);
 btn.setEnabled(true);
 }

(from Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java)
Third, our binding logic in onCreate() is significantly more complicated:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 appContext=(Application)getActivity().getApplicationContext();

 Intent implicit=new Intent(IDownload.class.getName());
 List<ResolveInfo> matches=getActivity().getPackageManager()
 .queryIntentServices(implicit, 0);

 if (matches.size() == 0) {
 Toast.makeText(getActivity(), "Cannot find a matching service!",
 Toast.LENGTH_LONG).show();
 }
 else if (matches.size() > 1) {
 Toast.makeText(getActivity(), "Found multiple matching services!",
 Toast.LENGTH_LONG).show();
 }
 else {
 Intent explicit=new Intent(implicit);
 ServiceInfo svcInfo=matches.get(0).serviceInfo;
 ComponentName cn=new ComponentName(svcInfo.applicationInfo.packageName,
 svcInfo.name);

 explicit.setComponent(cn);
 appContext.bindService(explicit, this, Context.BIND_AUTO_CREATE);
 }
 }

(from Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java)
Here, we:

	Get the Application singleton Context as before

	Craft an implicit Intent for the service, using the appropriate action
string (which, in this case, happens to be the fully-qualified
name of the IDownload interface)

	Use PackageManager and queryIntentServices() to find out all
services that implement a matching <intent-filter> for that
implicit Intent

	Fail with a Toast if there is not exactly one such service

	Use the ServiceInfo object from our queryIntentServices() call
to craft an explicit Intent, with the same structure as the
implicit Intent had, but also with the actual matched component
(via setComponent())

	Use the explicit Intent to bind to the service

Note that the client needs its own copy of IDownload.aidl.
After all, it is a totally separate application, and therefore does
not share source code with the service.
If you compile both applications and upload them to the device, then
start up the client, you can have the service download the file.
Tightening Up the Security
The previous sample confirms that there is exactly one service that
matches the desired Intent. This catches the zero-service scenario
(requiring the user to install the other app) and catches the
multiple-service scenario (where one service is an attacker, presumably).
However, what happens if there is only one service installed, and it
is not the desired service, but rather is an attacker? The preceding
binding code will still go ahead and bind with that service.
You might consider just examining the package name/application ID of the
other service, to see if it matches an expected value. However, that will
not help you if the attacker is a modified version of the real service,
one that kept its original package name but changed the service to do
evil things.
Checking the digital signature of the other service is a more robust check,
as that cannot readily be forged. Even if somebody modifies and repackages
the app with the service, that app would wind up being signed by a different
signing key, which you can detect.
Moreover, this approach can be used in both directions: the client
can validate the service, and the service can validate the client. For
example, perhaps as part of a licensing scheme, your service can only
be used by apps developed by certain firms, based upon their signing keys.
The
Binding/SigCheck/Client
sample project illustrates a client that will perform this signature check
on the client side.
The corresponding service project –
Binding/SigCheck/Service –
will perform a signature check on the service side.
Adding the Dependency
Both projects use the CWAC-Security library, described
elsewhere in this book, to do the signature
checking. Hence, their Gradle build files have a dependency on that library:

repositories {
 maven {
 url "https://s3.amazonaws.com/repo.commonsware.com"
 }
}

dependencies {
 implementation 'com.android.support:support-fragment:27.1.1'
 implementation 'com.commonsware.cwac:security:0.8.0'
}

(from Binding/SigCheck/Client/app/build.gradle)
Adding the Signature Check: Client
The client’s DownloadFragment is nearly the same as before, with an
adjustment to onCreate() to check the signature if there is exactly
one service that matches the Intent:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 appContext=(Application)getActivity().getApplicationContext();

 Intent implicit=new Intent(IDownload.class.getName());
 List<ResolveInfo> matches=getActivity().getPackageManager()
 .queryIntentServices(implicit, 0);

 if (matches.size() == 0) {
 Toast.makeText(getActivity(), "Cannot find a matching service!",
 Toast.LENGTH_LONG).show();
 }
 else if (matches.size() > 1) {
 Toast.makeText(getActivity(), "Found multiple matching services!",
 Toast.LENGTH_LONG).show();
 }
 else {
 ServiceInfo svcInfo=matches.get(0).serviceInfo;

 try {
 String otherHash=SignatureUtils.getSignatureHash(getActivity(),
 svcInfo.applicationInfo.packageName);
 String expected=getActivity().getString(R.string.expected_sig_hash);

 if (expected.equals(otherHash)) {
 Intent explicit=new Intent(implicit);
 ComponentName cn=new ComponentName(svcInfo.applicationInfo.packageName,
 svcInfo.name);

 explicit.setComponent(cn);
 appContext.bindService(explicit, this, Context.BIND_AUTO_CREATE);
 }
 else {
 Toast.makeText(getActivity(), "Unexpected signature found!",
 Toast.LENGTH_LONG).show();
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(), "Exception trying to get signature hash", e);
 }
 }
 }

(from Binding/SigCheck/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/sigcheck/DownloadFragment.java)
In the one-match scenario, we get the signature of the other app,
by using getSignatureHash()
on SignatureUtils, passing in the package name of the other app. We
then compare that with a hard-coded expected hash, pulled from a string resource,
one that is unfortunately too long to represent in this book.
Only if those two match do we go ahead with the binding.
Adding the Signature Check: Service
This gets a bit more complicated, as we first need to figure out who
the client is, before we can validate the signature. In the case
of the client connecting to the service, we know the application ID
of the service courtesy of the queryIntentServices() call. On the
service side, we need to use a different approach to identify who
the client is.
To do this work, DownloadBinder now needs a Context with which
to work, so onBind() passes one to a revised DownloadBinder
constructor:

 @Override
 public IBinder onBind(Intent intent) {
 return(new DownloadBinder(this));
 }

(from Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java)
The constructor holds on to three things:

	a Context, in this case the Application obtained from the Service

	a PackageManager, as we will need this for the signature lookup

	the expected hash of the client’s signing key, pulled once again
from a string resource

 private static class DownloadBinder extends IDownload.Stub {
 private final PackageManager pm;
 private final String expectedHash;
 private final Context ctxt;

 public DownloadBinder(Context ctxt) {
 this.ctxt=ctxt.getApplicationContext();
 this.pm=this.ctxt.getPackageManager();
 this.expectedHash=this.ctxt.getString(
 R.string.expected_sig_hash);
 }

(from Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java)
A Binder can find out who is invoking one of its exposed methods via
Binder.getCallingUid(). This returns the Linux user ID (uid) that the
client uses.
Normally, this will be tied to one application ID. However, it is possible
for a suite of apps to share a Linux user ID, via the android:sharedUserId
option in the manifest. Hence, the call to map the user ID to
an application ID is getPackagesForUid() on PackageManager, which returns
a list of application IDs.
So, the revised download() method iterates over those application IDs
to see if any of them have the expected signature:

 @Override
 public void download(String url) {
 boolean ok=false;

 for (String pkg :
 pm.getPackagesForUid(Binder.getCallingUid())) {
 try {
 String otherHash=
 SignatureUtils.getSignatureHash(ctxt, pkg);

 if (expectedHash.equals(otherHash)) {
 ok=true;
 break;
 }
 }
 catch (Exception e) {
 Log.e(getClass().getSimpleName(),
 "Exception finding signature hash", e);
 }
 }

 if (ok) {
 new DownloadThread(url).start();
 }
 else {
 Log.e(getClass().getSimpleName(),
 "Could not validate client signature");
 }
 }

(from Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java)
In practice, Android itself will ensure that if there are several
application IDs sharing a Linux user ID, they will all be signed by
the same signing key.
If and only if we find a signature match do we actually do the download;
otherwise, we log an error.
This happens to be a very simple service with a single-method Binder.
In a more complicated service, where there are several methods exposed
by the Binder, the signature-check logic could be refactored into
a common private method that the AIDL-defined Binder methods could
all use to validate the client.
So, Where Do We Get the Expected Hash From?
Today, there are two main ways you can get the expected hash:

	Since this is really a hash of the public part of the app’s signing
key, the author of the other app might publish it as part of integration
documentation, where the hash is generated via keytool

	You might call getSignatureHash() from your app and log the results,
running it against a known good copy of the other app

Servicing the Service
However, we do not get any result back from the service to know
if the download succeeded or failed. That is likely to be rather
important information for the user.
In principle, download() could return some success-or-failure
indication… but then we would have a blocking call. Neither
the client nor the service could proceed until the download is
completed. That would require the client to manage its own
background thread, which is a minor hassle. It also means that
the service ties up one of a limited number of “Binder threads”,
which is not a good idea.
Another approach would be to pass some sort of callback object with
download(), such that the server could run the script
asynchronously and invoke the callback on success or failure. This,
though, implies that there is some way to have the client export an
API to the service.
Fortunately, this is eminently doable, as you will see in this
section, and the accompanying samples (
Binding/Callback/Service
and
Binding/Callback/Client).
Callbacks via AIDL
AIDL does not have any concept of direction. It just knows interfaces, proxies,
and stub implementations. In the preceding example, we used AIDL to
have the service flesh out the stub implementation and have the
client access the service via the AIDL-defined interface. However,
there is nothing magic about services implementing interfaces and clients
accessing them — it is equally possible to reverse matters and have
the client implement something the service uses via an interface.
So, for example, we could create an IDownloadCallback.aidl file:

package com.commonsware.android.advservice.callbackbinding;

// Declare the interface.
interface IDownloadCallback {
 void onSuccess();
 void onFailure(String msg);
}

(from Binding/Callback/Service/app/src/main/aidl/com/commonsware/android/advservice/callbackbinding/IDownloadCallback.aidl)
Then, we can augment IDownload itself, to pass an IDownloadCallback
with download():

package com.commonsware.android.advservice.callbackbinding;

import com.commonsware.android.advservice.callbackbinding.IDownloadCallback;

// Declare the interface.
interface IDownload {
 void download(String url, IDownloadCallback cb);
}

(from Binding/Callback/Service/app/src/main/aidl/com/commonsware/android/advservice/callbackbinding/IDownload.aidl)
Notice that we need to specifically import IDownloadCallback, just like
we might import some “regular” Java interface. And, as before, we
need to make sure the client and the server are working off of the
same AIDL definitions, so these two AIDL files need to be replicated
across each project.
But other than that one little twist, this is all that is required,
at the AIDL level, to have the client pass a callback object to the
service: define the AIDL for the callback and add it as a parameter
to some service API call.
Of course, there is a little more work to do on the client and server
side to make use of this callback object.
Revising the Client
On the client, we need to implement an IDownloadCallback. In
onSuccess() and onFailure() we can do something like raise a Toast.
The catch is that we cannot be certain we are being called on the UI
thread in our callback object. In fact, it is almost assured that we
are not. So, we need to get our work moved over to the main application
thread. To do that, this sample uses runOnUiThread():

 IDownloadCallback.Stub cb=new IDownloadCallback.Stub() {
 @Override
 public void onSuccess() throws RemoteException {
 getActivity().runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(getActivity(), "Download successful!", Toast.LENGTH_LONG).show();
 }
 });
 }

 @Override
 public void onFailure(final String msg) throws RemoteException {
 getActivity().runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(getActivity(), msg, Toast.LENGTH_LONG).show();
 }
 });
 }
 };

(from Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/DownloadFragment.java)
And, of course, we need to pass the IDownloadCallback object in
our download() call:

 @Override
 public void onClick(View view) {
 try {
 binding.download(TO_DOWNLOAD, cb);
 }
 catch (RemoteException e) {
 Log.e(getClass().getSimpleName(), "Exception requesting download", e);
 Toast.makeText(getActivity(), e.getMessage(), Toast.LENGTH_LONG).show();
 }
 }

(from Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/DownloadFragment.java)
Revising the Service
The service also needs changing, to use the supplied callback object for the end
results of the download.
DownloadBinder now receives an IDownloadCallback proxy in its
download() method, which it passes along to the DownloadThread:

 private static class DownloadBinder extends IDownload.Stub {
 @Override
 public void download(String url, IDownloadCallback cb) {
 new DownloadThread(url, cb).start();
 }
 }

(from Binding/Callback/Service/app/src/main/java/com/commonsware/android/advservice/callbackbinding/svc/DownloadService.java)
Notice that the service’s own API just needs the IDownloadCallback
parameter, which can be passed around and used like any other Java
object. The fact that it happens to cause calls to be made
synchronously back to the remote client is invisible to the service.
DownloadThread, in turn, invokes onSuccess() or
onFailure() as appropriate:

 private static class DownloadThread extends Thread {
 String url=null;
 IDownloadCallback cb=null;

 DownloadThread(String url, IDownloadCallback cb) {
 this.url=url;
 this.cb=cb;
 }

 @Override
 public void run() {
 boolean succeeded=false;

 try {
 File root=
 Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

 root.mkdirs();

 File output=new File(root, Uri.parse(url).getLastPathSegment());

 if (output.exists()) {
 output.delete();
 }

 HttpURLConnection c=(HttpURLConnection)new URL(url).openConnection();

 FileOutputStream fos=new FileOutputStream(output.getPath());
 BufferedOutputStream out=new BufferedOutputStream(fos);

 try {
 InputStream in=c.getInputStream();
 byte[] buffer=new byte[8192];
 int len=0;

 while ((len=in.read(buffer)) >= 0) {
 out.write(buffer, 0, len);
 }

 out.flush();
 succeeded=true;
 }
 finally {
 fos.getFD().sync();
 out.close();
 c.disconnect();
 }
 }
 catch (IOException e2) {
 Log.e("DownloadJob", "Exception in download", e2);

 try {
 cb.onFailure(e2.getMessage());
 }
 catch (RemoteException e) {
 Log.e("DownloadJob", "Exception when calling onFailure()", e2);
 }
 }

 if (succeeded) {
 try {
 cb.onSuccess();
 }
 catch (RemoteException e) {
 Log.e("DownloadJob", "Exception when calling onSuccess()", e);
 }
 }
 }
 }

(from Binding/Callback/Service/app/src/main/java/com/commonsware/android/advservice/callbackbinding/svc/DownloadService.java)
Thinking About Security
Remote services, by definition, are available for anyone to connect to.
This may or may not be a good idea.
If the only client of your remote service is some other app of yours,
you could protect the service using
a custom signature-level permission.
If you anticipate third-party apps communicating with your service, you
should strongly consider protecting the service with
an ordinary custom permission, so the user can vote
on whether the communication is allowed.
For local services, the simplest way to secure the service is to not
export it, typically by not having an <intent-filter> element for
the <service> in the manifest. Then, your app is the only app that
can work with the service.
The “Everlasting Service” Anti-Pattern
One anti-pattern that is all too prevalent in Android is the
“everlasting service”. Such a service is started via startService()
and never stops — the component starting it does not stop it
and it does not stop itself via stopSelf().
Why is this an anti-pattern?

	The service takes up memory all of the time. This is bad in its
own right if the service is not continuously delivering sufficient
value to be worth the memory.

	Users, fearing services that sap their device’s CPU or RAM, may
attack the service with so-called “task killer” applications or may
terminate the service via the Settings app, thereby defeating your
original goal.

	Android itself, due to user frustration with sloppy developers,
will terminate services it deems ill-used, particularly ones that
have run for quite some time.

Occasionally, an everlasting service is the right solution. Take a
VOIP client, for example. A VOIP client usually needs to hold an open
socket with the VOIP server to know about incoming calls. The only
way to continuously watch for incoming calls is to continuously hold
open the socket. The only component capable of doing that would be a
service, so the service would have to continuously run.
However, in the case of a VOIP client, or a music player, the user is
the one specifically requesting the service to run forever. By using
startForeground(), a service can ensure it will not be stopped due
to old age for cases like this.
As a counter-example, imagine an email client. The client wishes to
check for new email messages periodically. The right solution for
this is the AlarmManager pattern described elsewhere in this book.
The anti-pattern would have a service running
constantly, spending most of its time waiting for the polling period
to elapse (e.g., via Thread.sleep()). There is no value to the user
in taking up RAM to watch the clock tick. Such services should be
rewritten to use AlarmManager.
Most of the time, though, it appears that services are simply leaked.
That is one advantage of using AlarmManager and an IntentService
– it is difficult to leak the service, causing it to run
indefinitely. In fact, IntentService in general is a great
implementation to use whenever you use the command pattern, as it
ensures that the service will shut down eventually. If you use a
regular service, be sure to shut it down when it is no longer
actively delivering value to the user.
Advanced Manifest Tips
If you have been diligent about reading this book (versus having
randomly jumped to this chapter), you will already have done a fair
number of things with
your project’s AndroidManifest.xml file:

	Used it to define components, like activities, services, content
providers, and manifest-registered broadcast receivers

	Used it to declare permissions your application requires, or
possibly to define permissions that other applications need in order
to integrate with your application

	Used it to define what SDK level, screen sizes, and other device
capabilities your application requires

In this chapter, we continue looking at things the manifest offers
you, starting with a discussion of controlling where your
application gets installed on a device, and wrapping
up with a bit of information about activity aliases.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Just Looking For Some Elbow Room
On October 22, 2008, the HTC Dream
was released, under
the moniker of “T-Mobile G1”, as the first production Android device.
Complaints about the lack of available storage space for applications
probably started on October 23rd.
The Dream, while a solid first Android device, offered only 70MB of
on-board flash for application storage. This storage had to include:

	The Android application (APK) file

	Any local files or databases the application created, particularly
those deemed unsafe to put on the SD card (e.g., privacy)

	Extra copies of some portions of the APK file, such as the
compiled Dalvik bytecode, which get unpacked on installation for
speed of access

It would not take long for a user to fill up 70MB of space, then have
to start removing some applications to be able to try others.
Users and developers alike could not quite understand why the Dream
had so little space compared to the available iPhone models, and they
begged to at least allow applications to install to the SD card,
where there would be more room. This, however, was not easy to
implement in a secure fashion, and it took until Android 2.2 for the
feature to become officially available.
If your app’s android:minSdkVersion is 11 or higher, you can
probably ignore all of this. At that time, what the Android SDK
refers to as “internal storage” and “external storage” were moved to
be part of one filesystem partition, and so there is no artificial
division of space between the two.
But, if you are still supporting Android 2.2 and 2.3, you may wish to
consider supporting having your app be installed to, or moved to,
external storage.
Configuring Your App to Reside on External Storage
Indicating to Android that your application can reside on the SD card
is easy… and necessary, if you want the feature. If you do not tell
Android this is allowed, Android will not install your application
to the SD card, nor allow the user to move the application to the SD
card.
All you need to do is add an android:installLocation attribute to
the root <manifest> element of your AndroidManifest.xml file.
There are three possible values for this attribute:

	
internalOnly, the default, meaning that the application cannot be
installed to the SD card

	
preferExternal, meaning the application would like to be
installed on the SD card

	
auto, meaning the application can be installed in either location

If you use preferExternal, then your application will be initially
installed on the SD card in most cases. Android reserves the right to
still install your application on internal storage in cases where
that makes too much sense, such as there not being an SD card
installed at the time.
If you use auto, then Android will make the decision as to the
installation location, based on a variety of factors. In effect, this
means that auto and preferExternal are functionally very similar
– all you are doing with preferExternal is giving Android a
hint as to your desired installation destination.
Because Android decides where your application is initially
installed, and because the user has the option to move your
application between the SD card and on-board flash, you cannot assume
any given installation spot. The exception is if you choose
internalOnly, in which case Android will honor your request, at the
potential cost of not allowing the installation at all if there is no
more room in on-board flash.
For example, here is the manifest from the
SMS/Sender
sample project,
profiled in another chapter, showing the use of
preferExternal:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.sms.sender"
 android:installLocation="preferExternal"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.READ_CONTACTS"/>
 <uses-permission android:name="android.permission.SEND_SMS"/>

 <uses-sdk
 android:minSdkVersion="7"
 android:targetSdkVersion="11"/>

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name="Sender"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from SMS/Sender/app/src/main/AndroidManifest.xml)
Since this feature only became available in Android 2.2, to support
older versions of Android, just have your build tools target API
level 8 (e.g., compileSdkVersion of 8 or higher in build.gradle for
Android Studio users) while having your minSdkVersion attribute
in the manifest state the lowest Android version your application
supports overall. Older versions of Android will ignore the
android:installLocation attribute. So, for example, in the above
manifest, the Sender application supports API level 4 and above
(Android 1.6 and newer), but still can use
android:installLocation="preferExternal", because the build tools
are targeting API level 8.
What the User Sees
On newer devices, such as those running Android 4.2, the user will see
nothing different. That is because internal and external storage share a
common pool of space, and therefore there is no advantage in having your
application installed to external storage.
However, on, say, Android 2.3, you will see a difference in behavior.
For an application that wound up on external storage, courtesy of your
choice of preferExternal or auto, the user will have an option to
move it to the phone’s internal storage. This can be done by choosing
the application in the Manage Applications list in the Settings
application, then clicking the “Move to phone” button.
Conversely, if your application is installed in on-board flash, and
it is movable to external storage, they will be given that option
with a “Move to SD card” button.
What the Pirate Sees
Ideally, the pirate sees nothing at all.
One of the major concerns with installing applications to the SD card
is that the SD card is usually formatted FAT32 (vfat), offering no
protection from prying eyes. The concern was that pirates could then
just pluck the APK file off external storage and distribute it, even for
paid apps from the Play Store.
Apparently, they solved this problem.
To quote the
Android developer documentation:

The unique container in which your application is stored is
encrypted with a randomly generated key that can be decrypted only by
the device that originally installed it. Thus, an application
installed on an SD card works for only one device.

Moreover, this “unique container” is not normally mounted when the
user mounts external storage on their host machine. The user mounts
/mnt/sdcard; the “unique container” is /mnt/asec.
What Your App Sees… When External Storage is Inaccessible
So far, this has all seemed great for users and developers.
Developers need to add a single attribute to the manifest, and
Android 2.2+ users gain the flexibility of where the app gets stored.
Alas, there is a problem, and it is a big one: on Android 1.x and 2.x,
either the host PC or
the device can have access to the SD card, but not both. As a result,
if the user makes the SD card available to the host PC, by plugging
in the USB cable and mounting the SD card as a drive via a
Notification or other means, that SD card becomes unavailable for
running applications.
So, what happens?

	First, your application is terminated forcibly, as if your process
was being closed due to low memory. Notably, your activities and
services will not be called with onDestroy(), and instance state
saved via onSaveInstanceState() is lost.

	Second, your application is unhooked from the system. Users will
not see your application in the launcher, your AlarmManager alarms
will be canceled, and so on.

	When the user makes external storage available to the phone again, your
application will be hooked back into the system and will be once
again available to the user (for example, your icon will reappear in
the launcher)

The upshot: if your application is simply a collection of activities,
otherwise not terribly connected to Android, the impact on your
application is no different than if the user reboots the phone, kills
your process via a so-called “task killer” application, etc. If,
however, you are doing more than that, the impacts may be more
dramatic.
Perhaps the most dramatic impact, from a user’s standpoint, will be
if your application implements app widgets. If the user has your app
widget on her home screen, that app widget will be removed when the
SD card becomes unavailable to the phone. Worse, your app widget
cannot be re-added to the home screen until the phone is rebooted (a
limitation that hopefully will be lifted sometime after Android 2.2).
The user is warned about this happening, at least in general:

[image: Warning when unmounting the SD card]

Figure 864: Warning when unmounting the SD card
Two broadcast Intents are sent out related to this:

	
ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE, when the SD card (and
applications installed upon it) become unavailable

	
ACTION_EXTERNAL_APPLICATIONS_AVAILABLE, when the SD card and its
applications return to normal

Note that the documentation is unclear as to whether your own
application, that had been on the SD card, can receive
ACTION_EXTERNAL_APPLICATIONS_AVAILABLE once the SD card is back in
action.
Also note that all of these problems hold true for longer if the user
physically removes the SD card from the device. If, for example, they
replace the card with a different one — such as one with more
space — your application will be largely lost. They will see a
note in their applications list for your application, but the icon
will indicate it is on external storage, and the only thing they can do is
uninstall it:

[image: The Manage Applications list, with an application shown from a removed SD card]

Figure 865: The Manage Applications list, with an application shown from a removed SD card
Choosing Whether to Support External Storage
Given the huge problem from the previous section, the question of
whether or not your application should support external storage is
far from clear.
As the Android developer documentation
states:

Large games are more commonly the types of applications that should
allow installation on external storage, because games don’t typically
provide additional services when inactive. When external storage
becomes unavailable and a game process is killed, there should be no
visible effect when the storage becomes available again and the user
restarts the game (assuming that the game properly saved its state
during the normal Activity lifecycle).

Conversely, if your application implements any of the following
features, it may be best to not support external storage:

	Polling of Web services or other Internet resources via a
scheduled alarm

	Account managers and their corresponding sync adapters, for custom
sources of contact data

	App widgets, as noted in the previous section

	Device administration extensions

	Live folders

	Custom soft keyboards (“input method engines”)

	Live wallpapers

	Custom search providers

But, as noted earlier, this is not even usually necessary on API Level 11+
devices. Hence, even if your app would otherwise qualify for being installed
to external storage, you may not wish to bother. If few devices (Android 2.2
and Android 2.3) might need the capability, it may not be worth the extra
testing burden.
Android 6.0 and “Adoption” of Removable Storage
When Android 3.0 did away with the required separate partitions for
internal storage and external storage, the android:installLocation
option fell out of use, as there was no particular value in having
the apps on external storage. For single-partition devices — meaning,
for most devices — users did not even have the option for moving their
apps to external storage.
However, android:installLocation is returning to relevance, once again
courtesy of removable media.
On Android 6.0+, users with removable storage options, such as micro SD card slots,
have the option of “adopting” those as an extension of
the device’s internal storage. Once done, apps set with
auto or preferExternal for android:installLocation can be
moved to the removable media. However, there appears to be one
key difference: not only is the APK on the removable media, but so
is all of that app’s portion of internal storage. The removable
media is encrypted, so the material copied to the removable media
should remain fairly inaccessible.
From the user’s standpoint, for low-end devices with minimal on-board
flash, they have additional storage space that they can use for apps.
However:

	Removable media tends to be slow, and some cards will be slower than
others. For developers, this makes it all that much more important for you
to move disk I/O off of the main application thread.

	Removable media tends to be removable. If the user removes the removable
media, while your app is installed on that removable media, your app will
no longer work.

	All the old rules
for apps that allow themselves to be installed on external storage will
still hold true. Basically, any app that does periodic work, or will
respond to incoming GCM messages, or has an app widget, or is always
possibly needed (e.g., custom soft keyboard), should not allow itself
to be moved to removable media. If the user does eject the media,
they will get a permanent Notification telling them to put it back:

[image: Android 6.0, Ejected Adopted Removable Media Notification]

Figure 866: Android 6.0, Ejected Adopted Removable Media Notification
The user does have an “Erase & Format” option that will reformat
the removable media and allow it to be permanently removed from
the device. It does not appear that this will automatically move any
apps back to internal storage. The users would need to move those
apps back to internal storage by means of the Apps list in Settings.
Normally, it appears this system will be limited to internal card
slots for things like micro SD cards. While USB On-The-Go (OTG) allows
Android devices to access thumb drives, those are likely to be accidentally
removed by the user (not to mention they usually tie up the charging
port). However, for development testing purposes, you can run the
adb shell sm set-force-adoptable true command to allow the
device to adopt USB OTG drives. Note though that once you do this, the
drive is more or less owned by that Android device until you “Erase & Format”
it, and you will lose everything on the drive as part of this whole
process.
Using an Alias
As was mentioned in the chapter on integration, you
can use the PackageManager class to enable and disable components
in your application. This works at the component level, meaning you
can enable and disable activities, services, content providers, and
broadcast receivers. It does not support enabling or disabling
individual <intent-filter> stanzas from a given component, though.
Why might you want to do this?

	Perhaps you have an activity you want to be available for use, but
not necessarily available in the launcher, depending on user
configuration or unlocking “pro” features or something

	Perhaps you want to add browser support for certain MIME types,
but only if other third-party applications are not already installed
on the device

While you cannot control individual <intent-filter> stanzas
directly, you can have a similar effect via an activity alias.
An activity alias is another manifest element — <activity-alias>
– that provides an alternative set of filters or other
component settings for an already-defined activity. For example, here
is the AndroidManifest.xml file from the
Manifest/Alias
sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" android:versionCode="1" android:versionName="1.0" package="com.commonsware.android.alias">

 <supports-screens android:largeScreens="true" android:normalScreens="true" android:smallScreens="false"/>
 <application android:icon="@drawable/ic_launcher" android:label="@string/app_name">
 <activity android:label="@string/app_name" android:name="AliasActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity-alias android:label="@string/app_name2" android:name="ThisIsTheAlias" android:targetActivity="AliasActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity-alias>
 </application>
</manifest>

(from Manifest/Alias/app/src/main/AndroidManifest.xml)
Here, we have one <activity> element, with an <intent-filter] to
put the activity in the launcher. We also have an <activity-alias>
element… which puts a second icon in the launcher for the same
activity implementation.
An activity alias can be enabled and disabled independently of its
underlying activity. Hence, you can have one activity class have
several independent sets of intent filters and can choose which of
those sets are enabled at any point in time.
For testing purposes, you can also enable and disable these from the
command line. Use the adb shell pm disable command to disable a
component:

adb shell pm disable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

… and the corresponding adb shell pm enable command to enable
a component:

adb shell pm enable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

In each case, you supply the package of the application
(com.commonsware.android.alias) and the class of the component to
enable or disable (com.commonsware.android.alias.ThisIsTheAlias),
separated by a slash.
Getting Meta (Data)
Sometimes, you may want to put more data in the manifest, associated with
your components. You will frequently see this for use with
libraries or plugin distribution models, where sharing some configuration data
between parties could eliminate a bunch of API code that a reuser might need
to implement.
To support this, Android offers a <meta-data> element as a child of <activity>,
<activity-alias>, <receiver>, or <service>. Each <meta-data] element has
an android:name attribute plus an associated value, supplied by either an
android:value attribute (typically for literals) or an android:resource attribute
(for references to resources).
Other parties can then get at this information via PackageManager. So, for example,
the implementer of a plugin could have <meta-data> elements indicating details
of how the plugin should be used (e.g., desired polling frequency), and the host
of the plugin could then get that configuration data without the plugin author
having to mess around with implementing some Java API for it.
For example, Roman Nurik’s DashClock
is a lockscreen app widget designed to serve as a
replacement for the clock app widget that ships with many Android 4.2+ devices.
Not only does it display the time, but it is a plugin host, allowing third party
developers to supply “extensions” that can also display data in the app widget.
This way, users can set up a single lockscreen app widget and get at a bunch of
useful information.
DashClock’s extension API makes use of <meta-data> to pass configuration data
from the extension to DashClock itself. The implementation of a DashClock extension
is a service, and so the extension’s <service> element will have a batch of
<meta-data> elements with this configuration data:

<service android:name=".ExampleExtension"
 android:icon="@drawable/ic_extension_example"
 android:label="@string/extension_title"
 android:permission="com.google.android.apps.dashclock.permission.READ_EXTENSION_DATA">
 <intent-filter>
 <action android:name="com.google.android.apps.dashclock.Extension" />
 </intent-filter>
 <meta-data android:name="protocolVersion" android:value="1" />
 <meta-data android:name="description"
 android:value="@string/extension_description" />
 <!-- A settings activity is optional -->
 <meta-data android:name="settingsActivity"
 android:value=".ExampleSettingsActivity" />
 </service>

(sample from
the DashClock documentation)
Here, the developer can specify:

	What version of the communications protocol is supported, so DashClock can update
its protocol over time yet remain backwards-compatible with older extensions,
via the protocolVersion entry

	What the description is for the extension, used in DashClock’s configuration
screens to let the user know what available extensions there are, via the
description entry

	What activity, if any, does the extension supply that allows the user to configure
that extension, that DashClock should provide access to from its own settings
activity, via the settingsActivity entry

In all three cases, DashClock uses android:value. Note that android:value
does support the use of resources — the value of description is a reference
to the extension_description string resource, for example.
To retrieve that metdata, an app can ask for PackageManager.GET_META_DATA as
a flag on PackageManager
methods for introspection, like queryIntentActivities().
In the case of DashClock, it retrieves all implementations of its plugin by asking
Android what services have an <intent-filter> with an <action> of
com.google.android.apps.dashclock.Extension, via queryIntentServices(), asking
for PackageManager to also supply each service’s metadata:

List<ResolveInfo> resolveInfos = pm.queryIntentServices(
 new Intent(DashClockExtension.ACTION_EXTENSION), PackageManager.GET_META_DATA);

(from the ExtensionManager.java file
in the DashClock source code)
Each ResolveInfo object that comes back in the list will have a serviceInfo
field containing details of the service. Because GET_META_DATA was passed in as
a flag, the serviceInfo will have a Bundle named metaData which will contain
the key/value pairs specified by the <meta-data> elements. DashClock can then
grab that data and use it to populate its own object model:

for (ResolveInfo resolveInfo : resolveInfos) {
 ExtensionListing listing = new ExtensionListing();
 listing.componentName = new ComponentName(resolveInfo.serviceInfo.packageName,
 resolveInfo.serviceInfo.name);
 listing.title = resolveInfo.loadLabel(pm).toString();
 Bundle metaData = resolveInfo.serviceInfo.metaData;
 if (metaData != null) {
 listing.protocolVersion = metaData.getInt("protocolVersion");
 listing.description = metaData.getString("description");
 String settingsActivity = metaData.getString("settingsActivity");
 if (!TextUtils.isEmpty(settingsActivity)) {
 listing.settingsActivity = ComponentName.unflattenFromString(
 resolveInfo.serviceInfo.packageName + "/" + settingsActivity);
 }
 }

(from the ExtensionManager.java file
in the DashClock source code)
The <meta-data> element supports five data types for android:value:

	String

	Integer

	Boolean (specified as true or false in the android:value attribute)

	Float

It also supports colors, specified in #AARRGGBB and similar formats, which,
according to the documentation,
is returned as a string.
In this fashion, extension developers can supply enough information for DashClock
to allow the user to see the list of installed extensions, choose which one(s)
they want, and configure those (where applicable). Actually getting the content
to display will need to be done at runtime, in this case via making requests
of the service to supply a ExtensionData structure with the messages, icon, and
so forth to be displayed.
Miscellaneous Integration Tips
This chapter is a collection of other miscellaneous integration
and introspection tips and techniques that you might find useful
in your Android apps.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Direct Share
The classic means of “sharing” content between apps is via ACTION_SEND.
You create an ACTION_SEND Intent, identifying the content to share,
and use it with startActivity(). The decision of what the candidates
are to share with is based solely on the MIME type of the content in
question.
Sometimes, sharing of content with another app really means sharing that
content with some other person, folder, or finer-grained context within
the other app. ACTION_SEND, on its own, does not do anything for this.
The user chooses the other app, then inside that app chooses the finer-grained
context. While ACTION_SENDTO supports the sender indicating who to
share the content with, that only works for select Uri schemes (mailto
and smsto, mostly), and it requires that the sender have a suitable
Uri to identify the recipient. As a result, few apps support
ACTION_SENDTO.
Android 6.0 introduced “direct share targets”. Now, the recipients of
sharing operations can elect to serve up specific share targets, pointing
not only to the app but to the finer-grained context within the app.
The user will then see these targets listed in the “chooser” window,
alongside other standard share targets.
This involves creating a subclass of ChooserTargetService and tying
it via some <meta-data> to your activity supporting the ACTION_SEND
<intent-filter>. That service will then be called with onGetChooserTargets(),
where it is told what activity and <intent-filter> was matched, and the
service can return a list of ChooserTarget objects. Those ChooserTarget
objects each represent a single direct share target, where the ChooserTarget
wraps up a dedicated caption, icon, and PendingIntent for each. Those
may be presented to the user in the chooser; if the user chooses one,
the PendingIntent is invoked.
The
Intents/FauxSenderMNC
sample project is a revised version of the FauxSender sample. FauxSender
has an implementation of an ACTION_SEND activity, plus a LAUNCHER
activity that just uses startActivity() to trigger an ACTION_SEND
Intent. FauxSenderMNC augments the original sample with
direct-share functionality.
The ChooserTargetService
The bulk of the business logic goes in your subclass of ChooserTargetService,
here named CTService:

package com.commonsware.android.fsendermnc;

import android.app.PendingIntent;
import android.content.ComponentName;
import android.content.Intent;
import android.content.IntentFilter;
import android.graphics.drawable.Icon;
import android.os.Bundle;
import android.service.chooser.ChooserTarget;
import android.service.chooser.ChooserTargetService;
import java.util.ArrayList;
import java.util.List;

public class CTService extends ChooserTargetService {
 private String titleTemplate;

 @Override
 public void onCreate() {
 super.onCreate();

 titleTemplate=getString(R.string.title_template);
 }

 @Override
 public List<ChooserTarget> onGetChooserTargets(ComponentName sendTarget,
 IntentFilter matchedFilter) {
 ArrayList<ChooserTarget> result=new ArrayList<ChooserTarget>();

 for (int i=1;i<=6;i++) {
 result.add(buildTarget(i));
 }

 return(result);
 }

 private ChooserTarget buildTarget(int targetId) {
 String title=String.format(titleTemplate, targetId);
 int iconId=getResources().getIdentifier("ic_share" + targetId,
 "drawable", getPackageName());
 Icon icon=Icon.createWithResource(this, iconId);
 float score=1.0f-((float)targetId/40);
 ComponentName cn=new ComponentName(this, FauxSender.class);
 Bundle extras=new Bundle();

 extras.putInt(FauxSender.EXTRA_TARGET_ID, targetId);

 return(new ChooserTarget(title, icon, score, cn, extras));
 }
}

(from Intents/FauxSenderMNC/app/src/main/java/com/commonsware/android/fsendermnc/CTService.java)
You are welcome to override the onCreate() and onDestroy() lifecycle
methods in your ChooserTargetService if you want, though it is not required.
Here, we override onCreate() just to grab a string resource value that
will be used as a template, stashing it in a data member.
The one method that you have to implement is onGetChooserTargets().
This will be called when direct-share is triggered, as directed by some
manifest entries that we will examine in a bit. Your job is to return
a List of ChooserTarget objects that represent specific ways to
share the content into your app, such as sharing to particular contacts
or folders or something.
Note that whatever you return from onGetChooserTargets() is included
along with your regular ACTION_SEND activity itself. Hence, you
only want to return ChooserTarget objects that improve the user
flow beyond your base ACTION_SEND activity — you do not need to have
a ChooserTarget that simply replicates what the user would get from
the ACTION_SEND activity itself.
In this case, onGetChooserTargets() returns a six-element ArrayList
of ChooserTarget objects, each built using a private buildTarget()
method.
A ChooserTarget is a simple wrapper around five pieces of data:

	A String to use as a caption for your direct-share icon

	An Icon that represents the icon itself

	A float “score” that represents the relative importance of this
direct-share target over any others that you return, where 1.0f
means “the user is really going to like this one”, 0.0f means
“the user could conceivably want this, but probably not”, and values
in between 0 and 1 represent shades of gray in the realm of importance

	A ComponentName identifying either an activity in your app
(the typical answer) or an exported activity in another app (rather
unusual)

	A Bundle of extras to go into the Intent that the framework
will create, using that ComponentName, to trigger the activity in
question

Note that the ComponentName does not have to start the same
activity that is your ACTION_SEND activity. In this sample, it happens
to use the same activity. But that is not a requirement, and frequently
you will use some other activity. For example, if your normal
ACTION_SEND flow would first have the user choose a folder, then
provide additional information about the shared item (e.g., confirm
the title, add tags), if you create direct-share targets that specify
particular folders, you would want to bypass the folder-selection
step in your own UI. If the ACTION_SEND activity implements the
folder-selection logic and forwarded the user along to some other
activity to handle the rest, your ChooserTarget ComponentName objects
might just drive straight to the second activity, skipping the
folder-selection UI.
Also note that you may be creating several ChooserTarget objects,
probably having each pointing to the same activity. You will need to
ensure that the extras Bundle contains what you need to distinguish
one request from the next. However, do not put custom Parcelable
objects in this Bundle, as Android will attempt to un-parcel them
as part of its work, and it will fail to do so since Android does
not have your custom Parcelable class.
An Icon is a new construct in Android 6.0, serving as a wrapper
around multiple possible image sources. You can create an Icon
from a drawable resource (as the sample app does), from a Bitmap,
from a byte array representing PNG or JPEG data, from a file path
pointing to a PNG or JPEG file, or from a Uri to a ContentProvider
pointing to an image.
The Manifest Entries
Your ChooserTargetService will have a typical <service> manifest
entry, with two special bits:

	An android:permission="android.permission.BIND_CHOOSER_TARGET_SERVICE"
attribute, to limit access to your service to the framework, rather
than being spoofed by other clients, and

	An <intent-filter> for the android.service.chooser.ChooserTargetService
action

 <service
 android:name=".CTService"
 android:permission="android.permission.BIND_CHOOSER_TARGET_SERVICE">
 <intent-filter>
 <action android:name="android.service.chooser.ChooserTargetService"/>
 </intent-filter>
 </service>

(from Intents/FauxSenderMNC/app/src/main/AndroidManifest.xml)
Your ACTION_SEND activity will have its normal <activity> element,
with just one change: a <meta-data> element pointing to your
ChooserTargetService:

 <activity
 android:name="FauxSender"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter android:label="@string/app_name">
 <action android:name="android.intent.action.SEND"/>

 <data android:mimeType="text/plain"/>

 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 <meta-data
 android:name="android.service.chooser.chooser_target_service"
 android:value=".CTService"/>
 </activity>

(from Intents/FauxSenderMNC/app/src/main/AndroidManifest.xml)
It is possible that your app has multiple ACTION_SEND activities. In that
case, each could have its own ChooserTargetService. However, you could
elect to have all of your ACTION_SEND activities route to the same
ChooserTargetService if you prefer. onGetChooserTargets() is passed
two parameters to help identify where the direct-share request is coming
from:

	the ComponentName of the ACTION_SEND activity that was tied
to your service, and

	the IntentFilter that triggered that activity in the first place, so
you can determine things like the MIME type of the to-be-shared content

Note that you are not given the content itself, in the form of the
Intent that will eventually be delivered to your ACTION_SEND
activity or to your direct-share target via its ComponentName. This
is for privacy reasons; otherwise, an app could ask to share anything
and be able to peek at anything the user tried sharing with any app.
The Results
The FauxSender activity — the one handling the ACTION_SEND
Intent and the direct-share Intent — now looks for the
EXTRA_TARGET_ID that the CTService put in its Intent and includes
it in the Toast:

package com.commonsware.android.fsendermnc;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;
import android.widget.Toast;

public class FauxSender extends Activity {
 public static final String EXTRA_TARGET_ID="targetId";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 String epilogue="";

 super.onCreate(savedInstanceState);

 int targetId=getIntent().getIntExtra(EXTRA_TARGET_ID, -1);

 if (targetId>0) {
 epilogue=" for target ID #"+targetId;
 }

 String msg=getIntent().getStringExtra(Intent.EXTRA_TEXT);

 if (TextUtils.isEmpty(msg)) {
 msg=getIntent().getStringExtra(Intent.EXTRA_SUBJECT);
 }

 if (TextUtils.isEmpty(msg)) {
 msg=getString(R.string.no_message_supplied);
 }

 Toast.makeText(this, msg+epilogue, Toast.LENGTH_LONG).show();

 finish();
 }
}

(from Intents/FauxSenderMNC/app/src/main/java/com/commonsware/android/fsendermnc/FauxSender.java)
If you run the sample app from Android Studio, the launcher activity
will trigger an ACTION_SEND of some text. That, in turn, will bring
up the chooser panel… but on an Android 6.0 device, that panel will start
off with our six direct-share targets:

[image: Chooser, Showing Direct-Share Targets]

Figure 867: Chooser, Showing Direct-Share Targets
Expanding the panel shows that our original ACTION_SEND activity is
also there, after the direct-share targets:

[image: Chooser, Showing More Share Targets]

Figure 868: Chooser, Showing More Share Targets
If the user taps on the regular ACTION_SEND activity icon, the sample
works as it did originally, showing a Toast with the text supplied by the
launcher activity. If, however, the user taps on one of the direct-share
targets, the Toast also shows which target was chosen:

[image: Toast from a Direct-Share Target]

Figure 869: Toast from a Direct-Share Target
Now, our Bundle for the direct-share target did not include
the shared text, because we did not have it. Instead, the regular
ACTION_SEND extras are merged in with our own extras, so our activity
gets all of the relevant extras.
But… I Got Nothin’!
If you do not have any direct-share targets for a particular request,
returning an empty list is perfectly fine.
If you know in advance that you will not have any direct-share
targets — for example, the user has not really worked with your app
yet after installation — you can disable the service (android:enabled="false").
Even though the <meta-data> will point to the service, the framework
seems to detect the disabled service and continues on unabated.
Even if you elect to leave the service enabled at the outset for
Android 6.0, you should consider disabling the service for earlier versions
of Android, since it is useless on those devices. You could do this
using boolean resources:

	Have a res/values/bools.xml file with a bool resource (e.g.,
offer_direct_share) set to false

	Have a res/values-v23/bools.xml file redefining that resource
to true

	Have android:enabled="@bool/offer_direct_share" on your service,
to have it be enabled only on Android 6.0 and higher

Best Practices
At the moment, it appears that Android 6.0 is limiting the number
of share targets, only showing 8 of them. If you provide more than
8, Android will choose the ones with the highest score.
Since returning the list of direct-share targets should be involving
IPC, there may be capacity limitations, for the number and size of
the direct-share targets. Do not be surprised if you get a
“FAILED BINDER TRANSACTION” exception if your roster of direct-share
targets exceeds 1MB.
Hence, between those two limitations, you will want to constrain how
many share targets you try returning from your ChooserTargetService.
As with other places in Android 5.0+ (e.g., large icons in notifications),
your app’s icon will be applied as a badge over the icons that you use
for direct-share targets. Make sure that your app’s icon will work
both as a launcher icon and as a direct-share target badge.
Take the Shortcut
Another way to integrate with Android is to offer custom shortcuts.
Shortcuts are available from the home screen. Whereas app widgets
allow you to draw on the home screen, shortcuts allow you to wrap a
custom Intent with an icon and caption and put that on the home
screen. You can use this to drive users not just to your
application’s “front door”, like the launcher icon, but to some
specific capability within your application, like a bookmark.
In our case, in the
Introspection/QuickSender
sample project, we will allow
users to create shortcuts that use ACTION_SEND to send a
pre-defined message, either to a specific address or anywhere, as we
have seen before in this chapter.
Once again, the key is in the intent filter.
Registering a Shortcut Provider
Here is the manifest for QuickSender:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.commonsware.android.qsender" android:versionCode="1" android:versionName="1.0">

 <uses-sdk android:minSdkVersion="15" android:targetSdkVersion="15"/>
 <application android:icon="@drawable/ic_launcher" android:label="@string/app_name">
 <activity android:name="QuickSender" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.CREATE_SHORTCUT"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

(from Introspection/QuickSender/app/src/main/AndroidManifest.xml)
Our single activity does not implement a traditional launcher
<intent-filter>. Rather, it has one that watches for a
CREATE_SHORTCUT action. This does two things:

	It means that our activity will show up in the list of possible
shortcuts a user can configure

	It means this activity will be the recipient of a CREATE_SHORTCUT
Intent if the user chooses this application from the shortcuts list

Implementing a Shortcut Provider
The job of a shortcut-providing activity is to:

	Create an Intent that will be what the shortcut launches

	Return that Intent and other data to the activity that started
the shortcut provider

	Finally, finish(), so the caller gets control

You can see all of that in the QuickSender implementation:

package com.commonsware.android.qsender;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.View;
import android.widget.TextView;

public class QuickSender extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void save(View v) {
 Intent shortcut=new Intent(Intent.ACTION_SEND);
 TextView addr=(TextView)findViewById(R.id.addr);
 TextView subject=(TextView)findViewById(R.id.subject);
 TextView body=(TextView)findViewById(R.id.body);
 TextView name=(TextView)findViewById(R.id.name);

 if (!TextUtils.isEmpty(addr.getText())) {
 shortcut.putExtra(Intent.EXTRA_EMAIL,
 new String[] { addr.getText().toString() });
 }

 if (!TextUtils.isEmpty(subject.getText())) {
 shortcut.putExtra(Intent.EXTRA_SUBJECT, subject.getText()
 .toString());
 }

 if (!TextUtils.isEmpty(body.getText())) {
 shortcut.putExtra(Intent.EXTRA_TEXT, body.getText().toString());
 }

 shortcut.setType("text/plain");

 Intent result=new Intent();

 result.putExtra(Intent.EXTRA_SHORTCUT_INTENT, shortcut);
 result.putExtra(Intent.EXTRA_SHORTCUT_NAME, name.getText()
 .toString());
 result.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE,
 Intent.ShortcutIconResource.fromContext(this,
 R.drawable.icon));

 setResult(RESULT_OK, result);
 finish();
 }
}

(from Introspection/QuickSender/app/src/main/java/com/commonsware/android/qsender/QuickSender.java)
The shortcut Intent is the one that will be launched when the
user taps the shortcut icon on the home screen. The result Intent
packages up shortcut plus the icon and caption, where the icon is
converted into an Intent.ShortcutIconResource object. That result
Intent is then used with the setResult() call, to pass that back
to whatever called startActivityForResult() to open up
QuickSender. Then, we finish().
At this point, all the information about the shortcut is in the hands
of Android (or, more accurately, the home screen application), which
can add the icon to the home screen.
Using the Shortcuts
Exactly how CREATE_SHORTCUT implementations like this are handled
depends on the home screen implementation. Some might not offer them
at all. Other home screens might have dedicated options for shortcuts.
The Nexus series devices, running Android 6.0, lump CREATE_SHORTCUT
implementations in with the app widgets. You can add one to your
home screen by long-tapping on the home screen, choosing “Widgets”,
and scrolling down to the shortcut that you want:

[image: Android 6.0, Widgets List, Showing Sample App]

Figure 870: Android 6.0, Widgets List, Showing Sample App
Tap-and-hold on the “widget”, and you will be able to place it on
the screen. Once that is done, our activity will appear, with
the form to define what to send:

[image: QuickSender Configuration Activity]

Figure 871: QuickSender Configuration Activity
Fill in the name, either the subject or body, and optionally the
address. Then, click the Create Shortcut button, and you will find
your shortcut sitting on your home screen, with your chosen shortcut
name as the label:

[image: Home Screen, Showing QuickSender-Defined Shortcut]

Figure 872: Home Screen, Showing QuickSender-Defined Shortcut
If you launch that shortcut, and if there is more than one
application on the device set up to handle ACTION_SEND, Android
will bring up a special chooser, to allow you to not only pick how to
send the message, but optionally make that method the default for all
future requests:

[image: ACTION_SEND Request, As Triggered by Shortcut]

Figure 873: ACTION_SEND Request, As Triggered by Shortcut
Depending on what you choose, of course, will dictate how the message
actually gets sent.
Homing Beacons for Intents
If you are encountering problems with Intent resolution — you
create an Intent for something and try starting an Activity or
Service with it, and it does not work — you can add the
FLAG_DEBUG_LOG_RESOLUTION flag to the Intent. This will dump
information to Logcat about how the Intent resolution occurred, so
you can better diagnose what might be going wrong.
Integrating with Text Selection
On Android 6.0+, if you highlight text, you will see a new floating action mode,
where cut, copy, and paste operations reside:

[image: Floating Action Mode]

Figure 874: Floating Action Mode
If you tap that overflow indicator on the action mode, a fly-out menu
will appear… one that contains arbitrary apps, in addition to system-supplied
options:

[image: Floating Action Mode, Showing Overflow with Custom Apps]

Figure 875: Floating Action Mode, Showing Overflow with Custom Apps
In this case, the Android 6.0 “API Demos” app appears as an option. Choosing
it pops up an activity that has access to the highlighted text from the preceding activity:

[image: API Demos Application, Showing Text Selection]

Figure 876: API Demos Application, Showing Text Selection
Replacing the value in the field and clicking the button puts your replacement text in as a replacement for whatever you had highlighted.
This is accomplished via the ACTION_PROCESS_TEXT Intent action.
Apps can advertise activities that support this action, and they will
be added (sometimes) to the floating action mode. Apps that have EditText
widgets just automatically get these options in the floating action
mode, with no additional required code.
NOTE: ACTION_PROCESS_TEXT support
is broken on Android 8.0 and 8.1,
though it is working again in Android 9.0
Supporting ACTION_PROCESS_TEXT
Your app can offer an ACTION_PROCESS_TEXT activity, in which case you
will appear in Android 6.0+ text-selection floating action modes.
This is illustrated in the
Introspection/ProcessText
sample application.
The Manifest
To be visible to these text-selection action modes, you need an activity
with an <intent-filter> calling for ACTION_PROCESS_TEXT and a MIME
type of text/plain:

 <activity
 android:name="MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.PROCESS_TEXT"/>
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="text/plain" />
 </intent-filter>
 </activity>

(from Introspection/ProcessText/app/src/main/AndroidManifest.xml)
Exactly which MIME types are supported is not documented. At the time
of this writing, the only examples showed text/plain. It is possible
that other formats (e.g., text/html) might also be supported.
The Extras
You will get one of two extras attached to the ACTION_PROCESS_TEXT
Intent:

	
EXTRA_PROCESS_TEXT is the text to be processed, and also indicates
that you can supply replacement text, if you wish

	
EXTRA_PROCESS_TEXT_READONLY will be set if EXTRA_PROCESS_TEXT is
not, and provides the text to be processed and an indication that
you cannot supply replacement text

It is up to you to check for those string extras, grab the right
value, and do something useful with it.
In the sample app, in onCreate() of the MainActivity, if we are
starting fresh (i.e., there is no QuestionsFragment already), we
get the search string and provide it to QuestionsFragment via
a newInstance() factory method:

 implements QuestionsFragment.Contract {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getSupportFragmentManager().findFragmentById(android.R.id.content)==null) {
 String search=null;

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 if (Intent.ACTION_PROCESS_TEXT.equals(getIntent().getAction())) {
 search=getIntent().getStringExtra(Intent.EXTRA_PROCESS_TEXT);

 if (search==null) {
 search=getIntent()
 .getStringExtra(Intent.EXTRA_PROCESS_TEXT_READONLY);
 }
 }
 }

 getSupportFragmentManager()
 .beginTransaction()
 .add(android.R.id.content,
 QuestionsFragment.newInstance(search))
 .commit();
 }

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/MainActivity.java)
QuestionsFragment, in turn, stuffs that value into the arguments
Bundle in newInstance():

 static QuestionsFragment newInstance(String search) {
 QuestionsFragment result=new QuestionsFragment();
 Bundle args=new Bundle();

 args.putString(ARG_SEARCH, search);
 result.setArguments(args);

 return(result);
 }

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/QuestionsFragment.java)
An expanded version of StackOverflowInterface offers not only the
original questions() method, but also a search() method, the latter
of which searches Stack Overflow for questions in the android tag
that have a search term in the title:

package com.commonsware.android.processtext;

import retrofit.Callback;
import retrofit.http.GET;
import retrofit.http.Query;

public interface StackOverflowInterface {
 @GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
 void questions(@Query("tagged") String tags, Callback<SOQuestions> cb);
 @GET("/2.2/questions?order=desc&sort=creation&site=stackoverflow&tagged=android")
 void search(@Query("intitle") String search, Callback<SOQuestions> cb);
}

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/StackOverflowInterface.java)
onCreateView() in QuestionsFragment then calls either questions()
or search(), depending on whether or not we have a search string
from ACTION_PROCESS_TEXT:

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=
 super.onCreateView(inflater, container, savedInstanceState);

 setRetainInstance(true);

 RestAdapter restAdapter=
 new RestAdapter.Builder().setEndpoint("https://api.stackexchange.com")
 .build();
 StackOverflowInterface so=
 restAdapter.create(StackOverflowInterface.class);
 String search=getArguments().getString(ARG_SEARCH);

 if (search==null) {
 so.questions("android", this);
 }
 else {
 so.search(search, this);
 }

 return(result);
 }

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/QuestionsFragment.java)
The Results (If Any)
If you got a value for EXTRA_PROCESS_TEXT and you wish to return a
replacement string, you need to create an Intent with your own
EXTRA_PROCESS_TEXT value that is the replacement text, then use
that Intent with setResult(). MainActivity does this when the
user taps on a list item in QuestionsFragment:

 @Override
 public void onQuestion(Item question) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.M &&
 Intent.ACTION_PROCESS_TEXT.equals(getIntent().getAction()) &&
 getIntent().getStringExtra(Intent.EXTRA_PROCESS_TEXT)!=null) {
 setResult(Activity.RESULT_OK,
 new Intent().putExtra(Intent.EXTRA_PROCESS_TEXT, question.link));
 finish();
 }
 else {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(question.link)));
 }
 }

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/MainActivity.java)
If the activity was started due to a replaceable bit of text to be
processed, we return the URL to the question the user tapped on.
In all other cases, we just start up some browser or other app to view
that URL.
If you install this app on an Android 6.0+ device, then run some other
app that has an EditText, type in some term in portrait mode, highlight
it, and choose “PROCESS TEXT DEMO” from the floating action mode,
you will be presented with a list of Stack Overflow questions in the
android tag that refer to your search term in the title. If you tap
on one, your search term will be replaced in the EditText widget by
the URL of the question.
Limitations of ACTION_PROCESS_TEXT
Alas, ACTION_PROCESS_TEXT is “not all unicorns and rainbows”. There
are a few issues that you will need to take into account.
Security
There is no documented android:permission attribute to place on the
<activity> that is offering ACTION_PROCESS_TEXT, to limit callers.
Ideally, we could limit invocations of ACTION_PROCESS_TEXT only to
the firmware itself. As it stands, any app can call startActivity()
(or, worse, startActivityForResult()) for your ACTION_PROCESS_TEXT
activity and have your code process the text (with user intervention).
Please be sure that if you return data via EXTRA_PROCESS_TEXT that the
data not include any private information or anything that needs to be
secured.
With luck,
this will be improved in a future version of Android.
Supporting ACTION_PROCESS_TEXT in Custom Views
TextView and its subclasses are already capable of offering the
user ACTION_PROCESS_TEXT options. However, you may have custom View classes
that have the notion of text selection, but where you are rendering
the available actions to take upon that selection yourself. In that
case, you will need to do the reverse: find the implementers of
ACTION_PROCESS_TEXT and add them to your UI.
To do this:

	Create an Intent for ACTION_PROCESS_TEXT and a MIME type of
text/plain

	Use queryIntentActivities() on PackageManager to find out
the activities that handle that Intent structure

	Organize the results, such as sorting them alphabetically by
label using ResolveInfo.DisplayNameComparator

	Create Intent objects for each resolved activity, also with
ACTION_PROCESS_TEXT and text/plain, but also with
EXTRA_PROCESS_TEXT or EXTRA_PROCESS_TEXT_READONLY filled
in with your selection, and also call setClassName() to provide
the package name and activity class name to make the Intent
explicit

	Add appropriate elements to your UI for each of those Intent
objects

	If the user chooses one, call startActivity()
(for EXTRA_PROCESS_TEXT_READONLY) or startActivityForResult()
(for EXTRA_PROCESS_TEXT) to invoke the other activity

	In the case of EXTRA_PROCESS_TEXT, watch for your result in
onActivityResult() and use the replacement text supplied in
the result Intent and its EXTRA_PROCESS_TEXT string extra

The Android Developers Blog
has a post that provides some code for this, assuming that you want
to put items in an action bar or action mode for the various
resolved activities.
Blocking ACTION_PROCESS_TEXT
There will be cases where you do not want ACTION_PROCESS_TEXT to be
offered to your users. For example, perhaps the text contains sensitive
information that should not be passed outside of your app.
The best solution, particularly for a TextView, is to mark the text
as not being selectable. This is accomplished via
android:textIsSelectable="false" in a layout file, or via
setTextIsSelectable(false) in Java. false is the default value
for TextView.
However, for an EditText widget, true is the default is-selectable
state, and you cannot seem to override that with setTextIsSelectable(false).
There is no officially supported option for handling this case,
though perhaps there will be one in the future.
One unsupported hack of a workaround relies upon the fact that
EditText blocks the floating action mode for password fields. In the
source code to EditText, TextView, and related classes, this is
handled by seeing if the TransformationMethod associated with the
widget is PasswordTransformationMethod. A TransformationMethod
is responsible for on-the-fly adjustments between what the user types
and what the user sees, such as PasswordTransformationMethod replacing
typed-in characters with dots.
Making your EditText widget use PasswordTransformationMethod itself
is fine for actual password fields. But suppose you have an EditText
whose contents should be kept private but should not have the
input-shrouding effect of PasswordTransformationMethod. To offer this,
you would need to create a subclass of PasswordTransformationMethod
(so the block-the-floating-action-mode logic works) that does not actually
transform the text (to block the changes that PasswordTransformationMethod
would ordinarily apply).
A proof-of-concept implementation of this can be found in the
Introspection/ProcessTextBlocker
sample application. This is a clone of the FilesEditor
sample app from the chapter on files, with one change: the
use of DummyTransformationMethod:

 private static class DummyTransformationMethod
 extends PasswordTransformationMethod {
 @Override
 public CharSequence getTransformation(CharSequence source,
 View view) {
 return(source);
 }

 @Override
 public void onTextChanged(CharSequence s, int start,
 int before, int count) {
 // no-op
 }

 @Override
 public void onFocusChanged(View view,
 CharSequence sourceText,
 boolean focused, int direction,
 Rect previouslyFocusedRect) {
 // no-op
 }

 @Override
 public void afterTextChanged(Editable s) {
 // no-op
 }

 @Override
 public void beforeTextChanged(CharSequence s, int start,
 int count, int after) {
 // no-op
 }
 }

(from Introspection/ProcessTextBlocker/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
This is a do-nothing TransformationMethod. Ordinarily, this would be
completely useless. However, it inherits from PasswordTransformationMethod,
which is what we need to block the floating action mode.
In onCreateView() of the EditorFragment, we apply a
DummyTransformationMethod via setTransformationMethod():

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.editor, container, false);

 editor=result.findViewById(R.id.editor);
 editor.setTransformationMethod(new DummyTransformationMethod());

 return(result);
 }

(from Introspection/ProcessTextBlocker/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)
However, this approach has limitations:

	It only works in portrait, not landscape, for unclear reasons. Since
ACTION_PROCESS_TEXT also only works in portrait, not landscape, we
still succeed in blocking ACTION_PROCESS_TEXT options.

	It blocks the entire floating action mode (in portrait), clobbering
the existing cut/copy/paste/select-all options that might ordinarily be
there.

	Since it is tied to internal implementation (that the floating action
mode is suppressed when using an instanceof a PasswordTransformationMethod),
not only is this subject to change across Android versions, but also it
is subject to change based on device manufacturer or custom ROM tweaks
to the Android source code.

Quick Settings and TileService
Android 5.0 added “quick settings” tiles to the notification shade.
Android 7.0 allows developers to define their own tiles.
However, to paraphrase Marvel Comics, “with great power comes great
need to actually think this through”.
Such tiles are only needed in cases where:

	You are doing background work that the user might need to configure

	You do not have a Notification tied to that background work,
such as through a foreground service (as, in that case, they can and should
interact with the Notification)

So, if your work is driven by things like AlarmManager, JobScheduler,
or GCM, having your own custom tile may be reasonable. Similarly, if your
app is serving as a bridge to some external hardware, via USB, Bluetooth,
or other protocols, offering a tile may be useful.
However, Google seems concerned
about the scenarios where this gets used:

Quick Settings tiles are reserved for controls or actions that are either urgently required or frequently used, and should not be used as shortcuts to launching an app.

Hence, be very judicious about where you use this capability, lest Google
decide to start banning apps for having tiles that do not meet their
intended use cases.
Assuming that you feel that your use case is valid, you can implement
a TileService and publish a Tile. The Tile contains the icon
and caption that will be shown to the user. You can find out when the
tile is tapped (e.g., to start an activity to manage whatever the tile
is showing) and arrange to update the tile if needed (e.g., reflecting
changes in the state of the external hardware or your connection to it).
To see this in action, let’s examine part of the
Introspection/SAWMonitor
sample project. This app monitors for installations of apps and updates of apps. If an app
is installed or updated, and that app has requested the
SYSTEM_ALERT_WINDOW permission (and the app is not on a user-maintained
whitelist), the app raises a Notification. On Android 7.1 and older devices,
SAWMonitor monitors for app installs and updates via a manifest-registered
receiver; on Android 8.0+, it uses a JobService to poll for changes
periodically.
Other aspects of the SAWMonitor sample app
can be found in the chapter on advanced preferences.
On Android 7.0+ devices, SAWMonitor offers a notification shade tile
via a TileService. This TileService
enables and disables the monitoring. The user can also accomplish this
through the MainActivity and its “enabled” SwitchPreference. However,
since this app does not need an always-on Notification, offering the tile
to the user gives the user flexibility to use the tile for rapidly
enabling or disabling the monitor.
The Manifest Entry
Your app’s manifest will need to have a <service> element pointing
to your TileService subclass. That <service> element has some
specific requirements, if you want your tile to work:

 <service
 android:name=".ToggleTileService"
 android:icon="@drawable/ic_new_releases_24dp"
 android:label="@string/app_name"
 android:enabled="@bool/is_n"
 android:permission="android.permission.BIND_QUICK_SETTINGS_TILE">
 <intent-filter>
 <action android:name="android.service.quicksettings.action.QS_TILE" />
 </intent-filter>
 <meta-data
 android:name="android.service.quicksettings.ACTIVE_TILE"
 android:value="false" />
 </service>

(from Introspection/SAWMonitor/app/src/main/AndroidManifest.xml)
Specifically:

	It needs the android.service.quicksettings.action.QS_TILE <intent-filter>,
so Android knows that you are publishing a tile

	It needs android:permission="android.permission.BIND_QUICK_SETTINGS_TILE",
so that only the system can bind to your service

	It needs the android:label and android:icon attributes, pointing to
resources that will make up the default content of your tile

	Optionally, it can have the <meta-data> element, with a name of
android.service.quicksettings.ACTIVE_TILE, and a boolean value indicating
whether this tile is an “active tile” or not (more on this later)

Ordinarily, you could skip the label and icon, inheriting the values from
the <application>. In this case, the tile’s icon needs to more closely
resemble a modern Notification icon: an alpha channel mask, not a full-color
icon. Hence, most likely you would be overriding these attributes here
anyway.
Active and Passive Tiles
Your tile can be considered “active” or “passive”. The default is “passive”,
where you will be told to update the tile’s contents when the user slides
open the notification shade. For most situations, this will be fine. But,
it may be that you need to show real-time updates while that shade
is open. In that case, you need an “active” update model. To opt into that,
your <service> also needs the following child element:

<meta-data
 android:name="android.service.quicksettings.ACTIVE_TILE"
 android:value="true" />

Then, elsewhere in your code, when the tile content needs to be updated, you can
call the static requestListeningState() method on TileService, to
tell Android that you want it to poll your active TileService for an
update.
And, Of Course, Bugs
Note that if you change your icon or caption after shipping your
app, the user will not see the changes if they already have your tile in their
notification shade. They would have to remove and re-add the tile to
pick up the new icon and/or caption. This is due to
this bug on Android 7.x
and this bug on Android 8.x
and this bug for the
Android 9.0.
Only Enabling on Android 7.0+
On Android 6.0 and older devices, our TileService is useless. There is no
value in having it be enabled, and there is always a chance that some security
flaw might exploit it. So, it is best to disable this service on older devices.
That is what the android:enabled="@bool/is_n" attribute is for in the
<service> element. This is set to false in res/values/bools.xml and
true in res/values-v24/bools.xml. Hence, on Android 6.0 and older devices,
the service will be disabled.
The Service
ToggleTileService extends TileService and is responsible for
dynamically changing the tile and responding to clicks on the tile:

package com.commonsware.android.sawmonitor;

import android.annotation.TargetApi;
import android.content.SharedPreferences;
import android.graphics.drawable.Icon;
import android.os.Build;
import android.preference.PreferenceManager;
import android.service.quicksettings.Tile;
import android.service.quicksettings.TileService;

@TargetApi(Build.VERSION_CODES.N)
public class ToggleTileService extends TileService {
 private SharedPreferences prefs;

 @Override
 public void onStartListening() {
 super.onStartListening();

 updateTile();
 }

 @Override
 public void onClick() {
 super.onClick();

 boolean isEnabled=getPrefs().getBoolean(MonitorApp.PREF_ENABLED, false);

 getPrefs()
 .edit()
 .putBoolean(MonitorApp.PREF_ENABLED, !isEnabled)
 .apply();
 updateTile();
 }

 private void updateTile() {
 Tile tile=getQsTile();

 if (tile!=null) {
 boolean isEnabled=getPrefs().getBoolean(MonitorApp.PREF_ENABLED, false);
 int state=isEnabled ? Tile.STATE_ACTIVE : Tile.STATE_INACTIVE;

 tile.setIcon(Icon.createWithResource(this,
 R.drawable.ic_new_releases_24dp));
 tile.setLabel(getString(R.string.app_name));
 tile.setState(state);
 tile.updateTile();
 }
 }

 private SharedPreferences getPrefs() {
 if (prefs==null) {
 prefs=PreferenceManager.getDefaultSharedPreferences(this);
 }

 return(prefs);
 }
}

(from Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/ToggleTileService.java)
As with many specialized Service subclasses, the API that you
need to implement and consume for a TileService does not bear much
resemblance to the regular Service API. You are welcome to override
onCreate() and onDestroy() if needed, though ToggleTileService did not
really need either of those.
If and when the user adds your tile to their notification shade, by
default, you will be called with onStartListening(). There is also
a corresponding onStopListening(). In between those two events, the
user has the notification shade open, and so if you have changes that you
need to publish to the tile, you should do so. For example, you might
register some sort of event listener in onStartListening() (e.g., for
WiFi signal strength changes) and unregister that listener in onStopListening().
While the listener is registered, if there is an event that needs to be
reflected in the tile, your TileService might update that tile.
In this case, onStartListening() just updates the tile with the current
state, in the private updateTile() method. getQsTile() returns a Tile
object representing the current tile state, which you can examine and
modify as needed. getQsTile() will return null if you cannot update
the tile right now, for whatever reason.
In the case of ToggleTileService, we want the tile to reflect the state
of the enabled boolean value in SharedPreferences. So, we lazy-load
the SharedPreferences and see what enabled is. From there, we derive
a state value, choosing between STATE_ACTIVE and STATE_INACTIVE.
There are three possible states to choose from:

	
STATE_ACTIVE is the normal state, indicating that the tile should
be displayed normally and should support click events

	
STATE_INACTIVE is the same, except that the tile should be displayed
in an “inactive” style (e.g., dimmed)

	
STATE_UNAVAILABLE — the default state until you indicate otherwise –
indicates that the tile is disabled and will not respond to click events

ToggleTileService then updates the Tile with that state, along with
setting the icon and label. Those happen to be set to the same values as
are defined in the manifest, so this work is superfluous and here only
for illustration. Note that setIcon() takes an Icon object, which
can be created from a wide range of sources, including resources and
local files.
Once you have the Tile configured to your liking, call updateTile()
to push the changes over to the system, which will update the tile in the
notification shade to match.
If the user clicks on the tile, you will be called with onClick(),
where you can take whatever action makes sense. In this case, we just want
to update the SharedPreferences to toggle the enabled value, then
update the tile to match.
The User Experience
When the user installs an app that has a TileService, the tile is not
automatically put in the user’s notification shade. Instead, it allows
the user to add the tile if the user wants to.
If the user opens the notification shade, an “Edit” button should appear:

[image: Notification Shade on Nexus 9 Running Android 7.0]

Figure 877: Notification Shade on Nexus 9 Running Android 7.0
Tapping “Edit” brings up the tile roster editor:

[image: Android 7.0 Tile Roster Editor]

Figure 878: Android 7.0 Tile Roster Editor
The tile for the newly-installed app will appear. Since the TileService
has never been invoked, the tile will display the icon and label from
the <service> element.
The user can drag and drop from the “Drag to add tiles” area into
the mock notification shade itself. Upon closing the editor, the new
tile will appear in the notification shade

[image: Notification Shade with SAW Monitor Tile]

Figure 879: Notification Shade with SAW Monitor Tile
At this point, the tile should have been updated by the
TileService. If the user later returns to the notification shade,
the TileService will get another shot to update the tile via
onStartListening(), and so forth.
If the user wants to, the user can return to the editor and drag the existing
tile out of the mock notification shade back into the “Drag to add tiles” area,
thereby removing it.
The Other Features and Limitations
Here are some other items of note related to tiles and TileService:

	You can determine if the device is locked by calling isLocked()
on the TileService.

	You can respond to a tap on the tile by showing a dialog (showDialog()),
launching an activity (startActivityAndCollapse()), or asking the user
to unlock the device first (unlockAndRun()).

	If your tile may show sensitive data, isSecure() will tell you if
your tile is visible in some “secure state” and therefore whether it is
safe to show that sensitive data.

	Each TileService has only one tile. For most apps, this will be plenty.
But, if for some reason your app needs multiple tiles, you will need
multiple TileService implementations, one per tile.

Installing Packages
To install an app from an APK, you can use ACTION_INSTALL_PACKAGE on
API Level 14+, and ACTION_VIEW on older devices. An Intent with one
of those actions, and a Uri pointing to an APK, will lead the user to
install the app… if the user grants our app the ability to install apps.
Prior to Android 8.0, the user would grant the ability to install “non-market apps”
globally. This was simple but not especially secure, as any app could then
ask to install other apps. While the user would be involved in the installation
process — via confirmation dialogs and such — this still was not ideal.
On Android 8.0+, the user flow is a bit
different, as now rather than enabling app-installation rights to all apps
via Settings, the user grants it on a per-installer basis.
We can determine whether or not we have app-installation rights by calling
canRequestPackageInstalls() on a PackageManager. However:

	This method is only available on Android 8.0+

	Apps need to hold the REQUEST_INSTALL_PACKAGES permission to make this
call

	This value does you little good, other than to perhaps warn the user as
to what is coming, as there is no way to request app-installation rights other
than to try installing an app

The
Introspection/AppWrangler
sample project has an overflow menu with an “Install…” item in it. Tapping
that will bring up an ACTION_OPEN_DOCUMENT screen, for you to find an APK
on your device or emulator. When we get the Uri in onActivityResult(), we:

	Call canRequestPackageInstalls() and show a Toast if we do not already
have app-installation rights

	Start the ACTION_INSTALL_PACKAGE activity regardless of the
canRequestPackageInstalls() state

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==REQUEST_OPEN && resultCode==RESULT_OK) {
 if (getPackageManager().canRequestPackageInstalls()) {
 Toast.makeText(this, R.string.msg_install_perm, Toast.LENGTH_LONG).show();
 }

 Intent i=new Intent(Intent.ACTION_INSTALL_PACKAGE)
 .setData(data.getData())
 .addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 startActivity(i);
 }
 }

(from Introspection/AppWrangler/app/src/main/java/com/commonsware/android/appwrangler/MainActivity.java)
What the user sees — other than the Toast — is a dialog confirming whether or
not installing an app is what the user has in mind:

[image: Android 8.0 Emulator, Initial App Installation Dialog]

Figure 880: Android 8.0 Emulator, Initial App Installation Dialog
If the user taps “External Sources”, a screen dedicated to your app appears:

[image: Android 8.0 Emulator, Trust Screen in Settings]

Figure 881: Android 8.0 Emulator, Trust Screen in Settings
(the dark gray background on the top banner appears on the emulator, but not
on hardware)
If the user checks the “Trust apps from this source” switch and presses BACK,
ideally the user is then taken to the normal app installation flow:

[image: Android 8.0 Emulator, Installing F-Droid]

Figure 882: Android 8.0 Emulator, Installing F-Droid
Deleting Packages
Similarly, to install an app from an APK, you can use ACTION_UNINSTALL_PACKAGE on
API Level 14+, and ACTION_DELETE on older devices. An Intent with one
of those actions, and a Uri pointing to an APK, will ask the user if
they want to uninstall the app.
None of that has changed.
There is an REQUEST_DELETE_PACKAGES permission, and its documentation indicates
that you need this to use ACTION_UNINSTALL_PACKAGE.
This is not the case for
Android 8.x, but it is the case starting with Android 9.0
(if you have a targetSdkVersion of 28 or higher).
This is a normal permission, so you do not need to go through the runtime
permissions request path for it.
Detecting Changes in Packages
Sometimes, your app might need to know if apps are installed or removed.
On Android 7.1 and older, if we want to find out about changes in the mix of installed
packages, we would listen for ACTION_PACKAGE_ADDED and ACTION_PACKAGE_REMOVED.
However, those are implicit broadcasts, and we cannot register for those
in the manifest on Android 8.0+. As a result, we can only listen to those
broadcasts when we already have a process running for other reasons and can
use registerReceiver(). That is fine as far as it goes, but it means that
we may not find out about every package change.
The workaround for this is to call getChangedPackages() on PackageManager
on Android 8.0+.
This returns a ChangedPackages object, listing the packages that have changed.
The scope of the change is based on a sequence number. This starts at zero, when
the device is booted. Every change to the mix of installed packages should
trigger a new sequence number. You pass in the sequence number of the last
getChangedPackages() call that you made, or 0 if you have not called it
before. The ChangedPackages will give you the list of packages changed between
your passed-in sequence number and the current state. The ChangedPackages
also has the current sequence number. The idea is that you can persist that
sequence number, so when your app runs, you can find out about package changes
that went on while your process was not around.
The AppWrangler sample app demonstrates this, though not using persistence,
as it is not needed here.
The AppWrangler UI is dominated by a list of installed apps. That list is
populated at the outset by a call to refresh() from onResume():

 private void refresh(boolean toast) {
 if (lastPackageSequenceNumber==-1) {
 ChangedPackages delta=pm.getChangedPackages(0);

 lastPackageSequenceNumber=(delta==null) ? 0 : delta.getSequenceNumber();
 populateList();
 }
 else {
 ChangedPackages delta=pm.getChangedPackages(lastPackageSequenceNumber);

 if (delta!=null && delta.getSequenceNumber()>lastPackageSequenceNumber) {
 populateList();

 if (toast) {
 Toast.makeText(this, R.string.msg_refresh_ack,
 Toast.LENGTH_SHORT).show();
 }
 }
 else if (toast) {
 Toast.makeText(this, R.string.msg_refresh_nack,
 Toast.LENGTH_LONG).show();
 }
 }
 }

(from Introspection/AppWrangler/app/src/main/java/com/commonsware/android/appwrangler/MainActivity.java)
lastPackageSequenceNumber is initialized to -1, meaning that we have never
tried getting our packages yet. In that case, we call getChangedPackages()
to get the now-current sequence number, passing in 0 as the starting sequence
number. Since getChangedPackages() might return null, we either read the
sequence number out of the ChangedPackages or use 0 for the new
lastPackageSequenceNumber value. Then, we call populateList(), which uses
PackageManager and getInstalledApplications() to populate the ListView.
There is a “refresh” action bar item, which also triggers a call to refresh().
In this case, lastPackageSequenceNumber should be something other than -1,
courtesy of our original refresh() call triggered by onResume(). If
lastPackageSequenceNumber is not -1, we call getChangedPackages(),
supplying lastPackageSequenceNumber as the starting point. If we get a
ChangedPackages back, and the new sequence number is higher, we know that
there was a package change that went on “behind our backs”, so we update
the list. If we were using RecyclerView, we might use the list of packages
in the ChangedPackages to make the specific modifications to our list that
are required — since that is not really an option with ListView, we just
reload the whole list.
If, with the AppWrangler app in the foreground, you install an app
from the command line using adb install, then click the “refresh”
action bar item, you should see a Toast indicating that there were changes
in the packages, and the list should update to show the newly-installed
app.
Android Studio Editors and Dialogs
Eclipse, with the ADT plugin,
had many structured editors and specialized dialogs for modifying
Android project files and otherwise configuring Android project behavior.
Android Studio has fewer of those, and they are generally less critical.
The editors and dialogs presented in this chapter can be useful, at least
in some cases, but you do not need to use any of them to be able to
create your Android projects. However, some may speed up your Android
development a bit over working with bare resource and Gradle files.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, along with the chapter on Gradle and build variants.
Project Structure
The Project Structure dialog allows you to configure many aspects
of your build.gradle files from a tabbed property-style dialog, as
opposed to having to work with the Gradle scripts directly. On the
plus side, this can be easier. However, since Gradle is built on the
Groovy scripting language, build.gradle files are not simple XML or
JSON data structures. It remains to be seen how well the Project
Structure dialog will be able to handle complex Gradle scripts.
To access the Project Structure dialog, choose File > Project
Structure from the main IDE menu.
The left-hand side lists major areas of the dialog; choosing one
of those switches to that area’s form on the right.
The sections that follow outline each of the major areas and what
you can configure in them.
SDK Location
The Project Structure dialog opens up on the SDK Location area, where
you can configure where your Android SDK is located, where your
JDK is located, and where your NDK is located:

[image: Project Structure Dialog, SDK Location Category]

Figure 883: Project Structure Dialog, SDK Location Category
For new Android Studio 2.2+ installations, the default is for
Android Studio to use a version of the Java JDK that ships with
the IDE itself, in which case “Use embedded JDK (recommended)”
will be checked.
Adjusting these in Project Settings affects this specific project.
There is also File > Other Settings > Default Project Structure,
where you can edit the default values to be used for new projects and
projects that you import in the future.
Project Settings
The second entry in the Project Structure dialog category list is
“Project”. This allows you to configure four items found by default
in the build.gradle file in your project root or in the
gradle-wrapper.properties file:

	What version of Gradle you wish to use for the Gradle Wrapper

	What version of the Android Gradle Plugin you wish to use

	What artifact repository should be used for pulling in the Gradle for
Android plugin (and any other plugins you may be using)

	What artifact repository should be used by default for standard module
artifacts (e.g., those you request via implementation directives in your
module’s build.gradle file)

[image: Project Structure Dialog, Project Settings Category]

Figure 884: Project Structure Dialog, Project Settings Category
Developer Services
If you are using select portions of the Play Services SDK, the items
under the “Developer Services” divider allow you to configure those portions.
By default, they amount to checkboxes, to enable certain features:

[image: Project Structure Dialog, Notifications Category]

Figure 885: Project Structure Dialog, Notifications Category
Module Settings
Below the “Modules” divider in the category list on the left will come all of your
modules. If you are not using modules, there will be a single entry in
the category list with the same name as your project, as a quasi-module.
Clicking on a module will bring up a set of tabs on the right to edit
various properties of that module, independently of any other module
in your project. The following sections outline the contents of those
tabs.
Properties
The first tab is labeled “Properties” and allows you to adjust various
top-level settings in your module’s build.gradle file.

[image: Project Structure Dialog, Module Category, Properties Tab]

Figure 886: Project Structure Dialog, Module Category, Properties Tab
These include:

	Your compileSdkVersion (“Compile Sdk Version” drop-down)

	Your buildToolsVersion (“Build Tools Version” drop-down)

	Another artifact repository to use for this module, added to your
module’s repositories closure (“Library Repository”)

	The ignoreAssetsPattern property in aaptOptions
(“Ignore Assets Pattern”)

	The incremental property in dexOptions
(“Incremental Dex”)

	The sourceCompatibility in compileOptions
(“Source Compatibility”)

	The targetCompatibility in compileOptions
(“Target Compatibility”)

Signing
If your module’s build.gradle file has a signingConfigs closure, the
“Signing” tab will let you edit those signing configurations:

[image: Project Structure Dialog, Module Category, Signing Tab]

Figure 887: Project Structure Dialog, Module Category, Signing Tab
Each signing configuration that you have defined will appear in the list
on the left side of the tab. On the right are fields for you to fill
in the signing configuration name, the keystore file and key alias to use,
and the passwords to use for accessing that file and alias.
The green plus (“+”) icon on the right side of the list lets you define
a new signing configuration, while the red minus (“-”) icon lets you delete
an existing signing configuration.
Flavors
The “Flavors” tab starts off with a single “flavor”, representing
your build.gradle file’s defaultConfig settings. The green plus
icon next to the list of flavors lets you define a new flavor, while
the red minus icon lets you remove an existing flavor. Note that you
cannot remove defaultConfig, as it is defined by the Gradle for
Android plugin.

[image: Project Structure Dialog, Module Category, Flavors Tab]

Figure 888: Project Structure Dialog, Module Category, Flavors Tab
On the right side of the tab, you can set or change the name of the
flavor, plus you can adjust various flavor (or defaultConfig)
settings, including:

	the minSdkVersion value (“Min Sdk Version” drop-down)

	the applicationId (“Application Id”)

	the ProGuard rules file to use for builds (“Proguard File”)

	which of your defined signing configurations to use (“Signing Config” drop-down)

	the targetSdkVersion value (“Target Sdk Version” drop-down)

	
the testInstrumentationRunner to use for instrumentation testing
(“Test Instrumentation Runner”)

	
the testApplicationId value for instrumentation testing (“Test
Application Id”)

	the versionCode and versionName to use (“Version Code” and “Version Name”),
along with the suffix to apply to the version name (unique to this
product flavor)

Build Types
The “Build Types” tab allows you to adjust settings for the debug
and release build types. The green plus
icon next to the list of build types lets you define a new build type, while
the red minus icon lets you remove an existing build type. Note that you
cannot remove debug or release, as they are defined by Gradle.

[image: Project Structure Dialog, Module Category, Build Types Tab]

Figure 889: Project Structure Dialog, Module Category, Build Types Tab
On the right side of the tab, you can set or change the name of the
build type, plus you can adjust various settings in your
buildTypes closure, including:

	the value of debuggable, to control if the app is considered
to be debuggable on production hardware (“Debuggable” drop-down)

	the value of the undocumented jniDebuggable flag (“Jni Debuggable”)

	which signing configuration to use (“Signing Config” drop-down)

	the value of the undocumented renderscriptDebuggable flag (“Renderscript Debuggable”)

	the value of the undocumented renderscriptOptimLevel property (“Renderscript Optim Level”)

	the value of minifyEnabled, to control whether the build process
should attempt to strip out unused code (“Minify Enabled” drop-down)

	the value of the undocumented pseudoLocalesEnabled flag (“Pseudo Locales Enabled”)

	the ProGuard rules file to use for builds (“Proguard File”)

	the suffix to append to the applicationId (“Application Id Suffix”)

	the suffix to append to the versionName (“Version Name Suffix”)

	whether the resulting APK should be processed by zipalign
(“Zip Align Enabled”)

Dependencies
If your project has any defined dependencies in a dependencies closure,
these will appear in the “Dependencies” tab:

[image: Project Structure Dialog, Module Category, Dependencies Tab]

Figure 890: Project Structure Dialog, Module Category, Dependencies Tab
The tab is dominated by a two-column table, where the left column is the
dependency itself. The right column is the “scope”, where the cell shows
the current scope, and if you click on it, you get a drop-down list of available
scopes:

[image: Dependencies Tab, Showing Scope Drop-Down]

Figure 891: Dependencies Tab, Showing Scope Drop-Down
Those scopes include:

	“Implementation”, for an implementation dependency

	“Test implementation” for an androidTestImplementation dependency (i.e., one to be used
only for instrumentation testing)

	“Unit test implementation” for a testImplementation dependency (i.e., one to be used
only for unit testing)

	Other “compile” scopes for your build variants (e.g., “Debug compile” for
a debugCompile dependency)

	“Compile only”, for a compileOnly dependency (where the dependency is used only
at compile time and its contents are not packaged into the APK file)

	“Runtime only” for a runtimeOnly dependency (where the dependency is not used at compile
time, but its contents are packaged into the APK file)

The latter two scopes will be used infrequently.
If you click the green + button, you will be able to add a new dependency.
A drop-down menu will let you choose between a library dependency (i.e.,
for an artifact in a repository), a file dependency, and a module dependency
(i.e., to depend upon another module in your project).
Typically, you will be adding library dependencies. When you choose that
option, another dialog appears to allow you to search for likely dependencies or
type in the full dependency identifier (group ID:artifact ID:version).

[image: Choose Library Dependency Dialog, As Initially Launched]

Figure 892: Choose Library Dependency Dialog, As Initially Launched

[image: Choose Library Dependency Dialog, With Search Results for greenrobot]

Figure 893: Choose Library Dependency Dialog, With Search Results for “greenrobot”
The red - icon in the same toolbar as the green + will remove a dependency,
while the up and down arrows allow you to reorder the dependencies.
Translations Editor
On Android Studio, if you open a file containing string resources,
you will find a notification banner atop the editor, offering
a way for you to “Edit translations for all locales in the translations
editor”:

[image: Notification Banner for Translations Editor]

Figure 894: Notification Banner for Translations Editor
Clicking the “Open editor” link will open the Translations Editor.
You can also get to this editor by right-clicking over the resource
file in the Project or Android view on the left and choosing “Open
Translation Editor” from the context menu.
For an un-translated project — such as one newly-created from the
new-project wizard — when you open the Translations Editor, you
will just see all of the existing strings:

[image: Translations Editor, As Initially Opened]

Figure 895: Translations Editor, As Initially Opened
These are labeled as “default value” because, in this case, the
values are coming from the default resource set (res/values/strings.xml),
not some specific language translation.
You can edit an existing default value either by clicking on the cell containing
the default value (e.g., clicking the “My Application” cell), or by clicking
anywhere on the row and then editing the value in the “Default Value” field
towards the bottom of the editor. Note that you cannot edit keys via
this editor.
The right-hand column of the table has checkboxes, with a column heading
of “Untranslatable”. Checking one of those adds a translatable="false"
attribute to the <string> element in the XML. The IDE and related tools
can use this to not warn you that this string lacks translations. This
would be good for strings that you elected to put in string resources
yet are not user-facing and therefore do not need translation.
The + icon in the toolbar, when clicked, pops up a dialog where you can
define a new string:

[image: Translations Editor, New-String Dialog]

Figure 896: Translations Editor, New-String Dialog
Where the fun begins, though, is if you click the globe icon in the toolbar.
This displays a drop-down list of languages:

[image: Translations Editor, Showing Languages Drop-Down List]

Figure 897: Translations Editor, Showing Languages Drop-Down List
Choosing a language has two main effects. First, it creates a corresponding
res/values-*/ directory for your chosen language. Second, it adds a
column to the Translations Editor for that language:

[image: Spanish Strings in Resource File and Translations Editor]

Figure 898: Spanish Strings in Resource File and Translations Editor
You can then click on a cell representing a word and its language,
and fill in the translation in the form:

[image: Translations Editor, Showing Spanish Translation]

Figure 899: Translations Editor, Showing Spanish Translation
The icons to the right of the “Default Value” and “Translation” fields
in the form simply pop up a dialog giving you a bit more room to type:

[image: Translations Editor, Values Edit Dialog]

Figure 900: Translations Editor, Values Edit Dialog
Advanced Emulator Capabilities
The Android emulator, at its core, is not that complex. Once you have one or more
Android virtual devices (AVDs) defined, using them is a matter of launching the
emulator and installing your app upon it. With Android Studio, those two steps can even
be combined — the IDE will automatically start an emulator instance if one
is needed.
However, there is much more to the Android emulator. This chapter will explore
various advanced features of the emulator and how you can use them.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Other Notable Configuration Options
When defining an AVD, or editing an existing AVD definition, there are
many other configuration options at your disposal.
Hardware Graphics Acceleration
Another way to speed up the emulator is to have it use the graphic card or GPU of
your development machine to accelerate the graphics rendering of the emulator window.
By default, the emulator will use software-based rendering, without the GPU, which is
slow in general and worse when running an ARM-based image.
Whether this will work or not for you will depend in part upon your graphics drivers
of your development machine. Also, their use might conflict with other
things you might want to do — on Linux, using hardware GPU mode might break
your ability to take screenshots, for example.
This setting is toggled within the AVD Manager, for new and existing
AVDs, via the “Graphics” drop-down list in the “Emulated Performance”
group:

[image: Virtual Device Configuration, Showing Use Host GPU Checkbox]

Figure 901: Virtual Device Configuration, Showing “Use Host GPU” Checkbox
There are three options:

	“Software” says to render the graphics purely within the emulator
software

	“Hardware” says to render the graphics using the GPU of your development
machine

	“Auto” (the default) delegates the decision to the emulator itself,
based on its own heuristics of what will work well

Keyboard Behavior
The Android emulator can emulate devices that have, or do not have, a physical keyboard.
Most Android devices do not have a physical keyboard, and so the emulator is set up
to behave the same. However, this means that typing on your development machine’s keyboard
will not work in EditText widgets and the like — you have to tap out what you want
to type on the on-screen keyboard.
If you wish to switch your emulator to emulate a device with a physical keyboard –
either “for realz” or just to simplify working with the emulator on your development
machine — you can do so.
In the Android Studio AVD Manager, in the “Advanced Settings” area, there
is an “Enable keyboard input” checkbox that determines whether hardware
keyboard input is honored in the AVD or not:

[image: Virtual Device Configuration, Showing Enable keyboard input Checkbox]

Figure 902: Virtual Device Configuration, Showing “Enable keyboard input” Checkbox
Startup Settings
You can also control whether the device starts up in portrait or
landscape mode at the outside, by the toggle buttons labeled “Startup orientation”:

[image: Virtual Device Configuration, Showing Startup orientation Options]

Figure 903: Virtual Device Configuration, Showing “Startup orientation” Options
Camera Options
In the “Advanced Settings” area, you can control whether or not the
emulator emulates a device with a camera:

[image: Virtual Device Configuration, Showing Camera Options]

Figure 904: Virtual Device Configuration, Showing Camera Options
Whether you can configure both front and back cameras, or just one,
is indeterminate. If you can configure a camera, your options are:

	“None”, to emulate a device without a camera

	“Emulated”, which emulates a device with a camera, but where the camera
images themselves are emulated

	some hardware indicator (e.g., “Webcam0”), which emulates a device with
a camera, where the camera images are pulled from some camera hardware
on your development machine (e.g., a notebook webcam)

The back camera also will have a “VirtualScene” option, where the camera will
appear to be looking at the interior of a home, in the form of a 3D rendering
of that interior.
However, the emulator’s ability to truly emulate the way Android cameras
behave is very limited. Serious camera testing needs to be done using
Android hardware, not the emulator.
Memory and Storage Configuration
In the “Advanced Settings” area, you can control how much RAM and storage
is used by the emulator:

[image: Virtual Device Configuration, Showing Memory and Storage Options]

Figure 905: Virtual Device Configuration, Showing Memory and Storage Options
Specifically:

	“RAM” controls how much system RAM the emulator emulates. This will
be a subset of the overall RAM of your development machine that the
emulator consumes.

	“VM heap” appears to control the Dalvik/ART heap limit assigned to
applications.

	“Internal Storage” indicates how much space is allocated for the
main device partitions in the emulated device.

	“SD card” is still the misnomer for external storage. Your options are
either to have Android Studio manage this for you, or for you to use
tools like mksdcard to create your own disk image that you attach
to the emulator.

Usually, the defaults are fine.
Frames and Skins
By default, the emulator appears in a bare window, showing the contents
of the “touchscreen”. Of course, an actual Android device will have
more around it, such as bezels, optional hardware buttons, and so on.
In the “Device Frame” group in the “Advanced Settings” area, you can
check “Enable Device Frame” and choose a skin to wrap around the touchscreen
and make your emulator look a bit more like a real device:

[image: Virtual Device Configuration, Showing Device Frame Options]

Figure 906: Virtual Device Configuration, Showing Device Frame Options
The Emulator Sidebar
Starting with Android Studio 2.0, the emulator sports a “sidebar” that
runs alongside the main emulator window:

[image: Android Emulator, with Sidebar on the Right]

Figure 907: Android Emulator, with Sidebar on the Right
This provides you with rapid access to a number of emulator features
and controls. Some of those are hidden behind the “More” button,
at the bottom of the sidebar (looks like an ellipsis, “…”).
Note that the sidebar buttons have tooltips that will tell both the
button’s purpose and the keyboard shortcut, if any, for that button.
Power and Navigation Controls
The top icon in the sidebar is a power button. A quick click on it will
close your emulator. A long-click will behave like the POWER button
on an Android device, bringing up the power menu:

[image: Android Emulator, Showing Power Menu]

Figure 908: Android Emulator, Showing Power Menu
Towards the bottom of the sidebar are BACK, HOME, and RECENTS buttons
for navigation:

[image: Android Emulator Sidebar Navigation Buttons]

Figure 909: Android Emulator Sidebar Navigation Buttons
If you click the “More” button, you will open up the “Extended Controls”
window:

[image: Android Emulator with Extended Controls]

Figure 910: Android Emulator with Extended Controls
Clicking the “Directional pad” category on the left of the “Extended
Controls” gives you D-pad and media buttons for in-app navigation:

[image: Emulator Extended Controls, Showing Directional Pad]

Figure 911: Emulator Extended Controls, Showing Directional Pad
Screen Orientation and Zoom
Two buttons on the sidebar allow you to rotate the device clockwise
or counter-clockwise:

[image: Android Emulator Sidebar Rotation Buttons]

Figure 912: Android Emulator Sidebar Rotation Buttons
The magnifying glass icon allows you to zoom and out of the emulator
screen contents:

[image: Android Emulator Sidebar Zoom Button]

Figure 913: Android Emulator Sidebar Zoom Button
When in zoom mode, the mouse cursor changes to a magnifying class,
and left-mouse clicks will zoom in at the clicked-upon point. Right-mouse
clicks will zoom out. To return the mouse to normal behavior, tap the zoom sidebar
button again. However, note that you will remain zoomed in on the
last-selected zoom state; to return the emulator fully to normal, zoom
out all the way first.
Screenshots
The camera button on the sidebar allows you to rapidly take screenshots
of the emulator window:

[image: Android Emulator Sidebar Screenshot Button]

Figure 914: Android Emulator Sidebar Screenshot Button
These will be stored in a directory controlled by the “Settings” category
in the “Extended controls” window:

[image: Emulator Extended Controls, Showing Settings]

Figure 915: Emulator Extended Controls, Showing Settings
Faking the Real World
The “Extended controls” panel also allows you to fake real world behavior
in your emulator.
Location
The “Location” category lets you fake GPS fixes:

[image: Emulator Extended Controls, Showing Location]

Figure 916: Emulator Extended Controls, Showing Location
The upper half allows you to specify a single GPS fix and “send” that
to the emulator, which should respond the same way as if an actual
Android device received a GPS fix.
The bottom half allows you to load a GPX or KML file containing a series
of waypoints and the time between them, then play those back, either
at normal speed or at an accelerated pace (if you get bored easily).
Network Status
The “Cellular” category controls how the emulator emulates its cellular
network connection:

[image: Emulator Extended Controls, Showing Cellular]

Figure 917: Emulator Extended Controls, Showing Cellular
Battery
The “Battery” category allows you to simulate changes in the power
status of the emulator:

[image: Emulator Extended Controls, Showing Battery]

Figure 918: Emulator Extended Controls, Showing Battery
Not only will your code be able to receive events like ACTION_BATTERY_CHANGED,
but you can see the changes in the status bar of the emulator, such
as the battery icon showing charging status and current charge level.
Telephony
The “Phone” category allows you to simulate incoming phone calls
and text messages:

[image: Emulator Extended Controls, Showing Phone]

Figure 919: Emulator Extended Controls, Showing Phone
Emulator Window Operations
Dragging a window edge of the emulator window will change the scale
used by the emulator. The entire emulator window is still there, just
smaller or larger than before. The resulting window will have the
proper aspect ratio, so if you drag the left or right side and shrink
the window, it will shrink both vertically and horizontally.
Using your development machine’s native file manager (e.g., Nautilus
on Ubuntu Linux), you can drag-and-drop files into the emulator window.
If the file is an APK, it will be installed automatically, as if you had
installed it through the adb install command. If the file is
anything else, it will be uploaded into the emulator’s Download/
directory on external storage. If your app has permission to work with
external storage, it can read the file from there.
Headless Operation
Sometimes, you want an emulator without a GUI. Typically, this is used for continuous
integration or some other server-based testing solution — you use the “headless”
emulator to run tests, even on a machine that lacks any GUI capability.
To do this, you will need to run the emulator from the command-line. Run
emulator -no-window -avd ..., where ... is the name of your AVD (e.g., the value in
the left column of the list of AVDs in the AVD Manager). To test this first in normal
mode, run the command without the -no-window switch.
The simplest solution to get rid of the emulator instance is to kill its process.
There are many other command-line switches for the emulator
that you may wish to investigate. While most of these have UI analogues in the AVD
Manager, the switches would be necessary to replicate some of those for headless
operation.
Lint and the Support Annotations
As C/C++ developers are well aware, lint is not merely something
that collects in pockets and belly buttons.
lint is a long-standing C/C++ utility that points out issues in a
code base that are not errors or warnings, but are still indicative of
a likely flaw in the code. After all, what might be legal from a syntax
standpoint may still be a bug when used.
Android Studio and the Android Plugin for Gradle
have their own equivalent Lint tool, for reporting similar
sorts of issues with an Android project’s Java code, resources, and
manifest. You can also get Lint reports from the command line, such as
via the Android Gradle Plugin, perhaps as part of integrating your builds into
a continuous integration server.
To help Lint catch problems stemming from your own code, Google has
released the support-annotations library, to help catch things like
passing a widget ID, instead of a layout ID, into setContentView().
You can also use these annotations to help those using your code –
whether in the same project or in consumers of a library that you publish –
make sure that they do not make similar mistakes.
This chapter will explore how you use Lint to detect problems and
how you can add annotations to your code to help Lint catch even more
problems.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
What It Is
Lint can be best described as “a pest, but a good pest”.
Normally, what stops you from building your app are compiler errors: bad Java syntax,
malformed XML resource files, and the like. At the command line, these stop an
in-progress build and dump error messages to the console. In Android Studio, these
are noted in a log and also by notations in the source code, frequently as
red squiggle lines underneath the offending Java or XML when viewed in an editor. You
also may get yellow squiggle lines for warnings — things the compiler will allow
but the compiler thinks may be a problem.
However, there are many things that might be syntactically valid but are not a good
idea from an Android standpoint. For example, if you specify a minimum SDK version
of API Level 8, and you try using a class that only exists on API Level 11, that’s a
problem if you are not handling it correctly and avoiding this class on the
older-yet-supported devices. Yet, if your build target
 (i.e., compileSdkVersion in Android Studio) is API Level 11
or higher, it is perfectly valid syntax and would compile just fine.
Lint is designed to encapsulate rules that transcend syntax, to add more errors and
warnings that reflect good Android practices beyond simple validity.
When It Runs
Running Lint sometimes happens automatically (e.g., from your IDE) or sometimes
happens manually. The following sections outline the various possibilities.
Android Studio
By default, in Android Studio, Lint will run when you save a file, giving you
error (red) or warning (yellow) squiggles for things that run afoul of Lint rules:

[image: Android Studio Lint Error]

Figure 920: Android Studio Lint Error
You can manually
invoke it via Analyze > Inspect Code… from the main menu, though this also
performs other analyses that are not necessarily relevant for you as an
Android developer, such as “J2ME issues”.

[image: Android Studio Inspection Results]

Figure 921: Android Studio Inspection Results
Command Line
You can also invoke Lint via gradle lint or a per-variant edition
(e.g., gradle lintRelease). This will write results to an XML file
in build/outputs/ based upon product variant (e.g.,
build/outputs/lint-results-release.xml for a gradle lintRelease run).
It will also emit an HTML file with the same base name in the same directory.
These contain the same basic information as you get from the command-line
output, with the XML in particular designed to be consumed by other tools,
such as a continuous integration server.
What to Fix
In Android Studio, clicking on a red or yellow squiggle will pop up an adjacent
“lightbulb” drop-down offering ways to fix the problem:

[image: Android Studio Lint Fix Suggestions]

Figure 922: Android Studio Lint Fix Suggestions
You can also bring up this “quick fixes” list via Alt-Enter.
For example:

	Errors related to accessing classes or methods higher than your minSdkVersion
have “quick fixes” to add the @TargetApi annotation to the class or method containing
your code

	Warnings related to hard-coded strings in layouts or the manifest have “quick fixes”
to convert those strings into string resources

All warnings and errors will have “quick fixes” to suppress that warning or error
in the future, by adding notations to the file to that effect.
What to Configure
You have some measure of control over Lint’s behavior, though the mechanics
of doing this varies by tool.
Android Studio
In Android Studio, you can configure Lint’s behavior via the Project Settings
dialog, accessible via File > Settings:

[image: Android Studio Lint Error Checking Preferences]

Figure 923: Android Studio Lint Error Checking Preferences
You can
change some details about the specific checks that Lint makes:

	the severity of the issue, usually set to Warning or Error

	whether the specific issue should be ignored rather than executed

To do this, you may wish to create your own inspection profile, rather than
modifying the stock “Project Default” profile. To do this, just click the “Copy”
button in the Inspections page of the Settings dialog and supply a name for the
new profile.
The above recipe changes the inspections for the individual project. To change them
for new projects, go into File > Other Settings > Default Settings, and make
your changes there.
Command Line
To block certain Lint checks in Gradle, you can
create a lint.xml file, in the root directory of your project,
containing information about which particular issues should be suppressed for that
project. The benefit here is that you can configure suppression at a finer granularity,
blocking issues for certain files or directories and allowing them for others. The
sample lint.xml from the Lint documentation
looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<lint>
 <!-- Disable the given check in this project -->
 <issue id="IconMissingDensityFolder" severity="ignore" />

 <!-- Ignore the ObsoleteLayoutParam issue in the given files -->
 <issue id="ObsoleteLayoutParam">
 <ignore path="res/layout/activation.xml" />
 <ignore path="res/layout-xlarge/activation.xml" />
 </issue>

 <!-- Ignore the UselessLeaf issue in the given file -->
 <issue id="UselessLeaf">
 <ignore path="res/layout/main.xml" />
 </issue>

 <!-- Change the severity of hardcoded strings to "error" -->
 <issue id="HardcodedText" severity="error" />
</lint>

You can also configure lint via a lintOptions closure inside
the android closure of your build.gradle file. In particular, you
can have a disable statement to list the Lint checks that you would
like to block:

android {
 lintOptions {
 disable 'IconMissingDensityFolder','InefficientWeight'
 ...
 }
}

The names used in lint.xml or lintOptions are the “issue IDs”.
You can get a roster of these by running lint --list for
brief summaries:

Valid issue categories:
 Correctness
 Correctness:Messages
 Security
 Performance
 Usability:Typography
 Usability:Icons
 Usability
 Accessibility
 Internationalization
 Bi-directional Text

Valid issue id's:
"ContentDescription": Image without contentDescription
"AddJavascriptInterface": addJavascriptInterface Called
"ShortAlarm": Short or Frequent Alarm
"AlwaysShowAction": Usage of showAsAction=always
"ShiftFlags": Dangerous Flag Constant Declaration
"LocalSuppress": @SuppressLint on invalid element
"UniqueConstants": Overlapping Enumeration Constants
"InlinedApi": Using inlined constants on older versions
"Override": Method conflicts with new inherited method
"NewApi": Calling new methods on older versions
...

…or lint --show for a set of more elaborate descriptions:

Available issues:

Correctness
===========

AdapterViewChildren

Summary: AdapterViews cannot have children in XML

Priority: 10 / 10
Severity: Warning
Category: Correctness

AdapterViews such as ListViews must be configured with data from Java code,
such as a ListAdapter.

More information:
http://developer.android.com/reference/android/widget/AdapterView.html

OnClick

Summary: onClick method does not exist

Priority: 10 / 10
Severity: Error
Category: Correctness

The onClick attribute value should be the name of a method in this View's
context to invoke when the view is clicked. This name must correspond to a
public method that takes exactly one parameter of type View.

Must be a string value, using '\;' to escape characters such as '\n' or
'\uxxxx' for a unicode character.

StopShip

Summary: Code contains STOPSHIP marker

Priority: 10 / 10
Severity: Warning
Category: Correctness
NOTE: This issue is disabled by default!
You can enable it by adding --enable StopShip

Using the comment // STOPSHIP can be used to flag code that is incomplete but
checked in. This comment marker can be used to indicate that the code should
not be shipped until the issue is addressed, and lint will look for these.

MissingPermission

Summary: Missing Permissions

Priority: 9 / 10
Severity: Error
Category: Correctness

This check scans through your code and libraries and looks at the APIs being
used, and checks this against the set of permissions required to access those
APIs. If the code using those APIs is called at runtime, then the program will
crash.
...

The lint command can be found in the tools/ directory of your
Android SDK installation.
Support Annotations
The support-annotations library, from the Android Support set of libraries,
offers a series of annotations that you can add to methods, method
parameters, and the like to teach Lint certain types of bugs to check
for. Some of the Android Support libraries
use these annotations, so Lint can help catch problems when you use
those public APIs. You, in turn, can add these annotations to your
code, to catch certain problems at compile time that otherwise
might be missed.
However, the important thing is that these are compile-time checks, not
assertions at runtime. Lint will see if there is a likely bug at
compile time and point it out to the developer, but there are many
places where Lint simply has no way to know if everything is OK or
not. These annotations are not a replacement for defensive programming.
In fact, they not only help users of some API you publish to use
it correctly, they help you by serving as a reminder that these
should be checked at runtime as well.
Pretty much all of the Android Support libraries pull in
support-annotations, courtesy of Gradle and transitive dependencies.
If you do not seem to have support-annotations in your project,
just add it to your dependencies closure, as you would any other
of the Android Support libraries:

dependencies {
 implementation 'com.android.support:support-annotations:23.1.0'
}

You may occasionally run into version conflicts over this library,
where Library A wants one version and Library B wants another version.
In those cases, you may need to teach Gradle to not try to load
the support-annotations version that a particular library might want,
so you can use a different version:

dependencies {
 implementation 'com.android.support:support-annotations:23.1.0'
 compile('com.davemorrissey.labs:subsampling-scale-image-view:3.4.0') {
 exclude module: 'support-annotations'
 }
}

In this case, com.davemorrissey.labs:subsampling-scale-image-view:3.4.0
wants version 20.0.0 of the support-annotations, which is rather
old. Hence, we block that dependency and substitute our own, for
version 23.1.0. In general, newer versions of this library should be
backwards-compatible with older versions of this library, so in case
of conflict, use the newer version.
Permissions, Again
You can indicate that certain bits of your app require callers
to hold certain permissions, using the @RequiresPermission annotation.
This is mostly for libraries, where other projects might use the library.
Methods
The most common place to put this annotation will be on a method,
to indicate that the method requires that callers hold a certain
permission.
The simplest scenario is where the method requires that callers hold
a single permission, in which case you just list the permission
as a parameter to the annotation:

@RequiresPermission(Manifest.permission.CAMERA)
public void takeSelfie() {
 // do work here
}

If the caller does not have a <uses-permission> element for the
CAMERA permission, Lint will complain at the point where the app
calls takeSelfie().
Sometimes, you may need callers to hold
more than one permission. In that case,
you can use allOf to list permissions; callers have to have requested
all of them in the manifest:

@RequiresPermission(
 allOf = {
 Manifest.permission.CAMERA,
 Manifest.permission.WRITE_EXTERNAL_STORAGE
 }
)
public void takeSelfie() {
 // do work here
}

On occasion, you may need the caller to hold one of a set of possible
permissions. The quintessential example here is location, where your
code might dynamically adapt based upon whether the app has ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION. In that case, you can use anyOf to list the
possibilities; if the app has any of those permissions requested in the
manifest, Lint will be happy:

@RequiresPermission(
 anyOf = {
 Manifest.permission.ACCESS_COARSE_LOCATION,
 Manifest.permission.ACCESS_FINE_LOCATION
 }
)
public void makeNoteOfWhereWeAt() {
 // do work here
}

It is unclear if there is a way to combine anyOf and allOf in a
single annotation (e.g., a takeSelfie() method that wants to geotag the
photo with the user’s current location).
Intent Actions
If you have a custom Intent action string, and the operation tied
to that action string requires a permission, you can teach Lint about
that by putting a @RequiresPermission annotation on a static
String for that action string:

@RequiresPermission(Manifest.permission.CAMERA)
public static final String ACTION_TAKE_SELFIE="com.commonsware.intent.action.SELFIE";

Basically, Lint keeps track of such strings, and if any Intent in
the app is created using those strings as actions, Lint will check to see
if the permission was requested.
ContentProviders
Similarly, you can annotate a static Uri that serves as the base
Uri for a ContentProvider. Any calls to ContentObserver that have
a Uri based on the static base will trigger Lint to check to see
if permissions were requested.
Frequently, though, a ContentProvider will have separate read and write
permissions. To handle that, you have to use some fairly clunky syntax,
wrapping the @RequiresPermission annotation in @RequiresPermission.Read
or @RequiresPermission.Write annotations. For example, the
ContactsContract class could, in theory, have:

public static final String AUTHORITY = "com.android.contacts";
public static final Uri AUTHORITY_URI = Uri.parse("content://" + AUTHORITY);

@RequiresPermission.Read(@RequiresPermission(Manifest.permission.READ_CONTACTS))
@RequiresPermission.Write(@RequiresPermission(Manifest.permission.WRITE_CONTACTS))
public static final Uri CONTENT_URI = Uri.withAppendedPath(AUTHORITY_URI, "contacts");

(it actually does not have these; any Lint checks for this CONTENT_URI
are being handled through rules internal to the tools, not through
the support annotations)
What Permissions Should I Annotate?
If the method (or whatever) absolutely needs the permission, in all
significant cases, then having the annotation will be useful.
However, there will be scenarios in which a permission may or may not
be needed, depending upon circumstances.
For example, let’s go back to:

@RequiresPermission(
 allOf = {
 Manifest.permission.CAMERA,
 Manifest.permission.WRITE_EXTERNAL_STORAGE
 }
)
public void takeSelfie() {
 // do work here
}

Here, we are implying that takeSelfie() will need both of those
permissions, and probably all of the time. For example, perhaps
the method is set up to write to
Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DCIM).
That directory requires WRITE_EXTERNAL_STORAGE all of the time.
But, suppose the method were implemented where the destination was
a Uri, instead? You would have:

@RequiresPermission(
 allOf = {
 Manifest.permission.CAMERA,
 Manifest.permission.WRITE_EXTERNAL_STORAGE
 }
)
public void takeSelfie(Uri dest) {
 // do work here
}

That Uri could point to any number of locations, only some of which
might require WRITE_EXTERNAL_STORAGE. For example, the caller could
provide a file: Uri pointing to getExternalFilesDir(), which does
not need WRITE_EXTERNAL_STORAGE on API Level 19+.
There are two major strategies here, with respect to these annotations:

	Be conservative, and annotate for both permissions, as shown in the
example above. The caller can always suppress the warning, if the caller
is sure that WRITE_EXTERNAL_STORAGE is not required. However, this may
confuse people not familiar with your API or with Android overall.

	Be liberal, and only annotate for the CAMERA permission (which
takeSelfies() always needs). Here, you are relying on the caller to
read the documentation for your library, use common sense, or perform
adequate testing to ensure that WRITE_EXTERNAL_STORAGE is requested in
cases where it is needed.

A “middle ground” approach would be to be conservative in cases where
the permission might require significant work, and liberal otherwise.
For example, WRITE_EXTERNAL_STORAGE is a dangerous permission
on Android 6.0+, and so the caller has to go through all of the runtime
permission request stuff for that if the app’s targetSdkVersion is 23
or higher. But, if takeSelfie() really needed CAMERA and VIBRATE
(to shake the device once the selfie is taken, perhaps based on user
preferences), requesting VIBRATE
is merely a single line in the manifest, and so demanding it via the
annotation when it might not be needed would be excessive.
Type Roles, and the War on Enums
In 2015, a kerfuffle erupted
in the world of Android development, one that quickly got tagged with
the label, “the War on Enums”.
Google developer advocates started promoting the idea that using the
Java enum construct was bad, and that you should use int constants
instead, the way the Android SDK does. Core Android engineers slowly
backed away from those developer advocates, but explained the reason
why all through the Android SDK we are passing around int values.
In a nutshell, an enum reference will consume more heap space than
will an int. If every place we passed around int flags or int
resource IDs, we passed around enum objects, we would put greater
pressure on our available heap space.
For most Android developers, for their own code, this particular concern
is unimportant, compared to the type safety one gets from using an enum
properly. However, the Android SDK team decided that, in general, they
should use int values rather than enum values, so they would not be
the ones to blame for consuming too much heap space.
However, this does bring us back to the core problem of passing the
wrong int values into the wrong methods, such as:

	passing a widget ID or a string resource ID into setContentView()

	passing in Intent flags (e.g., FLAG_ACTIVITY_NEW_TASK) to
PendingIntent methods like getActivity()

	passing in a color resource ID to a method that takes an actual ARGB
color value

Instead, we get a convoluted set of annotations to try to help
developers using public APIs to provide the smarts that ordinarily
would be handled simply by enum.
Resources
Ideally, resource IDs would use Java’s enum, so that you could
not pass a string resource ID to a method that is expecting a menu
resource ID. Alas, that is not the case.
Instead, if you accept resource IDs as parameters on methods or as return values
from those methods, you can use a set of annotations to indicate
what specific role the int values play.

	@AnimatorRes

	@AnimRes

	@ArrayRes

	@AttrRes

	@BoolRes

	
@ColorRes (i.e., the int should be a color resource ID)

	@DimenRes

	
@DrawableRes (i.e., the int should be a drawable resource ID)

	@FractionRes

	@IdRes

	@InterpolatorRes

	@LayoutRes

	@MenuRes

	@PluralsRes

	@RawRes

	
@StringRes (i.e., the int should be a string resource ID)

	@StyleableRes

	@StyleRes

	@TransitionRes

	@XmlRes

Documentation for these, such as it is, can be found in
the JavaDocs for the android.support.annotation package.
There is also @AnyRes, which indicates that the int needs to be a resource,
but does not imply a particular type of resource.
So, for example, you could have:

public void loadConfig(@XmlRes int xmlResId) {
 // do work here
}

If Lint is uncertain whether the parameter passed to loadConfig()
is really an R.xml value, it can warn the caller.
Custom Enum Replacement
Sometimes, the int values are replacing what would have been a custom
Java enum.
For example, the CWAC-Cam2 library
has a FlashMode enum:

public enum FlashMode {
 OFF,
 ALWAYS,
 AUTO,
 REDEYE
}

Apparently, the author of that library is evil and therefore supports
the use of an enum.
(note: the author of that library is also the author of this book)
An alternative would be to define those as a series of int flags:

public class FlashMode {
 public static final int OFF=0x0;
 public static final int ALWAYS=0x1;
 public static final int AUTO=0x2;
 public static final int REDEYE=0x3;
}

However, we are then back in the state where we do not know if
some arbitrary int that we are passed as a parameter really is a
FlashMode, as a method might expect. With the enum, we can have
methods like:

public void setFlashMode(FlashMode mode) {
 // do work
}

The support-annotations library makes it possible to write a
setFlashMode() that warns developers if they pass in the wrong
int, but it takes a bit of work.
The documented recipe is:

public class FlashMode {
 @IntDef({OFF, ALWAYS, AUTO, REDEYE})
 @Retention(RetentionPolicy.SOURCE)
 public @interface FlashModeInt {}

 public static final int OFF=0x0;
 public static final int ALWAYS=0x1;
 public static final int AUTO=0x2;
 public static final int REDEYE=0x3;
}

Then, elsewhere, we could reference that custom FlashModeInt
annotation:

public void setFlashMode(@FlashMode.FlashModeInt int mode) {
 // do work
}

Then, if Lint cannot confirm that the supplied mode is one
of those constants, Lint can warn the caller.
Flags
One benefit of int over enum is that it is easier to implement
parameters and return values that represent a combination of values
rather than single values.
For example, there are a wide range of flags that you can put on an
Intent, like FLAG_ACTIVITY_CLEAR_TOP and FLAG_ACTIVITY_SINGLE_TOP.
An Intent can have zero, one, or several of these flags.
With an enum for those flags, you would need to be passing around
a Set of enum instances. With int values, though, you can use
bitfields, where each flag is assigned a bit within the int.
For example, FLAG_ACTIVITY_CLEAR_TOP is 0x04000000 and
FLAG_ACTIVITY_SINGLE_TOP is 0x20000000. Having both of
those on a single Intent is merely a matter of using a OR bit
operation:

yourIntent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP|FLAG_ACTIVITY_SINGLE_TOP)

This takes up a lot less space, and is more efficient from a CPU standpoint,
than a Set of enum values. However, once again, type safety becomes
a problem.
@IntDef also supports a “flag” mode, where Lint will validate that
the value passed in is comprised of the designated constants, either
used individually or in combination using boolean bit operators. For
example, perhaps we can support several possible flash modes in a
camera API, and the caller can indicate the various modes of interest
using flags:

@IntDef(flag=true, value={
 FLAG_OFF,
 FLAG_ALWAYS,
 FLAG_ON,
 FLAG_REDEYE
})
@Retention(RetentionPolicy.SOURCE)
public @interface FlashModeOptions {}

Now, methods and parameters annotated with @FlashModeOptions will
be validated to ensure they are passing valid flags and combinations
of flags.
Does It Null?
The @NonNull annotation can be used for parameters that are not
allowed to be null. If, at compile time, the caller is clearly
passing a null value, the caller will be warned.

public void doSomethingContextual(@NonNull Context ctxt) {
 // do work here
}

This could also be used on methods where you are sure that the
return value cannot be null. This is particularly important with
abstract methods, methods you expect other developers to override,
callbacks, and the like — putting @NotNull on return values for
those methods indicate that you are requiring that the implementer
not hand you back a null value.
Conversely, the @Nullable annotation can be used on methods that
explicitly can return null as valid value:

@Nullable
public Context getContextIfWeHaveOne() {
 // do work here

 return(result);
}

Any caller of getContextIfWeHaveOne() will get a Lint warning,
pointing out that they need to check for null results. That warning
will remain there until the developer suppresses it or, in Lint’s
estimation, appears to check the result for a null value and handle
that case.
This can be used to help find @NonNull violations elsewhere, by
helping Lint see where things might be null.
Data Validation
A variety of other annotations can be used for checking parameter
values at compile time, to perhaps catch bugs earlier.
Size
For parameters and return values that implement java.util.Collection –
such as ArrayList, you can use the @Size annotation to provide some
compile-time guidance with regards to your expectations for that
collection. This also works for ordinary Java arrays.
A simple number in the @Size annotation means you are expecting
exactly that number of items in the collection, no more, no less:

public void growPair(@Size(2) ArrayList<String> values) {
 // do something
}

You can use min and max to constrain the size, without tying it
down to a particular value:

public void sortInPlace(@Size(min=1) List<Comparable> unsorted) {
 // do a sort
}

public @Size(min=1, max=6) float[] getReading(SensorEvent e) {
 return(e.values);
}

Occasionally, you might have a collection that does not have a specific
size, but the size it does have has to be evenly divisible by some
number. For that, there is the multiple option:

@RequiresPermission(Manifest.permission.VIBRATE)
public void shakeItOff(@Size(multiple=2) long[] vibrationPattern) {
 // use Vibrator system service
}

Ranges
@IntRange and @FloatRange help validate that the annotated value
lies within a particular range of values. The range is inclusive:
values equal to the ends of the range are assumed to be valid.
These work somewhat like @Size, except they directly examine a
value, instead of examining the length of a collection or string.

public void howManyRoadsMustAManWalkDown(@IntRange(from=0,to=42) int roads) {
 // do something involving a towel
}

Colors
If you have a method that expects a color resource ID as a parameter
or return value, use the @ColorRes annotation, as noted previously.
However, more often than not, you will be expecting colors, not
color resource IDs, to give the other developers flexibility about
where the colors come from. In that case, @ColorInt will help identify
parameters and return values that are expected to be actual ARGB colors,
not just arbitrary integers. In particular, this will catch when
somebody tries using a color resource ID where you expect an actual
color.
Thread Validation
If a method needs to be invoked on a certain type of thread (e.g.,
a background thread), you can use annotations to try to catch that
sort of bug.
The simple one is @WorkerThread, which indicates that the method
needs to be called on a background thread. If Lint thinks that the
method is being invoked from something else (e.g., the main application
thread), it will flag the caller with a warning.

@WorkerThread
public void thisIsGoingToTakeLikeForEVER() {
 // do something tedious
}

There are two possible converse annotations: @MainThread and
@UiThread. In one bit of documentation,
Google says they are interchangeable.
In another bit of documentation,
Google tries to point out a disparity between them

There is one and only one main thread in the process. That’s the @MainThread. That thread is also a @UiThread. This thread is what the main window of an activity runs on, for example. However it is also possible for applications to create other threads on which they run different windows. This will be very rare; really the main place this distinction matters is the system process.﻿ Generally you’ll want to annotate methods associated with the life cycle with @MainThread, and methods associated with the view hierarchy with @UiThread. Since the @MainThread is a @UiThread, and since it’s usually the case that a @UiThread is the @MainThread, the tools (lint, Android Studio, etc) treat these threads as interchangeable, so you can call @UiThread methods from @MainThread methods and vice versa.

Roughly speaking, if the method has to be run on the main application
thread for lifecycle reasons, use @MainThread. If the method has
to be run on a UI thread to avoid “cannot modify views from a non-UI thread”
sorts of errors, use @UiThread. And, if you’re not sure, flip a coin.
Other Annotations
If you have a protected or public method in a class that might
be subclassed, and you want to help ensure that if the method is
overridden that the developer calls through to your superclass
implementation, use @CallSuper.
(note: this annotation will not call a building superintendent; it
will only be honored by Superman if your name is on the whitelist,
e.g., Lois Lane)

@CallSuper
protected int heyDontForgetAboutMe() {
 // do something

 return(somethingToo);
}

@CheckResult allows you to nag any caller of your method, to ensure
that they actually look at the value you return, rather than
ignore it.
Inspecting Layouts
Layouts get complicated. Not only might you be pulling in from several
sources (via fragments or <include> or whatever), but you make changes
to the contents of the UI at runtime. What you have in your layout resources
is a starting point, but only that. Sometimes, it would be helpful to
see exactly what is in the UI of your app right now, based on what
you have done inside that app.
Launching the Layout Inspector
First, get a debuggable build of your app running on your chosen
device or emulator, with the desired activity in the foreground, in the
state that you are interested in. Layout Inspector captures a snapshot
of the state; it does not continuously update as the UI changes. Hence,
you need to get the UI into the state that you want to inspect first.
Then, choose Tools > Layout Inspector from the Android Studio main menu.
Viewing the View Hierarchy
When you inspect a layout, a tab is opened in Android Studio with
a tree of widgets on the left, a wireframe-enhanced screenshot in the
center, and a properties pane on the right:

[image: Layout Inspector, As Initially Launched]

Figure 924: Layout Inspector, As Initially Launched
Hovering over a widget in the tree or the wireframe will outline it
in red. Selecting that widget in the tree or the wireframe, by clicking
on it, outlines it in blue and updates the properties pane with the
properties for that particular widget or container.
The properties pane shows a tree of fields, getter methods, and XML-style
attributes. You can use these to view the state of the widget or container.
However, these properties
are read-only; you cannot modify the UI from the Layout Inspector.
Inspections and Captures
Layout Inspector is not purely a tab in the IDE. The data collected
by Android Studio to populate the Layout Inspector is saved in your
project’s captures/ directory. This allows you to view that same
data again in the future. This may be useful for comparing different
captures from different times, such as “before-and-after” captures
to see what effects a code change had on your layout contents.
Screenshots and Screencasts
They say that
a picture is worth a thousand words.
If that were really true, this book would be a lot shorter, mostly
consisting of a bunch of screenshots.
That being said, having screenshots of your app is essential for
documentation, marketing, and other uses. You are going to want to
collect screenshots from your app by one means or another.
Screencasts — videos recording the user’s interaction with a device –
are also very useful for the same purposes, even if their nature
precludes their practical use in various mediums (e.g., PDFs). These
are also a bit more complex to collect, though you have plenty of options
for that.
This chapter will outline various ways to get screenshots and screencasts
of your app.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate.
Collecting from Android Studio
The Logcat tool has buttons to take a screenshot and record a
screencast, in the toolbar:

[image: Android Studio Screenshot and Screencast Toolbar Buttons]

Figure 925: Android Studio Screenshot and Screencast Toolbar Buttons
Note that these toolbar buttons may be hidden, as they are fairly far down
the toolbar. You may need to expand the Logcat pane to show more of the toolbar
to get to these buttons. Or, there is a “>>” affordance that shows the hidden
toolbar buttons that you can click.
Screenshots
The top one takes a screenshot, giving you a dialog to control what
gets captured:

[image: Android Studio Screenshot Dialog]

Figure 926: Android Studio Screenshot Dialog
The main area shows the screen at the time you clicked the screenshot toolbar
button. Clicking the “Reload” button on the top of the dialog will update
the dialog to show the now-current device (or emulator) contents.
Depending on Android Studio version and device characteristics, the dialog
may open with the correct orientation. If not, click the “Rotate” button
until the image is oriented as you would like it to be.
The “Frame Screenshot” checkbox, if checked, will wrap your screenshot
in an image that resembles the hardware from the drop-down list:

[image: Android Studio Screenshot Dialog, Framing as Nexus 5]

Figure 927: Android Studio Screenshot Dialog, Framing as Nexus 5
The “chessboard” on the outside edges of the image represent transparent
areas in the PNG that will be created when you save the image.
Checking the “Drop Shadow” checkbox updates the fake device frame to make it
seem like the device is sitting on its edge on some horizontal surface,
with a drop-shadow effect. Similarly, checking the “Screen Glare” checkbox
adds a fake bit of lighting to the screenshot, as if a light from the
upper right side is causing a glare on the fake glass of the fake device
frame. Suffice it to say, none of this looks especially realistic.
When you have the screenshot set to your liking, click the “Save” button
on the bottom of the dialog, to get a platform-specific “Save As” dialog
for you to save your screenshot to wherever you like.
The resulting screenshot will then open in a tab in your IDE. This tab
does not let you edit the picture, but it does have an “eyedropper”
toolbar button that allows you to examine the image and identify the
exact colors of various pixels.
Screencasts
Clicking the second of the two toolbar icons mentioned above brings up
a dialog for configuring a screencast:

[image: Android Studio Screen Recorder Options Dialog]

Figure 928: Android Studio Screen Recorder Options Dialog
The particular technique that Android Studio uses to record the
screencast is capped at three minutes, which is one of the reasons
why there are other alternatives that this chapter will explore.
The bit rate will determine the size of the resulting MP4 file, where
a higher bit rate will give you a larger file. However, too low of a
bit rate will degrade the quality of the recording, particularly if there
is a lot of motion. You will need to experiment for yourself to see
what bit rate value works best for you; 4Mbps is the default.
Similarly, normally, the screencast will be at the resolution of the
device screen. However, there will be some low-end devices that are incapable
of recording a video at that resolution, due to weak video recording
support. For those devices, the screencast will be downgraded to 720p.
Or, you can attempt to specify the resolution, though you get odd
results from the IDE if you try to specify a resolution that is not
supported.
Clicking the “Start Recording” button will then start the screencast
recording. The dialog that appears has a corresponding “Stop Recording”
button. After clicking that, you will be given a “Save As” dialog to save
the video wherever you like.
Collecting from the Command Line
The same capabilities that Android Studio taps into to collect
screenshots and screencasts graphically are also available to you
from the command line, via adb. Since adb is in the
platform-tools/ directory of your Android SDK installation, if that
directory is in your PATH, you can run adb from any likely
directory on your development machine.
Screenshots
adb shell screencap captures a screenshot. This sounds easy enough.
The difficulty is that the screenshot is stored directly on the device or
emulator, not on your development machine. This means that taking a screenshot
is really a two-step process:

	Capturing the screen to a PNG on the device

	Moving that PNG from the device to your development machine

adb shell screencap takes the path for where the PNG should be
saved on the device. Since we want to move that PNG to the development
machine, it will be simplest if that path is pointing to external storage.
What path you use will be tied to what version
of Android you are running the screencap command on:

	Android 4.x/5.x: Use /mnt/shell/emulated/0 as the base, which points
to the root of external storage

	Android 6.0+: Use /storage/emulated/0 as the base, which points
to the root of external storage

You can then use adb pull to copy that PNG to your development
machine, followed by adb shell rm to delete the copy that is
on the device (to save space, remove clutter, etc.).
For example, the following script would take a screenshot
on an Android 6.0 device or emulator and
move it to your development machine into whatever the current
working directory is:

adb shell screencap /storage/emulated/0/screenshot.png
adb pull /storage/emulated/0/screenshot.png .
adb shell rm /storage/emulated/0/screenshot.png

Note that the other effects handled by Android Studio, such as rotating
the image, are not offered by the command-line interface. Instead, you
would use your available image editing tools on your development machine
to handle that.
Screencasts
Similarly, adb shell screenrecord will record a screencast, saving
it as a MP4 file on your device or emulator. And, once again, you will
need to use something like adb pull to copy that MP4 to your
development machine, perhaps followed by adb shell rm to remove
the copy from the device.
adb shell screenrecord is a bit more configurable, though. In
addition to the device path to the MP4 file, you can use command-line
switches to change the nature of the recording:

	
--size sets your desired resolution, overriding the default
of 1280x720 if your resolution is supported. For example, use
--size 1920x1080 for a 1080p recording.

	
--bit-rate sets the bit rate, as discussed in the earlier section
about screencasts in Android Studio. This is expressed in bits per
second, so --bit-rate 8000000 would save at ~8Mbps.

	
--time-limit will automatically stop the recording after the
stipulated number of seconds, capped at a maximum value of three
minutes (the equivalent of --time-limit 180). Alternatively, while
the screencast is recording, press Ctrl-C to stop
the recording.

For example, the following script would record a 30-second 1080p screencast
on an Android 6.0 device or emulator and
move it to your development machine into whatever the current
working directory is:

adb shell screenrecord --size 1920x1080 --time-limit 30 /storage/emulated/0/screencast.mp4
adb pull /storage/emulated/0/screencast.mp4 .
adb shell rm /storage/emulated/0/screencast.mp4

Collecting from Another App
The three-minute limitation on screencasts, imposed by Android Studio
and adb shell screenrecord, can be troublesome in some situations.
On Android 5.0 and higher devices, the media projection APIs allow
authorized apps to take screenshots and record screencasts. These screencasts
do not have an arbitrary time limitation. However, do bear in mind that
the videos are stored on the device itself, so disk space can become
an issue.
Various apps on the Play Store and elsewhere are available for
“out of the box” screencast recording. On the open source front,
Jake Wharton wrote and released Telecine, both in
a GitHub repository and
as an app on the Play Store.
Another chapter in this book shows how you can
use the media projection APIs, and one of the sample apps (andcorder)
can be used akin to how you would use Telecine or adb shell screenrecorder.
Tips and Tricks
Note that none of these approaches will record audio along with the video
for the screencasts. You will need to use video editing software to
add an audio track to the video, whether that comes in the form of
a spoken-word voiceover, a soundtrack, or whatever.
While all of the techniques described here will work with devices and
emulators, emulators need “Use Host GPU” enabled, at least for API
Level 15+ emulators on Linux. Otherwise, your screenshots and screencasts
turn out blank.
For screencasts designed to show users how to use an app, you may wish to
enable “Show touches” in the Developer Options area of Settings. This will
display a white dot where your finger touches the screen, to help
illlustrate where you are tapping, sliding, etc. Otherwise, the user
may or may not be able to follow exactly what you are doing to cause
the app to behave as shown.
ADB Tips and Tricks
Several chapters in this book offer adb recipes for doing
certain things at the command line. Having the adb binary in
the PATH environment variable for your development machine is very
handy, so you can run such commands from anywhere.
However, those other chapters only skim the surface of what sorts
of adb commands there are and what they can be used for. Several
others are presented here.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book, and that you know how to work on the command line.
This is the Droid That You Are Looking For
adb works well, except when there is more than one visible Android
environment, such as two devices, or a device and an emulator. Some
commands — notably adb devices — work normally. Most other
commands will complain that adb does not know which of the Android
environments the command is supposed to act upon.
There are three switches you can include after adb and before
the command that control what adb will use:

	
-d says “use the device, there should only be one” (and if there
is more than one, you get an error)

	
-e says “use the emulator, there should only be one” (and if there
is more than one, you get an error)

	
-s ... says “use the environment whose serial number is ...”

That serial number is the value given in the adb devices command.
For an actual device, the serial number usually is the real serial number.
For an emulator, the serial number is emulator-NNNN, where NNNN is
the value before the AVD name in the title bar of the emulator window.
Frequently, that value starts with 5554 and increments by two
for each subsequent running emulator. Hence, -e is roughly equivalent
to -s emulator-5554.
Installing and Uninstalling Apps
If you have an APK file that you wish to install — such as the APK
edition of this book — you can do that at the command line via
adb install /path/to/the.apk, where /path/to/the.apk is
where the APK can be found on your development machine.
If the app already exists on the device or emulator, and you wish to
replace it with this new APK, you will have to include the -r switch:
adb install -r /path/to/the.apk. This indicates that you wish
to reinstall the app.
adb install works if the APK in question was created with an eye
towards this sort of manual installation, such as:

	Built using the “Build APK(s)” menu choice in Android Studio

	Built using the assembleDebug or assembleRelease tasks in Gradle

Starting with Android Studio 3.0, when you run your app from the IDE,
while a copy of the APK will be left in your module’s build/ directory,
that copy has a flag set that blocks it from being installed manually.
While adb install -t can overcome this block, it is not
particularly safe to assume that what Android Studio builds when you
run the app from the IDE is safe to be manually installed, let alone
distributed anywhere. Use the Gradle tasks or the “Build APK(s)” menu
option to create safe APKs instead.
Conversely, adb uninstall your.application.id will uninstall the
app identified by the application ID (your.application.id).
Playing with Permissions
In an adb install command, you can include the -g switch
to proactively grant all of the Android 6.0+ runtime permissions that ordinarily
you would need to grant manually.
You can manually grant permissions via the adb shell pm grant command.
This takes the application ID of your app and the fully-qualified name
of the permission:

adb shell pm grant com.commonsware.android.perm.tutorial android.permission.CAMERA

Similarly, you can use adb shell pm revoke to revoke a permission
that was already granted to the app:

adb shell pm revoke com.commonsware.android.perm.tutorial android.permission.CAMERA

These can be useful for testing purposes, either to save you some
steps when testing manually, or to blend into automated tests. However,
do not become overly reliant upon programmatic permission grants — you need
to be sure that your permission flow works for the user, and the user is
not going to be using -g switches or adb shell pm grant commands
when using your app.
Starting and Stopping Components
Given an installed app, you can trigger its activities, services, and
broadcast receivers from the command line, using adb shell to run
commands on the device or emulator.
The actual commands are simple:

	
adb shell am start ... to start an activity

	
adb shell am startservice ... to start a service

	
adb shell am broadcast ... to send a broadcast

The challenge is in the ... part, where you provide command-line switches
to construct an Intent that will be used for those operations.
Here are some common patterns:

	Simple implicit Intent with just an action string, use -a
(e.g., adb shell am start -a android.intent.action.VOICE_COMMAND)

	Implicit Intent with a Uri, use -a and -d
(e.g., adb shell am start -a android.intent.action.VIEW -d https://commonsware.com)

	Implicit Intent with a different category, use -a and -c
(e.g., adb shell am start -a android.intent.action.MAIN -c android.intent.category.HOME)

	Explicit Intent: use -n
(e.g., adb shell am start -n your.app.id/.YourActivity)

There are all sorts of command-line switches,
for everything from flags to extras, that you can use to build up
the Intent.
The chapter on the media projection APIs covers a sample
screencast recorder, one that can be controlled using these sorts
of commands. For example, to start the recording, the record shell
script from the sample project uses:

adb shell am startservice -n com.commonsware.android.andcorder/.RecorderService -a com.commonsware.android.andcorder.RECORD

This starts the RecorderService, using an explicit Intent
(-n) but also providing an action string (-a) to state what
sort of command we are sending to the service.
Killing Processes and Clearing Data
adb shell am kill ... will kill all processes associated with
the application ID (...).
adb shell am force-stop ... will force-stop the app associated
with the application ID (...), as if the user went into Settings
and clicked the “Force Stop” button for the identified app.
adb shell pm clear ... will clear the data associated with
the application ID (...), as if the user went into Settings and clicked
the “Clear Data” button for the identified app. This will erase that
app’s portion of internal storage, plus app-specific directories on
external storage (e.g., getExternalFilesDir()).
Changing Display Metrics
One reason why developers use emulators is because they lack hardware
for device scenarios that they wish to test. Two such scenarios are
screen size and density. Many developers have only a device or two
to test against, and they may need to try out screen sizes and
densities that their hardware does not offer directly.
However, if you have a device with a higher resolution or density,
you can use adb to have the device fake operating as a lower-resolution
or lower-density device.
Specifically, on Android 4.3 and higher,
adb shell wm size 1280x800 would tell an Android
device to pretend to have a WXGA800 display. You will see
the smaller area centered within the overall device screen.
Note, though, that the device may no longer honor orientation
changes by rotating the device. You will need to stipulate your
size based upon the orientation that you are holding the device
and the default orientation of the device itself.
For example, running the above command on a Nexus 9 gives
you the following, regardless of whether the Nexus 9 is in
portrait or landscape:

[image: 1280x800 Display Size, On a Nexus 9, Held in Landscape]

Figure 929: 1280x800 Display Size, On a Nexus 9, Held in Landscape
If you were planning on testing the Nexus 9 in portrait mode and
wanted a landscape WXGA800 display, this is fine. More likely, you
will need to change the order of your dimensions in the command.
So, running adb shell wm size 800x1280 gives you:

[image: 800x1280 Display Size, On a Nexus 9, Held in Landscape]

Figure 930: 800x1280 Display Size, On a Nexus 9, Held in Landscape
Here, at least, the device orientation matches the reduced-size
screen orientation, if you were to hold the device in portrait mode.
If you prefer, you can use dp units instead, by appending dp
after the values. Using reset instead of a resolution will
return the device to its native resolution.
Similarly, adb shell wm density 160 will have the device
behave as though it has 160dpi screen density. This, however, starts
to look a little strange, and you may find it difficult to completely
understand what is going on, at least with third-party apps like the
home screen. adb shell wm density reset returns the device
to its natural screen density.
Stetho
In 2015, Facebook announced Stetho,
“a new debugging platform for Android”. That description is more apt than you
might think, in that Stetho allows you to examine your view hierarchy, see
network requests, and otherwise analyze your project… using Chrome.
Wait, Wut? Chrome?
Many modern Web browsers have Web client debugging tools, either built into
the browser itself or available as an extension or other add-on. These tools
can let you browse the content of the Web page, see network requests, and
otherwise analyze the content of a browser tab.
Stetho leverages the Chrome Developer Tools, available in Chrome and Chromium,
to have those tools examine an Android app, rather than a browser tab.
This works by way of Chrome Developer Tools’ support for remote debugging.
Stetho basically embeds a small server in your app that speaks the same protocol
that Chrome Developer Tools uses for remote debugging. From Chrome’s perspective,
your Android app is just another Web browser. In reality, Stetho translates
Chrome Developer Tools’ requests (e.g., “give me your DOM”) into things that
would help an Android developer (e.g., “give me your view hierarchy”).
Basic Stetho Integration
Stetho is not that hard to integrate, though Facebook’s documentation for it
would have you ship Stetho in production in a release build, which is not
an especially good idea.
The
Diagnostics/Stetho
sample project will show you how to hook Stetho up to your app, in a way that
allows you to ship Stetho only in your debug builds. Overall, this app is
yet another variant on the “show the latest android questions from Stack Overflow”
introduced originally in the chapter on Internet access.
This particular one uses Retrofit 2.x and Picasso for the network requests…
though as you will see, we have both of those libraries delegate the actual
network I/O to OkHttp 3.x.
Adding the Stetho Dependency
The official Stetho dependency is com.facebook.stetho:stetho, for some version
(e.g., 1.5.0). However, if you want to allow Stetho to help you debug your
network requests, you will need a different dependency, based on which HTTP
client API you are using for those network requests:

 	HTTP Client API
 	Stetho Dependency

 	OkHttp
 	com.facebook.stetho:stetho-okhttp

 	OkHttp 3.x
 	com.facebook.stetho:stetho-okhttp3

 	HttpURLConnection
 	com.facebook.stetho:stetho-urlconnection

Those each have com.facebook.stetho:stetho as a transitive dependency, so you
only need one Stetho dependency, based on your HTTP client API.
Specifically, we are using the stetho-okhttp3 dependency, so we get Stetho
plus its OkHttp 3.x support:

apply plugin: 'com.android.application'

dependencies {
 implementation "com.android.support:support-fragment:27.1.0"
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.squareup.retrofit2:converter-gson:2.3.0'
 implementation 'com.squareup.okhttp3:okhttp:3.9.1'
 implementation 'com.jakewharton.picasso:picasso2-okhttp3-downloader:1.0.2'
 debugImplementation 'com.facebook.stetho:stetho-okhttp3:1.5.0'
}

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 15
 targetSdkVersion 27
 applicationId "com.commonsware.android.stetho"
 }
}

(from Diagnostics/Stetho/app/build.gradle)
We use debugImplementation so that these libraries are only used in debug builds,
not release builds.
Creating a Debug Sourceset
Ideally, as much of our Stetho-specific stuff as possible should not be in the main
source set, as that is what ships to customers. Using debugImplementation keeps the
Stetho dependencies out of a release build, but we are going to need some
code to initialize and configure Stetho. That code, ideally, goes somewhere
other than main.
As was covered in the chapter on the Gradle project structure,
we can have a debug source set, as a peer of main. Everything in debug
will be merged into our project for a debug build but will be ignored with
a release build. So, other than the debugImplementation statements in
app/build.gradle, the rest of our Stetho stuff will go into debug.
Adding the Stetho Application
Stetho requires some initialization work, and Facebook recommends that this
be done in a custom Application object. This is a process-wide singleton,
initialized when our process is forked, and so it is good for one-time, process-scope
initialization work.
However, we really want this to be in the debug source set, and that requires
a little bit of work.
The Main Application
Over in the main source set, we have an App class that extends Application
and provides initialization for all build types:

package com.commonsware.android.stetho;

import android.app.Application;
import okhttp3.OkHttpClient;

public class App extends Application {
 private OkHttpClient ok;

 @Override
 public void onCreate() {
 super.onCreate();

 ok=buildOkBuilder().build();
 }

 OkHttpClient getOk() {
 return(ok);
 }

 protected OkHttpClient.Builder buildOkBuilder() {
 return(new OkHttpClient.Builder());
 }
}

(from Diagnostics/Stetho/app/src/main/java/com/commonsware/android/stetho/App.java)
Here, we are initializing an app-wide instance of OkHttpClient, to be used
for our network requests. In other incarnations of this sample app, we either
create the OkHttpClient directly in QuestionsFragment (where the network
I/O is triggered) or are not using OkHttp at all. Here, we are doing this at
the process level, for two reasons:

	For a more complex app, where you are doing network I/O in several places, you
may want a single OkHttpClient instance with all of your configuration.

	Stetho needs access to the OkHttpClient, if we want it to report on network
access. And, we need to use that same Stetho-configured OkHttpClient for all
our network access that we want Stetho to report.

Note that we have a protected method, buildOkBuilder(), that sets up
the OkHttpClient.Builder that we use to create the OkHttpClient instance. We will
see that method again shortly… in a Stetho-specific subclass.
The main edition of the manifest then says that we should use App by setting
android:name on <application>:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.stetho"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.INTERNET"/>

 <application
 android:allowBackup="false"
 android:name="com.commonsware.android.stetho.App"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Apptheme">
 <activity
 android:name="com.commonsware.android.stetho.MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Diagnostics/Stetho/app/src/main/AndroidManifest.xml)
This causes Android to create an instance of App, instead of the standard
Application class, as the process-wide singleton.
The Debug Application
Over in the debug source set, we have a StethoApp class that extends
the App class from the main source set:

package com.commonsware.android.stetho;

import com.facebook.stetho.Stetho;
import com.facebook.stetho.okhttp3.StethoInterceptor;
import okhttp3.OkHttpClient;

public class StethoApp extends App {
 @Override
 public void onCreate() {
 super.onCreate();

 Stetho.initializeWithDefaults(this);
 }

 @Override
 protected OkHttpClient.Builder buildOkBuilder() {
 return(super.buildOkBuilder().addNetworkInterceptor(new StethoInterceptor()));
 }
}

(from Diagnostics/Stetho/app/src/debug/java/com/commonsware/android/stetho/StethoApp.java)
debug source set classes can “see” those in main, which is why we can successfully
subclass App.
Here, in onCreate(), we initialize Stetho with a default configuration, using
initializeWithDefaults(). If all we wanted was basic Stetho integration,
without network call tracking, this would be all that we need.
To integrate network tracking, you need some additional code, based on the
particular HTTP client API that you are using. We pulled in the stetho-okhttp3
dependency and are using OkHttp3, so we need to add an OkHttp network
interceptor. Such an interceptor is called on each network request, for
cross-cutting concerns like logging.
So, we override buildOkBuilder(), call addNetworkInterceptor() to add
a StethoInterceptor to the interceptor chain, and return the modified
OkHttpClient.Builder. Now, when App uses buildOkBuilder(), it will
pull in our subclass override… if the Application singleton for our
process is a StethoApp, instead of an App.
Overriding the Application
That requires us to teach a manifest to use StethoApp, in the same way that
we modified the main source set’s manifest to use App. The debug source set
can have its own manifest, and that manifest can override certain settings
from main:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 package="com.commonsware.android.stetho"
 android:versionCode="1"
 android:versionName="1.0">

 <application
 android:name="com.commonsware.android.stetho.StethoApp"
 tools:replace="android:name">
 </application>

</manifest>

(from Diagnostics/Stetho/app/src/debug/AndroidManifest.xml)
Here we tell Android to use StethoApp for the singleton (via the same
android:name attribute on the <application> element). And, via
tools:replace, we tell the build tools to use our definition for
android:name. Otherwise, the build will fail, as there is a conflict
between what the main manifest has (App) and what the debug manifest has
(StethoApp).
The “Merged Manifest” tab in Android Studio
shows that our resulting android:name attribute
for a debug build uses StethoApp:

[image: Merged Manifest for Debug Build, Showing StethoApp]

Figure 931: Merged Manifest for Debug Build, Showing StethoApp
If we use Android Studio’s Build Variants view to switch to the release
build, now the merged manifest shows that the regular App class will be
used:

[image: Merged Manifest for Release Build, Showing No StethoApp]

Figure 932: Merged Manifest for Release Build, Showing No StethoApp
So, we have achieved our objective: use Stetho in debug builds but not
in release builds.
So, with all that, let’s see what Stetho actually gives us.
Connecting Chrome to Your App
With your app running on an emulator, or on a device connected to your
development machine, open up Chrome or Chromium and visit chrome://inspect/#devices.
This should bring up a page that shows you the available “remote targets”,
which should include your Stetho-enabled app:

[image: Chrome Developer Tools, Showing Remote Targets]

Figure 933: Chrome Developer Tools, Showing Remote Targets
While a square that resembles an unchecked checkbox appears next to your app,
that seems to have no use. Instead, click the “inspect” link below your app
to bring up the Chrome Developer Tools on your Stetho-enabled app.
What You Get In Chrome Dev Tools
Not every tool in Chrome Developer Tools is populated by Stetho. So, for example,
the “Sources” and “Timeline” tools will remain empty. However, some of the other
tools will give you insights into your app, courtesy of Stetho:
Elements: View Hierarchy
The “Elements” tool is roughly comparable to Android Studio’s Layout Inspector
or the uiautomator tool. It allows you to examine the view hierarchy of your
UI.
However, since the Elements tool is designed for examining HTML and Web pages,
the view hierarchy is represented in the form of pseudo-HTML elements:

[image: Elements Tool, Showing Stetho Sample UI Elements]

Figure 934: Elements Tool, Showing Stetho Sample UI Elements
The rules for HTML elements are akin to the rules for layout XML resources:

	If the view is from a well-known package, like android.widget,
the HTML element uses the bare class name

	Otherwise, the HTML element uses the fully-qualified class name

However, these are converted into all lowercase, since HTML elements are not
case-sensitive. This takes a bit of getting used to.
The Styles tab on the right will show common properties of the highlighted view,
represented as if they were CSS styles (e.g., is-enabled). The rightward-pointing
caret in tabs on the right has a “Properties” option. Selecting will give you
a dump of all of the fields inside of the highlighted view, presumably obtained
via Java reflection APIs:

[image: Elements Tool, Showing Properties of a Stetho Sample UI Element]

Figure 935: Elements Tool, Showing Properties of a Stetho Sample UI Element
Also, on your Android device or emulator, the view that you select in the Elements
tool gets a tint applied to it, akin to how the Layout Inspector and uiautomatorviewer
tint the regions of the screenshot shown in each of those tools. This helps you
to identify exactly what widget or container the highlighted element refers to.
Network: HTTP Requests
The “Network” tool, for a standard Web page, shows all of the HTTP requests
that were made in support of rendering that Web page. With Stetho, that tool
shows the HTTP requests made by your app… that went through whatever API
you configured when you set up Stetho. In the sample app, we configured
a particular OkHttpClient to use a Stetho-supplied network interceptor. So,
if we click the refresh action bar item — forcing a fresh set of network calls –
we will see those in the network tool:

[image: Network Tool, Showing HTTP Requests from Sample App Refresh]

Figure 936: Network Tool, Showing HTTP Requests from Sample App Refresh
The URLs shown in the table are clickable. Clicking one opens up a set of
tabs on the side, with a “Headers” tab open by default, to show you the
HTTP headers of the request and response:

[image: Network Tool, Showing HTTP Request and Response Headers]

Figure 937: Network Tool, Showing HTTP Request and Response Headers
The “Preview” tab will show the response, using a structure associated with
the MIME type. So, for example, the Web service call made to the Stack Exchange
API gives us a tree representation of the JSON response:

[image: Network Tool, Showing JSON Response]

Figure 938: Network Tool, Showing JSON Response
…whereas the response shown for one of the images is the image itself, along
with some key details (e.g., size):

[image: Network Tool, Showing Image Response]

Figure 939: Network Tool, Showing Image Response
Screencast: Your UI, Mostly
The button in the upper-right of the Dev Tools window, that looks like a phone,
will open up the “Screencast” pane:

[image: Stetho Screencast]

Figure 940: Stetho Screencast
This shows a semi-live edition of your UI. It has occasional hiccups, particularly
with scrollable content, but generally works.
Resources: In-Place Database CLI
The Resources tool gives you access to your SQLite databases, assuming that they
are stored in the default location used by SQLiteOpenHelper.
Alas, our earlier sample app has no database.
The
Diagnostics/StethoDB
sample project is a clone of one of the database samples,
where we are storing some gravity constants culled from SensorManager in a
database table as starter data, and we allow the user to add more constants.
This time, though, we add the same basic debug/ source set as was used in
the Diagnostics/Stetho sample. In this case, the StethoApplication
extends Application (as the main app has no custom Application class)
and only initializes Stetho itself:

package com.commonsware.android.stetho;

import android.app.Application;
import com.facebook.stetho.Stetho;

public class StethoApp extends Application {
 @Override
 public void onCreate() {
 super.onCreate();

 Stetho.initializeWithDefaults(this);
 }
}

(from Diagnostics/StethoDB/app/src/debug/java/com/commonsware/android/stetho/StethoApp.java)
We also have two different Stetho dependencies. One is just com.facebook.stetho:stetho,
which is the base Stetho artifact. We also load in com.facebook.stetho:stetho-js-rhino,
which enables the JavaScript console, as we will see
later in this chapter. Since this sample app is not doing
any network I/O — let alone with OkHttp3 — we do not need the
com.facebook.stetho:stetho-okhttp3 artifact.
In the Resources tool, you can expand the “Web SQL” tree to see all of
your databases. Expanding a database brings up the tables in that database,
and clicking on a table shows you its current contents:

[image: Resources Tool, Showing Constants Table Content]

Figure 941: Resources Tool, Showing Constants Table Content
Clicking on the database name itself (e.g., constants.db) in the tree brings
up an interactive SQL utility, akin to the sqlite3 command-line tool.
You can execute arbitrary SQL statements and see their results:

[image: Resources Tool, Showing Interactive SQL]

Figure 942: Resources Tool, Showing Interactive SQL
This is all using your live database on the device or emulator. This is much
more convenient than using adb shell run-as commands to pull a SQLite
database off of production hardware and then opening it in some other SQLite
utility.
Console: Example Environment via JavaScript
The com.facebook.stetho:stetho-js-rhino is completely optional. And, if
you add it, it will expand your APK by a fair bit (around 1MB and over 6,000 methods).
However, it adds an interesting feature: JavaScript access to your Application
object, via the Dev Tools’ Console.
The context synthetic JavaScript global object is your custom Application,
and you can interact with it using the Rhino JavaScript-on-Java interpreter.
The return value of any JavaScript expression will be whatever the Java code
returns, or "undefined" for void methods.
Just typing in context allows you to inspect the contents of your
custom Application:

[image: Console Tool, Inspecting the Application Context]

Figure 943: Console Tool, Inspecting the Application Context
importPackage() works akin to how import does in traditional Java code,
to allow you to reference classes from other packages. Anything that can be
reached via your custom Application, or via some static field, can be done,
such as sending a broadcast:

[image: Console Tool, Sending a Broadcast]

Figure 944: Console Tool, Sending a Broadcast
Note: use Shift-Enter to write multiple lines of JavaScript code without
executing them, until you press Enter after the last line.
Getting Help with Stetho
The Stetho Web site
and its corresponding GitHub repository
appear to be your primary places for getting assistance with Stetho.
Hey, What About Sonar?
In 2018, Facebook debuted their next generation of this sort of debugging tool,
called Sonar. Sonar has a few advantages over Stetho:

	It works with iOS and Android

	It has a dedicated desktop client, rather than having to try to cram everything
into Chrome Dev Tools’ UI

	It has a richer plugin mechanism

However, as of its debut, it had significant limitations:

	The desktop client only works with macOS (though, since it is based on Electron,
there is hope for Windows and Linux clients in the future)

	It offers a subset of Stetho’s debugging tools, as it slowly builds out its
functionality

	Creating a plugin requires implementing both the mobile side and the Electron
UI for the tool side

In the long term, Sonar is likely to supplant Stetho.
Issues with Speed
Mobile devices are never fast enough. Either they are slow in general
(e.g., slow CPU) or they are slow for particular operations (e.g.,
advanced game graphics).
What you do not want is for your application to be unnecessarily
slow, where the user determines what is and is not “necessary”. Your
opinion of what is “necessary”, alas, is of secondary importance.
This part of the book will focus on speed, including how you can
measure and reduce lag in your applications. First, though, let’s
take a look at some of the specific issues surrounding speed.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate.
Getting Things Done
In some cases, you simply cannot seem to get the work done that you
want to accomplish. Your database query seems slow. Your encryption
algorithm seems slow. Your image processing logic seems slow. And so
on.
The limits of the device will certainly make this more of a problem
than it might otherwise be. Even a current-era multi-core device will
be slow compared to your average notebook or desktop, as mobile
CPUs cannot readily be directly compared to desktop and notebook
CPUs. Also, this sort
of speed issue is pervasive throughout computing, with decades of
experience to help developers learn how to write leaner code.
This part of the book will aim to help you identify where the problem
spots are, so you know what needs optimization, and then some
Android-specific techniques for trying to improve matters.
Your UI Seems… Janky
Sometimes, the speed would be less of an issue for the user, if it
was not freezing the UI or otherwise making it appear sluggish and
“janky”.
The Android widget framework operates in a single-threaded mode. All
UI changes — from setting the text of a TextView to handling
scrolling of a GridView — are processed as events on an event
queue by the main application thread. That same thread is used for
most UI callbacks, including activity lifecycle methods (e.g.,
onCreate()) and UI event methods (e.g., onClick() of a Button,
getView() of an Adapter). Any time you take in those methods on
the main application thread tie up that thread, preventing it from
processing other GUI events or dispatching user input. For example,
if your getView() processing in an Adapter takes too long,
scrolling a ListView may appear slow compared to other ListView
widgets in other applications.
Your objective is to identify where things are slow and move them
into background operations. Some of this has been advised since the
early days of Android, such as moving all network I/O to background
threads. Lots of work has gone into providing libraries for you to
be able to easily move common tasks, like loading images, onto background
threads.
This part of the book will point out ways for you to find out where
you may be doing unfortunate things on the main application thread
and techniques for getting that work handled by a background thread,
or possibly eliminated outright.
Not Far Enough in the Background
Sometimes, even work you are trying to do in the background will seem
to impact the foreground.
For example, you might think that your Service is automatically in
the background. An IntentService does indeed use a background
thread for processing commands via onHandleIntent(). However, all
lifecycle methods of any Service, including onStartCommand(), are
called on the main application thread. Hence, any time you take in
those lifecycle methods will steal time away from GUI processing for
the main application thread. The same holds true for onReceive() of
a BroadcastReceiver and all the main methods of a ContentProvider
(e.g., query()).
Even your background threads may not be sufficiently in the
background. A process runs with a certain priority, using Linux
process management APIs, based upon its state (e.g., if there is an
activity in the foreground, it runs at a higher priority than if the
process solely hosts some service). This will help to cap the CPU
utilization of the background work, but only to a point. Similarly,
threads that you fork — directly or via something like
IntentService — may run at default priority rather than a
lower priority. Even with lower priorities for the thread or process,
every CPU instruction executed in the background is one clock tick
that cannot be utilized by the foreground.
This part of the book will help you identify where you are taking
lots of time on various threads and will help you manually manage
priorities to help minimize the foreground impact of those threads,
in addition to helping you reduce the amount of work those threads
have to do.
Playing with Speed
Games, more so than most other applications, are highly
speed-dependent. Everyone is seeking the “holy grail” of 60 frames
per second (FPS) necessary for smooth animated effects. Not achieving
that frame rate overall may mean the application will not appear
quite as smooth; sporadically falling below that frame rate will
result in jerky animation effects, much like the “janky” UIs in a
non-game Android application.
For example, a classic problem with Android game development is
garbage collection (GC). The original
Android garbage collector was a “stop the world” implementation, that
would freeze the game long enough for a bit of GC work to be done
before the game could continue. This behavior pretty much guaranteed
sporadic failures to maintain a consistent frame rate. This caused
game developers to have to take particular steps to avoid generating
any garbage, such as maintaining its own object pools, to minimize or
eliminate garbage collection pauses. While Android 2.3 and beyond
have taken steps to have garbage collection be more concurrent, there
are still short pauses (1-2ms, typically), where all threads have
to be suspended to wrap up the GC run.
This book does not focus much on specific issues related to game
development, though many of the techniques outlined here will be
relevant for game developers.
Finding CPU Bottlenecks
CPU issues tend to manifest themselves in three ways:

	The user has a bad experience when using your app directly —
scrolling is sluggish, activities take too long to display, etc.

	The user has a bad experience when your app is running in the
background, such as having slower frame rates on their favorite game
because you are doing something complex in a service

	The user has poor battery performance, driven by your excessive CPU
utilization

Regardless of how the issue appears to the user, in the end, it is a
matter of you using too much CPU time. That could be simply because
your application is written to be constantly active (e.g., you have
an everlasting service that uses TimerTask to wake up every second
and do something). There is little anyone can do to help that short
of totally rethinking the app’s architecture (e.g., switch to
AlarmManager and allow the user to configure the polling period).
However, in many cases, the problem is that you are using algorithms
– yours or ones built into Android — that simply take too
long when used improperly. This chapter will help you identify these
bottlenecks, so you know what portions of your code need to be
optimized in general or apply the techniques described in later
chapters of this part of the book.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate. Reading
the introductory chapter to this trail is also a good
idea.
Android Studio’s Profiler
In Android Studio, the Android Profiler tool allows you
to examine the real-time behavior of your app with respect to various
system resources, such as the CPU.
Opening the Profiler
If one or more debuggable processes are running on an attached device or
an emulator, the Android Profiler tool will appear as an option on the
bottom dock:

[image: Android Studio Bottom Tool Dock, Showing Android Profiler]

Figure 945: Android Studio Bottom Tool Dock, Showing Android Profiler
Opening the profiler will give you a real-time look at the consumption of
CPU, heap space, and network associated with your process:

[image: Android Profiler]

Figure 946: Android Profiler
The top area will show a green bar when your UI is in the foreground, with a
note as to what activity of yours is in the foreground. Purple dots show when
you have received user input, such as taps on buttons.
Manipulating the Profiler
Across the top, there are:

	Drop-downs to choose the device and process that you are profiling

	A close button to close this tool

	Buttons to zoom in, zoom out, or reset the zoom to its default level

	A “Live” button that serves to pause the results or, from a paused state,
resume normal real-time output

Hovering your mouse over a portion of the graph will show you the specific
value at that point in time for the particular metric you are hovering over:

[image: Android Profiler, Showing Specific CPU Usage]

Figure 947: Android Profiler, Showing Specific CPU Usage
Clicking on the CPU graph at any point shows you more details about the per
-thread CPU utilization:

[image: Android Profiler, Showing Per-Thread CPU Usage]

Figure 948: Android Profiler, Showing Per-Thread CPU Usage
Hey, Why Is My App Running So Slow Now?
Depending on the nature of your app, you may find that the profiler dramatically
slows down your app.
Use the “End Session” button to close the profiler, and your app should return to normal.
Method Tracing
The #1 tool in your toolbox for finding out where bottlenecks are
occurring in your application is method tracing. This will record
your code and how long it takes your various methods to do their
work. You can use this to look for outliers:

	Methods that are called way too frequently

	Methods that call other methods way too frequently

	Methods that take a lot of time in their own statements, including
things like blocking on I/O

OK, What Is Method Tracing, Really?
Technically, the method tracing in Android is performed by the
virtual machine, under the direction of either your IDE or requests from
your application code. Dalvik or ART will write the “trace data” (call
graphs showing methods, what they call, and the amount of time in
each) to a file on external storage of the device or emulator.
Your IDE then views these trace files in a GUI, allowing you to
visualize “hot spots”, drill down to find where the time is being
taken, and so forth.
Collecting Trace Data
Hence, the first step for finding where your CPU bottlenecks lie
comes in the form of collecting trace data for analysis.
As mentioned, there are two approaches for requesting
trace data be logged: using the Debug class, and using your IDE.
Debug Class
If you know what chunk of code you want to profile, one way to
arrange for the profile is to call startMethodTracing() on the
Debug class. This takes the name of a trace file as a parameter and
will begin recording all activity to that file, stored in the root of
your external storage. You need to call stopMethodTracing() at some
point to stop the trace — failing to do so will leave you with
a corrupt trace file in the end.
Note that your application will need the WRITE_EXTERNAL_STORAGE
permission for this to work. If your application does not normally
need this permission, make yourself a note to remove it before you
ship the production edition of your product, as there is no sense
asking for any more permissions than you absolutely need. Or, put
this permission in a debug source set’s manifest in Android Studio,
and then it will only be included in debug builds.
Also, your
device or emulator will need enough external storage to hold the
file, which can get very large for long traces — 100MB a minute
is well within reason.
Android Studio
On the per-thread details view of the Android Profiler’s CPU graph, there
is a red dot with a drop-down list to the left of it. This allows you to start
method tracing from the IDE, rather than from Java code.
The drop-down offers two options:

	Sampled, where the data may miss some methods, but the analysis does not
slow down the app

	Instrumented, where all method calls are collected, but the overhead may
significantly slow down the app

After clicking the red dot to begin the method trace, it will turn into a
gray square, and a timer will appear next to it to show how long you have
been tracing. Click the gray square to stop method tracing.
Displaying Trace Data
If you collect the method trace data from within Android Studio, it is
shown in the Android Profiler tool, beneath the CPU per-thread details
view.
If you used Debug.startMethodTracing() and Debug.stopMethodTracing(),
open the file from the Device File Explorer… at which point, nothing works,
due to a bug in Android Studio 3.0-3.1, though
reportedly it is fixed in Android Studio 3.2.
Interpreting Trace Data
Of course, the challenge is in making sense of what the IDE is
trying to present. The UI that you get back, initially, is largely useless:

[image: Method Tracing, Call Chart, As Initially Launched]

Figure 949: Method Tracing, Call Chart, As Initially Launched
This is the “call chart”, where each method gets a tiny box showing how much
time it took compared to the other tiny boxes. Method calls are denoted by
tiny boxes beneath a method’s tiny box.
The “flame chart” is more or less the same perspective, just upside-down:

[image: Method Tracing, Flame Chart, As Initially Launched]

Figure 950: Method Tracing, Flame Chart, As Initially Launched
In both cases, your mouse scroll wheel can expand those tiny boxes to make
them somewhat wider, but the font is extremely small, and there is no search
facility to find anything in it.
Instead, switch over to the “Top Down” tab, which starts to become a bit more
useful:

[image: Method Tracing, Top Down Table, As Initially Launched]

Figure 951: Method Tracing, “Top Down” Table, As Initially Launched
Here, you see the tree of method calls represented as a more classic tree,
with an actually readable font.
The “Bottom Up” tab is even more useful, showing a simple table of all the
distinct methods that were called:

[image: Method Tracing, Bottom Up Table, As Initially Launched]

Figure 952: Method Tracing, “Bottom Up” Table, As Initially Launched
The two tables not only show methods and their classes, but also:

	How much time was taken directly in the method body for that method (“Self”)

	How much time was taken by methods called by the method (“Children”)

	How much total time was taken by the method, which is the sum of the first
two columns (“Total”)

The values are shown in microseconds and as a percentage of the total.
What you are looking for are:

	References to your own classes and methods

	References to classes and methods from libraries that you are using

	Odd stuff that you do not recognize from previous examinations of this sort
of method trace

If those sorts of things are taking significant time, as a percentage of
the total, those are areas to investigate further:

	Are they being called too frequently?

	Are they intrinsically expensive?

Other General CPU Measurement Techniques
While method tracing can be useful for narrowing down a general performance
issue to a specific portion of code, it does assume that you know
approximately where the problem is, or that you even have a problem
in the first place. There are other approaches to help you identify
if and (roughly) where you have problems, which you can then attack
with method tracing to try to refine.
Logging
Method tracing can be useful, if you have a rough idea of where your
performance problem lies and need to narrow it down further. If you
have a large and complicated application, though, trying to sift
through all of it in method tracing may be difficult.
However, there is nothing stopping you from using good old-fashioned
logging to get a rough idea of where your problems lie, for further
analysis via method tracing. Just sprinkle your code with Log.d() calls,
logging SystemClock.uptimeMillis() with an appropriate label to
identify where you were at that moment in time. “Eyeballing” the
Logcat output can illustrate areas where unexpected delays are
occurring — the areas in which you can focus more time using
method tracing.
A useful utility class for this is TimingLogger, in the
android.util package. It will collect a series of “splits” and can
dump them to Logcat along with the overall time between the creation
of the TimingLogger object and the corresponding dumpToLog()
method call. Note, though, that this will only log to Logcat when you
call dumpToLog() — all of the calls to split() to record
intermediate times have their results buffered until dumpToLog() is
called. Also note that logging needs to be set to VERBOSE for this
information to actually be logged — use the command
adb shell setprop log.tag.LOG_TAG VERBOSE, substituting your log tag
(supplied to the TimingLogger constructor) for LOG_TAG.
FPS Calculations
Sometimes, it may not even be strictly obvious how bad the problem
is. For example, consider scrolling a ListView. Some performance
issues, like sporadic “hiccups” in the scrolling, will be visually
apparent. However, absent those, it may be difficult to determine
whether your particular ListView is behaving more slowly than you
would expect.
A classic measurement for games is frames per second (FPS). Game
developers aim for a high FPS value — 60 FPS is considered to
be fairly smooth, for example. However, this sort of calculation can
only really be done for applications that are continuously drawing
– such as
Romain Guy’s WindowBackground sample application.
Ordinary Android widget-based UIs are only drawing
based upon user interaction or, possibly, upon background updates to
data. In other words, if the UI will not even be trying to draw 60
times in a second, trying to measure FPS to get 60 FPS is pointless.
You may be able to achieve similar results, though, simply by logging
how long it takes to, say, fling a list (use setOnScrollListener()
and watch for SCROLL_STATE_FLING and other events).
UI “Jank” Measurement
A user interface is considered “janky” if it stutters or otherwise fails to
operate smoothly, particularly during animated effects like scrolling.
Sometimes, janky behavior is obvious to all. Sometimes, janky behavior is only
noticeable to those sensitive to small hiccups in the UI.
This section will outline what “jank” is and how to determine, concretely, if
your UI suffers from it.
What, Exactly, is Jank?
Prior to Android 4.0, it was difficult to come up with a concrete definition
of jank. In effect, we were stuck with “I know it when I see it”
ad-hoc analysis, rather than being able to rely on concrete measurements.
Project Butter changed that.
Android 4.0 ties all graphic operations to a 60 frames-per-second “vsync” frequency.
If everything is working smoothly, your UI will update 60 times per second,
uniformly (versus varying amounts of times between changes).
The converse is also true: if everything is not working smoothly, your UI will
not update 60 times per second. This is the source of the term “dropped frames”:
when the time came around for an update, you were not ready, and that frame
was skipped.
There are two main ways in which you will drop a frame:

	You spend too much time on the main application thread, preventing Android
from processing your requested UI updates in a timely fashion

	Your UI changes are too complex to be rendered before time runs out for the
current frame, causing your changes to spill over into the next frame

Each frame is ~16ms in duration on-screen (1/60th of a second). Hence, if we
cause per-frame work to exceed 16ms, we will skip, or “drop”, a frame.
So, what we need is some way to determine if our code is actually delivering
frames on time.
Using gfxinfo
To determine if our problem is in the actual rendering of our UI updates, we can
use the GPU profiling feature added in Android 4.2.
Enabling Developer Options
To toggle on GPU profiling, you will need to be able to get to the Developer Options
portion of your Settings app. If you see this — typically towards the bottom
of the list on the initial Settings screen — just tap on the entry.
If, however, Developer Options is missing, then you will need to use the super-secret
trick for enabling Developer Options:

	Tap on “About Phone”, “About Tablet”, or the equivalent at the bottom of your
Settings list

	Tap on the “Build Number” entry seven times in succession

	Press BACK, and “Developer Options” should now be in the list

Toggling on GPU Profiling
There are two checkboxes in Developer Options that need to be checked for GPU
profiling to be enabled.
The first is “Force GPU rendering”, in the Drawing section. As the name suggests,
this will force your application to use the GPU for drawing, even if your application
may have requested that hardware acceleration be disabled. Since most applications
do not force hardware acceleration to be disabled, this checkbox probably will have
no real effect on your app. Note that if you disabled hardware acceleration due
to specific rendering problems, this checkbox will probably cause those rendering
artifacts to re-appear during your testing.
The second is “Profile GPU rendering”, in the Monitoring section. This will cause
the device to keep track of graphics performance on a per-process basis, in a way
that we can dump later on.

[image: Developer Options, Showing Force GPU rendering and Profile GPU rendering]

Figure 953: Developer Options, Showing “Force GPU rendering” and “Profile GPU rendering”
If your app was already running, you will need to get rid of its process (e.g.,
via swiping it off the recent-tasks list) after you check the “Profile GPU
rendering” checkbox. At the present time, whether or not this profiling takes
effect is determined at process startup time and is not changed on the fly when
you toggle the checkbox. Besides, tarting with a fresh process
should give you more accurate results.
Collecting Data
At this point, you can run your app and conduct your specific test, whether
manually or via instrumentation (e.g., a targeted JUnit test suite).
When complete, run adb shell dumpsys gfxinfo ... in a terminal window,
where ... is replaced by the package name of your app (e.g.,
com.commonsware.android.anim.threepane). This will dump a fair amount of information
to the terminal display:

mmurphy@xps15:~$ adb shell dumpsys gfxinfo com.commonsware.android.anim.threepane
Applications Graphics Acceleration Info:
Uptime: 482460 Realtime: 482454

** Graphics info for pid 3469 [com.commonsware.android.anim.threepane] **

Recent DisplayList operations
 Save
 ClipRect
 Translate
 DrawText
 RestoreToCount
 DrawDisplayList
 Save
 ClipRect
 Translate
 DrawText
 RestoreToCount
 DrawDisplayList
 DrawPatch
 Save
 ClipRect
 Translate
 DrawText
 RestoreToCount
 DrawDisplayList
 Save
 ClipRect
 Translate
 DrawText
 RestoreToCount
 DrawDisplayList
 Save
 ClipRect
 Translate
 DrawText
 RestoreToCount
 DrawDisplayList
 Save
 ClipRect
 Translate
 DrawText
 RestoreToCount
 DrawDisplayList
 Save
 ClipRect
 Translate
 DrawText
 RestoreToCount
 DrawDisplayList
 Save
 ClipRect
 Translate
 DrawText
 RestoreToCount
 DrawPatch
 RestoreToCount

Caches:
Current memory usage / total memory usage (bytes):
 TextureCache 1078032 / 25165824
 LayerCache 7864320 / 16777216
 GradientCache 0 / 524288
 PathCache 0 / 4194304
 CircleShapeCache 0 / 1048576
 OvalShapeCache 0 / 1048576
 RoundRectShapeCache 0 / 1048576
 RectShapeCache 0 / 1048576
 ArcShapeCache 0 / 1048576
 TextDropShadowCache 0 / 2097152
 FontRenderer 0 262144 / 262144
Other:
 FboCache 3 / 16
 PatchCache 89 / 512
Total memory usage:
 9204496 bytes, 8.78 MB

Profile data in ms:

 com.commonsware.android.anim.threepane/com.commonsware.android.anim.threepane.MainActivity/android.view.ViewRootImpl@4131e788
 Draw Process Execute
 14.45 59.67 10.44
 10.91 1.06 1.20
 1.73 12.80 1.19
 1.45 0.64 0.94
 2.15 0.47 0.57
 0.79 0.50 0.60
 2.23 0.49 0.73
 1.56 0.57 0.52
 6.14 0.47 1.92
 0.84 0.53 0.59
 1.58 0.52 0.60
 1.46 0.55 0.54
 1.74 0.75 0.68
 1.74 0.61 0.61
 1.05 0.62 1.00
 1.05 0.71 1.28
 1.29 0.50 0.56
 2.22 0.60 0.75
 0.90 0.65 1.42
 1.70 0.86 0.61
 0.81 1.07 0.93
 6.66 2.35 0.98
 0.93 5.18 0.73
 0.34 1.24 0.51
 0.45 1.28 0.46
 1.85 4.38 1.45
 1.32 3.15 1.03
 1.50 3.16 0.98
 1.42 3.00 1.00
 0.90 2.94 1.00
 0.69 2.36 1.15
 1.08 2.72 0.86
 1.49 4.22 1.49
 0.97 2.91 0.91
 0.89 3.05 0.90
 1.36 3.02 1.07
 1.12 2.95 0.95
 1.63 3.47 1.02
 0.96 2.95 0.98
 2.75 5.55 1.83
 2.11 1.47 0.51
 0.44 1.50 0.48
 0.67 1.46 0.51
 2.07 3.93 3.13
 0.71 4.36 1.93
 1.75 3.31 1.15
 2.39 1.79 1.02
 0.96 1.71 0.81
 0.57 1.70 0.73
 1.88 1.81 0.58
 0.59 1.72 0.55
 2.28 3.74 1.72
 2.66 0.84 0.70
 0.64 0.82 0.64
 0.30 0.80 0.62
 1.78 0.70 0.63
 7.20 2.35 1.04
 0.49 0.21 0.50
 9.99 0.26 0.54
 4.28 0.23 0.66
 0.04 0.26 1.94
 3.55 0.52 0.66
 4.56 0.59 0.62
 5.38 0.33 0.68
 4.44 0.33 0.65
 4.35 0.30 0.73
 3.76 0.27 0.60
 3.72 0.30 0.64
 3.75 0.26 0.58
 4.79 0.33 0.75
 4.68 0.33 0.85
 3.00 0.22 0.53
 2.44 0.26 0.83
 14.87 0.69 1.59
 8.68 0.96 1.96
 3.44 0.47 0.96
 3.73 0.22 0.65
 3.06 0.72 0.65
 3.86 0.35 1.13
 3.32 0.26 0.57
 3.21 0.26 0.62
 3.84 0.26 0.60
 4.85 0.33 0.72
 4.16 0.32 0.70
 3.96 0.30 0.69
 2.60 0.82 0.66
 8.72 0.47 0.69
 0.49 0.31 1.50
 0.46 0.28 0.77
 7.54 3.66 0.90
 7.50 0.27 0.71
 0.06 0.32 2.37
 6.07 0.28 0.97
 3.68 0.27 0.52
 6.39 5.86 4.48
 4.66 0.29 1.28
 0.05 0.26 11.86
 8.87 12.64 1.25
 3.32 0.26 0.58
 6.22 4.77 1.26
 3.49 0.31 0.86
 11.32 10.49 1.26
 10.27 15.09 1.78
 12.50 1.34 2.53
 7.66 4.74 0.58
 0.03 0.24 0.32
 4.43 0.30 0.56
 9.75 2.94 1.68
 17.93 0.47 0.56
 3.81 0.35 1.04
 0.20 2.84 2.72
 10.06 0.28 0.92
 5.74 0.72 1.92
 0.07 0.87 0.53
 2.05 0.95 2.03

View hierarchy:

 com.commonsware.android.anim.threepane/com.commonsware.android.anim.threepane.MainActivity/android.view.ViewRootImpl@4131e788
 50 views, 4.48 kB of display lists, 115 frames rendered

Total ViewRootImpl: 1
Total Views: 50
Total DisplayList: 4.48 kB

We will discuss what this means in just a bit.
Disabling GPU Profiling
When you are done with your test, it is a good idea to undo the settings changes
you made, at least “Profile GPU rendering”. That way, the act of collecting this
data does not itself add overhead to unrelated tests in the future.
Analyzing the Results
The key bit for our performance analysis is that long table labeled
“Profile data in ms:”. This reports, for a series of UI requests, how much time
is spent:

	drawing your UI changes (e.g., onDraw() calls to various widgets and containers)

	processing the low-level drawing commands created via the draw phase, to create
the contents of the frame

	executing the frame, sending it to the compositor to display on the screen

One way to interpret this table is to paste it into your favorite spreadsheet
program, then use that program to draw a stacked column chart of the data.
You can
download a spreadsheet
in ODS format (for use with LibreOffice, OpenOffice,
or other tools that can handle that format) that contains the above table along
with a stacked column chart:

[image: gfxinfo Output, In Stacked Column Chart]

Figure 954: gfxinfo Output, In Stacked Column Chart
What you are looking for are columns that come close to, or exceed, the 16ms
mark, with milliseconds on the Y axis. As you can see, many operations towards
the end of the table are near
or above 16ms, indicating that we are probably dropping some frames.
Using systrace
Another way we could determine whether or not we are dropping frames is to use
systrace to collect system-level tracing information about the entire device,
including our app.
systrace is a very powerful tool, one that few people truly
understand, due to cryptic output and limited documentation. Using gfxinfo for
detecting dropped frames is simple by comparison.
Using systrace involves collecting a trace, which is saved in the form of an
HTML file. The HTML file is then used to determine what went on during the period
of the trace itself.
Enabling and Collecting a Trace: Command-Line
The original means of using systrace was from the command line. There is a
systrace.py Python script located in the platform-tools/systrace/ directory of your
SDK installation. If you have a Python interpreter (e.g., your development machine
does not run Windows), you can use this approach.
To indicate what specific bits of information to collect, on Android 4.2 and higher,
you can tap the “Enable traces” entry in the Monitoring section of the Developer
Options page in Settings. This displays a multi-select dialog of the possible
major categories of information that systrace should collect:

[image: Enable traces In Settings]

Figure 955: “Enable traces” In Settings
Alternatively, when you run the systrace.py script, you can include the
--set-tags switch, with a comma-delimited list of specific traces (“tags”)
that you want to collect. The list of available tag names can be found in
the developer documentation.
To actually collect the trace, you run the systrace.py script, optionally
with --set-tags or other command-line switches.
On Android 4.1 and 4.2, this would look like:

python systrace.py --set-tags gfx,view,wm
adb shell stop
adb shell start
python systrace.py --time=10 -o trace.html

The first python command runs systrace.py just to set the tags to
collect. If you set them using Developer Options in Settings, this would not be
required. Restarting adb shell is apparently needed, for unclear reasons.
The second systrace.py run will actually collect the trace, for 10 seconds
(--time=10), resulting in report written to trace.html in the current working
directory (-o trace.html).
The syntax changed for Android 4.3 and higher to simplify matters, combining
the two systrace.py commands into one:

python systrace.py --time=10 -o trace.html gfx view sched wm

Note that --set-tags is no longer used. Instead, all values not identified
by a switch are considered to be tags.
Once you run the script, quickly go to your device and run your test scenario,
as the trace starts immediately upon running the script.
Collecting Traces on Android 9.0 Devices
On Android 9.0 devices, collecting systrace traces is a bit easier, courtesy of
some on-device options. If you go into Settings > Developer Options > Debugging,
you will find a “System Tracing” option that is your gateway to systrace, as a
replacement for the “Enable traces” option on prior Android versions:

[image: System Tracing in Developer Options]

Figure 956: System Tracing in Developer Options
Tapping that item brings up a dedicated screen for configuring systrace:

[image: System Tracing Settings in Developer Options]

Figure 957: System Tracing Settings in Developer Options
Principally, you will want to toggle the “Record trace” switch to be on
when you want to start collecting a trace. This will also bring up a notification
to allow you to stop the trace collection. Tapping that notification not only
stops the trace collection, but it also raises another notification, which you
can tap to use ACTION_SEND to transfer the .ctrace file off of the device
using your preferred app. Alternatively, to get the trace file off of the device,
use adb pull. Ideally, you would
be able to get it via Android Studio’s Device File Explorer, but there is
a bug that prevents this.
Then, to convert the .ctrace file that you get into an HTML report, use systrace.py
akin to above:

python systrace.py --from-file /path/to/your.ctrace

(where /path/to/your.ctrace is the path to the .ctrace file that you obtained
from the device)
If you plan on collecting traces frequently this way, you might consider toggling
the “Show Quick Settings Tile” switch in the “System Tracing” screen in the
Developer Options. This will add a tile to your notification shade, for one-tap
starting and stopping of trace collection:

[image: System Tracing Quick Settings Tile]

Figure 958: System Tracing Quick Settings Tile
Choosing the Trace Tags
All of these instructions have been telling you to specify what systrace
tags to collect when you collect the trace data. So, what should you collect?
The big four are:

	
sched for CPU scheduling

	
gfx for graphics

	
view for widget rendering

	
wm for window management

Apps using WebView might consider the webview tag. There are
a variety of other tags
as well that you might find useful for one analysis or another. However,
be careful not to request “everything but the kitchen sink”, as it may make
your reports difficult to interpret.
Also note that not all devices support all tags. python systrace.py --list-categories
should tell you what is possible for your connected device.
Android 9.0 users can choose these options via the “Categories” item in the
“System Tracing” screen in the Developer Options:

[image: System Tracing Categories/Tags in Settings]

Figure 959: System Tracing Categories/Tags in Settings
Augmenting the Trace from Java
You can effectively add your own tag to the output in Java code, to flag key
sections of application processing and see where they fall in the report’s
timeline. To do this:

	Add calls to Trace.beginSection() and Trace.endSection() in your
API Level 18+ app. Here, Trace is android.os.Trace, and beginSection()
takes a String parameter that you would like to have logged. Note that
these calls can nest, so you can have one section inside of another, but
endSection() closes the last-begun section. Hence, make sure that your
beginSection() and endSection() calls match up, typically by using
try/finally exception handling. Also, your beginSection() and
endSection() calls must match up in terms of threads — you cannot begin
a section on one thread and end it on another.

	Add the --app switch to name your application’s package if you are running
systrace from the command line.

Viewing and Interpreting the Results
What you get as output is an HTML file that can be viewed in the Chrome
browser, though you will tend to want to use a development machine for this
instead of, say, an Android tablet. That is because the navigation of the Web
page is designed for use with a hardware QWERTY keyboard, which most Android
devices lack.
You can find a sample trace
from a Nexus 7 online, though note that the HTML is a bit large and may take a few
seconds to download. Initially, you will see something like this:

[image: Systrace Output, As Initially Viewed]

Figure 960: Systrace Output, As Initially Viewed
The left-hand sidebar represents various categories (or “slices” or “tags” or
whatever) of data collected by systrace. The main area shows a timeline for the
test, with rows corresponding to the sidebar entries for what was occurring at
the various times for that particular category. The bottom pane will hold details
that will appear when you click on various little blocks within that timeline.
Mostly, your navigation will use the W, A, S, and D keys, presumably chosen to
make it appear as though you are playing a video game. Specifically:

	W will zoom in the timeline, while S will zoom out

	A and D will pane the timeline left and right

Jank will show up as gaps in the SurfaceFlinger:

[image: Systrace Output, Zoomed In on 0.7 Seconds of Profiling]

Figure 961: Systrace Output, Zoomed In on 0.7 Seconds of Profiling
Each of the major ticks across the timeline represents 0.1 seconds. There should
be six frames in those seconds. However, we can see that in the 3.4-3.5 second
range, there is a dropped frame, which shows up as a gap where there should be
a pulse of SurfaceFlinger activity.
Zooming in further starts to bring up some detail for the threads in our
process, showing methods within the view processing hierarchy that we were
working on during this period of time:

[image: Systrace Output, Zoomed In on 40 Milliseconds of Profiling]

Figure 962: Systrace Output, Zoomed In on 40 Milliseconds of Profiling
In our gfx/view slice, we will see various blocks for different major operations
in the rendering of our UI. Notably, you will see blocks labeled “performTraversals”,
referring to the private performTraversals() method on ViewRootImpl. It turns
out that performTraversals() wraps around all of the work shown in the three
columns of our gfxinfo output: draw, process, and execute. The widths of the
“performTraversals” blocks in the systrace output shows us how long each of those
takes. What we want are nice, short blocks. Instead, panning through our trace,
you will see several that are too long.
The chapter on “jank busting”
will go into further analysis of where this particular
sample application went wrong that caused this behavior.
Focus On: NDK
When Android was first released, many a developer wanted to run C/C++
code on it. There was little support for this, other than by
distributing a binary executable and running it via a forked process.
While this works, it is a bit cumbersome, and the process-based
interface limits how cleanly your C/C++ code could interact with a
Java-based UI. On top of all of that, the use of such binary
executables is not well supported.
In June 2009, the core Android team released the Native Development
Kit (NDK). This allows developers to write C/C++ for Android
applications in a supported fashion, in the form of libraries linked
to a hosting Java-based application via the Java Native Interface
(JNI). This offers a wealth of opportunities for Android development,
and this part of the book will explore how you can take advantage of
the NDK to exploit those opportunities.
This chapter explains how to set up the NDK and apply it to your
project. What it does not do is attempt to cover all possible uses of
the NDK — game applications in particular have access to many
frameworks, like OpenGL and OpenSL, that are beyond the scope of this
book.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate. Reading
the introductory chapter to this trail is also a good
idea.
This chapter also assumes that you know C/C++ programming.
The Role of the NDK
We start by examining Dalvik’s primary limitation — speed.
Next, we look at the reasons one might choose the NDK, speed among
them. We wrap up with some reasons why the NDK may not be the right
solution for every Android problem, despite its benefits.
Dalvik: Secure, Yes; Speedy, Not So Much
Dalvik was written with security as a high priority. Android’s
security architecture is built around Linux’s user model, with each
application getting its own user ID. With each application’s process
running under its own user ID, one process cannot readily affect
other processes, helping to contain any single security flaw in an
Android application or subsystem. This requires a fair number of
processes. However, phones have limited RAM, and the Android project
wanted to offer Java-based development. Multiple processes hosting
their own Java virtual machines simply could not fit in a phone.
Dalvik’s virtual machine is designed to address this, maximizing the
amount of the virtual machine that can be shared securely between
processes (e.g., via “copy-on-write”).
Of course, it is wonderful that Android has security so woven into
the fabric of its implementation. However, inventing a new virtual
machine required tradeoffs, and most of those are related to speed.
A fair amount of work has gone into making Java fast. Standard Java
virtual machines do a remarkable job of optimizing applications on
the fly, such that Java applications can perform at speeds near their
C/C++ counterparts. This borders on the amazing and is a testament to
the many engineers who put countless years into Java.
Dalvik, by comparison, is very young. Many of Java’s performance
optimization techniques — such as advanced garbage collection
algorithms — simply have not been implemented to nearly the
same level in Dalvik. This is not to say they will never exist, but
it will take some time. Even then, though, there may be limits as to
how fast Dalvik can operate, considering that it cannot “throw memory
at the problem” to the extent Java can on the desktop or server.
ART has significantly improved matters, with ahead-of-time
compilation (AOT) replacing just-in-time compilation (JIT) for getting
native opcodes from the Dalvik bytecodes. However, that code may still
be inefficient when compared with writing C/C++ by hand.
Going Native
Java-based Android development via Dalvik and the Android SDK is far
and away the option with the best support from the core Android team.
HTML5 application development is another option that was brought to
you by the core Android development team. The third leg of the
official Android development triad is the NDK, provided to developers
to address some specific problems, outlined below.
Speed
Far and away the biggest reason for using the NDK is speed, pure and
simple. Writing in C/C++ for the device’s CPU will be a major speed
improvement over writing the same algorithms in Java, despite
Android’s JIT compiler (Dalvik) and AOT compiler (ART).
There is overhead in reaching out to the C/C++ code from a hosting
Java application, and so for the best performance, you will want a
coarse interface, without a lot of calls back and forth between Java
and the native opcodes. This may require some redesign of what might
otherwise be the “natural” way of writing the C/C++ code, or you may
just have to settle for less of a speed improvement. Regardless, for
many types of algorithms — from cryptography to game AI to
video format conversions — using C/C++ with the NDK will make
your application perform much better, to the point where it can
enable applications to be successful that would be entirely too slow
if written solely in Java.
Bear in mind, though, that much of what you think is Java code in
your app really is native “under the covers”. Many of the built-in
Android classes are thin shims over native implementations. Again,
focus on applying the NDK where you are performing lots of work
yourself in Java code that might benefit from the performance gains.
Porting
You may already have some C/C++ code, written for another
environment, that you would like to use with Android. That might be
for a desktop application. That might be for another mobile platform,
such as iOS, where C/C++ is an option. That might be for
mobile platform, such as Symbian, where C/C++ is the conventional
solution, rather than some other language. Regardless, so long as
that code is itself relatively platform-independent, it should be
usable on Android.
This may significantly streamline your ability to support multiple
platforms for your application, even if down-to-the-metal speed is
not really something you necessarily need. This may also allow you to
reuse existing C/C++ code written by others, for image processing or
scripting languages or anything else.
Knowing Your Limits
Developers love silver bullets. Developers are forevermore seeking
The One True Approach to development that will be problem-free.
Sisyphus would approve, of course, as development always involves
tradeoffs. So while the NDK’s speed may make it tantalizing, it is
not a solution for general Android application development, for
several reasons, explored in this section.
Android APIs
The biggest issue with the NDK is that you have very limited access
to Android itself. There are a few libraries bundled with Android
that you can leverage, and a few other APIs offered specifically to
the NDK, such as the ability to render OpenGL 3D graphics. But,
generally speaking, the NDK has no access to the Android SDK, except
by way of objects made available to it from the hosting application
via JNI.
As such, it is best to view the NDK as a way of speeding up
particular pieces of an SDK application — game physics, audio
processing, OCR, and the like. All of those are algorithms that need
to run on Android devices with data obtained from Android, but
otherwise are independent of Android itself.
Cross-Platform Compatibility
While C/C++ can be written for cross-platform use, often it is not.
Sometimes, the disparity is one of APIs. Any time you use an API from
a platform (e.g., iPhone) or a library (e.g., Qt) not available on
Android, you introduce an incompatibility. This means that while a
lot of your code — measured in terms of lines — may be
fine for Android, there may be enough platform-specific bits woven
throughout it that you would have a significant rewrite ahead of you
to make it truly cross-platform.
Android itself, though, has a compatibility issue, in terms of CPUs.
Android mostly runs on ARM devices today, since Android’s initial
focus was on smartphones, and ARM-powered smartphones at that.
However, the focus on ARM will continue to waver, particularly as
Android moves into other devices where other CPU architectures are
more prevalent, such as Atom or MIPS for set-top boxes. While your
code may be written in a fashion that works on all those
architectures, the binaries that code produces will be specific to
one architecture. The NDK gives you additional assistance in managing
that, so that your application can simultaneously support multiple
architectures.
Right now, the NDK supports ARM, x86, and MIPS CPU architectures.
Of these, ARM CPUs power the vast majority of Android devices.
The first generation of Google TV boxes, and a few other devices,
use Intel x86 CPUs (usually Atom-based). MIPS is a relative newcomer
to Android, with few devices using such CPUs at this time.
Introducing CWAC-AndDown
CWAC-AndDown
is mentioned in passing in
the chapter on rich text handling. It is an Android
library that wraps hoedown,
a C-based Markdown-to-HTML converter. The hoedown project itself is a fork
of sundown, which itself was used by many sites, like GitHub, for their
Markdown processing. CWAC-AndDown is great for projects that take in Markdown
and want to render the results in a WebView.
Because CWAC-AndDown uses hoedown, and since hoedown is in C, CWAC-AndDown
needs the NDK. We will examine how the NDK works using CWAC-AndDown as an
example.
Installing the NDK
You can now use the NDK from Android Studio, which was not the case for
quite some time.
In the Android Studio SDK Manager, you will need the CMake and NDK items from the
SDK Tools tab:

[image: NDK-Related Items from SDK Manager]

Figure 963: NDK-Related Items from SDK Manager
Also note that when you create a new project, you will have the option of
choosing to add C++ code support, which implies the NDK. This may cause
the new-project wizard and later steps to install pieces of the NDK that you
may be missing.
The Contents of an NDK Project
At its core, an NDK-enhanced Android project is a regular Android
project. You still need a manifest, layouts, Java source code, and
all the other trappings of a regular Android application. The NDK
simply enables you to add C/C++ code to that project and have it
included in your builds, referenced from your Java code via the Java
Native Interface (JNI).
Your C/C++ Code
Android Studio tends to organize its code based on language. Hence,
in your main/ source set, in addition to java/, you can have a cpp/
directory. Despite the name, both C and C++ code can reside in there, along
with associated header files. These can be organized into whatever
directory structure you want.
On the whole, your C/C++ code will be made up of two facets:

	The code doing the real work

	The code implementing your JNI interface

In the case of CWAC-AndDown, the hoedown source code is in a hoedown/ directory
off of the cpp/ directory, while the JNI interface code is directly off
of the cpp/ directory:

[image: Android Studio Project Tree, Showing C Code]

Figure 964: Android Studio Project Tree, Showing C Code
Your Makefile
The recommended build engine for the NDK in Android Studio is CMake, which is
why that is an option available in the SDK Manager. CMake in Android Studio
works off of a CMakeLists.txt file, which is a variation on the “makefile”
sort of build instructions that has been used for C/C++ code for decades. This
file goes in your module’s directory (e.g., in app/, or in the case of CWAC-AndDown,
in anddown/). It provides the details of what you want built in terms of
native code:

For more information about using CMake with Android Studio, read the
documentation: https://d.android.com/studio/projects/add-native-code.html

Sets the minimum version of CMake required to build the native library.

cmake_minimum_required(VERSION 3.4.1)

Creates and names a library, sets it as either STATIC
or SHARED, and provides the relative paths to its source code.
You can define multiple libraries, and CMake builds them for you.
Gradle automatically packages shared libraries with your APK.

add_library(# Sets the name of the library.
 anddown

 # Sets the library as a shared library.
 SHARED

 # Provides a relative path to your source file(s).
 src/main/cpp/anddown.c
 src/main/cpp/hoedown/autolink.c
 src/main/cpp/hoedown/buffer.c
 src/main/cpp/hoedown/document.c
 src/main/cpp/hoedown/escape.c
 src/main/cpp/hoedown/html.c
 src/main/cpp/hoedown/html_blocks.c
 src/main/cpp/hoedown/html_smartypants.c
 src/main/cpp/hoedown/stack.c
 src/main/cpp/hoedown/version.c)

include_directories(src/main/cpp src/main/cpp/hoedown)

set(CMAKE_CXX_FLAGS
 "${CMAKE_CXX_FLAGS} -std=c++0x -O2 -D_FORTIFY_SOURCE=2 -fstack-protector-all -fPIE")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -pie")

Here, we have four major configuration items.

	
cmake_minimum_required() indicates the minimum required version of CMake
that is likely to understand this CMakeLists.txt file and be able to compile
your code

	
add_library() indicates the name of the library (here, anddown), SHARED
to indicate that we are building a shared library, then the paths to each of
the individual C or C++ files that should be compiled into this library

	
include_directories() provides the directories in which the C compiler
(gcc) will be told to use to resolve any #include directives in the
C/C++ code for pulling in headers

	
set() sets environment variables used in the forked process for the C
complier (in this case, setting some compile and link flags)

Presumably, CMake supports much more than this, but this should be sufficient
for many simple uses of the NDK.
Your Gradle Changes
Your module’s build.gradle file can have externalNativeBuild closures
to configure CMake:

android {
 compileSdkVersion 27
 buildToolsVersion '27.0.3'

 defaultConfig {
 minSdkVersion 9
 targetSdkVersion 27

 testApplicationId "com.commonsware.cwac.anddown.test"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

 externalNativeBuild {
 cmake { cppFlags "" }
 }
 }
 debug {
 jniDebuggable true

 externalNativeBuild {
 cmake { cppFlags "-DDEBUG" }
 }
 }
 }

 externalNativeBuild {
 cmake { path "CMakeLists.txt" }
 }
}

Here, we:

	Tell CMake that our CMakeLists.txt file is in the designated file, for
all build variants

	Tell CMake to make our debug builds debuggable, via the -DDEBUG flag
and via the jniDebuggable Gradle setting

Building Your Library
Given all of the above, Android Studio will happily compile your NDK code
as part of a build. Or, at the very least, it will try to. Unfortunately, at
least as of Android Studio 2.3.3, the integration between gcc and Android
Studio is weak in terms of compile errors. If you have a syntax error in your
native code — or, worse, have something wrong in CMakeLists.txt — you may
have some challenges in understanding exactly what is wrong.
The compiled code will show up in build/intermediates/cmake/ and, eventually,
in the APK or AAR being assembled by this module. By default, Android Studio
will build your native code for the following CPU architectures:

	arm64-v8a

	armeabi

	armeabi-v7a

	mips

	mips64

	x86

	x86_64

However, that means that you will wind up with a bigger APK than
is necessary for any given user: they have an APK with N CPU architectures,
installed on a device with only 1 CPU architecture. You can use
“ABI splits”
to arrange to also generate separate APKs for each CPU architecture. Some
distribution channels, like the Play Store, support distributing separate
APKs per CPU architecture for a single application ID.
Splits are configured using a splits closure inside the android
closure:

android {
 splits {
 abi {
 enable true
 universalApk true
 }
 }
}

By default, ABI splits are disabled; the enabled true statement says
that you want APKs split by CPU architecture. The universalApk true
statement indicates that you want a “fat APK” supporting all CPU
architectures in addition to a per-architecture APK. The “fat APK”
would be useful for distribution channels that do not support
per-architecture APKs.
By default, you get one APK for every CPU architecture.
That is fine for cases where you are in
control over the NDK code. If you are using a third-party library
that has the NDK code, it may be that the library developers are
supporting CPU architectures that you are not. In that case, you
have two options:

	Add an exclude statement to blacklist certain CPU architectures
that you specifically do not want to support

	Use reset() and include to whitelist certain CPU architectures
that you specifically do want to support

android {
 splits {
 abi {
 enable true
 reset()
 include "x86", "armeabi-v7a", "x86", "x86_64", "arm64-v8a"
 universalApk true
 }
 }
}

Note that the Play Store will be requiring that you ship 64-bit architecture
support in 2019. You are welcome to also support 32-bit architectures, but
64-bit architectures will be required.
Your Java and JNI Code
Now that you have your base C/C++ code being successfully compiled by
the NDK, you need to turn your attention towards crafting the bridge
between the Dalvik VM and the C/C++ code, following in the
conventions of the Java Native Interface (JNI).
This section, while explaining the various steps involved in using
the JNI, is far from a complete treatise on the subject. If you are
going to spend a lot of time working with JNI, you are encouraged to
seek additional resources on this topic, such as
Core Java: Volume II, which has a chapter on
JNI.
We want Android apps to be able to easily generate HTML from Markdown. To
that end, we have an AndDown Java class containing two public methods:

	A one-parameter markdownToHtml(), which performs a basic conversion of Markdown to HTML, returning
the String of HTML-formatted content

	A three-parameter markdownToHtml() method that also takes a pair of int
bitfields for hoedown “extensions” and flags

The catch is that the three-parameter method has the native keyword, meaning
that it is implemented in C/C++:

package com.commonsware.cwac.anddown;

/**
 * Java entry point to convert Markdown to HTML. Call the static markdownToHtml()
 * method for this.
 */
public class AndDown {
 static {
 System.loadLibrary("anddown");
 }

 /* block-level extensions */
 public static final int HOEDOWN_EXT_TABLES = (1 << 0);
 public static final int HOEDOWN_EXT_FENCED_CODE = (1 << 1);
 public static final int HOEDOWN_EXT_FOOTNOTES = (1 << 2);

 /* span-level extensions */
 public static final int HOEDOWN_EXT_AUTOLINK = (1 << 3);
 public static final int HOEDOWN_EXT_STRIKETHROUGH = (1 << 4);
 public static final int HOEDOWN_EXT_UNDERLINE = (1 << 5);
 public static final int HOEDOWN_EXT_HIGHLIGHT = (1 << 6);
 public static final int HOEDOWN_EXT_QUOTE = (1 << 7);
 public static final int HOEDOWN_EXT_SUPERSCRIPT = (1 << 8);
 public static final int HOEDOWN_EXT_MATH = (1 << 9);

 /* other flags */
 public static final int HOEDOWN_EXT_NO_INTRA_EMPHASIS = (1 << 11);
 public static final int HOEDOWN_EXT_SPACE_HEADERS = (1 << 12);
 public static final int HOEDOWN_EXT_MATH_EXPLICIT = (1 << 13);

 /* negative flags */
 public static final int HOEDOWN_EXT_DISABLE_INDENTED_CODE = (1 << 14);

 public static final int HOEDOWN_HTML_SKIP_HTML = (1 << 0);
 public static final int HOEDOWN_HTML_ESCAPE = (1 << 1);
 public static final int HOEDOWN_HTML_HARD_WRAP = (1 << 2);
 public static final int HOEDOWN_HTML_USE_XHTML = (1 << 3);

 /**
 * Given Markdown, returns HTML. 'Nuff said.
 *
 * @param raw Markdown-formatted string
 * @return HTML-formatted string
 */
 public String markdownToHtml(String raw) {
 return(markdownToHtml(raw, 0, 0));
 }

 public native String markdownToHtml(String raw, int extensions, int flags);
}

AndDown also has a static block with a System.loadLibrary() call, which
teaches the virtual machine what native library to load and look for the
native methods. In this case, the library is anddown, which is the name
that we gave it in CMakeLists.txt.
The Java JDK comes with a javah utility. Given a Java class like AndDown,
javah will generate the appropriate C header file for all native methods.
That gives us the awkwardly-named com_commonsware_cwac_anddown_AndDown.h file,
with the equally-awkward Java_com_commonsware_cwac_anddown_AndDown_markdownToHtml()
function declaration:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_commonsware_cwac_anddown_AndDown */

#ifndef _Included_com_commonsware_cwac_anddown_AndDown
#define _Included_com_commonsware_cwac_anddown_AndDown
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: com_commonsware_cwac_anddown_AndDown
 * Method: markdown
 * Signature: (Ljava/lang/String;)Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_com_commonsware_cwac_anddown_AndDown_markdownToHtml
 (JNIEnv *, jobject, jstring, unsigned int, unsigned int);

#ifdef __cplusplus
}
#endif
#endif

We do not really use this file much, other than to get the C function prototype
that we need to implement. The JNI bridge code will look for that function when
our Java code calls the native implementation of markdownToHtml(). Our
implementation of that C function delegates to a series of hoedown functions
for actually performing the Markdown-to-HTML conversion:

/***
 Copyright (c) 2010 CommonsWare, LLC
 Portions (c) somebody else who didn't bother to indicate who they were

 Licensed under the Apache License, Version 2.0 (the "License"); you may
 not use this file except in compliance with the License. You may obtain
 a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
*/

#include "com_commonsware_cwac_anddown_AndDown.h"
#include "document.h"
#include "html.h"
#include "buffer.h"

#define INPUT_UNIT 64
#define OUTPUT_UNIT 64

JNIEXPORT jstring JNICALL Java_com_commonsware_cwac_anddown_AndDown_markdownToHtml
 (JNIEnv *env, jobject o, jstring raw, unsigned int extensions, unsigned int flags) {
 struct hoedown_buffer *ib, *ob;
 jstring result;
 hoedown_renderer *renderer;
 hoedown_document *document;
 const char* str;

 str = (*env)->GetStringUTFChars(env, raw, NULL);

 ib = hoedown_buffer_new(INPUT_UNIT);
 hoedown_buffer_puts(ib, str);
 ob = hoedown_buffer_new(OUTPUT_UNIT);

 (*env)->ReleaseStringUTFChars(env, raw, str);

 renderer = hoedown_html_renderer_new(flags, 0);
 document = hoedown_document_new(renderer, extensions, 16);

 hoedown_document_render(document, ob, ib->data, ib->size);
 hoedown_document_free(document);

 result=(*env)->NewStringUTF(env, hoedown_buffer_cstr(ob));

 /* cleanup */
 hoedown_buffer_free(ib);
 hoedown_buffer_free(ob);

 return(result);
}

However, our Java code is largely oblivious to this. It can simply call
the markdownToHtml() methods on AndDown, such as in a trivial
instrumentation test case for confirming that the build works:

package com.commonsware.cwac.anddown.test;

import android.support.test.runner.AndroidJUnit4;
import com.commonsware.cwac.anddown.AndDown;
import junit.framework.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
public class MarkdownTest {
 @Test
 public void testSimple() {
 AndDown andDown=new AndDown();

 Assert.assertEquals("<p>Hello, world</p>",
 andDown.markdownToHtml("Hello, world").trim());
 Assert.assertEquals("<p>This <q>contains</q> a quote</p>",
 andDown.markdownToHtml("This \"contains\" a quote",
 AndDown.HOEDOWN_EXT_QUOTE, 0).trim());
 }
}

libhoudini and the NDK
libhoudini is a proprietary ARM translation layer for x86-powered Android devices.
It allows an app that has NDK binaries for ARM, but not x86, to still run on x86 hardware,
albeit not as quickly as it would with native x86 binaries. The advantage is
that you can ship an APK without x86 binaries (so the APK is smaller) yet still
be able to run on x86 devices.
Given ARM’s current dominance in the Android ecosystem, libhoudini is hugely useful
for Intel and hardware vendors interested in using Intel’s mobile CPUs. Without it,
only apps that ship x86 NDK binaries would be compatible with x86-powered devices like
the Samsung Galaxy Tab 3 10.1" tablet. Some developers probably skip x86 NDK binaries,
because they are not aware of popular x86-powered devices, or lack one for testing, or are
concerned over APK size. The Play Store for x86 would shrink substantially from the million-plus
apps available to ARM devices, to those that do not use the NDK or happen to ship x86
binaries. libhoudini makes ARM-only NDK binaries usable on x86, giving x86-powered
Android devices access to more of the Play Store catalog.
However, it is slower. A test suite for SQLCipher for Android,
run on an ASUS MeMO Pad FHD 10, ran about three times as long when using the ARM
binaries and libhoudini, when compared to the same test run using x86 binaries.
On the other hand, supporting x86 in addition to ARM adds another 5MB to the app,
on top of the 6.5MB spent for ARM and the platform-neutral pieces. Being able
to use SQLCipher for Android without the x86 binaries might be useful, particularly for
apps bumping up against APK size limits, like the 50MB limit on the Play Store.
You may wish
to do your own testing. Testing is easy enough: just temporarily move the x86/ directory
from libs/ somewhere else, then recompile and test on libhoudini-equipped hardware.
If you do not have your own libhoudini-equipped hardware, you may be able to take
advantage of services like Samsung’s Remote Test Lab,
which recently added the Galaxy Tab 3 10.1 to its lineup.
If you have the space for it, include the x86 binaries for your NDK-compiled libraries.
This will give you maximum speed for little incremental engineering cost. However,
if space is at a premium, libhoudini may allow you to reach many of the same x86
devices, but be sure that your app will run acceptably given the performance overhead.
Improving CPU Performance in Java
Knowing that you have CPU-related issues in your app is one thing —
doing something about it is the next challenge. In some respects,
tuning an Android application is a “one-off” job, tied to the
particulars of the application and what it is trying to accomplish.
That being said, this chapter will outline some general-purpose ways
of boosting performance that may counter issues that you are running
into.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate. Reading
the introductory chapter to this trail is also a good
idea.
Reduce CPU Utilization
One class of CPU-related problems come from purely sluggish code.
These are the sorts of things you will see in Traceview, for example
– methods or branches of code that seem to take an inordinately long
time. These are also some of the most difficult to have general
solutions for, as often times it comes down to what the application
is trying to accomplish. However, the following sections provide
suggestions for consuming fewer CPU instructions while getting the
same work done.
These are presented in no particular order.
Standard Java Optimizations
Most of your algorithm fixes will be standard Java optimizations, no
different than have been used by Java projects over the past decade
and change. This section outlines a few of them. For more, consider
reading Effective Java by Joshua Bloch or Java Performance Tuning
by Jack Shirazi.
Avoid Excessive Synchronization
Few objects in java.* namespaces are intrinsically thread-safe,
outside of java.util.concurrent. Typically, you need to perform
your own synchronization if multiple threads will be accessing
non-thread-safe objects. However, sometimes, Java classes have
synchronization that you neither expect nor need. Synchronization
adds unnecessary overhead.
The classic example here is StringBuffer and StringBuilder.
StringBuffer was part of Java from early on, and, for whatever
reason, was written to be thread-safe — two threads that append
to the buffer will not cause any problems. However, most of the time,
you are only using the StringBuffer from one thread, meaning all
that synchronization overhead is a waste. Later on, Java added
StringBuilder, with the same basic set of methods as has
StringBuffer, but without the synchronization.
Similarly, in your own code, only synchronize where it is really
needed. Do not toss the synchronized keyword around randomly, or
use concurrent collections that will only be used by one thread, etc.
Avoid Floating-Point Math
The first generation of Android devices lacked a floating-point
coprocessor on the ARM CPU package. As a result, floating-point math
speed was atrocious. That is why the Google Maps add-on for Android
uses GeoPoint, with latitude and longitude in integer microdegrees,
rather than the standard Android Location class, which uses Java
double variables holding decimal degrees.
While later Android devices do have floating-point coprocessor
support, that does not mean that floating-point math is now as fast
as integer math. If you find that your code is spending lots of time
on floating-point calculations, consider whether a change in units
would allow you to replace the floating-point calculations with
integer equivalents. For example, microdegrees for latitude and
longitude provide adequate granularity for most maps, yet allow
Google Maps to do all of its calculations in integers.
Similarly, consider whether the full decimal accuracy of
floating-point values is really needed. While it may be physically
possible to perform distance calculations in meters with accuracy to
a few decimal points, for example, in many cases the user will not
need that degree of accuracy. If so, perhaps changing to fixed-point
(integer) math can boost your performance.
Don’t Assume Built-In Algorithms are Best
Years upon years of work has gone into the implementation of various
algorithms that underlie Java methods, like searching for substrings
inside of strings.
Somewhat less work has gone into the implementation of the Apache
Harmony versions of those methods, simply because the project is
younger, and it is a modified version of the Harmony implementation
that you will find in Android. While the core Android team has made
many improvements to the original Harmony implementation, those
improvements may be for optimizations that do not fit your needs
(e.g., optimizing to reduce memory consumption at the expense of CPU
time).
But beyond that, there are
dozens of string-matching algorithms,
some of which may be better for you depending on
the string being searched and the string being searched for. Hence,
you may wish to consider applying your own searching algorithm rather
than relying on the built-in one, to boost performance. And, this
same concept may hold for other algorithms as well (e.g., sorting).
Of course, this will also increase the complexity of your
application, with long-term impacts in terms of maintenance cost.
Hence, do not assume the built-in algorithms are the worst, either —
optimize those algorithms that Traceview or logging suggest are where
you are spending too much time.
Support Hardware-Accelerated Graphics
An easy “win” is to add android:hardwareAccelerated="true" to your
<application> element in the manifest. This toggles on hardware
acceleration for 2D graphics, including much of the stock widget
framework. For maximum backwards compatibility, this hardware
acceleration is off, but adding the aforementioned attribute will
enable it for all activities in your application.
Note that this is only available starting with Android 3.0. It is
safe to have the attribute in the manifest for older Android devices,
as they simply will ignore your request.
You also should test your application thoroughly after enabling
hardware acceleration, to make sure there are no unexpected issues.
For ordinary widget-based applications, you should encounter no
problems. Games or other applications that do their own drawing might
have issues. If you find that some of your code runs into problems,
you can override hardware acceleration on a per-activity basis by
putting the android:hardwareAccelerated attribute on <activity> elements in
the manifest.
Minimize IPC
Calling a method on an object in your own process is fairly
inexpensive. The overhead of the method invocation is fairly
minuscule, and so the time involved is simply however long it takes
for that method to do its work.
Invoking behaviors in another process, via inter-process
communication (IPC), is considerably more expensive. Your request has
to be converted into a byte array (e.g., via
the Parcelable interface),
made available to the other process, converted back into
a regular request, then executed. This adds substantial CPU overhead.
There are three basic flavors of IPC in Android:

	“Directly” invoking a third-party application’s service’s
AIDL-published interface, to which you bound with bindService()

	Performing operations on a content provider that is not part of
your application (i.e., supplied by the OS or a third-party
application)

	Performing other operations that, under the covers, trigger IPC

Remote Bound Service
Using a remote service is fairly obvious when you do it — it is
difficult to mistake copying the AIDL into your project and such. The
proxy object generated from the AIDL converts all your method calls
on the interface into IPC operations, and this is relatively
expensive.
If you are exposing a service via AIDL, design your API to be
coarse-grained. Do not require the client to make 1,000 method
invocations to accomplish something that can be done in 1 via
slightly more complex arguments and return values.
If you are consuming a remote service, try not to get into situations
where you have to make lots of calls in a tight loop, or per row of a
scrolled AdapterView, or anything else where the overhead may
become troublesome.
For example, in the
CPU-Java/AIDLOverhead
sample project, you will find a pair of projects
implementing the same do-nothing method in equivalent services. One
uses AIDL and is bound to remotely from a separate client
application; the other is a local service in the client application
itself. The client then calls the do-nothing method 1 million times
for each of the two services. On average, on a Samsung Galaxy Tab
10.1, 1 million calls takes around 170 seconds for the remote
service, while it takes around 170 milliseconds for the local
service. Hence, the overhead of an individual remote method
invocation is small (~170 microseconds), but doing lots of them in a
loop, or as the user flings a ListView, might become noticeable.
Remote Content Provider
Using a content provider can be somewhat less obvious of a problem.
Using ContentResolver or a CursorLoader looks
the same whether it is your own content provider or someone else’s.
However, you know what content providers you wrote; anything else is
probably running in another process.
As with remote services, try to aggregate operations with remote
content providers, such as:

	Use bulkInsert() rather than lots of individual insert() calls

	Try to avoid calling update() or delete() in a tight loop
– instead, if the content provider supports it, use a more
complex “WHERE clause” to update or delete everything at once

	Try to get all your data back in few queries, rather than lots of
little ones… though this can then cause you issues in terms of
memory consumption

Remote OS Operation
The content provider scenario is really a subset of the broader case
where you request that Android do something for you and winds up
performing IPC as part of that.
Sometimes, this is going to be obvious. If you are sending commands
to a third-party service via startService(), by definition, this
will involve IPC, since the third-party service will run in a
third-party process. Try to avoid calling startService() lots of
times in close succession.
However, there are plenty of cases that are less obvious:

	All requests to startActivity(), startService(), and
sendBroadcast() involve IPC, as it is a separate OS process that
does the real work

	Registering and unregistering a BroadcastReceiver (e.g.,
registerReceiver()) involves IPC

	All of the “system services”, such as LocationManager, are
really rich interfaces to an AIDL-defined remote service, and so most
operations on these system services require IPC

Once again, your objective should be to minimize calls that involve
IPC, particularly where you are making those calls frequently in
close succession, such as in a loop. For example, frequently calling
getLastKnownLocation() will be expensive, as that involves IPC to a
system process.
Android-Specific Java Optimizations
The way that the Dalvik VM was implemented and operates is subtly
different than a traditional Java VM. Therefore, there are some
optimizations that are more important on Android than you might find
in regular desktop or server Java.
The Android developer documentation has
a roster of such optimizations.
Some of the highlights include:

	Getters and setters, while perhaps useful for encapsulation, are
significantly slower than direct field access. For simpler cases,
such as ViewHolder objects for optimizing an Adapter, consider
skipping the accessor methods and just use the fields directly.

	Some popular method calls are replaced by hand-created assembler
instructions rather than code generated via the JIT compiler.
indexOf() on String and arraycopy() on System are two cited
examples. These will run much faster than anything you might create
yourself in Java.

Reduce Time on the Main Application Thread
Another class of CPU-related problem is when your code may be
efficient, but it is occurring on the main application thread,
causing your UI to react sluggishly. You might have tuned your
decryption algorithm as best as is mathematically possible, but it
may be that decrypting data on the main application thread simply
takes too much time. Or, perhaps StrictMode complained about some
disk or network I/O that you are performing on the main application
thread.
The following sections recap some commonly-seen patterns for moving
work off the main application thread, plus a few newer options that
you may have missed.
Generate Less Garbage
Most developers think of having too many allocations as being solely
an issue of heap space. That certainly has an impact, and depending
on the nature of the allocations (e.g., bitmaps), it may be the
dominant issue.
However, garbage has impacts from a CPU standpoint as well. Every
object you create causes its constructor to be executed. Every object
that is garbage-collected requires CPU time both to find the object
in the heap and to actually clean it up (e.g., execute the finalizer,
if any).
Worse still, on older versions of Android (e.g., Android 2.2 and
down), the garbage collector interrupts the entire process to do its
work, so the more garbage you generate, the more times you “stop the
world”. Game developers have had to deal with this since Android’s
inception. To maintain a 60 FPS refresh rate, you cannot afford any
garbage collections on older devices, as a single GC run could easily
take more than the ~16ms you have per drawing pass.
As a result of all of this, game developers have had to carefully
manage their own object pools, pre-allocating a bunch of objects
before game play begins, then using and recycling those objects
themselves, only allowing them to become garbage after game play ends.
Most non-game Android applications may not have to go to quite that
extreme across the board. However, there are cases where excessive
allocation may cause you difficulty. For example, avoiding creating
too much garbage is one aspect of view recycling with AdapterView,
which is covered in greater detail in the next section.
If Traceview indicates that you are spending a lot of time in garbage
collection, pay attention to your loops or things that may be invoked
many times in rapid succession (e.g., accessing data from a custom
Cursor implementation that is tied to a CursorAdapter). These are
the most likely places where your own code might be creating lots of
extra objects that are not needed. Examining the heap to see what is
all being created (and eventually garbage collected) will be covered
in an upcoming chapter of the book.
View Recycling
Perhaps the best-covered Android-specific optimization is view
recycling with AdapterView.
In a nutshell, if you are extending BaseAdapter, or if you are
overriding getView() in another adapter, please make use of the
View parameter supplied to getView() (referred to here as
convertView). If convertView is not null, it is one of your
previous View objects you returned from getView() before, being
offered to you for recycling purposes. Using convertView saves you
from inflating or manually constructing a fresh View every time the
user scrolls, and both of those operations are relatively expensive.
If you have been ignoring convertView because you have more than
one type of View that getView() returns, your Adapter should be
overriding getViewTypeCount() and getItemViewType(). These will
allow Android to maintain separate object pools for each type of row
from your Adapter, so getView() is guaranteed to be passed a
convertView that matches the row type you are trying to create.
A somewhat more advanced optimization — caching all those
findViewById() lookups — is also possible once your row
recycling is in place. Often referred to as “the holder pattern”, you
do the findViewById() calls when you inflate a new row, then attach
the findViewById() results to the row itself via some custom
“holder” object and the setTag() method on View. When you recycle
the row, you can get your “holder” back via getTag() and skip
having to do the findViewById() calls again.
Background Threads
Of course, the backbone of any strategy to move work off the main
application thread is to use background threads, in one form or
fashion. You will want to apply these in places where StrictMode
complains about network or disk I/O, or places where Traceview or
logging indicate that you are taking too much time on the main
application thread during GUI processing (e.g., converting downloaded
bitmap images into Bitmap objects via BitmapFactory).
Sometimes, you will manually dictate where work should be done in the
background, either by forking threads yourself or by using
AsyncTask. AsyncTask is a nice framework, handling all of the
inter-thread communication for you and neatly packaging up the work
to be done in readily understood methods. However, AsyncTask does
not fit every scenario — it is mostly designed for
“transactional” work that is known to take a modest amount of time
(milliseconds to seconds) then end. For cases where you need
unbounded background processing, such as monitoring a socket for
incoming data, forking your own thread will be the better approach.
Sometimes, you will use facilities supplied by Android to move work
to the background. For example, many activities are backed by a
Cursor obtained from a database or content provider. Classically,
you would manage the cursor (via startManagingCursor()) or
otherwise arrange to refresh that Cursor in onResume(), so when
your activity returns to the foreground after having been gone for a
while, you would have fresh data. However, this pattern tends to lead
to database I/O on the main application thread, triggering complaints
from StrictMode. Android 3.0 and the Android Compatibility Library
offer a Loader framework designed to try to solve the core pattern
of refreshing the data, while arranging for the work to be done
asynchronously.
Asynchronous BroadcastReceiver Operations
99.44% of the time (approximately) that Android calls your code in
some sort of event handler, you are being called on the main
application thread. This includes manifest-registered
BroadcastReceiver components — onReceive() is called on the main
application thread. So any work you do in onReceive() ties up that
thread (possibly impacting an activity of yours in the foreground),
and if you take more than 10 seconds, Android will terminate your
BroadcastReceiver with extreme prejudice.
Classically, manifest-registered BroadcastReceiver components only
live as long as the onReceive() call does, meaning you can do very
little work in the BroadcastReceiver itself. The typical pattern is
to have it send a command to a service via startService(), where
the service “does the heavy lifting”.
Android 3.0 added a goAsync() method on BroadcastReceiver that
can help a bit here. While under-documented, it tells Android that
you need more time to complete the broadcast work, but that you can
do that work on a background thread. This does not eliminate the
10-second rule, but it does mean that the BroadcastReceiver can do
some amount of I/O without having to send a command to a service to
do it while still not tying up the main application thread.
The
CPU-Java/GoAsync
sample project demonstrates goAsync() in use, as the project
name might suggest.
Our activity’s layout consists of two Button widgets and an
EditText widget:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">
 <EditText android:id="@+id/editText1" android:layout_width="match_parent"
 android:layout_height="wrap_content">
 </EditText>
 <Button android:layout_width="match_parent" android:id="@+id/button1"
 android:layout_height="wrap_content" android:text="@string/nonasync"
 android:onClick="sendNonAsync"></Button>
 <Button android:layout_width="match_parent" android:id="@+id/button2"
 android:layout_height="wrap_content" android:text="@string/async"
 android:onClick="sendAsync"></Button>
</LinearLayout>

(from CPU-Java/GoAsync/app/src/main/res/layout/main.xml)
The activity itself simply has sendAsync() and sendNonAsync()
methods, each invoking sendBroadcast() to a different
BroadcastReceiver implementation:

package com.commonsware.android.tuning.goasync;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class GoAsyncActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void sendAsync(View v) {
 sendBroadcast(new Intent(this, AsyncReceiver.class));
 }

 public void sendNonAsync(View v) {
 sendBroadcast(new Intent(this, NonAsyncReceiver.class));
 }
}

(from CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/GoAsyncActivity.java)
The NonAsyncReceiver simulates doing time-consuming work in
onReceive() itself:

package com.commonsware.android.tuning.goasync;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;

public class NonAsyncReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context arg0, Intent arg1) {
 SystemClock.sleep(7000);
 }
}

(from CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/NonAsyncReceiver.java)
Hence, if you click the “Send Non-Async Broadcast” button, not only
will the button fail to return to its normal state for seven seconds,
but the EditText will not respond to user input either.
The AsyncReceiver, though, uses goAsync():

package com.commonsware.android.tuning.goasync;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;

public class AsyncReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 final BroadcastReceiver.PendingResult result=goAsync();

 (new Thread() {
 public void run() {
 SystemClock.sleep(7000);
 result.finish();
 }
 }).start();
 }
}

(from CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/AsyncReceiver.java)
The goAsync() method returns a PendingResult, which supports a
series of methods that you might ordinarily fire on the
BroadcastReceiver itself (e.g., abortBroadcast()) but want to do
on a background thread. You need your background thread to have
access to the PendingResult — in this case, via a final
local variable. When you are done with your work, call finish() on
the PendingResult.
If you click the “Send Async Broadcast” button, even though we are
still sleeping for 7 seconds, we are doing so on a background thread,
and so our user interface is still responsive.
Saving SharedPreferences
The classic way to save SharedPreferences.Editor changes was via a
call to commit(). This writes the preference information to an XML
file on whatever thread you are on — another hidden source of
disk I/O you might be doing on the main application thread.
If you are on API Level 9, and you are willing to blindly try saving
the changes, use the new apply() method on
SharedPreferences.Editor, which works asynchronously.
If you need to support older versions of Android, or you really want
the boolean return value from commit(), consider doing the
commit() call in an AsyncTask or background thread.
And, of course, to support both of these, you will need to employ
tricks like conditional class loading. You can see that used for
saving SharedPreferences in the
CPU-Java/PrefsPersist
sample project. The activity reads in a
preference, puts the current value on the screen, then updates the
preference with the help of an AbstractPrefsPersistStrategy class
and its persist() method:

package com.commonsware.android.tuning.prefs;

import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.widget.TextView;

public class PrefsPersistActivity extends Activity {
 private static final String KEY="counter";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 SharedPreferences prefs=
 PreferenceManager.getDefaultSharedPreferences(this);
 int counter=prefs.getInt(KEY, 0);

 ((TextView)findViewById(R.id.value)).setText(String.valueOf(counter));

 AbstractPrefsPersistStrategy.persist(prefs.edit().putInt(KEY, counter+1));
 }
}

(from CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/PrefsPersistActivity.java)
AbstractPrefsPersistStrategy is an abstract base class that will
hold a strategy implementation, depending on Android version. On
pre-Honeycomb builds, it uses an implementation that forks a
background thread to perform the commit():

package com.commonsware.android.tuning.prefs;

import android.content.SharedPreferences;
import android.os.Build;

abstract public class AbstractPrefsPersistStrategy {
 abstract void persistAsync(SharedPreferences.Editor editor);

 private static final AbstractPrefsPersistStrategy INSTANCE=initImpl();

 public static void persist(SharedPreferences.Editor editor) {
 INSTANCE.persistAsync(editor);
 }

 private static AbstractPrefsPersistStrategy initImpl() {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk<Build.VERSION_CODES.HONEYCOMB) {
 return(new CommitAsyncStrategy());
 }

 return(new ApplyStrategy());
 }

 static class CommitAsyncStrategy extends AbstractPrefsPersistStrategy {
 @Override
 void persistAsync(final SharedPreferences.Editor editor) {
 (new Thread() {
 @Override
 public void run() {
 editor.commit();
 }
 }).start();
 }
 }
}

(from CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/AbstractPrefsPersistStrategy.java)
On Honeycomb and higher, it uses a separate strategy class that uses
the new apply() method:

package com.commonsware.android.tuning.prefs;

import android.content.SharedPreferences.Editor;

public class ApplyStrategy extends AbstractPrefsPersistStrategy {

 @Override
 void persistAsync(Editor editor) {
 editor.apply();
 }
}

(from CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/ApplyStrategy.java)
By separating the Honeycomb-specific code out into a separate class,
we can avoid loading it on older devices and encountering the dreaded
VerifyError.
Whether using the built-in apply() method is worth dealing with
multiple strategies, versus simply calling commit() on a background
thread, is up to you.
Improve Throughput and Responsiveness
Being efficient and doing work on the proper thread may still not be
enough. It could be that your work is not consuming excessive CPU
time, but is taking too long in “wall clock time” (e.g., the user
sits waiting too long at a ProgressDialog). Or, it could be that
your work, while efficient and in the background, is causing
difficulty for foreground operations.
The following sections outline some common problems and solutions in
this area.
Minimize Disk Writes
Earlier in this book, we emphasized moving disk writes off to
background threads.
Even better is to get rid of some of the disk writes entirely.
A big culprit here comes in the form of database operations. By
default, each insert(), update(), or delete(), or any
execSQL() invocation that modifies data, will occur in its own
transaction. Each transaction involves a set of disk writes. Many
times, this is not a problem. But, if you are doing a lot of these
– such as importing records from a CSV file — hundreds or
thousands of transactions will mean thousands of individual disk
writes, and that can take some time. You may wish to wrap those
operations in your own transaction, using methods like
beginTransaction(), simply to reduce the number of transactions
and, therefore, disk writes.
If you are doing your own disk I/O beyond databases, you may
encounter similar sorts of issues. Overall, it is better to do a few
larger writes than lots of little ones.
Set Thread Priority
Threads you fork, by default, run at a default priority:
THREAD_PRIORITY_DEFAULT as defined on the Process class. This is
a lower priority than the main application thread
(THREAD_PRIORITY_DISPLAY).
Threads you use via AsyncTask run at a lower priority
(THREAD_PRIORITY_BACKGROUND). If you fork your own threads, then,
you might wish to consider moving them to a lower priority as well,
to affect how much time they get compared to the main application
thread. You can do this via setThreadPriority() on the Process
class.
The lowest possible priority, THREAD_PRIORITY_LOWEST, is described
as “only for those who really, really don’t want to run if anything
else is happening”. You might use this for “idle-time processing”,
but bear in mind that the thread will be paused a lot to allow other
threads to run.
Lower-priority threads will help ensure that your background work
does not affect your foreground UI. Processes themselves are put in a
lower-priority class as they move to the background (e.g., you have
no activities visible), which further reduces the amount of CPU time
you will be using at any given moment.
Also, note that IntentService uses a thread at default (not
background) priority — you may wish to drop the priority of
this thread to something that will be lower than your main
application thread, to minimize how much CPU time the IntentService
steals from your UI.
Do the Work Some Other Time
Just because you could do the work now does not mean you should do
the work now. Perhaps a better answer is to do the work later, or do
part of the work now and part of the work later.
For example, suppose that you have your own database of points of
interest for your custom map application. Periodically, you publish a
new database on your Web site, which your Android app should
download. Odds are decent that the user is not in desperate need for
this new database right away. In fact, the CPU time and disk I/O time
to download and save the database might incrementally interfere with
the foreground application, despite your best efforts.
In this case, not only should you check for and download the database
when the user is unlikely to be using the device (e.g., before dawn),
but you should check whether the screen is on via isScreenOn() on
PowerManager, and delay the work to sometime when the screen is
off. For example, you could have AlarmManager set up to have your
code check for updates every 24 hours at 4am. If, at 4am, the screen
is on, your code could skip the download and wait until tomorrow, or
skip the download and add a one-shot alarm to wake you up in 30
minutes, in hopes that the user will no longer be using the device.
At the same time, you may wish to consider having a “refresh” menu
choice somewhere, for when the user specifically wants you to go get
the update (if available) now, for whatever reason.
Finding and Eliminating Jank
A user interface is considered “janky” if it stutters or otherwise fails to
operate smoothly, particularly during animated effects like scrolling.
Finding and eliminating the causes of janky behavior (“jank”)
is part science, part art, and part throwing darts at a dartboard.
This chapter will outline some techniques for identifying and removing jank
from a user interface. The steps shown here originated in
a blog post by Google’s Romain Guy,
with a few additional twists and turns due to the different nature of the particular
case being studied. Mr. Guy’s blog post is essential reading for all advanced
Android developers, and the author is deeply indebted to Mr. Guy for his work
in this area.
Prerequisites
The only hard prerequisite for this chapter is having read the core chapters
and the chapter on finding CPU bottlenecks.
That being said, having read the chapter on animators
would help understand portions of this chapter a bit better.
The Case: ThreePaneDemoBC
In the chapter on animators, we examined an implementation
of the Gmail-style three-pane layout with animated transitions
(a.k.a., “The Three-Fragment Problem”). The implementation
shown there originated with
a Stack Overflow question
with the solution presented in this book offered as
an answer.
A commenter on that answer
pointed out that he detected some stutter, even on decent hardware.
This chapter reviews the steps that were taken to determine if we really are
doing things incorrectly, what specifically we are doing wrong, and what can be done
to fix it.
Are We Janky?
In the
eyes of this book’s author, the three-pane implementation presented in the
chapter on animators was perfectly reasonable on good hardware.
There are two lessons to take from this:

	It is better to come up with an objective definition for “jank” and test to
see if your code meets that definition at various points

	The author of this book is very tolerant of janky user interfaces

The results shown in the chapter on CPU measurement
for the gfxinfo and
systrace tools come from the three-pane demo code.
The gfxinfo and the systrace results both point to the three-pane demo spending
too much time doing work and therefore dropping some number of frames. This
lines up with the visual report, and indicates that we have some work to do to try
to improve matters.
Finding the Source of the Jank
Just because we know that we are janky does not mean that we have any idea what
to do about it. We need to conduct some further analysis to determine where,
exactly, our jank is coming from.
Traceview
One thing that we can do to help further refine the source of our trouble is to
use Traceview. As outlined in the section on Traceview,
Traceview reports how many calls were made of various methods in our code (and
in the framework code) and how much time was spent there.
Here are some of the results from a Traceview run on the three-pane demo on a
Nexus 7:

[image: Traceview of Three-Pane Demo]

Figure 965: Traceview of Three-Pane Demo
We see that 88.9% of our CPU time is spent in doFrame() on Choreographer and
the calls triggered from it. doFrame() is a private method which, as the name
suggests, performs the drawing, processing, and executing of a single frame’s worth
of rendering. More importantly, we see that doFrame() was called 68 times during
our test run, meaning that our UI changed 68 times during the ~3 seconds of activity
during our trace.
Further down the table, we see that layout() on ViewGroup was called 26 times
directly (and 248 more times via recursion), contributing about 25% of the time
consumed by doFrame(). Since layout() is called on less than half of the
doFrame() calls, the time consumed by layout() makes up a fairly significant
portion of the doFrame() time during those 26 frames.
More importantly, layout() is something that we trigger. It implies that we have
made some change to our UI content that requires a layout pass of some ViewGroup.
Having a layout pass on occasion is perfectly normal, particularly in response to
user input. A layout() might be triggered by the user tapping on a row in one of
our ListViews, for example. But we are not doing 26 user input events in our
test — all we are doing is tapping one time each on a pair of ListView rows, then
pressing the BACK button. This implies that something else in our code is causing
layout() to be needed.
Unfortunately, at this point, Traceview does not help much, because the calls to
layout() are asynchronous with respect to our own code, so it will not be all that
obvious where the extra calls are coming from. This is where we need some expert
help, as we will see later in this chapter.
Overdraw
Another common source of jank is overdraw. Overdraw refers to the act of painting
the same pixel several times, due to overlapping components. For example:

	The activity window itself has a background

	You have a container that fills the activity’s content, such as a ListView,
which has a background

	You have children in that container with backgrounds (row), who have their
own children with backgrounds and, eventually, content (widgets like ImageView
and TextView)

Places where there is overlap, the OS might set the color of a pixel several times
per frame, wasting time.
The easiest way to track down overdraw is to use the “Show GPU overdraw” option in
the Developer Options portion of the Settings app:

[image: Nexus 7 Developer Options, with Show GPU overdraw]

Figure 966: Nexus 7 Developer Options, with “Show GPU overdraw”
This option is only available on Android 4.2 and higher.
When you enable this option, then restart your app’s process (if it was already
running), Android will shade pixels that are overdrawn:

	Blue for pixels that are drawn twice

	Green for pixels that are drawn three times

	Pink for pixels that are drawn four times

	Red for pixels that are drawn five or more times

In short: pink and red are bad. Green and blue are OK, though if you have large
patches of either shade, you might consider trying to see if there’s a way to
get rid of the overdraw.
Of course, the fact that these are shades applied to existing pixel colors may
make it a bit difficult to tell exactly where the overdraw is occurring. For
example, a red portion of your UI might be red from overdraw… or it might be
red because you made it red. Temporarily changing your color scheme to something
else (e.g., yellow) will help distinguish what is overdraw and what is just the
natural UI coloration.
If you enable this option on a Nexus 7 and run the three-pane demo, you will see
very little blue or green (beyond the normal blue of the activated state
of our ListView rows), and virtually no red:

[image: Three-Pane Demo, As Initially Launched, Showing Overdraw]

Figure 967: Three-Pane Demo, As Initially Launched, Showing Overdraw

[image: Three-Pane Demo, Left and Middle Panes, Showing Overdraw]

Figure 968: Three-Pane Demo, Left and Middle Panes, Showing Overdraw

[image: Three-Pane Demo, Middle and Right Panes, Showing Overdraw]

Figure 969: Three-Pane Demo, Middle and Right Panes, Showing Overdraw

[image: Three-Pane Demo, Left and Middle Panes Via BACK, Showing Overdraw]

Figure 970: Three-Pane Demo, Left and Middle Panes Via BACK, Showing Overdraw
On the other hand, bringing up the Contacts app on the same Nexus 7 shows
significantly more overdraw:

[image: Contacts App, Showing Overdraw]

Figure 971: Contacts App, Showing Overdraw
The good news is that our app is not suffering performance problems due to overdraw.
The bad news is that the Contacts app is.
The good news is that if you are reading this, you are probably not responsible
for maintaining the Contacts app.
The Contacts app’s major problems come from the contact photos, or placeholders
as seen here. Either the ImageView has a background, or the ImageView fills
some container with a background. For example, the ImageView might be in some
container with a background to provide a bevel effect around the image. Making
the portion of the background that is behind the ImageView be transparent will
eliminate the overdraw.
Note: some GPU architectures can automatically fix overdraw in select places,
while others cannot. Notably, the Tegra 3 cannot. Hence, the Tegra 3 is a good
test platform for using this overdraw-detection feature of Android.
Extraneous Views
Another related source of jank is having too many extraneous views. Each widget
and container contributes to the cost of drawing the overall UI, so having
extraneous views adds overhead.
Perhaps the most common scenario for extraneous views is the single-child container.
If a container will only ever hold one child, perhaps you can get rid of that
container. Not only will this speed up execution at runtime, but it can
help avoid running out of stack space.
One way to find these extraneous views is to bring up your user interface
in the Android Studio Layout Inspector, or in the older Hierarchy View tool.

[image: Three-Pane Demo, As Initially Launched, in Layout Inspector]

Figure 972: Three-Pane Demo, As Initially Launched, in Layout Inspector
The root DecorView has only one child. This is a framework-supplied
container, and so we have no control over it.

[image: Three-Pane Demo in Layout Inspector, Showing More Hierarchy]

Figure 973: Three-Pane Demo in Layout Inspector, Showing More Hierarchy
Here, we have a FrameLayout holding onto just one child, our ThreePaneLayout
custom view. We set up ThreePaneLayout as being our activity’s content view.
The “content view” of an activity is poured into a FrameLayout, supplied by
the Android framework — that is the FrameLayout seen in Hierarchy View. We have
no good way to get rid of this FrameLayout. Fortunately, FrameLayout is
a very cheap container, in terms of runtime execution speed.

[image: More Single-Child Containers in Three-Pane Demo, from Layout Inspector]

Figure 974: More Single-Child Containers in Three-Pane Demo, from Layout Inspector
Here, we see that our left and middle FrameLayout containers, for our left
and middle panes, each contain one child, a FrameLayout. These come
from using ListFragment, as does the LinearLayout (having visibility
GONE) and another FrameLayout, before getting to the ListView.
Short of writing our own fragment for holding a ListView,
there is nothing we can do about these extraneous views.
Conclusion: Too Many layout() Calls?
Given that overdraw does not seem to be a problem and that we have few extraneous
views under our control, it would seem that perhaps we should return our attention
to the extra layout() calls. While trying to get rid of the ListFragment extraneous
views would make those layout() calls incrementally cheaper, we will get more
value by getting rid of the unnecessary calls in the first place, if indeed they
are unnecessary.
Where Things Went Wrong
Of course, it doesn’t hurt to call in an expert, to try to confirm exactly what
is going on.
Chet Haase — Google engineer on Android,
celebrated book author,
and part-time comedian –
chimed in with an answer to a
Stack Overflow question about this three-pane animation, asked by the person who
commented about the dropped frames on the original Stack Overflow question.
The key statement from his answer was:

Sliding things around is fine (translationX/Y), fading things in/out is good (alpha), but actually laying things out on every frame? Just say no.

Specifically, he is referring to our use of ObjectAnimator to change the width
of the middle pane as we show and hide the right pane. Each time we change the
width of the middle pane, we trigger a layout() call, to reposition the child
widgets within that pane as needed. Our animations are adding ~20 layout() calls,
introducing overhead that is pushing us over the per-frame limit on the Nexus 7.
Removing the Jank
To remove the jank, we need to remove the ObjectAnimator changing the width
of the middle pane on the fly. You can see the results of this in the
Jank/ThreePaneBC
sample app.
Now, our showLeft() and hideLeft() methods immediately change the width of
the middle pane, rather than arranging its animation:

 public void hideLeft() {
 if (leftWidth == -1) {
 leftWidth=left.getWidth();
 middleWidthNormal=middle.getWidth();
 resetWidget(left, leftWidth);
 resetWidget(middle, middleWidthNormal);
 resetWidget(right, middleWidthNormal);
 requestLayout();
 }

 translateWidgets(-1 * leftWidth, left, middle, right);
 setMiddleWidth(leftWidth);
 }

 public void showLeft() {
 translateWidgets(leftWidth, left, middle, right);
 setMiddleWidth(middleWidthNormal);
 }

 private void setMiddleWidth(int value) {
 middle.getLayoutParams().width=value;
 requestLayout();
 }

(from Jank/ThreePaneBC/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)
This does not provide nearly as good of a UI as the original.
However, the revised solution does reduce the jank, as seen in this
gfxinfo output:

[image: gfxinfo Output of Revised ThreePaneDemoBC]

Figure 975: gfxinfo Output of Revised ThreePaneDemoBC
There are probably
ways to improve upon the revised jank-free implementation. Lacking that, it is up
to you to decide if the amount of jank found in the original implementation is
worth the improved animation or not.
Frame Metrics API
Above, we looked at gfxtrace,
which gives you a dump of information related to the rendering of your
UI, including how much time is spent in different aspects of that
work. However, gfxtrace is a device-wide data collection, and so there
may be a bit of noise in the results due to other things being updated
(Notification icons, other status bar icons, status bar clock, third-party
app overlay views, etc.). Plus, gfxtrace itself represents a chunk of
overhead, slowing down the device.
Android 7.0+ gives us a frame metrics API. We can register a listener to find
out the same sorts of information that gfxtrace reports, but only to
our app, and in Java code. We can log that to Logcat, or do our
own diagnostic overlay, or cache it and later send it
to a server for analysis. We can also elect to collect this data in our
instrumentation tests, to help detect a significant shift
in our UI rendering performance.
What Data You Get
Unfortunately, there is virtually no documentation on the data
that we get.
We will receive FrameMetrics objects, on which we can call getMetric()
and provide the identifier of one of the specific metrics that we can retrieve.
Note that FrameMetrics objects get recycled, so when your listener is
handed one, you should copy the data you want out of it and save it somewhere
else, rather than attempt to hold onto the FrameMetrics object itself.
This pattern is used elsewhere in Android, such as with sensors.
Most of the metrics represent amounts of time, measured in nanoseconds,
returned as long values:

 	Metric ID
 	Role

 	ANIMATION_DURATION
 	Time spent in animation callbacks

 	COMMAND_ISSUE_DURATION
 	Time spent issuing draw commands to the GPU

 	DRAW_DURATION
 	Time spent building display lists of commands

 	INPUT_HANDLING_DURATION
 	Time spent in input-handling callbacks

 	LAYOUT_MEASURE_DURATION
 	Time spent in measure() and layout() work for your view hierarchy

 	SWAP_BUFFERS_DURATION
 	Time spent sending the frame buffer for this frame to the display

 	SYNC_DURATION
 	Time spent synchronizing the display lists with the render thread

 	UNKNOWN_DELAY_DURATION
 	Time spent waiting for the UI thread to process the frame

There is also TOTAL_DURATION, which should match the sum of the above
values. And, there is FIRST_DRAW_FRAME, which returns a boolean value
encoded as a long (0 for false, 1 for true), indicating whether
this frame was the first to draw in a new Window layout.
Developers with deep understanding of the graphics rendering pipeline
in Android may recognize these values. For everybody else, the objective
is for them to be as low as possible, and for the sum to be well under
the 16ms (16,000,000ns) we have for a frame.
How You Get That Data
The
Jank/FrameMetrics
sample project is another variation on the “show a list of videos
in a RecyclerView” sample that was profiled in the chapter on RecyclerView
and elsewhere.
This time, though, we have a menu resource:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/record"
 android:icon="@drawable/ic_record_white_24dp"
 android:showAsAction="always"
 android:title="@string/menu_record" />
 <item
 android:id="@+id/stop"
 android:icon="@drawable/ic_stop_white_24dp"
 android:showAsAction="always"
 android:title="@string/menu_stop"
 android:visible="false" />
</menu>

(from Jank/FrameMetrics/app/src/main/res/menu/actions.xml)
It defines two action bar items: one to record frame metrics, and one
to stop the recording, whether the latter is initially invisible.
In MainActivity, we inflate that menu resource, find those two action
items, and hold onto them in fields, via onCreateOptionsMenu():

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.actions, menu);
 record=menu.findItem(R.id.record);
 stop=menu.findItem(R.id.stop);

 return(super.onCreateOptionsMenu(menu));

(from Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java)
In onOptionsItemSelected(), when one of those two is tapped, we invert
their visibilities, so when the user taps record, the stop item
appears, and vice versa:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.record) {
 record.setVisible(false);
 stop.setVisible(true);
 afm=new AggregateFrameMetrics();
 getWindow()
 .addOnFrameMetricsAvailableListener(this,
 new Handler(handlerThread.getLooper()));

 return(true);
 }
 else if (item.getItemId()==R.id.stop) {
 record.setVisible(true);
 stop.setVisible(false);
 getWindow().removeOnFrameMetricsAvailableListener(this);
 afm.log(getClass().getSimpleName());
 afm=null;

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

(from Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java)
However, in addition, when the user taps record, we:

	Create an instance of an AggregateFrameMetrics class and hold onto
it in a field (afm)

	Call addOnFrameMetricsAvailableListener() on the activity’s Window,
passing in a Window.OnFrameMetricsAvailableListener implementation
(here, our MainActivity itself) and a Handler on which we want
to have that listener’s callback method be invoked (here, a Handler
tied to a HandlerThread created when the activity is created)

The result is that when the user taps record, our activity’s
onFrameMetricsAvailable() method will be called on that HandlerThread,
providing us with metrics on the just-completed frame:

 @Override
 public void onFrameMetricsAvailable(Window window,
 FrameMetrics frameMetrics,
 int droppedEvents) {
 afm.add(frameMetrics, droppedEvents);
 }

(from Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java)
onFrameMetricsAvailable() is passed three parameters:

	the Window which we registered for metrics on

	the FrameMetrics for that frame

	an int indicating how many onFrameMetricsAvailable() calls were
missed because we took too long in the last onFrameMetricsAvailable()
call processing the previous results (ideally, this is always 0)

Here, we pass the metrics and dropped-events values to the
AggregateFrameMetrics object.
Back up in onOptionsItemSelected(), if the user taps on stop, we
remove our activity as a listener via removeOnFrameMetricsAvailableListener()
and call log() on the AggregateFrameMetrics object.
AggregateFrameMetrics, in turn, is responsible for maintaining a running
total of the various individual metrics and dumping them to Logcat when
log() is called:

package com.commonsware.android.jank.framemetrics;

import android.util.Log;
import android.view.FrameMetrics;

public class AggregateFrameMetrics {
 int droppedReports;
 long animationDuration;
 long commandIssueDuration;
 long drawDuration;
 long inputHandlingDuration;
 long layoutMeasureDuration;
 long swapBuffersDuration;
 long syncDuration;
 long unknownDelayDuration;
 long totalDuration;

 void add(FrameMetrics metrics, int droppedReports) {
 this.droppedReports+=droppedReports;

 animationDuration+=
 metrics.getMetric(FrameMetrics.ANIMATION_DURATION);
 commandIssueDuration+=
 metrics.getMetric(FrameMetrics.COMMAND_ISSUE_DURATION);
 drawDuration+=metrics.getMetric(FrameMetrics.DRAW_DURATION);
 inputHandlingDuration+=
 metrics.getMetric(FrameMetrics.INPUT_HANDLING_DURATION);
 layoutMeasureDuration+=
 metrics.getMetric(FrameMetrics.LAYOUT_MEASURE_DURATION);
 swapBuffersDuration+=
 metrics.getMetric(FrameMetrics.SWAP_BUFFERS_DURATION);
 syncDuration+=metrics.getMetric(FrameMetrics.SYNC_DURATION);
 unknownDelayDuration+=
 metrics.getMetric(FrameMetrics.UNKNOWN_DELAY_DURATION);
 totalDuration+=metrics.getMetric(FrameMetrics.TOTAL_DURATION);
 }

 void log(String tag) {
 Log.d(tag, String.format("animation: %dns", animationDuration));
 Log.d(tag, String.format("command issue: %dns", commandIssueDuration));
 Log.d(tag, String.format("draw: %dns", drawDuration));
 Log.d(tag, String.format("input handling: %dns", inputHandlingDuration));
 Log.d(tag, String.format("layout measure: %dns", layoutMeasureDuration));
 Log.d(tag, String.format("swap buffers: %dns", swapBuffersDuration));
 Log.d(tag, String.format("sync: %dns", syncDuration));
 Log.d(tag, String.format("unknown: %dns", unknownDelayDuration));
 Log.d(tag, String.format("total: %dns", totalDuration));
 Log.d(tag, String.format("%d dropped reports", droppedReports));
 }
}

(from Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/AggregateFrameMetrics.java)
The net effect is that between taps on record and stop, we collect
information about the UI rendering performance. If you try this on
a device that has a bunch of videos on it, scroll through the list while
the collection is ongoing. Once you click stop to end the collection,
the aggregated results are printed to Logcat.
Issues with Bandwidth
As anyone who owned an Apple Newton or Palm V PDA back in the 1990’s knows,
handheld devices have been around for quite some time. For a very
long time, they were a niche product, associated with geeks, nerds,
and the occasional business executive.
Internet access changed all of that.
Blackberry for enterprise messaging — an outgrowth of its
original two-way paging approach — blazed part of the trail,
but the concept “crossed the chasm” to ordinary people with the
advent of the iPhone, Android devices, and similar equipment.
Therefore, it is not terribly surprising when Android developers want
to add Internet capabilities to their apps. To the contrary, it is
almost unusual when you encounter an app that does not want to use
the Internet for something or another.
However, mobile Internet access inherits all of the classic problems
of Internet access (e.g., “server not found”) and adds new and
exciting challenges, all of which can leave a developer with an app
that has performance issues.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate.
You’re Using Too Much of the Slow Stuff
To paraphrase America’s Founding Fathers, “all Internet connections
are not created equal”.
One form of inequality is speed. Different classes of connection have
different theoretical upper bounds. WiMAX and other 4G connections
are theoretically faster than 3G connections, which are theoretically
faster than 2G or EDGE connections. WiFi is theoretically ridiculously fast though it
is typically limited by the ISP connection, and ISP connections can
run the gamut from really fast to merely good.
However, “theoretical” bounds tend to run afoul of reality. There are
plenty of places where high-speed mobile data connections are
non-existent, despite what the carriers’ coverage maps claim. 2G
mobile data works, but is not especially speedy. This layers on top
of the typical Internet congestion issues, along with typically
transitory problems (e.g., trying to get connectivity while attending
a technology conference keynote presentation).
Beyond that, there are financial issues. While WiFi is usually unmetered
(no incremental cost per MB/GB), many mobile data connections are
metered. Those mobile data connections that are not metered in theory –
advertised as “unlimited” — have usage caps that, once exceeded, impose
costs or impose speed limits.
Hence, what runs quickly in the lab may run much more slowly in
users’ hands.
If you followed the instructions in previous chapters on CPU
bottlenecks, the limited bandwidth will not cause your UI to become
“janky”, in that it will be responsive to touches and taps. However,
poor connectivity will mean that you are simply slow to respond to
user requests. For example, clicking the “check for new email” menu
button has no immediate effect. If you feel that you need a splash
screen or progress indicator to tell the user that “we are really
checking for new email, honest”, then you know that your Internet
access is slower than is ideal.
Obviously, some of this is unavoidable. However, the objective of the
chapters in this part of the book is to give you an idea of ways to
reduce your bandwidth consumption, making those delays be that much
less annoying for your users.
You’re Using Too Much of the Expensive Stuff
Mobile data tends to come with more strings attached than does WiFi.
In the US, it used to be that mobile data connections included
unlimited usage. Now, at best, a mobile data plan has “unlimited”
usage for a curious definition of the term “unlimited”. More and more
carriers are moving towards a hard cap — go above the cap, and
you either cannot use more bandwidth, have your speeds curtailed, or
pay significantly for additional bandwidth.
Outside of the US, the “pay significantly for bandwidth” approach is
fairly typical. So-called “metered” data plans simply charge you
such-and-so per MB or GB of bandwidth.
And, to top it off, roaming almost always is a metered plan. So, a US
resident traveling overseas, even with a SIM and phone that supports
international usage, would pay a ridiculous sum for bandwidth.
Stories of phone bills in the tens of thousands of dollars abound,
where people simply used their phone as they normally would when they
were outside of their home network.
Hence, if you use a fair bit of bandwidth, it would be really nice if
you offered users means to consume less of it when they are on mobile
data compared to WiFi (which is typically unmetered). You could elect
to poll your server less frequently, for example, giving the users
the ability to specify separate polling periods depending on which
type of connection they have.
And, of course, there are other “costs” for using bandwidth besides
direct monetary costs. For example, downloading data over a slower
mobile data connection may consume more power than downloading the
same data over WiFi — while the WiFi radio might consume
additional power, the time difference might account for more power
consumption, if the CPU could be powered down for the rest of that
time.
These chapters will show you how you can react to changes in
connectivity and approaches for how to use that information to reduce
costs for the user.
You’re Using Too Much of Somebody Else’s Stuff
It is easy for developers to think that they alone are using a user’s
device. Alas, this is infrequently the case, particularly when it
comes to background Internet access.
While your application is busily downloading stuff, some other
application might be busily downloading stuff. In principle, this
should not be an issue, as multiple applications can access the
Internet simultaneously. However, bandwidth can become an issue. If
you are in the background, and the other application is in the
foreground, the user might notice that bandwidth is an issue. For
example, users might be unhappy if your downloads are impeding their
ability to watch streaming video, or play their favorite
Android-based MMORPG, or whatever.
A polite Android application will test to see whether the foreground
application is heavily using the Internet and will curtail its own
Internet use while that is going on. This chapter will help you learn
how to make that determination and how to respond.
You’re Using Too Much… And There Is None
Not only might location dictate how much bandwidth you have, but
whether you have any bandwidth at all.
While some people think that the entire planet has connectivity,
reality once again dictates otherwise. Major metropolitan areas have
connectivity. Outlying areas are much more hit-or-miss. Voice
is sometimes a challenge, let alone data. And it only seems as
though there is a Starbucks every 100 meters in the US, which might actually
provide blanket WiFi coverage.
Then, of course, there are planes (many still do not offer in-flight WiFi
at this time), international travel without an international-capable
phone plan, and so on.
Some Android applications have the potential to still offer
near-complete functionality despite this, with a bit of user
assistance. For example, Google Maps for Android has an offline
caching feature, which will download data for a 10-mile radius from a
given point, for use while the device is otherwise offline.
Here, the issue becomes less one of bandwidth (other than detecting
that you have no connection) and more one of caching and storage. The
space-related issues that these techniques can raise will be covered
elsewhere in this book.
Focus On: TrafficStats
To be able to have more intelligent code — code that can adapt
to Internet activity on the device — Android offers the
TrafficStats class. This class really is a gateway to a block of
native code that reports on traffic usage for the entire device and
per-application, for both received and transmitted data. This chapter
will examine how you can access TrafficStats and interpret its data.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate.
TrafficStats Basics
The TrafficStats class is not designed to be instantiated —
you will not be invoking a constructor by calling new
TrafficStats() or something like that. Rather, TrafficStats is
merely a collection of static methods, mapped to native code, that
provide access to point-in-time traffic values. No special
permissions are needed to use any of these methods. Most of the
methods were added in API Level 8 and therefore should be callable on
most Android devices in use today.
Device Statistics
If you are interested in overall traffic, you will probably care most
about the getTotalRxBytes() and getTotalTxBytes() on
TrafficStats. These methods return received and transmitted
traffic, respectively, measured in bytes.
You also have:

	
getTotalRxPackets() and getTotalTxPackets(), if for your case
measuring IP packets is a better measure than bytes

	
getMobileRxBytes() and getMobileTxBytes(), which return the
traffic going over mobile data (also included in the total)

	
getMobileRxPackets() and getMobileTxPackets(), which are the
packet counts for the mobile data connection

Per-Application Statistics
Technically, TrafficStats does not provide per-application traffic
statistics. Rather, it provides per-UID traffic statistics. In most
cases, the UID (user ID) of an application is unique, and therefore
per-UID statistics map to per-application statistics. However, it is
possible for multiple applications to share a single UID (e.g., via
the android:sharedUserId manifest attribute) — in this case,
TrafficStats would appear to provide traffic data for all
applications sharing that UID.
There are per-UID equivalents of the first four methods listed in the
previous section, replacing “Total” with “Uid”. So, to find out
overall traffic for an application, you could use getUidRxBytes()
and getUidTxBytes(). However, these are the only two UID-specific
methods that were implemented in API Level 8. Equivalents of the
others (e.g., getUidRxPackets()) were added in API Level 12. API
Level 12 also added some TCP-specific methods (e.g.,
getUidTcpTxBytes()). Note, though, that the mobile-only method are
only available at the device level; there are no UID-specific
versions of those methods.
Interpreting the Results
You will get one of two types of return value from these methods.
In theory, you will get the value the method calls for (e.g., number
of bytes, number of packets). The documentation does not state the
time period for that value, so while it is possible that it is really
“number of bytes since the device was booted”, we do not know that
for certain. Hence, TrafficStats results should be used for
comparison purposes, either comparing the same value over time or
comparing multiple values at the same time. For example, to measure
bandwidth consumption, you will need to record the TrafficStats
values at one point in time, then again later — the difference
between them represents the consumed bandwidth during that period of
time.
In practice, while the “total” methods seem reliable, the per-UID
methods may return -1.
Three possible meanings are:

	The device is old and is not set up to measure per-UID values

	There has been no traffic of that type on that UID since boot, or

	You do not have permission to know the traffic of that type on
that UID

Hence, the per-UID values are a bit “hit or miss”, which you will
need to take into account.
Example: TrafficMonitor
To illustrate the use of TrafficStats methods and analysis, let us
walk through the code associated with the
Bandwidth/TrafficMonitor
sample application. This is a simple activity that records a snapshot of the
current traffic levels on startup, then again whenever you tap a
button. On-screen, it will display the current value, previous value,
and difference (“delta”) between them. In Logcat, it will dump the
same information on a per-UID basis.
TrafficRecord
It would have been nice if TrafficStats were indeed an object that
you would instantiate, that captured the traffic values at that
moment in time. Alas, that is not how it was written, so we need to
do that ourselves. In the TrafficMonitor project, this job is
delegated to a TrafficRecord class:

package com.commonsware.android.tuning.traffic;

import android.net.TrafficStats;

class TrafficRecord {
 long tx=0;
 long rx=0;
 String tag=null;

 TrafficRecord() {
 tx=TrafficStats.getTotalTxBytes();
 rx=TrafficStats.getTotalRxBytes();
 }

 TrafficRecord(int uid, String tag) {
 tx=TrafficStats.getUidTxBytes(uid);
 rx=TrafficStats.getUidRxBytes(uid);
 this.tag=tag;
 }
}

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficRecord.java)
There are two separate constructors, one for the total case and one
for the per-UID case. The total case just logs getTotalRxBytes()
and getTotalTxBytes(), while the per-UID case uses
getUidRxBytes() and getUidTxBytes(). The per-UID case also stores
a “tag”, which is simply a String identifying the UID for this
record — as you will see, TrafficMonitor uses this for a
package name.
TrafficSnapshot
An individual TrafficRecord, though, is insufficient to completely
capture the traffic figures at a moment in time. We need a collection
of TrafficRecord objects, one for the device (“total”) and one per
running UID. The work to collect all of that is handled by a
TrafficSnapshot class:

package com.commonsware.android.tuning.traffic;

import java.util.HashMap;
import android.content.Context;
import android.content.pm.ApplicationInfo;

class TrafficSnapshot {
 TrafficRecord device=null;
 HashMap<Integer, TrafficRecord> apps=
 new HashMap<Integer, TrafficRecord>();

 TrafficSnapshot(Context ctxt) {
 device=new TrafficRecord();

 HashMap<Integer, String> appNames=new HashMap<Integer, String>();

 for (ApplicationInfo app :
 ctxt.getPackageManager().getInstalledApplications(0)) {
 appNames.put(app.uid, app.packageName);
 }

 for (Integer uid : appNames.keySet()) {
 apps.put(uid, new TrafficRecord(uid, appNames.get(uid)));
 }
 }
}

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficSnapshot.java)
The constructor uses PackageManager to iterate over all installed
applications and builds up a HashMap, mapping the UID to a
TrafficRecord for that UID, tagged with the application package
name (e.g., com.commonsware.android.tuning.traffic). It also
creates one TrafficRecord for the device as a whole.
TrafficMonitorActivity
TrafficMonitorActivity is what creates and uses TrafficSnapshot
objects. This is a fairly conventional activity with a
TableLayout-based UI:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/table"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <Button
 android:onClick="takeSnapshot"
 android:text="Take Snapshot"/>

 <TableRow>

 <TextView
 android:layout_column="1"
 android:layout_gravity="right"
 android:text="@string/received"
 android:textSize="20sp"/>

 <TextView
 android:layout_gravity="right"
 android:text="@string/sent"
 android:textSize="20sp"/>
 </TableRow>

 <TableRow>

 <TextView
 android:layout_marginRight="@dimen/margin_right"
 android:gravity="right"
 android:text="@string/latest"
 android:textSize="20sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/latest_rx"
 android:layout_marginRight="@dimen/margin_right"
 android:gravity="right"
 android:textSize="20sp"/>

 <TextView
 android:id="@+id/latest_tx"
 android:gravity="right"
 android:textSize="20sp"/>
 </TableRow>

 <TableRow>

 <TextView
 android:layout_marginRight="@dimen/margin_right"
 android:gravity="right"
 android:text="@string/previous"
 android:textSize="20sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/previous_rx"
 android:layout_marginRight="@dimen/margin_right"
 android:gravity="right"
 android:textSize="20sp"/>

 <TextView
 android:id="@+id/previous_tx"
 android:gravity="right"
 android:textSize="20sp"/>
 </TableRow>

 <TableRow>

 <TextView
 android:layout_marginRight="@dimen/margin_right"
 android:gravity="right"
 android:text="@string/delta"
 android:textSize="20sp"
 android:textStyle="bold"/>

 <TextView
 android:id="@+id/delta_rx"
 android:layout_marginRight="@dimen/margin_right"
 android:gravity="right"
 android:textSize="20sp"/>

 <TextView
 android:id="@+id/delta_tx"
 android:gravity="right"
 android:textSize="20sp"/>
 </TableRow>

</TableLayout>

(from Bandwidth/TrafficMonitor/app/src/main/res/layout/main.xml)
The activity implementation consists of three methods. There is your
typical onCreate() implementation, where we initialize the UI, get
our hands on the TextView widgets for output, and take the initial
snapshot:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 latest_rx=(TextView)findViewById(R.id.latest_rx);
 latest_tx=(TextView)findViewById(R.id.latest_tx);
 previous_rx=(TextView)findViewById(R.id.previous_rx);
 previous_tx=(TextView)findViewById(R.id.previous_tx);
 delta_rx=(TextView)findViewById(R.id.delta_rx);
 delta_tx=(TextView)findViewById(R.id.delta_tx);

 takeSnapshot(null);
 }

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java)
The takeSnapshot() method creates a new TrafficSnapshot (held in
a latest data member) after moving the last TrafficSnapshot to a
previous data member. It then updates the TextView widgets for
the latest data and, if the previous data member is not null,
also for the previous snapshot and the difference between them.
This alone is sufficient to update the UI, but we also want to log
per-UID data to Logcat:

 public void takeSnapshot(View v) {
 previous=latest;
 latest=new TrafficSnapshot(this);

 latest_rx.setText(String.valueOf(latest.device.rx));
 latest_tx.setText(String.valueOf(latest.device.tx));

 if (previous!=null) {
 previous_rx.setText(String.valueOf(previous.device.rx));
 previous_tx.setText(String.valueOf(previous.device.tx));

 delta_rx.setText(String.valueOf(latest.device.rx-previous.device.rx));
 delta_tx.setText(String.valueOf(latest.device.tx-previous.device.tx));
 }

 ArrayList<String> log=new ArrayList<String>();
 HashSet<Integer> intersection=new HashSet<Integer>(latest.apps.keySet());

 if (previous!=null) {
 intersection.retainAll(previous.apps.keySet());
 }

 for (Integer uid : intersection) {
 TrafficRecord latest_rec=latest.apps.get(uid);
 TrafficRecord previous_rec=
 (previous==null ? null : previous.apps.get(uid));

 emitLog(latest_rec.tag, latest_rec, previous_rec, log);
 }

 Collections.sort(log);

 for (String row : log) {
 Log.d("TrafficMonitor", row);
 }
 }

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java)
One possible problem with the snapshot system is that the process
list may change between snapshots. One simple way to address this is
to only log to Logcat data where the application’s UID exists in both
the previous and latest snapshots. Hence, takeSnapshot() uses a
HashSet and retainAll() to determine which UIDs exist in both
snapshots. For each of those, we call an emitLog() method to record
the data to an ArrayList, which is then sorted and dumped to Logcat.
The emitLog() method builds up a line with the package name and
bandwidth consumption information, assuming that there is bandwidth
to report (i.e., we have a value other than -1):

 private void emitLog(CharSequence name, TrafficRecord latest_rec,
 TrafficRecord previous_rec,
 ArrayList<String> rows) {
 if (latest_rec.rx>-1 || latest_rec.tx>-1) {
 StringBuilder buf=new StringBuilder(name);

 buf.append("=");
 buf.append(String.valueOf(latest_rec.rx));
 buf.append(" received");

 if (previous_rec!=null) {
 buf.append(" (delta=");
 buf.append(String.valueOf(latest_rec.rx-previous_rec.rx));
 buf.append(")");
 }

 buf.append(", ");
 buf.append(String.valueOf(latest_rec.tx));
 buf.append(" sent");

 if (previous_rec!=null) {
 buf.append(" (delta=");
 buf.append(String.valueOf(latest_rec.tx-previous_rec.tx));
 buf.append(")");
 }

 rows.add(buf.toString());
 }
 }

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java)
Since the lines created by emitLog() start with the package name,
and since we are sorting those before dumping them to Logcat, they
appear in Logcat in sorted order by package name.
Using TrafficMonitor
Running the activity gives you the initial received and sent counts
(in bytes):

[image: The TrafficMonitor sample application, as initially launched]

Figure 976: The TrafficMonitor sample application, as initially launched
Tapping Take Snapshot grabs a second snapshot and compares the two:

[image: The TrafficMonitor sample application, after Take Snapshot was clicked]

Figure 977: The TrafficMonitor sample application, after Take Snapshot was clicked
Also, Logcat will show how much was used by various apps:

08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.amblingbooks.bookplayerpro=880 received (delta=0), 3200 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.browser=19045241 received (delta=0), 2375847 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.providers.downloads=27884469 received (delta=0), 9126 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.providers.telephony=2328 received (delta=0), 4912 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.vending=3271839 received (delta=0), 260626 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.coair.mobile.android=887425 received (delta=0), 81366 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.commonsware.android.browser1=262553 received (delta=0), 7286 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.dropbox.android=6189833 received (delta=0), 4298 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.evernote=3471398 received (delta=0), 742178 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.apps.genie.geniewidget=358816 received (delta=0), 17775 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.apps.googlevoice=103255 received (delta=0), 35559 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.apps.maps=28440829 received (delta=0), 1230867 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.backup=51320 received (delta=0), 49041 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.gm=10915084 received (delta=0), 14428803 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.googlequicksearchbox=37817 received (delta=0), 12554 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.syncadapters.contacts=1955990 received (delta=0), 714893 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.voicesearch=67948 received (delta=0), 121908 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.youtube=3128 received (delta=0), 2792 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.howcast.android.app=2250407 received (delta=0), 26727 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.rememberthemilk.MobileRTM=6836605 received (delta=0), 2902904 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.tripit=109499 received (delta=0), 50060 sent (delta=0)

Other Ways to Employ TrafficStats
Of course, there are more ways you could use TrafficStats than
simply having an activity to report them on a button click.
TrafficMonitor is merely a demonstration of using the class and
providing a lightweight way to get value out of that data. Depending
upon your application’s operations, though, you may wish to consider
using TrafficStats in other ways, in your production code or in
your test suites.
In Production
If your app is a bandwidth monitor, the need to use TrafficStats is
obvious. However, even if your app does something else, you may wish
to use TrafficStats to understand what is going on in terms of
Internet access within your app or on the device as a whole.
For example, you might want to consider bandwidth consumption to be a
metric worthy of including in the rest of the “analytics” you
generate from your app. If you are using services like
Flurry to monitor which activities get used
and so on, you might consider also logging the amount of bandwidth
your application consumes. This not only gives you much more “real
world” data than you will be able to collect on your own, but it may
give you ideas of how users are using your application beyond what
the rest of your metrics are reporting.
Another possibility would be to include your app’s bandwidth
consumption in error logs reported via libraries like
ACRA. Just as device particulars
can help identify certain bug report patterns, perhaps certain
crashes of your app only occur when users are using a lot of
bandwidth in your app, or using a lot of bandwidth elsewhere and
perhaps choking your own app’s Internet access.
The chapter on bandwidth mitigation strategies
will also cover a number of uses of TrafficStats for real-time
adjustment of your application logic.
During Testing
You might consider adding TrafficStats-based bandwidth logging for
your application in your test suites. While individual tests may or
may not give you useful data, you may be able to draw trendlines over
time to see if you are consuming more or less bandwidth than you used
to. Take care to factor in that you may have changed the tests, in
addition to changing the code that is being tested.
From a JUnit-based unit test suite, measuring bandwidth consumption
is not especially hard. You can bake it into the setUp() and
tearDown() methods of your test cases, either via inheritance or
composition, and log the output to a file or Logcat.
From an external test engine, like
monkeyrunner or
NativeDriver, recording
bandwidth usage is more tricky, because your test code is not running
on the device or emulator. You may have to include a
BroadcastReceiver in your production code that will log bandwidth
usage and trigger that code via the am broadcast shell command.
Measuring Bandwidth Consumption
The first step towards addressing bandwidth concerns is to get a
better picture of how much bandwidth you are actually consuming,
when, and under what conditions. Only then will you be able to
determine where your efforts need to be applied and whether those
efforts are actually giving you positive results. This chapter will
examine a handful of ways you can determine how much bandwidth you
are really using in your application.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate.
On-Device Measurement
Many times, you are best served by measuring your bandwidth
consumption right on the device itself:

	This is your only option for gathering bandwidth metrics from
copies of your app in end users’ hands, unless they invite you to
their home or office and have you sniff on their personal network,
which seems unlikely

	This is your only option for gathering bandwidth metrics when you
are using mobile data plans (e.g., 3G) instead of WiFi, since you
probably do not control the wireless telecommunications
infrastructure in your area

	This is your simplest option for tying bandwidth metrics to events
within your app or occurring on the device

	This is your only option for using bandwidth metrics to adjust
your application behavior in real time, in addition to using the
metrics to learn how best to adjust your code in future updates to
the app

Hence, in addition to perhaps other off-device techniques, you really
should consider one of the on-device approaches outlined in the
following sections.
Yourself, via TrafficStats
The preceding chapter outlined how to use the
TrafficStats class to collect metrics on the bandwidth consumed by
applications (including yours) and for the device as a whole. This
gives you the most flexibility, because you can write your own code
to collect whatever portion of this data you need. It can address all
of the bullets shown above, for example.
It is not perfect, though:

	It requires you to write your own code, adding yet more work to
your plate

	Per-UID traffic data may or may not be available, depending upon
the device

Data Usage Screen in Settings
For more casual use, the Settings app in most Android devices offers
a “Data Usage” screen that shows how much bandwidth has been consumed
over a period of time:

[image: Settings, App, Data Usage Screen, Data Usage Graph]

Figure 978: Settings, App, Data Usage Screen, Data Usage Graph
Scrolling further down will give you details of what apps were involved
in that data usage:

[image: Settings, App, Data Usage Screen, Data Usage Blame List]

Figure 979: Settings, App, Data Usage Screen, Data Usage “Blame List”
Tapping on any one of those list items will give you a bit more detail,
specifically how much of that bandwidth was consumed while the app was
in the foreground or the background:

[image: Settings, App, Data Usage Screen, Data Usage App Details]

Figure 980: Settings, App, Data Usage Screen, Data Usage App Details
Off-Device Measurement
The biggest limitation of TrafficStats is that it only gives you
gross metrics: numbers of bytes, packets, and so on. Sometimes, that
is not enough to help you understand why those bytes, packets, and so
on are actually being sent or received. Sometimes, it would be nice
to understand the traffic in more detail, from the ports and IP
addresses to perhaps the actual data being transmitted. For obvious
security reasons, this is not something an ordinary Android SDK
application can do. However, there are techniques for accomplishing
this, mostly for use over WiFi in your own home or office network.
Some of these are outlined in the following sections.
Wireshark
Wireshark, formerly known as Ethereal,
is perhaps the world’s leading open source network traffic analyzer
and packet inspector. Using it, you can learn in great detail what is
going on with your local network. And, Android provides additional
options for you to leverage Wireshark to make sense of application
behavior. Wireshark is available for Linux, macOS, and Windows.
There is a lightly-documented -tcpdump switch available on the
Android emulator. If you launch the emulator from the command line
with that switch (plus -avd to identify the AVD file you want to
use), all network access is dumped to your specified log file. You
can then load that data into Wireshark for analysis, via File|Open
from the main menu.
For example, here is a screenshot of Wireshark examining data from
such an emulator dump file, in which the emulator was used to conduct
a Google search:

[image: Wireshark examining captured emulator packets]

Figure 981: Wireshark examining captured emulator packets
This screenshot shows an HTTP request in the highlighted line in the
list, with the hex and ASCII contents of the request shown in the
bottom pane.
In terms of using Wireshark to monitor traffic from actual hardware,
that is indubitably possible. However, WiFi packet collection is a
tricky process with Wireshark, being very dependent upon operating
system and possibly even the WiFi adapter chipset. You also get much
lower-level information, making it a bit more challenging to figure
out what is going on. Attempting to cover all of this is well beyond
the scope of this book and the author’s Wireshark expertise.
Networking Hardware
Sophisticated firewalls sometimes have packet tracing/sniffing
capability. In this case, “sophisticated” does not necessarily mean
“expensive”, as open source router/firewall distributions, like
OpenWrt, can be used for this sort of work. In this case, the router
captures the packets and, in many cases, routes them to Wireshark for
analysis. Some might offer on-board analysis (e.g., Web interface to
packet capture logs).
This is particularly useful on a Windows wireless network. Wireshark
has limits, imposed by Windows, that cause some problems when trying
to capture WiFi packets. By offloading the packet capture to
networking hardware, those limits can be bypassed.
Android Studio Profiler
TrafficStats is great for measuring gross bandwidth consumption over
some period of time. However, it requires coding, logging, and your
own analysis mechanism.
In Android Studio, the Android Profiler tool allows you
to examine the real-time behavior of your app with respect to various
system resources, such as bandwidth consumption:

[image: Android Studio, Android Profiler, Network Graph]

Figure 982: Android Studio, Android Profiler, Network Graph
Clicking on the graph gives you a bit more detail, including the state
of various radios and the number of connections that were in use:

[image: Android Studio, Android Profiler, Detailed Network Graph]

Figure 983: Android Studio, Android Profiler, Detailed Network Graph
This graph comes from a Picasso demo application from earlier in the
book, which retrieves the latest 25 android questions on Stack Overflow
and shows them in a ListView, along with the avatar for the person asking
the question. The graph shows the initial load of data from the Stack
Exchange JSON API, followed about 15 seconds later by some scrolling in the
app, forcing Picasso to go load more avatars.
As this responds in near-real-time to things you do in your app, you can
see if the graph shows network accesses at unexpected times, or more
bandwidth consumed than you might expect. For example, once all the avatars
were loaded, no more bandwidth should be consumed by the Picasso sample
app, assuming all the avatars could fit in Picasso’s memory cache.
Being Smarter About Bandwidth
Given that you are
collecting metrics about bandwidth consumption,
you can now start to determine ways to
reduce that consumption. You may be able to permanently reduce that
consumption (at least on a per-operation basis). You may be able to
shunt that consumption to times or networks that the user prefers.
This chapter reviews a variety of means of accomplishing these ends.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate, particularly
the chapter on Internet access.
Bandwidth Savings
The best way to reduce bandwidth consumption is to consume less
bandwidth.
(in other breaking news, water is wet)
In recent years, developers have been able to be relatively
profligate in their use of bandwidth, pretty much assuming everyone
has an unlimited high-speed Internet connection to their desktop or
notebook and the desktop or Web apps in use on them. However, those
of us who lived through the early days of the Internet remember far
too well the challenges that dial-up modem accounts would present to
users (and perhaps ourselves). Even today, as Web apps try to “scale
to the Moon and back”, bandwidth savings becomes important not so
much for the end user, but for the Web app host, so its own bandwidth
is not swamped as its user base grows.
Fortunately, widespread development problems tend to bring rise to a
variety of solutions — a variant on the “many eyes make bugs
shallow” collaborative development phenomenon. Hence, there are any
number of tried-and-true techniques for reducing bandwidth
consumption that have had use in Web apps and elsewhere. Many of
these are valid for native Android apps as well, and a few of them
are profiled in the following sections.
Classic HTTP Solutions
Trying to get lots of data to fit on a narrow pipe — whether
that pipe is on the user’s end or the provider’s end — has long
been a struggle in Web development. Fortunately, there are a number
of ways you can leverage HTTP intelligently to reduce your bandwidth
consumption.
GZip Encoding
By default, HTTP requests and response are uncompressed. However, you
can enable GZip encoding and thereby request that the server compress
its response, which is then decompressed on the client. This trades
off CPU for bandwidth savings and therefore needs to be done
judiciously.
Enabling GZip compression is a two-step process:

	Adding the Accept-Encoding: gzip header to the HTTP request

	Determine if the response was compressed and, if so, decompressing
it

Bear in mind that the Web server may or may not honor your GZip
request, for whatever reason (e.g., response is too small to make it
worthwhile).
If-Modified-Since / If-None-Match
Of course, avoiding a download offers near-100% compression. If you
are caching data, you can take advantage of HTTP headers to try to
skip downloads that are the same content as what you already have,
specifically If-Modified-Since and If-None-Match.
An HTTP response can contain either a Last-Modified header or an
ETag header. The former will contain a timestamp and the latter
will contain some opaque value. You can store this information with
the cached copy of the data (e.g., in a database table). Later on,
when you want to ensure you have the latest version of that file,
your HTTP GET request can include an If-Modified-Since header (with
the cached Last-Modified value) or an If-None-Match header (with
the cached ETag value). In either case, the server should return
either a 304 response, indicating that your cached copy is up to
date, or a 200 response with the updated data. As a result, you
avoid the download entirely (other than HTTP headers) when you do not
need the updated data.
Binary Payloads
While XML and JSON are relatively easy for humans to read, that very
characteristic means they tend to be bloated in terms of bandwidth
consumption. There are a variety of tools, such as Google’s
Protocol Buffers and Apache’s
Thrift, that allow you to create and
parse binary data structures in a cross-platform fashion. These might
allow you to transfer the same data that you would in XML or JSON in
less space. As a side benefit, parsing the binary responses is likely
to be faster than parsing XML or JSON. Both of these tools involve
the creation of an IDL-type file to describe the data structure, then
offer code generators to create Java classes (or equivalents for
other languages) that can read and write such structures, converting
them into platform-neutral on-the-wire byte arrays as needed.
Minification
If you are loading JavaScript or CSS into a WebView, you should
consider standard tricks for compressing those scripts, collectively
referred to as
“minification”.
These techniques eliminate all unnecessary whitespace and such
from the files, rename variables to be short, and otherwise create a
syntactically-identical script that takes up a fraction of the space.
Keep-Alive Semantics
A chunk of the overhead involved in HTTP operations is simply establishing
the socket connection with the Web server. Advertising that you want
the socket to be kept alive, in anticipation of upcoming follow-on requests,
can reduce this overhead.
Using higher-level HTTP clients, like OkHttp, helps here, because usually
they handle all the details of keeping the socket open.
With SSL, though, keep-alive was not an option, until Google released
the SPDY specification. SPDY in turn formed the basis of HTTP/2, the
new standard for Web communications (replacing the venerable HTTP/1.1).
OkHttp supports SPDY and HTTP/2.
Push versus Poll
Another way to consume less bandwidth is to only make the requests
when it is needed. For example, if you are writing an email client,
the way to use the least bandwidth is to download new messages only
when they exist, rather than frequently polling for messages.
Off the cuff, this may seem counter-intuitive. After all, how can we
know whether or not there are any messages if we are not polling for
them?
The answer is to use a low-bandwidth push mechanism. The
quintessential example of this is GCM, the Google Cloud Messaging
system, available for Android 2.2 and newer. This service from Google
allows your application to subscribe to push notifications sent out
by your server. Those notifications are delivered asynchronously to
the device by way of Google’s own servers, using a long-lived socket
connection. All you do is register a BroadcastReceiver to receive
the notifications and do something with them.
For example, Remember the Milk — a task management Web site and
set of mobile apps — uses GCM to alert the device of task
changes you make through the Web site. Rather than the Remember the
Milk app having to constantly poll to see if tasks were added,
changed, or deleted, the app simply waits for GCM events.
You could create your own push mechanism, perhaps using a WebSocket
or MQTT. The downside is that you will
need a service in memory all of the time to manage the socket and
thread that monitors it. If you only need this while your service is
in memory for other reasons, that is fine. However, keeping a service
in memory 24x7 has its own set of issues, not the least of which is
that users will tend to smack it down using a “task killer” or the
Manage Services screen in the Settings app. Doze mode on Android 6.0+
will also cause problems with this approach.
Thumbnails and Tiles
A general rule of thumb is: don’t download it until you really need
it.
Sometimes, you do not know if you really need a particular item until
something happens in the UI. Take a ListView displaying thumbnails
of album covers for a music app. Assuming the album covers are not
stored locally, you will need to download them for display. However,
which covers you need varies based upon scrolling. Downloading a
high-resolution album cover that might get tossed in a matter of
milliseconds (after an expensive rescale to fit a thumbnail-sized
space) is a waste of bandwidth.
In this case, either the album covers are something you control on
the server side, or they are not. If they are, you can have the
server prepare thumbnails of the covers, stored at a spot that the
app can know about (e.g., .../cover.jpg it is .../thumbnail.jpg).
The app can then download thumbnails on the fly and only grab the
full-resolution cover if needed (e.g., user clicks on the album to
bring up a detail screen). If you do not control the album covers,
this option might still be available to you if you can run your own
server for the purposes of generating such thumbnails.
You can see a similar effect with the map tiles in Google Maps. When
zooming out, the existing map tiles are scaled down, with
placeholders (the gridlines) for the remaining spots, until the tiles
for those spots are downloaded. When zooming in, the existing map
tiles are scaled up with a slight blurring effect, to give the user
some immediate feedback while the full set of more-detailed tiles is
downloaded. And, if the user pans, you once again get placeholders
while the tiles for the newly uncovered areas are downloaded. In this
fashion, Google Maps is able to minimize bandwidth consumption by
giving users partial results immediately and back-filling in the
final results only when needed. This same sort of approach may be
useful with your own imagery.
Bandwidth Shaping
Sometimes, you have no ability to reduce the bandwidth itself.
Perhaps you do not control both ends of the communications pipeline.
Perhaps the data you are trying to exchange is already compressed
(e.g., downloading an MP4 video). Perhaps some of the techniques in
the preceding section were unavailable to you (e.g., cannot route
data through third-party servers like Google’s for GCM).
There still may be ways for you to help your users, by shaping your
bandwidth use. Rather than just blindly doing whatever you want
whenever you want, you learn what the user wants and what other
applications want and tailor your bandwidth use on the fly to match
those needs. The following sections outline some ways of achieving
this.
Driven by Preferences
If you are consuming enough bandwidth that this chapter is relevant
to you, you probably are consuming enough bandwidth that you should
be asking the user how best to consume that bandwidth. After all,
they are the one paying the price — in time as well as money
– for that consumption.
The following sections present some possible strategies for
preference-based bandwidth shaping.
Budgets
One strategy is for the user to give you a budget (e.g., 20MB/day)
and for you to stick within that budget.
Collecting the budget is fairly easy — just use
SharedPreferences. Either use a ListPreference with likely budget
value or an EditTextPreference and a bit of validation for a
free-form budget amount.
Next, you will need to have some idea how much bandwidth any given
network operation will consume. For some things, this might be an
estimate based on your experiments as a developer, or perhaps it is
based on historical averages for this user and type of operation. For
example, a “podcatcher” (feed reader designed to download podcast
episodes) should have some idea how big a given RSS or Atom feed
download should be. In some cases, it might be worthwhile to get a
better estimate — for example, the podcatcher might use an HTTP
HEAD request to determine the size of the MP3 or OGG file before
deciding whether to download it.
Then, you need to be keeping track of your budget. This could be a
simple flat file with the initial TrafficStats bandwidth values for
your process. Re-initialize that file on the first network operation
of the day (or whatever period you chose for your budget). Before
doing another network operation, compare the current TrafficStats
values with the initial ones and see how close you are to the budget.
If the new network operation will exceed the budget, skip the
operation, perhaps putting it in a work queue to perform in the next
budget. You might even hold a reserve for certain types of
operations. For example, the podcatcher might ensure there is at
least 10% of the budget available for downloading the feeds, even if
it means putting a podcast on the queue for download tomorrow. That
way, you can present to the user the latest podcast information, with
icons indicating which are downloaded and which are queued for
download — the user might be able to then request to override
the budget and download something on demand.
For devices that lack per-UID TrafficStats support, you will have
to “fake it” a bit. Use your own calculations of how much bandwidth
each operation consumes and track that information, even if you wind
up missing out on some bytes here or there.
Connectivity
If the user might not care how much bandwidth you consume, so long as
it is un-metered bandwidth, you might include a CheckBoxPreference
to indicate if large network operations should be limited to WiFi and
avoid mobile data.
You could then use ConnectivityManager and getActiveNetworkInfo()
to see what connection you have before performing a network
operation. If it is a background operation (e.g., the podcatcher
checking for new podcasts every hour), if the network is not the
desired one, you can skip the operation or put it on a work queue for
re-trying later. If it is a foreground operation (e.g., the user
clicked a “refresh” menu choice), you could pop up a confirmation
AlertDialog to warn the user that they are on mobile data —
perhaps this time they are interested in doing the operation anyway.
Another approach for handling the background operations is to
register a BroadcastReceiver for the CONNECTIVITY_ACTION
broadcast (defined on ConnectivityManager). If the connectivity
switches to mobile data, cancel your outstanding AlarmManager
alarms; if connectivity switches to WiFi, re-enable those alarms.
Of course, you should also consider monitoring the background data
setting — the global Settings checkbox indicating whether
background network operations are allowed. On ConnectivityManager,
getBackgroundDataSetting() tells you the state of this checkbox,
and ACTION_BACKGROUND_DATA_SETTING_CHANGED allows you to set up a
BroadcastReceiver to watch for changes in its state.
Windows
If your user is less concerned about the bandwidth or the network,
but does care about the time of day (e.g., does not want your
application consuming significant bandwidth when they might be
getting a VOIP call), you could offer preferences for that as well.
Cook up a TimePreference and use that
to collect start and stop times for the high-bandwidth window. Then,
set up alarms with AlarmManager for those points in time. The alarm
for the start time of the window sets up a third alarm with your
regular polling interval. The alarm for the stop time of the window
cancels the polling interval alarm.
Driven by Other Usage
If your network I/O is part of a foreground application, one presumes
that you are the most important thing in the user’s life right now.
Or, at least, the most important thing on the user’s phone right now.
Hence, what other applications might want to do with the Internet
connection is not a major concern.
If, however, your network I/O is part of a background operation, it
might be nice to try to avoid doing things that might upset the user.
If the user is watching streaming video or is on a VOIP call or
otherwise is aware of bandwidth changes, the bandwidth you use might
impact the user in ways that the user will not appreciate very much.
This is unlikely to be a big problem for small operations (e.g.,
downloading a 1KB JSON file), but larger operations (e.g.,
downloading a 5MB podcast) might be more noticeable.
You can use TrafficStats to help here. Before doing the actual
network I/O, grab the current traffic data, wait a couple of seconds,
and compare the latest to the previous values. If little to no
bandwidth was consumed during that period, assume it is safe and go
ahead and do your work. If, however, a bunch of bandwidth was
consumed, you might want to consider:

	Skipping this polling cycle and trying again later, or

	Adding a one-off alarm using set() on AlarmManager to give you
control again in a minute, with the current traffic data packaged as
an extra on the Intent, so you can make a decision after a bigger
sample size of bandwidth consumption, or

	Adding an entry in a persistent work queue, so you know later on
to try again if bandwidth contention has improved

You could try to get more sophisticated, by using ActivityManager
and the per-UID values from TrafficStats to see if it is a
foreground application that is the one consuming the bandwidth. It is
unclear how reliable this will be, both in determining who is
consuming the bandwidth (again, per-UID traffic is not available on
many devices) and in avoid user angst. It may be simpler just to
assume the worst and side-step your I/O until the other apps have
quieted down.
Avoiding Metered Connections
Android 4.1 added isActiveNetworkMetered() as a method
on ConnectivityManager. In principle, this will return true if Android
thinks that the current data connection may involve bandwidth charges. You can
examine this value and steer your bandwidth consumption accordingly.
Android 5.0 added JobScheduler, as an alternative to AlarmManager
for arranging periodic work. One feature of JobScheduler is that you
can indicate that certain jobs require Internet access, in which case
Android will not bother giving you control unless such access is
available. A further refinement is that you can state that a job
requires an unmetered Internet connection, so you avoid doing bandwidth-hogging
work on an expensive connection.
Data Saver
Android has had a per-app “data saver” mode for some time, with an eye
towards reducing bandwidth consumption when the device is using a known
metered data plan. Android 7.0 extends this to a device-wide setting,
Apps can be in one of three states as a result:

	The device is normal

	The device is in data-saver mode

	The device is in data-saver mode, but your app is whitelisted by the
user

The idea is that if the device is in normal mode, you can do what
you want. If the device is in data-saver mode, you should restrict
your bandwidth, even if the user whitelists you. Apps that are not
whitelisted have no network access while in the background.
To that end, ConnectivityManager has three things for you.
First, isActiveNetworkMetered() will return true if the device
is on a metered data connection, false otherwise. This has been
around for years (API Level 16+), but has not been all that popular,
apparently.
Second, Android 7.0 has a getRestrictBackgroundStatus() method on
ConnectivityManager. This returns an int that resolves to one of
three values:

	RESTRICT_BACKGROUND_STATUS_DISABLED

	RESTRICT_BACKGROUND_STATUS_ENABLED

	RESTRICT_BACKGROUND_STATUS_WHITELISTED

If isActiveNetworkMetered() is true, and getRestrictBackgroundStatus()
returns RESTRICT_BACKGROUND_STATUS_ENABLED, any attempts to use the
network may fail, and so your app should plan accordingly.
If you want to try to react in real-time to changes in the data-saver
configuration, you can register a receiver for ACTION_RESTRICT_BACKGROUND_CHANGED
(defined on ConnectivityManager). This will be broadcast for any change
in data-saver settings, which means that your app’s state may not have
changed. You will need to call getRestrictBackgroundStatus() to find
out your current state. Also note that this broadcast is only sent to
receivers registered dynamically, via registerReceiver(). You cannot
register for this broadcast in the manifest.
To try to get on the whitelist, you might be tempted to try using
ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS to lead the
user to add your app to the Data Saver whitelist, so you have normal
background network access. However, bear in mind that Google has
a similar feature for the battery saver whitelist… and trying
to use that action
got apps banned from the Play Store.
At the moment, there is no similar language around the use of the
data saver whitelist… but, then again, they did not tell you they were
going to ban you for asking to be on the battery saver whitelist until
after Android 6.0 shipped.
Issues with Application Heap
RAM. Developers nowadays are used to having lots of it, and a virtual
machine capable of using as much of it as exists (and more, given
swap files and page files).
“Graybeards” — like the author of this book — distinctly
remember a time when we had 16KB of RAM and were happy for it. Such
graybeards would also appreciate it if you would get off their
respective lawns.
Android comes somewhere in the middle. We have orders of magnitude
more RAM than, say, the TRS-80 Model III. We do not have as
much RAM as does the modern notebook, let alone a Web server. As
such, it is easy to run out of RAM if you do not take sufficient care.
There are two facets of memory issues with Android:

	What are the problems we encounter inside our own app, in terms
of our application heap?

	What problems can we encounter with system RAM overall, and how
can we resolve them?

This part of the book examines memory-related issues, with
this chapter focusing on the application heap. Another chapter will
deal with system RAM issues. These are not
to be confused with any memory-related issues inherent to graybeards.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate, particularly the
chapter on Android’s process model.
You Are in a Heap of Trouble
When we think of “memory” and Java-style programming, the primary
form of memory is the heap. The heap holds all of our Java objects
– from an Activity to a widget to a String.
Traditional Java applications have an initial heap size determined by
the virtual machine, possibly configured via command-line options
when the program was run. Traditional Java applications can also
request additional memory from the OS, up to some maximum, also
configurable.
Android applications have the same basic structure, with very limited
configurability and much lower maximums than you might expect.
The original Android devices had a heap limit of 16MB. As screens
increase in resolution, the heap limit tends to rise, but only to a
point. 32MB to 64MB of heap space is fairly typical, but
less-expensive devices, such as Android One models, will tend towards
the lower end of that range.
This heap limit can be problematic. For example, each widget or
layout manager instance takes around 1KB of heap space. This is why
AdapterView provides the hooks for view recycling — we cannot
have a ListView with literally thousands of row views without
potentially running out of heap.
API Level 11+ supports applications requesting a “large heap”.
This is for applications that specifically need tons of RAM, such as
an image editor to be used on a tablet. This is not for applications
that run out of heap due to leaks or sloppy programming. Bear in mind
that users will feel effects from large-heap applications, in that
their other applications will be kicked out of memory more quickly,
possibly irritating them. Also, garbage collection on large-heap
applications runs more slowly, consuming more CPU time. To enable the
large heap, add android:largeHeap="true" to the <application>
element of your manifest. Finally, bear in mind that your “large heap”
may not be any bigger than your regular heap would have been, as
the “large heap” size is determined by the device manufacturer and
takes into account things like available system RAM.
Determining Your Heap Size At Runtime
To get a sense for how much heap you will be able to potentially
grow to, you can call getMemoryClass() on an ActivityManager.
This will return your per-process heap limit in megabytes.
If you requested android:largeHeap="true" in the manifest, use
getLargeMemoryClass() on
ActivityManager to learn how large your “large heap” actually is.
Note that it is entirely possible that the “large heap” is not all
that large, or potentially is no bigger than the standard heap,
depending upon how much RAM is physically present on the device.
Fragments of Memory
The Dalvik garbage collector is a non-compacting implementation, which
makes OutOfMemoryError messages somewhat more likely than you would
find on traditional Java environments.
Here, “non-compacting” means that Dalvik does not try to move objects
around in physical memory to “compact” the use of physical memory,
leaving a large contiguous block of free physical memory for future
allocations.
For example, suppose that we allocate three 1K byte arrays, named
A, B, and C. As it turns out, they were allocated using adjacent portions
of physical memory, so that the last byte of A immediately precedes
the first byte of B, and so on. Hence, we consumed 3K of available heap
space to create these three 1K blocks.
If we release all references to A and B, they can be garbage-collected.
Dalvik, like Java, will see that A and B are adjacent and will free
up their physical memory, such that the memory is available as one
contiguous 2K block for future allocations.
If, however, we release all references to A and C instead of A and B, Dalvik
would be unable to make their blocks be contiguous, and so our heap would
have two free 1K blocks, in addition to whatever other free memory that
the heap already had.
Hence, allocating memory not only ties up that memory while it is in use,
but it may fragment the memory even when it is released, such that our formerly
pristine heap is now comprised of lots of little free blocks of space, separated
from other such blocks by in-use objects. When we try to make a large allocation,
such as setting up a byte array for a large image, it may be that while we have
enough total heap available for the request, there is no single block that
would meet our request, and so we get an OutOfMemoryError.
One technique to help address this is to pre-allocate any large buffers that
you know you need, up front when your process starts up, such as via a custom
Application subclass. Then, use an “object pool” approach to obtain, use,
and reuse these pre-allocated buffers, rather than having them be garbage-collected
and have to be re-allocated later.
ART — the runtime engine used on Android 5.0+ — has a compacting garbage collector.
However, it only compacts the heap when the app is in the background.
So long as your application is in the foreground, ART behaves like Dalvik
does, and your heap will continue to fragment.
Getting a Trim
It would be nice if we knew when a good time would be to cut back on our heap
usage. For example, if we are caching a lot of data in our process, to save on
future disk I/O, we could free up those caches at some point to help minimize our
heap usage.
Fortunately, Android has some hooks for doing just that.
onTrimMemory() Callbacks
Starting in API Level 14, your activities, services, content providers, and
custom Application classes all offer an onTrimMemory() method that you can
override. This will be called from time to time to let you know about changes
in the state of your app that might indicate it is time to free up some caches
or otherwise cut back on memory consumption.
onTrimMemory() is passed a “level”, indicating how serious the memory crunch
is. At the present time, there are seven such levels, but others may be added
in future versions of Android. However, these levels are in priority order, and
the documentation indicates that Google will ensure that future levels are slotted
into the order as appropriate. Hence, you can watch for levels of a certain
severity or higher and take appropriate action at those points in time.
The seven levels are all defined as constants on the ComponentCallbacks2 interface
that defines onTrimMemory(). Four were defined in API Level 14, while the
remaining three were defined in API Level 16.
They are (in order of increasing severity):

	
TRIM_MEMORY_RUNNING_MODERATE (added in API Level 16)

	
TRIM_MEMORY_RUNNING_LOW (added in API Level 16)

	
TRIM_MEMORY_RUNNING_CRITICAL (added in API Level 16)

	
TRIM_MEMORY_UI_HIDDEN (added in API Level 14)

	
TRIM_MEMORY_BACKGROUND (added in API Level 14)

	
TRIM_MEMORY_MODERATE (added in API Level 14)

	
TRIM_MEMORY_COMPLETE (added in API Level 14)

In particular,
TRIM_MEMORY_BACKGROUND (or higher) indicates that your process is now on
the list of processes to terminate to free up memory, and so the more memory
you can free up, the less likely it is that your process will be terminated.
Also, at TRIM_MEMORY_UI_HIDDEN or higher, your UI is no longer visible to
the user, and so this is a fine time to free up UI-related memory that is
safe to release, such as perhaps widget hierarchies that you would be
rebuilding in onResume() later on anyway.
Note that while the focus tends to be on activities implementing onTrimMemory()
to clean up UI-related resources, you are welcome to implement onTrimMemory()
in services, content providers, and any custom Application subclass, so that
you can free up memory that those may be managing as caches.
In the chapter on system RAM, we will get into why freeing up memory
may help keep your process around, as we discuss
the relationship between your application heap and available system RAM.
Warning: Contains Graphic Images
However, the most likely culprit for OutOfMemoryError messages are
bitmaps. Bitmaps take up a remarkable amount of heap space.
Developers often look at the size of a JPEG file and think that “oh,
well, that’s only a handful of KB”, without taking into account:

	the fact that most image formats, like JPEG and PNG, are
compressed, and Android needs the uncompressed image to know what to
draw

	the fact that each pixel may take up several bytes (2 bytes per
pixel for RGB_565, 3 bytes per pixel for RGB_888)

	what matters is the resolution of the bitmap in its original form,
as much (if not more) than the size in which it will be rendered
– an 800x480 image displayed in an 80x48 ImageView still
consumes 800x480 worth of pixel data

	there are an awful lot of pixels in an image — 800 times 480
is 384,000

Android can make some optimizations, such as only loading in one copy
of a Drawable resource no matter how many times you render it.
However, in general, each bitmap you load takes a decent sized chunk
of your heap, and too many bitmaps means not enough heap. It is not
unheard of for an application to have more than half of its heap
space tied up in various bitmap images.
Compounding this problem is that bitmap memory, before Android 3.0, was
difficult to measure. In the actual Dalvik heap, a Bitmap would need
~80 bytes or so, regardless of image size. The actual pixel data was
held in “native heap”, the space that a C/C++ program would obtain
via calls to malloc(). While this space was still subtracted from
the available heap space, many diagnostic programs — such as
MAT, to be examined in the next chapter — will not know about
it. Android 3.0 moved the pixel data into
the Dalvik heap, which will improve our ability to find and deal with
memory leaks or overuse of bitmaps.
Bitmap Caching
Many Android libraries, like Picasso, offer bitmap
caching. Using an existing caching implementation is a lot easier than is
rolling your own.
However:

	Make sure that the library is intelligently sizing the cache based upon
possible heap space, such as via getMemoryClass() as is noted earlier
in this chapter.

	Where possible, tie your cache to onTrimMemory() so that you can flush
that cache when appropriate.

	Be careful about using multiple libraries, each of which might implement
its own cache, that you do not wind up caching too much overall. Each library
tends to think that it is The One True Cache for your app and will be oblivious
to any other caches — bitmap or otherwise — that you may have in your app.
Ideally, the library will have a way for you to set the maximum cache size.

Bitmap Sizing
Sometimes, you do not need a full-size image. For example, if you are showing
thumbnails of images in a ListView, but only expect to show the full-size image
for a few (e.g., rows that the user clicks upon), it is wasteful to load the full-size
image for everything in the list.
BitmapFactory.Options offers inSampleSize, which tells the framework to sample
the image as it is loaded, to result in a smaller image. inSampleSize of 2 will
result in an image that is half the width and half the height; inSampleSize of 4
will result in an image that is a quarter the width and a quarter the height; etc.
Note that inSampleSize is limited to powers of 2 and will round as needed.
If you know ahead of time the size of the image, you can calculate an appropriate
inSampleSize to use. Otherwise, for local content, you can use BitmapFactory
twice:

	Once with a BitmapFactory.Options set with inJustDecodeBounds set to true,
which will merely tell you how big the image is via outHeight and outWidth
on the BitmapFactory.Options itself

	Once with a BitmapFactory.Options set with inSampleSize set to your desired
value and inJustDecodeBounds set to false, to really load the image, but downsampled
to consume less memory

This approach does not work well for images being downloaded directly from the Internet,
as you do not want to download the image twice, once just to figure out how big it
is. Instead, download the image without using BitmapFactory to a local file, then
use BitmapFactory to load in the image. If you are electing to use a two-level cache
(memory plus disk), you might download the image to the disk cache, for example.
For example, let’s look at the
Bitmaps/InSampleSize
sample project, which demonstrates the memory impact (and visual impact) of loading
bitmaps at varying sample sizes.
In the assets/ directory, we have a ~70KB JPEG file of a flower (courtesy of
the Wikimedia Project)
and a ~50KB PNG of the CommonsWare logo. Both images are 672
pixels square, which makes them relatively large images. These are in assets to
ensure that Android will not attempt any sort of density-based conversion of the
images, if they were to be in a drawable resource directory.
The MainActivity of the project simply loads up a ViewPager and attaches
it to a SampleAdapter:

package com.commonsware.android.bitmap.iss;

import android.app.Activity;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
import android.support.v4.view.PagerAdapter;
import android.support.v4.view.ViewPager;

public class MainActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ViewPager pager=findViewById(R.id.pager);

 pager.setAdapter(buildAdapter());
 }

 private PagerAdapter buildAdapter() {
 return(new SampleAdapter(this, getSupportFragmentManager()));
 }
}

(from Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/MainActivity.java)
SampleAdapter, in turn, populates the ViewPager with four instances
of a BitmaFragment, where we supply the newInstance() factory method of
BitmapFragment with a value of 1, 2, 4, or 8 (1 << position), indicating
the inSampleSize value we want to use for that fragment instance:

package com.commonsware.android.bitmap.iss;

import android.content.Context;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;

public class SampleAdapter extends FragmentPagerAdapter {
 Context ctxt=null;

 public SampleAdapter(Context ctxt, FragmentManager mgr) {
 super(mgr);
 this.ctxt=ctxt;
 }

 @Override
 public int getCount() {
 return(4);
 }

 @Override
 public Fragment getItem(int position) {
 return(BitmapFragment.newInstance(1 << position));
 }

 @Override
 public String getPageTitle(int position) {
 return(BitmapFragment.getTitle(ctxt, 1 << position));
 }
}

(from Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/SampleAdapter.java)
BitmapFragment then:

	Inflates a layout consisting of four ImageView widgets, two at 672dp square
for the “natural” size (scaling only for density), and two at 128dp square to
illustrate how the images appear when constrained to a smaller space:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/byte_count"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginBottom="16dp"
 android:textSize="20sp"
 android:textStyle="bold"/>

 <ImageView
 android:id="@+id/flower_large"
 android:layout_width="672dp"
 android:layout_height="672dp"
 android:layout_gravity="center_horizontal"
 android:layout_marginBottom="16dp"
 android:contentDescription="@string/flower_large"
 android:scaleType="fitCenter"/>

 <ImageView
 android:id="@+id/logo_large"
 android:layout_width="672dp"
 android:layout_height="672dp"
 android:layout_gravity="center_horizontal"
 android:layout_marginBottom="16dp"
 android:contentDescription="@string/logo_large"
 android:scaleType="fitCenter"/>

 <ImageView
 android:id="@+id/flower_small"
 android:layout_width="128dp"
 android:layout_height="128dp"
 android:layout_gravity="center_horizontal"
 android:layout_marginBottom="16dp"
 android:contentDescription="@string/flower_small"
 android:scaleType="fitCenter"/>

 <ImageView
 android:id="@+id/logo_small"
 android:layout_width="128dp"
 android:layout_height="128dp"
 android:layout_gravity="center_horizontal"
 android:contentDescription="@string/logo_small"
 android:scaleType="fitCenter"/>
 </LinearLayout>

</ScrollView>

(from Bitmaps/InSampleSize/app/src/main/res/layout/sample.xml)

	Uses a private load() method to load the images at the desired inSampleSize
using a BitmapFactory.Options object

	Pours the images each into two ImageView widgets, one large and one small

	Updates some TextView widgets in the fragment to show how much memory those
images are consuming

package com.commonsware.android.bitmap.iss;

import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Build;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.TextView;
import java.io.IOException;

public class BitmapFragment extends Fragment {
 private static final String KEY_SAMPLE_SIZE="inSampleSize";
 private AssetManager assets=null;

 static BitmapFragment newInstance(int inSampleSize) {
 BitmapFragment frag=new BitmapFragment();
 Bundle args=new Bundle();

 args.putInt(KEY_SAMPLE_SIZE, inSampleSize);
 frag.setArguments(args);

 return(frag);
 }

 static String getTitle(Context ctxt, int inSampleSize) {
 return(String.format(ctxt.getString(R.string.title), inSampleSize));
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View result=inflater.inflate(R.layout.sample, container, false);
 int inSampleSize=getArguments().getInt(KEY_SAMPLE_SIZE, 1);

 try {
 Bitmap flower=
 load("Tibouchina_urvilleana_flower_ja.jpg", inSampleSize);
 Bitmap logo=load("square.png", inSampleSize);

 ImageView iv=(ImageView)result.findViewById(R.id.flower_large);

 iv.setImageBitmap(flower);
 iv=(ImageView)result.findViewById(R.id.flower_small);
 iv.setImageBitmap(flower);
 iv=(ImageView)result.findViewById(R.id.logo_large);
 iv.setImageBitmap(logo);
 iv=(ImageView)result.findViewById(R.id.logo_small);
 iv.setImageBitmap(logo);

 TextView tv=(TextView)result.findViewById(R.id.byte_count);

 tv.setText(String.valueOf(byteCount(flower)));
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception loading bitmap", e);
 }

 return(result);
 }

 private Bitmap load(String path, int inSampleSize) throws IOException {
 BitmapFactory.Options opts=new BitmapFactory.Options();

 opts.inSampleSize=inSampleSize;

 return(BitmapFactory.decodeStream(assets().open(path), null, opts));
 }

 private AssetManager assets() {
 if (assets == null) {
 assets=getActivity().getAssets();
 }

 return(assets);
 }

 @TargetApi(Build.VERSION_CODES.KITKAT)
 private int byteCount(Bitmap b) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 return(b.getAllocationByteCount());
 }

 return(b.getByteCount());
 }
}

(from Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/BitmapFragment.java)
If you run this on a device, you will see the images at the various sample sizes,
one sample size per page of the ViewPager. While the quality of the loaded images
decreases as inSampleSize increases, the smaller ImageView widgets are still
usable for the flower JPEG, though the line-art PNG suffers.
NOTE: The following screenshots will themselves be modified as part
of the publishing process of the book and are here only for illustration purposes.
You will want to run the demo and see the results first-hand.

[image: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 1, Flower JPEG, Full Size]

Figure 984: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 1, Flower JPEG, Full Size

[image: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 1, CW Logo PNG (Full Size) and Smaller Sizes]

Figure 985: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 1, CW Logo PNG (Full Size) and Smaller Sizes

[image: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 8, Flower JPEG, Full Size]

Figure 986: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 8, Flower JPEG, Full Size

[image: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 8, CW Logo PNG (Full Size) and Smaller Sizes]

Figure 987: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 8, CW Logo PNG (Full Size) and Smaller Sizes
The key, though, is the reduced memory footprint. The images loaded without
sampling (inSampleSize of 1) take up 1,806,336 bytes of heap space
(672 x 672 x 4 bytes per pixel).
The inSampleSize of 8, by contrast, take up 28,244 bytes of heap space,
less than 2% of the original.
You should consider experimenting with inSampleSize and determine an appropriate
sampling level for the types of images you will receive (photos work better than
line art) and the sizes you intend to use them in.
Bitmap Color Space
BitmapFactory will load images as ARGB_8888 by default. That means that each
pixel takes up four bytes, one each for the red, green, and blue color channels, plus
a byte for the alpha channel (transparency).
However, particularly for thumbnails of photographs, where transparency probably does
not exist and the image is small when viewed by the user, four bytes per pixel may
be overkill.
Instead, you can set inPreferredConfig of the BitmapFactory.Options to RGB_565,
which uses only two bytes (five bits for red, six bits for green, five bits for blue,
and no transparency). This will cut your memory consumption for the bitmap in half,
with no loss of resolution (as you get with inSampleSize).
Bitmap Reuse
If you will be doing a lot of work with bitmaps, particularly bitmaps of the same
size, an object pool can be of tremendous help to minimize heap fragmentation. You
can reuse the same Bitmap over and over again, by supplying it via inBitmap in
the BitmapFactory.Options object. If the Bitmap is compatible with what you are
looking to decode, it will be reused, rather than have a new Bitmap (backed by a new
hunk of heap space) be created.
Here, “compatible” means:

	The image is the same bit depth configuration (ARGB_8888 versus RGB_565)

	For API Level 18 and below, the resolution is identical; for API Level 19+, the
inBitmap resolution is the same as or higher than the bitmap to be loaded

Releasing SQLite Memory
SQLite maintains a “page cache” of loaded pages from your database files.
Curiously, it does so on a static basis, not on a per-SQLiteDatabase basis. Hence,
even after you have closed your databases, you might still be consuming more memory
than you need to, due to this cache.
From onTrimMemory(), you can call the static releaseMemory() method on
SQLite, to try to free up some of this memory. This should not cause any database
errors, but it may slow down the next few database accesses, as the necessary
pages may no longer be cached and may have to be loaded again from disk.
Cheating
All your efforts at improving memory management may be merely “rearranging
deck chairs on the Titanic”. Certain scenarios simply require a lot
of system RAM, such as complex image manipulations.
android:largeHeap="true" is one example of “cheating”: working around
the heap limits. However, as noted above, you may or may not get a
particularly “large” heap, depending upon device capabilities.
The NDK is another option for cheating. The heap limits are for the
Dalvik and ART runtime engines. Anything you do in native C/C++ code
does not count against that heap limit. Hence, you might consider
migrating complex logic into NDK code not only to get a possible boost
in execution speed but also to avoid impacting your heap limit.
However, even with the NDK, you may not have enough RAM, because the
system may not have enough RAM. Android One and similar low-spec
devices might have as little as 512MB for the entire device, and your
app would only be able to use a fraction of that, even from native code.
Note that Android devices do not use “swap space” or similar memory
paging techniques, and so once system RAM is exhausted, the device is
likely to crash.
You can use isLowRamDevice() on ActivityManager to determine whether
the device that your app is running on is considered to have low RAM.
Nowadays, that means 512MB or lower of system RAM with a low
screen resolution (e.g., 800x480). Before trying to use the NDK to cheat,
check whether the device is a low-RAM device. If it is, you may need
to disable certain features, rather than potentially crash the system
by consuming all available system RAM.
The 1MB IPC Transaction Limit
Sometimes, even cheating cannot help you.
One example of this is a FAILED BINDER TRANSACTION error message, sans stack
trace, that may show up in Logcat associated with a subsequent crash of yours.
Alternatively, it sometimes appears as a TransactionTooLargeException.
This message arises because there is a 1MB limit on the amount of memory used
in IPC transactions. This includes:

	Starting activities or services, where the limit is imposed on the Intent
and its extras

	Sending a broadcast, again measured in terms of the Intent and its
extras

	the saved instance state Bundle

	responses from bound services (return values, out parameters)

	responses from startActivityForResult() calls

	and so on

Worse, this is not a per-transaction limit, but rather a per-process limit.
Usually, you will only have one IPC request going at a time, but that is not
always the case (e.g., you try starting an activity at the same time that
you happen to be receiving a broadcast). Hence, coming anywhere close to the
1MB limit is risky, lest your transaction combine with others to have you
exceed the 1MB limit.
This limit is baked into the operating system and cannot be altered by developers.
Worse, you do not actually know if the transaction totally failed (it could not
be sent) or partially failed (the transaction was sent, but the response failed).
Overall, try to keep your transaction sizes low:

	Do not put bitmaps into transactions wherever possible

	Do not transfer large arrays, huge strings, and the like

	Do not use IPC when in-process communications (e.g., event buses)
can work

Finding Memory Leaks
Android Studio’s heap analyzer is your #1 tool for identifying
memory leaks and the culprits behind running out of heap space.
Particularly when used with Android 3.0+ versions of Android,
the heap analyzer can tell you:

	Who are the major sources of memory consumption, both directly
(e.g., bitmaps) or indirectly (e.g., leaked activities holding onto
lots of widgets)

	What is keeping objects in memory unexpectedly, defying standard
garbage collection — the way that you leak memory in a managed
runtime environment like Dalvik or ART

Android Studio’s heap analyzer builds on the earlier Memory Analysis
Tool (MAT), used by Java developers, and by Android developers prior
to Android Studio.
However, Android Studio’s heap analysis leaves a lot to be desired.
Not only do you have to manually examine and check heap dumps, but
you get a lot of false positives due to bugs in Android. A library
that helps with both of these issues is LeakCanary, and we will examine
it in this chapter as well.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate, particularly the
chapter on Android’s process model. Reading
the introductory chapter to this trail might be nice.
Android Studio Profiler
The first question is: when do we bother looking for leaks? Complex apps
are complex, and so we might spend a lot of time looking for leaks
that either do not exist or do not matter much.
In Android Studio, the Android Profiler tool will allow you
to examine the real-time behavior of your app with respect to various
system resources, such as heap space in your app:

[image: Android Profiler]

Figure 988: Android Profiler
Clicking on the memory portion of the graphs will bring up details for
the memory consumption:

[image: Android Profiler, Showing Memory Details]

Figure 989: Android Profiler, Showing Memory Details
The color coding shows the different types of memory being consumed. For
example, the largest area in this graph is the tan “Graphics” area. The
sample app being tested here happens to be a Picasso sample app from
the chapter on Internet access. However, “Graphics”
does not refer to bitmaps, but rather is “used for graphics buffer queues
to display pixels to the screen, including GL surfaces, GL textures, and so on”,
according to the documentation.
Generally speaking, you will be most interested in:

	The light blue portion of the graph, representing memory consumed by your
Java objects

	The dashed line, which represents the number of allocated Java objects

	The garbage can icons, representing garbage collection events

On Android 5.0+ devices, the memory usage can also fall… while your
app is no longer in the foreground:

[image: Android Studio, Android Monitor, Memory Tab, Showing Shrunken Heap]

Figure 990: Android Studio, Android Monitor, Memory Tab, Showing Shrunken Heap
The major drop in the memory usage came with the release of some of those
GL buffers and textures, some of which are no longer necessary when the
app no longer is in the foreground from a UI standpoint.
The major drop in the number of allocated Java objects presumably came
from ART. Once your app is no longer in the foreground, ART will do a more
aggressive garbage collection run, including
moving objects in heap space to coalesce free blocks. If this frees up
some of the allocated pages from the OS, ART can then free those pages,
returning the memory to the OS and reducing our app’s overall memory
footprint.
You can also perform a manual garbage collection run by tapping
the “garbage can” icon in the toolbar. Other toolbar buttons include:

	A button to dump the heap (discussed later in this chapter)

	A close button to close this tool

	Buttons to zoom in, zoom out, or reset the zoom to its default level

	A “Live” button that serves to pause the results or, from a paused state,
resume normal real-time output

Getting Heap Dumps
The first step to analyzing what is in your heap is to actually get
your hands on what is in your heap. This is referred to as creating a
“heap dump” — what amounts to a log file containing all your
objects and who points to what.
In Android Studio
In the memory details view of the Android Profiler tool in Android Studio,
you can create a heap dump by clicking the toolbar button that looks like
an open square with a downwards-pointing arrow in it, adjacent to the
“garbage can” icon for forcing garbage collection:

[image: Dump Java Heap Toolbar Button in Android Profiler]

Figure 991: “Dump Java Heap” Toolbar Button in Android Profiler
Tap that, then go get a cup of coffee (or another preferred beverage).
Generating a heap dump used to take a few seconds. With Android Studio
3.0, it takes much longer than that.
Eventually the bottom portion of the Android Profiler pane will
show the results of the heap dump.
From Code
Another possibility is to trigger the heap dump yourself from code.
The dumpHprofData() static method on the Debug class (in the
android.os package) will write out a heap dump to the file you
indicate. Since you will need to
transfer them off the device or emulator, it will be simplest to specify
a path to a file on external storage, which means that your project
will need the WRITE_EXTERNAL_STORAGE permission.
To view the results in Android Studio, you will need to transfer the file
from wherever you saved it on the device or
emulator to your development machine. For example, you can double-click
on it in the Device File Explorer.
The UI that you get has the same basic functionality as does the UI from
a manually-requested heap dump from the Android Profiler, though they look
somewhat different.
Analyzing Heap Dumps in Android Studio
Having a heap dump is nice, but we need tools to determine exactly
what is in there and what that means for our app. Android Studio lets us
examine a heap dump to see what is going on and perhaps identify leaks.
Navigating the Heap Dump UI
There are several pieces to the UI that we use to examine a heap dump.
Class List
We start off with a class list table:

[image: Android Studio Heap Dump, Class List Table]

Figure 992: Android Studio Heap Dump, Class List Table
This table comes filled in with a list of classes and
primitive arrays, sorted by “retained size”. This indicates how
much memory those objects, and everything that they point to, consume. So,
for example, this heap dump contains 51 Bitmap objects with a retained
size of 2,457,001 bytes.
The other columns are:

	Alloc Count: the number of instances of this class found in your
app’s heap

	Native Size: the amount of “native memory” used by these objects (generally
zero, but non-zero for some classes like Bitmap)

	Shallow Size: how much memory these instances consume in their
own primitives, not including any other objects that they point to

Roughly speaking, the sum of the “Native Size” and the “Shallow Size” equals
the amount of space that the objects are taking up directly themselves, not
counting references to other objects.
Heap Selector
The drop-down above the table that defaults to “App heap” will have other
options on Android 5.0+ devices. Specifically, you can switch between
the app heap, the undocumented “default heap”,
the similarly-undocumented “image heap”, and the equally-undocumented
“zygote heap”. The zygote is a core OS process, started when the device
boots; all Android SDK apps are forked off of the zygote. Given that
and other announced ART tidbits suggests that:

	the “image heap” may be the large object space, mostly set aside for
bitmaps

	the “zygote heap” may be the objects in the heap that were instantiated
by the zygote and its initialization of the Android framework classes,
as opposed to your code

In general, you want the app heap, which is what appears by default.
Package Tree View
The drop-down above the table that defaults to “Arrange by class”
can be toggled to “Arrange by package”, which turns the table into
a tree-table, for navigation by Java package name, plus primitive arrays:

[image: Android Studio Heap Dump, Package Tree View, As Initially Launched]

Figure 993: Android Studio Heap Dump, Package Tree View, As Initially Launched

[image: Android Studio Heap Dump, Package Tree View, Drilled Down Into Packages]

Figure 994: Android Studio Heap Dump, Package Tree View, Drilled Down Into Packages
This view will make it easier for you to find classes from your app or from
well-known libraries, since those classes will be clustered into their own
pacakges.
Instance List
If you click on a class in either the class list view or the package
tree view, a table on the right will show a list of the instances of
that class that were found in your heap:

[image: Android Studio Heap Dump, Instance List]

Figure 995: Android Studio Heap Dump, Instance List
The “shallow size” refers to the number of bytes consumed directly by
that particular instance, such as by primitive fields. The “retained size”
roughly equates to “how much memory can this object be blamed for”. In other
words, if that object could be garbage-collected, how much would we recover,
not only from the “shallow size” but from other objects uniquely referenced
by this object?
The “depth” refers to how many hops away from a garbage collection
root (“GC root”) this object is.
This table initially appears as a simple table. In reality, though, it
is a tree table. You can expand nodes in the tree to drill down into
all the objects referenced by a particular instance, and all objects that
reference the instance in question:

[image: Android Studio Heap Dump, Instance Tree]

Figure 996: Android Studio Heap Dump, Instance Tree
You can further expand the References tree to see who references some of those
references, and so on.
Identifying Leak Candidates
All of that is just great, but you still need to determine if
you have a memory leak and, if so, where is it coming from.
Basically, you rummage
through the class list or package tree, looking for classes that either:

	you would not expect to be there (e.g., all instances should have been
garbage-collected)

	you would not expect to be so numerous

	you would not expect to retain so much heap space

Bear in mind that the act of generating a heap dump only logs objects
that are reachable from other objects, or themselves are considered
“garbage collection roots” (a.k.a., “GC roots”). Any objects that are
actual garbage, but perhaps have not yet been collected by the garbage
collector, do not appear in the dump. Hence, if you see it in the heap
snapshot tab, the objects are “real”, not uncollected garbage.
Conversely, just because you find an object in the heap does not mean
that it is truly “leaked”. For example:

	Activities that have not been destroyed are not leaked, strictly
speaking, though you may wish to consider whether changes to your
app’s navigation can allow you to reuse existing activity instances
better.

	Objects that are part of a cache, such as Picasso’s memory caching
of downloaded images, are intentionally “leaked”. You may use what
you see in the heap snapshot tab to elect to reduce the size of
those caches, or perhaps better consolidate multiple disparate caches,
where possible.

	Objects in use by a running thread are not leaked… unless the thread
itself is effectively leaked (i.e., exists, and refers to objects, but
you do not know why that thread is still outstanding).

Common Leak Scenarios
With all that in mind, let’s look at a few common scenarios of leaking
objects, to see what those leaks look like when we do a heap dump and
analyze that dump in Android Studio.
The Static Widget
The
Leaks/StaticWidget
sample project does something naughty:

package com.commonsware.android.button;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;

public class ButtonDemoActivity extends Activity {
 private static Button pleaseDoNotDoThis;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 pleaseDoNotDoThis=(Button)findViewById(R.id.button1);
 }
}

(from Leaks/StaticWidget/app/src/main/java/com/commonsware/android/button/ButtonDemoActivity.java)
We take a widget (specifically a Button) and put
it in a static data member, and never replace it with null.
As a result, even if the user presses BACK to get out of the
activity, the static data member holds onto Button, which itself
has a reference back to our Activity.
If you run the app, press BACK to exit the activity, and generate a heap
dump of this process, you will see that ButtonDemoActivity appears in
the dump:

[image: Heap Dump UI, Showing Leaked Activity]

Figure 997: Heap Dump UI, Showing Leaked Activity
If you click on ButtonDemoActivity and poke around the References tab,
you will find where our static field shows up:

[image: Heap Dump UI, Showing Static Field]

Figure 998: Heap Dump UI, Showing Static Field
The leaked object (ButtonDemoActivity) is referenced by an mContext
field in a static pleaseDoNotDoThis field in ButtonDemoActivity
itself. The latter item has a depth of 0, so we know that it is a
GC root. The hope is that you will recognize some of the items shown
here (e.g., field names like pleaseDoNotDoThis) and can see how those
items affect the ability for Android to garbage collect the leaked object.
Thread References
The
Leaks/LeakedThread
sample project does something else naughty:

package com.commonsware.android.leak.thread;

import android.app.Activity;
import android.os.Bundle;
import android.os.SystemClock;

public class LeakedThreadActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 new Thread() {
 public void run() {
 while(true) {
 SystemClock.sleep(100);
 }
 }
 }.start();
 }
}

(from Leaks/LeakedThread/app/src/main/java/com/commonsware/android/leak/thread/LeakedThreadActivity.java)
Here, we kick off a Thread from onCreate() of our activity and have
it enter a pseudo-polling loop, sleeping for 100ms per pass through the
loop.
This is naughty for all sorts of reasons:

	Fast polling loops like this are bad for the battery

	We start a thread and never stop it

	We are using an anonymous inner class for our Thread

The latter two flaws combine to cause a memory leak.
So, we can go through the package tree view,
find the Java packages for the code, and see what objects from those
packages are outstanding:

[image: Heap Dump UI, Showing Classes In App Package]

Figure 999: Heap Dump UI, Showing Classes In App Package
Here, we see that we have leaked two objects. One is LeakedThreadActivity.
The other is an anonymous inner class of LeakedThreadActivity
(assigned the name LeakedThreadActivity$1 by the Java compiler).
Clicking on the activity and examining the first child in the
reference tree once again discloses the leak:

[image: Heap Dump UI, Showing Another Leak and Its Path to a GC Root]

Figure 1000: Heap Dump UI, Showing Another Leak and Its Path to a GC Root
Our zero-depth entry is threads, which is basically the collection
of all Java Thread objects that are still alive in this process. One
of those is our anonymous inner class (this$0 in LeakedThreadActivity$1), which
holds onto the activity instance.
To avoid this sort of leak:

	Do not have everlasting threads — whatever component creates a thread
needs to stop the thread when the component is being destroyed

	Do not use anonymous inner classes when creating threads, as an
anonymous inner class has an implicit reference back to the outer class
instance that created it (in this case, our activity), and that outer class
instance cannot be garbage-collected until the thread terminates

Retaining Too Much
In the chapter on threads, we had an AsyncTask demo
app that used a retained fragment to manage the task. That fragment was
a ListFragment, and it was responsible for displaying the Latin words
as those words were “downloaded” in the background by the task. Google
is not a fan of retained fragments having widgets… and the
Leaks/ConfigChange
sample project demonstrates why.
The change in this project versus the original mostly comes down to a
humble Button, which we will use to restart the download from the
beginning once it has completed:

 <Button
 android:id="@+id/again"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/btn_again"/>
</LinearLayout>

(from Leaks/ConfigChange/app/src/main/res/layout/main.xml)
The Button itself is stored as a field in the fragment, named
btnAgain. This already raises some concerns, if we are retaining the
fragment. However, this approach is safe, if and only if we clear out
or refresh that field on a configuration change. For example, if you
used findViewById() to get the Button and assign it to btnAgain
in onViewCreated(), you would not have a problem, as onViewCreated()
is called as part of the configuration change, even for retained fragments.
However, this sample app instead lazy-initializes that data member, via
a getAgain() getter method:

 private Button getAgain() {
 if (btnAgain==null) {
 btnAgain=(Button)getView().findViewById(R.id.again);
 }

 return(btnAgain);
 }

(from Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java)
That getter method is used in the rest of the fragment to retrieve the
Button, such as in onViewCreated():

 @Override
 public void onViewCreated(View v, Bundle savedInstanceState) {
 super.onViewCreated(v, savedInstanceState);

 getListView().setScrollbarFadingEnabled(false);
 setListAdapter(adapter);

 getAgain().setOnClickListener(this);

 if (task!=null) {
 getAgain().setEnabled(false);
 }
 }

(from Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java)
…onClick() (as the fragment now implements the View.OnClickListener
interface):

 @Override
 public void onClick(View v) {
 getAgain().setEnabled(false);
 adapter.clear();
 task=new AddStringTask();
 task.execute();
 }

(from Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java)
…and onPostExecute() of the AsyncTask:

 @Override
 protected void onPostExecute(Void unused) {
 task=null;
 getAgain().setEnabled(true);
 }

(from Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java)
Nowhere do we set btnAgain to null, including after a configuration change.
So, when the activity starts up, everything is fine. However, when we
rotate the screen or otherwise undergo a configuration change, the fragment
misbehaves. getAgain() says “hey, btnAgain is already initialized, so
I can skip the findViewById() call”. But we have a different Button
now after the configuration change, and btnAgain is pointing to the
original Button. That original Button is tied to the original, pre-configuration
change Activity instance, and we have a leak, until the second
Activity is destroyed.
If you run the app, rotate the screen, and then capture a heap dump, the
snapshot will show two outstanding instances of AsyncDemo:

[image: Heap Snapshot Tab, Showing Two Activities Instead of One]

Figure 1001: Heap Snapshot Tab, Showing Two Activities Instead of One
However, this leak will be difficult to diagnose, for two reasons:

	Android Studio’s heap analyzer
does a poor job of illustrating what is holding onto the activities

	Not only are you leaking the activities, but so is Android itself,
as will be explored in the next section

A Canary in a Leaky Coal Mine
When the author of this book was testing the previous section’s demo,
he was trying to use Android Studio to confirm that the leak was caused
by the Button. As part of that analysis, he went back to the original
Threads/AsyncDemo
sample project… and Android Studio said that it was leaking the
activity.
At this point, a long series of expletives could be heard emanating from
the author’s office.
To help try to suss out exactly what was going on, the author turned to a
library that you may wish to consider:
LeakCanary. And, as it turns out,
LeakCanary indicates that the Android Studio-reported leak is a false
positive, and that there is no serious memory leak.
Introducing LeakCanary
LeakCanary is another library from the indefatigable developers at Square.
It allows you to monitor certain objects to see if they get leaked.
In particular, if you use the standard setup, it will automatically
watch for activities that get leaked. When it detects a leak, it will
dump the heap, then read in the heap dump on the device and try to determine
where the leak is coming from. To help with that, it has a roster of
known false positives that it can filter out, and the authors encourage
the community to provide more false positives where possible.
If a leak is detected, but it is a false positive, a message will be
dumped to Logcat with the details. If a leak is detected that appears
to be genuine, a Notification will appear, leading to an activity that
will show you the source of the leak.
Adding LeakCanary to a Project
Adding LeakCanary to a project is fairly easy, courtesy of some well-designed
defaults and a tricky use of build type-specific dependencies.
Adding the Dependencies
We only want LeakCanary to be used in debug builds, not release
builds. Even if we are leaking memory, the effects of LeakCanary (including
slow heap dumps) are not the sort of thing that we should be putting users
through.
Yet, at the same time, we will need a bit of Java code to hook up LeakCanary
itself. Ordinarily, this would require setting up src/debug/ and
src/release/ source sets and trying to isolate the LeakCanary-specific
code to the debug build.
LeakCanary addresses this by publishing two versions of the artifact:
the real one (for debug) and a no-op one (for release). The public
API for each is identical, so your application code can build in either
case. It just so happens that the no-op artifact does nothing in response
to the API, as it merely contains stubs necessary to satisfy the API.
This is much simpler, and for coarse-grained APIs is a technique
worth emulating.
The
Leaks/AsyncTask
sample project is akin to the Threads/AsyncDemo sample project,
but uses LeakCanary (and a ListView rather than a RecyclerView).
In its app module’s build.gradle file, we have
the twin dependencies, scoped for the appropriate build types:

dependencies {
 implementation 'com.android.support:support-fragment:27.1.1'
 debugImplementation 'com.squareup.leakcanary:leakcanary-android:1.6.1'
 releaseImplementation 'com.squareup.leakcanary:leakcanary-android-no-op:1.6.1'
}

(from Leaks/AsyncTask/app/build.gradle)
If you have your own custom build types, you would need to adjust the
conditional dependencies to match, using the no-op one for any build
that should not have the real LeakCanary in it.
Adding the Application
Usually, if you are going to use LeakCanary, it is with the intent
of availing yourself of its mostly-automatic detection of leaked activities.
The recipe for doing that involves calling install() on the LeakCanary
class when your process starts, such as in onCreate() of a custom
Application subclass.
The sample app has such a class, CanaryApplication:

package com.commonsware.android.async;

import android.app.Application;
import com.squareup.leakcanary.LeakCanary;

public class CanaryApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();

 if (LeakCanary.isInAnalyzerProcess(this)) {
 // LeakCanary is processing a heap dump here; please do not disturb!
 return;
 }

 LeakCanary.install(this);

 // do your normal initialization work here
 }
}

(from Leaks/AsyncTask/app/src/main/java/com/commonsware/android/async/CanaryApplication.java)
When LeakCanary detects a possible leak, it collects and analyzes a heap
dump. The analysis is performed in a separate process, so its own memory usage
does not affect your main process’ heap limit. However, the same custom
Application is used for every one of your app’s processes. LeakCanary.isInAnalyzerProcess()
returns true if your Application code is running in this analysis process,
so you can skip any initialization work that you might already have in a custom
Application. In the “real” app process, you use LeakCanary.install() to
set up LeakCanary for automatic analysis.
This Application subclass is registered in the manifest, via android:name
on the <application> element:

 <application
 android:name=".CanaryApplication"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Holo.Light.DarkActionBar">
 <activity
 android:name=".AsyncDemo"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

(from Leaks/AsyncTask/app/src/main/AndroidManifest.xml)
And that is all that you need for basic integration.
Adding Manual Leak Checks
LeakCanary.install() returns a RefWatcher object. If all you want to
do is use the semi-automatic activity leak detection, you can safely ignore
this return value.
However, if you would like to watch for other objects leaking — fragments,
domain model objects, threads, etc. — you can hang onto that RefWatcher
and, where needed, call watch() on it to add an object to watch for
leaks. Watching for leaks is not terribly expensive but not free, so be
judicious in what you are watching.
Testing with LeakCanary
Once you have LeakCanary integrated, you can try out your app and see
if it leaks.
Note that the quasi-automatic activity leak detection is based upon
the activity lifecycle. LeakCanary considers an activity to be leaked
if it is destroyed and there are still unknown strong references to it.
This assume that your activity is destroyed in an ordinary fashion. Hence,
how you use your app influences what leaks you find. For example, if
you terminate the app process (e.g., swipe away the associated task
in the overview screen), you will not find out if any live activities
were leaked. Where possible, try to use the BACK button to step your way
out of the app when testing, to ensure everything gets destroyed and the
most leaks can be found.
The Notifications
If LeakCanary detects a possible leak, it will start displaying notifications
to let you know about this and what is going on:

[image: LeakCanary Notifications]

Figure 1002: LeakCanary Notifications
LeakCanary wants WRITE_EXTERNAL_STORAGE rights, and so the first time you
use it with an app that does not request that permission on its own, you will
get a notification that leads you to grant the permission.
Note that it may take a few moments after the activity is destroyed before
the message appears, and that it may take a long time after the message
disappears before you get final results.
Eventually, though, if there is a leak detected, you will get a notification
advising you of that fact:

[image: LeakCanary Confirmation Notification]

Figure 1003: LeakCanary Confirmation Notification
Activity Output
The
Leaks/StaticWidgetLC
sample project is a clone of the static widget leak scenario from
earlier in this chapter. This version has LeakCanary integrated in, though,
and LeakCanary catches this leak.
So, after running the app, pressing BACK to destroy the activity, and waiting a bit
for the heap analysis to finish, you will eventually get a “ButtonDemoActivity leaked”
notification. Tapping that shows a “timeline”-style list of objects,
starting with a GC root and ending in the leaked object:

[image: LeakCanary Diagnostic Activity, As Launched From the Notification]

Figure 1004: LeakCanary Diagnostic Activity, As Launched From the Notification
Here, we see that pleaseDoNotDoThis holds a reference to the Button,
which holds a reference to the Activity.
This has two advantages over using Android Studio’s own leak analysis:

	It is automatic: we do not have to go and check for leaks ourselves
proactively

	The output can be much easier to read

The overflow menu has an option to “Share info”, which sends a complicated
report to your favorite ACTION_SEND
implementation (e.g., an email client). “Share heap dump”, also in the
overflow, forwards the heap dump itself via ACTION_SEND, for you to
perhaps get over to Android Studio for deeper analysis if that proves
necessary.
Pressing the up navigation arrow in the action bar brings up a list
of the saved leak reports:

[image: LeakCanary Report Roster]

Figure 1005: LeakCanary Report Roster
The “DELETE” button on the diagnostic activity deletes that report;
the “DELETE ALL” button on the roster activity deletes all saved
reports.
The LeakCanary project documentation
outlines many other possibilities
for tailoring LeakCanary’s behavior, including:

	“Whitelisting” certain objects or activity classes,
so they do not show up in leak reports

	Sending reports to a server

	Automatically running LeakCanary after instrumented tests

Issues with System RAM
Your application heap is your little corner of the system RAM on the device that
you focus on in your Java development. However, there are other things that you
might do that consume system RAM, such as use the NDK to add C/C++ code to your
app. How much system RAM you consume overall will have an impact on user acceptance
of your app, as the more RAM you use, the more frequently the user’s other apps
are terminated to make room for you. And, as a result, the more system RAM you
use, the more likely it is that your process will be terminated when you are not
in the foreground, to free up RAM for other apps. Hence, while system RAM is not
something you necessarily think about as often as you do your application heap,
it is something that you should pay attention to, at least a little bit.
This chapter will explain a bit more about the relationship between your app
and system RAM, how you can measure how much system RAM your app is consuming,
and how you can reduce that consumption.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate, particularly the
chapter on Android’s process model. Reading the chapter
on issues with the application heap is also a good idea.
Can’t We All Just Get Along?
Alas, we have not invented the device with infinite RAM, nor the application
that takes zero memory. In fact, our devices have fairly limited RAM (e.g., 1GB),
and our apps therefore fight over that memory. That includes both apps that
the user runs explicitly (e.g., via the home screen launcher) and apps that
run based upon external factors (e.g., the app that receives a GCM push event
and uses that trigger to update some data).
The good news is that the user tends to be a bit oblivious to all of the
comings and goings of apps. Android keeps process around while it can and terminates
them as needed to free up system RAM for other processes, without the user’s
explicit involvement. Of course, power users might try to employ “task managers”
and the like to be more involved in decision-making, but that’s something they opted
into, not something that was forced upon them, the way that older mobile operating
systems like Windows Mobile required.
However, there is a fundamental assumption in Android that apps play fair. The
per-process heap limits — and the fact that apps do not necessarily have to use
all the way up to those limits — means that a given Android device can power
many processes at once. That starts to break down when apps do various things
to consume an excessive amount of system RAM, more than what the per-process heap
limit would normally constrain them to. Hence, it is a good idea to keep tabs on
how much you use of system RAM, so that you can be a “good citizen” and not
cause the user undue angst or force them to employ task managers to try to keep
you in line.
Contributors to System RAM Consumption
There are many factors that contribute towards your system RAM consumption,
including:

	Your heap usage, up to the per-process heap limit, for each process that you
are running

	Your native libraries (.so files) from the NDK

	The system RAM allocated by that native code, which does not count against
your per-process heap usage

In addition, the reporting tools usually allocate a portion of shared RAM to your
app. Your app’s process is forked from the zygote process, which contains the
Dalvik runtime environment, framework JAR (for all those android.* classes),
and related libraries. Your app shares that memory with all other processes forked
from the zygote. However, to reflect the fact that there is this overhead,
your app’s share of it (roughly calculated as the amount of shared RAM divided by
the number of processes) tends to get added to your memory consumption totals.
Measuring System RAM Consumption: Tools
Figuring out how much RAM your application is using is not easy. Or, as
Dianne Hackborn put it:

Note that memory usage on modern operating systems like Linux is an extremely complicated and difficult to understand area. In fact the chances of you actually correctly interpreting whatever numbers you get is extremely low. (Pretty much every time I look at memory usage numbers with other engineers, there is always a long discussion about what they actually mean that only results in a vague conclusion.)

Fortunately, particularly in Android 4.4, a fair bit of work has gone into
trying to help us determine how much our apps impact system RAM.
Process Stats in Settings
On Android 4.4, in Settings > Developer Options, you will find:

Process Stats: Geeky stats about running processes

(here, “geeky” is presumably used as a term of endearment)

[image: Developer Options in Android 4.4, Showing Process Stats]

Figure 1006: Developer Options in Android 4.4, Showing “Process Stats”
Tapping on that entry brings up a screen that describes the current state
of the system, with respect to RAM:

[image: Process Stats in Android 4.4]

Figure 1007: Process Stats in Android 4.4
While it may look simple, this screen, and its child screens, are remarkably
complex, particularly once you start playing around with various options from
the action bar overflow.
The Summary
At the top, you will see:

	How much history is being reported in this screen (“1h 47m”)

	What the current status of the system is with respect to RAM (“currently normal”)

	What the status of the system has been over that range of time, as illustrated
by the bar, where green is “normal”

The bar is not so much a timeline as a stacked bar chart, where the mix of red
and yellow indicates the amount of time the device was in a low-memory state, contrasted
with the green “normal” state.
Usually, your device should be “normal” with a mostly-green or completely-green
bar.
The Roster
The list beneath the summary shows some running processes. What is included in this
list depends on what mode Process Stats in running in. The summary indicates that
our mode is “Background apps”. There are three major categories for apps:

	Foreground, which includes whatever app is truly in the visible foreground,
plus any apps that have a foreground service

	Background, which is pretty much everything else with a service

	Cached, which are all apps that still have running processes but do not have
a service

By default, Process Stats will show background processes.
Each row in the list shows details for a specific process:

	the application label for the app that owns the process (e.g., “K-9 Mail”)

	the percentage of time, for the time period Process Stats is reporting, that this
process was running (e.g., “100%”)

	the “relative computed memory load” of that process, as is indicated by the blue
bar, with longer blue bars indicating greater load

The list is sorted in order of “relative computed memory load”.
Many background apps will have a running percentage of 100%, indicating that they
have an always-running service. Those with a percentage less than 100% indicate
an app that had a service running at the point in time of the Process Stats snapshot
that you are examining, but did not necessarily have a service running for the entire
timeframe (e.g., periodic IntentService doing background work)
Refresh and Duration
There is a “refresh” icon in the action bar that will update the current view to
reflect changes since you last opened or refreshed the screen.
How long the timeframe is depends a bit upon device operation and
also on the “Duration” entry in the overflow menu:

[image: Process Stats Overflow in Android 4.4]

Figure 1008: Process Stats Overflow in Android 4.4
Tapping that gives you a roster of available timeframes:

[image: Process Stats Duration Options in Android 4.4]

Figure 1009: Process Stats Duration Options in Android 4.4
Even though these items render with checkboxes, they function as radio buttons,
so whatever you tap on becomes the new duration. Upon making a change, the summary
area will reflect the newly-chosen duration. Note that this choice is not persistent,
as exiting Process Stats via the BACK button and re-entering it returns you to
a three-hour duration.
Controlling What is Shown
If your application is not showing up in the background roster, it may be classified as
“foreground” (e.g., if you have a foreground service) or “cached” (if not). The “Stats type”
overflow option will let you toggle between these categories, to see what processes are
reported in each.
Note that an app can appear in more than one roster, since the roster is by process.
For example, at the time of this writing, Evernote appears in the author’s
Nexus 4 both in “foreground” and in “cached”, for separate processes.
As with the duration, the choice of category is not persistent, and you will be returned
to the background process roster if you exit Process Stats via the BACK button and
later return to it.
Drilling Down Into an App
Tapping on an item in the list will bring up details about that particular app
and process:

[image: Process Stats Details for K-9 Mail]

Figure 1010: Process Stats Details for K-9 Mail
The “Average RAM use” value shows how much system RAM is attributed to your app.
This will include:

	All system RAM used uniquely by your app (e.g., your heap)

	A portion of system RAM shared by your app and others (e.g., the Dalvik runtime)

This is known as “Proportional Set Size” or “PSS” in Linux, and is a common way of
coming up with a simple number for the amount of RAM that a particular process is
responsible for.
The blue bar is based on this average RAM use (or PSS) value, multiplied by
the percentage of the time that the process was running.
The “Maximum RAM use” value is the highest PSS associated with your process during
the period under examination.
Also listed are the services of your app and the percentage of time that they were
in a running state. Everlasting services will show up as 100%, while transient
services (e.g., IntentService) will show up with a much smaller percentage.
How You Want Your App to Appear
Ideally:

	Your app spends most of its time in the “cached” process list, not the “background”
or “foreground” list

	Your app has a low percentage of time spent running

	Your app has a low “relative computed memory load” and, ideally, a low
“Average RAM use” value

The better you are in these areas, the more likely it is that you are not seriously
impacting system RAM.
procstats
The data that powers the Process Stats screen in Settings is also available
as human-readable text output, using the adb shell dumpsys procstats command,
against your Android 4.4 device or emulator.
Running that command will give you three blocks of information:

	Process memory usage, aggregated over the last 24 hours

	Process memory usage, aggregated over the last 3 hours

	A snapshot of the current memory usage, at the time you ran the command

This can be a long report, even for just one of those blocks. For example,
here is the last-3-hours block, run on the author’s personal Nexus 4:

AGGREGATED OVER LAST 3 HOURS:
 * com.android.bluetooth / 1002:
 TOTAL: 100% (7.8MB-7.8MB-7.8MB/7.0MB-7.0MB-7.0MB over 2)
 Imp Fg: 100% (7.8MB-7.8MB-7.8MB/7.0MB-7.0MB-7.0MB over 2)
 * com.csipsimple:sipStack / u0a135:
 TOTAL: 100% (10MB-10MB-10MB/9.2MB-9.2MB-9.2MB over 1)
 Imp Fg: 99% (10MB-10MB-10MB/9.2MB-9.2MB-9.2MB over 1)
 Service: 1.2%
 * system / 1000:
 TOTAL: 100% (56MB-60MB-63MB/51MB-55MB-58MB over 2)
 Persistent: 100% (56MB-60MB-63MB/51MB-55MB-58MB over 2)
 * com.android.nfc / 1027:
 TOTAL: 100% (6.3MB-6.3MB-6.3MB/5.4MB-5.5MB-5.5MB over 2)
 Persistent: 100% (6.3MB-6.3MB-6.3MB/5.4MB-5.5MB-5.5MB over 2)
 * tunein.player.pro / u0a97:
 TOTAL: 100% (8.2MB-8.2MB-8.2MB/6.9MB-6.9MB-6.9MB over 3)
 Service: 100% (8.2MB-8.2MB-8.2MB/6.9MB-6.9MB-6.9MB over 3)
 * android.process.acore / u0a0:
 TOTAL: 100% (15MB-15MB-15MB/14MB-14MB-14MB over 1)
 Imp Fg: 0.00%
 Service: 100% (15MB-15MB-15MB/14MB-14MB-14MB over 1)
 * com.google.android.gms / u0a23:
 TOTAL: 100% (16MB-16MB-16MB/14MB-14MB-14MB over 2)
 Service: 100% (16MB-16MB-16MB/14MB-14MB-14MB over 2)
 * com.espn.radio:com.urbanairship.process / u0a142:
 TOTAL: 100% (6.6MB-6.6MB-6.6MB/5.3MB-5.3MB-5.3MB over 3)
 Service: 100% (6.6MB-6.6MB-6.6MB/5.3MB-5.3MB-5.3MB over 3)
 * com.android.launcher / u0a35:
 TOTAL: 100% (73MB-73MB-73MB/69MB-69MB-69MB over 8)
 Top: 100% (73MB-73MB-73MB/69MB-69MB-69MB over 8)
 * com.android.systemui / u0a116:
 TOTAL: 100% (38MB-39MB-41MB/35MB-37MB-38MB over 2)
 Persistent: 100% (38MB-39MB-41MB/35MB-37MB-38MB over 2)
 * com.android.phone / 1001:
 TOTAL: 100% (26MB-26MB-26MB/25MB-25MB-25MB over 2)
 Persistent: 100% (26MB-26MB-26MB/25MB-25MB-25MB over 2)
 * com.tripit / u0a85:
 TOTAL: 100% (44MB-44MB-44MB/41MB-41MB-41MB over 1)
 Imp Fg: 0.72%
 Service: 99% (44MB-44MB-44MB/41MB-41MB-41MB over 1)
 * com.google.process.location / u0a23:
 TOTAL: 100% (17MB-17MB-17MB/14MB-14MB-14MB over 2)
 Imp Fg: 100% (17MB-17MB-17MB/14MB-14MB-14MB over 2)
 * com.google.android.inputmethod.latin / u0a34:
 TOTAL: 100% (37MB-37MB-37MB/36MB-36MB-36MB over 2)
 Imp Fg: 100% (37MB-37MB-37MB/36MB-36MB-36MB over 2)
 * com.google.process.gapps / u0a23:
 TOTAL: 100% (16MB-16MB-16MB/14MB-14MB-14MB over 2)
 Service: 100% (16MB-16MB-16MB/14MB-14MB-14MB over 2)
 * com.fsck.k9 / u0a128:
 TOTAL: 100% (50MB-50MB-50MB/47MB-47MB-47MB over 2)
 Service: 100% (50MB-50MB-50MB/47MB-47MB-47MB over 2)
 * com.rememberthemilk.MobileRTM / u0a89:
 TOTAL: 17%
 Imp Fg: 8.6%
 Service: 8.6%
 Receiver: 0.11%
 (Cached): 83% (36MB-36MB-37MB/34MB-35MB-35MB over 9)
 * android.process.media / u0a15:
 TOTAL: 8.9% (5.4MB-5.4MB-5.4MB/4.6MB-4.6MB-4.6MB over 1)
 Service: 8.9% (5.4MB-5.4MB-5.4MB/4.6MB-4.6MB-4.6MB over 1)
 Receiver: 0.01%
 (Cached): 91%
 * com.google.android.apps.maps / u0a39:
 TOTAL: 4.2%
 Service: 4.2%
 (Cached): 96% (121MB-121MB-121MB/105MB-105MB-106MB over 4)
 * com.google.android.apps.genie.geniewidget / u0a21:
 TOTAL: 3.9% (5.6MB-5.6MB-5.6MB/4.7MB-4.7MB-4.7MB over 1)
 Service: 3.9% (5.6MB-5.6MB-5.6MB/4.7MB-4.7MB-4.7MB over 1)
 Receiver: 0.00%
 (Cached): 96% (5.7MB-5.7MB-5.7MB/4.8MB-4.8MB-4.8MB over 1)
 * com.google.android.tts / u0a29:
 TOTAL: 1.7%
 Service: 1.7%
 (Cached): 20% (24MB-24MB-24MB/23MB-23MB-23MB over 2)
 * com.evernote / u0a86:
 TOTAL: 0.41%
 Imp Bg: 0.31%
 Service: 0.10%
 Receiver: 0.00%
 (Cached): 100% (15MB-15MB-16MB/14MB-14MB-14MB over 4)
 * org.mozilla.firefox / u0a100:
 TOTAL: 0.39%
 Service: 0.39%
 (Cached): 100% (4.4MB-6.2MB-7.4MB/3.5MB-5.2MB-6.4MB over 5)
 * com.csipsimple / u0a135:
 TOTAL: 0.18%
 Imp Fg: 0.02%
 Service: 0.14%
 Receiver: 0.02%
 (Cached): 100% (4.2MB-4.2MB-4.2MB/3.2MB-3.2MB-3.2MB over 8)
 * com.stackexchange.marvin / u0a154:
 TOTAL: 0.17%
 Service: 0.17%
 Receiver: 0.00%
 (Cached): 100% (32MB-32MB-32MB/30MB-30MB-30MB over 2)
 * com.google.android.youtube / u0a67:
 TOTAL: 0.12%
 Service: 0.01%
 Receiver: 0.11%
 (Cached): 8.9% (9.3MB-9.3MB-9.3MB/8.0MB-8.0MB-8.0MB over 1)
 * com.guywmustang.silentwidget / u0a78:
 TOTAL: 0.05%
 Service: 0.05%
 Receiver: 0.00%
 (Cached): 100% (3.3MB-3.3MB-3.4MB/2.7MB-2.7MB-2.7MB over 4)
 * com.google.android.deskclock / u0a14:
 TOTAL: 0.03%
 Receiver: 0.03%
 (Cached): 100% (4.0MB-4.0MB-4.0MB/3.1MB-3.1MB-3.1MB over 2)
 * com.google.android.gallery3d / u0a20:
 TOTAL: 0.03%
 Receiver: 0.03%
 (Cached): 9.0% (6.2MB-6.2MB-6.2MB/5.3MB-5.3MB-5.3MB over 1)
 * com.szyk.myheart / u0a130:
 (Cached): 100% (35MB-35MB-35MB/31MB-31MB-31MB over 2)
 * org.wikipedia / u0a98:
 (Cached): 100% (22MB-22MB-22MB/18MB-18MB-18MB over 2)
 * com.android.mms / u0a41:
 (Cached): 100% (23MB-23MB-23MB/21MB-21MB-21MB over 2)
 * nz.co.softwarex.hundredpushupsfree / u0a168:
 (Cached): 100% (23MB-23MB-23MB/20MB-20MB-20MB over 2)
 * com.commonsware.books.android / u0a148:
 (Cached): 100% (18MB-18MB-18MB/15MB-15MB-15MB over 2)
 * com.android.providers.calendar / u0a7:
 (Cached): 100% (3.6MB-3.6MB-3.6MB/2.8MB-2.8MB-2.8MB over 2)
 * com.google.android.calendar / u0a6:
 (Cached): 100% (4.7MB-4.7MB-4.7MB/3.8MB-3.8MB-3.8MB over 2)

Run time Stats:
 SOff/Norm: +12m36s333ms
 SOn /Norm: +1m11s367ms
 TOTAL: +13m47s700ms

 Start time: 2014-04-12 06:01:36
 Total elapsed time: +3h54m32s538ms (partial) libdvm.so chromeview

Unfortunately, it is rather cryptic and rather long.
There are various command-line switches you can add to help manage the output. Use
the -h switch to see the full roster. Some notable options:

	
-csv switches the output to be in CSV format, for importing into a spreadsheet
or running through an analysis tool, with other switches (e.g., -csv-proc) to
control what is included in the CSV output

	
--current will only report the current snapshot

	
--hours NNN will only report the aggregate over the stated number of hours

	
--full-details provides a somewhat more documented report, at the cost of
greatly increasing its verbosity

Also, including a package name (e.g., com.commonsware.android.sample) at the
end of the command line will constrain the output to solely that package, which is
useful if you are only looking to examine your own app’s data.
The numbers in parentheses (e.g., (4.7MB-4.7MB-4.7MB/3.8MB-3.8MB-3.8MB over 2))
report:

	the minimum proportional set size (PSS) seen

	the average PSS seen

	the maximum PSS seen

	the minimum unique set size (USS) seen, where this is the amount of memory consumed
by your app that is not shared with other processes (i.e., it is how much memory
that would be freed if your process were terminated)

	the average USS seen

	the maximum USS seen

	the number of samples taken of the memory during the timeframe being analyzed

The listing also shows the percentage of time your process was in various states
(e.g., cached vs. service vs. “important foreground”)
meminfo
Older devices that do not support procrank can support meminfo, accessed via
adb shell dumpsys meminfo. Run as-is, it will generate a report of all processes
and their PSS, plus the same roster broken down into various process categories
(e.g., foreground, cached), and other summary data. The report for the same Nexus 4
that generated the procrank shown earlier in this chapter is:

Applications Memory Usage (kB):
Uptime: 95955008 Realtime: 788076654

Total PSS by process:
 120505 kB: com.google.android.apps.maps (pid 17490 / activities)
 74627 kB: com.android.launcher (pid 1696 / activities)
 62422 kB: system (pid 1366)
 57757 kB: surfaceflinger (pid 968)
 51706 kB: com.fsck.k9 (pid 2937 / activities)
 44725 kB: com.tripit (pid 2414 / activities)
 41642 kB: com.android.systemui (pid 1498 / activities)
 38546 kB: com.google.android.inputmethod.latin (pid 1635)
 36640 kB: com.rememberthemilk.MobileRTM (pid 12255 / activities)
 35518 kB: com.szyk.myheart (pid 24618 / activities)
 32588 kB: com.stackexchange.marvin (pid 28230 / activities)
 27128 kB: com.android.phone (pid 1667)
 23641 kB: com.android.mms (pid 15197 / activities)
 23236 kB: nz.co.softwarex.hundredpushupsfree (pid 20599 / activities)
 22483 kB: org.wikipedia (pid 11895 / activities)
 18044 kB: com.commonsware.books.android (pid 12036 / activities)
 16968 kB: com.google.process.location (pid 1775)
 16895 kB: com.google.android.gms (pid 1651)
 16521 kB: com.google.process.gapps (pid 1803)
 15822 kB: com.evernote (pid 26284)
 15219 kB: android.process.acore (pid 11926)
 11336 kB: zygote (pid 969)
 10694 kB: com.csipsimple:sipStack (pid 25539)
 9575 kB: com.google.android.youtube (pid 31932)
 8390 kB: tunein.player.pro (pid 2699)
 7860 kB: com.android.bluetooth (pid 5513)
 7669 kB: org.mozilla.firefox (pid 20839)
 6786 kB: com.espn.radio:com.urbanairship.process (pid 2526)
 6719 kB: mediaserver (pid 971)
 6599 kB: com.google.android.gallery3d (pid 31894)
 6493 kB: com.android.nfc (pid 1681)
 5916 kB: com.google.android.apps.genie.geniewidget (pid 22781)
 5677 kB: android.process.media (pid 25240)
 4308 kB: com.csipsimple (pid 28166)
 4145 kB: com.google.android.deskclock (pid 12379)
 3472 kB: com.guywmustang.silentwidget (pid 14616)
 3349 kB: rild (pid 967)
 2447 kB: drmserver (pid 970)
 1972 kB: ks (pid 585)
 1876 kB: netd (pid 965)
 1282 kB: wpa_supplicant (pid 26091)
 1217 kB: mm-qcamera-daemon (pid 982)
 1116 kB: sdcard (pid 981)
 618 kB: sensors.qcom (pid 979)
 577 kB: netmgrd (pid 976)
 500 kB: vold (pid 163)
 486 kB: bridgemgrd (pid 974)
 476 kB: thermald (pid 977)
 462 kB: keystore (pid 973)
 439 kB: /init (pid 1)
 375 kB: qmuxd (pid 975)
 262 kB: ueventd (pid 139)
 230 kB: dhcpcd (pid 15630)
 214 kB: qseecomd (pid 1022)
 212 kB: adbd (pid 961)
 210 kB: installd (pid 972)
 189 kB: mpdecision (pid 978)
 181 kB: rmt_storage (pid 164)
 176 kB: dumpsys (pid 489)
 169 kB: qcks (pid 165)
 149 kB: debuggerd (pid 966)
 140 kB: healthd (pid 161)
 135 kB: efsks (pid 569)
 115 kB: servicemanager (pid 162)
 111 kB: qseecomd (pid 986)

Total PSS by OOM adjustment:
 95497 kB: Native
 57757 kB: surfaceflinger (pid 968)
 11336 kB: zygote (pid 969)
 6719 kB: mediaserver (pid 971)
 3349 kB: rild (pid 967)
 2447 kB: drmserver (pid 970)
 1972 kB: ks (pid 585)
 1876 kB: netd (pid 965)
 1282 kB: wpa_supplicant (pid 26091)
 1217 kB: mm-qcamera-daemon (pid 982)
 1116 kB: sdcard (pid 981)
 618 kB: sensors.qcom (pid 979)
 577 kB: netmgrd (pid 976)
 500 kB: vold (pid 163)
 486 kB: bridgemgrd (pid 974)
 476 kB: thermald (pid 977)
 462 kB: keystore (pid 973)
 439 kB: /init (pid 1)
 375 kB: qmuxd (pid 975)
 262 kB: ueventd (pid 139)
 230 kB: dhcpcd (pid 15630)
 214 kB: qseecomd (pid 1022)
 212 kB: adbd (pid 961)
 210 kB: installd (pid 972)
 189 kB: mpdecision (pid 978)
 181 kB: rmt_storage (pid 164)
 176 kB: dumpsys (pid 489)
 169 kB: qcks (pid 165)
 149 kB: debuggerd (pid 966)
 140 kB: healthd (pid 161)
 135 kB: efsks (pid 569)
 115 kB: servicemanager (pid 162)
 111 kB: qseecomd (pid 986)
 62422 kB: System
 62422 kB: system (pid 1366)
 75263 kB: Persistent
 41642 kB: com.android.systemui (pid 1498 / activities)
 27128 kB: com.android.phone (pid 1667)
 6493 kB: com.android.nfc (pid 1681)
 74627 kB: Foreground
 74627 kB: com.android.launcher (pid 1696 / activities)
 63374 kB: Visible
 38546 kB: com.google.android.inputmethod.latin (pid 1635)
 16968 kB: com.google.process.location (pid 1775)
 7860 kB: com.android.bluetooth (pid 5513)
 10694 kB: Perceptible
 10694 kB: com.csipsimple:sipStack (pid 25539)
 5677 kB: A Services
 5677 kB: android.process.media (pid 25240)
 51706 kB: Previous
 51706 kB: com.fsck.k9 (pid 2937 / activities)
 76422 kB: B Services
 44725 kB: com.tripit (pid 2414 / activities)
 16521 kB: com.google.process.gapps (pid 1803)
 8390 kB: tunein.player.pro (pid 2699)
 6786 kB: com.espn.radio:com.urbanairship.process (pid 2526)
 402275 kB: Cached
 120505 kB: com.google.android.apps.maps (pid 17490 / activities)
 36640 kB: com.rememberthemilk.MobileRTM (pid 12255 / activities)
 35518 kB: com.szyk.myheart (pid 24618 / activities)
 32588 kB: com.stackexchange.marvin (pid 28230 / activities)
 23641 kB: com.android.mms (pid 15197 / activities)
 23236 kB: nz.co.softwarex.hundredpushupsfree (pid 20599 / activities)
 22483 kB: org.wikipedia (pid 11895 / activities)
 18044 kB: com.commonsware.books.android (pid 12036 / activities)
 16895 kB: com.google.android.gms (pid 1651)
 15822 kB: com.evernote (pid 26284)
 15219 kB: android.process.acore (pid 11926)
 9575 kB: com.google.android.youtube (pid 31932)
 7669 kB: org.mozilla.firefox (pid 20839)
 6599 kB: com.google.android.gallery3d (pid 31894)
 5916 kB: com.google.android.apps.genie.geniewidget (pid 22781)
 4308 kB: com.csipsimple (pid 28166)
 4145 kB: com.google.android.deskclock (pid 12379)
 3472 kB: com.guywmustang.silentwidget (pid 14616)

Total PSS by category:
 200246 kB: Dalvik
 172738 kB: Native
 151232 kB: Graphics
 89516 kB: Dalvik Other
 65741 kB: .dex mmap
 62904 kB: GL
 59426 kB: .so mmap
 58237 kB: Other dev
 24084 kB: Unknown
 15480 kB: .apk mmap
 8404 kB: Stack
 7562 kB: Other mmap
 1112 kB: Ashmem
 1099 kB: .ttf mmap
 160 kB: .jar mmap
 16 kB: Cursor
 0 kB: code mmap
 0 kB: image mmap
 0 kB: Memtrack

Total RAM: 1878788 kB
 Free RAM: 1258215 kB (402275 cached pss + 625628 cached + 230312 free)
 Used RAM: 780542 kB (515682 used pss + 192112 buffers + 3180 shmem + 69568 slab)
 Lost RAM: -159969 kB
 Tuning: 192 (large 512), oom 122880 kB, restore limit 40960 kB (high-end-gfx)

However, if you add a package name to the command (e.g., adb shell dumpsys meminfo com.commonsware.books.android),
you will get a more detailed report about that specific app:

Applications Memory Usage (kB):
Uptime: 96120803 Realtime: 788242449

** MEMINFO in pid 12036 [com.commonsware.books.android] **
 Pss Private Private Swapped Heap Heap Heap
 Total Dirty Clean Dirty Size Alloc Free
 ------ ------ ------ ------ ------ ------ ------
 Native Heap 7642 7616 0 0 8732 8553 178
 Dalvik Heap 1920 1472 0 0 9860 9819 41
 Dalvik Other 1568 1428 0 0
 Stack 316 316 0 0
 Ashmem 128 68 0 0
 Other dev 4 0 4 0
 .so mmap 2372 528 116 0
 .apk mmap 130 0 8 0
 .ttf mmap 18 0 0 0
 .dex mmap 1232 12 936 0
 Other mmap 198 4 8 0
 Unknown 2516 2516 0 0
 TOTAL 18044 13960 1072 0 18592 18372 219

 Objects
 Views: 48 ViewRootImpl: 1
 AppContexts: 3 Activities: 1
 Assets: 2 AssetManagers: 2
 Local Binders: 8 Proxy Binders: 17
 Death Recipients: 0
 OpenSSL Sockets: 0

 SQL
 MEMORY_USED: 75
 PAGECACHE_OVERFLOW: 3 MALLOC_SIZE: 62

 DATABASES
 pgsz dbsz Lookaside(b) cache Dbname
 1 6263 17 0/16/1 /data/data/com.commonsware.books.android/databases/booksearch.db

This can show you:

	How much memory is being consumed by your Dalvik bytecode (.dex mmap), native
libraries used directly by you or by framework components (.so mmap), etc.

	How many objects of various types are in the Dalvik heap, such as views and
activities

	How much memory is used by SQLite for its page cache and related process-level buffers,
plus which databases you have open that are contributing to memory consumption

Note that the combination of the Private Dirty and Private Clean columns is
roughly analogous to the USS reported by procstats, in that it represents the amount
of memory private to your process and that would be released should your process be
terminated.
Measuring System RAM Consumption: Runtime
Some of the same information that the aforementioned reports contain is available
at runtime via ActivityManager and other framework classes.
getMemoryInfo()
getMemoryInfo() on ActivityManager
will fill in a supplied ActivityManager.MemoryInfo object. This
will report to you:

	The total memory on the device (totalMem)

	The “available memory” (whose definition is a bit unclear) (availMem)

	What level of “available memory” is considered “low” and should trigger Android
to start terminating processes beyond those that are cached, such as ones with
running services (threshold)

	Whether we are presently in such a low-memory state (lowMemory)

getMyMemoryState()
ActivityManager also has a getMyMemoryState() method, on API Level 16+, that will
populate an ActivityManager.RunningAppProcessInfo object with information about
your process. While not everything in this object will be filled in, you will be
able to get:

	The last trim level reported to your activities and Application via
onTrimMemory() (lastTrimLevel)

	What importance level the OS considers your process to be in (importance), such
as IMPORTANCE_FOREGROUND and IMPORTANCE_EMPTY

	For processes in the IMPORTANCE_BACKGROUND category — meaning the process has
outstanding activities but is not in the foreground and has no service — the relative
standing of the process compared to other background processes from a least-recently-used
standpoint (lru), where lower numbers mean more recent usage

getProcessMemoryInfo()
The getProcessMemoryInfo() method on ActivityManager returns an array of
Debug.MemoryInfo objects corresponding to the array of int process IDs (pids)
that you pass in. The Debug.MemoryInfo objects report
how much memory those identified processes are consuming. Of particular note, getTotalPss() returns the
PSS for that process.
To get the Debug.MemoryInfo for your own process, you can use getMemoryInfo()
on the Debug class, rather than find your own process ID and use getProcessMemoryInfo().
Or, on API Level 14+, you can simply call getPss() on Debug directly to find out
your PSS.
Learn To Let Go (Of Your Heap)
Part of the reason for worrying a bit about your system RAM consumption is simply to
“play nice” with the other apps that the user wants to use. However, since part of
Android’s decision-making about what processes to terminate tie into how much RAM
those processes take up, the lower your system RAM footprint, the more likely it is
that you can hang around for a while.
Part of reducing your system RAM consumption involves cleaning up your heap.
The reason the framework calls callback methods like onTrimMemory() is to help you
reduce your heap usage to avoid OutOfMemoryError exceptions. However, allowing objects
to be garbage-collected not only gives you more heap space, but it
also may reduce your system RAM footprint.
To limit your system RAM usage, your process is not allocated all of its possible heap
when the process is started up. Instead, the heap starts small and expands as you allocate
more and more memory. However, the reverse is also true: if you release memory, the
heap can shrink, returning RAM to the system. Android expands the heap on a “paged”
basis, allocating more system RAM to add more pages to the heap. If, as a result of
garbage collection, Dalvik sees that there are too many totally empty pages, Dalvik
can free up those pages, returning them to the OS for use by other processes.
As noted in the chapter on the application heap, Dalvik’s
garbage collector is non-compacting, meaning that it does not
move objects around to try to clean up pages or otherwise coalesce free memory blocks.
Hence, a fragmented heap not only limits how well you can allocate new memory, but
it also inhibits Dalvik’s ability to reduce your system RAM usage.
Issues with Battery Life
Most Android devices are powered by batteries — Android TV is
the biggest class of device that is not. Batteries are wonderful
gizmos with one major problem: they are always running out of power.
Hence, users are very sensitive to battery consumption. Their ability
to use their phones as actual phones, let alone for Android apps,
depends on having enough battery power. The more apps drain the
battery, the more frequently the user has to find a way to recharge
the phone, and the more frequently the user fails and their phone
shuts down.
The catch is that you may not notice the battery issues in your
day-to-day development. The Android emulator’s emulated battery does
not drain based on you running your app. Your devices are often
connected to your development machine via USB for testing and
debugging, meaning they are perpetually being charged. Unless you are
a regular user of your own app, you might not notice any increased
power drain.
This part of the book is focused on helping you understand what is
draining power and what you can do to be kinder and gentler on your
users’ batteries.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate.
You’re Getting Blamed
Users, for better or worse, have limited ability to determine what is
responsible for draining the battery of their phone. Their #1 tool
for this is the “Power Usage Summary” screen in the Settings app,
sometimes referred to as the “battery blame screen”.

[image: Battery Screen from Settings App]

Figure 1011: Battery Screen from Settings App
This lists both device features (e.g., the display) and applications.
Android incrementally improves the accuracy of this screen with each
passing release, trying to make sure the user understands what
specifically is consuming the power.
If your application starts appearing on this screen, and the user
does not feel that it is justified, the user is likely to become
irritated with you.
Now, your appearance on this list might be perfectly reasonable. If
you have written a video player app, and the user has just watched a
few hours’ worth of video, it is very likely that you will appear on
this list and will be justified in your battery consumption.
However, anything that you can do to not appear on this screen, or
appear lower in the list, will help with user acceptance of your app.
This part of the book will show you how to measure your power usage
and ways of trying to use less of it.
Not All Batteries Are Created Equal
Roughly speaking, battery capacity is proportional to screen size.
Larger screens mean physically larger devices, and since the rest of the
components (e.g., CPU) tend to be the same size, a larger device
offers more room for a larger battery. This is good, as the screen is
one of the major power draws on a device, and bigger screens draw more
power.
Conversely, the battery on a “wearable” — whether eyewear like Google
Glass, a smartwatch, or other form factors — tends to be much smaller
than average, just because the wearables are physically smaller. A wearable
is likely to have a battery with less than a third of the capacity of
a phone, which in turn may have a battery with less than a third of the
capacity of a large tablet.
Hence, depending upon where your app will be running, the amount of battery
available in total will vary widely. What might be considered acceptable
battery consumption on a tablet would be considered excessive on a wearable.
Stretching Out the Last mWh
Sometimes, what the user wants your app to do in one case is not what
the user wants your app to do in other cases. Serious power-draining
might be reserved for when the device is plugged in, or when the
device has at least such-and-so power remaining. The user may value
the last milliwatt-hours (mWh) more than others and want your
application to use less power in those circumstances.
Hence, if your application polls the Internet, you might offer a
feature to poll less frequently, or perhaps not at all, when power is
low. If your application uses GPS to find a location (e.g., automatic
“check-ins” to social networks like Foursquare), you might offer to
skip such actions when the battery is low. You might want to signal
to the user when the battery gets low during playback of a video, or
during the game they are in. And so on.
This part of the book will help you identify when the battery is low
and strategies for making use of that information.
Power Measurement Options
As with any situation where you are trying to reduce your use of some system
resource, you need to be able to accurately measure how much you are using
that resource. Otherwise, you will have no idea whether your attempts to
reduce usage are helping. It is possible that what you think will consume
less of the resource actually consumes more, because of unanticipated
side-effects. And, if nothing else, if the change makes your code more
complicated and does not help much with resource consumption, you may be
better served sticking with the original, simpler implementation.
So, when it comes to power usage, it helps to know how much power you
are consuming, to determine if your attempts to use less power actually
do help.
Unfortunately, compared to things like RAM and bandwidth, power measurement
is a significant challenge. You really need to have hardware specifically instrumented
to report power consumption for pieces of that hardware (CPU versus screen
versus GPS versus mobile data radio versus …). Even if you cannot get
power usage per component, just having accurate power consumption overall is
not something you can necessarily get from any Android device. Alas, getting
that level of power usage knowledge can be troublesome in its own right, for a
variety of reasons.
This chapter will explore a few ways of measuring power usage, along with
the pros and cons of that approach.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate.
batterystats and the Battery Historian
Android 5.0 brought us “Project Volta”, an initiative to reduce the
amount of power consumed by apps, the framework classes, and the OS
itself.
Part of what we got from Project Volta is batterystats, a dump of
data pertaining to power consumption. Since that data dump can be
large and inscrutable, we also have the Battery Historian, a tool
that can convert key batterystats output into a timeline of
events.
However, none of this is especially well-documented at this time,
and so the usefulness of these utilities is limited at present.
The following sections provide some basic guidance for trying to use
these tools.
Running a Test
First, since batterystats is obtained via adb shell dumpsys,
you will want adb to be in your PATH, by adding your SDK
installation’s platform-tools/ directory to your PATH environment
variable.
Then, in a terminal, run:

adb shell dumpsys batterystats --enable full-wake-history
adb shell dumpsys batterystats --reset

This will ensure that batterystats captures all relevant information
about WakeLock behavior, and it resets all of the logs.
At this point, run your tests. Ideally, you would do so in a fairly
power-neutral environment, such as not using a USB cable for
an adb connection (as that charges the device).
When your test scenario is complete, run adb shell dumpsys batterystats,
redirecting the output to some file:

adb shell dumpsys batterystats > /tmp/bs.txt

You can optionally supply your applicationId as part of the batterystats
command, which will restrict the output to events pertaining to your app.
However, some events that are from other processes, like the Play Services
Framework, may be of interest to you. You will need to experiment to determine
which mode (full or filtered for your app) will work best for you.
Interpreting the Text Output
Depending on how long your test runs, the information included in
the batterystats output can be anywhere from tens of KB to tens
of MB in size. The output will also vary by Android OS release.
Battery History
The file will lead off with the “Battery History” section:

Battery History (13% used, 35KB used of 256KB, 68 strings using 4232):
 0 (9) RESET:TIME: 2014-10-25-19-54-07
 0 (2) 100 status=not-charging health=good plug=none temp=207 volt=4296 +running +wake_lock +sensor +phone_scanning +audio +screen phone_state=out +wifi_running +wifi wifi_signal_strength=4 wifi_suppl=completed proc=u0a3:"android.process.acore"
 0 (2) 100 proc=u0a29:"com.android.calendar"
 0 (2) 100 proc=1027:"com.android.nfc:sendui"
 0 (2) 100 proc=u0a7:"com.google.android.gms"
 0 (2) 100 proc=1000:"WebViewLoader-armeabi-v7a"
 0 (2) 100 proc=u0a32:"com.google.android.configupdater"
 0 (2) 100 proc=u0a7:"com.google.process.location"
 0 (2) 100 proc=u0a12:"com.android.launcher"
 0 (2) 100 proc=1001:"com.android.server.telecom"
 0 (2) 100 proc=u0a7:"com.google.process.gapps"
 0 (2) 100 proc=u0a55:"com.nuance.xt9.input"
 0 (2) 100 proc=u0a33:"com.google.android.deskclock"
 0 (2) 100 proc=u0a5:"android.process.media"
 0 (2) 100 proc=u0a20:"com.android.systemui"
 0 (2) 100 proc=1027:"com.android.nfc"
 0 (2) 100 proc=1001:"com.android.phone"
 0 (2) 100 proc=u0a37:"com.google.android.gallery3d"
 0 (2) 100 proc=u0a58:"com.commonsware.android.job"
 0 (2) 100 proc=u0a2:"com.android.providers.calendar"
 0 (2) 100 proc=u0a16:"com.android.vending"
 0 (2) 100 proc=u0a7:"com.google.android.gms.unstable"
 0 (2) 100 proc=u0a42:"com.google.android.inputmethod.latin"
 0 (2) 100 proc=u0a11:"com.google.android.partnersetup"
 0 (2) 100 top=u0a58:"com.commonsware.android.job"
 0 (2) 100 wake_lock_in=-1:"screen"
 0 (2) 100 user=0:"0"
 0 (2) 100 userfg=0:"0"
 +36ms (2) 100 +wake_lock_in=u0a7:"Wakeful StateMachine: GeofencerStateMachine"
 +37ms (2) 100 -wake_lock_in=u0a7:"Wakeful StateMachine: GeofencerStateMachine"
 +104ms (2) 100 +wake_lock_in=u0a7:"UlrDispatchingService"
 +146ms (2) 100 +wake_lock_in=u0a7:"GCoreFlp"
 +147ms (2) 100 -wake_lock_in=u0a7:"GCoreFlp"
 +150ms (2) 100 -wake_lock_in=u0a7:"UlrDispatchingService"
 +2s001ms (2) 100 volt=4243
 +6s779ms (3) 100 -sensor +wake_lock_in=1000:"ActivityManager-Sleep"
 +6s781ms (2) 100 +wake_lock_in=u0a20:"show keyguard"
 +6s811ms (2) 100 -wake_lock_in=1000:"ActivityManager-Sleep"
 +6s820ms (2) 100 +wake_lock_in=1000:"WifiSuspend"
 +6s835ms (2) 100 -wake_lock_in=1000:"WifiSuspend"
 +6s868ms (2) 100 +wake_lock_in=1013:"AudioMix"
 +6s875ms (2) 100 -wake_lock_in=u0a20:"show keyguard"
 +6s878ms (2) 100 -wake_lock_in=1013:"AudioMix"
 +6s878ms (2) 100 +wake_lock_in=u0a20:"AudioMix"
 +6s941ms (2) 100 +wake_lock_in=1027:"NfcService:mRoutingWakeLock"
 +6s941ms (2) 100 +wake_lock_in=u0a7:"Wakeful StateMachine: GeofencerStateMachine"
 +6s942ms (2) 100 -wake_lock_in=u0a7:"Wakeful StateMachine: GeofencerStateMachine"
 +6s943ms (2) 100 +wake_lock_in=u0a7:"GCoreFlp"
 +6s946ms (2) 100 -wake_lock_in=u0a7:"GCoreFlp"
 +6s968ms (2) 100 -wake_lock_in=1027:"NfcService:mRoutingWakeLock"
.
.
.

This contains information about how much the battery was drained during
the test run, along with a detailed roster of the power-related events
that occurred during the test run. The timestamps on those roster entries
are relative to the first entry in the roster. Beyond that, there is
little explanation of what the roster entries mean.
Per-PID Stats
Next, there will be a short stanza labeled “Per-PID Stats” and, possibly,
“Discharge step durations”:

Per-PID Stats:
 PID 0 wake time: +134ms
 PID 536 wake time: +1m35s993ms
 PID 0 wake time: +10s842ms
 PID 881 wake time: +301ms
 PID 536 wake time: +70ms
 PID 989 wake time: +23s167ms
 PID 1136 wake time: +2s974ms
 PID 1193 wake time: +230ms
 PID 0 wake time: +1s123ms
 PID 617 wake time: +187ms
 PID 536 wake time: +18ms
 PID 536 wake time: +13ms
 PID 627 wake time: +586ms
 PID 536 wake time: +184ms
 PID 3690 wake time: +9m42s965ms

Discharge step durations:
 #0: +4h8m36s976ms to 97 (screen-off, power-save-off)
 #1: +3h7m47s132ms to 98 (screen-off, power-save-off)

If you determine your process’ PID, you will see how long the
process’ “wake time” was. The precise definition of “wake time”
is undocumented.
Daily Stats
Next may be a section entitled “Daily stats”:

Daily stats:
 Current start time: 2015-12-12-05-27-33
 Next min deadline: 2015-12-13-01-00-00
 Next max deadline: 2015-12-13-03-00-00
 Package changes:
 Update com.google.android.dialer vers=20312
 Update com.google.android.apps.cloudprint vers=113
 Update com.android.chrome vers=252608301
 Update com.google.android.marvin.talkback vers=40400003
 Update com.google.android.contacts vers=10307
 Update com.commonsware.empublite vers=1
 Update com.commonsware.android.picasso vers=1
 Daily from 2015-12-11-05-55-34 to 2015-12-12-05-27-33:
 Discharge step durations:
 #0: +4h49m4s38ms to 93 (screen-off, power-save-off, device-idle-on)
 #1: +3h53m22s969ms to 94 (screen-off, power-save-off)
 #2: +5h8m4s10ms to 95 (screen-off, power-save-off, device-idle-on)
 #3: +3h33m53s102ms to 96 (screen-off, power-save-off, device-idle-on)
 Discharge total time: 18d 3h 10m 2s 900ms (from 4 steps)
 Discharge screen off time: 18d 3h 10m 2s 900ms (from 4 steps)
 Discharge screen off device idle time: 18d 18h 33m 58s 300ms (from 3 steps)
 Package changes:
 Update com.commonsware.empublite vers=1
 Daily from 2015-12-10-04-55-48 to 2015-12-11-05-55-34:
 Discharge step durations:
 #0: +5h1m15s618ms to 98 (screen-off, power-save-off, device-idle-on)
 #1: +42m34s7ms to 98 (screen-off, power-save-off, device-idle-off)
 Discharge total time: 11d 22h 31m 21s 200ms (from 2 steps)
 Discharge screen off time: 11d 22h 31m 21s 200ms (from 2 steps)
 Discharge screen off device idle time: 20d 22h 6m 1s 800ms (from 1 steps)
 Package changes:
 Update com.commonsware.ct3 vers=1
 Update com.commonsware.ct3 vers=1
 Update com.commonsware.ct3 vers=1
 Update com.commonsware.ct3 vers=1
 Update com.commonsware.ct3 vers=1
 Update com.commonsware.ct3 vers=1
 Update com.commonsware.android.fsendermnc vers=1
...

This indicates, for various time slices, what apps were updated and
what the “discharge step durations” are (which is undocumented).
“Statistics since last charge” Summary
Next up will be a “Statistics since last charge” header, with a few
summary blocks of data:

Statistics since last charge:
 System starts: 0, currently on battery: false
 Time on battery: 11h 30m 29s 177ms (99.9%) realtime, 16m 13s 306ms (2.3%) uptime
 Time on battery screen off: 11h 30m 7s 940ms (99.9%) realtime, 15m 52s 69ms (2.3%) uptime
 Total run time: 11h 30m 55s 300ms realtime, 16m 39s 430ms uptime
 Start clock time: 2014-10-25-19-54-07
 Screen on: 21s 237ms (0.1%) 2x, Interactive: 20s 191ms (0.0%)
 Screen brightnesses:
 dark 21s 237ms (100.0%)
 Total partial wakelock time: 10m 22s 877ms
 Mobile total received: 0B, sent: 0B (packets received 0, sent 0)
 Phone signal levels:
 none 11h 30m 29s 177ms (100.0%) 0x
 Signal scanning time: 9s 0ms
 Radio types:
 none 11h 30m 29s 177ms (100.0%) 0x
 Mobile radio active time: 0ms (0.0%) 0x
 Wi-Fi total received: 0B, sent: 0B (packets received 0, sent 0)
 Wifi on: 11h 30m 29s 177ms (100.0%), Wifi running: 11h 30m 29s 177ms (100.0%)
 Wifi states: (no activity)
 Wifi supplicant states:
 group-handshake 16ms (0.0%) 12x
 completed 11h 30m 29s 161ms (100.0%) 12x
 Wifi signal levels:
 level(4) 11h 30m 29s 177ms (100.0%) 1x
 Bluetooth on: 0ms (0.0%)
 Bluetooth states: (no activity)

 Device battery use since last full charge
 Amount discharged (lower bound): 2
 Amount discharged (upper bound): 3
 Amount discharged while screen on: 0
 Amount discharged while screen off: 3

 Estimated power use (mAh):
 Capacity: 3448, Computed drain: 107, actual drain: 69.0-103
 Idle: 40.3
 Wifi: 36.4
 Uid u0a58: 14.8
 Uid 0: 12.8
 Uid 1000: 1.75
 Uid u0a20: 0.521
 Uid u0a7: 0.389
 Screen: 0.375
 Uid 1013: 0.0775
 Uid 1001: 0.0219
 Uid u0a42: 0.0168
 Uid u0a12: 0.0138
 Uid 1027: 0.0110
 Uid u0a5: 0.00866
 Uid u0a33: 0.00253
 Uid u0a16: 0.000867
 Uid u0a3: 0.000815
 Uid u0a29: 0.000523
 Uid u0a2: 0.000474
 Over-counted: 4.04

The first block has useful data about how much various radios
were on, how much data they transmitted, how long the screen was
on, how long the device had an outstanding partial WakeLock, etc.
Also, the “Estimated power use (mAh)” block is basically the data
that underlies the “battery blame screen” in Settings. You will see
how many milliamp-hours (mAh) were attributed to your process.
WakeLock Summary
Next up may a summary of WakeLock events:

All kernel wake locks:
Kernel Wake lock PowerManagerService.WakeLocks: 10m 23s 46ms (717 times) realtime
Kernel Wake lock qcom_rx_wakelock: 9m 9s 836ms (1537 times) realtime
Kernel Wake lock alarm_rtc: 55s 327ms (717 times) realtime
Kernel Wake lock sns_async_ev_wakelock: 16s 525ms (9 times) realtime
Kernel Wake lock power-supply: 15s 730ms (1448 times) realtime
Kernel Wake lock event0-536: 11s 822ms (1484 times) realtime
Kernel Wake lock event2-536: 10s 686ms (1509 times) realtime
Kernel Wake lock event4-536: 10s 234ms (1509 times) realtime
Kernel Wake lock alarm: 7s 972ms (1239 times) realtime
Kernel Wake lock wlan: 1s 608ms (2 times) realtime
Kernel Wake lock PowerManagerService.Display: 611ms (2 times) realtime
Kernel Wake lock main: 608ms (0 times) realtime
Kernel Wake lock KeyEvents: 136ms (1548 times) realtime
Kernel Wake lock mmc0_detect: 38ms (1507 times) realtime
Kernel Wake lock deleted_wake_locks: 28ms (170 times) realtime
Kernel Wake lock event5-536: 20ms (2 times) realtime

All partial wake locks:
Wake lock u0a58 wake:com.commonsware.android.job/.DemoScheduledService: 9m 0s 153ms (671 times) realtime
Wake lock 1000 *alarm*: 44s 114ms (683 times) realtime
Wake lock u0a7 Checkin Service: 16s 572ms (4 times) realtime
Wake lock 1000 NetworkStats: 7s 347ms (338 times) realtime
Wake lock 1013 AudioMix: 5s 833ms (2 times) realtime
Wake lock 1000 DHCP: 4s 953ms (12 times) realtime
Wake lock u0a7 *net_scheduler*: 1s 504ms (82 times) realtime
Wake lock u0a7 Event Log Service: 1s 98ms (18 times) realtime
Wake lock u0a42 DownloadManager: 322ms (1 times) realtime
Wake lock u0a7 Config Service fetch: 235ms (1 times) realtime
Wake lock u0a7 Icing: 197ms (5 times) realtime
Wake lock u0a7 Event Log Handoff: 143ms (18 times) realtime
Wake lock u0a58 *alarm*: 120ms (24 times) realtime
Wake lock u0a7 GCM_CONN: 61ms (36 times) realtime
Wake lock u0a7 GmsDownloadService: 47ms (1 times) realtime
Wake lock u0a7 *alarm*: 42ms (10 times) realtime
Wake lock u0a7 Wakeful StateMachine: GeofencerStateMachine: 35ms (8 times) realtime
Wake lock 1000 SyncManagerHandleSyncAlarm: 34ms (6 times) realtime
Wake lock u0a7 GCM_HB_ALARM: 34ms (36 times) realtime
Wake lock u0a7 Checkin Handoff: 12ms (4 times) realtime
Wake lock 1000 SyncLoopWakeLock: 8ms (4 times) realtime
Wake lock u0a33 *alarm*: 7ms (4 times) realtime
Wake lock u0a42 *alarm*: 4ms (3 times) realtime
Wake lock u0a7 GCoreFlp: 2ms (5 times) realtime

If you do not have a separate section for these, they may be interleaved
in the “Statistics since last charge:” data.
Your code will tend to show up in the “All partial wake locks”
section, showing how many WakeLocks you acquired and for
how long overall.
And, if you show up here, you can definitely find out your
app’s PID — for example, u0a58 is associated with the
com.commonsware.android.job package.
Per PID Summary
Next up may be summaries of information per process; otherwise,
this information is interleaved in the “Statistics since last charge:”
section. Your process
will show up somewhere in the list:

.
.
.
u0a58:
 Wake lock wake:com.commonsware.android.job/.DemoScheduledService: 9m 0s 153ms partial (671 times) realtime
 Wake lock *alarm*: 120ms partial (24 times) realtime
 TOTAL wake: 9m 0s 273ms partial realtime
 Foreground activities: 7s 817ms realtime (1 times)
 Foreground for: 12s 959ms
 Active for: 3h 58m 47s 853ms
 Running for: 11h 30m 29s 177ms
 Proc com.commonsware.android.job:
 CPU: 1m 4s 370ms usr + 21s 140ms krn ; 400ms fg
 Proc *wakelock*:
 CPU: 43s 690ms usr + 1m 19s 590ms krn ; 0ms fg
 Apk com.commonsware.android.job:
 672 wakeup alarms
 Service com.commonsware.android.job.DemoScheduledService:
 Created for: 11m 14s 174ms uptime
 Starts: 647, launches: 647
.
.
.

As usual, the exact definitions of the information here is largely
undocumented.
Installing the Battery Historian
While batterystats is part of the Android 5.0+ runtime
environment, and tools like adb are part of the Android
SDK, the Battery Historian is neither. Instead, it is a
separate project that you have to download to your development
machine from its GitHub project.
The original implementation of the Battery Historian was a Python
script. This is still available as the historian.py file in that
GitHub repository, until such time as Google elects to delete it.
Battery Historian 2.0 is now a server written in
the Go programming language. This requires a fair bit more work to
set up, as you need to:

	install a Go compiler

	download Go dependencies manually

	modify your PATH environment variable, plus add new environment variables

	deal with the intrinsic hassles and risks of running an unnecessary server

This chapter focuses on the original Python script.
Running the Battery Historian
Once you have downloaded that Python script, and assuming that you
have a Python interpreter installed, you can run the script, supplying it
with the output of your batterystats run, and redirecting
the script’s output to an HTML file:

python historian.py /tmp/bs.txt > /tmp/bs-report.html

Interpreting the Historian Output
You can then load that HTML into a Web browser (Chrome-flavored ones are probably
a good choice, given that it is Google-generated HTML).
This will give you a
timeline across the horizontal axis, with event categories culled from the
“Battery History” section of the batterystats output on the vertical axis:

[image: Battery Historian Timeline, Partial View]

Figure 1012: Battery Historian Timeline, Partial View

[image: Battery Historian Timeline, Additional]

Figure 1013: Battery Historian Timeline, Additional
The length of the bar shows the approximate duration of the event, though
really short events have a de minimus length to give you something to see.
Hovering your mouse over one of the bars brings up a pop-up with more details
about that event:

[image: Battery Historian Timeline, Partial View, with Pop-Up]

Figure 1014: Battery Historian Timeline, Partial View, with Pop-Up
If the bar is really long, you may need to scroll your browser horizontally
to see the pop-up, as the rendering of the pop-up location does not seem
to pay attention to the browser viewport very well.
Below the main chart is a “Zoom” field that you can use to change the
scale of the horizontal axis, along with an “Event summary”:

[image: Battery Historian Timeline, Zoom and Event summary]

Figure 1015: Battery Historian Timeline, Zoom and “Event summary”
Again, this is largely undocumented.
PowerTutor
Perhaps the best-known third-party power analyzer is
PowerTutor.
PowerTutor is the outcome of a research project from the University
of Michigan, with a bit of assistance from Google. In principle,
PowerTutor is capable of letting you know power consumption on a
device, much along the lines of what Trepn can record on a Qualcomm
MDP. In practice, PowerTutor is significantly less powerful and
sophisticated.
PowerTutor was created with the HTC Dream (T-Mobile G1), HTC Magic
(T-Mobile G2), and Nexus One in mind. Its power output values will be
as accurate as they could make it for those devices. If you run
PowerTutor on other hardware, the results will be less accurate.
You can obtain PowerTutor from the Play Store, or from the
PowerTutor Web site, or you can
compile it from source.
PowerTutor is not tied to testing a particular application. As such,
you can simply run PowerTutor whenever you want from its launcher
icon, then press “Start Power Profiler” in the main activity:

[image: The PowerTutor main activity]

Figure 1016: The PowerTutor main activity
At this point, you can start playing with your application, or
running your unit test suite, or whatever. When you want to get an
idea of how much power you have been consuming, you can switch back
to the PowerTutor activity and choose “View Application Power Usage”.
This brings up a list of processes and toggle buttons to show various
power consumption values for each:

[image: The PowerTutor application roster]

Figure 1017: The PowerTutor application roster
Tapping the list entry brings up a graph for that particular process,
though since this information is only available while PowerTutor is
recording new data, the graph is usually empty unless you have logic
running in the background:

[image: The PowerTutor live charts for a single process current power consumption]

Figure 1018: The PowerTutor live charts for a single process current power consumption
You can also bring up a chart showing what portion of your power
consumption came from various sources for the whole device, such as a
pie chart of current consumption:

[image: The PowerTutor pie chart for current overall power consumption]

Figure 1019: The PowerTutor pie chart for current overall power consumption
Given that the source code is available, one might augment PowerTutor
to:

	Saving results, both as data files for offline analysis (akin to
Trepn’s CSV files) or for viewing charts and tables on the device
when data is not being actively collected

	Allowing one to record application states, akin to Trepn, to
better correlate application functionality to saved power results

Battery Screen in Settings Application
Of course, what developers tend to focus on most with power is the
battery consumption screen in the Settings application, as shown in
a previous chapter:

[image: Battery Screen from Settings App]

Figure 1020: Battery Screen from Settings App
After all, this is what users will tend to focus on — anything
showing up in here is a source of blame for whatever power woes the
user believes she is experiencing. Conversely, if your application
does not show up in this screen during normal operation, then there
is no compelling reason for you to do further analysis, as users will
tend to be oblivious to your actual power consumption.
If you do show up in the list, tapping on your entry can give you
some more details of what power you consumed and why:

[image: Battery Details Screen from Settings App]

Figure 1021: Battery Details Screen from Settings App
However, the information contained in here is mostly guesswork, using
a more refined version of the same approach that PowerTutor uses. Ordinary
Android hardware simply lacks enough fine-grained power measurement
instrumentation to do an accurate job of apportioning power usage among
different processes. So, the details of how long you kept the CPU powered
on may be accurate, but the percentage of battery consumption associated
with your app is just an estimate.
BatteryInfo Dump
Yet another possibility on older Android devices
is to use the adb shell dumpsys batteryinfo
command from your command prompt or terminal on your
development workstation. This will emit a fair amount of data that
probably means something to somebody, such as general device
information:

Battery History:
 -1h00m56s463ms 096 20030002 status=discharging health=good
plug=none temp=191 volt=4060 +screen +wake_lock +sensor
brightness=medium
 -1h00m52s490ms 096 22030302 +wifi phone_state=off
 -1h00m51s844ms 096 2703d102 +phone_scanning +wifi_running
phone_state=out data_conn=other
 -1h00m49s303ms 096 2743d102 +wifi_scan_lock
 -57m48s766ms 095 2743d102
 -53m24s627ms 095 2743d100 brightness=dark
 -53m17s620ms 095 0741d100 -screen -wake_lock
 -53m17s107ms 095 0740d100 -sensor
 -38m17s007ms 095 0642d100 -wifi_running +wake_lock
 -38m08s998ms 095 0640d100 -wake_lock
 -54s781ms 095 4640d100 status=full plug=usb temp=193
volt=4084 +plugged

Per-PID Stats:
 PID 96 wake time: +12s75ms
 PID 177 wake time: +1s13ms
 PID 458 wake time: +1s898ms
 PID 326 wake time: +3s925ms
 PID 205 wake time: +2s107ms
 PID 415 wake time: +843ms
 PID 96 wake time: +281ms

Statistics since last charge:
 System starts: 0, currently on battery: false
 Time on battery: 1h 0m 1s 682ms (0.3%) realtime, 8m 21s 883ms
(0.0%) uptime
 Total run time: 16d 11h 13m 34s 654ms realtime, 2h 9m 37s 404ms
uptime,
 Screen on: 7m 37s 868ms (12.7%), Input events: 0, Active phone
call: 0ms (0.0%)
 Screen brightnesses: dark 7s 7ms (1.5%), medium 7m 30s 861ms (98.5%)
 Kernel Wake lock "SMD_DS": 2s 368ms (3 times) realtime
 Kernel Wake lock "mmc_delayed_work": 1s 210ms (1 times) realtime
 Kernel Wake lock "SMD_RPCCALL": 56ms (435 times) realtime
 Kernel Wake lock "power-supply": 575ms (4 times) realtime
 Kernel Wake lock "radio-interface": 3s 1ms (3 times) realtime
 Kernel Wake lock "ApmCommandThread": 4ms (10 times) realtime
 Kernel Wake lock "ds2784-battery": 2s 6ms (21 times) realtime
 Kernel Wake lock "msmfb_idle_lock": 14ms (2273 times) realtime
 Kernel Wake lock "kgsl": 51s 482ms (613 times) realtime
 Kernel Wake lock "rpc_read": 164ms (272 times) realtime
 Kernel Wake lock "main": 7m 39s 708ms (0 times) realtime
 Total received: 0B, Total sent: 0B
 Total full wakelock time: 149ms , Total partial waklock time: 31s
14ms
 Signal levels: none 59m 57s 63ms (99.9%) 1x
 Signal scanning time: 59m 57s 63ms
 Radio types: none 641ms (0.0%) 1x, other 59m 56s 973ms (99.9%) 1x
 Radio data uptime when unplugged: 0 ms
 Wifi on: 59m 57s 709ms (99.9%), Wifi running: 22m 35s 424ms
(37.6%), Bluetooth on: 0ms (0.0%)

 Device battery use since last full charge
 Amount discharged (lower bound): 0
 Amount discharged (upper bound): 1
 Amount discharged while screen on: 1
 Amount discharged while screen off: 0

(... and lots more...)

and per-process information (here, showing power used by PowerTutor
itself):

#10058:
 Wake lock window: 5s 71ms window (1 times) realtime
 Proc edu.umich.PowerTutor:
 CPU: 11s 750ms usr + 4s 530ms krn
 1 proc starts
 Apk edu.umich.PowerTutor:
 Service edu.umich.PowerTutor.service.UMLoggerService:
 Created for: 4m 4s 750ms uptime
 Starts: 1, launches: 1

In principle, one might create tools that use this output — or
perhaps steal a peek at the data used by the Settings application
– to create something a bit more developer-friendly.
Sources of Power Drain
If you can measure power drain well yourself, that is the best way for you
to determine precisely where your power consumption is going. Alas, for various
reasons, you may not be able to get good power consumption data.
Which means you may have to guess.
We know the general sorts of things that consume power in a device, such as
the screen and the CPU. We know that if we use these things less, we will use
less power. Eventually, though, we have an app that does nothing, and while this
may result in optimal power usage, we are still likely to get poor reviews, because
the app does nothing.
What we need is some rough idea of how bad certain things are, so we can weigh our
use of those system components appropriately.
This chapter will try to give you some “rule of thumb” heuristics of how to
estimate power usage of various system components, plus some general recommendations
of how to use less of that particular component without necessarily eliminating
useful functionality from your app.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate.
Also note that:

	mA = milliamps, where the ampere (or “amp”) is the SI unit of current

	mAH = milliamp-hours, which is how battery capacities are measured
(e.g., 2000mAH can power a 200mA draw for 10 hours)

Screen
Screen size and battery size generally trend together. Tablets have bigger
batteries and bigger screens than do phones, which in turn are bigger in
both areas than are wearables.
A rough rule of thumb is to expect to consume ~10% of the device’s battery
for every hour you keep the screen on. Or, to look at it another way,
on a phone-sized screen, expect a power draw of ~100-200mA, depending
on variations in screen size and display technology (e.g., AMOLED).
Normally, the user is in control over how long your app is in the foreground
and therefore is “to blame” for the screen being on. There are a couple of
cases where you can make the screen be more of a problem.
The first is if you acquire() a WakeLock (other than a PARTIAL_WAKE_LOCK)…
and forget to ever release() it. Since the WakeLock will keep the screen on,
the screen will stay on, even if your app is in the background, until such time
as your process is terminated or the device shuts down due to low battery.
In fact, such WakeLock types have been deprecated, with the last of them
being flagged as deprecated in API Level 17. The recommended alternative is
to use android:keepScreenOn or setKeepScreenOn() on some View. This
will keep the screen on, so long as the activity hosting that View is
in the foreground. That way, just moving to the background releases the underlying
WakeLock, allowing the device to return to sleep.
However, in some cases, even that may be insufficient. Suppose that the
user is in your activity, and they get distracted, putting down their device
for an extended period. Unless you somehow detect the inactivity, and manually
turn off the keep-screen-on mode, the screen will stay on indefinitely, until the
power is drained. Hence, if you have a decent way of determining if the user is
still using your activity, consider using that as a way to determine when
the device is inactive (e.g., a postDelayed() that gets canceled and rescheduled
when the user does something, so if the postDelayed() Runnable gets invoked,
you know the user has done nothing for the delay period). Then, if you know the
device is inactive, call setKeepScreenOn(false) to return the screen to its
normal operating mode.
The academic paper
“How is Energy Consumed in Smartphone Display Applications?”
has a more extended analysis of screen power draw.
Disk I/O
Disk I/O gets more efficient with bigger operations.
You can see this in something like SQLite, where wrapping a bunch of INSERT
statements into a single transaction can have substantial benefits in terms
of how long the I/O takes.
Not surprisingly, this has a similar impact on power consumption:

	Writing 1GB of data 1,000 bytes at a time is about twice as expensive as
is writing it 10,000,000 bytes at a time

	Writing 1GB of data 100 bytes at a time is about five times as expensive
as is writing it 1,000 bytes at a time

Hence, you want to try to batch up your disk I/O, where possible, to do fewer,
bigger operations, rather than lots of little ones. This includes:

	Batching database I/O in a transaction, as noted above

	Caching data that you intend to log to disk in memory and only writing when
your in-memory buffer reaches a certain size or age (though beware the dangers
of your process being terminated before you get a chance to write the data)

	Consider using larger buffer sizes with BufferedInputStream and
BufferedOutputStream, if you can afford the heap space, though the 8KB
defaults are not that bad

As a rough model, consider disk I/O to draw ~200mA. The smaller the I/O
operations, the more time it takes you to accomplish the work, and hence
the less efficient those operations are.
While disk I/O is relatively expensive while it is occurring, most apps
are not continuously reading or writing, and therefore the total impact to
the battery will not be that bad. Apps that do continuously use the
disk — such as music or video players — will consume quite a bit of power.
WiFi and Mobile Data
Internet access via WiFi and mobile data networks is another area that you,
the developer, tend to control. Some apps require continuous Internet access and
only while in the foreground, like a streaming media player. But many more apps
wind up doing Internet access periodically in the background, looking for new
information on some server somewhere. Unfortunately, these are the sorts
of “vampire” apps that can drain the battery without users necessarily being
aware of it. Individually, these apps might not even appear all that bad,
but when a device has dozens of them, the combined impact results in poor
battery life.
Moreover, we also have the problem of dealing with multiple ways of getting to
the Internet. Simple solutions will leave us totally oblivious to the differences
in downloading via WiFi versus mobile data, at the potential cost in battery
consumption. Slightly less-simple solutions optimize for mobile data, to try
to minimize power drain in that model. More-elaborate solutions detect what
sort of connection we have (using ConnectivityManager) and choose among
different strategies as connectivity changes.
Here are some things you can do to try to help manage your Internet power
consumption.
Use Less
The simplest, rough-cut way to consume less power for Internet access is to do
less Internet access in the first place. The less time you spend downloading
(or uploading) data, the less power you tend to draw while doing so. In a very coarse
approximation, battery consumption will be proportional to bandwidth consumption.
And, of course, consuming less bandwidth can have other benefits, particularly
for people on metered mobile data plans.
There are chapters elsewhere in the book that cover ways to deal
with bandwidth consumption for bandwidth’s sake.
Use What You Already Downloaded
For data that is likely to be unchanging, use a disk cache, so you can avoid
downloading the same content again. Such a cache can be used at two levels:

	Simply by having the file in the cache can be a signal to your app that
you already have the data and can avoid any sort of request to fetch it again.

	For HTTP, by recording some additional details (If-Modified-Since and
ETag headers), you can make a request to the server to download the content
again, where the server can tell you if you already have the current copy
of the content (via a 304 response code).

Many of the Internet libraries discussed earlier in this book
offer disk caching as part of their services.
Use In Batches
As noted earlier in this section, in a very coarse
approximation, battery consumption will be proportional to bandwidth consumption.
Unfortunately, that approximation is pretty coarse.
We as developers tend to think of Internet access as being like a faucet
with two states: on and off. In reality, wireless radios tend to have three
states: full power, low power, and standby mode. Opening a socket will bring the
radio to full power. An idle radio (no packets transferred) will drop
to low power after a while, and eventually back to standby mode. Not surprisingly, the
power draw for full power is substantially more than low power, which in turn
is more than standby.
However, this model introduces some problems:

	There is some latency to move from standby or low power to full power. This
slows down data transfer while the radio “warms up”.

	The idle time needed to transition to a lower power state is substantial,
with values in the 5-15 second range well within reason. This means that making
a request has lingering power cost even after our request has completed.

The net is that you want to bring the radio to full power as few times as possible
(to minimize the percentage of time we are slowly dropping back to standby and
consuming power while we do). And, while we are at full power, we want to do
all necessary — or perhaps possibly necessary — data transfers, to avoid
having to go back to full power again any time soon.
In other words, you want to batch your network I/O. This is reminiscent of the
recommendations to batch disk I/O from earlier in this chapter.
So, for example, if you are going to upload data to a server, use that same pulse of work to
download anything that needs downloading, rather than having separate schedules
for uploads and downloads. Doing more in a batch and having fewer batches will
reduce the cost of the power state changes.
Use When the Server Wants You To
One common pattern for Internet access is to poll a server. This is fairly easy
to code, using something like AlarmManager to get control every so often.
However, this approach resembles children in the back seat of a car,
frequently pestering their parents with “Are we there yet?”.
Just as the parents will tell the children “We will get there when we get there,
and we will tell you when we get there”, you can take a similar approach,
using Google Cloud Messaging (GCM). Rather than poll the server
periodically, have the server contact your app on the device when there is data
ready to be downloaded. This works well in cases where polls are likely to result
in “yes, we have no data” responses — the pushes can be far less frequent than
the polls would be. This can also reduce load on your servers, for not having
to respond to poll requests across all your users.
Note, though, that the battery benefits are from using GCM itself. From the
standpoint of an app, GCM is “always on”, and the power consumed by GCM is
attributed to Android itself, not to the app. Hence, pushes are almost “free”
from the standpoint of power cost. This will not be the case if you
“roll your own” push system (MQTT, WebSockets, etc.). In this case, you are
attempting to keep a long-lived socket yourself, in addition to the one
maintained by GCM. Clearly, there are ways to do this that minimize the
power consumption of the long-lived socket connection, but that is not easy
to accomplish. Hence, you need to weigh the costs of depending upon the
Play Services SDK and routing your communications through Google’s servers
with the costs of trying to do your own separate push mechanism in a
battery-friendly fashion.
Use When Android Wants You To
If server push through GCM is impractical (e.g., you do not control the server),
you can reduce your power use for Internet access by batching across apps,
in addition to batching within your app.
What Google wants you to use for synchronizing data with a server is the
SyncManager. This is an overly-complicated framework that, among other things,
gives you control to sync to the server at the same time that other apps needing
to sync get control. That way, we can “warm up” the wireless radio once and
handle several apps’ worth of data transfers at once. SyncManager will be
covered in this book eventually.
Part of the reason why Android moved to make alarms with AlarmManager
more “inexact” in API Level 19+ is for this same sort of batching. While
AlarmManager certainly can be used for a variety of purposes, a lot of apps
use it for Internet data transfer. Allowing Android to control when those
alarms occur allows Android to try to coalesce them, and perhaps even time them
to happen when SyncManager-led transfers occur, with the objective of minimizing
the number of times we bring the wireless radio out of standby mode.
Use Additional Reading
The Android developer documentation has
a series of “training” pages
on minimizing power consumption for data transfers. This expands upon Reto Meier’s
Google I|O presentations that touch upon this topic.
GPS
In light testing, GPS seems to draw ~35mA. Additional power will be consumed for
using those results, though, and so the net effect on the battery will be somewhat
higher, depending upon what your app does when it gets a GPS fix.
That figure is corroborated by the academic paper
“An Analysis of Power Consumption in a Smartphone”,
though that paper tested rather old devices (HTC Dream and Nexus One).
Again, different devices will have different components, and some devices’
GPS modules may be more or less efficient.
Hence, GPS itself is a power drain, but not a massive one… if what you are doing
with the GPS fixes itself is efficient. Keeping the GPS on for several hours
will certainly take a chunk out of the battery charge, but if you are doing
lots of work (e.g., navigation app) in response to those fixes, several hours
may be more than the battery can handle.
If you can get by with the dependency on the Play Services SDK,
using LocationClient can help here, particularly in cases
where the user may not be moving much, as Google’s fused location provider uses
the accelerometer to help determine how much they need to use GPS versus other
possible means of determining location.
Camera
The camera will consume power while it is actively receiving input, whether
that is for the preview frames or for taking full-resolution pictures or video.
Of course, it will also consume additional power when recording images to
disk, whether those be still photos or continuous video.
A rough guide is that a camera preview will draw ~200mA plus the power for
screen, CPU, etc. That could easily total over 350mA, even if you are not doing
much. Normally, though, the camera preview is on for short periods of time, and
only under user control.
A corresponding value for recording video, including the disk I/O and camera
preview, would be ~600mA (plus the screen). That is the sort of thing you
only want to do in short bursts, as a couple of hours of video recording
can really take a bite out of battery. However, once again, normally the user
is the one controlling when video is recorded.
Additional Sources
The above sources of power drain are comparatively easy to model and provide
a heuristic for determining your possible power usage.
However, there are plenty of other things that can drain the battery, for
which this chapter does not provide such a heuristic. In many cases, the usage
patterns of the system component will vary so widely that a simple heuristic
is unrealistic. In some cases, the power drain from components from different
manufacturers will be very different. In some cases, the author of this
book simply lacks sufficient expertise with the technology to provide much help
(e.g., Bluetooth).
The sections that follow will try to provide some help, though.
CPU/GPU
Perhaps the biggest source of power drain beyond the components listed above
will be the processors: the CPU and the GPU. These draw a fair bit of power,
which is why processor manufacturers go to great lengths to try to adapt
to varying conditions, turning off cores or switching clock speeds, to try
to minimize the power drain.
Usually, so long as we are in the foreground, any CPU/GPU usage impact on power
will be considered “normal” by the user. Of course, trying to boost performance
here can benefit the user, not only in terms of possibly reduced power consumption,
but less lag or other forms of sluggishness. Hence, trying to optimize
processor utilization is worthwhile.
However, the bigger complaints from the user will come from power drain while
your app is in the background. The biggest source of those complaints will
come from your use of WakeLocks, preventing the device from going into a low-power
sleep state.
There are some apps available on the Play Store that reportedly can give you some
idea of how long you may be holding a WakeLock, however they generally require
root, particularly for Android 4.4+.
Sensors
Sensors, more so than many other device components, seem to get sourced from
a wide range of manufacturers. They also seem to be tied into the devices
differently from device to device. For example, some devices allow sensors to
continue collecting data while the device is otherwise in a sleep mode, while
many do not.
As such, it is difficult to give much guidance in terms of power drain tied
to your use of sensors.
That being said, here are a few notes that may help:

	Generally speaking, the more you use a sensor, the more likely it is that
it will reflect in power drain. However, only some of that power drain will
be from the sensor hardware itself. Your application code processing sensor
events will bear much of the blame. Reducing the periods of time when you
are registered for sensor events, using longer delays between events, and
sensor event batching are ways that you can reduce the power drain associated
with the sensors and your associated code.

	Conversely, in some environments, use of a particular sensor may be “free”,
insofar as the device uses the sensor itself on a continuous basis. For example,
the accelerometer and/or gyroscope is used by devices to detect orientation
changes. Hence, those sensors must be powered on regularly, and therefore you
cannot be “blamed” for the fact that the sensors are drawing power. Your use
of the sensor data may contribute to power drain, of course.

Audio Input and Output
Playing audio through the earpiece, speaker, wired headset, or Bluetooth, will
consume some amount of power. The amount will vary by how long you are playing
the audio and how the audio is played (e.g., Bluetooth may require more power
than on-device audio output). However, in both cases, usually the user has control
over the audio, particularly if it is to be playing for a lengthy period of time
(e.g., music player), and so the power drain associated with audio playback is
less likely to be considered to be a problem, as users will get annoyed with
uncontrolled power drain, more so than power drain that they can manage
themselves.
Recording audio via the on-board microphone or Bluetooth should also consume
some incremental power. In cases where the user is in control over when recording
is happening, the power drain is unlikely to cause the user much distress.
Where both playback and recording of audio may cause a perceived power problem is
in places where the user has less control. For example,
an alarm clock app should have some sort of timeout to stop playing the
ringtone (or whatever) after some period, if the user fails to respond to the
alarm. After all, it is possible that the user is not where the device is and
is not in position to stop the alarm. In this case, the power drain will be
from several components, audio playback being just one, but it is the uncontrolled
nature of the power drain that can get you in trouble.
Addressing Application Size Issues
Sometimes, our apps are just too big, where “too big” can be defined as:

	Bigger than the 100MB limit imposed by the Play Store

	Bigger than some other limit imposed by some other distribution channel

	Big enough that we worry about bandwidth costs, particularly for users on
metered data plans

	Big enough that we hit some internal Dalvik limitations

This chapter will review various techniques for trying to keep the size
of your app down to a reasonable level.
Prerequisites
This chapter assumes that you have read the core chapters of the book.
The APK Analyzer
One way to reduce the size of your APK is to see what is inside of it
that you can get rid of. This is also useful to see if your attempts
to get rid of it actually work and reduce the size of the APK file.
Android Studio, starting with version 2.2, has an APK analyzer that will
help you do this.
To analyze an APK, choose Build > Analyze APK… from the Android
Studio main menu. Unfortunately, this is not aware of your actual APKs
from your project, instead dumping you in a standard file-open dialog.
You will need to rummage around your development machine
to try to track down the APK to analyze. Look in your module’s
build/outputs/apk/ directory, though you may need to specifically
build the APK for the build variant that you want to look at.
The analyzer will then generate a tree-table, showing you what things
in your app are consuming space:

[image: APK Analyzer, As Initially Launched]

Figure 1022: APK Analyzer, As Initially Launched

[image: APK Analyzer, Drilling Down Into Resources]

Figure 1023: APK Analyzer, Drilling Down Into Resources
If you click on a DEX file, such as classes.dex, a bottom panel displays
details of the classes inside the file:

[image: APK Analyzer, Drilling Down Into DEX]

Figure 1024: APK Analyzer, Drilling Down Into DEX
The “Defined Methods” column indicates how many methods are defined by
the classes in the packages, where those classes are in the DEX file.
“Referenced Methods” refers to how many methods that classes in the DEX
file reference from the indicated packages, and that ties into what’s known
as the “64K DEX method reference limit”, which we will get into
a bit later in this chapter.
If you have multiple builds of your APK — such as a debug and a release
build, or an old and a new build — you can open one in the APK Analyzer, then click the
“Compare with…” button and choose the second APK. This opens up a floating
window showing you the size differences between the two APKs:

[image: APK Analyzer, Comparing Two APKs]

Figure 1025: APK Analyzer, Comparing Two APKs
Java Code, and the 64K Method Limit
In ordinary Java development, there are few limits as to how big your
applications can get. You tend to run into physical limitations, such as
available system RAM, before you run into any limitations of the programming
language or runtime environment.
And, normally, in Android applications, you do not worry about how many
classes or methods you have. However, “normally” is not “always”, and there is
a specific scenario that complex apps need to worry about.
What Is It?
Quoting Andy Fadden, Android platform engineer:

The issue is not with the Dalvik runtime nor the DEX file format, but with the current set of Dalvik instructions.

You can reference a very large number of methods in a DEX file, but you can only invoke the first 65536, because that’s all the room you have in the method invocation instruction.

I’d like to point out that the limitation is on the number of methods referenced, not the number of methods defined. If your DEX file has only a few methods, but together they call 70,000 different externally-defined methods, you’re going to exceed the limit.

[An externally-defined method is] a method defined in a separate DEX file. For most apps this would just be framework and core library / uses-library stuff.

Specifically, you will crash at compile time, with an error message akin to:

Unable to execute dex: method ID not in [0, 0xffff]: 65536
Conversion to Dalvik format failed: Unable to execute dex: method ID not in [0, 0xffff]: 65536

64K Seems Like a Lot of Typing…
Well, it is, and it isn’t.
First, it is not merely your own methods. You can reach the 64K method limit
without implementing 64K methods in your application yourself. You can:

	Call lots of methods defined by the framework

	Absorb lots of methods from libraries, particularly larger libraries that
offer many more features than your app uses

This still tends to mean that simpler apps are unlikely to run into this limit,
while more complex apps might.
Where Are The Methods Coming From?
The APK Analyzer can help you determine what methods get referenced in
your APK file. Just click on the DEX file and start looking through the
package tree, specifically looking for methods that will not be in your
DEX file, such as java.*, javax.*, and non-support classes in
android.*:

[image: APK Analyzer, Looking for Referenced Methods]

Figure 1026: APK Analyzer, Looking for Referenced Methods
For example, the app being profiled in the APK Analyzer in these
screenshots reportedly references four methods on RippleDrawable:

[image: APK Analyzer, Showing Referenced Methods on RippleDrawable]

Figure 1027: APK Analyzer, Showing Referenced Methods on RippleDrawable
The developer of this app (who also happened to write this book) does
not reference RippleDrawable anywhere. Hence, some library that the
app is pulling in has code tied to RippleDrawable.
Mitigation Tactics
If you are relatively close to the 64K method limit, you may be able to tweak your project
to get back under the limit without having to significantly rework your project.
Use Granular Libraries
Some libraries, like Google Play Services, come in two forms: a “kitchen sink” and
more granular libraries for individual features. If your need for the library can be met
by the granular libraries, use them, and you can remove your dependency on the
“kitchen sink”.
In the case of Google Play Services, try not to depend upon the
com.google.android.gms:play-services artifact. Instead, try to depend upon
one of the more granular artifacts, such as com.google.android.gms:play-services-maps
for Maps V2. For services, like Google Cloud Messaging, that
have no specific granular artifact, depend instead upon
com.google.android.gms:play-services-base — while still large, this is far smaller
than is com.google.android.gms:play-services.
Use Better Libraries
One common culprit of hitting the 64K method limit comes from libraries, as
their methods count along with yours. Hence, choosing different libraries can
perhaps reduce your method count.
One specific case of this comes from the code generated by
Google’s Protocol Buffers. If you are using
Protocol Buffers heavily, your generated classes may each be defining hundreds
of unused methods. Switching to an alternative implementation can reduce this
significantly. Some such implementations include:

	micro-protobuf

	Square’s Wire

Use ProGuard
If your debug builds are failing due to the 64K method limit, try a release
build. If that works, the reason is ProGuard and its ability to strip out code
that is deemed to be unreachable.
In this case, you can “buy yourself some time” by arranging to build your app
in debug mode with ProGuard, but without ProGuard’s normal code obfuscation
work (e.g., -dontoptimize -dontobfuscate switches in the ProGuard configuration).
Quoting Eric Lafortune,
ProGuard’s lead developer:

If you apply ProGuard with shrinking enabled but optimization and obfuscation disabled (-dontoptimize -dontobfuscate), the code will already be more compact, and you can still use a debugger. The source files, class names, method names, line numbers, etc remain unchanged and any breakpoints in removed unreachable code are irrelevant.

With Gradle-based builds, it should be possible to set this up
using minifyEnabled true and a custom ProGuard configuration file:

android {
 buildTypes {
 debug {
 minifyEnabled true
 proguardFile 'proguard-no-obfuscate.txt'
 }
 }
}

(where proguard-no-obfuscate.txt contains the -dontoptimize -dontobfuscate switches)
Mitigation Strategies
If the aforementioned tactics are insufficient — or if they help somewhat, but
you are still near the limit with a lot of development yet to be done — you may
need to pursue some more strategic ways of resolving your application size.
Don’t Go Overboard
One source of method explosion comes from too much adherence to server-side Java
coding styles.
For example, if you find yourself defining hundreds of interfaces and/or abstract classes, with
Factory classes (and perhaps FactoryFactory classes), you are more likely to hit the
64K method limit due to all those separate definitions. Consider whether the
flexibility that you believe that you obtain from this coding style is worth the
risk.
Smaller Apps, Loosely Connected
It may be that you are simply creating an app that is entirely too complicated
for the Android environment. Android’s Intent system is designed to enable
apps to inter-operate, and so you may need to consider splitting your app
into pieces, such as:

	A suite of related apps

	A host app and plugin apps that enable additional functionality

	An app and an affiliated Web app, where certain functionality is handled by the
Web app in a standard browser

Multidex
The 64K method reference limit refers to the number of methods referenced
from a given DEX file. One way to address this, in theory, would be
to split the app into multiple DEX files, each getting some of the classes
from your app and its dependencies. Each DEX file is likely to be below
the 64K method reference limit.
Android has native multidex support starting with Android 5.0. There
is a quasi-backport of this for older devices, but
it opens the door to security issues
and ideally is avoided.
To support native Android 5.0+ multidex, you need to add multiDexEnabled true
to the defaultConfig closure in your module’s build.gradle file,
alongside where you declare your minSdkVersion, targetSdkVersion,
and so on.
Native Code
Native code, implemented as NDK-compiled libraries, represent another source
of app bloat. This will occur regardless of whether the NDK code is yours
or if you are using a third-party library that supplies those binaries (e.g.,
SQLCipher for Android).
Native code is not intrinsically large. However, in some cases, native code
is a port from some other environment (or environments) and may contain a lot
of stuff that your app does not need. Worse, ProGuard will not strip out
unused native code, as its algorithms only work with Java-style bytecode. Hence,
it is not out of the question for apps to devote several MB just to the Linux
.so files that make up the NDK-compiled libraries.
Fortunately, there are some workarounds.
Mitigation via Per-CPU APKs
Some distribution channels, like the Play Store, support publishing multiple
versions of an APK, with different versions for different CPU architectures. Hence,
you could have one APK with x86 binaries and one APK with ARM binaries, as opposed
to having one “fat binary” with both.
The Android Gradle Plugin offers APK splits
as a way of implementing this, where you get different APKs based on
CPU architecture.
Mitigation via libhoudini
As is noted in the chapter on the NDK, libhoudini is
proprietary Intel code that allows ARM-compiled NDK binaries to run on x86
CPUs, using the same sort of opcode translation that is used by the Android
emulator. Many, though not all, x86-powered Android devices have libhoudini.
Those that do could run your app even if you only ship ARM NDK binaries and
not x86 ones. This gives you the same sort of space savings as you would get
by publishing separate ARM vs. x86 APKs (per the previous section), without
having to manage multiple APKs yourself. The cost is speed, as the translation
layer adds significant overhead, much as you see with the Android emulator
running ARM emulator images instead of x86 ones.
Mitigation via Ignoring Non-ARM
Of course, what a lot of developers do is simply only worry about ARM.
While Google does not publish percentages of CPU architectures the way they do
Android OS versions, it is safe to say that, as of early 2014, ~1% of Android
devices are powered by non-ARM CPUs. That percentage may climb, particularly
as Intel pushes more x86 chipsets. But the vast majority of Android devices
are powered by ARM. So, even if some of those x86 environments lack libhoudini
(e.g., the manufacturer did not license libhoudini from Intel), they are so
few in number that developers are prone to ignore x86.
Ironically, what drives x86 for developers is the development environment itself,
not the production environment. The x86 emulator is nicely responsive, compared
to a similarly-configured ARM emulator image. Many developers avoid the ARM
emulator entirely, with it being too slow. Hence, developers may be interested
in having x86 binaries in the APK to allow the app to run on the x86 emulator
(which lacks libhoudini). In this case, it may be worthwhile to have a dedicated
release build process that strips out the x86 binaries, if the space that those
binaries take up is more than you can afford.
Images
Bitmap images are notorious for taking up lots of heap space. However, they can
also swell the size of your APK. While the bitmap PNG or JPEG files will
be compressed on disk, if you have enough of them, they can still consume many MB
of space in the APK, particularly since the APK cannot compress them further.
Mitigation via Resource Aliases
You may have multiple copies of the same image.
The example cited in the Android documentation is where you want to have locale-specific
drawable images. For example, perhaps you want to show a flag, and you use
language resource sets to try to map the right flag to the right language.
However, some flags are going to be used in multiple languages, such as the
Canadian flag being needed for en-rCA and fr-rCA. By default, you would place
your flag icon in each of those resource sets, duplicating your results. This
gets worse if you have a few versions of the same flag icon for different
densities.
However, you can elect to use a resource aliases to handle this differently.
Suppose that your code refers to a flag drawable resource (e.g.,
@drawable/flag or R.drawable.flag). For many languages, you would have a unique
flag in the appropriate resource set. For cases where the same flag is used in
multiple situations:

	Put the flag in a resource set that is not tied to locale (e.g.,
res/drawable-hdpi/ instead of res/drawable-en-rCA-hdpi/), for as many
densities as you choose, but under a different name (e.g., flag_canada.png
instead of flag.png)

	Create a small XML file, flag.xml, in each of the locale-specific directories
(e.g., res/drawable-en-rCA/ and res/drawable-fr-rCA/), pointing
to your flag_canada drawable:

<?xml version="1.0" encoding="utf-8"?>
<bitmap
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/flag_canada" />

When you reference R.drawable.flag on an en-rCA or fr-rCA device, Android
will read in the XML resource, then turn around and retrieve the flag_canada
drawable, and use that. Since the two XML files are likely to be smaller than the
sum total of the duplicate copies, you save disk space.
Mitigation via pngquant
In practice, the above technique is just not that commonly used, because it
addresses a fairly narrow scenario. A more general-purpose solution is to try
to tweak the images to be visually nearly identical, yet take up less disk
space.
There are a variety of tools for this, mostly aimed at Web development, where
smaller image file sizes means faster-loading Web pages.
One such tool is pngquant. Given a PNG file as
input, it generates a smaller PNG file as output, one with an optimized color
palette, using mathematical techniques to choose colors that will maintain
as much of the original look as possible. Many of the images in this book
were optimized using pngquant, at a substantial savings in disk size,
without materially sacrificing image quality.
APK Expansion Files
The ultimate solution to disk space concerns, for distribution through the
Play Store, is to get stuff out of your app entirely and distribute that stuff
by other means. The Play Store offers
APK expansion files
with this in mind.
You can publish one or two expansion files, each containing up to 2GB of files.
While these will not be treated as resources or assets, you do have access
to the file contents at runtime. Game developers will use these for sound
effects, additional artwork, and so on. The biggest limitation is that these
files may not be supported by all distribution channels.
Crash Reporting Using ACRA
When you wrote your app, you intended for it to work.
Alas,
the road to a very warm place is paved with good intentions.
Hence, it is fairly likely that your app will crash in the hands of your
users. In order to be able to fix the underlying problems, you need
to learn about the crashes and the state of the app at the time of
the crash.
There are any number of solutions to this problem. This chapter will
outline a few of them and focus on one open source solution: Application
Crash Reports for Android, better known as ACRA.
Specifically, this chapter covers ACRA 5.1.1. If you used ACRA previously,
the configuration API has changed a fair bit, particularly in terms of the
annotations that you can use.
Prerequisites
Understanding this chapter requires that you have read the core chapters
and understand how Android apps are set up and operate. Having read
the chapter on notifications is also a good idea, though
not absolutely essential.
What Happens When Things Go “Boom”?
In development, when your app crashes, you get a little dialog box indicating
that the app crashed, and you get your Java stack trace in Logcat.
In production, little of that does you any good. In particular, you have
no way of seeing Logcat from end user devices. Instead, you need to have
some means of capturing that stack trace, along with perhaps additional
data, and collect it somewhere.
App distribution channels may offer this as part of their feature set.
The Play Store, in particular, offers its own crash reporting, where
crashes “in the field” get reported to you by means of your Developer
Console on the Web. However:

	You might not be distributing through the Play Store at all, let alone
exclusively, and so the Play Store reporting does not help you for
all your users

	The Play Store’s approach makes reporting the crash optional, as the
user can elect to not send a report, meaning that you don’t find out
about every crash

	You have no control over what data is and is not collected, both for
ensuring that you have enough information to have a shot at fixing the bug
and for minimizing extraneous data that might have privacy implications

	Google gets a copy of the crash data, which you may or may not find
to be appropriate

Various other services offer their own crash
reporting as part of a larger suite of features. However, once again,
you may not have control over what data is collected, and you certainly
have no control over who all gets the data.
For the privacy-minded app developer, you want something along these
lines, but where you can control to a fine degree of detail what gets
collected and where the data is sent solely to you, not to some
third party.
And that’s where ACRA comes in.
Introducing ACRA
ACRA has been around since 2010, originally on Google Code, and now
on GitHub. It comes in the form of a
library that you add to your app, with code that will get control when
an unhandled exception occurs inside your app. There, ACRA carefully
will collect information about the crash (e.g., the stack trace) and
the environment (e.g., what version of Android the app was running
on). ACRA can then deliver that information to you by
any number of means, plus optionally provide
feedback to the user about the crash itself.
Since you control what ACRA collects and you control where ACRA
sends the data, you can minimize how much information gets into the
hands of third parties. The cost is in convenience, as either you have to:

	Fuss with managing your own server for receiving the crashes, or

	Use a third-party service for that server, reducing some of the privacy,
or

	Use options that are clunky for everyone involved, such as the user
sending emails containing crash reports

Where ACRA Reports Crashes
In the beginning, ACRA logged crashes to a Google Docs spreadsheet.
Eventually, Google grumbled about this, and so that option is now
deprecated.
That limitation notwithstanding, ACRA supports a range of possible ways
for crash reports to get from the user’s device to your eyes, so that you
can try to fix whatever problems ail your app.
An Existing Crash Logging Service
Some crash logging services allow you to use ACRA in your code, rather
than rely upon some proprietary library. You simply configure ACRA to
send the data to their servers, which then notify you about crashes and
give you dashboards and such to visualize how much your app is crashing.
HockeyApp,
TracePot,
and Splunk Mint are examples of such services.
The advantage here is convenience coupled with control over the client
side. However, you are still sharing crash details with third parties,
potentially raising privacy or security issues.
Acralyzer
The official ACRA reporting server is
Acralyzer. This, along with
its acra-storage companion, are CouchApps, powered by Apache CouchDB.
You upload the Acralyzer and acra-storage CouchApps into your
own CouchDB instance, then configure ACRA in your app to talk to those
apps.
Acralyzer and acra-storage are open source, as is CouchDB. You can
either host a CouchDB instance on your own server or use various
CouchDB hosting providers.
This solution offers the best blend of
analysis features and
user privacy and security. However, it does require you to learn enough
about CouchDB to be able to set up and maintain an instance. Also,
Acralyzer has not had many updates recently.
Email
The easiest solution to set up is the most awkward for everything else:
have the user send you an email. In this model, ACRA prepares a report,
then uses ACTION_SENDTO to lead the user to an email app to send
the report to an email address that you configure in your app. The user
can then just send the prepared email from their email client (e.g., Gmail),
and the report shows up in the inbox for this email address.
You do not need to set up some sort of server, let alone maintain it.
Your app does not even need the INTERNET permission.
However:

	The user might not send the email, choosing instead to abandon the
mail client

	The user might not use their device for email, and therefore have no
good means of getting you the report

	While you get the raw crash data, you do not get any of the nifty
charts and such that you can get from a full-fledged crash reporting
server

A Host for Testing
The protocol used by ACRA to communicate with a Web server is
blissfully simple. Handling ACRA crash reports yourself does not
require that much server-side code, in case you wanted to integrate
this capability into the rest of your REST-style Web services.
For example, this trivial Ruby script implements an ACRA-compatible
endpoint:

require 'fileutils'
require 'sinatra'
require 'json'

LOG_ROOT='/tmp/ACRAfier'

put '/reports/:id' do
 acra=JSON.parse(request.body.read)
 FileUtils.mkdir_p(LOG_ROOT) if !File.exist?(LOG_ROOT)

 f=File.join(LOG_ROOT, params[:id]+'.json')
 File.open(f, 'w') {|io| io.write(JSON.pretty_generate(acra))}
end

(from ACRA/Simple/stub_server.rb)
As we will see later in this chapter, you can
configure ACRA to use a simple HTTP PUT request to submit a crash
report to the server. This Ruby script implements a small REST-style
Web service using Sinatra, where crash reports are pushed to a
/reports/.../ URL, where ... is an ACRA-generated unique ID for
the report. This script just logs the JSON that we get from ACRA
to a file in a designated directory. With a few more lines of code,
you could have it generate a human-readable report and email it to
you, along with the JSON as an email attachment. Or, you could do
whatever you want.
This Ruby script can be found as stub_server.rb in
the book’s GitHub repo
If you have Ruby installed, just install the sinatra and json
gems, then run ruby stub_server.rb to fire up the server.
In practice, you would need a bit more smarts on a publicly-visible
Web service, to help prevent people from maliciously flooding your
crash reporting server with bogus data. However, the minimal requirements
for ACRA are very straightforward and could be implemented in any
reasonable server-side Web framework.
ACRA Integration Basics
Given that you have identified how you want to receive the crash reports,
the next step is to add ACRA to your project and configure it to
send crash reports to your chosen location.
The
ACRA/Simple
sample project demonstrates a fairly simple ACRA integration.
Adding the Dependencies
ACRA is distributed through standard Maven-style artifact repositories
and should be automatically picked up when you add the appropriate implementation
directives to your dependencies. However, there are several possible dependencies.
You add one or more based on:

	How you want to receive the crash report (e.g., via a Web service, via email)

	How you want to alert the user about the crash

In this sample app, we will see one form of report delivery (Web service) and
three options for informing the user (dialog, notification, …and not telling the
user about the crash). We have three dependencies to give us all of those
options:

def acraVersion='5.1.1'

dependencies {
 implementation "ch.acra:acra-http:$acraVersion"
 implementation "ch.acra:acra-dialog:$acraVersion"
 implementation "ch.acra:acra-notification:$acraVersion"
}

(from ACRA/Simple/app/build.gradle)
All three have the same version number, so we define that once and use
Groovy string interpolation ($acraVersion) to inject that version number
into the dependency request.
Java 8
ACRA 5.x also requires you to enable Java 8 compilation in your project,
via the compileOptions closure in the android closure:

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

(from ACRA/Simple/app/build.gradle)
Build Types, Product Flavors, and ACRA
It is very likely that you will want to have different ACRA configurations
based upon build types and/or product flavors:

	Have the debug build not use ACRA, but have the jenkins build by
your CI server use ACRA to collect crashes and integrate them into
the test results, and have the release build use your production
ACRA server

	Skip ACRA for your Play Store distribution (because you decide you
would rather just use the Play Store’s crash reporting), but use
ACRA for your amazon product flavor (the version of your app that
you distribute through the Amazon AppStore for Android)

	And so on

buildConfigField is a great way to manage this. Use your build.gradle
file to establish values for some constants, then use them in the
ACRA configuration code in Java later on.
The sample app defines two such fields for BuildConfig:

	
ACRA_INSTALL, a boolean that will be true if we should
use ACRA, false otherwise

	
ACRA_URL, a String that will point to the server to which we
wish to push the ACRA-collected crash data

The sample app defines the same values for both fields in both
build types (debug and release), simply because you are probably
playing around with the sample in a debug build:

 buildTypes {
 debug {
 buildConfigField "String", "ACRA_URL", '"http://10.0.2.2:4567/reports"'
 buildConfigField "boolean", "ACRA_INSTALL", 'true'
 }

 release {
 buildConfigField "String", "ACRA_URL", '"http://10.0.2.2:4567/reports"'
 buildConfigField "boolean", "ACRA_INSTALL", 'true'
 }
 }

(from ACRA/Simple/app/build.gradle)
The URL used for ACRA_URL points to 10.0.2.2, the IP address on an
Android emulator that refers back to the localhost of your developer
machine. In particular, this URL is set up for the server Ruby script
mentioned previously in this chapter. If you wish to use a different
server, not only will you need to consider changing this URL, but
you will need to make some other adjustments to the Java code, in
all likelihood, as will be seen in the next couple of sections.
Creating a Custom Application
ACRA needs some one-time initialization, and it is set up to do that
by means of a custom Application subclass. Most likely, you do not
already have one of these, though some libraries will require you
to create one, perhaps inheriting from some library-supplied Application
subclass.
Regardless, you will need a subclass of Application in your project,
and you will need to have the android:name attribute of your
<application> element in the manifest point to that Application
subclass:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.button"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:name=".ACRAApplication"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name=".ButtonDemoActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from ACRA/Simple/app/src/main/AndroidManifest.xml)
Here, android:name points to an ACRAApplication class that we will
examine shortly.
Also note that the manifest has a <uses-permission> element, asking
for the INTERNET permission. Unless you use ACRA’s
support for sending crash reports via the user’s email app, you will
need the INTERNET permission for getting crash reports to some
server.
Implementing the Application
Your custom Application subclass — such as ACRAApplication in the
sample app — needs a few things to set up ACRA. Mostly, they are in the
form of annotations added to the class declaration:

package com.commonsware.android.button;

import android.app.Application;
import android.content.Context;
import org.acra.ACRA;
import org.acra.annotation.AcraCore;
import org.acra.annotation.AcraHttpSender;
import org.acra.data.StringFormat;

@AcraCore(
 buildConfigClass = BuildConfig.class,
 reportFormat=StringFormat.JSON
)
@AcraHttpSender(
 uri=BuildConfig.ACRA_URL,
 httpMethod=org.acra.sender.HttpSender.Method.PUT
)
public class ACRAApplication extends Application {
 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);

 if (BuildConfig.ACRA_INSTALL) {
 ACRA.init(this);
 }
 }
}

(from ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRAApplication.java)
Configuring the Core
The @AcraCore annotation is used for any ACRA-enabled app, and it has
a number of properties to control general behavior of ACRA overall. Here,
we configure just two:

	
buildConfigClass, to teach ACRA where our BuildConfig gets generated

	
reportFormat, specifying that we want the crash data provided to us in
JSON format

The reportFormat attribute is optional, and JSON happens to be the default
format. It is included here for illustration purposes.
Configuring Report Delivery
The point behind ACRA is to get a crash report to you, by one means or another.
If you are using the ACRA-supplied Web service or email sending options, there
are annotations that you can use to configure them: @AcraHttpSender and
@AcraMailSender. In the sample app, we have an @AcraHttpSender annotation,
where we set the uri property to indicate the URL where to send the report
to, and we set httpMethod to indicate that we want an HTTP PUT request
to be how we get that report. This will cause ACRA to generate our JSON
and do a simple HTTP PUT to our designated URL.
Configuring User Notification
ACRAApplication is set up to not tell the user about any crashes. Hence,
it has no configuration for any sort of user notification. In many cases,
you may want to let the user know about the crash, and if you use one
of the ACRA-supplied notification options, you have annotations for those:

	
@AcraDialog, to configure a dialog to appear when the app crashes

	
@AcraNotification, to display a Notification when the app crashes

	
@AcraToast, to show a Toast when the app crashes

We will see examples of some of those coming up later in this chapter.
Initializing ACRA
Finally, in attachBaseContext() of Application, in addition to chaining
to the superclass, we need to call ACRA.init(), passing in the Application
itself.
Note that the ACRA.init() call is inside a check of the BuildConfig.ACRA_INSTALL
boolean that we set up in the Gradle build files. If a particular
build type or product flavor sets ACRA_INSTALL to false, ACRA
will not be enabled. For simpler projects, rather than defining your own
ACRA_INSTALL-style flag, you could just use !BuildConfig.DEBUG, to
only configure ACRA on release builds. While there is nothing stopping
you from using ACRA in development, you may find that it interferes
somewhat with how you are used to debugging your crashes.
Also, if you have an existing Application subclass, you need to
consider how
ACRA’s error-reporting process will impact your existing logic.
Reporting Crashes
Good news! You’re done!
ACRA does not require you to litter your code with magic try/catch
blocks to catch and report exceptions. After all, some Android exceptions –
even those triggered from bugs in your code — are raised by Android
framework code and your code appears nowhere in the stack trace.
Instead, ACRA takes advantage of Thread and its setDefaultUncaughtExceptionHandler()
method, to get control when any unhandled exception occurs. All those
crashes that normally would shut down a component or the whole app now go to
ACRA and can be reported to your designated server.
Occasionally, you may wish to add some crashes that you are handling
yourself to ACRA. For example, there may be some edge or corner cases
that you are explicitly handling but are uncertain if they ever would
happen. You could arrange to pass the Exception over to ACRA, which
it will treat the same as any other crash that it intercepts.
To do this, call getErrorReporter() on the ACRA class, and call
either handleException() or handleSilentException() on the error
reporter. The difference is that handleSilentException() always reports
the error silently, while handleException() will process this
exception like any other, possibly alerting the user to the crash, as will
be seen in the next section.
What the User Sees
The Simple sample app has ACRA configured, but this does us little
good if we do not crash. So, the UI for the activity has a Button,
and tapping that button will trigger a RuntimeException:

package com.commonsware.android.button;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;

public class ButtonDemoActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void earthShatteringKaboom(View v) {
 throw new RuntimeException(getString(R.string.msg_kaboom));
 }
}

(from ACRA/Simple/app/src/main/java/com/commonsware/android/button/ButtonDemoActivity.java)
…whose message is tied to a string resource.
When you click the Button, ACRA will send a crash report to your
designated server. What the user perceives, though, varies based upon
configuration.
Default: “Silent”
If you do not specify otherwise in your ACRA configuration, the default
behavior will be “silent”. In this case, “silent” means “the user is
not told that a report is being sent via ACRA”. The app simply goes away.
This works. This is easy. This is not user-friendly. This is not recommended.
Dialog
Another option is the “dialog” approach, where the user is shown a
dialog-themed activity, indicating what happened and allowing the
user to provide some additional information.

[image: ACRA-Reported Crash, Dialog Mode]

Figure 1028: ACRA-Reported Crash, Dialog Mode
On the plus side, this is more transparent to the user, and the user
can provide a bit more detail that might be useful to you. However,
the user can also cancel out of the dialog, in which case you do not
receive a crash report at all. However, this may be one way of complying
with Google’s directives regarding “Prominent Disclosure” with respect to crash reporting.
To set this up, you need to add a few more options to your ACRA
configuration. You can see this in ACRADialogApplication in the
sample project, which is a clone of ACRAApplication, set up for dialog-style
reporting:

package com.commonsware.android.button;

import android.app.Application;
import android.content.Context;
import org.acra.ACRA;
import org.acra.annotation.AcraCore;
import org.acra.annotation.AcraDialog;
import org.acra.annotation.AcraHttpSender;
import org.acra.data.StringFormat;

@AcraCore(
 buildConfigClass = BuildConfig.class,
 reportFormat=StringFormat.JSON
)
@AcraDialog(
 resText = R.string.msg_acra_dialog,
 resCommentPrompt = R.string.msg_acra_comment_prompt,
 resEmailPrompt = R.string.msg_acra_email_prompt,
 resTheme = R.style.AppTheme_Dialog
)
@AcraHttpSender(
 uri=BuildConfig.ACRA_URL,
 httpMethod=org.acra.sender.HttpSender.Method.PUT
)
public class ACRADialogApplication extends Application {
 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);

 if (BuildConfig.ACRA_INSTALL) {
 ACRA.init(this);
 }
 }
}

(from ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRADialogApplication.java)
What turns on dialog mode is the addition of the @AcraDialog annotation. Here,
we can configure:

	The message that appears at the top (resText)

	The message that appears before the first EditText in the dialog
(resCommentPrompt)

	The message that appears before the second EditText in the dialog
(resEmailPrompt)

	The theme used to style the dialog (resTheme)

This sample app only runs on API Level 21+ (as it
depends upon Theme.Material for the main UI), so we only need to
provide one theme definition, here called AppTheme.Dialog:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="AppTheme" parent="android:Theme.Material">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>

 <style
 name="AppTheme.Dialog"
 parent="@android:style/Theme.DeviceDefault.Dialog"/>
</resources>

(from ACRA/Simple/app/src/main/res/values/styles.xml)
Here, we follow ACRA’s advice and have AppTheme.Dialog inherit
from Theme.DeviceDefault.Dialog. DeviceDefault is a theme based on
the core theme for the Android OS version (Material for Android 5.0+),
but one that can be tailored by device manufacturers and custom ROM
developers. By extending Theme.DeviceDefault.Dialog, we are saying
that we want our dialog to be styled like other system dialogs.
Theme.DeviceDefault.Dialog should be a fine base theme for API Level 11+.
If you are supporting older Android devices than that, for those
older API levels, use Theme.Dialog instead.
Of course, your android:name attribute of your <application> element
in the manifest will need to point to this Application subclass.
If you wish to try the dialog in the sample app, you will need to modify
the sample app’s manifest to point to ACRADialogApplication instead
of ACRAApplication.
Note that if the user cancels the dialog, you do not get a crash report.
Notification
While the dialog mode is great, it is unsuitable for crashes that may
occur in the background. You do not want to pop up a dialog box
unexpectedly, as users may not appreciate the interruption.
The default “silent” mode, for crashes originating in the background,
will not show a dialog. This is far more suitable for background work,
but it does not let the user know that a crash occurred.
The Notification mode serves as middle ground. When a crash occurs
in the background, ACRA raises a Notification. The user can interact
with the Notification to send the report or not:

[image: ACRA Notification]

Figure 1029: ACRA Notification
To use this, add the @AcraNotification annotation to your custom
Application subclass, as seen in the ACRANotificationApplication class in the
sample app:

package com.commonsware.android.button;

import android.app.Application;
import org.acra.ACRA;
import org.acra.annotation.AcraCore;
import org.acra.annotation.AcraHttpSender;
import org.acra.annotation.AcraNotification;
import org.acra.data.StringFormat;

@AcraCore(
 buildConfigClass = BuildConfig.class,
 reportFormat=StringFormat.JSON
)
@AcraNotification(
 resText = R.string.msg_acra_notify_text,
 resTitle = R.string.msg_acra_notify_title,
 resChannelName = R.string.channel,
 sendOnClick = true
)
@AcraHttpSender(
 uri=BuildConfig.ACRA_URL,
 httpMethod=org.acra.sender.HttpSender.Method.PUT
)
public class ACRANotificationApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();

 if (BuildConfig.ACRA_INSTALL) {
 ACRA.init(this);
 }
 }
}

(from ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRANotificationApplication.java)
Here, we configure a bunch of properties, to control the Notification:

	The title (resTitle) and text (resText) of the Notification

	The channel name to use for this Notification on Android 8.0+ devices
(resChannelName)

	Whether clicking on the Notification itself should send the report,
or only if the user clicks OK (sendOnClick)

If you switch the android:name of the <application> manifest element
over to point to ACRANotificationApplication, crashing the app will
bring up the Notification.
Limitations
The big limitation is that you get exactly one reporting mode for
your app, for automatically-collected crashes.
This means that your choice of reporting mode will be dictated by
whether or not you are doing work in the background, while you do not
have a UI in the foreground (e.g., a Service):

	If you are not doing background work, use the dialog or silent modes

	If you are doing background work, use the notification or silent modes

What You See
The sample app asks ACRA to send the crash data over in a JSON
structure. That JSON contains all sorts of information by default,
including USER_COMMENT and USER_EMAIL properties if you chose
the dialog or notification modes.
Here is what we get from a crash of the sample app, using the silent
notification mode:

{
 "REPORT_ID": "eb5a82d3-2a20-4266-a500-43d3498b5d29",
 "APP_VERSION_CODE": 1,
 "APP_VERSION_NAME": "1.0",
 "PACKAGE_NAME": "com.commonsware.android.button",
 "FILE_PATH": "/data/user/0/com.commonsware.android.button/files",
 "PHONE_MODEL": "Android SDK built for x86",
 "BRAND": "Android",
 "PRODUCT": "sdk_phone_x86",
 "ANDROID_VERSION": "7.0",
 "BUILD": {
 "BOARD": "unknown",
 "BOOTLOADER": "unknown",
 "BRAND": "Android",
 "CPU_ABI": "x86",
 "CPU_ABI2": "",
 "DEVICE": "generic_x86",
 "DISPLAY": "sdk_phone_x86-userdebug 7.0 NYC 4174735 test-keys",
 "FINGERPRINT": "Android/sdk_phone_x86/generic_x86:7.0/NYC/4174735:userdebug/test-keys",
 "HARDWARE": "ranchu",
 "HOST": "kpfk14.cbf.corp.google.com",
 "ID": "NYC",
 "IS_DEBUGGABLE": true,
 "IS_EMULATOR": true,
 "MANUFACTURER": "unknown",
 "MODEL": "Android SDK built for x86",
 "PERMISSIONS_REVIEW_REQUIRED": false,
 "PRODUCT": "sdk_phone_x86",
 "RADIO": "unknown",
 "SERIAL": "unknown",
 "SUPPORTED_32_BIT_ABIS": [
 "x86"
],
 "SUPPORTED_64_BIT_ABIS": [

],
 "SUPPORTED_ABIS": [
 "x86"
],
 "TAGS": "test-keys",
 "TIME": 1499888857000,
 "TYPE": "userdebug",
 "UNKNOWN": "unknown",
 "USER": "android-build",
 "VERSION": {
 "ACTIVE_CODENAMES": [

],
 "BASE_OS": "",
 "CODENAME": "REL",
 "INCREMENTAL": "4174735",
 "PREVIEW_SDK_INT": 0,
 "RELEASE": "7.0",
 "RESOURCES_SDK_INT": 24,
 "SDK": "24",
 "SDK_INT": 24,
 "SECURITY_PATCH": "2017-06-05"
 }
 },
 "TOTAL_MEM_SIZE": 817143808,
 "AVAILABLE_MEM_SIZE": 750362624,
 "BUILD_CONFIG": {
 "ACRA_INSTALL": true,
 "ACRA_URL": "http://10.0.2.2:4567/reports",
 "APPLICATION_ID": "com.commonsware.android.button",
 "BUILD_TYPE": "debug",
 "DEBUG": true,
 "FLAVOR": "",
 "VERSION_CODE": 1,
 "VERSION_NAME": "1.0"
 },
 "CUSTOM_DATA": {
 },
 "IS_SILENT": false,
 "STACK_TRACE": "java.lang.IllegalStateException: Could not execute method for android:onClick...",
 "INITIAL_CONFIGURATION": {
 "compatScreenHeightDp": 473,
 "compatScreenWidthDp": 320,
 "compatSmallestScreenWidthDp": 320,
 "densityDpi": 320,
 "fontScale": 1,
 "hardKeyboardHidden": "HARDKEYBOARDHIDDEN_NO",
 "keyboard": "KEYBOARD_QWERTY",
 "keyboardHidden": "KEYBOARDHIDDEN_NO",
 "locale": "en_US",
 "mcc": 310,
 "mnc": 260,
 "navigation": "NAVIGATION_DPAD",
 "navigationHidden": "NAVIGATIONHIDDEN_NO",
 "orientation": "ORIENTATION_PORTRAIT",
 "screenHeightDp": 568,
 "screenLayout": "SCREENLAYOUT_SIZE_NORMAL+SCREENLAYOUT_LONG_NO+SCREENLAYOUT_LAYOUTDIR_LTR+SCREENLAYOUT_ROUND_NO",
 "screenWidthDp": 384,
 "seq": 6,
 "smallestScreenWidthDp": 384,
 "touchscreen": "TOUCHSCREEN_FINGER",
 "uiMode": "UI_MODE_TYPE_NORMAL+UI_MODE_NIGHT_NO",
 "userSetLocale": false
 },
 "CRASH_CONFIGURATION": {
 "compatScreenHeightDp": 473,
 "compatScreenWidthDp": 320,
 "compatSmallestScreenWidthDp": 320,
 "densityDpi": 320,
 "fontScale": 1,
 "hardKeyboardHidden": "HARDKEYBOARDHIDDEN_NO",
 "keyboard": "KEYBOARD_QWERTY",
 "keyboardHidden": "KEYBOARDHIDDEN_NO",
 "locale": "en_US",
 "mcc": 310,
 "mnc": 260,
 "navigation": "NAVIGATION_DPAD",
 "navigationHidden": "NAVIGATIONHIDDEN_NO",
 "orientation": "ORIENTATION_PORTRAIT",
 "screenHeightDp": 568,
 "screenLayout": "SCREENLAYOUT_SIZE_NORMAL+SCREENLAYOUT_LONG_NO+SCREENLAYOUT_LAYOUTDIR_LTR+SCREENLAYOUT_ROUND_NO",
 "screenWidthDp": 384,
 "seq": 6,
 "smallestScreenWidthDp": 384,
 "touchscreen": "TOUCHSCREEN_FINGER",
 "uiMode": "UI_MODE_TYPE_NORMAL+UI_MODE_NIGHT_NO",
 "userSetLocale": false
 },
 "DISPLAY": {
 "0": {
 "currentSizeRange": {
 "smallest": [
 768,
 720
],
 "largest": [
 1184,
 1136
]
 },
 "flags": "FLAG_SUPPORTS_PROTECTED_BUFFERS+FLAG_SECURE",
 "metrics": {
 "density": 2,
 "densityDpi": 320,
 "scaledDensity": "x2.0",
 "widthPixels": 768,
 "heightPixels": 1184,
 "xdpi": 320,
 "ydpi": 320
 },
 "realMetrics": {
 "density": 2,
 "densityDpi": 320,
 "scaledDensity": "x2.0",
 "widthPixels": 768,
 "heightPixels": 1280,
 "xdpi": 320,
 "ydpi": 320
 },
 "name": "Built-in Screen",
 "realSize": [
 768,
 1280
],
 "rectSize": [
 0,
 0,
 768,
 1184
],
 "size": [
 768,
 1184
],
 "rotation": "ROTATION_0",
 "isValid": true,
 "orientation": 0,
 "refreshRate": 60.000003814697266,
 "height": 1184,
 "width": 768,
 "pixelFormat": 1
 }
 },
 "USER_COMMENT": null,
 "USER_EMAIL": "N/A",
 "USER_APP_START_DATE": "2018-03-11T17:58:44.342-04:00",
 "USER_CRASH_DATE": "2018-03-11T17:58:45.424-04:00",
 "DUMPSYS_MEMINFO": "",
 "LOGCAT": "03-11 17:58:27.054 E/art (2673): Failed sending reply to debugger: ...",
 "INSTALLATION_ID": "7ece7c6c-c3cd-4f5c-a72a-6798163b9b29",
 "DEVICE_FEATURES": {
 "android.hardware.sensor.proximity": true,
 "android.hardware.sensor.accelerometer": true,
 "android.hardware.faketouch": true,
 "android.software.backup": true,
 "android.hardware.touchscreen": true,
 "android.hardware.touchscreen.multitouch": true,
 "android.software.print": true,
 "android.software.voice_recognizers": true,
 "android.hardware.fingerprint": true,
 "android.hardware.sensor.gyroscope": true,
 "android.hardware.sensor.relative_humidity": true,
 "android.hardware.telephony.gsm": true,
 "android.hardware.audio.output": true,
 "android.hardware.screen.portrait": true,
 "android.hardware.sensor.ambient_temperature": true,
 "android.software.home_screen": true,
 "android.hardware.microphone": true,
 "android.hardware.sensor.compass": true,
 "android.hardware.touchscreen.multitouch.jazzhand": true,
 "android.hardware.sensor.barometer": true,
 "android.software.app_widgets": true,
 "android.software.input_methods": true,
 "android.hardware.sensor.light": true,
 "android.software.device_admin": true,
 "android.hardware.camera": true,
 "android.hardware.screen.landscape": true,
 "android.software.managed_users": true,
 "android.software.webview": true,
 "android.hardware.camera.any": true,
 "android.software.connectionservice": true,
 "android.hardware.touchscreen.multitouch.distinct": true,
 "android.hardware.location.network": true,
 "android.software.live_wallpaper": true,
 "android.hardware.location.gps": true,
 "android.software.midi": true,
 "android.hardware.wifi": true,
 "android.hardware.location": true,
 "android.hardware.telephony": true,
 "glEsVersion": "2.0"
 },
 "ENVIRONMENT": {
 "getDataDirectory": "/data",
 "getDataMiscDirectory": "/data/misc",
 "getDataSystemCeDirectory": "/data/system_ce",
 "getDataSystemDeDirectory": "/data/system_de",
 "getDataSystemDirectory": "/data/system",
 "getDownloadCacheDirectory": "/cache",
 "getExpandDirectory": "/mnt/expand",
 "getExternalStorageDirectory": "/storage/emulated/0",
 "getExternalStorageState": "mounted",
 "getLegacyExternalStorageDirectory": "/sdcard",
 "getLegacyExternalStorageObbDirectory": "/sdcard/Android/obb",
 "getOdmDirectory": "/odm",
 "getOemDirectory": "/oem",
 "getRootDirectory": "/system",
 "getStorageDirectory": "/storage",
 "getVendorDirectory": "/vendor",
 "isExternalStorageEmulated": true,
 "isExternalStorageRemovable": false
 },
 "SHARED_PREFERENCES": {
 "default": {
 "acra.legacyAlreadyConvertedToJson": true,
 "acra.legacyAlreadyConvertedTo4.8.0": true,
 "acra.lastVersionNr": 1
 }
 }
}

(note: some property values were truncated with ..., as they were much too
long to try to display in a book)
Your server can parse this and use it to take appropriate action.
Note that the Java stack trace (STACK_TRACE property) is formatted
with embedded Java-style/C-style control characters (\n for newlines,
\t for tabs). Your server can convert that into plain text with
appropriate formatting.
ACRA and Processes
If you crash with an unhandled exception, your existing process is in a
state of disarray. To help ensure that ACRA can report your crash successfully,
ACRA by default runs its error-reporting Service in a separate ACRA-specific
process.
Most of the time, this does not affect you.
One place where it might is if you have a custom Application subclass
for things beyond ACRA. Bear in mind that each process gets its own
copy of the virtual machine (Dalvik or ART) and each gets its own
independent instance of your designated Application class. Work that
you do for your main app’s process you may wish to skip for the
ACRA-specific background process.
In-App Diagnostics
Android has many tools to help you make sense of what is going on in
your app, from complex tools like Traceview to
simpler things like Logcat. Plus, if you are using an IDE, you have
access to a debugger, which can let you step through code, inspect
data members and other variables, and so on.
However, they all have one element in common: they are general-purpose
tools. They know nothing specifically about your app, just Android apps
in general. As a result, there may be information that you can
gather that would be of immense benefit for debugging and diagnostic
purposes, but that the general-purpose tools cannot collect for you.
More importantly, you need some way to see any diagnostic data that
you collect. Logging stuff to Logcat can sometimes work, but then you
have to worry about accidentally shipping that logging code in production,
which would be less than ideal. And there are many cases where Logcat
itself will not be a great visualization of the information.
What would be better is if we could add our own diagnostic tools to our
app, for use while debugging, while excluding them from our release
builds. And it would be great if we could add in these tools without
changing much, if anything, of our production code to reference them.
This chapter will explore how to implement such tools.
Prerequisites
In addition to the core chapters, it would be a good idea if you
had read:

	the chapter on Gradle and the new project structure,
to understand more about the debug source set

	the chapter on manifest merging, to understand
how the debug source set can contribute to the overall app’s
manifest

Also, one of the techniques bears some resemblance to
the tapjacking attack, though fortunately without the
privacy and security ramifications.
One of the sample apps is based on a RecyclerView
sample app, and so you may wish to skim
the RecyclerView material to ensure that you
understand enough about what is going on with the sample.
The Diagnostic Activity
Having a “back door” to get at diagnostic information about a program
is a time-honored technique. Alas, far too many of those back doors
wind up in production code, and too many of those wind up resulting
in privacy or security flaws. Yet, the approach is still used to this
day.
From a GUI standpoint, these back doors usually required some sort
of special key sequence to initiate (e.g., press Ctrl-Shift-Z three
times in less than a second). The objective was to make them easy enough
to get to but not something that would routinely get in the way. And,
for those back doors that wound up shipping, eventually word would get
out about the magic key sequence, leading to all sorts of trouble.
In Android, we can dispense with the magic key sequence (which is good,
since we often are not using keyboards). An app can have as many launcher
icons as it needs, so we just need a launcher icon to get into some
custom diagnostic activity that we want. However, now we really do not
want to ship this code in production, as the diagnostic activity is no
longer hidden, but rather is in plain view in the user’s home screen
launcher.
Fortunately, the advent of source sets with the Android Gradle Plugin, plus a
reasonably robust manifest merger process, makes setting up this sort
of tool fairly easy, yet keeps it out of the production code. Most of
the work will be in actually writing the activity to report on whatever
it is that you wanted reported on.
The
Diagnostics/Activity.
sample project will illustrate this process.
This app is a clone of a previous sample
that retrieves Stack Overflow
questions in the android tag via Square’s Retrofit library. It also uses
Square’s Picasso library to load in the avatars of the people asking the
questions. Picasso has an API for getting at statistics about the images
that were downloaded: how many, how big, how many were already cached,
and so on. The revised sample shown in this section will create a
diagnostic activity that reports this information, as an illustration
of having such an activity supply statistics that may be useful in
tuning, debugging, etc.
The Sourceset
This project has two source sets, main and debug. main is where
the production code lies; debug is where the diagnostic activity
resides. The debug source set is tied to the debug build type, so
only when doing a debug build will our debug code be included
in the app. Since your production signing key is (hopefully) only being
used by your release build type, this helps ensure that the diagnostic
code does not ship with your production app.
The Manifest
Both source sets have manifests. For debug builds, the debug
source set’s manifest will be merged with the main source set’s manifest
to create the combined result.
The objective is to have the debug source set’s manifest have the minimum
elements and attributes required to have it successfully add what it
needs to the app. The more stuff in a source set’s manifest, the more likely
it is that the stuff will conflict with similar stuff from main
or other manifests and cause build problems.
Here, the debug manifest simply declares a new <activity>:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">

 <application>
 <activity
 android:name="com.commonsware.android.debug.util.PicassoDiagnosticActivity"
 android:label="@string/picasso_diagnostics"
 android:taskAffinity="com.commonsware.android.debug.activity.PicassoDiagnosticActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Diagnostics/Activity/app/src/debug/AndroidManifest.xml)
Note that the class name for the PicassoDiagnosticActivity is fully-qualified
(com.commonsware.android.debug.util.PicassoDiagnosticActivity).
For the purposes of this particular diagnostic, the activity does not have
to be in the same package as the rest of the app. In fact, this activity
could be in a library that could be referenced by many apps, if desired.
Also note the taskAffinity for the <activity> is set to its fully-qualified
class name. This helps ensure that this activity will reside in a different
task than does our main UI, so that the diagnostics activity does not
artificially alter BACK button processing and the like from the regular
task.
Since the main source set will not contain this particular <activity>
element, there are no collisions, and the manifest merger will turn out
clean.
The Activity
The activity itself is rather boring.
It loads in a layout resource containing a TableLayout that will contain
our Picasso diagnostic report:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="8dp"
 android:shrinkColumns="1"
 android:stretchColumns="1">

 <TableRow>

 <TextView
 android:id="@+id/last_updated"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Last Updated"/>

 <TextView
 android:id="@+id/last_updated_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/avg_download_size"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Average Download Size"/>

 <TextView
 android:id="@+id/avg_download_size_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/avg_orig_size"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Average Original Bitmap Size"/>

 <TextView
 android:id="@+id/avg_orig_size_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/avg_xform_size"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Average Transformed Bitmap Size"/>

 <TextView
 android:id="@+id/avg_xform_size_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/cache_hits"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Cache Hits"/>

 <TextView
 android:id="@+id/cache_hits_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/cache_misses"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Cache Misses"/>

 <TextView
 android:id="@+id/cache_misses_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/download_count"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Download Count"/>

 <TextView
 android:id="@+id/download_count_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/max_size"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Max Size"/>

 <TextView
 android:id="@+id/max_size_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/orig_bitmap_count"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Original Bitmap Count"/>

 <TextView
 android:id="@+id/orig_bitmap_count_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/size"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Size"/>

 <TextView
 android:id="@+id/size_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/total_dl_size"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Total Download Size"/>

 <TextView
 android:id="@+id/total_dl_size_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/total_orig_size"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Total Original Size"/>

 <TextView
 android:id="@+id/total_orig_size_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/total_xform_size"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Total Transformed Size"/>

 <TextView
 android:id="@+id/total_xform_size_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>

 <TableRow>

 <TextView
 android:id="@+id/xform_count"
 style="@style/TableText.Title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Transformed Count"/>

 <TextView
 android:id="@+id/xform_count_value"
 style="@style/TableText.Value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </TableRow>
 </TableLayout>
</ScrollView>

(from Diagnostics/Activity/app/src/debug/res/layout/main.xml)
That layout, in turn, references some custom styles, to avoid having
to repeat the configuration of each of the TextView widgets quite so
much:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="TableText">
 <item name="android:textSize">12sp</item>
 <item name="android:layout_margin">8dp</item>
 </style>

 <style name="TableText.Title">
 <item name="android:textStyle">bold</item>
 </style>

 <style name="TableText.Value">
 <item name="android:typeface">monospace</item>
 </style>
</resources>

(from Diagnostics/Activity/app/src/debug/res/values/styles.xml)
The activity loads the layout, gets a StatsSnapshot from Picasso containing
a snapshot of the results of using Picasso, and pours the data into
the various TextView widgets:

package com.commonsware.android.debug.util;

import android.app.Activity;
import android.os.Bundle;
import android.text.format.DateUtils;
import android.widget.TextView;
import com.commonsware.android.debug.activity.R;
import com.squareup.picasso.Picasso;
import com.squareup.picasso.StatsSnapshot;

public class PicassoDiagnosticActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 StatsSnapshot ss=Picasso.with(this).getSnapshot();

 TextView tv=findViewById(R.id.last_updated_value);

 tv.setText(DateUtils.formatDateTime(this, ss.timeStamp,
 DateUtils.FORMAT_SHOW_TIME));

 tv=findViewById(R.id.avg_download_size_value);
 tv.setText(Long.toString(ss.averageDownloadSize));

 tv=findViewById(R.id.avg_orig_size_value);
 tv.setText(Long.toString(ss.averageOriginalBitmapSize));

 tv=findViewById(R.id.avg_xform_size_value);
 tv.setText(Long.toString(ss.averageTransformedBitmapSize));

 tv=findViewById(R.id.cache_hits_value);
 tv.setText(Long.toString(ss.cacheHits));

 tv=findViewById(R.id.cache_misses_value);
 tv.setText(Long.toString(ss.cacheMisses));

 tv=findViewById(R.id.download_count_value);
 tv.setText(Long.toString(ss.downloadCount));

 tv=findViewById(R.id.max_size_value);
 tv.setText(Long.toString(ss.maxSize));

 tv=findViewById(R.id.orig_bitmap_count_value);
 tv.setText(Long.toString(ss.originalBitmapCount));

 tv=findViewById(R.id.size_value);
 tv.setText(Long.toString(ss.size));

 tv=findViewById(R.id.total_dl_size_value);
 tv.setText(Long.toString(ss.totalDownloadSize));

 tv=findViewById(R.id.total_orig_size_value);
 tv.setText(Long.toString(ss.totalOriginalBitmapSize));

 tv=findViewById(R.id.total_xform_size_value);
 tv.setText(Long.toString(ss.totalTransformedBitmapSize));

 tv=findViewById(R.id.xform_count_value);
 tv.setText(Long.toString(ss.transformedBitmapCount));
 }
}

(from Diagnostics/Activity/app/src/debug/java/com/commonsware/android/debug/util/PicassoDiagnosticActivity.java)
The Results
If you install the app on a device or emulator from a debug build,
you will get two launcher icons. The one labeled “Picasso Diagnostics”
will be the PicassoDiagnosticsActivity. If you bring up that activity
after having run the main activity, you will see some information about
the images that Picasso loaded:

[image: Picasso Diagnostic Activity]

Figure 1030: Picasso Diagnostic Activity
A release build, on the other hand, does not include the extra activity,
its resources, or its manifest entry, since those are all in the
debug source set.
Also, nothing from this affected our main source set contents.
We did not have to add things to the manifest, or adjust our Java code,
or anything of the sort.
The Limitations
While this sample is fairly trivial, these sorts of diagnostic activities
can be as elaborate as is needed. In some cases, as with this sample,
the results are reusable — so long as the app has Picasso, this code
can add in the diagnostic activity.
However, this is only good for post-mortem sorts of diagnostics, where
you do something in the “real” app, then head over to the diagnostic
activity to see what it has to report. In many cases, this is perfectly
reasonable. In other cases, the act of switching to the diagnostic
activity might affect the diagnostics, if those diagnostics are
dependent upon things like activity lifecycle methods. You also cannot
learn anything in real time, seeing both the app and the diagnostics
simultaneously (or nearly so).
However, there are other options that can improve in these areas, for
situations that need such improvement.
The Diagnostic Overlay
Sometimes, the information that we want needs to be presented to the
developer in real time, while the user is looking at the UI of the app.
Take StrictMode, for example.
penaltyDeath() can be used to totally crash the app when, say, the
app detects network I/O on the main application thread. However, this
is rather harsh, particularly since Google ships all sorts of code
in the framework that does improper things on the main application thread.
penaltyLog() is great, in that it gives us the stack trace of where
the problem is but does not outright crash the app. However, we might
not notice the stack traces, if we are not paying close attention to Logcat.
So, one popular combination is penaltyFlashScreen() combined with
penaltyLog(). penaltyFlashScreen() will flash a red border around
the edges of the screen, as a hint that “hey, something was detected –
please check Logcat for details!” In the absence of this, or some
other visual penalty, like penaltyDialog(), the developer might
not learn what StrictMode is trying to tell her.
Another example is gfxinfo. As is noted in the chapter on jank,
gfxinfo can give you some information about how long it takes for
frames to be rendered, so you know when you are dropping frames. One
option for this is via an overlay that appears on top of the main
UI, so you can see in real time a bar chart of frame times, so you can
see what user actions can trigger jank.
You can employ the same sorts of techniques yourself, to put an overlay
on the screen, whether temporarily (e.g., the StrictMode penaltyFlashScreen()
option) or more durably (e.g., the gfxinfo bar chart). The
Diagnostics/Overlay.
sample project will demonstrate the former, alerting you of slowdowns
in the rendering of your items in a RecyclerView.
The Gradle Setup
For the purposes of demonstration, we need a sample app that can actually
perform poorly, so we detect slowdowns and alert the developer via
the screen overlay. At the same time, we need a sample app that
does not perform poorly, so we can determine if the overlay works properly
in both cases.
This sample project toggles between the two modes via a custom
BE_STUPID field added to the BuildConfig class, based upon build
type:

 buildTypes {
 debug {
 buildConfigField "boolean", "BE_STUPID", "true"
 }

 release {
 buildConfigField "boolean", "BE_STUPID", "false"
 }
 }

(from Diagnostics/Overlay/app/build.gradle)
Admittedly, we could have skipped this and used the BUILD_TYPE
field on BuildConfig. That will hold whatever the name of the build type
was that built the APK that we installed, so it will be debug
or release in this project. However, in case you wanted to
have different rules for when the app should be stupid or not, we
pull it out into a separate BuildConfig field. For example,
you might elect to add two product flavors, so switching between
true and false for BE_STUPID is based on product flavor instead
of build type.
Introducing RVAdapterWrapper
The wrapper pattern in Java can be fairly powerful, allowing you
to extend Java objects without changing inheritance hierarchies. Rather,
you wrap the object in a wrapper that implements the same interface
(or inherits from the same base class). The wrapper can do some things
on its own (the extended behavior) and delegate to the wrapped object
for everything else. Plus, subclasses of the wrapper can basically
override stock wrapper behavior and behavior of the wrapped object.
Android has a few such wrapper classes, like CursorWrapper and
ContextWrapper. The author of this book published an AdapterWrapper,
for the AdapterView family of classes, as
a tiny open source library.
And this chapter has RVAdapterWrapper, which implements a wrapper
for RecyclerView.Adapter:

package com.commonsware.android.debug.videolist;

import android.support.v7.widget.RecyclerView;
import android.view.ViewGroup;

public class RVAdapterWrapper<T extends RecyclerView.ViewHolder> extends RecyclerView.Adapter<T> {
 private final RecyclerView.Adapter<T> wrapped;

 public RVAdapterWrapper(RecyclerView.Adapter<T> wrapped) {
 super();

 this.wrapped=wrapped;
 }

 public RecyclerView.Adapter<T> getWrappedAdapter() {
 return(wrapped);
 }

 @Override
 public T onCreateViewHolder(final ViewGroup parent, final int viewType) {
 return(wrapped.onCreateViewHolder(parent, viewType));
 }

 @Override
 public void onBindViewHolder(final T holder, final int position) {
 wrapped.onBindViewHolder(holder, position);
 }

 @Override
 public long getItemId(int position) {
 return(wrapped.getItemId(position));
 }

 @Override
 public int getItemViewType(int position) {
 return(wrapped.getItemViewType(position));
 }

 @Override
 public void onAttachedToRecyclerView(RecyclerView recyclerView) {
 wrapped.onAttachedToRecyclerView(recyclerView);
 }

 @Override
 public void onDetachedFromRecyclerView(RecyclerView recyclerView) {
 wrapped.onDetachedFromRecyclerView(recyclerView);
 }

 @Override
 public void onViewAttachedToWindow(T holder) {
 wrapped.onViewAttachedToWindow(holder);
 }

 @Override
 public void onViewDetachedFromWindow(T holder) {
 wrapped.onViewDetachedFromWindow(holder);
 }

 @Override
 public void onViewRecycled(T holder) {
 wrapped.onViewRecycled(holder);
 }

 @Override
 public void registerAdapterDataObserver(RecyclerView.AdapterDataObserver observer) {
 wrapped.registerAdapterDataObserver(observer);
 }

 @Override
 public void setHasStableIds(boolean hasStableIds) {
 wrapped.setHasStableIds(hasStableIds);
 }

 @Override
 public void unregisterAdapterDataObserver(RecyclerView.AdapterDataObserver observer) {
 wrapped.unregisterAdapterDataObserver(observer);
 }

 @Override
 public int getItemCount() {
 return(wrapped.getItemCount());
 }
}

(from Diagnostics/Overlay/app/src/main/java/com/commonsware/android/debug/videolist/RVAdapterWrapper.java)
The constructor takes the RecyclerView.Adapter to be wrapped, and
RVAdapterWrapper offers a getWrappedAdapter() to retrieve that object.
Everything else is a simple implementation of the wrapper pattern, overriding
all methods from RecyclerView.Adapter and delegating them to the wrapped
adapter.
TimingWrapper (a.k.a., StrictMode for RecyclerView)
RVAdapterWrapper exists mostly to serve as a base class for TimingWrapper.
TimingWrapper arranges to collect the time used by onCreateViewHolder()
and onBindViewHolder(), so we can see if those times exceed some threshold
and therefore is worthy of alerting the developer.
Its constructor takes the RecyclerView.Adapter to wrap, along with the
Activity that is hosting this UI. In addition to chaining to the superclass
and holding onto that Activity (as a data member named host), the
constructor also retrieves a WindowManager system service:

 public TimingWrapper(RecyclerView.Adapter<T> wrapped, Activity host) {
 super(wrapped);

 this.host=host;
 wm=(WindowManager)host.getSystemService(Context.WINDOW_SERVICE);
 }

(from Diagnostics/Overlay/app/src/main/java/com/commonsware/android/debug/videolist/TimingWrapper.java)
TimingWrapper overrides onCreateViewHolder() and onBindViewHolder(),
tracking the amount of time that those calls take, and calling a private
warn() method with the time for the call:

 @Override
 public T onCreateViewHolder(final ViewGroup parent, final int viewType) {
 long start=SystemClock.uptimeMillis();
 T result=super.onCreateViewHolder(parent, viewType);

 warn(SystemClock.uptimeMillis() - start);

 return(result);
 }

 @Override
 public void onBindViewHolder(final T holder, final int position) {
 long start=SystemClock.uptimeMillis();

 super.onBindViewHolder(holder, position);
 warn(SystemClock.uptimeMillis() - start);
 }

(from Diagnostics/Overlay/app/src/main/java/com/commonsware/android/debug/videolist/TimingWrapper.java)
Here, T is the RecyclerView.ViewHolder used by the wrapped adapter and
declared by the specific use of the TimingAdapter:

public class TimingWrapper<T extends RecyclerView.ViewHolder> extends RVAdapterWrapper<T> {

(from Diagnostics/Overlay/app/src/main/java/com/commonsware/android/debug/videolist/TimingWrapper.java)
warn() sees if the amount of time the call took exceeds some threshold,
set here to be 7ms. If it does, we first log a stack trace to Logcat,
following the technique used by StrictMode itself of having a private
LogStackTrace Exception that is just there to collect a stack trace:

 private void warn(long delta) {
 if (delta>7) {
 String msg=String.format("RVAdapterWrapper violation: ~duration= %d ms",
 delta);

 Log.e(TAG, msg, new LogStackTrace());

 if (v==null) {
 WindowManager.LayoutParams params=new WindowManager.LayoutParams(
 WindowManager.LayoutParams.MATCH_PARENT,
 WindowManager.LayoutParams.MATCH_PARENT,
 WindowManager.LayoutParams.TYPE_SYSTEM_OVERLAY,
 WindowManager.LayoutParams.FLAG_NOT_FOCUSABLE
 | WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE,
 PixelFormat.TRANSLUCENT);

 v=new View(host);
 v.setBackgroundResource(R.drawable.border);
 wm.addView(v, params);

 v.postDelayed(new Runnable() {
 @Override
 public void run() {
 wm.removeView(v);
 v=null;
 }
 }, 500);
 }
 }
 }

 private static class LogStackTrace extends Exception {}

(from Diagnostics/Overlay/app/src/main/java/com/commonsware/android/debug/videolist/TimingWrapper.java)
Then, if we are not presently showing an overlay (i.e., the v data member is not
null), we:

	create a WindowManager.LayoutParams that will fill the screen, using
TYPE_SYSTEM_OVERLAY as the type, and indicating that it has a translucent
background

	create a simple View and give it a background defined as the
border drawable resource

	use the WindowManager to show that view

	use postDelayed() to get control in 500ms and remove that view, also
setting v back to null

border is defined in res/drawable-nodpi/ as a ShapeDrawable,
consisting of a transparent rectangle with a 16dp-wide green border:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <stroke android:color="#ff00ff00" android:width="@dimen/border_width"/>
</shape>

(from Diagnostics/Overlay/app/src/main/res/drawable-nodpi/border.xml)
The net effect is that the border will flash a 16dp-wide green line around
the edge of the screen for 500ms before being removed.
Note that to use the TYPE_SYSTEM_OVERLAY, we have to hold the
SYSTEM_ALERT_WINDOW permission:

 <uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />

(from Diagnostics/Overlay/app/src/main/AndroidManifest.xml)
We will get more into the ramifications of that permission on Android 6.0+
devices later in this chapter.
The RecyclerViewActivity
You will notice that the RVAdapterWrapper and TimingWrapper code is
in the main source set. Hence, those classes will exist on debug
and release builds. However, we only use them on some
builds, courtesy of a tweaked RecyclerViewActivity. The revised
activity has getAdapter() and setAdapter() implementations that work
with an unwrapped adapter, but hold onto a wrapped adapter, on DEBUG builds:

package com.commonsware.android.debug.videolist;

import android.os.Build;
import android.provider.Settings;
import android.support.v4.app.FragmentActivity;
import android.support.v7.widget.RecyclerView;

public class RecyclerViewActivity extends FragmentActivity {
 private RecyclerView rv=null;

 public void setAdapter(RecyclerView.Adapter adapter) {
 boolean canDrawOverlays=
 (Build.VERSION.SDK_INT<=Build.VERSION_CODES.LOLLIPOP_MR1);

 if (!canDrawOverlays && Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 canDrawOverlays=Settings.canDrawOverlays(this);
 }

 if (BuildConfig.DEBUG && canDrawOverlays) {
 adapter=new TimingWrapper(adapter, this);
 }

 getRecyclerView().setAdapter(adapter);
 }

 public RecyclerView.Adapter getAdapter() {
 RecyclerView.Adapter result=getRecyclerView().getAdapter();

 if (result instanceof RVAdapterWrapper) {
 result=((RVAdapterWrapper)result).getWrappedAdapter();
 }

 return(result);
 }

 public void setLayoutManager(RecyclerView.LayoutManager mgr) {
 getRecyclerView().setLayoutManager(mgr);
 }

 public RecyclerView getRecyclerView() {
 if (rv==null) {
 rv=new RecyclerView(this);
 setContentView(rv);
 }

 return(rv);
 }
}

(from Diagnostics/Overlay/app/src/main/java/com/commonsware/android/debug/videolist/RecyclerViewActivity.java)
One criterion for whether we will use the TimingWrapper is whether
or not we are on a debug build. The other criteria take a bit more
explanation, which we will get to
later in this chapter.
Being Stupid
The overall sample app is a clone of a RecyclerView sample that loads
videos from MediaStore and shows them in alphabetical order, along with
thumbnails of the videos. This version of the sample is augmented with
Advanced Be-Stupid Technology™, where RowController does the
thumbnail retrieval on the main application thread when being
stupid or uses Picasso when not:

 void bindModel(Cursor row) {
 title.setText(row.getString(row.getColumnIndex(MediaStore.Video.Media.TITLE)));

 int uriColumn=row.getColumnIndex(MediaStore.Video.Media.DATA);
 int mimeTypeColumn=
 row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);
 int videoId=row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID));

 videoUri=row.getString(uriColumn);
 videoMimeType=row.getString(mimeTypeColumn);

 if (BuildConfig.BE_STUPID) {
 ContentResolver cr=thumbnail.getContext().getContentResolver();
 BitmapFactory.Options options=new BitmapFactory.Options();

 options.inSampleSize = 1;

 Bitmap thumb=MediaStore.Video.Thumbnails.getThumbnail(cr, videoId,
 MediaStore.Video.Thumbnails.MICRO_KIND, options);

 thumbnail.setImageBitmap(thumb);
 }
 else {
 Uri video=
 ContentUris.withAppendedId(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 videoId);

 Picasso.with(thumbnail.getContext())
 .load(video.toString())
 .fit().centerCrop()
 .placeholder(R.drawable.ic_media_video_poster)
 .into(thumbnail);
 }
 }

(from Diagnostics/Overlay/app/src/main/java/com/commonsware/android/debug/videolist/RowController.java)
The Results
The green border will flash if a call to onCreateViewHolder() or
onBindViewHolder() takes more than 7ms. In theory, this should only occur
if one of those methods does a non-trivial bit of work on the main
application thread.
In practice, this seems to generate a fair number of false positives,
presumably due to context-switching between threads on the available
device cores.
Areas for Improvement
Those results point at areas where this technique might be improved:

	Pass the timing value into the TimingWrapper constructor,
rather than hard-coding it to 7ms

	Rather than worrying about individual calls exceeding a 7ms threshold,
point out if a rolling average of recent calls exceeds the threshold,
to perhaps smooth out the data a bit and avoid the false positives

What Changed in Android 6.0
Let’s go back to the setAdapter() implementation, where we conditionally
apply the TimingAdapter:

 public void setAdapter(RecyclerView.Adapter adapter) {
 boolean canDrawOverlays=
 (Build.VERSION.SDK_INT<=Build.VERSION_CODES.LOLLIPOP_MR1);

 if (!canDrawOverlays && Build.VERSION.SDK_INT>=Build.VERSION_CODES.M) {
 canDrawOverlays=Settings.canDrawOverlays(this);
 }

 if (BuildConfig.DEBUG && canDrawOverlays) {
 adapter=new TimingWrapper(adapter, this);
 }

 getRecyclerView().setAdapter(adapter);
 }

(from Diagnostics/Overlay/app/src/main/java/com/commonsware/android/debug/videolist/RecyclerViewActivity.java)
As noted earlier, we only use TimingWrapper on debug builds, not
release builds.
We also only use TimingAdapter if one of two things is true:

	Either we are on some version of Android prior to 6.0, or

	We are allowed to draw overlays

Historically, the SYSTEM_ALERT_WINDOW permission was merely listed
as dangerous. Users would be notified about it at install time, but
otherwise it was just a standard permission.
Originally, few apps requested this permission. Over time, more and
more apps started using this for things like Facebook’s “chatheads”
UI.
In Android 6.0, SYSTEM_ALERT_WINDOW was moved to be a signature-level
permission. Ordinarily, the net effect of this change would be that
apps could no longer hold the permission, unless they were signed by
the signing key that signed the firmware. While that’s possible for device
manufacturers and custom ROM developers, ordinary Android SDK developers
would be left out.
However, Android 6.0 provided another means to get the rights to use
TYPE_SYSTEM_OVERLAY windows, through a double-opt-in mechanism. The
user not only has to install the app, but has to go to a particular
screen in the Settings app to agree to grant your app the right to
draw over top of other apps.
The default way for a user to get to that screen is to go into
Settings > App, then click the gear icon in the action bar of the
Settings app:

[image: Android 6.0 Settings App, Apps Screen, with Gear Icon]

Figure 1031: Android 6.0 Settings App, Apps Screen, with Gear Icon
Tapping that brings up a “Configure apps” screen:

[image: Android 6.0 Settings App, Configure Apps Screen]

Figure 1032: Android 6.0 Settings App, Configure Apps Screen
There, tapping the “Draw over other apps” entry brings up a list of
all of the apps that have requested the SYSTEM_ALERT_WINDOW permission:

[image: Android 6.0 Settings App, Draw Over Other Apps Screen]

Figure 1033: Android 6.0 Settings App, Draw Over Other Apps Screen
Tapping on any one of those allows the user to toggle on or off this
access:

[image: Android 6.0 Settings App, Configuring Overlay Permission]

Figure 1034: Android 6.0 Settings App, Configuring Overlay Permission
In code, you can find out if the user has enabled this access by calling
canDrawOverlays() on the Settings class, as we did in setAdapter()
above. However:

	This requires you to have a compileSdkVersion of 23 or higher

	You cannot call that method on pre-Android 6.0 devices

On Android 6.0+, if canDrawOverlays() returns false, you are welcome
to lead the user over to the appropriate screen in Settings to try to
convince them to allow you to draw over other apps. To do that:

	Create a package: Uri that points to your app

	Wrap that in an ACTION_MANAGE_OVERLAY_PERMISSION Intent

	Call startActivity() to bring up that screen

 Intent i=new Intent(Settings.ACTION_MANAGE_OVERLAY_PERMISSION,
 Uri.parse("package:" + getPackageName()));

 startActivity(intent);

Note that apps with a targetSdkVersion of 22 or lower are “grandfathered”
into having default access to draw over other apps, simply by having
requested the SYSTEM_ALERT_WINDOW permission. However, the user can
still go into the Settings app and revoke that capability, in which
case attempting to draw over another app will result in a
SecurityException

10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: FATAL EXCEPTION: main
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: Process: com.commonsware.android.debug.videolist, PID: 29661
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: java.lang.SecurityException: com.commonsware.android.debug.videolist from uid 10167 not allowed to perform SYSTEM_ALERT_WINDOW
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at android.os.Parcel.readException(Parcel.java:1599)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at android.os.Parcel.readException(Parcel.java:1552)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at android.view.IWindowSession$Stub$Proxy.addToDisplay(IWindowSession.java:747)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at android.view.ViewRootImpl.setView(ViewRootImpl.java:531)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at android.view.WindowManagerGlobal.addView(WindowManagerGlobal.java:310)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at android.view.WindowManagerImpl.addView(WindowManagerImpl.java:85)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at com.commonsware.android.debug.videolist.TimingWrapper.warn(TimingWrapper.java:76)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at com.commonsware.android.debug.videolist.TimingWrapper.onBindViewHolder(TimingWrapper.java:55)
.
.
.

In many cases, there is no good way to recover from this SecurityException,
in which case you really want to consider switching to compileSdkVersion of
23 or higher and calling canDrawOverlays() to detect this potential problem
before it occurs.
Anti-Patterns
Much of this book has been focused on what you should do. In contrast,
this chapter is focused on what you should not do.
All platforms have their anti-patterns: things that are technically
possible but are not in the best interests of the users of that platform.
Android is no exception. Some anti-patterns are simply annoying to users,
while other anti-patterns can significantly infringe upon a user’s use
of their Android device, or even the user’s freedom.
Much as the Hippocratic Oath directs doctors to “first, do no harm”,
Android application developers owe it to the users of their apps to avoid
these anti-patterns to the greatest extent possible.
Prerequisites
This chapter assumes that you have read much of the book, particularly
the core chapters.
Leak Threads… Or Things Attached to Threads
Leaking a thread means that you start a thread and never cause it to stop.
For example, you might start a thread that runs in an infinite loop, doing
some work and then sleeping for a while. The problem with infinite loops
is that “infinite” is an awfully long time.
All threads should clean up, in a timely fashion, when the component (e.g.,
activity, service) that started the thread is destroyed — or, in the case
of an activity, perhaps just moved into the background.
How you ensure that the thread gets cleaned up is up to you. For threads
doing transactional work, such as literally running a database transaction,
it may be fine to just let them run to completion and shut down of their own
accord. For “infinite” loops, there should be some way to tell the thread
that it is no longer needed, such as via an AtomicBoolean flag, or using
something more structured than a plain timing loop, such as a
ScheduledExecutorService.
Also, bear in mind that you are responsible for threads that are created,
on your behalf, by other things that you do. The most common leak scenario
here comes with listeners associated with system services, like LocationManager
and SensorManager. If you register a LocationListener via
requestLocationUpdates() and fail to unregister that listener, you will
not only be leaking the listener, but the component associated with that
listener, and every system resource tied to that listener, such as any
background threads.
The Costs
Threads are intrinsically static in scope. Hence, any object they can reach,
directly or indirectly, cannot be garbage-collected while the thread is still
running. Hence, if an activity forks a thread, it might do so using an
anonymous inner class:

new Thread() {
 public void run() {
 // do something
 }
}).start();

Instances of an inner class — anonymous or otherwise — have an implicit
reference back to the object that created them. Hence, the Thread would
hold onto the Activity that created the thread, which in turn would hold
onto all of its widgets and so forth. None of that can be garbage-collected
until after the thread terminates, even if the activity is destroyed.
The Counter-Arguments
I want the thread to keep running even after the activity is destroyed
In this case, the thread should be created and managed by a service, not
simply leaked. Not only does this give you an opportunity to clean up the
thread when needed, but it also alerts Android that you are still trying to
do some work, so Android will not necessarily terminate your process very
quickly.
However, be careful about assuming that you can have a thread — even one
managed by a service — run forever, as you will see in the next couple of
sections.
I do not know when the thread is no longer needed
Then you have a serious design problem.
A common variation on this theme is:
The thread is needed so long as I have an activity in the foreground
This is a bit tricky, as Android does not really expose the concept of
applications being in the foreground, just activities.
The safest course of action is to have the thread be managed by a service,
then keep track of whether or not you have an activity in the foreground.
For example, in onPause() of each activity, use postDelayed() to return
control to you after a short delay, and in onResume(), update a timestamp
of your last return to the foreground (held in a static data member). When
the Runnable for postDelayed() executes, check that timestamp — if it is
too old, you know that none of your activities are in the foreground,
and you can stop the service, having it stop your thread.
Use Large Heap Unnecessarily
Encountering an OutOfMemoryError certainly sucks. These are caused either by
a memory leak or by trying to use more memory than is practical given the device.
For example, loading up lots of bitmaps can easily chew up your available heap
space.
To some, therefore, android:largeHeap seems to be the perfect solution.
Added in API Level 11, android:largeHeap tells Android to give you a much larger
heap size than is normally given to a process. So, instead of having 32MB or 48MB
or so of heap, you might have 256MB of heap.
The right solution, in most cases, is to fix the underlying memory problem,
not to mask it by requesting an over-sized heap.
The Costs
To you, having hundreds of megabytes of extra heap may be a blessing. To the user,
it may be a curse. That memory has to come from somewhere, and the “somewhere” is
from other processes. Your app will force other apps’ processes to be terminated
far more quickly than normal, which may slow the user down when she tries to switch
between your app and others. Your app may even materially harm the functionality
of other apps, who have their processes terminated before they can finish their
work, just to satisfy your memory craving.
Bear in mind that Android does not employ swap space (the Linux equivalent of
a Windows pagefile). Hence, whereas Windows can allocate lots of memory and slows
down as it goes, Android is far more limited, in accordance with its mobile
roots.
Furthermore, in many cases, adding more heap space does not eliminate the problem,
any more than spraying air freshener gets rid of the dead cat in your living room
that is causing the odor. With a memory leak, for example, all the larger heap does
is increase the time before you eventually run out of memory.
The Counter-Arguments
I really need to be able to manipulate large chunks of memory
There are certainly apps for which android:largeHeap is justified, such as
complex data editors, such as image editors, video editors, etc.
Hence, in practice, the real anti-pattern is not using android:largeHeap, but
rather in doing so for apps where the user would not feel that the resulting effects
are justified. For example, neither a Twitter client, nor a banking app, should
need a large heap, even if the developer is running into memory management issues.
Android makes it too hard to manage memory, so I need a large heap
There is no question that developing mobile applications is challenging, particularly
when it
comes to memory management. That is not unique to Android — embedded systems
developers are used to writing apps where the heap size is better measured in KB
instead of MB, for example.
Outside of bitmaps and massive data sets, though, it is a bit difficult to actually
run out of memory. While a TextView may take up 1KB of heap space, it takes a
lot of TextView widgets to chew through a 48MB heap.
The reason why bitmaps tend to trip up developers is that Android makes using
them too easy. For example, it is simple to set a bitmap as a background of
some container
like a LinearLayout, where developers then blindly ignore the fact that if the
bitmap is not precisely the size of the container, Android will need to scale
the image, consuming more heap space.
Misuse the MENU Button
The MENU button on Android devices is designed to display either the options
menu (on Android 1.x/2.x devices that are not using an action
bar backport or the action bar overflow menu).
The MENU button is not designed for any other purpose. Some developers have
taken to using it for arbitrary aims, and that is a mistake.
The Costs
The MENU button does not exist on many Android devices. In particular, devices
designed for Android 3.0 and higher do not need a MENU button. Some will have
them, but most will not. Hence, anything that requires the MENU button will
simply be unavailable on those devices.
And, as of Android 4.4, Google is putting increasing pressure on device manufacturers
to dump the MENU button, making it less likely to appear in the future.
The Counter-Arguments
Well, if I keep targetSdkVersion below 11, I can have a soft MENU button
This is true, insofar as a menu affordance will be added to the system bar or
navigation bar on devices that lack a dedicated MENU button.
Whether the user is expecting to use this button is another thing entirely.
As more and more users run Android 3.0+ devices, they will use more and more
apps that have android:targetSdkVersion set to 11 or higher. The remaining handful
of apps that do not will be “weird”. In particular, they may not notice the
menu affordance, as they are not looking for one, or they may not know what it
does, as they are not used to needing it.
Moreover, eventually, other things will drive you to want an android:targetSdkVersion
higher than 10, as the menu affordance is not the only feature driven by
this value. The sooner you can remove your dependence on a menu affordance, the
sooner you can upgrade your android:targetSdkVersion to solve other problems
that you are encountering.
I think the action bar is ugly, a waste of space, or otherwise bad
That’s nice. It does not mean that you need a menu affordance and a tie to a MENU
button.
For example, well-written games will have a menu integrated into the game UI itself.
This was often done even before Android 3.0, since the options menu UI would not
look much like the game’s UI, and the developer wanted a consistent look-and-feel.
So long as the user recognizes how to reach the menu (e.g., a three-dots or three-bars
icon), the menu does not have to be driven by Android, but instead could be handled
by your app directly. You can see this in the Google Navigation app, which avoids
an action bar but still displays its own menu from its own on-screen menu affordance.
Interfere with Navigation
Some developers try to take over the device. They attempt to block the use of anything
not related to their app: the HOME key, the recent tasks list, the notification
drawer, etc.
Android treats such behavior as malware. Android is designed to keep control of
the device in the hands of the user and tries very hard to prevent apps from stealing
that control.
The Costs
While there are certain cases where blocking navigation outside the app may seem
justified (see the counter-arguments, below), there is simply too much opportunity
for malfeasance. Users tend to want to use their devices on their terms, not necessarily
the terms of some random developer. Malware authors, in particular, love to learn
about script-kiddie hacks that allow
them to control a device, and by extension, control the users.
The Counter-Arguments
I am writing a lock screen
No, you are not. You are writing something that you think is a lock screen.
Really what you are writing is something that weakens device security… if
the app in question is designed to be downloaded and run on arbitrary devices.
Android devices can be rebooted into “safe mode”. Much like the Windows boot
option that bears the same name, “safe mode” only runs apps that are part of the
system firmware, not any third-party apps.
So, let’s assume that the user installs your “lock screen”. Inevitably, part of the
setup of a third-party “lock screen” is to disable any sort of security that is part
of the native lock screen, so the user does not have to unlock things twice. Even
though your lock screen may implement all sorts of security, all somebody else has
to do is reboot the device in safe mode, and they now have complete access to the
device, including the ability to uninstall your lock screen. By contrast, the
native lock screen is in force even if the device reboots in safe mode.
I am writing a parental control app
Rebooting in safe mode is within the motor-control skills of your average
three-year-old child. Hence, the primary limitation is whether or not the child
knows how to reboot the device in safe mode, which they can learn from the Internet,
friends, etc. And, if the device is really an adult’s device, where the “lock screen”
allows access to a subset of child-friendly apps, the real risk is not from the
child rebooting the device in safe mode, but from the crook who steals the device
rebooting in safe mode.
I am writing a lock screen designed to run on whole-disk-encrypted devices
While whole disk encryption — available on Android 4.0+ — does solve the
issue of rebooting in safe mode, bear in mind that users then cannot disable the
required password security on the native lock screen, as that is tied into the
whole disk encryption process.
I am writing a kiosk app
Here, the term “kiosk app” refers to an app that represents the functionality of
a single-purpose device. For example, a restaurant might want to distribute menus
to customers in the form of a tablet app; the menu app would be the “kiosk app”.
In this case, the owner of the device is the one trying to lock it down to be
single-purpose. That is completely reasonable… except that it runs counter to the
behavior of standard consumer builds of Android.
The right solution, in this case, is to create custom firmware for the single-purpose
devices. This firmware can set up the kiosk app to be the home screen (thereby
blunting the effectiveness of HOME, BACK, etc.), and modifications to the firmware
can apply access controls to other aspects of the device (e.g., notifications).
Unfortunately, there are few (if any) businesses set up to help create such
single-purpose firmware for single-purpose devices.
Use android:sharedUserId
If you are creating more than one application, where those applications should
be sharing data, you may be tempted to use android:sharedUserId. This attribute,
applied to the root <manifest> element in your manifest, allows two or more apps
to share a Linux user account. That will allow these apps full access to the other
apps’ files. The limitations are that you must use the same value for sharedUserId
and that all such apps must be signed with the same signing key.
However, this is a fairly crude and somewhat risky approach to sharing information
between apps. In most cases, you will be better served using any of the structured
IPC options within Android, such as remote services and content providers.
The Costs
First, you must make the decision to use android:sharedUserId before you ever
ship your app in production. Should you change the sharedUserId value — or switch
from no value to a new value — when your change is installed, the new version of
your app will have no rights to access the old version of your app’s files. This
is unlikely to turn out well.
Second, it will be up to you to maintain data integrity of these files in the face
of simultaneous access from multiple apps. SQLite should handle this for you for
your databases, as it is set up to use process-level locking — this is why SQLite
can be used as the out-of-the-box database solution for Web frameworks like Rails.
However, any other sort of file, including SharedPreferences, will lack that
coordination, unless you somehow arrange to do it yourself. And even the SQLite-level
coordination has its limits, as one app has no way to know about another app’s
changes to the data, except by re-querying the database.
Third, using android:sharedUserId limits your flexibility. You cannot use it
with third-party apps. You cannot readily sell one of your apps in your suite, as then
it becomes a third-party app and can no longer be signed by the same signing key
as are the rest of your apps. Basically, sharedUserId causes multiple separate APKs
to behave, in some respects, as one larger APK.
The Counter-Arguments
I need to ensure only my apps can share the data, not others
Use a signature-level permission. This gives you the same level of security as does
android:sharedUserId without most of the risks.
Writing IPC code is tedious
So is writing cross-process data integrity code.
Implement a “Quit” Button
Perhaps the most contentious question and answer on Stack Overflow’s android
tag is “Quitting an application - is that frowned upon?”.
This exchange is nearly three years old (as of the time of this writing), yet
the answer receives both upvotes (and a few downvotes) with some regularity.
Other Android experts, such as Reto Meier, have weighed in on the issue
and have offered similar recommendations –
that is, do not have a “quit” or “exit” button in your app.
(here, “button” is shorthand for any command-style interface, and includes
menu options, action bar items, and the like by extension)
The reason is simple: whatever your “quit” or “exit” button does
should be happening in other conditions as well, and handling those other
conditions should eliminate the need for the button.
If the app moves into the background for any reason, you need to treat the
user and her device with respect. This means stopping background threads that
are not needed, releasing system resources like the GPS radio (immediately
or after a modest delay), and the like. The user should not need to “quit”
your app to accomplish this, because your app will move to the background
for other reasons, such as incoming phone calls, or the user pressing the
HOME button.
The Costs
You might think “well, what’s the harm in having the ‘quit’ button that,
say, just calls finish()?”
First, rarely is it that simple. Calling finish() will return the user
to the previous activity, and so for any multi-activity app, there will
be scenarios where finish() is not really “quit”. The only simple thing
you can universally do is have “quit” bring up the home screen, in which
case all you have done is waste screen real estate duplicating the HOME
button functionality. Worse, the developer might say “oh, well, I will just
terminate my process when they press ‘quit’”, and that anti-pattern
is coming up next in this chapter.
Second, the user will start to think that they need to press “quit”, or
else bad things might happen. They will see an explicit “quit” option and
start to wonder “well, gee, when am I supposed to press that, and what
happens if I do not?” This, in turn, will lead to the user going out of
their way to make sure to press your “quit” button, even if doing so does
not actually change anything about the behavior of your app, courtesy
of the placebo effect.
The Counter-Arguments
I need to let the user log out of the app, so I need a “quit” button
No, you need a “logout” button that clears your cached authentication credentials
(e.g., sets a static data member to null), then brings up the login activity
using FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to wipe out all
other activities in your process. And, probably, you need to have some sort of
inactivity-based “timeout” that also logs out the user (e.g., sets that
static data member to null).
I am running stuff in the background, so I need a “quit” button
No, you need a “stop that background stuff” button, preferably with a shorter,
more specific label. And, you need that to also be available from the
Notification that you are using with your foreground service, where applicable.
Terminate Your Process
Closely related to the above anti-pattern is to forcibly stop your process,
such as via System.exit(), Runtime.exit(), Process#killProcess(), and so
forth. These are often used in concert with an in-app “quit” button,
or sometimes for other reasons (e.g., could not figure out how to handle
an exception gracefully).
The Costs
Simply put, Google has warned, repeatedly, that there may be side effects
from terminating your own process, rather than having Android do proper
cleanup first.

	“You should really think about not exiting the application.
This is not how Android apps usually work.” (Romain Guy)

	“To be clear: using System.exit() is strongly recommended against, and can
cause some poor interactions with the system. Please don’t design your app
to need it.” (Dianne Hackborn)

	“There is no reason or need to call [exit()]”
(Dianne Hackborn)

	“Nobody has said anything about Process.kill() not doing anything. You
want to kill your own process and cause the user to experience your own
application having weird behavior at times due to it? Have at it. I just
want to be clear that this is not what we recommend doing… and you are likely
to cause bad behavior in your app at least at times due to it… There is no
API to quit an application, because there is no such concept on Android, and
trying to implement such a thing is going to result in fighting against how
Android works.” (Dianne Hackborn)

The Counter-Arguments
I am using a C library that is buggy, so I need to terminate my process
Fix the bugs in the library. For example, C libraries that rely too heavily on
global variables may need to be adjusted to use session handles that get passed
around.
Well, it is not my C library, but one from a third party, so I need to terminate my process
Find a library that is Android-compatible, then. It is likely that you will
encounter other problems with this library, if it is not designed to work on
Android (e.g., not set up to work properly on ARM CPUs).
There is a bug in Android for which I have found no workaround short of terminating my process
This is one of the few legitimate reasons for terminating a process, but it
is so rare that it is difficult to find a citation of a place where such a bug
(and workaround) exists.
I need to do something from my top-level exception handler!
Set relevant static data members to null, then start up your launcher activity,
using FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to wipe out all
other activities in your task. This should reset you to your original state,
as if the user had launched the app.
Try to Hide from the User
Some developers view the user as the enemy. These developers try to insulate
their app from the user, to make data inaccessible to the user, to make the
app “unkillable” by the user, etc. In many cases, this is at the behest of
some enterprise, wanting to exert control over the user’s use of the app or
even the device.
Android is a consumer operating system. It is designed to put power in the hands
of whoever is holding the device and can authenticate themselves to the device
(e.g., via a password on the lock screen). Enterprises and malware authors
have much the same interests: they wish to take control away from the user and
give the control to somebody else. Android defends against malware; enterprises
get caught in the crossfire.
Inevitably, the right solution here will be an enterprise remix of Android,
designed to be loaded on enterprise-supplied devices, that put the control in
the hands of the enterprise.
The Costs
Simply put, you are wasting your time, which could be better spent on other
pursuits.
With respect to data, if your app can access that data, by definition, a
sufficiently talented user can get at the data:

	If you put it on internal storage, the user can root the device

	If you further encrypt the data, the user can find the encryption algorithm
and key in your app, then decrypt the data

	If you try obfuscation or other techniques to mask the encryption algorithm
and key, the user will use cracking tools to find this information anyway,
or will transfer your app to a ROM mod that contains a modified version of
the Android framework that can collect this information when you go to
decrypt the data

	And so on

With respect to the process, the user can force-stop any installed
app via the Settings app. And, even if you use script-kiddie tricks to try to
prevent access to Settings, the user can nuke your app from orbit via the
command line, using the full Android SDK or third-party tools.
The Counter-Arguments
I am creating an app for an enterprise, and we need to control the app
Then you further need to control the device, which leads to the
“enterprise flavor of Android” solution mentioned earlier in this section.
I am creating a lock screen/parental control app/kiosk app
Please see the counter-arguments for “Interfering with Navigation”
from earlier in this chapter.
Use Multiple Processes
Some Android professionals recommend the use of android:process to have
components run in separate processes from the main one for an application.
For example, you might have all of your activities in the main process
but isolate a service in a separate process. Or, you might have some
memory-intensive activity (e.g., an image editor) run in a separate process.
As with most of these anti-patterns, while the android:process feature
is valid, it is rarely necessary. To some extent, developers get caught up
in process isolation from its use on servers and forget that mobile devices
typically have fewer resources — RAM and CPU — than do their server
counterparts. Few of Google’s apps use android:process; even complex apps
like Gmail or the original Browser avoid it.
The Costs
Each process gets its own heap space, cutting into the heap available for
other applications. As with the large-heap anti-pattern
discussed above, this will tend to force other apps to
be ejected from memory sooner than normal, with commensurate impacts on
user experience.
Inter-process communication (IPC) is not cheap, compared with normal method
invocation within a process. Hence, tightly-coupled processes will chew through
more CPU than their single-process counterparts. While it is unlikely that
you will see major performance implications (unless you are doing a preposterous
amount of IPC), this will consume more battery than is otherwise warranted.
The Counter-Arguments
I am using a C library that is buggy, and you told me not to terminate my process
As noted earlier, fix the bugs in the library.
Hello? It is not my C library, but one from a third party!
Find a library that is Android-compatible, then.
I need more heap space
On Android 3.0 and higher, android:largeHeap is available, though its misuse
is another anti-pattern, discussed above. However, prior to
Android 3.0, android:largeHeap was not an option.
One workaround used by some apps is to
fork several processes, thereby getting several “small” heap allocations
(e.g., 32MB) instead of just one.
In cases where android:largeHeap is indeed justified, using multiple processes
as a workaround on older Android versions is justified as well. However,
bear in mind that IPC overhead is non-trivial, so have a plan to dump the
multiple processes and use android:largeHeap once you drop support for
Android 1.x/2.x.
I want my UI not to freeze when doing background work
Use threads, not processes, for this.
Hog System Resources
Some of these anti-patterns, like the multiple-process one just now, are really
concrete sub-types of a more general anti-pattern: assuming yours is the only app
running on the device. While your app may be the only one running in the
foreground (assuming that you actually are in the foreground), there are other
apps in the background, and ones that soon will come to the foreground. You
need to “play nice” and ensure that these other apps will have their fair
share of system resources.
One example is open files on external storage. For some devices — but not all –
there is a limit of 1,024 simultaneously open files. In principle, that should
be plenty. However, if some app — maybe yours? — opens a whole bunch of files,
it is possible that other apps trying to access external storage at that point
will crash because the limit was hit.
The Counter-Arguments

	Um, well, I’m just more important than those other developers

	:facepalm::

Widget Catalog: AdapterViewFlipper
A regular ViewFlipper shows only one child widget
or container at a time. So does an AdapterViewFlipper. The difference
is where the children come from. With a regular ViewFlipper, you add
children much like you would any other standard container class, such
as defining the children in your layout XML resource. With
AdapterViewFlipper, the children come from an Adapter.
While AdapterViewFlipper does not inherit from ViewFlipper
(or vice versa, for that matter), their public API is largely the same:

	You can control which child is visible, either by index or via showNext()/showPrevious()
methods to rotate between them.

	You can set up animated effects to control how
a child leaves and the next one enters, such as applying a sliding effect.

	You can set up AdapterViewFlipper to automatically flip between children
on a specified period.

There are two key advantages for AdapterViewFliper:

	Since it uses an Adapter model, it can be more memory efficient for lots
of children, through child view recycling

	It is available for use in an app widget

However, AdapterViewFlipper is new to API Level 11 and is unavailable on older
versions of Android. It is not included in the Android Support package backport.
Key Usage Tips
All of the usage tips from ViewFlipper are relevant for
AdapterViewFlipper.
A Sample Usage
The sample project can be found in
WidgetCatalog/AdapterViewFlipper.
Layout:

<?xml version="1.0" encoding="utf-8"?>
<AdapterViewFlipper xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/details"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

(from WidgetCatalog/AdapterViewFlipper/app/src/main/res/layout/main.xml)
Activity:

package com.commonsware.android.avflip;

import android.app.Activity;
import android.os.Bundle;
import android.widget.AdapterViewFlipper;
import android.widget.ArrayAdapter;

public class FlipperDemo2 extends Activity {
 static String[] items= { "lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel", "ligula",
 "vitae", "arcu", "aliquet", "mollis", "etiam", "vel", "erat",
 "placerat", "ante", "porttitor", "sodales", "pellentesque",
 "augue", "purus" };
 AdapterViewFlipper flipper;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 flipper=(AdapterViewFlipper)findViewById(R.id.details);
 flipper.setAdapter(new ArrayAdapter<String>(this, R.layout.big_button, items));
 flipper.setFlipInterval(2000);
 flipper.startFlipping();
 }
}

(from WidgetCatalog/AdapterViewFlipper/app/src/main/java/com/commonsware/android/avflip/FlipperDemo2.java)
Visual Representation
There is no visual representation of an AdapterViewFlipper itself, as it renders
no pixels on its own. Rather, it simply shows the current child.
Widget Catalog: CalendarView
CalendarView, as you might have guessed, displays a calendar to the user,
designed to allow the user to pick a date.
You supply a starting date, which the user then manipulates, triggering
event listeners whenever the date is changed.
Note that this is a small calendar –
it is not designed to show details within a date, such as appointments and
times.
This view is available standalone and also as an optional adjunct to
the DatePicker widget.
This view was added in API Level 11 and therefore will not be available on
older versions of Android, though
a backport is available
that works on Android 2.2 onwards.
Key Usage Tips
If you do nothing, the CalendarView will start with today’s date,
though you can call a setDate() method to pass in a Calendar object
to use to change the initially-selected date. You can also call
setOnDateChangeListener() to supply an OnDateChangeListener to learn
when the user changes the date in the CalendarView.
CalendarView works well with Calendar and GregorianCalendar, in
terms of setting and getting the year/month/day-of-month from the
CalendarView (as supplied to the onSelectedDayChange() method of your
OnDateChangeListener) and converting it into something you can use in your code.
A Sample Usage
The sample project can be found in
WidgetCatalog/CalendarView.
Layout:

<CalendarView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/calendar"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

(from WidgetCatalog/CalendarView/app/src/main/res/layout/main.xml)
Activity:

package com.commonsware.android.wc.calendar;

import android.app.Activity;
import android.os.Bundle;
import android.widget.CalendarView;
import android.widget.CalendarView.OnDateChangeListener;
import android.widget.Toast;
import java.util.Calendar;
import java.util.GregorianCalendar;

public class CalendarDemoActivity extends Activity implements
 OnDateChangeListener {
 CalendarView calendar=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 calendar=(CalendarView)findViewById(R.id.calendar);
 calendar.setOnDateChangeListener(this);
 }

 @Override
 public void onSelectedDayChange(CalendarView view, int year,
 int monthOfYear, int dayOfMonth) {
 Calendar then=new GregorianCalendar(year, monthOfYear, dayOfMonth);

 Toast.makeText(this, then.getTime().toString(), Toast.LENGTH_LONG)
 .show();
 }
}

(from WidgetCatalog/CalendarView/app/src/main/java/com/commonsware/android/wc/calendar/CalendarDemoActivity.java)
Visual Representation
This is what a CalendarView looks like in a few different Android
versions and configurations, based upon the sample app shown above.

[image: Android 4.0]

Figure 1035: Android 4.0

[image: Android 4.1]

Figure 1036: Android 4.1

[image: Android 5.0]

Figure 1037: Android 5.0
[image: Android 6.0]
Widget Catalog: DatePicker
DatePicker, as the name might suggest, allows the user to pick a date.
You supply a starting date, which the user then manipulates, triggering
event listeners whenever the date is changed.
Key Usage Tips
If you do nothing, the DatePicker will start with today’s date.
However, if you want to set up an OnDateSetListener to find out when
the date changes, you will need to call init() to do so, in which
you also need to set the date.
DatePicker works well with Calendar and GregorianCalendar, in
terms of setting and getting the year/month/day-of-month from the
DatePicker and converting it into something you can use in your code.
API Level 11 introduced an optional CalendarView adjunct to the
DatePicker, determined via setCalendarViewShown() or
android:calendarViewShown. This works well on -normal screens in
landscape and on -large/-xlarge screens. On -normal screens
in portrait, the year portion of the picker may be chopped off
to save room. Using the CalendarView option on -small screens
is probably not a good idea.
However, on Android 5.0+, the CalendarView is always shown and
cannot be removed, as the “picker” itself does not allow the user to
pick a date. The user uses the CalendarView to pick a date, or taps
on the year in the “picker” to choose a year. This means that DatePicker
is not a particularly good widget to use, especially on smaller
screens.
A Sample Usage
The sample project can be found in
WidgetCatalog/DatePicker.
Layout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:gravity="center_horizontal">

 <DatePicker
 android:id="@+id/picker"
 android:layout_width="match_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:datePickerMode="spinner"
 android:calendarViewShown="true"/>

 <CheckBox
 android:id="@+id/showCalendar"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="@string/calendar"/>

</LinearLayout>

(from WidgetCatalog/DatePicker/app/src/main/res/layout/main.xml)
Activity:

package com.commonsware.android.wc.datepick;

import android.app.Activity;
import android.os.Build;
import android.os.Bundle;
import android.view.View;
import android.widget.CheckBox;
import android.widget.CompoundButton;
import android.widget.CompoundButton.OnCheckedChangeListener;
import android.widget.DatePicker;
import android.widget.DatePicker.OnDateChangedListener;
import android.widget.Toast;
import java.util.Calendar;
import java.util.GregorianCalendar;

public class DatePickerDemoActivity extends Activity implements
 OnCheckedChangeListener, OnDateChangedListener {
 DatePicker picker=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 CheckBox cb=(CheckBox)findViewById(R.id.showCalendar);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
 cb.setOnCheckedChangeListener(this);
 }
 else {
 cb.setVisibility(View.GONE);
 }

 GregorianCalendar now=new GregorianCalendar();

 picker=(DatePicker)findViewById(R.id.picker);
 picker.init(now.get(Calendar.YEAR), now.get(Calendar.MONTH),
 now.get(Calendar.DAY_OF_MONTH), this);
 }

 @Override
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
 picker.setCalendarViewShown(isChecked);
 }
 }

 @Override
 public void onDateChanged(DatePicker view, int year, int monthOfYear,
 int dayOfMonth) {
 Calendar then=new GregorianCalendar(year, monthOfYear, dayOfMonth);

 Toast.makeText(this, then.getTime().toString(), Toast.LENGTH_LONG)
 .show();
 }
}

(from WidgetCatalog/DatePicker/app/src/main/java/com/commonsware/android/wc/datepick/DatePickerDemoActivity.java)
The CheckBox is tied to the visibility of the CalendarView. Since
this is only available on API Level 11 and higher, we simply remove the
CheckBox on earlier versions of Android, so we do not have to worry
about whether or not the CheckBox gets unchecked by the user.
Visual Representation
This is what a DatePicker looks like in a few different Android
versions and configurations, based upon the sample app shown above.

[image: Android 2.3.3]

Figure 1038: Android 2.3.3

[image: Android 4.0.3, with CalendarView, Portrait]

Figure 1039: Android 4.0.3, with CalendarView, Portrait

[image: Android 4.0.3, without CalendarView, Portrait]

Figure 1040: Android 4.0.3, without CalendarView, Portrait

[image: Android 4.0.3, with CalendarView, Landscape]

Figure 1041: Android 4.0.3, with CalendarView, Landscape

[image: Android 5.0, with CalendarView, Landscape]

Figure 1042: Android 5.0, with CalendarView, Landscape

[image: Android 6.0, with CalendarView, Portrait]

Figure 1043: Android 6.0, with CalendarView, Portrait

[image: Android 6.0, Showing Year Picker, Landscape]

Figure 1044: Android 6.0, Showing Year Picker, Landscape
—
Widget Catalog: ExpandableListView
Android does not have a “tree” widget, allowing users to navigate an arbitrary
hierarchy of stuff. In large part, that is because such trees are difficult to
navigate on small touchscreens with comparatively large fingers.
Android does have ExpandableListView, a subclass of ListView that supports
a two-layer hierarchy: groups and children. Groups can be expanded to show their
children or collapsed to hide them, and you can get control on various events for
the groups or the children.
Key Usage Tips
Android offers an ExpandableListActivity as a counterpart to its ListActivity.
However, it does not offer an ExpandableListFragment. This is not a major issue, as
you can work with an ExpandableListView inside a regular Fragment yourself, just
as you would for most other widgets not named ListView.
Rather than use a ListAdapter with ExpandableListView, you will use an
ExpandableListAdapter, where you can control separate details for groups and children.
These include:

	
SimpleExpandableListAdapter, roughly analogous to ArrayAdapter, where your data
resides in a List of Map objects for groups, and a List of a List of Map
objects for the children

	
CursorTreeAdapter and SimpleCursorTreeAdapter, roughly analogous to CursorAdapter
and SimpleCursorAdapter, for mapping data in a Cursor to rows and columns

In many cases, though, the complexity of managing groups and children will steer
you down the path of extending BaseExpandableListAdapter and handling all of the
view construction yourself. There are many methods that you will need to implement:

	
getGroupCount(), to return the number of groups

	
getGroup() and getGroupId(), to return an Object and unique int ID for a group
given its position

	
getGroupView(), to return the View that should be used to render the group,
perhaps using the built-in android.R.layout.simple_expandable_list_item_1 that is set
up for such groups and handles rendering the expanded and collapsed states

	
getChildrenCount(), to return the number of children for a given group

	
getChild() and getChildId(), to return an Object and unique int ID for a child
given its position (and its group’s position)

	
getChildView(), to return the View that should be used to render the child, given
its position and its group’s position

	
isChildSelectable(), to indicate if the user can select a given child, given its position
and its group’s position

	
hasStableIds(), to indicate if the ID values you returned from getGroupId() and
getChildId() will remain constant for the life of this adapter

There are four major events that you will be able to respond to with respect to the
user’s interaction with an ExpandableListView:

	Clicks on a child (setOnChildClickListener())

	Clicks on a group (setOnGroupClickListener())

	When groups expand (setOnGroupExpandListener()) or collapse (setOnGroupCollapseListener())

If you use setOnGroupClickListener() to be notified about clicks on a group, be sure
to return false from your implementation of the onGroupClick() method required by the
OnGroupClickListener interface. If you return true, you consume the click event, which
prevents ExpandableListView from using that event to expand or collapse the group.
A Sample Usage
The sample project can be found in
WidgetCatalog/ExpandableListView.
Layout:

<ExpandableListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/elv"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

</ExpandableListView>

(from WidgetCatalog/ExpandableListView/app/src/main/res/layout/activity_main.xml)
JSON data:

{
 "Group A": ["Child A1", "Child A2", "Child A3"],
 "Group B": ["Child B1", "Child B2"],
 "Group C": ["Child C1"],
 "Group D": [],
 "Group E": ["Child E1", "Child E2", "Child E3"]
}

Activity:

package com.commonsware.android.wc.elv;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.ExpandableListAdapter;
import android.widget.ExpandableListView;
import android.widget.ExpandableListView.OnChildClickListener;
import android.widget.ExpandableListView.OnGroupClickListener;
import android.widget.ExpandableListView.OnGroupCollapseListener;
import android.widget.ExpandableListView.OnGroupExpandListener;
import android.widget.Toast;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import org.json.JSONObject;

public class MainActivity extends Activity implements
 OnChildClickListener, OnGroupClickListener, OnGroupExpandListener,
 OnGroupCollapseListener {
 private ExpandableListAdapter adapter=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 InputStream raw=getResources().openRawResource(R.raw.sample);
 BufferedReader in=new BufferedReader(new InputStreamReader(raw));
 String str;
 StringBuffer buf=new StringBuffer();

 try {
 while ((str=in.readLine()) != null) {
 buf.append(str);
 buf.append('\n');
 }

 in.close();

 JSONObject model=new JSONObject(buf.toString());

 ExpandableListView elv=(ExpandableListView)findViewById(R.id.elv);

 adapter=new JSONExpandableListAdapter(getLayoutInflater(), model);
 elv.setAdapter(adapter);

 elv.setOnChildClickListener(this);
 elv.setOnGroupClickListener(this);
 elv.setOnGroupExpandListener(this);
 elv.setOnGroupCollapseListener(this);
 }
 catch (Exception e) {
 Log.e(getClass().getName(), "Exception reading JSON", e);
 }
 }

 @Override
 public boolean onChildClick(ExpandableListView parent, View v,
 int groupPosition, int childPosition,
 long id) {
 Toast.makeText(this,
 adapter.getChild(groupPosition, childPosition)
 .toString(), Toast.LENGTH_SHORT).show();

 return(false);
 }

 @Override
 public boolean onGroupClick(ExpandableListView parent, View v,
 int groupPosition, long id) {
 Toast.makeText(this, adapter.getGroup(groupPosition).toString(),
 Toast.LENGTH_SHORT).show();

 return(false);
 }

 @Override
 public void onGroupExpand(int groupPosition) {
 Toast.makeText(this,
 "Expanding: "
 + adapter.getGroup(groupPosition).toString(),
 Toast.LENGTH_SHORT).show();
 }

 @Override
 public void onGroupCollapse(int groupPosition) {
 Toast.makeText(this,
 "Collapsing: "
 + adapter.getGroup(groupPosition).toString(),
 Toast.LENGTH_SHORT).show();
 }
}

(from WidgetCatalog/ExpandableListView/app/src/main/java/com/commonsware/android/wc/elv/MainActivity.java)
This activity loads up a JSON file from a raw resource on the main application thread
in onCreate(), which is not a good idea. It would be better to do that work in a
background thread, perhaps an AsyncTask managed by a retained fragment. The implementation
shown here is designed to keep the sample small, not to demonstrate the best way to
load data from a raw resource.
Adapter:

package com.commonsware.android.wc.elv;

import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.BaseExpandableListAdapter;
import android.widget.TextView;
import java.util.Iterator;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

public class JSONExpandableListAdapter extends
 BaseExpandableListAdapter {
 LayoutInflater inflater=null;
 JSONObject model=null;

 JSONExpandableListAdapter(LayoutInflater inflater, JSONObject model) {
 this.inflater=inflater;
 this.model=model;
 }

 @Override
 public int getGroupCount() {
 return(model.length());
 }

 @Override
 public Object getGroup(int groupPosition) {
 @SuppressWarnings("rawtypes")
 Iterator i=model.keys();

 while (groupPosition > 0) {
 i.next();
 groupPosition--;
 }

 return(i.next());
 }

 @Override
 public long getGroupId(int groupPosition) {
 return(groupPosition);
 }

 @Override
 public View getGroupView(int groupPosition, boolean isExpanded,
 View convertView, ViewGroup parent) {
 if (convertView == null) {
 convertView=
 inflater.inflate(android.R.layout.simple_expandable_list_item_1,
 parent, false);
 }

 TextView tv=
 ((TextView)convertView.findViewById(android.R.id.text1));
 tv.setText(getGroup(groupPosition).toString());

 return(convertView);
 }

 @Override
 public int getChildrenCount(int groupPosition) {
 try {
 JSONArray children=getChildren(groupPosition);

 return(children.length());
 }
 catch (JSONException e) {
 // JSONArray is really annoying
 Log.e(getClass().getSimpleName(), "Exception getting children", e);
 }

 return(0);
 }

 @Override
 public Object getChild(int groupPosition, int childPosition) {
 try {
 JSONArray children=getChildren(groupPosition);

 return(children.get(childPosition));
 }
 catch (JSONException e) {
 // JSONArray is really annoying
 Log.e(getClass().getSimpleName(),
 "Exception getting item from JSON array", e);
 }

 return(null);
 }

 @Override
 public long getChildId(int groupPosition, int childPosition) {
 return(groupPosition * 1024 + childPosition);
 }

 @Override
 public View getChildView(int groupPosition, int childPosition,
 boolean isLastChild, View convertView,
 ViewGroup parent) {
 if (convertView == null) {
 convertView=
 inflater.inflate(android.R.layout.simple_list_item_1, parent,
 false);
 }

 TextView tv=(TextView)convertView;
 tv.setText(getChild(groupPosition, childPosition).toString());

 return(convertView);
 }

 @Override
 public boolean isChildSelectable(int groupPosition, int childPosition) {
 return(true);
 }

 @Override
 public boolean hasStableIds() {
 return(true);
 }

 private JSONArray getChildren(int groupPosition) throws JSONException {
 String key=getGroup(groupPosition).toString();

 return(model.getJSONArray(key));
 }
}

(from WidgetCatalog/ExpandableListView/app/src/main/java/com/commonsware/android/wc/elv/JSONExpandableListAdapter.java)
This adapter wraps a JSONObject and assumes that the JSON structure is an object,
keyed by strings, whose values are arrays of strings. The object returned by getGroup()
is the key for that group’s position; the object returned by getChild() is the string
at that child’s array index for it’s group’s array. Since the data structure is treated
as immutable, and since there are no other better IDs in the data structure itself, the
group ID is simply the group’s position, and the child’s ID is simply a mash-up of the
group and child positions.
Visual Representation
This is what an ExpandableListView looks like in a few different Android
versions and configurations, based upon the sample app shown above.

[image: Android 2.3.3, Portrait]

Figure 1045: Android 2.3.3, Portrait

[image: Android 4.0.3, Portrait]

Figure 1046: Android 4.0.3, Portrait
Note that while the data in the JSON file has the groups sorted alphabetically, because
JSONObject effectively loads its data into a HashMap, the sorting gets lost in the
data model, which is why the groups appear out of order.
Also note that the visual representation of the “collapsed” and “expanded” states is
controlled by the ExpandableListAdapter and the view used for the groups. In this sample,
we use android.R.layout.simple_expandable_list_item_1 for the groups, which gives
us the caret designation for expanded versus collapsed states in 4.0.3 and the lower-left
arrowhead-in-circle icon for 2.3.3. You can create your own rows with your own indicators
as you see fit.
Widget Catalog: SeekBar
SeekBar allows the user to choose a value along a continuous range by sliding
a “thumb” along a horizontal line. In effect — and in practice, as it turns out –
SeekBar is a user-modifiable ProgressBar.
Key Usage Tips
The value range of a SeekBar runs from 0 to a developer-set maximum value.
As with ProgressBar, the default maximum is 100, but that can be changed via
an android:max attribute or the setMax() method. The minimum value is always
0, so if you want a range starting elsewhere, just add your starting value to the
actual value (obtained via getProgress()) to slide the range as desired.
You can find out about changes in the SeekBar value by attaching an
OnSeekBarChangeListener implementation. The primary method on that interface
is onProgressChanged(), where you are notified about changes in the progress
value (second parameter) and whether that change was initiated directly by
the user interacting with the widget (third parameter). The interface also
has onStartTrackingTouch() and onStopTrackingTouch(), to indicate when the
user is attempting to change the position of the thumb via the touchscreen,
though these methods are less-commonly used.
A Sample Usage
The sample project can be found in
WidgetCatalog/SeekBar.
Layout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center_vertical"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/value"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="0"
 android:ems="2"
 android:gravity="right|center_vertical"
 android:layout_marginRight="10dp"
 android:textAppearance="@android:style/TextAppearance.Large"/>

 <SeekBar
 android:id="@+id/seek_bar"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:layout_marginRight="10dp"
 android:max="50"/>

</LinearLayout>

(from WidgetCatalog/SeekBar/app/src/main/res/layout/activity_main.xml)
Activity:

package com.commonsware.android.wc.seekbar;

import android.app.Activity;
import android.os.Bundle;
import android.widget.SeekBar;
import android.widget.SeekBar.OnSeekBarChangeListener;
import android.widget.TextView;

public class MainActivity extends Activity implements
 OnSeekBarChangeListener {
 TextView value=null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 value=(TextView)findViewById(R.id.value);

 SeekBar seekBar=(SeekBar)findViewById(R.id.seek_bar);

 seekBar.setOnSeekBarChangeListener(this);
 }

 @Override
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 value.setText(String.valueOf(progress));
 }

 @Override
 public void onStartTrackingTouch(SeekBar seekBar) {
 // no-op
 }

 @Override
 public void onStopTrackingTouch(SeekBar seekBar) {
 // no-op
 }
}

(from WidgetCatalog/SeekBar/app/src/main/java/com/commonsware/android/wc/seekbar/MainActivity.java)
Visual Representation

[image: Android 2.3.3]

Figure 1047: Android 2.3.3

[image: Android 4.1]

Figure 1048: Android 4.1

[image: Android 6.0, Landscape]

Figure 1049: Android 6.0, Landscape
Widget Catalog: SlidingPaneLayout
In the master-detail UI pattern, we are showing both the master and the detail fragment,
side-by-side, on larger screens, while showing only one at a time on smaller screens.
SlidingPaneLayout encapsulates that logic.
SlidingPaneLayout will detect the screen size. If the screen size is big enough,
SlidingPaneLayout will display its two children side-by-side. If the screen size
is not big enough, SlidingPaneLayout will display one child at a time. However, by
default, when the “master” child is visible, a thin strip on the right will allow the
user to return to the “detail” child. Similarly, a swiping gesture can switch from
the “detail” back to the “master” child. These are in addition to any changes in context
you might introduce based on UI operations (e.g., tapping on an element in a master
RecyclerView automatically switching to the detail child).
SlidingPaneLayout is in the Support Library, in the support-core-ui artifact
for 27.1.1 and its own slidingpanelayout artifact in 28.0.0 and higher.
Declaring a SlidingPaneLayout
A SlidingPaneLayout can go in your activity’s layout. It works like a horizontal
LinearLayout and is designed to hold two or more children. The first child is
considered to be “the pane” and is the portion that slides over top of everything
else in the SlidingPaneLayout.
As with a LinearLayout, you can use android:layout_width to specify minimum
widths for your contents, plus android:layout_weight to allocate any unused space:

<android.support.v4.widget.SlidingPaneLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/panes"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment
 android:id="@+id/sensors"
 android:name="com.commonsware.android.sensor.monitor.SensorsFragment"
 android:layout_width="300sp"
 android:layout_height="match_parent"/>

 <fragment
 android:id="@+id/log"
 android:name="com.commonsware.android.sensor.monitor.SensorLogFragment"
 android:layout_width="400dp"
 android:layout_height="match_parent"
 android:layout_weight="1"/>

</android.support.v4.widget.SlidingPaneLayout>

(from Sensor/Monitor/app/src/main/res/layout/activity_main.xml)
Here, we have two fragments inside of the SlidingPaneLayout. If the current
screen width is 300sp+400dp or larger, both fragments will be shown side-by-side,
with the log fragment taking up all remaining space (courtesy of its
android:layout_weight="1" attribute). If the current width is smaller than
300sp+400dp, though, the two fragments will overlap, with the sensors
fragment sliding over top of the log fragment.
Visual Representation
The app that is using the above layout is from the chapter on sensors.
The sensors fragment shows a list of all of the sensors on the device, and
the log shows a roster of sensor readings from that sensor.

[image: SlidingPaneLayout, Showing the Pane]

Figure 1050: SlidingPaneLayout, Showing the Pane

[image: SlidingPaneLayout, with Hidden Pane]

Figure 1051: SlidingPaneLayout, with Hidden Pane

[image: SlidingPaneLayout, with Both Panes on a Tablet]

Figure 1052: SlidingPaneLayout, with Both Panes on a Tablet
Interacting with a SlidingPaneLayout
Sometimes, just setting up the SlidingPaneLayout is sufficient. Sometimes,
you want user interactions to affect the pane. For example, the aforementioned
sample app closes the pane once the user makes a selection in the list of available
sensors.
SlidingPaneLayout offers:

	
openPane() to show the pane

	
closePane() to hide the pane, if the pane can be hidden (i.e., not when
both panes are always showing)

	
isSlideable() to determine if the pane is always visible or if the pane
can truly be closed

Widget Catalog: StackView
StackView is an AdapterView. Whereas ListView uses a horizontal scrolling
list as its UI metaphor, StackView uses a stack of cards as its metaphor. Just as
ListView shows a handful of rows, StackView shows a handful of cards. These
cards can be swiped away via a swipe towards the southwest corner of the screen.
The top card is fully visible; the edges of a few other cards can be seen but
are otherwise obscured by cards “higher in the stack”.
While certainly usable in activities and fragments, StackView was introduced in
support of app widgets. App widgets like bookmarks, Google Books covers, and the like
use StackView to show an item and allow users to navigate to the rest of the items
by flipping these virtual cards.
Key Usage Tips
Generally speaking, working with StackView is not significantly different than is
working with any other AdapterView. You create an Adapter defining the contents
(in this case, defining the cards), you attach the Adapter to the StackView, and
put the StackView somewhere on the screen.
As the cards overlap, however, transparency becomes an issue. If the top card is not
completely opaque, you will see the card beneath it “peeking through” as its contents
are blended in via the alpha channel. In some cases, this is a perfectly desirable
outcome. However, if that is not what you want, make sure that the backgrounds of
your overall container for the card’s contents (e.g., a RelativeLayout) has an
opaque background, such as a color with FF for the alpha value.
Also, since the objective is to have the children be visually stacked, the children
cannot be the size of the StackView itself (e.g., the children cannot use match_parent
for a dimension). StackView seems to work best with children that
have explicit sizes (e.g., values in dp).
A Sample Usage
The sample project can be found in
WidgetCatalog/StackView.
Activity Layout:

<?xml version="1.0" encoding="utf-8"?>
<StackView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/details"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

(from WidgetCatalog/StackView/app/src/main/res/layout/main.xml)
Item Layout:

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="200dp"
 android:layout_height="200dp"
 android:background="#FFFF0000"
 android:gravity="center"
 android:textAppearance="?android:attr/textAppearanceLarge"/>

(from WidgetCatalog/StackView/app/src/main/res/layout/item.xml)
Activity:

package com.commonsware.android.wc.stack;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.StackView;

public class MainActivity extends Activity {
 static String[] items= { "lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel", "ligula",
 "vitae", "arcu", "aliquet", "mollis", "etiam", "vel", "erat",
 "placerat", "ante", "porttitor", "sodales", "pellentesque",
 "augue", "purus" };
 StackView stack;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 stack=(StackView)findViewById(R.id.details);
 stack.setAdapter(new ItemAdapter(this, R.layout.item, items));
 }

 private static class ItemAdapter extends ArrayAdapter<String> {
 public ItemAdapter(Context context, int textViewResourceId,
 String[] objects) {
 super(context, textViewResourceId, objects);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View result=super.getView(position, convertView, parent);

 result.setBackgroundColor(0xFF330000 + (position * 0x0A0A));

 return(result);
 }
 }
}

(from WidgetCatalog/StackView/app/src/main/java/com/commonsware/android/wc/stack/MainActivity.java)
Visual Representation
This is what a StackView looks like in Android 4.0.3, based upon the sample app shown above:

[image: Android 4.0.3, As Initially Seen]

Figure 1053: Android 4.0.3, As Initially Seen
[image: Android 4.0.3, Part-Way Through the Stack]
Widget Catalog: TabHost and TabWidget
Before we had the action bar and ViewPager, we had TabHost and TabWidget as our means
of displaying tabs. Nowadays, in most cases, using
tabs with a ViewPager is the preferred option.
However, there may be cases where the classic tabs are a better solution, or you may
have inherited legacy code that still uses TabHost.
Deprecation Notes
Just as ListActivity helps one use a ListView, TabActivity helps one use a
TabHost. However, TabActivity is marked as deprecated. That is largely because
its parent class, ActivityGroup, is deprecated. While you can still use TabActivity,
it is no longer recommended. It also is not necessary, as there are ways to use
TabHost and TabWidget without using TabActivity, as will be demonstrated later
in this chapter.
Key Usage Tips
There are a few widgets and containers you need to use in order to set up a
tabbed portion of a view:

	
TabHost is the overarching container for the tab buttons and tab
contents

	
TabWidget implements the row of tab buttons, which contain text
labels and optionally contain icons

	
FrameLayout is the container for the tab contents; each tab content is
a child of the FrameLayout

You load contents into that FrameLayout in one of two ways:

	You can define the contents simply as child widgets (or containers) of the FrameLayout
in a layout XML file you are using for the whole tab setup

	You can define the contents at runtime

Curiously, you do not define what goes in the tabs themselves, or how they tie to the
content, in the layout XML file. Instead, you must do that in Java, by creating a series
of TabSpec objects (obtained via newTabSpec() on TabHost), configuring them, then
adding them in sequence to the TabHost via addTab().
The two key methods on TabSpec are:

	
setContent(), where you indicate what goes in the tab content for
this tab, typically the android:id of the view you want shown when
this tab is selected

	
setIndicator(), where you provide the caption for the tab button
and, in some flavors of this method, supply a Drawable to represent
the icon for the tab

Note that tab “indicators” can actually be views in their own right, if you
need more control than a simple label and optional icon.
Also note that you must call setup() on the TabHost before configuring any
of these TabSpec objects. The call to setup() is not needed if you are using
the TabActivity base class for your activity.
A Sample Usage
The sample project can be found in
WidgetCatalog/Tab.
Layout:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tabhost"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <AnalogClock android:id="@+id/tab1"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
 <Button android:id="@+id/tab2"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="A semi-random button"
 />
 </FrameLayout>
 </LinearLayout>
</TabHost>

(from WidgetCatalog/Tab/app/src/main/res/layout/main.xml)
Activity:

package com.commonsware.android.tabhost;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 TabHost tabs=(TabHost)findViewById(R.id.tabhost);

 tabs.setup();

 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

 spec.setContent(R.id.tab1);
 spec.setIndicator("Clock");
 tabs.addTab(spec);

 spec=tabs.newTabSpec("tag2");
 spec.setContent(R.id.tab2);
 spec.setIndicator("Button");
 tabs.addTab(spec);
 }
}

(from WidgetCatalog/Tab/app/src/main/java/com/commonsware/android/tabhost/TabDemo.java)
Note that ordinarily you would use icons with your tabs, and so the second parameter
to setIndicator() would be a reference to a drawable resource. This particular sample
skips the icons.
Visual Representation
This is what a TabHost and TabWidget look like in a few different Android
versions and configurations, based upon the sample app shown above.

[image: Android 2.3.3]

Figure 1054: Android 2.3.3

[image: Android 4.0.3]

Figure 1055: Android 4.0.3
Widget Catalog: TimePicker
Just as DatePicker allows the user to pick a date,
TimePicker allows the user to pick a time. This widget is a bit simpler
to use, insofar as you do not have the option of the integrated
CalendarView as you do with DatePicker. In other respects, TimePicker
follows the patterns established by DatePicker.
Note that TimePicker only supports hours and minutes, not seconds
or finer granularity.
Key Usage Tips
With DatePicker, the act of supplying an OnDateSetListener also required
you to supply the year/month/day to use as a starting point. TimePicker
is more intelligently designed: setting the OnTimeSetListener is
independent from adjusting the hour or minute.
As with DatePicker, TimePicker works well with Calendar and
GregorianCalendar, in
terms of setting and getting the hour/minute/second from the
TimePicker and converting it into something you can use in your code.
There is a bug
in which your OnTimeSetListener
is not invoked when the user changes between AM and PM when viewing
the TimePicker in 12-hour display mode.
A Sample Usage
The sample project can be found in
WidgetCatalog/TimePicker.
Layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:gravity="center_vertical">

 <TimePicker
 android:id="@+id/picker"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

</LinearLayout>

(from WidgetCatalog/TimePicker/app/src/main/res/layout/main.xml)
Activity:

package com.commonsware.android.wc.timepick;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TimePicker;
import android.widget.TimePicker.OnTimeChangedListener;
import android.widget.Toast;
import java.util.Calendar;

public class TimePickerDemoActivity extends Activity implements
 OnTimeChangedListener {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TimePicker picker=(TimePicker)findViewById(R.id.picker);

 picker.setOnTimeChangedListener(this);
 }

 @Override
 public void onTimeChanged(TimePicker view, int hourOfDay, int minute) {
 Calendar then=Calendar.getInstance();

 then.set(Calendar.HOUR_OF_DAY, hourOfDay);
 then.set(Calendar.MINUTE, minute);
 then.set(Calendar.SECOND, 0);

 Toast.makeText(this, then.getTime().toString(), Toast.LENGTH_SHORT)
 .show();
 }
}

(from WidgetCatalog/TimePicker/app/src/main/java/com/commonsware/android/wc/timepick/TimePickerDemoActivity.java)
Visual Representation

[image: Android 2.3.3]

Figure 1056: Android 2.3.3

[image: Android 4.0.3]

Figure 1057: Android 4.0.3

[image: Android 5.0]

Figure 1058: Android 5.0
[image: Android 6.0, Landscape]
Widget Catalog: ViewFlipper
A ViewFlipper behaves a bit like a FrameLayout that is set up such that
only one child can be visible at a time. You can control which of those
children is visible, either by index or via showNext()/showPrevious()
methods to rotate between them.
You can also set up animated effects to control how
a child leaves and the next one enters, such as applying a sliding effect.
And, you can set up ViewFlipper to automatically flip between children
on a specified period, without further developer involvement. This,
coupled with the animation, can be used for news tickers, ad banner
rotations, or the like where light animations (e.g., fade out and fade
in) can be used positively.
Key Usage Tips
ViewFlipper can have as many children as needed (within memory constraints), though
you will want at least two for it to be meaningful.
By default, the transition between children is an immediate “smash cut” — the old one
vanishes and the new one appears instantaneously. You can call setInAnimation() and/or
setOutAnimation() to supply an Animation object or resource to use
for the transitions instead.
By default, the ViewFlipper will show its first child and stay there. You can
manually flip children via showNext(), showPrevious(), and setDisplayedChild(),
the latter of which taking a position index of which child to display. You can also
have automatic flipping, by one of two means:

	In your layout, android:flipInterval will set up the amount of time to display
each child before moving to the next, and android:autoStart will indicate if the
automated flipping should begin immediately or not

	In Java, setFlipInterval() serves the same role as android:flipInterval, and
you can control when flipping is enabled via startFlipping() and stopFlipping()

A Sample Usage
The sample project can be found in
WidgetCatalog/ViewFlipper.
Layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <ViewFlipper android:id="@+id/details"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 </ViewFlipper>
</LinearLayout>

(from WidgetCatalog/ViewFlipper/app/src/main/res/layout/main.xml)
Activity:

package com.commonsware.android.flipper2;

import android.app.Activity;
import android.os.Bundle;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.ViewFlipper;

public class FlipperDemo2 extends Activity {
 static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit",
 "morbi", "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque",
 "augue", "purus"};
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);

 for (String item : items) {
 Button btn=new Button(this);

 btn.setText(item);

 flipper.addView(btn,
 new ViewGroup.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.FILL_PARENT));
 }

 flipper.setFlipInterval(2000);
 flipper.startFlipping();
 }
}

(from WidgetCatalog/ViewFlipper/app/src/main/java/com/commonsware/android/flipper2/FlipperDemo2.java)
Visual Representation
There is no visual representation of a ViewFlipper itself, as it renders
no pixels on its own. Rather, it simply shows the current child.
Device Catalog: Chrome and Chrome OS
Ever since Android and Chrome were moved under the same executive within
Google, rumors abounded that Android and Chrome OS would merge in one form
or fashion.
In 2015, Google started down that path, offering the ability for developers
to start packaging Android apps to run on Chrome OS. And — albeit via
a different mechanism — some Chrome OS devices now offer the Play Store and
users can install compatible apps from there.
The exact number of Chromebooks that have been sold is subject to some
debate. One analyst pegged business (B2B) Chromebook sales in the first half of 2015 at
around 2 million,
with an upbeat, pro-Chromebook spin.
Another analyst indicated that total sales for Chromebooks in 2014
were 6 million,
a tiny percentage of PC/laptop sales. In mid-2016, IDC estimated
that Chromebook sales for the first quarter of 2016 were around 2 million,
exceeding the sales of Apple’s line of Mac notebooks.
But one analyst is predicting 17 million Chromebooks to be sold in 2023,
which suggests that growth will be modest.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
How This Works
From the user’s standpoint, Android apps appear alongside their
Chrome OS counterparts. For example, the Play Store will be in
their app launcher:

[image: Chrome OS App Launcher/Finder, As Initially Launched]

Figure 1059: Chrome OS App Launcher/Finder, As Initially Launched
Android apps appear in floating windows, similar to their Chrome
OS counterparts:

[image: Chrome OS, Showing Amaze File Manager]

Figure 1060: Chrome OS, Showing Amaze File Manager
Chrome OS Form Factors
The classic form factor for Chrome OS devices was the “Chromebook”. This is a
notebook/netbook-style device, with a keyboard and touchpad. Many Chromebooks
support touchscreens, and some Chromebooks have 180-degree hinges, allowing the
screen to be folded over such that the Chromebook forms a chunky tablet.
Nowadays, there are other Chrome OS form factors that are getting attention:

	Some Chromebooks have detachable keyboards, where the screen can work on its
own an a tablet

	Some Chrome OS tablets are available, basically working like a Chromebook without
a supplied keyboard

	A variety of “Chromebox” devices are available, which are miniature desktops,
where you provide your own monitor, keyboard, and mouse

As a result, Chrome OS really opens up the range of possible ways that the
user can interact with your app. In particular, not all Chrome OS devices offer
touchscreens, as some Chromebooks and all Chromeboxes are limited to keyboard
and mouse input. So not only do you need to consider how best to support Chrome OS
overall, you need to consider how best to support keyboard/mouse-based user
input. While Android can do a reasonable job of that “out of the box”, some
amount of additional work may be needed before your app feels natural when
the user is clicking with a mouse rather than tapping on a screen.
Testing Your App on Chrome OS
For lightweight use, Google publishes a Chrome OS emulator
that is integrated into the Android SDK emulator system used by Android Studio.
As with the regular SDK emulator images, the Chrome OS emulator attempts
to show you what your app will be like on a Chrome OS device. However, it will
have a variety of gaps, particularly tied to hardware. Just as a developer
should never ship an Android app based solely on testing in an Android emulator,
a developer should never ship a Chrome OS Android app based solely on testing
in the Chrome OS emulator.
For real testing, you will want to test on hardware, which is the focus of
this section.
Step #1: Get a Compatible Chrome OS Device
All Chrome OS devices shipped in 2017 and beyond are supposed to ship with
Android support.
Select older devices will get Android support as well.
This page
lists the official status of Chrome OS for various older devices. Any device
not listed there is unlikely to get Chrome OS, and even many of the “Planned”
ones might drop off.
You will need a Google account to set up your Chrome OS device or the Chrome
OS emulator.
Step #2: Enable Android Apps
If you want to test your app in the Play Store, it may be already enabled
for you, in which case you can just install your app and try it out.
If it is not already enabled, but the device is already shipping in production
form with Android support, you may need to enable it in Chrome OS’s Settings
app. You may also need to do this for the Chrome OS emulator. To do that:

	In the lower-right corner of the Chrome OS desktop, click on the bar
that shows the time, battery level, and your account picture:

[image: Chrome OS Status Bar]

Figure 1061: Chrome OS Status Bar

	You should then see a popup panel with status information and a
few controls, akin to elements of the notification shade in Android:

[image: Chrome OS Configuration Panel]

Figure 1062: Chrome OS Configuration Panel
The exact look of this panel will vary by device and Chrome OS version.

	In that panel, tap on “Settings”

The exact look of the Settings window will also vary by device and Chrome OS
version.
Towards the bottom of this Settings page, you should see an “Android Apps”
or “Google Play Store” section:

[image: Chrome OS Android Apps Checkbox]

Figure 1063: Chrome OS Android Apps Checkbox
Click the “Enable Android Apps to run on your Chromebook” checkbox or
the “Enable Google Play Store on your Chromebook” checkbox, whichever one
you have.
At this point, you should gain access to the Play Store and be able
to install apps from there.
Also, note the “App Settings” or “Manage your Android preferences”
link below that checkbox. This will
bring up the Android Settings application, which is separate and
distinct from the Chrome OS Settings page that you are on. There is
no icon for the Android Settings app in the regular Chrome OS app
launcher; you have to know to come here to adjust the Android settings.
Step #3: Switch the Device to the Dev Channel
Some of the devices listed on that Chrome OS/Android status page
indicate that the status is “Stable Channel”. Such devices either ship
with Android support or will get it with a regular Chrome OS update, and
so the instructions in the preceding section should be sufficient for
you to test a production app. Similarly, the Chrome OS emulator ships
with Android support directly.
For devices whose status is “Beta Channel” or “Dev Channel”, you will
need to switch your Chrome OS device to that channel. This works
much like the “canary channel” for Android Studio releases, or the
dev channel for Chrome/Chromium releases. It configures the device
to pull from a different update source, one that pushes updates
more aggressively than it does to normal users.
To do this:

	In the “Settings” page, click on the “About Chrome OS” link

	In the About dialog, click on “Check for and apply updates”, to make
sure that you are on the latest stuff for your current channel:

[image: Chrome OS About Screen]

Figure 1064: Chrome OS About Screen

	Once that is done (and you have returned to the About dialog after
a reboot, if updates were needed), click the “Detailed build information” link,
which brings up a bunch of details regarding your Chrome OS device:

[image: Chrome OS Detailed Build Information Screen]

Figure 1065: Chrome OS Detailed Build Information Screen

	Click on the “Change channel…” button in the Channel category, which brings
up a dialog showing available channels:

[image: Chrome OS Channel Options]

Figure 1066: Chrome OS Channel Options

	Click on the radio button for your desired channel and accept the
dialog

This should apply a new round of updates, pulled from your chosen channel,
then require you to reboot the Chrome OS device.
Step #4: Enable Chrome OS Developer Mode
Those steps are sufficient to allow you to download and run
apps from the Play Store. For seeing if your already-shipping app
works on Chrome OS, that may be sufficient.
Those steps are also sufficient for getting the Chrome OS emulator
working — you should be ready to go from there, with Logcat access
and everything else already set up.
However, on hardware, at this point you have no
access to Logcat, and you have no means of running debug builds or
otherwise testing anything other than your already-shipping app.
For hardware, to access these things, you need to enable Chrome OS developer
mode. There is no direct analogue for this in the Android world. The
closest match is enabling fastboot, perhaps as part of installing
an Android developer preview ROM or some other custom ROM.
Unfortunately, the instructions for enabling developer mode are
hardware-specific and arcane. Also note that doing this will factory-reset
your Chrome OS device, so make sure there is nothing on the device that you
need.
Chromebooks
For Chromebooks, try this:

	Shut down the device normally.

	Then, hold down the Esc and Refresh keys, and while holding
them down, press the power button to turn on the device. The Refresh
key looks like a circular arrow and may be denoted as F3 on your
keyboard. This brings up a “recovery screen”.

	On the recovery screen, press Ctrl-D. This
screen should prompt for confirmation, then reboot the device into
developer mode.

Chrome OS Tablets
For Chrome OS tablets — where you will not have a keyboard — do this
instead:

	With the device powered on, press the volume-down, volume-up, and power
buttons simultaneously

	When the screen turns off, release the buttons

	The screen should turn back on momentarily on its own — otherwise, press
the power button

	If you boot back into Chrome OS, try the process again from the start

	In the Chrome OS recovery menu, press the volume-down button once to
open a boot menu (e.g., “Show debug info”, “Power off”)

	Press both the volume-up and volume-down buttons simultaneously

	In the revised menu, use the volume buttons to highlight “Confirm Disabling
OS Verification”, then press the power button

	Wait a while for Chrome OS to reboot a few times, factory reset your device,
and enable developer mode

Chromeboxes
For a Chromebox (desktop-style Chrome OS device), look for a “reset” or “recovery”
pinhole in the case. If you have one:

	Power down the device as normal

	Using a paperclip, press the reset button while simultaneously pressing the
power button

	Release the reset button after a second

	When you get to the OS recovery screen, press Ctrl-D, which should then
take you to a confirmation screen

	When that confirmation screen appears, use the paperclip to again press
the reset (“recovery”) button

	After a quick reboot, press Ctrl-D at the recovery screen

	Wait a while for Chrome OS to reboot a few times, factory reset your device,
and enable developer mode

Where You Go From Here
From this point forward, your device will be developer mode. However,
on subsequent reboots, that recovery screen will always appear.
There, you have three choices:

	Wait 10-30 seconds, in which case the device will continue its boot
into developer mode

	Press Ctrl-D to skip the delay, if you have a recognized keyboard
at this point (note: USB keyboards work, but probably not Bluetooth ones)

	Use the volume buttons to navigate the menu and choose “Developer Options” > Boot from Internal Disk",
on Chrome OS tablets (and possibly other Chrome OS devices)

	Follow the instructions on the screen to leave developer mode and
return to normal operation

Step #5: Set Up the Android Environment
At this point, you will need to go through some standard steps
for doing development in an Android environment, via the Android
edition of the Settings app. You get to this via that “App Settings”
or “Manage your Android preferences”
link in the “Android Apps” (or “Google Play Store”)
category of the Chrome OS Settings page.
There, you can:

	Go into “About” and tap seven times on the “Build number” entry to
enable developer settings

	Go into “Developer options” and enable USB debugging (and anything
else that you typically use)

	Go into “Security” and enable “Unknown sources”

Note that those options may already be enabled, once you enable “Developer options”
via the seven-taps technique.
Step #6: Side-Load and Install Your App
At this point, you can try out custom builds of your app, by installing
them manually (a.k.a., “side-loading”).
Unfortunately, Chrome OS knows nothing about APK files, so you cannot
use the Chrome OS Files app to install an APK file.
The simplest way to side-load apps is to have an Android app do it:

	a cloud storage client (e.g., Dropbox)

	an Android-native Web browser

	a file manager, to load an APK you got onto the device by some other
means (e.g., Amaze File Manager)

As mentioned earlier, the Downloads folder in Chrome OS is shared
with the same folder on external storage in Android. So, you can also
copy an APK over via a USB flash drive, put it in Downloads using
Chrome OS, then use a file manager to install it from Downloads.
Step #7: Get adb Working
However, you still do not have access to Logcat, or any ability
to use development tools like Android Studio to work on apps on
the Chrome OS device (though the emulator will work at this point).
Some devices support adb over USB.
Most do not. Setting up adb access is possible but
a bit complicated, based on the
official instructions.
NOTE: You will need a keyboard to complete this process. While most Chrome OS
devices have a keyboard, Chrome OS tablets might not. You will need to use your
own keyboard (Bluetooth or USB), and you will want to get that set up and working
before continuing.
Step #7a: Configure the Chrome OS Device
Press Ctrl-Alt-T to open crosh, a quasi-shell provided in Chrome OS.
At that command prompt, run
the shell command to get to bash, a full Linux-style shell.
Then, execute the following
statements:

sudo crossystem dev_boot_signed_only=0
sudo /usr/libexec/debugd/helpers/dev_features_rootfs_verification
sudo reboot

This will reboot your Chrome OS device. If you run into errors running the
dev_features_rootfs_verification command, try rebooting after the
crossystem, then dropping back into the shell and running the
dev_features_rootfs_verification command again.
Then, go back into bash via crosh, and execute:

sudo /usr/libexec/debugd/helpers/dev_features_ssh

This enables an SSH daemon and presumably makes corresponding adjustments
to the iptables-based firewall.
NOTE: You will need to execute this dev_features_ssh script
after every reboot of your Chrome OS device. Whereas the other portions
of this step persist after a reboot, this portion does not. However,
after a firmware update, you may need to do all of these steps.
Step #7b: Find Your Chrome OS IP Address
In the bash shell, you can use ifconfig to get details of your TCP/IP
settings — wlan0 probably has your IP address. However, this is mostly
for people with Linux experience. Everyone else may prefer using the Chrome OS
UI to determine the IP address.
Go into Settings (e.g., tap on the time/WiFi/battery/account bar in the
lower-right, then tap the gear icon). Towards the top of the Settings
page, there will be an “Internet connection” section.

[image: Chrome OS Settings, Internet Connection Section]

Figure 1067: Chrome OS Settings, Internet Connection Section
If you are using
WiFi, tap on the “Wi-Fi network” item, then tap on the WiFi network
that you are using. That should bring up a three-tab dialog with
details about this network connection.

[image: Chrome OS Settings, Internet Connection Dialog]

Figure 1068: Chrome OS Settings, Internet Connection Dialog
The middle tab — Network — will show your IP address:

[image: Chrome OS Settings, Internet Connection Dialog, Network Tab]

Figure 1069: Chrome OS Settings, Internet Connection Dialog, Network Tab
Make note of this address.
Step #7c: Connect to Chrome OS for Development
When you want to develop using the Chrome OS device as the target,
execute adb connect <IP>:22,
where <IP> is the same IP address that you used previously. Note that
the official docs drop off the connect part, which does not work.
This should trigger the standard Android debugging authorization
dialog, akin to what you see when you first try USB debugging on a
phone or tablet. You will need to accept this dialog before continuing.
At this point, adb devices should show your connection, and you should
be able to run apps on the Chrome OS device akin to how you do so for
locally-connected devices, emulators, etc.
If the Chrome OS device goes to sleep, it will disable its WiFi connection.
You will need to wake up the device and run adb connect again to be
able to work with it from Android Studio.
If you reboot the Chrome OS device, you will need to agree once more
to the Play Store terms of service and (try) to sign into the Play Store.
The Play Store UI may appear to get stuck, with a never-ending progress
bar. However, once you have gotten to that point, you should be able
to use adb connect to re-connect to the Chrome OS device.
Be Prepared To Be Wiped Out
Some dev channel updates will wipe out your Android environment,
deleting all apps and files. Hence, do not store things on the
test devices that you will regret losing. Also, you
will need to re-do Step #4, and possibly Step #6,
to re-establish a developer environment.
For example, in June 2017, Google started releasing an update
to the Android environment that replaced Android 6.0 with Android 7.1.1.
This required redoing some of the above steps, such as the seven-taps
technique to enable “Developer options”. However, installed apps were
unaffected.
Compatibility and Your App
You may find that you go through Step #1 and Step #2 above — thereby
enabling Android apps for the Chrome OS device — and find that your
app is not available on the Play Store.
Or, perhaps you go through those steps, and do find that your app is
on the Play Store… but you would prefer that it not be there.
Trying to Get Onto Chrome OS
There is a long list
of <uses-feature> elements that, if present in your manifest with the wrong values, will cause
your app to not be distributed to Chrome OS devices.
For example, if you have a <uses-feature> element stating that you require
android.hardware.telephony — that the device have telephony capability — your
app might not be distributed to Chrome OS devices. You would need to relax this requirement.
Conversely, not all Chrome OS devices have touchscreens. Ideally, you test your app using a keyboard
and mouse or trackpad and confirm that it works well without a touchscreen.
Then, add this to your manifest:

 <uses-feature
 android:name="android.hardware.touchscreen"
 android:required="false" />

This advertises that you are willing to support non-touchscreen
environments and therefore can be installed on non-touchscreen Chrome OS
devices. The default is that you need a touchscreen; you have to specifically opt
out of that requirement to reach the full range of Chrome OS devices.
Trying to Stay Away From Chrome OS
Perhaps you are not in position to fully support Chrome OS. In that case, you could
add one of the proscribed <uses-feature> elements to block distribution to
Chrome OS devices.
However, this approach will also block your app from other devices that happen
to lack that hardware feature.
Sometimes, that is really what you want. So, for example, if you need USB host
mode, you should have a <uses-feature> element for android.hardware.usb.host,
so that any device that lacks USB host mode support will not install your app.
There is no manifest setting, though, that will block your app from Chrome OS
devices and not affect any other device type. Google wants you to support Chrome OS
and does not make it easy to opt out without also losing access to other hardware.
Your App on Chrome OS
On the surface, Android apps will perceive Chrome OS as just another
Android device. Other than the manifest entries listed above, there
is nothing that you absolutely need to do in your app to run on Chrome OS.
That being said, Chrome OS is going to be somewhat different than a
normal Android device. Those differences may be something that you want
to try to take into account.
Environment
Chrome OS is presently running API Level 25 (Android 7.1), though it contains
some elements of Android 8.0’s multi-window functionality.
We can tell what the API level is by logging Build.VERSION.SDK_INT, along with other values,
as seen in the
Introspection/EnvDump
sample app. This has a single activity, designed to collect a bunch of
device data and dump it to Logcat:

package com.commonsware.android.envdump;

import android.app.Activity;
import android.app.ActivityManager;
import android.content.pm.FeatureInfo;
import android.content.res.Configuration;
import android.os.Build;
import android.os.Bundle;
import android.util.DisplayMetrics;
import android.util.Log;
import android.widget.TextView;

public class MainActivity extends Activity {
 private static final String TAG="EnvDump";
 private final StringBuilder buf=new StringBuilder();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 logBuildValues();
 logSystemFeatures();
 logActivityManagerStuff();
 logDisplayMetrics();
 logConfiguration();

 TextView tv=(TextView)findViewById(R.id.text);

 tv.setText(buf.toString());
 }

 private void logBuildValues() {
 log("Build.VERSION.SDK_INT="+Build.VERSION.SDK_INT);

 log("Build.BRAND="+Build.BRAND);
 log("Build.DEVICE="+Build.DEVICE);
 log("Build.DISPLAY="+Build.DISPLAY);
 log("Build.HARDWARE="+Build.HARDWARE);
 log("Build.ID="+Build.ID);
 log("Build.MANUFACTURER="+Build.MANUFACTURER);
 log("Build.MODEL="+Build.MODEL);
 log("Build.PRODUCT="+Build.PRODUCT);

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
 StringBuilder buf=new StringBuilder();

 for (String abi : Build.SUPPORTED_ABIS) {
 if (buf.length() > 0) {
 buf.append(',');
 }

 buf.append(abi);
 }

 log("Build.SUPPORTED_APIS=" + buf);
 }
 else {
 log("Build.CPU_API="+Build.CPU_ABI);
 log("Build.CPU_API2="+Build.CPU_ABI2);
 }
 }

 private void logSystemFeatures() {
 for (FeatureInfo feature :
 getPackageManager().getSystemAvailableFeatures()) {
 log("System Feature: "+feature.name);
 }
 }

 private void logActivityManagerStuff() {
 ActivityManager mgr=(ActivityManager)getSystemService(ACTIVITY_SERVICE);

 log("heap limit="+mgr.getMemoryClass());
 log("large-heap limit="+mgr.getLargeMemoryClass());
 }

 private void logDisplayMetrics() {
 DisplayMetrics dm=new DisplayMetrics();

 getWindowManager().getDefaultDisplay().getMetrics(dm);

 log("DisplayMetrics.densityDpi="+dm.densityDpi);
 log("DisplayMetrics.xdpi="+dm.xdpi);
 log("DisplayMetrics.ydpi="+dm.ydpi);
 log("DisplayMetrics.scaledDensity="+dm.scaledDensity);
 log("DisplayMetrics.widthPixels="+dm.widthPixels);
 log("DisplayMetrics.heightPixels="+dm.heightPixels);
 }

 private void logConfiguration() {
 Configuration cfg=getResources().getConfiguration();

 log("Configuration.densityDpi="+cfg.densityDpi);
 log("Configuration.fontScale="+cfg.fontScale);
 log("Configuration.hardKeyboardHidden="+cfg.hardKeyboardHidden);
 log("Configuration.keyboard="+cfg.keyboard);
 log("Configuration.keyboardHidden="+cfg.keyboardHidden);
 log("Configuration.locale="+cfg.locale);
 log("Configuration.mcc="+cfg.mcc);
 log("Configuration.mnc="+cfg.mnc);
 log("Configuration.navigation="+cfg.navigation);
 log("Configuration.navigationHidden="+cfg.navigationHidden);
 log("Configuration.orientation="+cfg.orientation);
 log("Configuration.screenHeightDp="+cfg.screenHeightDp);
 log("Configuration.screenWidthDp="+cfg.screenWidthDp);
 log("Configuration.touchscreen="+cfg.touchscreen);
 }

 private void log(String msg) {
 Log.d(TAG, msg);
 buf.append(msg);
 buf.append('\n');
 }
}

(from Introspection/EnvDump/app/src/main/java/com/commonsware/android/envdump/MainActivity.java)
The following sections outline some settings of note to Android developers.
System Features
Most Chrome OS devices should advertise support for the following system
features (e.g., PackageManager and hasSystemFeature()):

	android.hardware.audio.output

	android.hardware.bluetooth

	android.hardware.bluetooth_le

	android.hardware.faketouch

	android.hardware.location

	android.hardware.location.network

	android.hardware.screen.landscape

	android.hardware.screen.portrait

	android.hardware.type.pc

	android.hardware.wifi

	android.software.backup

	android.software.freeform_window_management

	android.software.print

	android.software.voice_recognizers

	android.software.webview

	com.google.android.feature.GOOGLE_BUILD

	com.google.android.feature.GOOGLE_EXPERIENCE

	org.chromium.arc

	org.chromium.arc.device_management

Portable Chrome OS devices (not Chromeboxes) should also support:

	android.hardware.camera

	android.hardware.camera.any

	android.hardware.camera.front

	android.hardware.microphone

	android.hardware.sensor.accelerometer

	android.hardware.touchscreen

	android.hardware.touchscreen.multitouch

	android.hardware.touchscreen.multitouch.distinct

	android.hardware.touchscreen.multitouch.jazzhand

Others will be hit-or-miss:

	android.hardware.audio.low_latency

	android.hardware.audio.pro

	android.hardware.opengles.aep

	android.hardware.sensor.gyroscope

	android.hardware.vulkan.level

	android.hardware.vulkan.version

	android.software.midi

NDK Binaries
The Build.SUPPORTED_APIS value indicates what CPU architectures are supported
for NDK binaries:

 	Device
 	Value

 	Acer Chromebook R11 C738T
 	x86,armeabi-v7a,armeabi

 	Acer Chromebook Tab 10 D651N-K9WT
 	armeabi-v7a,armeabi

 	HP Chromebox x2
 	x86_64,x86,armeabi-v7a,armeabi

If the device has an x86 CPU, that will be listed. All Chrome OS devices
appear to support ARM NDK binaries, presumably through libhoudini or
similar technology.
Other Values
The heap limit seems to be generally set to 192MB with the large-heap limit
set to 512MB, though they might be lower on very low-end Chrome OS devices.
For devices with their own screens,
DisplayMetrics and Configuration should report appropriate values
for screen density, based on the screen size and resolution. Chromeboxes may be
less reliable, in large part because they do not know the physical size of the
display.
Screen Size and Orientation
The user can toggle between three different states for your activity’s
window:

	regular landscape

	regular portrait

	full-screen (akin to pressing the “maximize” button on a desktop OS)

Your activity will undergo configuration changes, as you might expect,
when the user switches between these.
Lifecycle Events
Lifecycle events behave more or less as you might expect:

	While your app’s window is the focused window, your app is in the
normal running state (i.e., onResume() has been called).

	If another window takes over the focus, but your window is still
visible, your activity in that window will be paused, then
resumed if the window regains the focus.

	If the user minimizes your window, you will be called with
onPause() and onStop(), as your activity is no longer
visible.

	If the user switches between the floating-window and the
full-screen sizes, your activity will undergo a configuration
change and, by default, be destroyed and recreated.
Note that there seems to be a bug, as your activity goes through
a spurious extra pause/resume cycle before settling down.

Chrome OS remembers your last window size (floating or full-screen).
On the next launch of your app, you will return to that size.
One oddity: if another window takes over the full screen, even
though your window is no longer visible, your activity is not
stopped. It is paused — that will happen once the window loses
the focus. The only time you are stopped is if the window is
minimized (or the activity is being destroyed).
Touchscreen and Keyboard Input
As noted earlier, not all Chrome OS devices have touchscreens.
Chromebooks will have trackpads; Chromeboxes will rely on mice.
And pretty much all Chrome OS devices will have full keyboards.
For touchscreen-equipped Chromebooks, the full suite of
gestures should be available to developers. However, for devices
lacking a touchscreen, using Android apps becomes… interesting.
For example, to scroll a ListView or RecyclerView, you cannot
simply drag a scrollbar, because there is no scrollbar. Even if
you putter around and arrange for scrollbars to become visible,
they do not respond to touch input. Instead, users need to know
to press a meta key (e.g., Ctrl) while “swiping” the list with
the mouse to be able to scroll. This is somewhat easier with a
trackpad, as a two-finger swipe will scroll the list.
However, you really need to consider
optimizing your app for keyboards and mice, rather
than assuming touchscreens or trackpads with Chrome OS.
Storage
Internal and external storage both work fine on Chrome OS.
However, outside of debugging tools, you do not have any ability to work
with the files themselves as a developer, much like how you are limited
in accessing files that are part of an emulator image.
The exception, as noted earlier in this chapter, is the Downloads
directory on external storage. This is also available to Chrome OS
users via the Files app.
Note that the Storage Access Framework works, for things like
ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT. You do not have
access to removable storage, though, even through the Storage
Access Framework.
Notifications
Notifications work… at least to some extent.
Their look and feel gets normalized to Chrome OS styling, so they will
not look like standard Android notifications:

[image: Android Notification with Two Actions on Chrome OS]

Figure 1070: Android Notification with Two Actions on Chrome OS
Also, actions seem to automatically cancel the Notification, even
if that is not what you intended.
Internet Access
On the whole, HTTP access “just works”, whether you are using WebView
or HttpUrlConnection.
SSL also “just works”, subject to the same sorts of limitations that
you see in normal Android development, such as what root certificates
are available for validating the SSL certificate for a particular https://
URL.
The author has not tested lower-level socket operations at this time.
Miscellaneous Oddities
Theme.Translucent.NoTitleBar does not work, insofar as you will
still wind up with a window in Chrome OS, one with an all-black
background:

[image: Invisible Activity on Chrome OS]

Figure 1071: “Invisible” Activity on Chrome OS
Android apps cannot work with external displays
plugged into the Chrome OS device, using Presentation or similar techniques.
It is possible that this is because some Chrome OS devices do not have
their own built-in displays (e.g., ChromeBoxes) and rely on an external
display as their primary display.
Distribution Options
Obviously, with the right manifest settings, you can distribute your
app via the Play Store.
However, at the present time, sideloading is not an option, except for people
who have gone through the steps outlined in this chapter to turn their Chrome OS
devices into developer machines. Few users will be doing this. Hence, the Play Store
is your only practical distribution channel right now.
Getting Help
The official support point is the #AndroidAppsOnChromeOS hashtag
on the Android developer Google+ community.
There is an equivalent tag on Stack Overflow,
which briefly was an official support point before being replaced
by Google+.
If you encounter bugs, you are supposed to be able to file issues
through this link on the Chromium
issue tracker.
Device Catalog: BlackBerry
BlackBerry — formerly Research In Motion — has been a long-standing
player in mobile devices. Their BlackBerry two-way pagers and early
smartphones help set the stage for Android, iOS, and those that followed.
BlackBerry and Android have had an interesting history.
In 2011, BlackBerry leapt
into the tablet arena with the Playbook, and the 2.0 version
of the Playbook OS supported running carefully repackaged Android
applications.
While the Playbook itself had modest success, the ability to distribute
Android applications to BlackBerry devices continued with their BlackBerry
10 (BB10) platform, where they offered several phones that could run Android apps.
Originally, these had to be specially packaged for BB10, and
that is still a common course today. However, in concert with offering
the Amazon AppStore for Android on BB10, BlackBerry made it possible
to install ordinary APK files as well.
Many developers have enjoyed success distributing their
app through BlackBerry World (the primary distribution channel for apps to
BlackBerry products) and Amazon Appstore for Android.
In 2015, BlackBerry continued their Android push with the BlackBerry
Priv, a device designed from the outset to run Android. The Priv comes with
a full suite of BlackBerry-related software, including the legendary
BlackBerry Messenger (BBM). However, much of that software — including
BBM itself — is available on the Play Store for ordinary Android devices.
In general, from the standpoint of an Android app developer, the Priv
is no different than an Android device from any other major manufacturer.
The Priv is even part of the Google Play ecosystem and comes with the
Play Store and Google Play Services.
Putting the Priv aside, though, getting your app going on BB10 is a bit
more of an adventure.
This chapter will describe a bit about what is involved in getting your
Android app to BB10 devices.
I Thought BlackBerry Had Their Own OS?
They do.
However, current versions of that OS — this chapter was last updated when
version 10.3 was the latest shipping version — contain an Android
runtime environment. BlackBerry OS can run Android apps alongside apps
written natively for BlackBerry OS or running on other runtimes (e.g.,
Adobe AIR). This gives developers a wide range of ways to get their
app onto modern BlackBerry devices. However, it does mean that our apps
may have somewhat less direct access to hardware, as there is another
layer between us and that hardware.
What Else Is Different?
At its core, BlackBerry is a device manufacturer, no different than any
other manufacturer that you may have dealt with previously. The biggest
difference is BlackBerry’s ability to run Android applications that you
prepare for their devices.
That being said, the world of BlackBerry is a bit different than what
you may be used to.
Hardware
BlackBerry makes phones with a variety of capabilities, much as do other
manufacturers. You should be writing your apps to support
a range of device characteristics, such as screen size and density. That
will help you with BlackBerry support, just as it helps you with support
for other manufacturers’ devices.
Note, though, that BlackBerry has some history which will affect their
device designs, and your apps by extension. Notably, BlackBerry has been
renowned for their hardware keyboards. While not all BlackBerry devices
today have such keyboards, it is likely that BlackBerry will ship keyboard-equipped
devices for some time to come.
This has three impacts upon you as a developer:

	Do not assume that the user is using a soft keyboard. Usually, this is
not a problem from a programming standpoint, though you may wish to take
it into account in documentation.

	Do not assume that the user always uses the touchscreen to navigate.
Some BlackBerry users may use the hardware keyboard for navigation. This is
particularly true for users who gravitate towards hardware keyboards for
accessibility reasons. Your app should support proper focus
to allow it to be navigated without accessing the touchscreen, to the
greatest extent possible.

	BlackBerry keyboards often have not been “slider” keyboards (i.e., ones
that might slide under the display when not in use). Rather, they are
always available, below the screen. This will often result in somewhat
smaller screen sizes, and odd aspect ratios, compared to what you are used
to. There simply is not enough room for a large touchscreen and an
always-available physical keyboard without having an excessively large
device. The BlackBerry Q10, for example, has a 720x720 resolution screen,
and most Android developers do not encounter square screen resolutions.
You will need to take this into account, but only in cases where such
an aspect ratio might cause you problems (e.g., full-screen image backgrounds).

BlackBerry OS 10.3
Beyond the hardware, the BlackBerry OS — and the Android runtime environment
that executes our Android apps — puts some limits on what we can do in
our apps. Of note:

	BlackBerry OS 10.3’s Android environment uses Android 4.3 (API Level 18),
so apps that have an android:minSdkVersion higher than that will not
be eligible to run on 10.2 devices.

	Some classes will be non-functional, particularly those related to
telephony capabilities. You cannot use SmsManager, for example.

	Some types of apps will not work well, because the Android runtime runs
alongside other non-Android apps on the hardware. Replacement home screen
implementations, for example, are unlikely to work. Similarly, background
apps that display a UI (e.g., Facebook “chatheads”-style popups) using
SYSTEM_ALERT_WINDOW are unlikely to work.

	App widgets are not supported. So long as the app widget is a non-essential
feature of your app, this should not be a problem — after all, the user does
not have to use your app widget on any Android device. However, if the
sole purpose of your app is to provide an app widget, such an app will
not be useful on BlackBerry.

	Not all connectivity is surfaced in the Android runtime from the
underlying hardware. For example, WiFiDirect and direct
USB access are all unavailable.

Navigation
Like most Android tablets, BlackBerry devices offer little in the way of
physical or off-screen navigation buttons. For example, there is no
BACK button. However, a navigation bar will contain a BACK soft
button for users. If your app takes over the full screen, this bar
will not be there all the time, but a swipe down from the top of the
screen should expose it.
Similarly, your menu will not be accessed via a MENU key, but rather
via a downward swipe to expose the menu. This also means that any
special MENU-button logic of yours may not work, if you are using the MENU
button for things other than displaying the action bar overflow or
other form of options menu.
Nothing Googly
As with other devices cited in this book, the BlackBerry series of
devices lack support for Google’s proprietary apps. For app developers,
this means that you lack access to Google Play Services and the various
APIs exposed by it, such as Maps V2 and
Google Cloud Messaging.
BlackBerry does offer its replacement for GCM, in the form of the
BlackBerry Push Service.
However, for maps, they steer you towards using
geo: Intent structure and startActivity().
If you are dependent upon other APIs offered by Google Play Services
(e.g., LocationClient), you will need to reconsider
your use of those APIs if you wish to ship on devices that are outside
the Google ecosystem.
Package Name Length
The BlackBerry Android runtime appears to only support package names of 29
characters or less. The build tools will fail if your package name is longer
than 29 characters.
Note that this should only pertain to the “application ID” role of a
package name, not the “hey, where does R.java get generated?” role of
the package name. Hence, it should be possible to replace the application
ID of your app via a product flavor,
to give yourself
a shorter identifier while not breaking your source code references to
resources.
What Are We Making?
This might seem like an odd question. After all, the point of this chapter
is to make an Android application that can run on BlackBerry devices.
Up until early 2014, that meant you had one option: write a BAR.
A BAR (BlackBerry ARchive, presumably) is a repackaged version of an
Android APK, designed to be distributed by BlackBerry and installed on
BlackBerry devices. Most of the tooling supplied by BlackBerry
surrounds this process of validating that an APK should abide by
BlackBerry’s requirements and converting that APK into a BAR.
Starting with BlackBerry OS 10.2.1, though, BlackBerry device users
can download and install an APK directly. That APK still needs to work
within the confines of the BlackBerry Android runtime and must avoid
things that will not work there (e.g., replacement home screens). But the
user is no longer reliant upon the developer going ahead and creating a BAR
file.
So, what you are creating depends a bit on how you want to distribute
the app:

	If you wish to distribute via BlackBerry world, you will need to repackage
your APK as a BAR file

	If you wish to distribute through Amazon Appstore for Android, or if you
wish to self-distribute, you can still ship an APK, though you may wish
to use some of BlackBerry’s tools to help ensure that your APK will
be compatible

Getting Your Development Environment Established
By and large, developing an app to run on the BlackBerry OS Android runtime
is the same as is developing an app to run on any other Android environment.
You have your standard choices of IDEs and other development tools, the
ability to use third-party libraries, and so forth.
Where things start to differ is in testing, where BlackBerry OS ships
a Simulator that fills a role similar to that
of the Android emulator. To use the Simulator, you will need to package
your app into a BAR file, and BlackBerry provides tools to assist you in
that process as well.
Checking and Repackaging Your App
There are two basic technical steps for preparing your app for
distribution through the BlackBerry World market.
The first is to validate that your app does indeed stick to APIs that
are supported by the BlackBerry Android runtime. This helps prevent
apps from appearing on BlackBerry World that are guaranteed to fail.
The second is to convert the APK into a BAR file. BAR files are used for
all of the BlackBerry OS runtimes, including ones like Adobe AIR. Your BAR
will contain the same stuff that is in your APK, plus some additional
metadata, in a format shared by all of the other runtimes, for interpretation
and use by the BlackBerry OS. Again, if you are not planning on distributing
through BlackBerry world, you will not need to worry about a BAR file.
Android Studio Plugin
BlackBerry is distributing an Android Studio plugin
to help with
preparing Android apps for BlackBerry. Note, though, that this is an
Android Studio plugin, not a Gradle plugin. On the plus side, this
gives you new BlackBerry-related options in the Android Studio UI.
However, since Android Studio evolves frequently, there is a decent
chance that the BlackBerry plugin will not work on some newer Android
Studio builds, until BlackBerry catches up.
This plugin includes:

	an adb proxy that allows Android Studio to work with BlackBerry
devices and running simulators

	a UI for obtaining a “device debug token”, required to allow you to
test your apps on BlackBerry devices

	package an APK as a BAR

Standalone GUIs
You also have the option for doing BlackBerry-related chores from
standalone GUIs,
independent of any IDE.
Basically, both IDE plugins simply provide menu options and toolbar
buttons for launching the standalone GUIs from within the IDE. If you
are not using Android Studio, those GUIs are available
independently that you can run like any other desktop development tool.
BlackBerry 10 Simulator
BlackBerry distributes VMWare images that embody a BlackBerry 10 Simulator.
You can use these with VMWare Player (Windows and Linux) or VMWare Fusion
(macOS), versions 3.1 or higher.
The Simulator fills a role similar to that of the standard Android emulator,
allowing you to test your apps for BlackBerry OS without necessarily having
a Blackberry OS 10 device, or for testing scenarios that are difficult
to test with actual hardware.
In particular, the Simulator offers a wide range of simulated input
and output, including:

	Simulated sensor input for the accelerometer and ambient light sensor

	Using a development machine’s Bluetooth adapter for testing Bluetooth

	Simulated NFC tags

In addition, the Simulator supports some of the same types of simulated input
that you see with the Android emulator, such as simulated GPS fixes and simulated
incoming phone calls.
The VMWare image will have its own IP address, which you can obtain
from the Simulator running in the image. You can then deploy
your BAR to it using the adb proxy, which you can launch from your
IDE or the standalone GUI.
Developing on Hardware
A BlackBerry OS 10 device can run either signed or unsigned BAR files.
Unsigned
BAR files, though, require a one-time upload of a “debug token”, the
creation of which requires the same credentials as you would use to
sign the BAR in the first place.
How Does Distribution Work?
As with any environment where the Play Store is not available, developers
have to determine how best to get their apps to the users of BlackBerry
devices.
As with most non-Play Store ecosystems, there is the official solution…
and then there are the other solutions.
BlackBerry World
BlackBerry’s own “market” is BlackBerry World. This supports native
BlackBerry apps, plus those for runtimes like the Android runtime. So long
as your app is packaged as a BAR, it should be able to be released through
BlackBerry World, much like how you distribute an APK through the Play Store.
BlackBerry World is a curated marketplace, meaning that BlackBerry staff
will review your app submissions and may reject them if they violate
requirements or other terms.
Beyond that, BlackBerry World has most of the standard capabilities that
you would expect from an app market, such as paid apps, in-app purchases,
multiple billing options (PayPal and carrier billing), control for distribution
to various countries and mobile carriers, etc.
Amazon Appstore for Android
However, many Android developers will probably elect to distribute through
Amazon Appstore for Android, now that it ships on new BlackBerry devices.
Partly, it is for improved reach: by distributing through Amazon’s channel,
you reach the Kindle Fire and Fire TV series of devices, plus any other
Android devices that happen to have the Amazon Appstore for Android installed.
Partly, you can distribute in the form of an APK, rather than having
to mess around with registering for BlackBerry World, creating BAR files,
and the like.
Alternatives
Starting with BlackBerry OS 10.2.1, you can distribute APK files
through your Web site or similar means, and BlackBerry users can download
and install them. However, nothing is done to validate that the apps
you download will work on BlackBerry OS’s Android runtime, as they may
use APIs that are not available.
Also note that the BlackBerry OS settings have an equivalent to the
Android “allow apps from other sources” setting that must be enabled
for such installation to occur.
As an example, you can install the F-Droid “market” app
to download free and open source Android apps to a BlackBerry OS device.
How many of the apps distributed through F-Droid will work on BlackBerry OS,
besides F-Droid itself, is unknown.
Device Catalog: Android TV
Google not only offers the Chromecast, but also offers
Android TV as a way to get content “into the living room”.
Android TV devices — whether they be set-top boxes or
are integrated into televisions directly — run Android apps
directly, unlike Chromecast. Android TV, therefore, is
a competitor to devices like Amazon’s Fire TV.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book. Having read the chapter on “ten-foot” user experiences
is also a good idea.
Hey, Wait a Minute… I Thought the Name Was “Google TV”?
You can be forgiven for any confusion over the names.
Google TV was Google’s initial attempt to get content onto televisions.
Debuting in 2011, Google TV has some of the same characteristics
as does Android TV:

	It ran Android apps directly (at the time, on Android 3.1)

	It could be a dedicated set-top box, integrated into other sorts
of media players (e.g., Blu-Ray), or integrated into televisions

However, Google TV did not prove all that popular.
In 2014, Google announced that they were no longer supporting app
development for Google TV, much to the consternation of the ~17
people still using Google TV devices.
That being said, designing an app for Android TV resembles designing
an app for Google TV or for any other “ten-foot” user experience.
Hence, design guidance that you may run across for Google TV may have
some tips that are still relevant for Android TV and other TV-centric
Android environments.
Some Android TV Hardware
Android TV debuted in 2014. However, as of the end of 2014, there
were a total of two Android TV device models… both available from Google.
While other manufacturers had announced plans regarding Android TV,
none were available at the time of this writing.
ADT-1
When Google TV was announced, there was a similar lack of hardware. To
help ensure that there were TV-capable apps at the time of a wider
Google TV rollout, Google offered free developer devices to various
firms and solo developers.
Google did the same thing with Android TV, where they offered a free
ADT-1 device to qualified registrants. While deliveries of the ADT-1
were spread out over a few months, they generally arrived significantly
in advance of production Android TV hardware.

[image: ADT-1 Developer Android TV Device]

Figure 1072: ADT-1 Developer Android TV Device
Nexus Player
The first production-grade Android TV device is Google’s own Nexus Player.
As with the ADT-1, the Nexus Player has an HDMI port for connecting
to a TV (or projector, monitor, etc.). It also has its own remote control
and power adapter.

[image: Nexus Player Android TV Device]

Figure 1073: Nexus Player Android TV Device
Both the ADT-1 and the Nexus Player are presently running Android 5.0.
What Features and Configurations Does It Use?
Android has built into the SDK a fair bit of device flexibility. Most
of this comes in the form of configurations (things that affect
resources) and features (other stuff). If your application can handle
a range of configurations and features, or can advertise that they
need certain configurations or features, they can handle Android TV or
arrange to not be available for Android TV on the Play Store.
Screen Size and Density
Android TV devices are always categorized as xlarge screen size.
Densities, however, are a bit more complicated.
Android TV is for use with HDTV, whether Android TV is integrated into
the television or it comes as an external set-top box. There are two
predominant HDTV resolutions, known as 720p (1280x720) and 1080p
(1920x1080). A 1080p television will be categorized as an xhdpi
density device. A 720p television will be categorized as a tvdpi
device. tvdpi is for devices around 213dpi, in between mdpi and
hdpi. In practice, you might elect to skip tvdpi for your
drawable resources, allowing Android to resample your mdpi, hdpi,
or xhdpi drawables as needed.
Input Devices
Android TV will not normally be navigated using a touchscreen. Instead,
the normal form of input will be a D-pad remote. Developers will need
to ensure that their apps are navigable this way.
Other Hardware
Android TV has no sensors, no camera, no microphone, and
no telephony features. As such, any application requiring such
features will not run on Android TV and will not even show up in the
Play Store for such devices.
Bear in mind that some of these will be driven by permissions. If you
ask for the SEND_SMS permission, Android will assume you need
android.hardware.telephony unless you specifically state otherwise,
via a <uses-feature> element for android.hardware.telephony with
android:required="false".
What Is Really Different?
Beyond the features and configurations, there are other things about
Android TV that will depart from what you might expect for an Android
environment, due to the nature of the TV set-top box platform and the
Android implementation upon it.
Overscan
Since Android TV typically uses a television for its primary output,
overscan can be an issue. Addressing overscan is covered as part of
the chapter on the “10 foot UI”.
Ethernet
While Android TV devices will generally be connected to the Internet,
it may not be via WiFi. Since Android TV devices generally are not
portable, some will have Ethernet jacks, and hence some users will
elect to wire in their Android TV as opposed to using WiFi.
The upshot is that you should not assume that WifiManager will
necessarily give you useful results. Also, ConnectivityManager
should report wired Ethernet as TYPE_ETHERNET, added in API Level
13, when you call methods like getActiveNetworkInfo().
Location
Generally speaking, Android TV devices will tend not to move,
earthquakes and large dogs notwithstanding.
As such, Android TV devices do not have GPS receivers. Rather,
location is determined in an approximate fashion via address-based
lookups, using a postal code. Hence, asking Android for a GPS fix on
a Android TV device will be ineffective.
However, since users of Android TV devices tend not to be moving much
at the time, it is a bit more likely than normal that they will want
information about some location other than where they are. If your
app is exclusively tied to providing information about their current
location, you may wish to consider how you could extend your app to
help users get information about other places that they may be
interested in.
Media Keys
Android TV devices are usually manipulated by remote controls. Some of
these remotes will have lots of buttons, such as media-specific buttons for play,
pause, etc.
The KeyEvent class has had support for some media buttons since API
Level 3, mostly for use with wired headsets. API Level 11 added a
bunch more media buttons. Your Android TV application may wish to
respond to these, via onKeyDown() in a View or Activity.
In
particular, an Android TV application should not be using on-screen
controls for play, pause, etc., as they take up screen space that
probably could be put to better use. Rather, use layouts that offer
such controls for touchscreen devices (e.g., phones and tablets) but
rely on the media buttons for non-touchscreen devices.
Getting Your Development Environment Established
Android TV emulator images are available in the SDK Manager for
Android 5.0 and above:

[image: Android TV Emulator Images in SDK Manager]

Figure 1074: Android TV Emulator Images in SDK Manager
Your AVD Manager can then help you set up TV emulator images, for
rather large theoretical screen sizes:

[image: Android TV Hardware Profiles in AVD Manager]

Figure 1075: Android TV Hardware Profiles in AVD Manager
The rest of the emulator setup is the same as you would have for phone
or tablet emulators.
The emulator even has “leanback” UI characteristics, rather than a
standard Android emulator home screen:

[image: Android TV 1080p Emulator, As Initially Launched]

Figure 1076: Android TV 1080p Emulator, As Initially Launched
Connecting to Physical Devices
The ADT-1 and Nexus Player have micro-USB ports for debugging purposes.
This, though, requires that your player and your development machine
be within USB cable reach of one another. The author of this book uses
a pico projector to be able to
work with TV-native devices (Android TV, Fire TV, etc.) or external
displays (HDMI, MHL, etc.).
To enable an Android TV for debugging, you will need to enable
developer options, much like you do for a mobile device (click on the
build number 7 times in the Setting’s About screen). Then, in the
“Developer Options” screen, you can go into Debugging and elect to
enable “USB debugging”.
How Does Distribution Work?
Your app probably falls in one of three buckets: you want it on
Android TV (along with other devices), it only supports Android TV,
or it will not work on Android TV. Whichever of those buckets best
fits your device will determine the manifest settings you will want
to ensure that the Play Store (and perhaps other third-party
markets in the future) will honor your request.
Getting Your App on Android TV
The first criterion for getting your app visible to Android TV devices
on the Play Store is to add a <uses-feature> element to your
manifest, indicating that you do not require the
android.hardware.touchscreen feature:

<uses-feature android:name="android.hardware.touchscreen" android:required="false"/>

By default, Android assumes that you need a touchscreen, and so
without this clarification in your manifest, you will not appear in
the Play Store.
Also, add similar <uses-feature> elements for any hardware that you
might like to use where available but do not absolutely need,
particularly hardware that Android TV may lack. The
documentation
outlines the features that Android TV devices will likely lack.
You need to have an activity that has an <intent-filter> for
ACTION_MAIN and CATEGORY_LEANBACK_LAUNCHER. This will be your
launcher activity on Android TV devices, instead of your
ACTION_MAIN/CATEGORY_HOME activity. Of course, you are welcome to
have one activity serving as the launcher for both types of devices,
if you can come up with one with a solid presentation for both mobile
devices and TVs.
In addition, do not have any activities with android:screenOrientation set to
portrait, as Android TV devices always display in landscape
Supporting Only Android TV
If your app only supports Android TV, in addition to the above
requirements, you should also add one more <uses-feature> element to
your manifest:

<uses-feature android:name="android.hardware.type.television" android:required="true"/>

This will filter you out of the Market for all non-TV
environments.
Avoiding Android TV
If your app specifically is untested on Android TV, you need to have
something in the manifest that will keep you off Android TV devices’
views of the Play Store. The easiest is to say that you need a
touchscreen:

<uses-feature android:name="android.hardware.touchscreen" android:required="true"/>

Note that true is the default setting for this particular feature, though
putting it in your manifest to remind you that you do require a touchscreen
is a good idea.
Device Catalog: Amazon Fire TV and Fire TV Stick
Amazon has joined the TV set-top box fray with the Fire TV and, more recently,
the Fire TV Stick. These devices are powered
by FireOS, Amazon’s variation of Android. And, as with other Amazon FireOS devices,
like the Kindle Fire tablet series, you can write apps that run on Fire TV
and the Fire TV Stick.
This chapter will review these devices from a developer’s standpoint, to help
you create apps for this platform.
Prerequisites
Understanding this chapter requires that you have read the core chapters
of this book.
Reading the chapter on the ten-foot user interface is
also recommended, either before or after this chapter.
Also, some sections will make reference to Android TV as a point of
reference.
Introducing the Fire TV Devices
As of August 2017, there were two major flavors of Fire TV device:
the original Fire TV, and the Fire TV Stick. Both run FireOS, Amazon’s name for
their derivative of Android.
Fire TV
As with most Android-powered set-top boxes, the original Fire TV is small and is designed
to connect with your television (or monitor, or projector, or whatever) via HDMI:

[image: Fire TV]

Figure 1077: Fire TV
It comes with a small wireless remote designed for basic controls, akin to what
you might find on other streaming boxes or similar entertainment devices:

[image: Fire TV Remote]

Figure 1078: Fire TV Remote
Optionally, you can get a gaming controller that works with the Fire TV. While the
regular controller is fine for navigating the Fire TV UI, the gaming controller will
be more suitable for more serious game play:

[image: Fire TV Gaming Controller]

Figure 1079: Fire TV Gaming Controller
While the Fire TV is powered by Android, the on-device UI is definitely targeting
a set-top box environment. The home screen is dominated by media, coming from
whatever supported streaming content providers you have set up with the Fire TV
(e.g., Amazon Prime):

[image: Fire TV Home Screen]

Figure 1080: Fire TV Home Screen
The “Apps” section shows a mix of what is installed and what is available for you
to download, with “cloud” icons indicating apps that are available but are not
presently installed:

[image: Fire TV Your Apps Library]

Figure 1081: Fire TV “Your Apps Library”
FIre TV Stick
The Fire TV Stick is physically substantially smaller than is the Fire TV,
designed to more closely resemble the Chromecast:

[image: Fire TV Stick, with Remote, AC Adapter, and HDMI Extension Cable]

Figure 1082: Fire TV Stick, with Remote, AC Adapter, and HDMI Extension Cable
The user experience of a Fire TV Stick, though, is largely the same
as with a regular Fire TV. Both run the same FireOS environment, with the
same sort of browsing metaphor.
The biggest difference is that the Fire TV Stick is less powerful (less
RAM, weaker CPU and GPU). For conventional apps, this is unlikely to be
a problem, as the Fire TV Stick is as powerful as many standard Android
phones and tablets. Games, however, are more likely to stress the hardware.
From the user’s standpoint, the Fire TV Stick’s big selling point is
its low price, about a third of what the Fire TV costs.
What Features and Configurations Do They Use?
The Fire TV device family
behaves a bit like a “mashup” of other TV-centric devices (Android TV,
OUYA, etc.) and the Kindle Fire series of tablets.
Screen Size, Density, and Orientation
One area where the Fire TV series differs from pretty much anything that came before it comes
with the behavior of the screen. As with other TV-centric devices like Android TV,
the assumption is that the screen is locked to landscape. However,
beyond that, Amazon has struck out on its own in terms of screen characteristics.
With Android TV, the screen size and density are based on the type of display that
the Android TV box is plugged into.
With the Fire TV devices, your code deals with a rendering surface of 1920x1080 pixels, regardless
of whether the device is plugged into a 1080p screen or something else (720p, 4K, etc.).
The density is always treated as -xhdpi, giving you a resolution of 960dp by 540dp,
and a -large screen size. The hardware will handle scaling the output down (or, in theory,
up for 4K) as needed.
On the plus side, this simplifies app development, as you do not need to deal with
different screen capabilities yourself. However, it remains to be seen how well
the Fire TV will scale the output.
Also, note that Fire TV devices do not address overscan
when they apply this scaling. Hence, you will want to keep your content away from
the edges of the available space, only showing your background there, in case
those edges are not visible on some televisions.
As with any TV-centric device, since the screen is locked to landscape, activities
that are locked to portrait (e.g., android:screenOrientation="portrait" in the
manifest for the activity) will behave oddly. If you are targeting devices like the
Fire TV series, be sure to allow your activities to work in portrait or landscape, not
just portrait.
Input Devices
As noted earlier, Fire TV devices ship with a simple remote control, designed for
media management (play, pause, etc.) and basic D-pad navigation. Some users may also
elect to pick up a Fire TV game controller or use other Bluetooth game controllers.
Technical details for working with these input devices can be found
later in this chapter.
Conversely, Fire TV devices do not have touchscreens. You cannot assume that the user
can tap on random portions of the screen. Instead, you need to make sure that
your app is completely reachable via a D-pad. This is described in greater
detail in the chapter on the “ten-foot UI”.
Hardware Features
As a set-top box, Fire TV devices lack a lot of hardware that you normally associate
with phones and tablets, such as:

	GPS

	camera

	microphone

	sensors

	telephony

The microphone is actually a bit complicated. The Fire TV remote has a
microphone and a button to activate it. The Fire TV Stick remote does
not have a microphone. There is a Fire TV Remote app available on
the Play Store
and Amazon Appstore for Android that offers microphone input as well.
However, all these microphones are just for Fire TV voice search. There
is no means for developers to use these for arbitrary audio input, the
way that a microphone on a phone or a tablet can.
What Is Really Different?
Some things are “really different” simply because the output screen is TV-sized,
not phone-sized or tablet-sized. See the chapter on the “ten-foot UI”
for more about this.
Some things are “really different” in the same way that they are “really different”
for the Kindle Fire series, such as having nothing “Googly”,
like Maps V2 or anything else from Play Services.
The biggest additional “really different” item is the limitation on where apps can
come from, which is discussed later in this chapter as part
of the overall app distribution options for Fire TV devices.
Note that Fire TV devices have their own way of representing notifications. A standard
Android Notification will not appear anywhere on a Fire TV device. Instead, you will
need to support the Fire TV series’ own
notifications API.
While their API is modeled after Android’s Notification and NotificationManager,
they do have their own classes, and the results are more reminiscent of Toasts and
Dialogs.
Also note that Fire TV devices do not display an Android action bar, representing those
items in a pop-up menu triggered by the MENU button of the Fire TV remote control.
Casting and Fire TV
The success of Chromecast means that TV-connected Android devices will tend to be compared
to Chromecast, particularly in terms of how apps on phones and tablets can work with
the TV-connected device.
At the time of this writing, Amazon has not shipped anything for Fire TV that would
enable apps using MediaRouteActionProvider and RemotePlaybackClient
to work with Fire TV. In principle, Amazon or somebody else could implement a
MediaRouteProvider and distribute that as an app that goes on ordinary Android
phones and tablets, where that MediaRouteProvider enables media routes pointing
to a connected Fire TV. The MediaRouteProvider would forward requests from the
phone or tablet to the Fire TV, which would be displayed by some app on the Fire TV.
Amazon more formally supports
the “Discovery and Launch” (DIAL) protocol with Fire
TV. DIAL allows an app on a phone or tablet to launch apps on Fire TV. Unfortunately,
documentation for this is lacking at the present time.
Also, the Fire TV series can serve as a Miracast endpoint. In Settings > Display & Sounds,
you will find an option to “enable display mirroring”. This turns on Miracast
support, allowing mobile devices to mirror their screen content via
the Fire TV to the connected television, projector, or monitor. This also
works with Android’s Presentation support, allowing you to
direct separate content to the Fire TV’s “mirror” than what you show on
the device’s own screen.
Getting Your Development Environment Established
Developing for the Fire TV series, as with developing for the Kindle Fire series,
is accomplished using an actual
Fire TV or Fire TV Stick device.
The primary thing notably different about testing your app on a Fire TV device is
that it does not use a micro USB cable for the adb connection, the way that
you may be used to from testing with most Android hardware.
If you can find a suitable USB cable to bridge between your development
machine and the Fire TV, reportedly you
can use USB debugging.
Otherwise, you can use adb over the network.
To set this up, you must first enable ADB debugging, much like you do with
other Android devices. On a Fire TV device, this is in Settings > System > Developer Options:

[image: Fire TV Developer Settings]

Figure 1083: Fire TV Developer Settings
You will then need the IP address of your Fire TV device. Most likely the easiest
way for you to find that is via the Settings > System > About > Network screen:

[image: Fire TV Network Settings]

Figure 1084: Fire TV Network Settings
You can then run adb connect (followed by the IP address) at a command prompt to make the
connection. You may need to stop
and restart adb before doing this, via adb kill-server and
adb start-server.
At this point, if all is set up properly, adb devices will list the Fire TV device’s
IP address, and the Fire TV device will be accessible from your IDEs and other development
tools.
Note that this adb setup will persist until adb is next restarted, even
if the Fire TV device is powered down. You can use adb disconnect (followed by the IP address) to break
the connection if you no longer need it.
Working with the Remote and Controller
Your Fire TV users will be interacting with their Fire TV using the supplied remote,
the Fire TV gaming controller, or other controllers.
Wireless Remote
Mostly, the wireless remote offers buttons that you should be handling already,
assuming you are implementing a ten-foot UI or are otherwise
correctly handling focus management and accessibility. BACK and the
D-pad buttons will work on the Fire TV much as you would expect.
The Fire TV device remote has a MENU button, which will bring up an old-style Android options
menu. Your simple action bar items, particularly those in the overflow, will appear
in this menu without issue. Most likely you will want to skip the action bar on your
Fire TV apps, though, which means that action views, action providers, and the like
will need to be replaced with alternatives.
The remote also offers play/pause, rewind, and fast-forward buttons that map to their
corresponding Android KeyEvent types (e.g., KEYCODE_MEDIA_PLAY_PAUSE). You can
watch for these events in onKeyDown() of your activity to be able to respond to
them.
Note that you do not have the ability to intercept home or voice search button presses
on the wireless remote. And, the Fire TV Stick’s remote does not offer the voice
search button.
Gaming Controller
The wireless remote’s input options are purely buttons. The Fire TV series gaming controller,
like most such controllers, are designed for more “analog” input, where the force you
apply to a stick might trigger slightly different behavior in a game.
As such, the gaming controller support in Android and FireOS takes a two-tier approach,
with primary and secondary ways of handling events. If your code consumes the primary
event, the secondary event is not triggered. The idea is that fairly “vanilla” apps
might pay attention to the secondary events, as they tend to be more in common
with the events you might get from the wireless remote or non-Fire TV devices. But
apps that are more game-centric might pay attention to the primary events instead.
For analog inputs — the left and right sticks and the D-pad — the
primary event input is supplied as MotionEvent objects, which you can pick
up in methods like onGenericMotionEvent() in a View. Secondary event input comes
in the form of standard D-pad events. So, an ordinary app will automatically support
the sticks and D-pad, simply by accepting D-pad input.
Some buttons also take the two-tier approach. The A button (bottom one in the button
cluster on the upper-right side of the controller) can be picked up either
as a KEYCODE_BUTTON_A KeyEvent (primary) or a KEYCODE_DPAD_CENTER KeyEvent
(secondary). The B button (right one) maps to KEYCODE_BUTTON_B (primary) and
KEYCODE_BACK (secondary).
Other buttons just fire simple KeyEvents (e.g., left shoulder is KEYCODE_BUTTON_L1),
while the two triggers just use MotionEvents (AXIS_BRAKE on the left, AXIS_GAS
on the right).
Amazon’s Fire TV site has
full details of the options and how to use them.
How Does Distribution Work?
Like the Kindle Fire, Fire TV devices lack
the Play Store. If you want your app to be available to
Fire TV device users, you will need to explore other ways of promoting and
delivering the app.
The principal — and nearly exclusive — way to get apps onto a Fire TV device
is by listing them in the Amazon AppStore for Android.
However, for ordinary users, that is the only option. Most Android
devices — including the Kindle Fire series — allow the user to download
apps from Web sites, if they have the appropriate option checked in Settings.
The Fire TV lacks this setting, and therefore ordinary users cannot download
an app to the Fire TV from third-party app stores.
“Sideloading” an app using adb works, though this is usually only
viable for developers or serious power users. Such apps will not appear in the
home screen launcher and must be launched instead via Settings > Applications.
Getting Help
Amazon maintains a set of documentation
related to Fire TV device development, along with
a set of forums for
asking Amazon-specific development questions regarding the Fire TV device series or
their various SDKs.
Device Catalog: Samsung DeX
There has been a long-standing goal in some circles to allow Android devices
to serve as desktop or notebook replacements, through the use of accessories.
One of the first forays in this area was
2011’s Motorola Atrix,
which offered a notebook-style docking station that allowed the Android device
to be used with the dock’s keyboard and 11.5" display.
In recent years, Samsung has made a renewed push in this area, in the form
of Samsung DeX.
The original 2017 DeX was a desktop docking station for the Galaxy S8/S8+ that provided power, an
Ethernet jack, USB ports, and an HDMI port.

[image: Samsung DeX, Front Top Showing Device Connector]

Figure 1085: Samsung DeX, Front Top Showing Device Connector

[image: Samsung DeX, Rear Showing Ports]

Figure 1086: Samsung DeX, Rear Showing Ports
When docked, the Samsung phone would switch into a
“DeX” mode that offers a freeform multiwindow experience. In this
mode, the touchscreen is turned off, and the user navigates the windows
using a keyboard and mouse (USB or Bluetooth), as with a traditional
desktop OS.

[image: DeX Mode, Showing Freeform-Style Windows]

Figure 1087: DeX Mode, Showing Freeform-Style Windows
In 2018, Samsung introduced the DeX Pad, which not only offers power, USB
ports, and an HDMI port, but also allows the Samsung phone to serve as a touchpad
for navigating the DeX environment:

[image: DeX Pad, Connected to an LCD Panel]

Figure 1088: DeX Pad, Connected to an LCD Panel
The DeX Pad and original DeX dock now work with a variety of high-end Samsung
devices, including:

	Galaxy S8 and S8+

	Galaxy S9 and S9+

	Galaxy Note 8

On the whole, developers do not seem to be concerning themselves too much
with DeX — for example, as of early August 2018, there were exactly
two questions on Stack Overflow in the samsung-dex tag.
That being said, the DeX is an interesting
demonstration of Android’s freeform multi-window mode. Plus, it
is yet another environment that puts keyboards and mice
“front and center” for users and, by extension, app developers.
DeX Screen Modes
The user has two choices when docking their device in the DeX: screen mirroring
mode and DeX mode.
Screen Mirroring
What Samsung describes as “screen mirroring” mode is pretty much what you would
expect from an Android device connected to an HDMI display. By default,
the contents of the touchscreen are mirrored on the HDMI display. And, if you
use things like Presentation, you can display separate content
on the HDMI display from what is shown on the touchscreen.
However, this mode may not be very popular, for one simple reason: the device
is docked in the DeX in portrait mode. This means that the content shown on the
HDMI device, by default, is in portrait mode. While you could lock your activity
to landscape mode, so its Presentation appears in landscape, then the activity
is in the wrong orientation on the touchscreen.
Also, screen mirroring mode does not seem to be available with the DeX Pad.
DeX Mode
More often than not, if people are bothering to put their devices in a DeX, it
is to use Dex mode, with freeform-style windows.
This uses Android’s official freeform multi-window support. In
theory, the experience should be somewhat reminiscent of how Android apps
behave on Chrome OS, which also uses freeform multi-window.
Activities that are not resizeable will appear in portrait mode by default:

[image: Non-Resizeable Activity on DeX in Portrait]

Figure 1089: Non-Resizeable Activity on DeX in Portrait
There is an icon in the title bar that allows the user to rotate the window to
landscape:

[image: Non-Resizeable Activity on DeX in Landscape]

Figure 1090: Non-Resizeable Activity on DeX in Landscape
Activities that are resizeable — the <activity> or <application> explicitly
has android:resizeableActivity="true" — can be resized by using a mouse and
dragging the window edges, as with a traditional desktop operating system.
All windows, resizeable or not, can be minimized, putting them in an application
dock at the bottom of the DeX screen.
Other App Impacts
While the screen, keyboard, and mouse are the primary changes that app developers
will face when thinking about the DeX, there are other issues to take into account
and opportunities to consider.
Configuration and State Changes
The strangest part of life in a DeX dock comes in the various state changes
that your app can undergo. Sometimes, these are part of standard Android
configuration changes. Sometimes, these are more distinctive to the DeX.
Moving In and Out of DeX
Here, we have many scenarios:

	A device is placed into the dock, and the device goes into DeX mode

	A device is placed into the dock, and the device goes into screen-mirroring mode

	A docked device is switched from DeX mode to screen-mirroring mode

	A device in DeX mode is removed from the dock

	A device in screen-mirroring mode is removed from the dock

(in theory, there should also be “a docked device is switched from
screen-mirroring mode to DeX mode”, but there does not appear to be an option
for this)
The default behavior in all of these is:

	If your app is in the foreground at the time of the state change,
your app will be killed and restarted

	If your app is in the background at the time of the state change, your
app is killed and not restarted

Going into Dex mode will have your foreground app appear in the “system tray”, which serves
the same role in desktop mode as the overview screen does in standard Android.
Clicking your app’s icon will bring up your window… starting your app along the
way.
The reason why Samsung does this by default is that switching to and from DeX
mode is a fairly major change to your environment, specifically amounting
to these configuration changes:

	density

	orientation

	screenLayout

	screenSize

	smallestScreenSize

	uiMode

In addition, there is a fairly substantial resolution change (e.g., 2960x1440 to
whatever the HDMI display supports).
If you can handle all of those changes without harming the user experience,
add this <meta-data> element as a child of the <application> element in your
manifest:

<meta-data android:name="com.samsung.android.keepalive.density" android:value="true"/>

With that element in place, when the user enters or exits DeX mode (e.g., puts
the device into or removes it from the dock), your app is supposed to be left alone.
In practice, this does not appear to work.
Resource Set Qualifiers
DeX honors the -desk UI mode resource set qualifier. If you want a different
layout for a desktop-style UI compared to a mobile-style UI, you could have dedicated
layout resources in res/layout-desk/ or related resource sets.
Networking
If the DeX dock is plugged into Ethernet, the device will switch to Ethernet
connectivity when it is placed into the dock by default, though the user
can configure this behavior.
If your app assumes that the Internet connection is via WiFi or mobile data,
this is yet another scenario in which it might not be, to go along with
Android TV, Android Things, and various miscellaneous
Android devices offering Ethernet ports (e.g., Jide’s Remix Mini PC).
Also, this means that your connectivity may change when the device is put
into or removed from the dock… but, as noted above, your app may be killed anyway.
Note that the DeX Pad does not offer an Ethernet port.
USB
In addition to working with keyboards and mice, the USB ports on the DeX dock
are standard USB hosts. So, for example, the user can plug in a flash drive
and browse that drive’s contents.
In principle, the user can plug in any sort of USB device, and so long as the
Samsung device has the appropriate drivers (or your app uses the USB APIs),
the device should work.
Note that the USB ports are USB 2.0, not 3.0 or higher. Also note that they are
classic Type A connectors, even though the power supply input comes from a Type C
connector.
Debugging Interface
The DeX dock requires that you power it through a high-power USB port. A standard
500mA USB port will be insufficient. The problem is that most high-power USB
ports do not also support data, and in those situations you cannot use the
USB cable for debugging.
Fortunately, what is often called “WiFi debugging” works, though technically it
may be occurring over Ethernet, if the DeX dock has an Ethernet cable plugged in
and the device is using it.
To use this style of debugging:

	With the Samsung device out of the DeX dock, plug it into your development
machine as normal

	Run adb tcpip 5555 from the command line, to turn on WiFi debugging

	Unplug the device from the USB cable and place it into the DeX dock

	Use Settings > About device > Status or some other means to identify the IP
address of the device, bearing in mind that this might be either Ethernet or
WiFi

	On your development machine, run adb connect ..., where ... is the IP
address of the device

You should get a message showing that you are connected, adb devices should
show the connection, and Android Studio should be able to work with the
Samsung device.
Use adb disconnect ..., where ... is the IP address of the device, to drop
this debugging connection.
Screenshots
When the docked device is in DeX mode, you cannot take screenshots through
normal means (e.g., Android Studio, adb shell screencap). As with
Android Things, you can record screencasts. And, given
a short screencast, you can extract a frame to use as a screenshot, such as via
the command-line ffmpeg utility.
However, the screencast (and any resulting screenshot) may be off, depending on
the screen resolution of whatever HDMI display you have plugged the DeX dock into.
The screencast will record at 2960x1440 resolution, which is the resolution of
the touchscreen. However, it is very likely that your HDMI display cannot show
that, and so the DeX dock will display at something like 1080p (1920x1080).
The screencast will be at 2960x1440 resolution, with the external display’s content
shown in the upper-left corner, and black pixels filling the rest of the
2960x1440 frame.
For screenshots, you can crop the raw screenshot to get the portion that you need,
dropping out the extraneous black bands:

adb shell screenrecord --verbose /sdcard/screen.mp4 --time-limit 1
adb pull /sdcard/screen.mp4
adb shell rm /sdcard/screen.mp4
ffmpeg -ss 0 -i screen.mp4 -t 1 -s 2960x1440 -f image2 temp.png
convert temp.png -crop 1920x1080+0+0 +repage result.png

Here, we use adb, ffmpeg, and ImageMagick’s convert tools to record a one-second
screencast, clip a 2960x1440 frame from it (to temp.png), then crop the
upper-left 1920x1080 pixels to form the final screenshot (result.png).
For screencasts, there should be an equivalent way of having ffmpeg crop
all of the frames to the desired resolution. The proof of this is left as an exercise
for the reader.
Detecting DeX
Ideally, your app does not care whether it is running on a device in a DeX dock
or not. In theory, if you do everything correctly in general (particularly
multi-window support), then “it just works”.
If you run into some DeX-specific quirk that you need to work around, you cannot
use traditional Build values like Build.PRODUCT, because those reflect
the device, not the dock.
Instead, Samsung apparently extended the android.content.res.Configuration
class to have a DeX-specific field on DeX-capable devices:

private boolean iCanHazDeX() {
 boolean result=false;
 Configuration config=getResources().getConfiguration();

 try {
 Class clsConfig=config.getClass();

 if (clsConfig.getField("SEM_DESKTOP_MODE_ENABLED").getInt(clsConfig)
 ==clsConfig.getField("semDesktopModeEnabled").getInt(config)) {
 result=true;
 }
 }
 catch(Exception e) {
 // guess not!
 }

 return(result);
}

Drag-and-Drop
The Samsung DeX environment supports cross-window
drag-and-drop within one app. It also supports cross-app drag-and-drop,
so one app can advertise as a drop target and other apps can allow drag-and-drop to the
first app.
For More Information
Samsung has several pages devoted to developer documentation for the DeX, including:

	Instructions for modifying your app
to be more DeX-friendly

	Information for testing your app without a DeX

	A FAQ

Appendix A: CWAC Libraries
CommonsWare — the publisher of this book — has also published a series of open
source libraries, collectively named the CommonsWare Android Components (CWAC).
If you have read through the book, you will have seen many of these libraries.
This appendix lists all of the CWAC libraries. If the library is covered elsewhere
in the book, the appendix links you to that coverage. Those that are not covered
elsewhere will be described in this appendix, to accompany the online documentation
found at the library’s GitHub repository.
cwac-document
The cwac-document repository
holds a fork of DocumentFile that:

	Supports non-document Uri values

	Supports Uri values on older devices

	Offers convenience methods for working with the content (e.g., copyTo(),
copyFrom(), openInputStream(), openOutputStream())

cwac-layouts
The cwac-layouts repository
contains a series of custom containers and related views.
The current contents of this library — AspectLockedFrameLayout,
MirroringFrameLayout, and kin — are covered in
the chapter on custom views.
cwac-netsecurity
The cwac-netsecurity repository
contains a backport of Android 7.0’s network security configuration
subsystem, to make it easier for you to work with SSL-enabled Web sites.
This is covered in greater detail in the chapter on SSL.
cwac-presentation
The cwac-presentation repository
contains code in support of the Presentation system, for sending
alternative content to an external display, independent of the device’s
primary screen.
All of the classes in this repository are covered in
the chapter on the Presentation system.
cwac-provider
The cwac-provider repository
contains StreamProvider, a riff on Google’s FileProvider, offering a
“canned” implementation of a ContentProvider that can serve files from
a variety of sources, such as assets and raw resources from your project.
This is discussed briefly in
the chapter on ContentProvider implementations.
cwac-saferoom
The cwac-saferoom repository
contains code that bridges the gap between SQLCipher for Android and
the Room database layer from the Architecture Components. This library is
covered in depth in “Android’s Architecture Components”.
cwac-security
The cwac-security repository
contains code to help app developers help their users defend against attacks.
At the moment, this contains the PermissionUtils class, used to help determine
if a custom permission was defined by another app before yours was installed.
This is discussed in the chapter on advanced permission techniques.
Appendix B: Android 8.0
In 2017, Google released Android 8.0, code-named “Oreo”, followed shortly by
Android 8.1. Android 8.1 changed very little in the Android SDK for most developers,
but Android 8.0 had some significant changes.
This appendix outlines those changes. In some cases, it serves as pointers to
where this material is covered elsewhere in the book. For smaller topics,
details of the change appear directly in the appendix.
The War on Background Processing, Continued
Starting with Android 6.0, Google has been trying to limit the impacts of
background processing on the device, particularly with respect to battery
usage and RAM consumption. Since most background work tends to be invisible
to the user, users therefore will tend to blame Android for problems that
stem from the users’ chosen apps as much, if not more than, from Android
itself. As a result, in Android 6.0, Doze mode and app standby were added
to curtail periodic work, and Android 7.0 started putting limitations on
some types of system broadcasts.
Android 8.0 is furthering Google’s objectives in this area, eliminating
significant types of background processing.
Background Service Limitations
For apps that have a targetSdkVersion over 25 and are running on Android 8.0,
background services are limited. After a short period of time — as low as one
minute — any such services will be stopped and you will be unable to start
new ones.
Also, even if your targetSdkVersion is 25 or lower, you might still have
these limitations applied to your app. If your app appears on the Battery
screen in Settings — indicating that it is using above-average power — the user
will have the ability to apply these limitations to your app from there.
This is explored in greater detail in the chapter on services.
WakeLock Limitations
If your service holds a WakeLock, and that WakeLock is not released when
the service is stopped, Android will forcibly release the WakeLock.
Leaking an acquired WakeLock was a bad practice, and since your process
can be terminated quickly at any point once you no longer have a running service,
developers should have been assuming all along that a WakeLock should be
released when a service is stopped. Android 8.0 is merely being a bit more
aggressive about dealing with these leaks.
Manifest-Registered Broadcast Limitations
For apps that have a targetSdkVersion over 25, another limitation comes
into play: you cannot receive implicit broadcasts via a manifest-registered
receiver.
In other words, if you have a receiver in the manifest that has
an <intent-filter>, there is a very good chance that it will no longer
receive broadcasts.
What Is Affected
Implicit broadcasts are broadcasts using an implicit Intent, one that just
has an action string (and possibly a Uri, categories, or MIME type), but does
not identify a specific BroadcastReceiver. Explicit broadcasts use an explicit
Intent, one that does identify a specific BroadcastReceiver.
The Android 8.0 limitation affects:

	Implicit broadcasts sent by the system, except for
a handful of whitelisted ones

	Implicit broadcasts sent by apps, intended to be delivered to other apps

	Implicit broadcasts sent by apps, intended to be delivered only to themselves,
based off of old programming patterns that used system broadcasts instead of
an in-process event bus
(e.g., LocalBroadcastManager, greenrobot’s EventBus)

If your targetSdkVersion is 25 or lower, though, your app will not be affected.
Also, if you happen to be the one sending the broadcast, and you are requiring
a signature-level permission for that broadcast,
your app will not be affected, apparently.
Also note that various Intent actions documented on the Intent class
are actually used with explicit broadcasts, not implicit ones. For example,
the ACTION_PACKAGE_REPLACED broadcast is an implicit one, but
ACTION_MY_PACKAGE_REPLACED is an explicit one, as that one is only sent to the
app that was just upgraded.
The
Intents/PackageLogger
sample project is a very simple app, dominated by an OnPackageChangeReceiver
that registers for a few Intent actions in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.sysevents.pkg"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:allowBackup="false">
 <receiver android:name=".OnPackageChangeReceiver">
 <intent-filter>
 <action android:name="android.intent.action.PACKAGE_ADDED" />
 <action android:name="android.intent.action.PACKAGE_REPLACED" />
 <action android:name="android.intent.action.PACKAGE_REMOVED" />

 <data android:scheme="package" />
 </intent-filter>
 </receiver>

 <activity
 android:name="BootstrapActivity"
 android:theme="@android:style/Theme.Translucent.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Intents/PackageLogger/app/src/main/AndroidManifest.xml)
…and logs their occurrences to Logcat:

package com.commonsware.android.sysevents.pkg;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class OnPackageChangeReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d(getClass().getSimpleName(),
 intent.getAction()+" for "+intent.getData().toString());
 }
}

(from Intents/PackageLogger/app/src/main/java/com/commonsware/android/sysevents/pkg/OnPackageChangeReceiver.java)
On Android 7.1 and lower devices, this app dutifully logs those events
(e.g., when the user installs an app). On Android 8.0, instead, the receiver
does not get control, and the following message is recorded to Logcat:

W/BroadcastQueue: Background execution not allowed: receiving Intent { act=android.intent.action.PACKAGE_REMOVED dat=package:com.commonsware.cwac.cam2.demo flg=0x4000010 (has extras) } to com.commonsware.android.sysevents.pkg/.OnPackageChangeReceiver

Why This Ban Was Added
You might think that the concern was tied to the battery, as this seems like
another front in the ongoing “war on background processing” that has been
going on since Doze mode was introduced in Android 6.0.
As it turns out, battery is of secondary importance. The real reason is
process churn.
Quoting a Google engineer:

To help understand what is going on, I need to clarify that the purpose of this change is not directly related to battery use, but rather to address long-standing issues we have had in the platform where devices that are under memory pressure can get in to bad thrashing states. Very often these states are due to broadcasts: some broadcast or broadcasts are being sent relatively frequently, which a lot of applications are listening to through their manifest (so need to be launched to receive it), but there is not enough RAM to keep all of those app proceses <sic> in cache, so the system ends up continually thrashing through processes each time the broadcast is sent.

This is an issue regardless of whether the device is currently plugged in to power. In fact, this can more frequently be an issue on Android TV devices (which are always plugged in to power) because they tend to be fairly tight on RAM!

Workarounds for Senders
If you are using broadcasts for communicating between app components within
a single process, switch to using LocalBroadcastManager.
If you are using broadcasts for communicating between app components within
multiple processes of your own, switch to using explicit broadcasts.
Beyond that, if you are sending implicit broadcasts, you can break through the ban by
finding the receivers and sending individual explicit broadcasts instead.
This, and the overall ban, is illustrated in the
Intents/Fanout
sample project. As with some of the event bus samples, this app has a UI that
consists of a transcript-mode ListView, to which we will append events as
they arrive. In this case, the events are broadcasts that we are sending, using
different approaches for sending them based on an overflow menu item.
If the user taps the “Explicit” overflow menu item, we create an explicit
Intent identifying our TestReceiver and send that using sendBroadcast().
This works, even for an app like this one that has targetSdkVersion 'O', and
the broadcast shows up in the list.
If the user taps the “Implicit” overflow menu item, we create an implicit
Intent tied to the action string used by the <intent-filter> of the
TestReceiver:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.broadcast.fanout"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0">

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <receiver android:name=".TestReceiver">
 <intent-filter>
 <action android:name="${applicationId}.TEST" />
 </intent-filter>
 </receiver>
 </application>

</manifest>

(from Intents/Fanout/app/src/main/AndroidManifest.xml)
However, sending that implicit Intent fails, with this warning message showing
up in Logcat:

W/BroadcastQueue: Background execution not allowed: receiving Intent { act=com.commonsware.android.broadcast.fanout.TEST flg=0x10 (has extras) } to com.commonsware.android.broadcast.fanout/.TestReceiver

If the user taps the “Fanout” overflow menu item, we create the same
implicit Intent as before (though we tuck an extra onto it to identify
it as the “fanout” case instead of the regular implicit case). And this
time, it works. The reason why it works is that rather than sending one
implicit broadcast, we send N explicit broadcasts, one for each registered
receiver:

 private static void sendImplicitBroadcast(Context ctxt, Intent i) {
 PackageManager pm=ctxt.getPackageManager();
 List<ResolveInfo> matches=pm.queryBroadcastReceivers(i, 0);

 for (ResolveInfo resolveInfo : matches) {
 Intent explicit=new Intent(i);
 ComponentName cn=
 new ComponentName(resolveInfo.activityInfo.applicationInfo.packageName,
 resolveInfo.activityInfo.name);

 explicit.setComponent(cn);
 ctxt.sendBroadcast(explicit);
 }
 }

(from Intents/Fanout/app/src/main/java/com/commonsware/android/broadcast/fanout/MainActivity.java)
Unfortunately, this brings back the process churn, and if lots of developers
do this, there may be reprisals from Google. You might try introducing some
delay between the broadcasts, inside the loop, to spread out the impact. However,
this starts to get tricky if you spread it out over more than a few seconds
(e.g., do you now need an IntentService and a WakeLock? what if your process
is terminated before the broadcast loop is completed?).
Google recommends
that you have the user agree to which of these components
should receive the broadcast, perhaps through some sort of MultiSelectListPreference.
Then, instead of broadcasting to all that match your implicit broadcast, you
only broadcast to those that the user has chosen. How practical this is will
depend on the app and the desired user experience.
Workarounds for Receivers
If you are receiving system-sent implicit broadcasts (e.g., ACTION_PACKAGE_ADDED),
keep your targetSdkVersion at 25 or lower, until we figure out better
workarounds that (hopefully) do not involve polling.
If you are receiving implicit broadcasts from another app, ask the developer
of that app what the plan is for Android 8.0. Perhaps they will use the above
technique, or perhaps they will switch to some alternative communications pattern.
Background Location Limitations
Background apps — principally, those that do not have the foreground UI and
are not a foreground service — will receive fewer location updates than
before, whether using LocationManager or the Play Services fused location API.
The documentation says that background apps will receive location information
“only a few times each hour”.
Note that this affects all apps, not just those with a targetSdkVersion
over 25.
Besides putting your app in the foreground, you can:

	Use the Play Services geofencing API (detecting when the device enters or leaves
a designated area), as these events may not be affected by the limit

	Use the “passive provider” with LocationManager (basically asking to get a copy
of locations sent to other apps but not otherwise attempting to get locations),
as if other apps happen to be in the foreground and requesting locations, you may
get those updates as well, despite being in the background

JobScheduler Enhancements
A minor improvement to JobScheduler comes in the form of new constraint
methods on JobInfo.Builder: setRequiresBatteryNotLow() and
setRequiresStorageNotLow(). If you use these, your jobs will not run
when the battery is low or when storage is low, respectively.
However, the bigger change really comes in the roles that JobScheduler plays:

	The original role was for classic periodic work. You would request to get control
every so often (in addition to constraints like the ones cited above). When
you got control, you would do some chunk of work, then indicate that the job
was finished.

	The role added in Android 7.0: monitoring content for changes. You could
add a “trigger content Uri” to a JobInfo.Builder, indicating that rather
than getting control every so often, you want to get control when the content
at that Uri changes. The net result is the equivalent of a ContentObserver,
without your app having to have a process running all of the time.

	One role added in Android 8.0 is a work queue. The idea here is that your
periodic job is spending a period of time processing any enqueued work, where
the job ends either when there is no more work to be done or when your allotment
of time for the job elapses.

	That role is in support of yet another role, as a replacement for IntentService
for performing background work, by means of a JobIntentService offered in the
Android Support Library.

JobIntentService
IntentService still works on Android 8.0, but unless you make it be a foreground
service, you will be limited to ~1 minute of runtime before your service
is stopped abruptly. JobIntentService is a wrapper around a JobService
that offers IntentService-style semantics. On Android 8.0 and higher,
when you tell a JobIntentService to do some work, it enqueues that work
via JobScheduler. On Android 7.1 and earlier, the JobIntentService behaves
more like a regular IntentService, though one that supplies a WakeLock
for you (akin to the author’s WakefulIntentService).
JobIntentService is examined in greater detail in the chapter on services.
JobScheduler as Work Queue
Under the covers, JobIntentService is taking advantage of a new capability
in JobScheduler on Android 8.0: a work queue. IntentService had such a queue,
after a fashion, in that it would process one Intent at a time through
onHandleIntent(), queuing up other Intent objects that arrive while onHandleIntent()
is busy. JobScheduler now offers a similar capability for your JobService,
where you can post jobs and have your JobService end when the work is completed.
This is covered in detail in the chapter on JobScheduler.
Auto-Fill
Many Web browsers, such as Chrome, offer “auto-fill”. The browser remembers
things that you have typed into certain fields, like addresses, and offers
to fill those back in when you go to fill in the same form again… or even
a different form with similar fields.
Android 8.0 adds auto-fill capability to Android. However, as with
the Assist API, Android itself is merely a conduit for
form information. The actual implementations of auto-fill, in terms of
storing and restoring values, is handled by an auto-fill service, which
the user can enable in Settings. Presumably, when Android 8.0 ships in final
form, a Google-supplied auto-fill service will come pre-installed, but users
can switch to alternative implementations.
While the documentation suggests that no code changes are required to participate
in auto-fill, that is not strictly accurate. Auto-fill relies at least
in part upon widget IDs to determine the roles of the widgets, and as a result
you may need to consider revising your widget IDs to follow some conventions.
Also, you will need to consider whether some or all of your activities really
should be participating in auto-fill, for privacy or security reasons.
Auto-fill is covered in detail in a separate chapter.
Notification Channels
Through Android 7.1, all notifications were created equal. In other words, the
user could apply a single set of rules for configuring how those notifications
were delivered from your app. How much configuration was even available varied
by Android OS version, but on newer devices users could control whether to block
those notifications, show them without any sound or vibration, what amount of
information should be shown on the lockscreen, and so on.
In Android 8.0, all notifications go into channels that you initially define. The
user then has the ability to control the behavior of notifications
on a per-channel basis. This offers finer granularity of control over the breadth
of notifications that your app might deliver. Android 8.0 also extends the depth
of control, with more options for the user to decide how a channel’s notifications
should work.
These are covered briefly in the chapter on notifications and in
greater detail in the chapter on advanced Notification techniques.
Other Changes with Notifications
Android 8.0 offers a few additional features of note for notifications, features
that are independent of — or only partially tied into — the new notification
channels: auto-timeout, colorized notifications, and launcher icon badges.
These are covered in the chapter on advanced Notification techniques.
Multi-Window Changes
Android 7.0 introduced a native implementation of multi-window, with a particular
emphasis on split-screen presentations on phones and tablets.
Android 8.0 extends this, particularly adding picture-in-picture support for
mobile devices, and extending multi-window to also work on external displays, such
as TVs and monitors. These changes are covered in
the chapter on multi-window support.
WebView Changes
WebView, as Android developers use it, is really a facade API, as of Android 5.0.
Previously, the WebView implementation was part of the Android framework.
Nowadays, the implementation is delegated to the Android System WebView, which
allows Google to update the WebView implementation without relying upon
manufacturers to distribute firmware updates.
Hence, to some extent, WebView continuously changes, as the Android System
WebView app gets updated a few times per year.
However, it is only in a new version of Android that Google changes the API or
the general approach taken by a WebView implementation. In Android 8.0, two significant
changes were made: multi-process mode and support for banning of cleartext
traffic. These are covered in the chapter on advanced WebView usage.
ContentProvider Changes
ContentProvider
got a few new features in Android 8.0 as well, related to paged queries and
requesting data refreshes. Unfortunately, these changes are completely
undocumented.
These changes will be examined in a future edition of this book.
Storage Access Framework Changes
The Storage Access Framework underlies ACTION_OPEN_DOCUMENT,
ACTION_CREATE_DOCUMENT, and related actions, providing you with the equivalent
of the “file open” and “save as” dialogs you may be used to in other programming
environments. This framework received a few extensions in Android 8.0, which
are outlined in the chapter on consuming documents.
Package Management
Apps that install or delete other apps will experience some changes in Android 8.0,
as well apps that have used broadcasts like ACTION_PACKAGE_ADDED to find out
about changes in the mix of installed apps. These changes are covered in
detail in the chapter on miscellaneous integration techniques.
Fonts as Resources
While Android has long had a Typeface class, using it was a pain. There
was no way in layout resources to reference a custom Typeface, and so you
had to apply the Typeface directly in Java code. At best, you could use a library
like Calligraphy to try to simplify
this.
Android 8.0, for the first time, makes fonts a first-class type of resource.
You can put OTF and TTF fonts into res/font/ directories, or in other
directories based upon resource set qualifiers (e.g., res/font-v26/).
The font resource directories can also hold <font-family> XML files
that tie multiple OTF/TTF fonts together into a single font family, for cases
where different styles or weights are stored as separate font files.
Then, in layouts and style resources, you can use android:fontFamily on TextView and its
subclasses, to indicate that the TextView should use fonts from your chosen
family. Then, attributes like android:textStyle will pull fonts from the font
family, and those fonts will be applied to the text in the TextView.
Also:

	The Resources object (obtained via getResources() on a suitable Context)
has a getFont() method to retrieve a Typeface for a given font resource, given
its R.font resource ID (e.g., R.font.hack)

	Information about system-supplied fonts can be obtained via a FontManager
system service and its getSystemFonts() method

Other Major Changes in Android 8.0
While Android 8.0 does not have very many user-facing changes, it
does have quite a few that affect developers, beyond those already listed.
Cache Quotas
Historically, getCacheDir() and getExternalCacheDir() represented “cache”
directories. There were no limits as to what we could store there, in terms
of available space. However, we had to recognize that Android — and select
third-party apps — might clear our cache at any point.
Android 8.0 introduces a “cache quota”. The name brings to mind a hard quota, where
we crash or something if we exceed the limit. In truth, this appears to be a
soft quota: apps exceeding the quota are likely to have their caches cleared,
if and when Android needs to free up disk space.
The StorageManager system service has two methods related to this:

	
getCacheQuotaBytes() tells you what your quota is

	
getCacheSizeBytes() tells you how much cache space you are using

Both methods take a File object and return the corresponding values for cache
stored on the filesystem on which that File is stored. For most Android
devices, internal and external storage are on the same partition with the
same filesystem, but that is not the case for every device. Hence, you will
want to check both internal and external storage, using appropriate File objects,
if you are storing data in both places.
You might use these methods as part of your own manual cache trim operation.
For example, you might set up an idle-time once-a-day job with JobScheduler
to examine what is in cache and delete a few things to get you under the
cache quota. This would reduce the likelihood that Android will wipe out all of
your cache, because you exceeded the quota and Android needed to free up the disk
space for the user.
Content Annotations
Usually, when we want a chooser for some activity Intent that we want to start,
we use Intent.createChooser() to wrap our Intent in another Intent.
That “outer” Intent will be an ACTION_CHOOSER Intent, and that Intent
can itself be configured via extras.
One new ACTION_CHOOSER extra is EXTRA_CONTENT_ANNOTATIONS. You can put
an ArrayList of up to three strings into this extra. Those will be used to help
rank the apps that appear in the chooser.
This appears to be based on a learning algorithm; activities that are among
the candidates do not somehow advertise what “content annotations” they are good
at. Rather, the idea appears to be that Android will learn over time which apps
the user wants to use for which types of content, based on these annotations.
The documentation for EXTRA_CONTENT_ANNOTATIONS
provides a list of nouns to choose from for these annotations. Exactly how your
app is supposed to determine which of those nouns is relevant for any particular
chooser is unclear.
Seekable Streams
A major headache with the migration of Android away from sharing files to sharing
streams from ContentProviders is the issue of seekability. Many apps want to
be able to use methods like mark() and reset() on an InputStream as they
are processing content. However, that implies a “seekable” stream, one where we
can rewind and re-read bytes seen (or skipped) previously. In general:

	Streams created directly from files (e.g., ParcelFileDescriptor.openFile())
were seekable

	Streams created via pipes (e.g. ParcelFileDescriptor.createPipe()) were
not seekable

For content that already exists as an ordinary file, this was not much of a limitation,
as using file-based streams was already the easy solution. However, not all content
is available as ordinary files, such as:

	Content stored as files, but in an encrypted or otherwise encoded format that
needs to be decoded as part of serving it to other apps

	Content stored in BLOB columns of a SQLite database

	Content that is in “the cloud” and has not yet been downloaded to the device

The net effect was that many apps, for maximum compatibility with other apps,
would need to create a file with all of the content, wasting disk space and possibly
harming privacy and security.
In Android 8.0, StorageManager offers support for “proxy file descriptors”, via
methods like openProxyFileDescriptor(). These give you a ParcelFileDescriptor,
for use in methods like openFile() on a ContentProvider. However, rather than
assuming a particular file or a particular pipe, a ProxyFileDescriptorCallback
is used to ask you to provide access to the data, based on offsets and sizes.
How you implement that is up to you. For example, for content backed by a BLOB
column, you might cache the content as a byte array, then return segments of
that byte array as needed by the ProxyFileDescriptorCallback.
However, ProxyFileDescriptorCallback leaves much to be desired, to the point
where it is useless for most clients and providers.
Back in the chapter on ContentProvider patterns, we
had a demo of using a ParcelFileDescriptor pipe, via createPipe(), as a way
of returning custom data from a ContentProvider.
The ContentProvider/ProxyPipe
sample project is an updated version of the original Pipe example, adjusted
to build using Android 8.0 and to use ProxyFileDescriptorCallback.
Implementing a ProxyFileDescriptorCallback
Our ProxyFileDescriptorCallback implementation is called BufferProxyCallback,
so named as it will stream back the contents of an in-memory buffer. This is
not particularly realistic, but it does simplify the example a fair bit, focusing
on the ProxyFileDescriptorCallback API:

package com.commonsware.android.cp.pipe;

import android.os.ProxyFileDescriptorCallback;
import android.system.ErrnoException;
import android.system.OsConstants;
import hugo.weaving.DebugLog;

class BufferProxyCallback extends ProxyFileDescriptorCallback {
 private final byte[] buffer;

 @DebugLog
 BufferProxyCallback(byte[] buffer) {
 this.buffer=buffer;
 }

 @DebugLog
 @Override
 public void onRelease() {
 // not needed here
 }

 @DebugLog
 @Override
 public long onGetSize() throws ErrnoException {
 return(buffer.length);
 }

 @DebugLog
 @Override
 public int onRead(long offset, int size, byte[] data) throws ErrnoException {
 int toRead=(offset+size<=buffer.length) ? size : (int)(buffer.length-offset);

 System.arraycopy(buffer, (int)offset, data, 0, toRead);

 return(toRead);
 }

 @DebugLog
 @Override
 public int onWrite(long offset, int size, byte[] data) throws ErrnoException {
 throw new ErrnoException("onWrite", OsConstants.EOPNOTSUPP);
 }

 @DebugLog
 @Override
 public void onFsync() throws ErrnoException {
 // not needed here
 }
}

(from ContentProvider/ProxyPipe/app/src/main/java/com/commonsware/android/cp/pipe/BufferProxyCallback.java)
ProxyFileDescriptorCallback is an abstract class, and there are five methods
that you need to override to fulfill the contract:

	
onGetSize(), which returns the number of bytes in the content, which in this
case is the length of the buffer.

	
onRead(), which needs to copy a specified sequence of bytes, based on
an offset from the front of the content and a length, to a supplied byte array.
Here, onRead() uses System.arraycopy() to copy from buffer to buffer, either
to the requested length (size) or the remaining bytes (the length of the buffer,
minus the offset). It needs to return the number of bytes that are read.

	
onWrite(), which needs to take the bytes from a supplied byte array and update
a region of the content to match. Here, we are implementing a read-only proxy,
and so we raise an ErrnoException, indicating that this particular operation
is not supported. If this method were implemented “for real”, onWrite()
needs to return the number of bytes actually written.

	
onFsync() needs to ensure that any writes created by onWrite() are fully
committed to disk (or the equivalent if disk is not the backing store for the
data). Here, there is nothing to “sync”, so this method is ignored.

	
onRelease(), which is called when this particular proxy is no longer needed,
so you can release any resources that you might be holding.

onRead() is particularly tricky to implement for things other than an in-memory
buffer. The documentation states that “It needs to return exact requested size of
bytes unless it reaches file end”. Many I/O options do not have a read operation
that guarantee an exact number of bytes to be read. As a result, the proxy may
need to do some caching of bytes from a previous read operation, to use on the
next one, when the number of requested bytes does not match the number of bytes
that were read off of whatever I/O channel is being used.
These methods all are capable of throwing an ErrnoException. That is a
rather new and obscure exception, and it actually points to a problem that
most developers will encounter with ProxyFileDescriptorCallback… which we
will see in a bit.
Using a ProxyFileDescriptorCallback
A ContentProvider can then use a ProxyFileDescriptorCallback in concert
with StorageManager and openProxyFileDescriptor(), in places like
openFile():

 @Override
 public ParcelFileDescriptor openFile(Uri uri, String mode)
 throws FileNotFoundException {
 AssetManager assets=getContext().getAssets();

 try {
 InputStream in=
 assets.open(uri.getLastPathSegment(), AssetManager.ACCESS_STREAMING);
 byte[] content=readAll(in);

 StorageManager sm=getContext().getSystemService(StorageManager.class);

 return(sm.openProxyFileDescriptor(ParcelFileDescriptor.MODE_READ_ONLY,
 new BufferProxyCallback(content)));
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Exception opening pipe", e);

 throw new FileNotFoundException("Could not open pipe for: "
 +uri.toString());
 }
 }

(from ContentProvider/ProxyPipe/app/src/main/java/com/commonsware/android/cp/pipe/PipeProvider.java)
Here, we first open an InputStream on a PDF file stored in assets/, then
pass that stream to a readAll() method that reads in the entire PDF into
a buffer:

 // inspired by http://stackoverflow.com/a/17861016/115145

 public static byte[] readAll(InputStream is) throws IOException {
 try (ByteArrayOutputStream baos=new ByteArrayOutputStream()) {
 byte[] buf=new byte[16384];

 for (int len; (len = is.read(buf)) != -1;) {
 baos.write(buf, 0, len);
 }

 baos.flush();
 is.close();

 return(baos.toByteArray());
 }
 }

(from ContentProvider/ProxyPipe/app/src/main/java/com/commonsware/android/cp/pipe/PipeProvider.java)
Then, we obtain a StorageManager via getSystemService() and call
openProxyFileDescriptor(), passing in the read/write mode that we want
(in this case, hard-wiring it to MODE_READ_ONLY) and the
ProxyFileDescriptorCallback that we want to use (here, a BufferProxyCallback
wrapped around that buffer).
The Woes of ProxyFileDescriptorCallback
ProxyFileDescriptorCallback is intrinsically incompatible with Java I/O.
Java I/O classes and methods are a (relatively) high-level interface to the
low-level sorts of functions that C/C++ developers use, like fread().
As a result, it is unlikely that you will find ProxyFileDescriptorCallback to be easy to use.
Also, the results add no real value over just using a pipe… unless the client
jettisons all Java I/O (including anything layered on top of it) and
uses that same low-level I/O API.
Foreground Heap Compaction
When Android first shipped, the runtime environment that ran our apps — Dalvik –
offered no heap compaction in its garbage collection.
As a result, our heap would become fragmented, looking
like a block of Swiss cheese, with lots of smaller free blocks of memory. This
was in contrast to the way garbage collection worked on the Java VM, where the
heap was compacted regularly. As a result, we would get an OutOfMemoryError
very frequently. We were not out of heap space, but there was no single block
of memory big enough for whatever we were trying to allocate. All we had were
lots of smaller blocks.
Android 5.0 introduced ART as a new runtime environment. ART’s garbage collector
would compact the heap, moving objects around in memory to coalesce all those
smaller blocks of free memory into one large block. However, it would only
compact the heap when the app was in the background, as otherwise the heap
compaction work might slow the app down too much at points in time when the user
might notice.
Android 8.0’s update to ART brings a new garbage collection algorithm, one that
attempts to compact the heap while our app is in the foreground, as well as when
it is in the background. This should further reduce spurious OutOfMemoryErrors,
limiting those to cases when we are truly running out of heap space or are trying
to allocate some ridiculously large block.
Shortcuts, App Widgets, and Pinning
Home screen implementations in Android have long had support for shortcuts.
However, from an Android SDK standpoint, shortcuts did not exist, by and large.
You could use ACTION_CREATE_SHORTCUT to allow the user and an app to define
the Intent to be used as a shortcut… and that was about it. Some apps relied
upon an undocumented, unsupported com.android.launcher.action.INSTALL_SHORTCUT
means of asking a home screen to create a shortcut, though home screen implementations
were never required to support it.
Android 7.1 added a more formal definition of shortcuts, initially aimed at
providing them as options when the user long-pressed on a launcher icon in
the home screen. This also introduced ShortcutManager as a way for an app
to define available shortcuts dynamically.
Android 8.0 steers developers away from com.android.launcher.action.INSTALL_SHORTCUT
and to requestPinShortcut() on ShortcutManager as a way to ask the launcher
(and the user) to set up a shortcut.
Android 8.0 also offers a similar way to prompt the user to set up an app widget.
For launchers that have support for this (reported by isRequestPinAppWidgetSupported()
on AppWidgetManager), you can call requestPinAppWidget() on AppWidgetManager
to try to convince the user to set up an app widget.
These capabilities will be examined in greater detail in an upcoming edition of
this book.
Auto-Sizing TextView
Android 8.0 added the ability to automatically change the font size in a TextView
based upon the length of the text, something that previously we obtained from
third-party libraries. This is covered in the chapter on fonts and text.
SMS Tokens
In Android 4.4, Google significantly changed the behavior of SMS messages.
In particular, all messages would wind up in the user’s SMS client. Previously,
it was possible for apps to monitor and intercept messages, and some developers
used this for a communications channel. For example, to validate a user’s phone
number, the server might send an SMS message to that number, which the app
would intercept and process, bypassing the user’s SMS client. On Android 4.4,
that flow did not work as well, as the message would still wind up in the
SMS client, whether the app responsible for the message wanted that or not.
Android 8.0 provides “app-specific SMS tokens”, via a createAppSpecificSmsToken()
method on SmsManager as a way of accomplishing this flow. This is covered
in detail in the chapter on SMS.
Custom Preference Storage
Android 8.0 adds PreferenceDataStore. In theory, this allows for pluggable
ways to persist SharedPreferences, such as storing them in an encrypted container.
In practice, it does not work especially well. The details of PreferenceDataStore –
and its problems — are found in the chapter on advanced preferences.
FragmentLifecycleCallbacks
In API Level 14, we were given ActivityLifecycleCallbacks. We can register
an instance of this interface on an Application object, and then receive callbacks
for every lifecycle method for every one of our app’s activities. This allows
us to implement cross-cutting concerns (e.g., lifecycle method logging) without
having to implement those concerns on each and every activity class.
Android 8.0 gives us FragmentLifecycleCallbacks. We can register an instance
of this interface with a FragmentManager, and then receive callbacks for every
lifecycle method for every one of the fragments managed by that FragmentManager.
This should allow us to implement cross-cutting concerns (e.g., lifecycle method logging) without
having to implement those concerns on each and every fragment class.
As with everything involving fragments, there are two implementations: one
for the native fragments and one for the fragments backport in the support-fragment
artifact. This is another situation where you might elect to use the fragments
backport, even on an app with a minSdkVersion over 11, so you can use this
new capability even on older devices.
Other Minor Changes in Android 8.0
And, of course, there are lots of other smaller changes floating around Android
8.0, including those outlined here.
Permission Granularity
With the runtime permission system introduced in Android 6.0, we request permissions.
However, the UI presented to the user allows them to grant permission groups.
Presumably, this is to simplify the user experience.
However, in Android 6.0 through 7.1, even though you might request only one
permission out of the group, you would actually be granted all the permissions
in the group. So, for example, requesting READ_EXTERNAL_STORAGE would also allow
you to write to external storage, without having specifically requested this
via requestPermissions().
This bug is fixed in Android 8.0, for apps with a targetSdkVersion over 25. Now,
you are only granted the permissions that you request.
This is not supposed to change the user flow, though. Suppose that you call requestPermissions()
and ask for READ_EXTERNAL_STORAGE. The user is prompted whether to give your
app the rights associated with the storage permission group. If the user agrees,
you get READ_EXTERNAL_STORAGE, and only READ_EXTERNAL_STORAGE. However, if
later you call requestPermissions() for WRITE_EXTERNAL_STORAGE, in theory, the
user will not be prompted regarding this new permission, since the user already
granted you all the rights for the storage permission group. Your
onRequestPermissionsResult() method should be invoked immediately, indicating that
you now have access.
This supposed flow, though, never worked. The user was always prompted for all
permissions listed in requestPermissions(), even if the permission group
had already been granted. This is why various sample apps in this book employ
a netPermissions() method, so that we only ask for the permissions that we need
that we do not already have.
Tooltips
Mouse-centric environments — like classic desktop operating systems — have
long had tooltips, where an information bubble appears when you hover over
a widget. Android has had the occasional tooltip-like feature, such as the
tooltip that you get on action bar items when long-pressing them.
Android 8.0 extends this to all widgets. Simply provide the desired text
via android:tooltipText or setTooltipText(). A tooltip will then appear
when either the user long-presses the widget or if the user hovers over the
widget. In both cases, though, if the long-press or hover event is consumed
by something else, the tooltip is not shown.
This is covered in greater detail in the chapter on keyboards and mice.
ZoomButton Deprecated
The ill-used ZoomButton widget is now formally deprecated. Most likely, if you
are still using it, you should move to something else, such as:

	zoom gestures (e.g., pinch-to-zoom)

	a pair of ImageButton widgets

Alternatively, you might consider forking the source code to ZoomButton and
maintaining your own copy.
App Categories
Apps can use android:appCategory in the <application> element to suggest
a category to use for grouping this app with other similar apps on the device.
There is a short list of available categories.
Some are fairly obvious (e.g., game, maps), while others are somewhat
vague (productivity).
Changes in ANDROID_ID Scope
ANDROID_ID has been a long-troubled identifier for Android devices. In the
early days, it might be missing or set to some hard-coded value, rather than
being a unique identifier. Separate users on a shared Android device get
separate ANDROID_ID values, so it is not a per-device identifier anyway.
On the whole, Google does not recommend the use of ANDROID_ID, as seen
by its conspicuous absense from their identifier guidelines.
In Android 8.0, ANDROID_ID changes yet again, to now be a per-app/per-user
identifier. Each app, for each user on a device, gets its own ANDROID_ID value.
However, Google does guarantee that the value will remain consistent for
that app/user combination, surviving even an uninstall and reinstall. However,
because the value differs by apps, apps in a suite (or apps sharing a common
advertising library) cannot correlate actions, as they will each get their own
ANDROID_ID value.
For the record, you get the ANDROID_ID value via:

Settings.Secure.getString(getContext().getContentResolver(), Settings.Secure.ANDROID_ID);

Alert Windows
The “chat heads” offered by Facebook’s Android app kicked off a spur of interest
in how to create windows that can float over arbitrary apps. This facility was
never intended for widespread use, and presumably it adds challenges to future
multi-window scenarios.
The technique to create these windows involves using WindowManager to create
a new window with particular types, like TYPE_PHONE or TYPE_SYSTEM_ALERT.
On Android 8.0, apps with a targetSdkVersion over 25 cannot use these window
types anymore. Instead, a new type, called TYPE_APPLICATION_OVERLAY, has been
added, which apps can use, subject to some limitations:

	These overlay windows do not float over system UI elements, such as the
navigation bar or soft keyboards

	Your requested window size and position may be changed by Android as needed
“to improve screen presentation”

	The user can block your app from showing these windows

Build.SERIAL Versus Build.getSerial()
One of the values that has appeared on the Build class is SERIAL, advertised
as being a serial number for the device. Whether or not it actually is a serial
number has been up to device manufacturers.
On Android 8.0, Build.SERIAL is deprecated. More importantly, if your targetSdkVersion
is over 25, Build.SERIAL will be set to the string "unknown".
Instead, you need to start using a new getSerial() method on the Build
class. However, this requires the READ_PHONE_STATE permission, which, as a
dangerous permission, requires you to request it at runtime.
StorageStatsManager
UsageStatsManager was added in API Level 21, to provide access to historical
app usage data.
A similar class, StorageStatsManager, is part of Android 8.0, to provide information
about storage usage, for things beyond what StatFs has provided developers for
years. In particular, you can get:

	the “marketing” explanation of the data storage on some volume, which tends
to be higher than the actual amount of storage on that volume

	the amount of free space taking into account the amount of used cache that
could be freed up by the system

	the storage usage by particular user accounts

	the storage usage by particular apps

As with UsageStatsManager, StorageStatsManager requires that you request
the PACKAGE_USAGE_STATS permission. The user cannot grant you this permission
directly (e.g., via runtime permissions), but this will cause your app to appear
in Settings in a place where the user can grant you this permission.
Also, setCacheBehaviorAtomic() allows you to control whether deleting the cache
always happens “atomically” (i.e., deleting everything) or whether Android can
delete individual cached files. You would specifically want to opt into atomic
behavior if you cannot deal with Android deleting some cache files but not others.
TextClassificationManager
If you have ever used Google Translate,
and watched it guess what language your
pasted-in text was written in, TextClassificationManager offers that same
“guess the language” feature. Given an instance of the TextClassificationManager
system service, calling detectLanguages() on it will return details of
what language(s) were detected, in the form of a List of TextLanguage
objects. From there, you can find confidence scores and the like, to understand
how confident Android is in its guess.
Also, given a TextClassificationManager, you can obtain a TextClassifier.
This appears to be an updated edition of Linkify: a scanner that can find
linkable entities (e.g., email addresses, physical addresses, URLs, phone
numbers) and provide information to you about them for the purposes of applying
markup.
Appendix C: Android 9.0
Another year, another major Android release!
2018 has given us Android 9.0 (formerly Android P). This chapter outlines
some of the changes that we got in this new pie-flavored version.
Major Breaking Changes
There are a number of changes made in Android 9.0 which have the ability to break
your builds (right away) or break your app (once you raise your targetSdkVersion
to 28 or higher).
Native Fragment Deprecation
If you have been using native fragments — android.app.Fragment and kin — you
will get a lot of deprecation warnings as soon as you set your compileSdkVersion
to 28. That is because native fragments and the native implementation
of Loader are deprecated.
As usual, “deprecated” here means “we have an alternative that we would prefer
that you use”. In this case, the alternative is the fragment/loader implementation
from support-fragment in the Support Libraries (android.support.v4.app.Fragment,
android.support.v4.app.FragmentActivity, etc.). The benefit of using
the support-fragment implementation is that it comes from a library, so the
implementation is baked into your APK and should be fairly stable across
Android OS versions and devices. The native fragments and loaders, on the other
hand, have implementations that vary by Android OS version, and so you may be
subject to bugs on older devices that are fixed in the library.
The cost is a slightly larger APK. However, support-fragment is not very large,
and you may already be pulling in this library via transitive dependencies.
HTTPS Required By Default
The Android 9.0 documentation indicates that, by default, plain HTTP traffic
(“cleartext traffic”) is no longer allowed to any domain. This is supposed
to be be implemented via a change to network security configuration,
where cleartextTrafficPermitted would be set to false by default.
This change takes effect if you have targetSdkVersion set to 28 or
higher.
Ideally, you use HTTPS everywhere.
The workaround is to establish a network security
configuration in your app and either:

	Whitelist those domains for which you still need plain HTTP, or

	Set a <base-config> to allow cleartext traffic by default for all domains

No Hidden API Access
Starting with Android 9.0, Google is going to start
blocking your ability to access classes and members marked with the @hide pseudo-annotation,
plus private and package-private members. Simply put, if it is not documented
in the Android SDK, you may not be able to refer to it at compile time by
using Java reflection or similar techniques.
They indicate that this will be a phased rollout, stating
that “Initially, this restriction will impact interfaces with low or no usage”.
So, right now, we do not know exactly what will and will not be blocked.
If you pay close attention to LogCat, you will find warnings when code in your
process accesses things that will be blocked:

W/dex2oat: Accessing hidden field Ljava/lang/Throwable;->detailMessage:Ljava/lang/String; (light greylist, JNI)
W/zygote64: Accessing hidden method Landroid/app/ActivityThread;->currentActivityThread()Landroid/app/ActivityThread; (light greylist, reflection)

The first warning message comes from some JNI code attempting to access
a field inside of Throwable. We know from the message that this is from JNI
because the warning indicates as such in the parenthetical expression at the
end. That same message indicates that this is on the “light greylist”, which
should still work in Android 9.0, but may not work in future
versions of Android.
The second warning comes from Java code using reflection, accessing a static
method on a hidden class. That too is on the “light greylist”.
According to the documentation,
there is also a “dark greylist” that represents things that will fail outright
in Android 9.0. However, while the docs show that currentActivityThread()
is on the “dark greylist”, actually trying it results in a “light greylist” message,
as is shown above.
Developers should examine their code bases for any signs of using
reflection to access hidden members: Class.forName(), getConstructor(),
getField(), and so on. This is particularly important for library authors,
as issues with a library get amplified by the number of library users.
The big reason is that Google has set up a dedicated issue tracker component
for requests to make formerly-private APIs public. The results of filing issues
on the issue tracker can be generously described as “mixed”. However, what has
become clear is that Google does not make changes to a release once the first developer
preview has shipped, outside of egregious problems. So, if you want some APIs
to be made public for 2019’s new version of Android, you had best
get those requests filed
quickly, so that they can get in the pipeline.
Note that not all uses of reflection will need to result in changes in Android 9.0.
Of note:

	Using reflection for accessing your own code is fine, if perhaps heavyweight

	Using reflection for accessing things on older devices, where newer devices
have some official solution, will not change based on Android 9.0’s release — while
this is still risky, the risk is not any greater now than before

	Using reflection for accessing manufacturer-supplied libraries — the kind that
you need to use <uses-library> for in the manifest — should be unaffected
by this change

One challenge in detecting these problems is that the warning does not indicate
where the invalid access is coming from. It will difficult to identify the library
that is the culprit, for cases where your own code is not the source of the
violation.
However, StrictMode not only offers callbacks to find out when violations occur,
but it also now treats these violations as part of the VM policy. So, you could
arrange to have StrictMode report these violations to you, where you then log
the stack trace somewhere. For example, you might modify your test suites to
enable StrictMode to collect this information, then write the output somewhere
that your tests can pick up and incorporate into their results. We will see
an example of this later in the chapter.
A Minimum targetSdkVersion
As Android Police reported,
if your app has a targetSdkVersion below 17, and the user installs and attempts
to run it on Android 9.0, the user is greeted with a warning dialog:

[image: Android 9.0 Low targetSdkVersion Warning Dialog]

Figure 1091: Android 9.0 Low targetSdkVersion Warning Dialog
(here, the app’s name is “My Old App”)
This only appears on the first run of the app. If the user clicks the “Check for
updates” button, they are taken to the Play Store… even if the app was not from
there.
This is a fairly awkward introduction for your app.
This, coupled with
the Play Store’s already-scheduled
ban on new apps and updated apps that use older targetSdkVersion values,
puts pressure on you to keep your targetSdkVersion up to date. And, if the
targetSdkVersion threshold turns into a ban, developers will need to consider
whether they are in position to invest time in the app whenever Google decides
to raise this threshold.
Foreground Service Permission
Your app needs to request
the FOREGROUND_SERVICE permission if it will start a foreground service.
This is a normal permission and does not require runtime permissions, but
if you fail to have the <uses-permission> element for FOREGROUND_SERVICE
in the manifest, your app will crash with a SecurityException.
This change should take effect if you have targetSdkVersion set to 28 or
higher.
Background Apps and Privacy
Background apps — those with no foreground UI and no foreground service — will
be blocked from accessing the microphone, camera, and many sensors. While there
are plenty of legitimate reasons for wanting to use those data sources in the
background, there are privacy issues, as the user is not aware that, say, the
microphone is capturing what the user says. There can also be power considerations
as well.
Most apps should be unaffected by these changes, but if you use any of those
hardware features, make sure that you test your app thoroughly on Android 9.0.
For example, it is unclear how quickly these restrictions are applied — if the
user presses HOME, ideally you have a grace period of a few seconds to clean up
your use of this hardware. It is also unclear what the real-world effects
are (e.g., are exceptions thrown?).
“The War on Background Processing”, Continued
Android 9.0 introduced “app standby buckets”.
In Android 6.0-8.1, your app would move
into an “app standby” category if the user had not visited the app’s UI recently,
and while in “app standby”, it was pretty much as if Doze mode was on all the time
for your app. Now, there are four major “buckets”: active, working set, frequent,
and rare, with progressively stronger restrictions placed on app operation. In
particular:

	FCM high-priority messages — formerly Google’s recommended approach for
getting your app to react to external data changes — will be capped in
the “frequent” and “rare” buckets

	Device manufacturers can decide for themselves when and how to categorize
apps into these buckets

The user can also elect to manually restrict background operations for your
app. If the user does, basically nothing works: no jobs, no alarms, no network.
There are no “idle maintenance windows” or anything of the sort. The only thing
that works when you are restricted this way are FCM high-priority messages, and
app standby means that they might not work either. The user can enable background
restrictions on their own by visiting Settings > Apps > (your app) > Advanced >
Battery > Background Restriction. In theory, users would be unlikely to do this.
However, the documentation
indicates that the OS will alert the user to apps that:

	Hold a partial WakeLock for more than an hour while the screen is off, and

	If the app’s targetSdkVersion is below 26 and it has “excessive background
services” (which is undefined)

There is a new isBackgroundRestricted() method on ActivityManager.
Based on the documentation, it appears that this will return true if the
user goes and elects to restrict your background operation manually.
There is a table of what the effects are for different types of scenarios,
such as the four app standby buckets.
The power change documentation also has:

Android 9.0 makes a number of improvements to battery saver mode. The device manufacturer determines the precise restrictions imposed.

Apparently, “random behavior based on device manufacturer whim” is an “improvement”.
In general, do not write apps that require periodic background work.
Device Administration Deprecations
Four device admin policies that you might be requesting for use
from your device admin app are marked as deprecated in Android 9.0
and are slated to throw a SecurityException in Android Q:

	Blocking camera access (USES_POLICY_DISABLE_CAMERA)

	Disabling certain unspecified keyguard features (USES_POLICY_DISABLE_KEYGUARD_FEATURES)

	Forcing the user to reset their password after an admin-defined time period (USES_POLICY_EXPIRE_PASSWORD)

	Forcing the user to use passwords meeting certain quality guidelines, such
as minimum length (USES_POLICY_LIMIT_PASSWORD)

These policies will be limited to device owners and profile owners in the future.
Missing Stuff Returns
Historically, to start an activity from a non-activity Context, you needed
to add FLAG_ACTIVITY_NEW_TASK to the Intent. Otherwise, you would crash
with an exception pointing out the need for this flag. However, starting with
Android 7.0, this flag was no longer needed, inexplicably. That flag is required
again as of Android 9.0. The safest thing to do is to use it on all versions, as
having the flag did not seem to cause any ill effects on Android 7.0-8.1.
Similarly, the documentation for Android 8.0 claimed that to be able to delete
installed apps using ACTION_UNINSTALL_PACKAGE, an app needed to hold the
REQUEST_DELETE_PACKAGES permission. That was not the case, but now it is
required for Android 9.0.
Removal of Deprecated Testing Classes
The original generation of JUnit-based test classes, such as ActivityInstrumentationTestCase2,
have been removed from the SDK. However, you can opt into having those in
your project via some useLibrary directives in your android closure in
your module’s build.gradle file. Ideally, you have long since moved on
from those original test classes, but if you have legacy code that has
legacy test code, you have access to legacy testing libraries
to allow all of that to (hopefully) keep working.
Signature Changes and Deprecations
Android apps can examine the “signatures” of apps. In reality, these are X.509
certificates representing the public key of the code that signed the APK.
Historically, apps were only signed by one certificate. Technically, apps could be
signed by multiple certificates, but this was very infrequent. And, in that scenario,
all keys needed to match: if the app was signed by certificates K1 and K2, any upgrade
to that app also had to be signed by K1 and K2.
Android 9.0 debuts APK Signature Scheme v3, the next generation of APK signing algorithms.
It adds the possibility of key rotation: allowing an APK to be signed by a
different certificate than what was used to originally sign it. The new signature
scheme allows for the APK to show an entire history of certificates, to prove
that the new certificate is allowed by the holder of the previous certificate.
A side effect of this change is that the APIs used to examine signatures now need
to address this signature history. To that end, Android 9.0 deprecates
the GET_SIGNATURES flag used in PackageManager and the resulting signatures
field in PackageInfo. They are replaced by GET_SIGNING_CERTIFICATES and
signingCertificateHistory, respectively. For most apps, at least at the time
being, signingCertificateHistory will have just the one-and-only certificate.
But, in the future, if the Play Store or other tools enable key rotation,
APKs may have a deeper history accessible via signingCertificateHistory.
APKs signed with prior generations of the APK Signature Scheme still work on
Android 9.0, and it remains to be seen when the tools will catch up and offer
this new signing option (and how those tools work).
Major Features
Beyond the stuff that might break your app, Android 9.0 debuts a number of new
features that may be of interest to you and your users.
Slices
Partly, slices represent a next-generation implementation of the RemoteViews
system. RemoteViews is used mostly for app widgets and
custom notifications. It is a data structure that
describes a UI, designed to be passed between apps (or from an app to a system
process). One app creates the RemoteViews, the other app or process displays
the View hierarchy defined by those RemoteViews. However, RemoteViews
are not magic. So long as both sides agree on the rules, you can create your
own serialization of UI-construction instructions and pass them between
processes. That is what slices do: create a new convention for passing this
sort of information between apps.
Partly, slices provide a framework for requesting and receiving these UI structures.
In that sense, it is a bit reminiscent of app widgets, where you have providers
and hosts. Ordinary apps are app widget providers; home screens are typically
app widget hosts. Similarly, apps can be slice providers or slice hosts.
In this fashion, one app can embed UI defined by another app.
This book contains a dedicated chapter on publishing slices.
Notification Improvements
Notifications have been steadily altered in many of the past several Android
major releases. Android 9.0 is no different, though its changes are somewhat more
modest than what we saw previously.
A continued focus is on in-notification messaging:

	The native APIs have been adjusted to use a Person class to identify
messaging participants, including their chat handle, avatar, etc.

	
MessagingStyle now supports inline images via setData()

	
RemoteInput for inline replies now supports setChoices() on phones and
tablets the way that it does on Wear OS devices, where you can supply some
suggested responses, to save the user from having to type something in directly

Also, actions can have a “semantic action” associated with them, where you indicate
what general role the action has (e.g., delete, reply, mark as read). It is unclear
what impact this has on anything.
None of these are supported by NotificationCompat at this time.
In addition, Android 9.0 will send broadcasts when users block or unblock a notification
channel or channel group. You can listen for such broadcasts if desired —
the action strings are defined as constants on NotificationManager (e.g.,
ACTION_NOTIFICATION_CHANNEL_BLOCK_STATE_CHANGED).
Fingerprint Improvements
Android 9.0 brings with it some improvements to how you can work with the fingerprint
sensor on the device for authentication purposes.
BiometricPrompt
The FingerprintManager API has been deprecated and replaced with BiometricPrompt.
It remains to be seen if an implementation of BiometricPrompt will be
added to the Support Library; there is no sign of one at present.
BiometricPrompt provides a stock UI around fingerprint scanning.
You simply get the results
when the user’s attempt to scan a fingerprint completes, in one form or fashion.
In principle, BiometricPrompt can handle other forms of biometric authentication,
such as face scanning or iris scanning. It is unclear to what extent Android 9.0 –
or any Android 9.0 hardware — will support this.
The
DeviceAuth/FingerDialog
sample application is a clone of the FingerCheck sample application shown in
the chapter on device authentication. There, we used RxFingerprint
as a reactive wrapper around the FingerprintManager API to scan a fingerprint
and indicate the outcome. FingerDialog replaces RxFingerprint with BiometricPrompt.
We use a BiometricPrompt.Builder to create an instance of BiometricPrompt:

 prompt=new BiometricPrompt.Builder(this)
 .setTitle("This is the title")
 .setDescription("This is the description")
 .setNegativeButton("Ick!", getMainExecutor(),
 (dialogInterface, i) -> button.setImageDrawable(off))
 .setSubtitle("This is the subtitle")
 .build();

(from DeviceAuth/FingerDialog/app/src/main/java/com/commonsware/android/auth/finger/MainActivity.java)
You get to provide three pieces of descriptive text: a title, a subtitle, and
a “description”. No particular guidance is supplied for what the roles are
for these bits of text, but only the title is required.
You also need to provide information that goes on the “negative button”, which
the user can click to bail out of the fingerprint scan. This includes the
caption of the button, an Executor to use to invoke your callback, and
the callback itself. Here, we use the new getMainExecutor() method on Android 9.0
to get an Executor that executes code on the main application thread. Our
callback, in the form of a lambda expression, simply toggles the state of an
image to show an “off” color.
BiometricPrompt does not have an up-front way of telling you whether it
will work, strictly speaking. The documentation recommends that you call
hasSystemFeature(PackageManager.FEATURE_FINGERPRINT) on a PackageManager, to
at least filter out devices that have no fingerprint hardware, before trying
to use BiometricPrompt. Everything else is handled via callbacks. Also note
that there may be other checks that will be required in the future for other forms
of biometrics.
So, whereas authenticate() originally started using RxFingerprint to confirm
that fingerprints were available and then request a scan, we now start with the
FEATURE_FINGERPRINT check:

 private void authenticate() {
 if (getPackageManager().hasSystemFeature(PackageManager.FEATURE_FINGERPRINT)) {
 button.setImageDrawable(on);
 prompt.authenticate(signal, getMainExecutor(), authCallback);
 }
 else {
 Toast.makeText(this, R.string.msg_not_available, Toast.LENGTH_LONG).show();
 }
 }

(from DeviceAuth/FingerDialog/app/src/main/java/com/commonsware/android/auth/finger/MainActivity.java)
If we have that feature, we call authenticate() on the BiometricPrompt
that we built (and saved to a prompt field in the MainActivity).
authenticate() takes:

	A CancellationSignal object, which you can use to cancel the scan yourself,
should that prove necessary

	An Executor on which to invoke your callback

	An AuthenticationCallback, here implemented as a nested class:

 private final BiometricPrompt.AuthenticationCallback authCallback=
 new BiometricPrompt.AuthenticationCallback() {
 @Override
 public void onAuthenticationError(int errorCode, CharSequence errString) {
 button.setImageDrawable(off);

 if (errorCode==BiometricPrompt.BIOMETRIC_ERROR_NO_BIOMETRICS) {
 startActivity(new Intent(Settings.ACTION_FINGERPRINT_ENROLL));
 }
 else {
 Toast.makeText(MainActivity.this, errString, Toast.LENGTH_LONG).show();
 }
 }

 @Override
 public void onAuthenticationHelp(int helpCode, CharSequence helpString) {
 // unused
 }

 @Override
 public void onAuthenticationSucceeded(BiometricPrompt.AuthenticationResult result) {
 Toast.makeText(MainActivity.this, R.string.msg_authenticated, Toast.LENGTH_LONG).show();
 button.setImageDrawable(off);
 }

 @Override
 public void onAuthenticationFailed() {
 // unused
 }
 };

(from DeviceAuth/FingerDialog/app/src/main/java/com/commonsware/android/auth/finger/MainActivity.java)
The callback has four methods that you need to implement. The one that you
want to have called is onAuthenticationSucceeded(), meaning that the user
has successfully scanned a fingerprint. onAuthenticationError() will be called
if there is some specific problem, such as too many failed attempts or if there
are no fingerprints enrolled. Both of these appear to work, and we will see
more about onAuthenticationError() in the next section. The remaining two
methods — onAuthenticationHelp() and onAuthenticationFailed() — will
be called with the fingerprint dialog still visible, and the dialog itself
seems to provide feedback to the user about the issues it is encountering. Hence,
it is unclear whether these callbacks are useful in this scenario.
The dialog itself will show your icon, along with your supplied messages:

[image: BiometricPrompt UI]

Figure 1092: BiometricPrompt UI
If there is a recoverable problem, the dialog will inform the user:

[image: BiometricPrompt UI, Showing Recoverable Error]

Figure 1093: BiometricPrompt UI, Showing Recoverable Error
ACTION_FINGERPRINT_ENROLL
If you get called with onAuthenticationError(), and the supplied error code
is FINGERPRINT_ERROR_NO_FINGERPRINTS, this means that the device does not
have a scanned fingerprint to use for comparison purposes. At this point, you
have two options:

	Back away slowly, as you have no idea who is holding the device and whether
it is really the user or not

	Offer to help the user set up fingerprints, including setting up a secure
lockscreen (if that part is not already done)

To do the latter, you can start the ACTION_FINGERPRINT_ENROLL activity,
as shown above. This leads the user into a several-pane wizard UI to set up
the secure lockscreen and enroll a fingerprint. This is the same wizard that
they would get if they went into Settings and elected to add a fingerprint
through its UI.
Other Notable Changes
Many other changes are coming in Android 9.0, with varying impacts on app
developers.
Display Cutouts
2017 was The Year of the Notch.
Not only did Essential’s first Android phone
have their front-facing camera intrude on the display, but so did a phone from Apple.
Apple, being a trend-setter in phone design, resulted in a variety of
Android device manufacturers debuting notch display designs at events such
as Mobile World Congress 2018. To help accommodate that, Android 9.0 is standardizing
the concept of “display cutouts”, so that the OS can help “route around the damage”
caused by these inaccessible screen coordinates.
Android 9.0 devices and emulators can simulate a device with a display notch,
even if the device itself does not have one. In Settings > Developer Options >
Drawing, you will find a "Simulate a display with a cutout preference, with
a handful of options:

[image: Android 9.0 Notch Simulation Option]

Figure 1094: Android 9.0 Notch Simulation Option
Due to some bugs with the simulation, it is a bit difficult to determine exactly
how Android will react to display notches. It is even more difficult to document them,
since portrait screenshots do not show the simulated display cutout.
In portrait mode, the status bar becomes taller. With the simulated behavior,
the status bar toggles between normal height (when there is no simulated display
cutout) and a taller state. That taller state is tall enough to accommodate the
tall form of the simulate display cutout, even if the cutout that you choose
is not that tall. It is unclear whether production devices with notches will
have the status bar match the notch or whether the status bar will be a consistent
height regardless of notch height.
In landscape mode, it appears that the entire display will be truncated to accommodate
the notch.
For most apps, none of this will matter. Apps that operate in full-screen
mode will require testing, as will apps that try to work with the actual
display size rather than the size of widgets inside of their UI. A new
DisplayCutout class can give you details of where the cutout is (if there
is one). WindowManager.LayoutParams now offers a layoutInDisplayCutoutMode
field, where you can specify whether your window should extend into the
cutout area or not, when your app is full-screen.
ImageDecoder
If you are using BitmapFactory directly, that may not be the best option
for you. Consider using an image-loading library, such as Picasso or Glide.
Such libraries handle more of the overall image-loading process, such as
dealing with background threads and image caches.
If you maintain such a library, or you have a clear reason to use BitmapFactory
directly, you have a new option in Android 9.0, called ImageDecoder. ImageDecoder
is billed as being a replacement for BitmapFactory, though in truth the
two classes’ functionalities do not completely overlap.
At its core, though, ImageDecoder does fill the same role as does BitmapFactory:
load a Bitmap from some representation of the image.
One key difference between the two is where the image can come from:

 	Representation
 	Supported by BitmapFactory

 	Supported by ImageDecoder

 	assets
 	yes (via InputStream)
 	yes

 	
byte array
 	yes
 	yes (via ByteBuffer)

 	InputStream
 	yes
 	no

 	File
 	yes
 	yes

 	FileDescriptor
 	yes
 	no

 	resource
 	yes
 	yes

 	Uri
 	yes (via InputStream)
 	yes

With BitmapFactory, there are dedicated methods for the different data sources,
such as decodeStream() and decodeByteArray(). With ImageDecoder, it is a
two-step process: you call a createSource() method to create a Source,
then pass that to decodeBitmap().
BitmapFactory can take a BitmapFactory.Options to configure the
decoding process. ImageDecoder replaces most of those with setters on the
ImageDecoder itself, such as setMutable() or setResize().
Often, we need to know the size of the image before we are ready to actually
load it, such as for calculating the scaling factor to apply to it
(i.e., inSampleSize in BitmapFactory.Options). With BitmapFactory,
that required two decode...() calls: one to get the size and a second to do the
real decoding. This was a pain for some data sources, such as InputStream, that
are designed to be used once. ImageDecoder replaces that with an optional
OnHeaderDecodedListener where you can get the size data. That listener gets
the ImageDecoder itself as a parameter to its onHeaderDecoded() method, so
you can further configure the decode operation based on the header data.
ImageDecoder not only allows you to get a Bitmap back, but it also supports
returning a Drawable, via decodeDrawable(). In particular, this should support
decoding animated GIF and WebP images to an AnimatedImageDrawable.
AppComponentFactory
Android now allows apps to more directly control the instantiation of activities,
services, content providers, and broadcast receivers, by means of an AppComponentFactory.
You can define a subclass of AppComponentFactory and register it in the
manifest in the <application> element via an android:appComponentFactory
attribute. Then, whenever the framework
needs to create an instance of an Activity, Application, ContentProvider,
BroadcastReceiver, or Service, your AppComponentFactory will be asked
to do that work. You are given a ClassLoader, the String of the component name
that appeared in the manifest, and an Intent (for Activity, Service,
and BroadcastReceiver). Your job is to return the desired object. It would
appear that you could chain to the superclass for those components that
you do not want to handle differently, allowing you to focus on the scenarios
where you want to do something different than what the framework normally does.
Let’s use an Activity as an example. Normally, when the user taps the
home screen launcher icon, Android creates an instance of the designated
Activity subclass using the zero-argument public constructor. However,
if the app has registered an AppComponentFactory and overrides the
instantiateActivity() method, that will be called, and it needs to return
the Activity.
For example, instantiateActivity() could:

	Use some other sort of constructor, perhaps involving dependency
injection

	Have a generic placeholder <activity> element, and decide in Java code
what the actual Activity will be, by using other information in the
Intent and perhaps other state information in the app (e.g., splash screen
in some scenarios)

	Create some sort of ActivityWrapper that wraps the real Activity
subclass, where the wrapper can do logging and such, forwarding all
calls onto the wrapped Activity

And so on. Hence, this capability could be useful for a variety of scenarios.
Unfortunately, some of those scenarios involve malware, particularly in the
form of app repackagers. These are tools that take an app, inject some malware,
and repackage the app with that malware. The repackaged app can then be distributed
by whatever means the malware author desires. It used to be that the “inject some
malware” step was relatively manual. With AppComponentFactory, all that the
repackager needs to do is:

	Create and register an AppComponentFactory that overrides instantiateActivity() (or
whatever) to put a wrapper around the app’s real component

	Ship the altered app by whatever a preferred distribution channel is

	Get results from the wrappers (e.g., report everything the user
types in, slap ad banners over the UI, replace the app’s own ad banners
with my own)

The
Introspection/ActivityMill
sample application demonstrate the use of AppComponentFactory.
Our activity — MainActivity — is unusual. It has a private constructor and
a factory method for creating instances of the activity:

package com.commonsware.android.activitymill;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
 private final String revisedTitle;

 static MainActivity sockItToMe(String revisedTitle) {
 return new MainActivity(revisedTitle);
 }

 private MainActivity(String revisedTitle) {
 this.revisedTitle=revisedTitle;
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 setTitle(revisedTitle);
 }
}

(from Introspection/ActivityMill/app/src/main/java/com/commonsware/android/activitymill/MainActivity.java)
Normally, this would not work. Android would crash when trying to start the
activity, because it would not find a public zero-argument constructor.
However, in our case, we are using AppComponentFactory to create our
MainActivity instances:

package com.commonsware.android.activitymill;

import android.app.Activity;
import android.app.AppComponentFactory;
import android.content.Intent;

public class ActivityMill extends AppComponentFactory {
 @Override
 public Activity instantiateActivity(ClassLoader cl, String className,
 Intent intent) {
 return MainActivity.sockItToMe("This is not the regular title");
 }
}

(from Introspection/ActivityMill/app/src/main/java/com/commonsware/android/activitymill/ActivityMill.java)
This class is registered in the manifest via android:appComponentFactory:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.android.activitymill"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <application
 android:appComponentFactory=".ActivityMill"
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from Introspection/ActivityMill/app/src/main/AndroidManifest.xml)
By overriding instantiateActivity(), we get control when the framework wants
to instantiate MainActivity. If we chain to the superclass, normal instantiation
occurs, and we crash with an InstantiationException. Instead, we call the sockItToMe()
factory method and create the MainActivity instance that way, returning it.
Then, it all works… on Android 9.0 and higher.
However, there are limitations and issues:

	This does not work on Android 8.1 and lower. So, either your minSdkVersion has
to be 28 or higher, or you need to be able to support both cases where
your AppComponentFactory creates the instance and cases where it does not.

	You cannot do a lot with the activity when you create it. For example, the
sample app changes the title of the activity, which you can see in the action
bar if you run the sample app. However, to make that work, we have to hold
onto the title and apply it in onCreate(). If you try calling setTitle()
before onCreate() — such as from the constructor — while nothing crashes,
your change does not take effect. Similarly, any methods on Activity
that require it to be fully configured as a Context (e.g., getString())
may not work reliably at this point.

	Depending on the nature of your changes, you may get superfluous complaints
elsewhere. For example, in the sample app, Android Studio highlights the
.MainActivity value of the android:name in <activity>, complaining that
this class has no public zero-argument constructor. While this is true,
that is not a problem, as we are using an AppComponentFactory. Android Studio
does not know this and so
it complains.

Indoor Positioning
Android 9.0 offers new classes, in the android.net.wifi.rtt package, for helping
you determine the location of the device within a building, by estimating the
distance from the device to a WiFi access point (AP). If you can get distance
estimates from 3+ APs, you can use triangulation to come up with a position
estimate relative to those APs.
This is designed for use by indoor mapping applications for large (typically public)
buildings. Such buildings already have a number of APs to provide adequate
WiFi coverage. APs rarely move, and so if you know where the device is relative
to the APs, you can show the user on a map where they are within the building.
This feature requires compatible hardware. The Google Pixel, for example,
supports this. However, it remains to be seen how many Android 9.0 models will
support this feature. There is a new system feature — also called
android.hardware.wifi.rtt — that you can use with <uses-feature> to filter
out devices that lack support for it. Or, you can use
getPackageManager().hasSystemFeature(PackageManager.FEATURE_WIFI_RTT) to determine
at runtime whether these APIs should work.
JobScheduler Additions
JobInfo.Builder has a few new options:

	
setEstimatedNetworkBytes() provides a hint for how much bandwidth should be
needed to execute this job. The idea is that jobs needing a lot of bandwidth
may be postponed when the device has a lousy network connection, as excessive
retries may chew up the battery.

	
setImportantWhileForeground() is strange. Based on the docs, it appears as
though it will relax some of the restrictions imposed by Doze mode, if your app
happens to be in the foreground at the time of the job. Presumably this includes
cases where the screen is off and your app was the last one to be in the foreground.
Otherwise, if the screen is on and you are in the foreground, there should be no
Doze restrictions in the first place.

	
setIsPrefetch() indicates that this job is pre-fetching some data for the
user. JobScheduler may adjust your job’s timing as a result, either to invoke it
as part of launching your UI (e.g., if the user clicks on your launcher icon) or
if there is a lot of spare bandwidth (even if that bandwidth is metered and you
ordinarily try to avoid metered data).

	
setRequiredNetwork() allows you to spell out the details of what sort of
network connection that you need, based on capabilities and transport
types, as defined by a NetworkRequest.

StrictMode Callbacks
StrictMode has been around for years, and it serves as a useful tool for identifying
bad behavior. In particular, it excels at pointing out I/O performed on the main
application thread. StrictMode combines a set of detection rules (e.g., detect network I/O)
and penalties (e.g., flash a red border on the screen). By default on API Level 11+,
StrictMode is configured to check for network I/O on the main application thread
and crash the app if such I/O is encountered. But, we can reconfigure this, and
we often do, with different configurations for different scenarios. For example,
crashing the app may be OK in a debug build, but it would be unwise in a release
build.
Android 9.0 adds a new form of penalty: invoking a listener that you provide. In
the absence of any other penalty, invoking your listener is all that happens
when a StrictMode violation is encountered. You get a Violation object that
identifies the problem, and you can handle it yourself, by whatever means you deem
to be appropriate. Your app keeps running, so these StrictMode reports are advisories
of bad behavior.
This has a few interesting use cases.
For testing, you might try to craft a listener that can match your violations with
the test case. penaltyLog() logs the violations to LogCat, but it may be difficult
to determine what test case triggered the violation. Your own code may be able to do
this better. Plus, you might arrange to integrate this information into your test
reporting framework.
Historically, we have been advised not to use StrictMode in production. Mostly,
that is because all of the available penalties either harm the user (e.g., crashing
the app) or have limited use (e.g., logging to LogCat, where we cannot then access
the log). However, you might consider experimenting with using this new
penaltyListener() approach to collect StrictMode violations in production and
include them in your existing crash logging or analytics solution.
Example: ACRA Reporting
For example, the
ACRA/StrictMode
sample application is based on the ACRA sample shown in the chapter on ACRA.
ACRA is a client-side library for collecting crash data, to send to the backend
of your choice. The app’s UI consists of a single Button, which, when clicked,
will do something awful. In the original sample, it just threw a RuntimeException.
In this sample, it attempts to get some information from the Internet on the
main application thread, which is bad.
In our custom Application subclass — ACRAApplication — we not only configure
ACRA, but we configure StrictMode as well:

package com.commonsware.android.button;

import android.app.Application;
import android.content.Context;
import android.os.AsyncTask;
import android.os.Handler;
import android.os.StrictMode;
import android.os.strictmode.Violation;
import org.acra.ACRA;
import org.acra.annotation.AcraCore;
import org.acra.annotation.AcraHttpSender;
import org.acra.data.StringFormat;

@AcraCore(
 buildConfigClass = BuildConfig.class,
 reportFormat=StringFormat.JSON
)
@AcraHttpSender(
 uri=BuildConfig.ACRA_URL,
 httpMethod=org.acra.sender.HttpSender.Method.PUT
)
public class ACRAApplication extends Application {
 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);

 if (BuildConfig.ACRA_INSTALL) {
 ACRA.init(this);
 }
 }

 @Override
 public void onCreate() {
 super.onCreate();

 new Handler().postAtFrontOfQueue(this::enableStrictMode);
 }

 private void enableStrictMode() {
 StrictMode.ThreadPolicy.Builder b=new StrictMode.ThreadPolicy.Builder()
 .detectNetwork()
 .penaltyListener(this::onThreadViolation, AsyncTask.THREAD_POOL_EXECUTOR);

 StrictMode.setThreadPolicy(b.build());
 }

 private void onThreadViolation(Violation violation) {
 ACRA.getErrorReporter().handleSilentException(violation);
 }
}

(from ACRA/StrictMode/app/src/main/java/com/commonsware/android/button/ACRAApplication.java)
In the enableStrictMode() method, we call penaltyListener(), which takes
our OnThreadViolationListener (here in the form of a Java 8 method reference)
and an Executor. The Executor will control what thread is used for invoking
our listener. In this case, we are using the THREAD_POOL_EXECUTOR from
AsyncTask, as that is already configured.
The listener gets a Violation object. That is a subclass of Throwable, and
so you can treat it similarly to how you might treat an Exception object.
In this case, we use ACRA to log this violation, via its handleSilentException()
method.
We could use penaltyDeath(), and ACRA would pick up the violation there as well.
However, that breaks the app, and a thrown Exception leaves your app in a somewhat
precarious position. Instead, by using penaltyListener(), we can still record
these violations, while the app continues to run (albeit perhaps with problems due
to whatever bugs we have that are triggering the violations).
The downside of this approach is the potential of flooding. penaltyListener()
reports each individual violation. Since the app is continuing to run, it
may result in lots of violations in short order. The sample app’s Button uses
HttpUrlConnection on the main application thread:

 public void earthShatteringKaboom(View v) {
 try {
 URL url=new URL("https://commonsware.com/Android/excerpt.pdf");
 HttpURLConnection c=(HttpURLConnection)url.openConnection();
 String mimeType=c.getHeaderField("Content-type");

 c.disconnect();

 Toast.makeText(this, "MIME type: "+mimeType, Toast.LENGTH_LONG).show();
 }
 catch (MalformedURLException e) {
 Log.e(getClass().getSimpleName(), "Who are you calling malformed?", e);
 }
 catch (IOException e) {
 Log.e(getClass().getSimpleName(), "Well, that's disappointing.", e);
 }

(from ACRA/StrictMode/app/src/main/java/com/commonsware/android/button/ButtonDemoActivity.java)
(where earthShatteringKaboom() is called when the Button is clicked, by
means of an android:onClick attribute in the layout)
This little code snippet will result in several violations all being passed to
the listener, for different phases of the HTTP request (e.g., DNS lookup, opening
a socket connection to the HTTP server).
Your listener — or other code that uses the resulting Violation
objects — will need to take steps to ensure that you do not get overwhelmed with
data. For example, you might come up with an algorithm that uses the stack
trace (in the form of the StackTraceElement array in the Violation) to
report unique violations, based on the first occurrence of your code in the stack
trace.
Example: Greylist Violation Reporting
As mentioned previously in this chapter, the use of hidden APIs is starting
to be banned. You can find messages in LogCat about your use of such hidden
APIs, whether directly or from libraries. However, those messages are merely
simple LogCat entries, and they are easily missed. It would be nice to raise
awareness of these things, but not to the point of crashing the app.
Another problem with the greylist LogCat entries is that they do not provide
a full stack trace. They just say that a particular hidden API was invoked,
not where it was invoked. This makes debugging such violations difficult.
By using the callback option with StrictMode, you can find out about the greylist
violations and take your own steps. For example, as part of a test suite, you
can collect the stack traces and log them someplace for later inspection. That
is what the
StrictMode/GreyMarker
sample application does.
In the main source set, we have a class, named BadHorse, with some evil code:

package com.commonsware.android.strictmode.greymarker;

import java.lang.reflect.Field;

class BadHorse {
 static int getCloseButtonId() throws ClassNotFoundException,
 NoSuchFieldException, IllegalAccessException {
 Class<?> androidIdClass = Class.forName("com.android.internal.R$id");
 Field closeButtonField = androidIdClass.getField("closeButton");

 return closeButtonField.getInt(null);
 }
}

(from StrictMode/GreyMarker/app/src/main/java/com/commonsware/android/strictmode/greymarker/BadHorse.java)
We are looking up the value of an internal widget ID: the one used to identify
the close button on toolbars.
This class is tested by the associated BadHorseTest:

}

(from StrictMode/GreyMarker/app/src/androidTest/java/com/commonsware/android/strictmode/greymarker/BadHorseTest.java)
If you run that test individually and check LogCat, you will find a debug
message about the greylist violation:

07-29 10:29:55.818 12481-12497/com.commonsware.android.strictmode.greymarker W/mode.greymarke: Accessing hidden field Lcom/android/internal/R$id;->closeButton:I (light greylist, reflection)

If, instead, you run the GreylistSuite in the instrumented tests, you will
get a file written to Android/data/com.commonsware.android.strictmode.greymarker/cache/__greylist/
on external storage, with a semi-random filename. If you copy that file (e.g.,
via Android Studio’s Device File Explorer) and examine it, you will find that
it contains a full stack trace showing where the greylist violation occurred:

android.os.strictmode.NonSdkApiUsedViolation: Lcom/android/internal/R$id;->closeButton:I
 at android.os.StrictMode.lambda$static$1(StrictMode.java:428)
 at android.os.-$$Lambda$StrictMode$lu9ekkHJ2HMz0jd3F8K8MnhenxQ.accept(Unknown Source:2)
 at java.lang.Class.getPublicFieldRecursive(Native Method)
 at java.lang.Class.getField(Class.java:1599)
 at com.commonsware.android.strictmode.greymarker.BadHorse.getCloseButtonId(BadHorse.java:23)
 at com.commonsware.android.strictmode.greymarker.BadHorseTest.closeButonId(BadHorseTest.java:13)
 at java.lang.reflect.Method.invoke(Native Method)
 at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50)
 at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
 at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:47)
 at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
 at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:325)
 at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:78)
 at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:57)
 at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
 at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
 at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
 at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
 at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
 at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
 at android.support.test.runner.AndroidJUnit4.run(AndroidJUnit4.java:101)
 at org.junit.runners.Suite.runChild(Suite.java:128)
 at org.junit.runners.Suite.runChild(Suite.java:27)
 at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
 at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
 at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
 at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
 at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
 at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
 at org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
 at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
 at org.junit.runners.Suite.runChild(Suite.java:128)
 at org.junit.runners.Suite.runChild(Suite.java:27)
 at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
 at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
 at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
 at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
 at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
 at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
 at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
 at org.junit.runner.JUnitCore.run(JUnitCore.java:115)
 at android.support.test.internal.runner.TestExecutor.execute(TestExecutor.java:56)
 at android.support.test.runner.AndroidJUnitRunner.onStart(AndroidJUnitRunner.java:384)
 at android.app.Instrumentation$InstrumentationThread.run(Instrumentation.java:2145)

This is much more useful than the one-line LogCat warning that we normally get.
Plus, you could arrange to have your test Gradle tasks look for this file and
take it into account with your test results.
GreylistSuite is a JUnit4 test suite, identifying the test classes
that are part of the suite:

@RunWith(Suite.class)
@Suite.SuiteClasses({BadHorseTest.class})
public class GreylistSuite {

(from StrictMode/GreyMarker/app/src/androidTest/java/com/commonsware/android/strictmode/greymarker/GreylistSuite.java)
It has a @BeforeClass method that configures StrictMode to look for greylist
violations and pass them to an OnVmViolationListener named GREYLISTENER:

 @BeforeClass
 public static void init() {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.P) {
 if (LOG_DIR.listFiles()!=null) {
 for (File file : LOG_DIR.listFiles()) {
 if (!file.isDirectory()) {
 file.delete();
 }
 }
 }

 StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder()
 .detectNonSdkApiUsage()
 .penaltyListener(LISTENER_EXECUTOR, GREYLISTENER)
 .build());
 }
 }

(from StrictMode/GreyMarker/app/src/androidTest/java/com/commonsware/android/strictmode/greymarker/GreylistSuite.java)
Here, LOG_DIR points to that directory on external storage, while
LISTENER_EXECUTOR is just a single-thread thread pool:

 private static final ExecutorService LISTENER_EXECUTOR=Executors.newSingleThreadExecutor();
 private static File LOG_DIR=
 new File(InstrumentationRegistry.getTargetContext().getExternalCacheDir(), "__greylist");

(from StrictMode/GreyMarker/app/src/androidTest/java/com/commonsware/android/strictmode/greymarker/GreylistSuite.java)
GREYLISTENER writes a file for each violation, using SystemClock.uptimeMillis()
for the base of the filename:

 private final static StrictMode.OnVmViolationListener GREYLISTENER=
 new StrictMode.OnVmViolationListener() {
 @Override
 public void onVmViolation(Violation violation) {
 LOG_DIR.mkdirs();

 String name=Long.toString(SystemClock.uptimeMillis())+".txt";
 File trace=new File(LOG_DIR, name);

 try {
 FileOutputStream fos=new FileOutputStream(trace);
 OutputStreamWriter osw=new OutputStreamWriter(fos);
 PrintWriter out=new PrintWriter(osw);

 violation.printStackTrace(out);
 out.flush();
 fos.getFD().sync();
 out.close();
 }
 catch (IOException e) {
 Log.e(TAG, "Exception writing trace", e);
 }
 }
 };

(from StrictMode/GreyMarker/app/src/androidTest/java/com/commonsware/android/strictmode/greymarker/GreylistSuite.java)
(this is a sloppy way to generate unique filenames, but it will suffice for
the purposes of this sample)
There is a corresponding @AfterClass method that shuts down the thread pool:

 @AfterClass
 public static void term() {
 LISTENER_EXECUTOR.shutdown();

 try {
 LISTENER_EXECUTOR.awaitTermination(5, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 Log.e(TAG, "Saving stack traces took too long!", e);
 }
 }

(from StrictMode/GreyMarker/app/src/androidTest/java/com/commonsware/android/strictmode/greymarker/GreylistSuite.java)
Note that there is no good way to fail a test here. Even if you throw an
exception from onVmViolation(), that does not fail a specific test, because
onVmViolation() is not called synchronously from the test code. Instead,
it is called using that thread pool, and so it is decoupled from the test
execution itself.
Also note that this approach might collide with whatever StrictMode VM configuration
that you might have in your actual app.
WebView Improvements
WebView gains a couple of features in Android 9.0.
Disabling It
Using WebView consumes a fair amount of RAM. Unfortunately, particularly if
you are using third-party libraries, it may be difficult to determine if you
are using WebView and, more importantly, what is triggering WebView to be
loaded into your process.
To that end, Android 9.0 offers a static disableWebView() method on WebView.
As the British like to say, disableWebView() “does what it says on the tin”:
it disables access to WebView in this process. If you try using WebView,
you will crash with an IllegalStateException:

Caused by: java.lang.IllegalStateException: WebView.disableWebView() was called: WebView is disabled
 at android.webkit.WebViewFactory.getProvider(WebViewFactory.java:249)
 at android.webkit.WebView.getFactory(WebView.java:2648)
 at android.webkit.WebView.ensureProviderCreated(WebView.java:2643)
 at android.webkit.WebView.setOverScrollMode(WebView.java:2708)
 at android.view.View.<init>(View.java:4792)
 at android.view.View.<init>(View.java:4932)
 at android.view.ViewGroup.<init>(ViewGroup.java:654)
 at android.widget.AbsoluteLayout.<init>(AbsoluteLayout.java:55)
 at android.webkit.WebView.<init>(WebView.java:659)
 at android.webkit.WebView.<init>(WebView.java:604)
 at android.webkit.WebView.<init>(WebView.java:587)
 at android.webkit.WebView.<init>(WebView.java:574)

For a debug build, crashing the app is a very obvious sign that you are using
WebView somewhere that you should not be. For a release build, though,
crashing your code is fairly user-hostile — the user is often better served
by your app just using more memory. Hence, disableWebView() is the sort of thing
that you may want to use only in debug builds, perhaps in tandem with a penaltyDeath()
StrictMode configuration.
Tracing It
Android 9.0 offers TracingController. This allows you to
enable you to collect tracing data about what is going on in the WebView
instances in your process. That trace can be written to a file and examined in
Chrome Dev Tools.
For ordinary Android developers, this is not especially useful. For seasoned
Web developers — those for whom navigating chrome://tracing/ is perfectly
normal — this tracing might be very useful for identifying specific performance
issues with WebView-enabled apps. In particular, developers of hybrid apps
(or maintainers of hybrid app frameworks) might relish the ability to get this
data.
The
WebKit/Tracing
sample application is a trivial WebView-based app that just loads
the CommonsWare home page, but also enables tracing:

package com.commonsware.android.browser1;

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Handler;
import android.webkit.TracingConfig;
import android.webkit.TracingController;
import android.webkit.WebView;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.util.concurrent.Executors;
import static android.webkit.TracingConfig.CATEGORIES_WEB_DEVELOPER;

public class BrowserDemo1 extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 TracingController.getInstance()
 .start(new TracingConfig.Builder()
 .addCategories(CATEGORIES_WEB_DEVELOPER)
 .build());

 ((WebView)findViewById(R.id.webkit)).loadUrl("https://commonsware.com");
 }

 @Override
 protected void onDestroy() {
 File out=new File(getExternalFilesDir(null), "trace.json");

 try {
 TracingController.getInstance().stop(new FileOutputStream(out),
 AsyncTask.THREAD_POOL_EXECUTOR);
 }
 catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 super.onDestroy();
 }
}

(from WebKit/Tracing/app/src/main/java/com/commonsware/android/browser1/BrowserDemo1.java)
In onCreate() of our activity, before we do anything with the WebView,
we set up tracing. To do that, call TracingController.getInstance() to get the
singleton instance of TracingController. Then, call start() on the controller,
passing in a TracingConfig to describe the tracing that you want.
A TracingConfig instance is created through a TracingConfig.Builder, following
the typical builder pattern: call a series of configuration methods on the builder,
then call build() to build the result. There are two methods of note on
TracingConfig.Builder that you can use to tailor the behavior of the tracing:

	
addCategories() controls the particular events that are recorded. The sample
app uses CATEGORIES_WEB_DEVELOPER for a general-purpose set of events, but
there are more fine-grained categories that you can choose from.

	
setTracingMode() controls how much data is recorded. The default is
RECORD_CONTINUOUSLY, which uses a ring buffer to cap the amount of memory that
is used. This will allow you to collect around 64K events. If you need more
than that, you can use RECORD_UNTIL_FULL, which will record until you run out
of system RAM… but running out of system RAM is not a good thing.

At this point, all WebView instances should record tracing data. This is buffered
in system RAM until you are done tracing, at which point you call
stop() on the TracingController singleton. stop() takes two parameters:

	An OutputStream to use for writing the results. The sample app writes a
file to external storage, but so long as you can create a valid OutputStream,
in principle the exact output location is up to you.

	An Executor to supply the thread for this I/O. Here, the sample app uses
the existing ThreadPoolExecutor used by AsyncTask, so we do not add more
threads to our app.

You can then get the resulting trace file off the device or emulator, such as
by using the Device File Explorer in Android Studio. In a copy of Chrome or
Chromium, visit chrome://tracing/, click the “Load” button, and choose the trace
file. At that point, you will get… something that an expert Web developer
might be able to use:

[image: Chrome Dev Tools, Showing Tracing Results]

Figure 1095: Chrome Dev Tools, Showing Tracing Results
Autofill Service Detection
Apps can now find out what autofill service the user has chosen, if any, via
getAutofillServiceComponentName() on AutofillManager.
This would be useful if your app wants to have a whitelist of trusted autofill
services that you are willing to use, blocking autofill if the user chose one
that you do not recognize.
For example, if you have the default Google-supplied autofill service enabled,
getAutofillServiceComponentName() will return a ComponentName that identifies
the service as com.google.android.gms/com.google.android.gms.autofill.service.AutofillService.
Storage Volume Action
The Settings app now has an area where users can control whether apps have access
to removable storage volumes, such as access requested by createAccessIntent()
on StorageVolume. As a developer, you can lead the user to this screen by starting
an activity for the Settings.ACTION_STORAGE_VOLUME_ACCESS_SETTINGS Intent
action.
KeyEvent Fallback Processing
There are now two tiers of KeyEvent processing available to View. The
original set of options include:

	The onKey...() family of methods that View subclasses can override,
such as onKeyDown()

	
setOnKeyListener(), for an outside party to find out about KeyEvents
delivered to the View

Android 9.0 adds an addOnUnhandledKeyEventListener(), for an outside party to register a “fallback”-grade
listener.
The OnUnhandledKeyEventListener that you supply to addOnUnhandledKeyEventListener()
will receive any key events that are not consumed by onKey...() or a registered
OnKeyListener.
The OnUnhandledKeyEventListener is supposed get a chance at the events before the Activity
does (e.g., via its onKeyDown() method).
It is unclear what the use case will be for this.
Magnifier
There is a Magnifier class, tersely described as “Android magnifier widget”.
From the name, it would appear that the point is for it to magnify something.
The
Basic/Magnifier
sample application is a clone of the Basic/Image sample shown in
the chapter on basic widgets. However, this time, we
attach a Magnifier to the ImageView when the user clicks on it:

package com.commonsware.android.image;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ImageView;
import android.widget.Magnifier;

public class ImageViewDemo extends Activity {
 ImageView icon;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 icon=findViewById(R.id.icon);

 icon.setOnClickListener(view -> {
 Magnifier mag=new Magnifier(icon);

 mag.show(icon.getWidth()/2, icon.getHeight()/2);
 });
 }
}

(from Basic/Magnifier/app/src/main/java/com/commonsware/android/image/ImageViewDemo.java)
Note that you cannot set up the Magnifier right away in onCreate(). At
that point, while the Java object for a widget has been set up, the widget
has not been attached to the activity’s window. Your attempt to create
the Magnifier will crash. Instead, either wait for use input or use
a ViewTreeObserver to find out when the widget has been attached.
There is very little one can do with a Magnifier, at least at present:

	You create one by passing in the widget that (presumably) is supposed
to be magnified

	You call show() on the Magnifier, passing a location within the
bounds of the widget where the magnified area is to be shown

	You call dismiss() to get rid of the Magnifier

	You can call update() on the Magnifier to have it grab fresh content from
the widget

However, you have no means of controlling the size, the magnified area, or anything
else about the Magnifier. Worse, the Magnifier itself does not respond to
user input: the user cannot move, pan, or otherwise manipulate it. It just
sits there.
And, it does not magnify much:

[image: A Magnifier, Magnifying Not Much]

Figure 1096: A Magnifier, Magnifying… Not Much
Notes About the Support Library
As with every Android platform release, there is an accompanying release
of the Android Support Library. Some of this simply updates those artifacts
to be compatible with changes in the new platform release. Some of the new
platform features might be available as a backport. And, usually, there
are other changes as well, as the Library evolves.
Package Names
For new classes, Google is adopting androidx as the top-level package identifier,
as opposed to android.support. So, for example, while RecyclerView
is in the android.support.v7.widget package, new classes related to RecyclerView
may wind up in the androidx.recyclerview package (or sub-packages).
Further Library Subdivision
Ideally, you use focused dependencies in your project, rather than larger ones
like support-v4, support-v13, etc. While ProGuard and similar tools can
remove excess stuff from your project, it cannot do a perfect job of that.
All else being equal, it is better to have smaller dependencies to start with,
rather than assuming that tools can remove everything that you are not using.
The Support Library started offering smaller dependencies a few years ago,
with support-core-utils, support-core-ui, support-compat, support-fragment,
and others being split out from the original support-v4 artifact. While you
can continue referring to support-v4, it just pulls in a lot of other smaller
artifacts via transitive dependencies. Ideally, you just use the subset of those
other dependencies that you really need.
The next major release of the Support Library will further subdivide
support-core-utils, support-core-ui, support-compat, and design
into yet smaller artifacts. In this case, it appears that some classes will
remain in their original artifacts, while others get moved into smaller
transitive dependencies. Once again, ideally, you use the most-focused
dependencies that support what you need, to reduce your APK size.
RecyclerView Selection
Major classes in the AdapterView hierarchy had the notion of item selection.
For example, you could have single-select or multiple-select ListView widgets.
RecyclerView did not offer anything for this, dumping it on developers’ laps
to come up with a way to implement it. This book has a few examples of how to do
this… and those examples will be obsolete by late 2018.
That is because the Support Library finally is offering classes to help
with item selection in RecyclerView. It will assist with multiple modes
of user input (touch, mouse, keyboard), including “rubber-band” selection
with mice. However, since RecyclerView itself does not know how to render
item selection, that part will be up to you.
Once the 28.x.x edition of the Support Library ships in final form, this
book will switch to coverage of this new recyclerview-selection artifact and
its classes, in lieu of the book’s “home grown” selection examples.
New Design Widgets
The design library is adding a new wave of widgets, including an official
Google implementation of the “chips” pattern. Unfortunately, these are undocumented
at this time.
Getting Help with 9.0
If you have issues with the Android 9.0, you can:

	Turn to Stack Overflow

	Use the issue tracker

Appendix D: Community Theater and the Appinars
In addition to the book chapters themselves and
the related source code for the sample apps,
you also have access to “appinars”. Appinars are
app-based training, blending video, slides with voiceovers,
source code samples, and more.
The APK edition of the book has an embedded appinar
player, called Community Theater, along with an embedded
roster of available appinars. You can browse through those
appinars, download the ones of interest, and play them
through Community Theater.
Note that this feature is only available if you are using
the APK edition on Android 4.4 or higher.
Viewing the Appinar Roster
In the main book reader, the action bar overflow has a “Community Theater”
option:

[image: Book Reader, Showing Overflow]

Figure 1097: Book Reader, Showing Overflow
Tapping that will bring up a roster of available appinars, broken
down into categories:

[image: Appinar Roster, Showing Categories and Appinars]

Figure 1098: Appinar Roster, Showing Categories and Appinars
Tapping an appinar brings up details for that appinar:

[image: Appinar Roster, Showing Appinar Details]

Figure 1099: Appinar Roster, Showing Appinar Details
New appinars will be added with each book update. Existing appinars
might be updated to reflect new content or to fix egregious bugs.
Managing Appinars
Tapping the “download” action bar item will download the appinar to your machine.
The approximate amount of data to be downloaded, in the form of a ZIP
file, is shown above the button.
While the download is going on, a progress bar will
be visible in the appinar detail screen, as well as in a notification:

[image: Appinar Roster, While Appinar is Downloading]

Figure 1100: Appinar Roster, While Appinar is Downloading
Once the appinar is downloaded, the action bar will have options to
play or delete the appinar:

[image: Appinar Roster, Showing Downloaded Appinar]

Figure 1101: Appinar Roster, Showing Downloaded Appinar
Tapping the delete action bar item will bring up a confirmation panel:

[image: Appinar Roster, Showing Delete Confirmation]

Figure 1102: Appinar Roster, Showing Delete Confirmation
If you confirm the request, the appinar will be deleted.
Viewing an Appinar
Viewing an appinar is merely a matter of downloading it, then tapping
the play button in the action bar. Playback should begin immediately,
usually with a title slide followed by a brief opening video:

[image: Player Screen, Showing a Balding Guy]

Figure 1103: Player Screen, Showing a Balding Guy
Eventually, when the appinar ends, you will be taken back to the roster
of available appinars, where you were when you tapped the play button
originally.
Note that while you can view the roster in portrait or landscape mode,
playback is locked to landscape, due to the aspect ratio of the
videos.
Pausing Playback
If you double-tap the screen while an appinar is playing, playback
will be paused. The action bar will appear at the top of the screen,
allowing you to navigate through the appinar and
so on.
To resume playback, press the BACK button, or double-tap the screen
again.
Navigating the Appinar
When playback is paused via a double-tap, and the action bar is visible,
you can open a navigation drawer, via the “hamburger” icon in the action
bar:

[image: Player Screen, Paused, Showing the Navigation Drawer]

Figure 1104: Player Screen, Paused, Showing the Navigation Drawer
This contains a list of the different “scenes” of the appinar.
Tapping on a scene will resume playback, jumping to that particular
scene.
The action bar also has “fast-forward” and “rewind” buttons. The
fast-forward button jumps to the next scene. The rewind button
will start the current scene over from the beginning, if you are well
into playback of the scene. If you are close to the start of the scene,
the rewind button will take you to the previous scene.
Manipulating the Content
Parts of the appinar may show full source code listings. You can
use pinch-zoom gestures to change the font size, if the size is too
small for your current display. Pinch-zoom gestures also work on
some full-screen images, if the image is significantly larger than
your display.
Most of the source code scenes, and a few others noted in the voiceovers,
will have “share” action bar items.

[image: Player Screen, Paused, Showing Action Bar with Share Item]

Figure 1105: Player Screen, Paused, Showing Action Bar with Share Item
When playback is paused and the
action bar is visible, you can tap that share icon to view the source
code (or Web page or other resource) in a separate app, or send the
URL to the resource through some other app to another person or
Web service (e.g., forward a URL via email or SMS).
Copyright Notice and Terms
Copyright © 2008-2019 CommonsWare, LLC. All Rights Reserved.
The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare, LLC.
All other trademarks referenced in this book are trademarks of their respective firms.
The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the information contained herein.
OEBPS/manifest_merger_6.png

OEBPS/prefdep1.png
Checkbox Preference o
Checkiton,checktt

Ringtone Preference.
Piokatone,amone

Text Enty Dialog
lckiopo up s or sy
‘Seection Disiog
Chckiopopp ot chaasefom

OEBPS/manifest_merger_5.png

OEBPS/prefdep2.png
Checkbox Preference a
ok ton checkitf

Ringtone Preference.

Text Enty ialog
Clckt0popupa el or ety

‘Selection Dislog
Clckio opup et 0 chaose fom

OEBPS/manifest_merger_2.png
mtrotargetsonersiom 13+ /> | SR S e

OEBPS/manifest_merger_1.png

OEBPS/manifest_merger_4.png

OEBPS/manifest_merger_3.png

OEBPS/t9-1.png
Name: ([

Kot o]
Sopocs

Ju—

Packae: oo s

Vsbiy, O Pwic O PackogoPrvae

Wodters ONone Ol Ofm
Show Slct e Doy

B (o) [b

OEBPS/ct3-3.png
L) LA

‘The Busy Coder's Guide to

What Confuses. et
Developers

nfusion for Android app developers
leading

intless questions on Stack
Overflow and othe

In this appinar, we o
the most common sources of confusion
e Vo et Bl

nfused

OEBPS/ct3-5.png
L) LA R

The Busy Coders Guide to. :

What Confuses e
Developers

There are many common sources of
nfusion or Android app developers

Jeading 1o countess queetions on Stack

Overflow and other support resources

the most common sources of confusi

OEBPS/ct3-6.png
‘The Busy Coder's Gu.

What Confuses. et
Developers

There are many common sources of
fon for Android app developers
g to countless questions on Stack
Overflow and othe
Inthis
the most common sour
tohelpyou
nfused

s of co

OEBPS/atv-emulator-images-3-fs8.png

OEBPS/ct3-1.png
Preface

Welcome to the Book!

OEBPS/ct3-2.png
L) LA ML

‘The Busy Coder's Guide to Andr..

What Confuses Developers

Android .0s Runtime Permissions System
Android 6.0 Runtime Permissions: Ttoral
SaLCipher or Androld

Advanced Android Permissions
Storage Optons in Android

Topics n SQLte: SQLeAssetHelper and
FS3

Data Binding Basics

OEBPS/ct3-7.png
L)

‘The Busy Coder's Gu.

What Confuses
Developers

[ere——

o

ves.pLesse

o

OEBPS/ct3-8.png
[.ﬁ‘m

OEBPS/ct3-9.png

OEBPS/blame2.png
v D U w4050
[Use details
Google Services 0%

Battery used by app

USE DETALLS.
CPU total 2
Keep awake 3m 31s.
INCLUDED PACKAGES

Google Contacts Sync.
Google Account Manager
Network Location

Google Services Framework
Google Bookmarks Sync.

OEBPS/studio-2a.png

OEBPS/fragments4.png
eoverride
PuBLLC votd onattach(Activity a) {
super.onAttach(a);
Log.d(getClass().getsispleNane(), “onAttach()");
¥

OEBPS/chromeos-notif1.png
andshooter

andshooter

OEBPS/fragments1.png
F R .

OEBPS/batthist3.png

OEBPS/batthist4.png

OEBPS/batthist1.png
Bascry Historian smalysis for 20141026-inexact-1camw.ext

Ty
[

[Err—

o st
T
[—

0O R 1 W 0 O

OEBPS/batthist2.png
Bascry Historian smalysia for 20141026-inexact..caw.txt

- 10 AT 0 1 0
g [oo o

OEBPS/firetv-stick.jpg

OEBPS/studio-5b.png

OEBPS/recyclerview7-fs8.png
BHEE B

OEBPS/app_shortcuts_1.png
0§ Battery

() Datausage

i

¥ WiFi =

@ ¢ O

Settings ~ WeakBrowser YouTube

OEBPS/app_shortcuts_3.png
‘ q Use a search engine =

> @ g

PlayStore Settings WeakBrowser

OEBPS/app_shortcuts_2.png
Battery

OEBPS/app_shortcuts_5.png
WeakBrowser

Show aop Storcuts

OEBPS/app_shortcuts_4.png
Search

OEBPS/app_shortcuts_7.png
D Stack Overflow And.. D.

D Android Developer.

=

i Q Use a search engine

b & o

PlayStore Settings WeakBrowser

OEBPS/app_shortcuts_6.png
Choose upto 5 app shortcuts
AOSP Source Search

Android Developer Home.

Androd Open Source Project

CWAC Community

Stack Overfow Androkd
Questons

The Commonstlog

OEBPS/databind1.png

OEBPS/databind2.png
TEEEEEEE

OEBPS/wireshark1.png

OEBPS/t2-18.png
Cijava
£ com.commonsware.empublite
© = EmPubLiteActivity
£ com.commonsware.empublite(android
£ com.commonsware.empublitetest)
Cires
@ Gradle Scripts

OEBPS/t2-19.png
Project §

EmPubLite ~/swfiCommonsWare
£ gradie

£ idea
rzapp
E3build
Cigradie

£ gitignore

@ build gradie

(3 EmPubLite.imi
[agradie properties
(gradiew

3 gradiew.bat
[alocal properties
© setings.gradie

» Exteal Libraries

OEBPS/projstruct11.png

OEBPS/t2-16.png
NoUSB devices of nning enultors detected Troubeshoo
vt v Devces

ENDPS MW

2 Usesame stecon o e urches [T [Cancel

OEBPS/projstruct10.png
o) 1o

OEBPS/t7-9.png

OEBPS/t7-8.png

OEBPS/prefs11.png

OEBPS/prefs10.png
. AL

Enter something useful

OEBPS/diceware1.png

OEBPS/diceware2.png

OEBPS/introspection11.png
. LA L0
QuickSender

S—

OEBPS/actionbar-overflow1.png

OEBPS/introspection13.png
& FauxSender MNC

% Android Beam

Barcode Scanner
© Bivetooth

@ Messenger

OEBPS/introspection12.png
3902

L4

Tt st

OEBPS/mw-settings-1.png

OEBPS/widgets1.png
Phone-only, unsynced co.. [
Name ~

bﬂmpany

Title

PHONE

Phone MOBILE
4

Email HOME
4

Address HOME
5 4

OEBPS/progressdlg1.png
18830
@ oialog Fragment Demo

OEBPS/vectorcompat4.png

OEBPS/vectorcompat3.png

OEBPS/cl_intro1.png

OEBPS/drawable4.png

OEBPS/drawable7.png
| T ————

Vertica:

OEBPS/drawable6.png
m—

(] ————
o [————

OEBPS/drawable8.png
m—

OEBPS/appwidget5a.png

OEBPS/cl_intro6.png

OEBPS/rotation1.png
CJane Smith

PHONE
212-555-1212 =

EmaL

jsmith@thisissofake.com

OEBPS/calendarview4.png
CalendarView Demo.

< Septamber 2015
e 7 8 s om
7 m ow

1004

OEBPS/cl_intro8.png

OEBPS/calendarview3.png
u %738

CalendarView Demo

November 2014

1 17 18 19 0 N 2

OEBPS/cl_intro3.png

OEBPS/calendarview2.png
4833

*#' CalendarView Demo

February 2013

oM o2 3w s 16

ow o9 ow o 2o

OEBPS/cl_intro2.png

OEBPS/calendarview1.png
Y 8832
*4' CalendarView Demo

February 2013
s M T W T F s

5 momomomom o1 3

OEBPS/cl_intro5.png

OEBPS/studio-1a.png

OEBPS/debug2a.png
(EGLOgEAl o Andod Profler B 4 Run RTODO M Terminal & O Messages

OEBPS/andproj-sourcesets3.png
M e Build
8 app © debug

OEBPS/andproj-sourcesets4.png
Module Buld Variant
I HelloProductFlavors @ chocolateDebug

OEBPS/andproj-sourcesets1.png
- Ciapp
» Dimanfests
" Sjava
+ Bcomcommonsware myapplication
& Manactiity)
* 1 comcommonswaremyapplication (anckidTest)
€ ApplicationTest:
» tares

OEBPS/andproj-sourcesets2.png
& MyApplication
> Didea
 txapp

» Bbuid
Slbs

v Bsic
 BandroidTest

+ Sjava

mp/MyA

@ ApplicationTest

* Bman
v Bjava
+ & comcommonswaremyapplication
@ Mainactivity
> tares
® AndroidManifest xml

OEBPS/rotation5.png
&0 Q Find contacts

Jane Smith

John Doe

OEBPS/slice-10.png
leather S ‘“",é

OEBPS/studio-10.png

OEBPS/richtext1.png
& 1:41

Four score and seven years ago our
fathers brought forth on this continent,
a new nation, conceived in Liberty, and
dedicated to the proposition that all
men are created equal. Now we are
engaged in a great civil war, testing
whether that nation, or any nation so
conceived and so dedicated, can long
endure. We are met on a great battle-
field of that war. We have come to
dedicate a portion of that field, as a
final resting place for those who here
gave their ives that that nation might
ive. It altogether ftting and proper
that we should do this. But,in a larger
sense, we can not dedicate -- we can
not consecrate -- we can not hallow -~
this ground. The brave men, iving and
dead, who struggled here, have
consecrated it far above our poor

OEBPS/richtext2.png
Four score and seven years ago our
fathers brought forth on this continent,
a new nation, conceived in Liberty, and
dedicated to the proposition that all
men are created equal. Now we are
engaged in a great civil war, testing
whether that nation, or any nation so
conceived and so dedicated, gan long
endure. We are met on a great battle-
field of that war. We have come to
dedicate a portion of that field, as a
final resting place for those who here
gave their lives that that nation might
ive. It altogether ftting and proper
that we should do this. But,in a larger
sense, we gan not dedicate -- we gan
not consecrate -- we ¢an not hallow -~
this ground. The brave men, iving and
dead, who struggled here, have
consecrated it far above our poor

OEBPS/mapsv2-8-fs8.png
\id

MapsV2 Markers

OEBPS/appwidget6a.png

OEBPS/dex4.jpg

OEBPS/dex3.png
5 Wy Vidovie tamin Lt i ot geting deted in Ari?

[PR ———

It o ottt bt sk ko 3

[0 ki s ssrin i ompncive ittt W usa it
it opcaton© o n Gorg s 50K

B How o get e veefrom pssed it from feretrctonn Ak

OEBPS/dex6.jpg

OEBPS/dex5.jpg

OEBPS/perms4.png
Runtime Perm Tutoril

OEBPS/perms3.png
o

OEBPS/backup1.png
*4’ Backup Demo
Sat Nov 21 11:31:41 EST 2015

Sat Nov 21 11

:44 EST 2015

OEBPS/perms2.png
dentty

9 Location

OEBPS/perms1.png
L] ¥ o

© Firefox

Do you want toinstal this application? it
will get access t:

PRvACY.
take pictures and videos
record audio

preciselocation (6PS and network:
based)

ead your Web bookmarks and history
maiy or dlete the conents ofyour

USB storage.
read the contents of your US8 storage.

& L2 o = B

@ sddorremore accounts
Cancel Next

s o =

OEBPS/dex2.png
Javastt Googe Maps al Wi
et At o o get il reen
for

7 Why Videoiew hem n Litiew st
1 Gttng deoted i Arro

4 Bt bt
Oncidieet not o
tvan app o bog hic

4 Btemalaty st bt Hshoud ot

B TR s e e
Rt

8] Ao on s it e
privyetssani

g il splcation D Crash i Gole
Gtk
i1t 1 Yl e s

3 e om e oo
o

iheve & ook ek o, Cor

e ok o ks o

o a4 an mag semer oy

e e

5 Fiter Serciew- Listview- Tabloyout

i Frebase Storag:User not permited 1o
access object despite publcrles

OEBPS/dex1.png

OEBPS/mapsv2-5.png

OEBPS/appwidget6.png
L REE]

OEBPS/appwidget5.png
756

3 [320-424) x [222-300] [

OEBPS/mapsv2-3.png
i

MapsV2 Basic Demo

OEBPS/appwidget8.png
L RE

L 10

‘Connectyour charger

OEBPS/appwidget7.png
“ % 1:03

Sep2r

- Calendar
10.08

meme Digital clock

Messaging

OEBPS/appwidget2.png

OEBPS/t5-9.png
New Layout Resource File

File name: ||

Rootelement: | LinearLayout

| | | cancel

OEBPS/appwidget4.png
[240-318] x [148-200]

OEBPS/appwidget3.png

OEBPS/layout_inspector_1.png

OEBPS/mapsv2-9.png

OEBPS/mapsv2-7.png
W‘&,‘,&

fempeoig,

ner Center & m_

Carnegie Hall

Sheraton New
York Times Square S

OEBPS/wear-only4.png
Open on phone

OEBPS/wear-only2.png
Download complete!

Tap me to view the file

OEBPS/nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Preface

 		
 Key Android Concepts

 		
 Choosing Your Development Toolchain

 		
 Tutorial #1 - Installing the Tools

 		
 Android and Projects

 		
 Tutorial #2 - Creating a Stub Project

 		
 Getting Around Android Studio

 		
 Contents of Android Projects

 		
 Introducing Gradle and the Manifest

 		
 Tutorial #3 - Manifest Changes

 		
 Some Words About Resources

 		
 Icons

 		
 Tutorial #4 - Adjusting Our Resources

 		
 The Theory of Widgets

 		
 The Android User Interface

 		
 Basic Widgets

 		
 Debugging Your App

 		
 The Classic Container Classes

 		
 Other Common Widgets and Containers

 		
 Tutorial #5 - Creating a Layout

 		
 GUI Building, Continued

 		
 AdapterViews and Adapters

 		
 The WebView Widget

 		
 Defining and Using Styles

 		
 Dependencies

 		
 Tutorial #6 - Adding a Library

 		
 Introducing ConstraintLayout

 		
 RecyclerView

 		
 The Action Bar

 		
 Vector Drawables

 		
 Tutorial #7 - Setting Up the Action Bar

 		
 Android’s Process Model

 		
 Activities and Their Lifecycles

 		
 Tutorial #8 - Setting Up An Activity

 		
 The Tactics of Fragments

 		
 Tutorial #9 - Starting Our Fragments

 		
 Swiping with ViewPager

 		
 Tutorial #10 - Rigging Up a ViewPager

 		
 Resource Sets and Configurations

 		
 Material Design Basics

 		
 Dealing with Threads

 		
 Requesting Permissions

 		
 Assets, Files, and Data Parsing

 		
 Tutorial #11 - Adding Simple Content

 		
 Tutorial #12 - Displaying the Book

 		
 Using Preferences

 		
 Tutorial #13 - Using Some Preferences

 		
 SQLite Databases

 		
 Tutorial #14 - Saving Notes

 		
 Internet Access

 		
 Intents, Intent Filters

 		
 Broadcasts and Broadcast Receivers

 		
 Tutorial #15 - Sharing Your Notes

 		
 Services and the Command Pattern

 		
 Tutorial #16 - Updating the Book

 		
 Tutorial #17 - Supporting Large Screens

 		
 Backwards Compatibility Strategies and Tactics

 		
 System Services

 		
 Google Play Services

 		
 Getting Help

 		
 Working with Library Modules

 		
 Gradle and Tasks

 		
 Gradle Build Variants

 		
 Manifest Merger Rules

 		
 Signing Your App

 		
 Distribution

 		
 Writing a Gradle Plugin

 		
 Code Generation

 		
 Advanced Gradle for Android Tips

 		
 Testing with JUnit4

 		
 Testing with Espresso

 		
 Testing with UI Automator

 		
 Measuring Test Coverage

 		
 Unit Testing

 		
 MonkeyRunner and the Test Monkey

 		
 Java 8 Lambda Expressions

 		
 Rx Basics

 		
 Notifications

 		
 Advanced Notifications

 		
 Multi-Window Support

 		
 Advanced ConstraintLayout

 		
 GridLayout

 		
 Dialogs and DialogFragments

 		
 Advanced ListViews

 		
 Action Modes

 		
 Other Advanced Action Bar Techniques

 		
 Toolbar

 		
 AppCompat: The Official Action Bar Backport

 		
 The Android Design Support Library

 		
 Advanced RecyclerView

 		
 Advanced Uses of WebView

 		
 The Input Method Framework

 		
 Fonts and Text

 		
 Rich Text

 		
 Animators

 		
 Legacy Animations

 		
 Custom Drawables

 		
 Mapping with Maps V2

 		
 Crafting Your Own Views

 		
 Advanced Preferences

 		
 Custom Dialogs and Preferences

 		
 Progress Indicators

 		
 More Fun with Pagers

 		
 Focus Management and Accessibility

 		
 Miscellaneous UI Tricks

 		
 Event Bus Alternatives

 		
 Tasks

 		
 The Assist API (“Now On Tap”)

 		
 The Autofill API

 		
 The Data Binding Framework

 		
 Drag and Drop

 		
 Keyboard and Mouse Input

 		
 Viewing PDFs

 		
 Home Screen App Widgets

 		
 Adapter-Based App Widgets

 		
 Publishing Slices

 		
 Hosting Slices

 		
 Advanced Permissions

 		
 Restricted Profiles and UserManager

 		
 Device Authentication

 		
 Keys and the Keystore

 		
 Miscellaneous Security Techniques

 		
 Content Provider Theory

 		
 Content Provider Implementation Patterns

 		
 The Loader Framework

 		
 The ContactsContract and CallLog Providers

 		
 The CalendarContract Provider

 		
 The MediaStore Provider

 		
 Consuming Documents

 		
 Providing Documents

 		
 Encrypted Storage

 		
 Packaging and Distributing Data

 		
 Advanced Database Techniques

 		
 Data Backup

 		
 SSL

 		
 NetCipher

 		
 Miscellaneous Network Topics

 		
 Audio Playback

 		
 Audio Recording

 		
 Video Playback

 		
 Using the Camera via 3rd-Party Apps

 		
 Working Directly with the Camera

 		
 Media Routes

 		
 Supporting External Displays

 		
 Google Cast and Chromecast

 		
 The “Ten-Foot UI”

 		
 Putting the TVs All Together: Decktastic

 		
 Creating a MediaRouteProvider

 		
 The Media Projection APIs

 		
 AlarmManager and the Scheduled Service Pattern

 		
 PowerManager and WakeLocks

 		
 JobScheduler

 		
 Accessing Location-Based Services

 		
 The Fused Location Provider

 		
 Working with the Clipboard

 		
 Telephony

 		
 Working With SMS

 		
 NFC

 		
 Device Administration

 		
 Basic Use of Sensors

 		
 Printing and Document Generation

 		
 Basic Bluetooth RFCOMM

 		
 Dealing with Different Hardware

 		
 Writing and Using Parcelables

 		
 Responding to URLs

 		
 App Shortcuts

 		
 PackageManager Tricks

 		
 Remote Services and the Binding Pattern

 		
 Advanced Manifest Tips

 		
 Miscellaneous Integration Tips

 		
 Android Studio Editors and Dialogs

 		
 Advanced Emulator Capabilities

 		
 Lint and the Support Annotations

 		
 Inspecting Layouts

 		
 Screenshots and Screencasts

 		
 ADB Tips and Tricks

 		
 Stetho

 		
 Issues with Speed

 		
 Finding CPU Bottlenecks

 		
 Focus On: NDK

 		
 Improving CPU Performance in Java

 		
 Finding and Eliminating Jank

 		
 Issues with Bandwidth

 		
 Focus On: TrafficStats

 		
 Measuring Bandwidth Consumption

 		
 Being Smarter About Bandwidth

 		
 Issues with Application Heap

 		
 Finding Memory Leaks

 		
 Issues with System RAM

 		
 Issues with Battery Life

 		
 Power Measurement Options

 		
 Sources of Power Drain

 		
 Addressing Application Size Issues

 		
 Crash Reporting Using ACRA

 		
 In-App Diagnostics

 		
 Anti-Patterns

 		
 Widget Catalog: AdapterViewFlipper

 		
 Widget Catalog: CalendarView

 		
 Widget Catalog: DatePicker

 		
 Widget Catalog: ExpandableListView

 		
 Widget Catalog: SeekBar

 		
 Widget Catalog: SlidingPaneLayout

 		
 Widget Catalog: StackView

 		
 Widget Catalog: TabHost and TabWidget

 		
 Widget Catalog: TimePicker

 		
 Widget Catalog: ViewFlipper

 		
 Device Catalog: Chrome and Chrome OS

 		
 Device Catalog: BlackBerry

 		
 Device Catalog: Android TV

 		
 Device Catalog: Amazon Fire TV and Fire TV Stick

 		
 Device Catalog: Samsung DeX

 		
 Appendix A: CWAC Libraries

 		
 Appendix B: Android 8.0

 		
 Appendix C: Android 9.0

 		
 Appendix D: Community Theater and the Appinars

 		
 Copyright Notice and Terms

OEBPS/wear-only3.png
Pause

OEBPS/files4.png

OEBPS/files3.png

OEBPS/wear-only1.png
15:22 uonccomenra

o

Download complete!
Tepme o vew e

» e

Us8 debugging connected
Touehtodit U5 g

Android Wear
Connectd

‘Connected as a media device
Toueh for ther USB optons.

OEBPS/files6.png

OEBPS/files5.png

OEBPS/files2.png
pemase. 0w
v 12131 1930
e doboiol 00
s 71101130

s 1569129 1990
ey
frtry
2H0r0101 0300

OEBPS/files1.png

OEBPS/intent9.png
ova LAZLAL
4 Battery Moritor

OEBPS/intent8.png
Email

FauxSender

6:43

OEBPS/intent7.png
U064

B3 Messaging

OEBPS/intent6.png
“dhsas

wps wooers

-

+
[——
Constants 0B Dev Tooks
‘Bemo

< © @
S |

FauSeodriesRend Gallry Mo Suda

@ Thisisa mnmr:;s:ma .

Music OnfaotDemo ParalleTasks People

OEBPS/intent5.png

OEBPS/maps-floatingactionbar.jpg

OEBPS/intent4.png

OEBPS/intent3.png

OEBPS/intent2.png

OEBPS/leanback2-fs8.png
Video Browse Demo

OEBPS/intent1.png

OEBPS/appwidget9.png
e

[p—— Messaging

Music Music playist

~ -

Pairof Dice Picure frame.

OEBPS/fts3.png
;% Phonegap Android don' rotate

Custom Fonts in Android 4.1.2
Cordova (Phonegap) not
working

OEBPS/fts4.png
B studid

egap

android studio -adding an existing google app engine
backend tomy project, on a new computer

T ———

Custom Fonts in Android 4.1.2 Cordova (Phonegap)
B ot working
What s the proper way to add a reference to Android
Studio v0.8.10

OEBPS/emu20.png
(2

OEBPS/fts1.png
FTS

s it better to avoid OR clauses

in database queries?

. Android: putting a webpage-

generated image into a

widget?

g android saite access by
different applications?

_ Corona App Android Key Hash

U%F, For Facebook Needs Release
Key
android studio - adding an
existing google app engine
backend to my project, on a
new computer

. CordovaHow to add login with

£ googleplus using

InAppBrowser

Android Recording Videos:

OEBPS/fts2.png
< Is it better to avoid OR clauses
in database queries?
Android: putting a webpage-
enerated image into a
widget?
) android saite access by
different applications?
_ Corona App Android Key Hash
: For Facebook Needs Release
Key
android studio - adding an
existing google app engine
backend to my project, on a
new computer
e, CordovaHow to add login with
5 googleplus using
InAppBrowser
Android Recording Videos:

OEBPS/fts5.png

OEBPS/notify-visibility-1.png

OEBPS/tabhost1.png
LRI

*4’ TabDemo
aoe surron
v

OEBPS/tabhost2.png

OEBPS/studio-setup-7.png

OEBPS/studio-setup-6.png

OEBPS/notify-visibility-4.png

OEBPS/notify-visibility-3.png

OEBPS/emu18.png

OEBPS/studio-setup-3.png

OEBPS/notify-visibility-5.png

OEBPS/emu19.png

OEBPS/studio-setup-2.png

OEBPS/emu16.png
Power off

OEBPS/studio-setup-1.png

OEBPS/emu17.png

OEBPS/emu14.png

OEBPS/emu15.png
caner

OEBPS/emu12.png
Verify Configuration

- A
Startup orientation o
Portrait

o g [Emiss [l
gk [VinaiSosns [l

OEBPS/emu13.png
oones. Aomasc
A 15

s 0

o Soage: (300

socus © Susomanaged

p—

)

OEBPS/emu11.png
Verify Configuration

[h Nexus4 4.7 7681280 xhdpi
& Android API P x86
Startup orientation

Portrait Landscape

OEBPS/ll-studio5.png
New Layout Resource File

File name: ||

Rootelement: | LinearLayout

| | cancel

OEBPS/ll-studio3.png
4

OEBPS/ll-studio2.png

OEBPS/ll-studio1.png
Common L
+1 Guideline (horizontal)

Text _ e 5
sutons | I Gideline (vertical)

[LinearLayout (horizontal)
Widgets | jnearl ayout (vertical)

= FrameLayout
TableLayout
TableRow
Space

OEBPS/leakcanary1b.png
[—

LY

P hns s Crupng v vt -

OEBPS/radiogroup1.png
Palette Q #1-
Common | ® Button

_— = ImageButon
+ CheckBox
Widgets @ RadioBution

Layouts | = ToggleBution
Containers =e Switch
Google | © FloatingActionButton

Legacy

OEBPS/sdkmgr1.png

OEBPS/emu27.png

OEBPS/emu25.png

OEBPS/emu26.png

OEBPS/emu23.png

OEBPS/emu24.png

OEBPS/emu21.png

OEBPS/emu22.png

OEBPS/headsup1.png
Download complete! 2236
Tap me o view the fle

»

OEBPS/floatinglabel1.png

OEBPS/recyclerview17.png
RecyclerView Divider List

(] ipsum
(] dolor
Vsit

7 amet

(3] consectetuer
(] adiiscing
V7 it

(3] morbi
v

(] lgula

OEBPS/recyclerview16.png
8> © o o

[res—

fR AR

OEBPS/recyclerview15.png
@ o oo oc

w ER @y

OEBPS/recyclerview14.png
adipiscing

] [x]

uet

V amet
V ante
V arcu

x

(%]

augue

consectetuer

OEBPS/recyclerview12.png
amet

CONSECTETUER 9

] adipiscing

OEBPS/recyclerview11.png
X X € < [%] [x

amet

consectetuer

adipiscing

OEBPS/actionmodes10.png
Modify Word
®

lorem
ipsum

dolor

sit

amet
consectetuer

adipiscing

elit

cAPmALZE

un

RewovE.

OEBPS/recyclerview10.png
consectetuer

[] adipiscing

Vi,
7 amet
X

x

Vellt

OEBPS/lambda_1.png
ow. setOnCLickListoner(new View.OnClickListener() {
eoverrice
pubLLc vt onclick(View view) {
Intent t=new Intent(Intent .ACTION_VIEW);

L. setbataAndType(videolrt, videoHtneType);
title. getContext(). startAct tvity(1)
)
It

OEBPS/apk_analyzer_1.png

OEBPS/floatinglabel2.png

OEBPS/apk_analyzer_5.png

OEBPS/floatinglabel3.png
0 ¥.8 0840

sHowwE

this is wrong

qwertyuiop
asdfghijkl

© zxcvbnma

OEBPS/apk_analyzer_4.png
e Qasas Newsas Difsas
' classesdex 2206 | 25M 806K
= Anoantostam 516 67kB 15KB
[moke 2ske 86
s S8KE 6Ks 22K

B coe

OEBPS/floatinglabel4.png
o= 0 ®/mo0852
*#" FloatLabelededitText Demo.

URL

OEBPS/apk_analyzer_3.png
L TTOOe

OEBPS/floatinglabel5.png
=4 FloatLabeled€itText Demo
Ty

aweriruion
weareninn
ST
v I =

-~ O =

OEBPS/apk_analyzer_2.png

OEBPS/ll-studio8.png

OEBPS/headsup2.png

OEBPS/ll-studio7.png

OEBPS/apk_analyzer_6.png

OEBPS/MediaRouter1.png
MediaRouter Routelnfof uniqueld=android/
Supportv7.media SystemMediaRouteProvider.DEFAUL
T_ROUTE, name=Phone, description=nul,enabled=rue,
connecting=false, playbackType=0, playbackStream=3,
volumeHandiing=1, volume=4, volumeMax=15,
presentationDisplayld=1, extras=null
providerPackageName=android)

OEBPS/MediaRouter2.png
MediaRouter Routelnfof uniqueld=android/
Supportv7.media SystemMediaRouteProvider.DEFAUL
T_ROUTE, name=HDMI, description=null enablec
connecting=alse, playbackType=0, playbackStrear
volumeHandiing=1, volume=15, volumeMax=15,
presentationDisplayld:
providerPackageName=android)

OEBPS/MediaRouter3.png
MediaRouter Routelnfo{ uniqueld=android/
Supportv7.media SystemMediaRouteProvider.DEFAUL
T_ROUTE, name=Phone, description=null, enabled-=rue,
connecting=alse, playbackType=0, playbackStrear
volumeHandiing=1, volume=4, volumeMax=15,
presentationDisplayld=1, extras=null
providerPackageName=android)

OEBPS/MediaRouter4.png
MediaRouter Routelnfof uniqueld=android
support 7. media SystembiediafiouteProvider DEFAUL
T_ROUTE, nay

connecting=!

ST owcomeoast
providerPack i

OEBPS/gb7.png
&+ ONexus4~ =P~ @©AppTheme ® Default (en-us) ~

OEBPS/MediaRouter5.png
MediaRouter Routelnfo(
uniqueld=com google android.gms/

cast media.CastMediaRouteProviderService-ea280ef2}
35c24232619179cf0a06e, name=CW ChromeCast,
description=Chromecast, enabled-=true,
connecting=false, playbackType=1,playbackStream
volumeHandiing=0, volume=0, volumeMax=20,
presentationDisplayld=-1,
extras=BundlelmParcelledData, dataSize=580]
providerPackageName=com google.android gms)

OEBPS/MediaRouter6.png
8 9481020

MediaRouter Routelnfol

uniqueid=cor

cast media.q e ecaz80er2)
352642326 romeCast,

presentationt
xtras=BundlelmParceliedData. datasize=580],
providerPackageName=com google.android gms)

OEBPS/MediaRouter7.png
MediaRouter Routelnfo{ uniqueld=android/
Support v7.media.SystemMediaRouteProvider.ROUTE |
44523848, name=Jam Classic, description=Bluetooth
audio, enabled=rue, connecting=false, playbackType=0,
playbackStream=3, volumeHandiing=1, volume=11,
volumeMax=15, presentationDisplayld=-1, extras=nll
providerPackageName=android)

OEBPS/MediaRouter8.png
MediaRouter Routelnfof uniqueld=android/

supportv7. ider ROUTE |
14523848, na Bluetooth
audio, enabled ibackType:
playbackSire: Jume=11
o ¢ ———@ i

providerPack

OEBPS/MediaRouter9.png
MediaRouter Routelnfo{ uniqueld=android/
Supportv7.media SystemMediaRouteProvider.DEFAUL
T_ROUTE, name=Phone, description=null, enabled=rue,
connecting=alse, playbackType=0, playbackStream:
volumeHandiing=1, volume=11, volumeMax=15,
presentationDisplayld=1, extras=null
providerPackageName=android)

OEBPS/leanback3-fs8.png
8 om0

OEBPS/button1m.png
u ¥ 7:30

ButtonDemo

BUTTON.

OEBPS/preview.png
Take Snapshot
Email Preview

OEBPS/espresso2.png
oo TtV with e Dows Android support pk fes n &
“Tag TtV i et How can ke an integratonTest.
“Tap TextVies with e Dows Android support pk fes n &

A Asserion

[0 [Concel | [Heip

OEBPS/espresso3.png
{

OEBPS/espresso4.png

OEBPS/espresso1.png
Ad Asserion

[0 | Corcel | [Heip

OEBPS/button1a.png
Palette
Common
Text
Buttons
Widgets

Q #- 1
-
= ImageButton
+ CheckBox
© RadioGroup
® RadioButton

OEBPS/SliceHost-02.png

OEBPS/SliceHost-01.png

OEBPS/SliceHost-04.png

OEBPS/gb6.png
Applcation

! Bution
Button

OEBPS/SliceHost-03.png

OEBPS/o_13.png

OEBPS/o_14.png
‘SMS Token Demo

Text ZxdRfzmpS5Xg to this device!

OEBPS/wear-pages2.png
Download complete!

Tap me to view the file

OEBPS/mw-freeform-2.png

OEBPS/dragdrop11.png

OEBPS/o_11.png
W FDroid

Do you want to install this application? It
does not require any special access.

CanceL wsTALL

OEBPS/wear-pages3.png
An Entry
Another Entry

A Third Entry

Yet Another Entry
How Low Can We Go?

OEBPS/mw-freeform-3.png

OEBPS/o_12.png

OEBPS/dragdrop10.png

OEBPS/mw-freeform-1.png

OEBPS/o_10.png
Trust apps from this source

OEBPS/prefs7.png
L] ¥ & @105

Checkbox Preference o
heck ton,check it

Ringtone Preference.

Text Entry Dialog
Clckt0popup il or ety

Selection Dislog
Clckiopop up st 0 chaose fom

OEBPS/prefs9.png
Ringtone Preference

o
.

O Phobos

OEBPS/menu1.png
sit

amet

consectetuer

OEBPS/prefs8.png
o8 RAZI R

Checkbox: true

ingtone: <unset>
Text: <unset>
List: <unset>

OEBPS/jank20.png
O omios
ol A

OEBPS/field1actionmode.png
" B 1:00

Z B

Licensed Uinder the Apache License,
Verslcul) (thdaLicense’); you may
not usdiis filelcept in
‘compliance with the License. You
may obtain a copy of the License at

http://www.apache org/licenses/
LICENSE2.0

OEBPS/jank12.png

OEBPS/jank13.png
o OO

OEBPS/jank14.png

OEBPS/prefs1.png
o8 RAZALREL)

Checkbox: false

ingtone: <unset>
Text: <unset>
List: <unset>

OEBPS/weather1.png
I'BERE

8117 10:00 AM

mperature: 89F

81717 6:00PM

remperature: 66F
8217 6:00 AM
remperature: 88F

82117 6:00PM

87317 6:00AM

OEBPS/jank16.png

OEBPS/prefs3.png
Pref Frags BC

Some Settings

More Settnge

OEBPS/jank17.png
”l“”!lﬂ“ﬂl"ﬂl T

OEBPS/prefs2.png

OEBPS/jank18.png

OEBPS/dragdrop17.png

OEBPS/dragdrop16.png

OEBPS/container7.png
*@" ScrollViewDemo

754

#000000

#440000

4884400

#2884

#ttasss

#tifaa

OEBPS/uiv1.png

OEBPS/multiwindow-samsung2.png
e ¥ 40622 PM

OEBPS/dragdrop18.png

OEBPS/uiv2.png

OEBPS/dragdrop13.png

OEBPS/wear-pages1.png
15:15 vonocomenrs

. Downioad complete! s
Tapmetoviewthe e

| T
. SB debugging connected
Tochto st 05 e

Android Wear 1508
Comnectd

Comected as.a meda device
Toueh for ther USa optons.

J
D
]

OEBPS/dragdrop12.png

OEBPS/t10-1.png

OEBPS/dragdrop15.png
N

OEBPS/dragdrop14.png

OEBPS/internet1.png
et forviews dynmical created b o each
loop-andod

1w devop a Moblle Appcation bsed on
Opensietiap.

L Te————
Howtouse Aduo Dta i Ao Apps

Ao Zindoxof RecyrVew HemDecorton

g e 0 store boetooth o data
Sodoa

Ao How o enaleBuetoothough
Romtetion Caas?

Latest googemaps Iy uses o vrsionof
supportirary

Tent sping o screen when yout raiy o

Logaing i focandroidapp
howto raverse s dtafrom web page i scup
ek s s

hename must rot b empty.nl whentargting
SoKlewizs

<

OEBPS/o_20.png
o

Browser Secure Demo

Webpage not available

The webpage t g adgobe.com/ coud ot
b onded because

et £RR_CLEARTEXT_NOT.PERMITTED

OEBPS/fragments1x.png
F R .

OEBPS/molecule.png

OEBPS/recyclerview8-fs8.png
BEHES § NEE-B

OEBPS/powertutor4.png
® 0 oW as0

ChartView

Displaying energy usage over alime for the
entire phone

OEBPS/powertutor3.png
waz10

16500,
1000,
ss00

OEBPS/powertutor2.png
AL

oun win

@ % o0
29)

206% 00053 5ytem
G 4

12.9% (0:00:53] Launcher
915.8m)

12.6%[0:00:53] PowerTutor
8883m)

47%(0:00:53) Media Server
322m

2.4%(0:00:53) Compass Device (e akmd)
1729m)

B e
166.5m)

1.45% 0:00:53) Google Contacts Sync
57.0m)

820.6% [0:00:31] Camera Demo.

OEBPS/powertutor1.png
Start Power Profiler

View Applcation Power Usage

Help

OEBPS/firetv-controller.jpg

OEBPS/appcompat1.png
%239

Q

Action Bar Demo
lorem

ipsum

dolor

sit

amet

OEBPS/o_19.png
AutoSize Demo

the quick brown fox jumped over the lazy dog,
sad o say

OEBPS/appcompat2.png

OEBPS/appcompat3.png
4 %1026

OEBPS/appcompat4.png
“ B34

ipsum
dolor
sit

amet

OEBPS/o_18.png
"4 @ 1040
AutoSize Demo

the quick brown fox jumped over the lazy dog

OEBPS/appcompat5.png
LA RIEH]
¢« |a

lorem

ipsum

dolor

sit

amet

consectetuer

adipiscing

elit

morbi

OEBPS/o_15.png
‘SMS Token Demo

This is a test of the ZxdRfzmpSXg
token

OEBPS/appcompat6.png
ipsum

dolor

sit

amet

OEBPS/atv-adt1.jpg

OEBPS/matbasics4.png
U %112

O ok
@ sissons

O paper

OEBPS/imf1.png
U4 mas3
*&’ FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License’)
not use this file exceot in

underway undergo infer

awelity i
FEERERERT
o EXENEAm -

. S -~

OEBPS/matbasics3.png
4 % 1110

Licensed under the Apachd License,
Version 2.0 (the "License"}jou may
not use this file except in compliance
with the License. You may obtain a
copy of the License at http://
www.apache.org/licenses/
LICENSE2.0

OEBPS/matbasics2.png
4 ¥ 1043

L ——

OEBPS/stackview1.png
‘41013

*4' com.commonsware.android.w.

lorem

OEBPS/matbasics1.png
#1041

OEBPS/stackview2.png

OEBPS/imf5.png
U as2
*4" IMEDemo2

Email address:
Signed decimal number:
Date:

Multine tex:

o EXENEAn -
|, -~

OEBPS/imf4.png
un
*@' IMEDemol
No special les:
cmail address:
Signed decimal number:

Date:

Multine text:

OEBPS/threepane1.png

OEBPS/recyclerview9.png
RecyclerView Choice

lorem

ipsum

dolor

sit
amet

consectetuer

x| ‘xj A SEINES) ‘xJ

adipiscing

OEBPS/imf3.png
4nas
*@" IMEDemol
No specil rles:

Email address:

Signed decimal number:
Date:

Multine tex:

awleltyulilon
EEERERERT
o FREVERm «
= o [- =

OEBPS/matbasics5.png

OEBPS/imf2.png
4N a5
*9" IMEDemo1

No special ules:
Email address:

Signed decimal number:
Date:

Multine tex:

o FREVERm «
|, [<

OEBPS/DroidSansMono.otf

OEBPS/coverage1.png
3
112

16 “con.consonsare.androtd
CLonfuner “androtd. support,

cenaies = true

OEBPS/recyclerview6.png
“ % 00
RecyclerView Card Ripple List

Batch #1

I5¢] lorem

| ipsum

; dolor

VS\[
Vamel

Batch #2

Isg] consectetuer

OEBPS/coverage2.png
* Czapp
v Dibuild
» Digenerated
Clintermediates
Souputs
Eareports
» CaandroidTests
+ Dicoverage
v Eadebug
» [resources
» [3com.commonsware.androi
i sessions himl
W indexhtmi
& reportom!

4 Z: Structure

@ Captures.

OEBPS/recyclerview5.png
[

%] lorem

5] dolor

7 amet

% adipiscing

| ipsum

Vst

%] consectetuer

Vet

OEBPS/threepane2.png

OEBPS/coverage3.png

OEBPS/recyclerview4.png
RecyclerView Grid Ripple Li

x|lorem 5] ipsum

%|dolor (7 sit

Vame(— consect
Size:4 etuer

adipisci elit
3 v

ng s
x| morbi 7 vel

x|ligula [5¢] vitae

OEBPS/threepane3.png

OEBPS/recyclerview3.png
“ ¥ 810
RecyclerView Divider List

P lorem

[5¢] ipsum

[9¢| dolor
V sit
V amet

% consectetuer

5] adipiscing

V‘elit

OEBPS/recyclerview2.png
ecyclerView List

5| lorem

size:5

*® ipsum

Size:s

¢ | dolor
Size:s
sit
Size:3

amet
Size:4

5| consectetuer

Size: 12

OEBPS/recyclerview1.png
amet

F%3 consectetuer

] adipiscing

Velit

OEBPS/gb3a.png
R,
S ——
— (5]

OEBPS/switch-1m.png
u W73
Switch Demo
(]

OEBPS/widgetpreview.png
G

BB Widget Preview

Take Snapshot

Email Preview

OEBPS/p-10.png

OEBPS/profiler1.png

OEBPS/staggeredgridview.jpeg

OEBPS/profiler2.png

OEBPS/profiler3.png

OEBPS/profiler4.png

OEBPS/t7-10.png

OEBPS/t7-11.png
Ne:

|

Menu Resource File

OEBPS/coverage4.png

OEBPS/coverage5.png

OEBPS/coverage6.png

OEBPS/decktastic-1.png
vegun

Decktastic

OEBPS/decktastic-3.png
Your Android

App.
OnTV.

OEBPS/decktastic-2.png
sPRAnN

Decktastic

presenatons

OEBPS/inSampleSize-4-fs8.png
ConvoNsVYRE

ﬁ

OEBPS/viewpager1.png
S554:4.3-WVGA

Pager Fragment Demo

OEBPS/jank9.png

OEBPS/jank8.png

OEBPS/slice-7.png
% P vo

Allow Sice Viewer Sampl to show
Stce SamplerX slces?

OEBPS/jank7.png

OEBPS/slice-8.png

OEBPS/jank6.png
o Mark Murphy

OEBPS/slice-9.png
Stce Viewer 8

OEBPS/jank5.png

OEBPS/jank4.png

OEBPS/jank3.png

OEBPS/jank2.png
6 et

OEBPS/jank1.png

OEBPS/slice-1.png

OEBPS/slice-2.png
Header Title
This is the summary

OEBPS/kbmouse-2.png
 Android Performance Patterns Invalidations,

Layouts and Performa
. .H-m

Android Performance Patterns Memory

performance e

OEBPS/slice-3.png
Header Title a

Thisis the subtitle

‘Simple Row Title »
Thisis the subtitle

Range Title
Thisis the subtitle

T

OEBPS/kbmouse-1.png
Sy

OEBPS/slice-4.png
e cm cmenre s e gl St cstrovider

e —

OEBPS/slice-5.png

OEBPS/slice-6.png
Slce Viewer

OEBPS/t7-13.png

OEBPS/t12-1.png
EmPublLite

OEBPS/mapsv2-21-fs8.png

OEBPS/t7-16.png
‘Configue Vector Asset

e

- (&

OEBPS/t12-2.png
v fzapp
» Bbuld
v osre
» BandroidTest
+ Bman
+ Caassets
v Ebook
Bocss
ohtm
1hem
2htm
B 3him
4hem
Shem
& contentsjson
Bpgepubess
v eamisc
aboutheml
helphtml
> Blava
> tares
8 androidManfestml
B ic_launcher-webpng

OEBPS/t7-17.png

OEBPS/adb-displaysize2.png

OEBPS/adb-displaysize1.png
‘Bice6ms
e ww

—

OEBPS/atv-emulator-images-2.png

OEBPS/profiler5.png

OEBPS/profiler6.png

OEBPS/profiler7.png

OEBPS/profiler8.png

OEBPS/webp2-fs8.png

OEBPS/systrace-4.png
Categories
o
o

ad ADB
aid AIDL calls
am: Actty Manager

audio: Audio

binderdriver Binder Kernel
drter
binde Jock Binder globalock
wace

bonic Bonc C Library
camera: Camera
core_services: Core senvces
ik Dalik VM

database: Database

OEBPS/systrace-3.png

OEBPS/systrace-2.png
System Tracing
Recordtrace
Trace debuggableaplcations
Categaries
Restore dft categores
Butersze
[r——

Show Quik Stings e

OEBPS/systrace-1.png
System Tracing
Record system activity and analyze i lter to
improve performance

v

OEBPS/dialog1.png

OEBPS/checkbox1.png
Palette
Common
Text
Buttons
Widgets
Layouts
Containers
Google
Legacy

Q #-

-

= ImageButton

+ CheckBox

© RadioGroup

© RadioButton
 ToggleBution

= Switch

© FloatingActionButton

OEBPS/rx_3.png
>
®
QAN

Average 2.8
Factor 12
Result 3.36

‘WHO\‘U“&‘W‘N‘_\‘

OEBPS/rx_2.png
>
@
A WN e

Average 24
Factor 12
Result 2.88

OEBPS/rx_1.png
o]e]~ -

1
1
2
3
5|
Average 24
Factor 11

264

OEBPS/viewpager5.png
anar
4" Pager Acion BarDemo,

canor a1 Eaor sz Eanor 2

Edor#2

OEBPS/viewpager4.png
kL RIS
9" Pager Action BarDemo, @ souerme

edtor 1 Earor 2

Edtor 1

OEBPS/viewpager3.png
PagerTabstrip Demo.

OEBPS/viewpager2.png
Pager Fragment Demo

OEBPS/bluetooth-5.png
AL L L

RxBluetooth Echo BACEF6:36:01:45

OEBPS/bluetooth-4.png
194029

Pair with Nexus 97

419169

OEBPS/traffic2.png
& ¢ v :05
Received Sent
Latest 254328236 126647372
Previous 254326126 126645374
Delta 2110 1998

OEBPS/bluetooth-3.png
t1vat
RxBluetooth Echo BACEF6:36:01:45

OEBPS/traffic1.png
We ¢ hd 04
Received Sent
Latest 254326126 126645374

Previous
Delta

OEBPS/bluetooth-2.png

OEBPS/bluetooth-1.png
H1 RxBuetoth Echo - now
‘SEND ME TEXT AND | WILL SHOUT IT BACK TO YOU!

STOP SERVER

OEBPS/docprovider-5.png
content.//

com,commonsware.android.documents.pr
ovider/document/
docs®%2Fbar’2Fic._launcher.png

Display name: ic_launcher.png

Size: 7812

OEBPS/docprovider-4.png
[ic_launcher.png

OEBPS/docprovider-1.png
 opentiom
@© hecent

@ Demo Provider Root
o] mages

@ Downioass

OEBPS/t5-13.png

OEBPS/t5-12.png

OEBPS/docprovider-3.png
“ Demo Provider Root

-

OEBPS/t5-11.png
» wxtappearan i e inverse [

Favorke Atbutes
typetace [none. . - |
visbilty [none. B

LinearLayout layout
loyouLweight ||

View all aibutes

OEBPS/docprovider-2.png
[assets
Exdocs
Eibar
i ic_launcher.png
testpdf
B Footxt

OEBPS/notif-badge-3.png
Notifications

Download complete!
Tap me to view the file

OEBPS/gridlayout6.png
*9’ GridLayout Sampler

OEBPS/gridlayout7.png
ELE]
o GdLayoutSamplr

o
[
I

OEBPS/gridlayout4.png
48438
4 GidLayoutSampler

rae Festl Table ot

Name:

Address:

OEBPS/screenshot_as3.png

OEBPS/gridlayout5.png
da39

*@' GridLayout Sampler
ble Table implicit Spans
Name:

Address:

OEBPS/screenshot_as1.png

OEBPS/mapsv2-18.png
Google Play services

‘Google Play services, which some ofyour applications rely o,
5 1ot supported by your device.Please contact the
manfacirer for assistance.

OEBPS/screenshot_as2.png
(X3

PercentFrameLayout Demo

PERCENT PERCENTRI

OEBPS/mapsv2-19.png
o ot aps vt

OEBPS/gridlayout2.png
48436

*@' GridLayout Sampler

Row Column Table

OEBPS/gridlayout3.png
4437
*4’ GridLayout Sampler

Table _FlexbleTable _Implic

Name:

Address:

OEBPS/gridlayout1.png
Ala3s
*4’ GridLayout Sampler

Row Column

OEBPS/inSampleSize-3-fs8.png
IS

X
. 2
4

OEBPS/datetime2.png
~ ¥ 202
GhronoDemo.

OEBPS/datetime1.png
~ AN AL

o2 1023

OEBPS/datetime4.png
1936, Juy 28

OEBPS/datetime3.png
~ ¥ 2002

sermeour

OEBPS/chromecast-fs8.jpg

OEBPS/mapsv2-10.png
Gle el ople Qe
themor o

g’ Lincoln Center Shee?

Home of Jazz at Lincoln Center

o]

Hecksch
Time Warner Center @ @ o

OEBPS/mapsv2-12.png
g,

9.

- Center @

fempeoi

e

H/Sj !
%
St Carnegie Hall @

0548 =)

OEBPS/t14-9.png

OEBPS/presentation1.png
Pushary TioEcs-PTvao00

OEBPS/t14-8.png
L —

OEBPS/mapsv2-27.png

OEBPS/mapsv2-28.png
tincoin Centerfor .

N incoln Center cpes
S ome of Jazz s Lincoln enter

& Heckscher Pl
Time Warmer Center © D

3

OEBPS/presentation3.png

OEBPS/t14-2.png
EmPublLite

foo

OEBPS/presentation2.png

OEBPS/presentation5.png

OEBPS/presentation4.png

OEBPS/deviceauth-2.png
Secure Check

OEBPS/deviceauth-1.png
L]

Secure Check

0 {sDeviceSecure()

isKeyguardSecure()

OEBPS/selection7.png
4 8730

*3" AutoCompleteDemo

OEBPS/selection6.png
48730

*g’ AutoCompleteDemo

OEBPS/selection5.png
*9" Gridbemo
st amet
adpiscing ait
vel v
arcu aiuet
etam vel
placerat ame
sodales pellntesque

4n2s

consectetuer

vitae

augue

OEBPS/resources_manifest_2.png
<application
android:allowBackup="false"
android:icon="@mipmap/ic_launcher”
android:label="EmPubLite"

android:label="@string/app_name"

android:theme="@style/AppTheme"
tools:ignore="GoogleAppIndexingWarning">
<activity android:name=".EmPubLiteActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category androld:name:“androtq.tntent.category.LAUNCHER“
</intent-filter>
</activity>
</application>

OEBPS/selection4.png
*@ Gridbemo
orem psm
st amet
adpiscng ait
vl oula
e aicuer
evam vl
pacerat ane
sodales pellentesque

4n2s

dolor

consectetuer

vitae

augue

OEBPS/selection3.png

OEBPS/deviceauth-4.png

OEBPS/selection2.png
UnT26

*¢’ SpinnerDemo
orem

lorem 4

OEBPS/deviceauth-3.png
tA-R

Confirm PIN

tite

cne

1 2 S

4 S 6

7 8 9
G o

OEBPS/selection1.png
ListViewDemo

lorem

ipsum

dolor

sit

amet
consectetuer
adipiscing
elit

morbi

OEBPS/deviceauth-6.png

OEBPS/deviceauth-5.png
B

OEBPS/presentation7.png

OEBPS/presentation6.png

OEBPS/jank8a.png

OEBPS/t14-1.png
He read and reend he paper,fearing the worst had
Hagpened 1o . He was reios, and afr spper
prowid out sgan siesdly. e rumed and i
He went 1o bed a fte after midnight. and was.
Sskened from e dreams n he sl hours f
Moy by th sound o oot knockrs. et g
he e, diton Gumming. and & camout of bels.
Red eicions danced on h o, For & mament
e Iy asonahed woncring whethr oy had come
o 1 v gone. e Then h amped ot of bed

His room was an at and as o thue i hesd ot
up o th seet hre we dezen choss 0
of o dearay sppewed Encines wers bang
Shated They e comge bevisd 3 polcaman
Rammring o th oo 1 Marians s comg” an
hiriadto e rest ot

The sound of drmming and tmpeting came fom
e Albsy Stee Barack, and every chrch i
eoshot was ard st ok kiing s wi avahament
Geardr ocun. Ther was & hois f oot cpenet
ond idow after window 1 he houase oppoute
aahed o ke i yehow Bminston

OEBPS/presentation8.png
Secondary Screen
Support Using
DisplayManager

ShowPresentation

OEBPS/resources_manifest_1.png
<application
android:allowBackup="false"
android:icon="@mipmap/ic_launcher”
android:label="EmPubLite"
android:supportsRtl="true"
android:theme="@style/AppTheme"
tools:ignore="GoogleAppIndexingWarning">
<activity android:name=".EmPubLiteActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER"
</intent-filter>
</activity>
</application>

/>

OEBPS/mapsv2-20.png

OEBPS/selection8.png
4 8730

*@’ AutoCompleteDemo

torerd

OEBPS/notif-badge-1.png

OEBPS/notif-badge-2.png
%)

Notifications

Download complete!
Tap me to view the file

@ App info

OEBPS/emu4.png

OEBPS/emu5.png

OEBPS/as-newmodule-2.png

OEBPS/chromeos9.png
p—

@ Consqunavomatcaty
Passes 208312
[——
ey 10210831
o

® At e s

© Cograme seven- e -
© cusom e seves.

=]

OEBPS/chromeos8.png
o
R —

Comcton et Py

P e
© s ot et

= ammsess
sy weaes
ey 2wz

e o st i
Lot

(=)

OEBPS/chromeos7.png
Settings

Internet connection

Wi-Fi network
i

% Add connection

[Allow proxies for shared networks

OEBPS/switch-2m.png
u W73
Switch Demo
L]

OEBPS/as-newmodule-1.png

OEBPS/chromeos6.png
Google Play Store (beta)

) Enable Google Play Storeon yourChvomebook.Lear mare
Manage your Androd preferences

OEBPS/chromeos5.png
@ cooecrumecs

OEBPS/chromeos4.png
Mark Murph
mapGoomenswar.. | SGnout

®, Connectedtocw

[y—"

O — | >

@ setngs o odvutin

Fri.Jun 24,2016 2

OEBPS/chromeos3.png

OEBPS/chromeos2.png

OEBPS/chromeos1.png

OEBPS/fullscreen1b.png

OEBPS/wear-simple2.png
Download complete!

Tap me to view the file

OEBPS/wear-simple3.png
Open on phone

OEBPS/wear-simple1.png
09:02

4 Current city, Oct 3

Download complete!

OEBPS/o_8.png
In

OEBPS/radiobutton1m.png
RadioButtonDemo
O rock

© sisors

O paper

“ ¥ 7:30

OEBPS/o_9.png
& App Wrangler

Applcation insta from external
sources are blocked for seculty

reasons. Please review the external
sources seting to trn on nstalls
from this source

CANGEL EXTERNAL SOURCES.

OEBPS/o_6.png
oo ie0

& App notifications

@7 Notifcation Channeld.

Bkt
Showbadge

°
e con .
e
st -
ontent Updates -

OEBPS/o_7.png
oo 100

€ Settings

Q'. Battle Results
Bockan

OEBPS/mnc17.png
& URLHandir MG

OEBPS/fullscreen2b.png

OEBPS/mnc16.png
URLHandier MNC

OEBPS/mnc15.png

OEBPS/mnc14.png

OEBPS/mnc13.png

OEBPS/mnc12.png

OEBPS/mnc11.png

OEBPS/mnc10.png

OEBPS/sign-as-3.png
o Dt ol oGS F s

e]

= .

S Vo V1S (V2 8 S S

s | QN | o | [t

OEBPS/scaleclip1.png
442
4" Scale and Clip Demo

Scale Clip

OEBPS/sign-as-1.png
e
s
ot

O Remember passward

"o [RETRINCTS

OEBPS/scaleclip2.png
443

Scale and Clip Demo

Scale Clip

OEBPS/sign-as-2.png
i

Bassword

Confem
o
Password: o
yaldy Gearst (=B
centiate

Erstand Loz Name:
rganzatona Ui
Oxgarzaton

Gy ocbocatty
St or Provice:

Country Code 00

o

OEBPS/scaleclip3.png
443
*4" Scale and Clip Demo

Scale Clip

OEBPS/andproj-dimens2.png
i DA M I
£ MyApplication | Aol ot
> Didea
v capp
» Sbuld
Blbs
v Bisec
» BrandroidTest
+ Bman]
» Bisva
v tares
Bcrawable
& chawable-hpi]
©rawable-mdpi
© chawable-xhdoi
© chawable-xxhdpi
®layout 1
Bmeny
& values

A7 Sruture.

 stringsml
B stylesaml
+ Bvalues-wa20dp
H 5 dmensxml
2 B AndroidManfest xml

OEBPS/scaleclip4.png
LR

Scale and Clip Demo

cl

OEBPS/inSampleSize-2-fs8.png
COMMONSWARE

OEBPS/andproj-dimens1.png
v Ciapp

> Eimaifests

> Bljava

v Cares
» E1drawable
v Elayout

& activity_mainaml

v Exmenu

<1 Z:Structure

& menu_mainxml
v Elvalues

& dimens.xml
& dimens.xml (w820dp)
& strings.xml
tyles.xml

OEBPS/clean_arch.png
Models and rues

——— App use cases

Adapters

| Exemaities: 05,
Storage, Nework, etc

OEBPS/scaleclip5.png
& 445

Scale and Clip Demo

cl

OEBPS/as-themeeditor1.png
e —

OEBPS/as-themeeditor2.png

OEBPS/as-themeeditor3.png
R— 0 S 0%

OEBPS/as-themeeditor4.png
o

== i

OEBPS/fullscreen3b.png

OEBPS/as-themeeditor5.png

OEBPS/gradle_plugin_1.png

OEBPS/gradle_plugin_2.png

OEBPS/milne-3.jpg

OEBPS/basic1.png
U064
*9’ LabelDemo

You were expecting something profound?

OEBPS/gradle_plugin_3.png
v [plugin
» Crbuild
v osie
~ Cimain
+ Exgrooyy
B3 com.commonsware android grade plugi
@ » StbPlugin

OEBPS/t16-1.png
EmPublLite

OEBPS/gradle_plugin_4.png
Gradle projects
S+~ @ ZTxh* B
© @ PluginStub
@ PluginStub(root)
@ :app
@ :plugin
v [aTasks
» [@build
[a documentation
3 help
[a other
@ upload
uploadArchives
» [averification
» [a Run Configurations

v

v

«vvy

OEBPS/gradle_plugin_5.png
v Birepository
v Bicom
+ £ commonsware
v Erandroid
v Cigradie
+ Ciplugin
v 2001
1l plugin-0.0.1 jar
£ plugin-0.0.1jar.mds
£ plugin-0.0.1 jar shal
£ plugin-0.0.1 pom
£ plugin-0.0.1.pom.md5
£ plugin-0.0.1.pom.shal
& maven-metadata.xmi
‘maven-metadataxmi.mds
maven-metadata.xml.shal

OEBPS/t16-3.png
LT ——

OEBPS/gradle_plugin_6.png
Gradle projects
G+- €I %
v @ PluginStub
» @ PluginStub(roo)
v @ :app
© [aTasks
» [aandroid
» [Cabuild
v [acommonsware
stubTask
» [ahelp
» [ainstall
» [Caother
» [averification
» [d Run Configurations
» @ plugin

OEBPS/t16-2.png
EmPublite c

This Is Updated! No,
Really!

OEBPS/webbeam1.png
Google

OEBPS/prefs-editor-1.png

OEBPS/fullscreen4b.png

OEBPS/studio-8.png
T -

OEBPS/studio-7.png
Android ¥
v app
» 1 manifests
» e java
v hzres

» tx drawable

v

& activity_main.xml
» e mipmap
» Euvalues

» @ Gradle Scripts

tures <1 7: Structure

OEBPS/secretagentman1.png

OEBPS/studio-9.png
‘Automatically check updates for [Stable Channel [
Use secure connection

Lastchecked Moments ago
Curentversion Android Studio 312
Build number AL734720617
Android SDK Tools: 2611

Android Platform Version: P revision 3

Viewledit ignored updates:

Mo I

OEBPS/studio-6.png

OEBPS/studio-5.png
Ewinay

FE

OEBPS/dlgfrag1.png
A Sample Dialog

s |

Cancel

OEBPS/webkit1.png
hd Hov v Auam

BrowserDemo1

©.g CoMMONSWARE

Android
Development
Answers!

is the most
comprehensive and up-to-date
book on Android application
development, bar none. Updated
several times a year, it covers
Android Studio and the latest
Android SOKs. It is avallable as
part of the . giving

OEBPS/webkit2.png
Hello, world!

OEBPS/webkit3.png
6:10PM, July 27

OEBPS/launchalot.png
.A\arm Clock
@@ Browser

k"’BshServiceDEmo

= Calculator

@ Camera

@ Car Home

x"'CunstantsBrowser

. Contacter
. Contacts
~

OEBPS/t5-10.png

OEBPS/printing3.png
fonaTas Names"report_body™

1 {COATAL

rtads

bty

T3S Report for: ((reportoate))/my

(Pohere are the contents of This Weok\'x TPS repart:</p
(ressage)</o>

DL R U5 questions regoratng this report, plesse

68 Coomte/s atk Kk ooy i

<Tosars

frents

i

OEBPS/printing2.png
HP Color LaserJet C.

Landscape

OEBPS/stetho10.png

OEBPS/printing1.png

OEBPS/stetho11.png

OEBPS/stetho12.png

OEBPS/stetho13.png

OEBPS/stetho14.png

OEBPS/listview4.png
placerat
ante
porttitor
sodales
pellentesque
augue

purus

18 seconds since activity launched

OEBPS/listview3.png
lorem

ipsum

dolor

sit

amet
consectetuer

adipiscing

OEBPS/fullscreen5b.png

OEBPS/advperms_3.png

OEBPS/cal2.png
LEd O vdui020
B catendarcuery

CommonsWare Office Hours
CommonsWare Office Hours.
CommonsWare Office Hours
Christmas Eve

Christmas

New Year's Eve

New Year's Day
CommonsWare Office Hours
(o T
CommonsWare Office Hours
Martin Luther King, Jr's Day
Groundhog Day

incoln's Birthday

Or. Appt

Valentine's Day

Presidents Day

Marwhara (1T

Daylight Saving Time Begins 123 1;

o o =

OEBPS/advperms_1.png
Allow Custom Danger-
ous Client to This is a

description. No, really.?

DENY ALLOW

OEBPS/advperms_2.png
= Additonalpermissions.

o

FontSampler

Hello, world:

OEBPS/wear-big1.png
09:16

%t Current city, Oct 3

OEBPS/wear-big3.png
Play

OEBPS/wear-big2.png
Download complete!
An Entry
Another Entry

A Third Entry
Yet Another Entry
How Low Can We Go?

OEBPS/doctree1.png

OEBPS/wear-big4.png
Open on phone

OEBPS/doctree4.png

OEBPS/doctree5.png

OEBPS/doctree2.png

OEBPS/doctree3.png

OEBPS/doctree6.png

OEBPS/doctree7.png

OEBPS/shape2.png
%ol W o917

#" Shape Sampler

SuD GRADIENT BoRDER Rol

OEBPS/t3-12.png
‘androtd: supportsRtl="true"

OEBPS/shape1.png

OEBPS/shape4.png
% ol & 942

#" Shape Sampler

NT BORDER ROUNDED ANG

OEBPS/shape3.png
% ol @ 93

o' Shape Sampler

GRADIENT BORDER ROUNDED

OEBPS/unittest-6.png
= Save 'SOTests' Configuration

app
Instr Tests

SillyTest

IltemTests
com.commonsware android.unittest in app

SOTests

—

——

OEBPS/unittest-4.png

OEBPS/unittest-3.png
hrearClass
Statie plLc votd domhisLastontydnce() {

, pais g
o =
ot

Ssart ssser

OEBPS/unittest-2.png
v Caapp
» Eabuild
v Bisc
» BiandroidTest
v Eamain
» Djava
» Cares
& AndroidManifestxml
v Citest
v Djava
v [com.commonsware androic
@ ftemTests
@ SillyTest
@4 SOTests.

OEBPS/shape6.png
% wl & as7

@' Shape Sampler

@ oo mNG wveneo

OEBPS/chromeos11.png

OEBPS/shape5.png
Shape Sampler

OEBPS/chromeos12.png
hange channe
© swe
O s

O omoper- i

OEBPS/chromeos10.png

OEBPS/inSampleSize-1-fs8.png

OEBPS/checkbox1m.png
u N 7R
CheckBoxDemo

This checkbox is:checked

OEBPS/transed5.png

OEBPS/transed6.png

OEBPS/transed3.png
[—
prirn
Resource Folder: appiscmaines B

I3 | concel

OEBPS/activities9.png
4

e s

OEBPS/transed4.png

OEBPS/tilemode2a.png

OEBPS/transed7.png
Key: 2pp.
Defauit Value:
My Application

‘Translation for Spanish (es)
Mi aplicacion

OEBPS/advwebkit4.png

OEBPS/advwebkit3.png

OEBPS/transed1.png
et rases- s sty gphcation/strig:

OEBPS/transed2.png

OEBPS/mat16.png

OEBPS/mapsv2-16-fs8.png

OEBPS/clipmusic1.png

OEBPS/clipmusic2.png

OEBPS/relative1.png

OEBPS/tablayout2.png
Ld

TablLayout Demo.

OEBPS/relative3.png
New Layout Resource File

Eilename: | bottom_then_top_rl

Root element: | RelativeLayouf

OEBPS/relative2.png

OEBPS/relative5.png
d

layout_width ‘wrap_content
layout_height wrap_content
> Layout_Margin 2,96dp, 920p,2,7] ‘
» Padding 222
» Theme
elevation

layout_alignParentStart
layout_alignParentTop
text Button

OEBPS/relative4.png

OEBPS/debug1.png
Unfortunately, com.
commonsware.android.
. skeleton has stopped.

-

LHOES

OEBPS/actionbar-13o.png
Android Action Bar Style Generator

OEBPS/ll-studio13.png

OEBPS/profile1.png

OEBPS/webp1.png
© Lossyencoding
Encodngqualy: (75| % =

@ Proviewnspecteachconvered mage bekore saving
© Use lossessencoding

3 Sipfes whers e encoced resuts arer than h angina
s
) Sk mages wihvansparencyaipha channel

Transparencyrequres Andoid 43 (AP118)
CumsntmnsdkVersions 24

OEBPS/ll-studio12.png

OEBPS/profile2.png
u

¥ b

OEBPS/ll-studio15.png
‘Component Tree
v [LinearLayout(veriical)

textView -
editText
[TLinearLayout(horizontal)

OEBPS/profile3.png

OEBPS/ll-studio14.png

OEBPS/profile4.png

OEBPS/ll-studio17.png

OEBPS/ll-studio16.png

OEBPS/ll-studio19.png

OEBPS/ll-studio18.png

OEBPS/profile5.png

OEBPS/profile6.png

OEBPS/ll-studio11.png

OEBPS/ll-studio10.png

OEBPS/phone2.png
42 Create now contact
2 Addtoacomact

B sedsus

1212-555-1212
1 2 3
4 5 6
7 8 9
0
o

OEBPS/tilemode4a.png

OEBPS/RateList2.png
*Iorem
Y v #ripsum
Y ¥ ¥ dolor
{}{:‘};sit

% Y Fr AMET
{J{E;consect

etuer
A R

OEBPS/RateList1.png
Gl ® 6:14prm

f{ﬁﬁ'*lorem
¥ ¥ #ripsum
Y ¥ ¥ dolor
{}{:};sit
f{{?iamet
ﬁ?{?;consect

etuer
A e

OEBPS/phone1.png

OEBPS/prefact1.png
oM™ 200

PreferredActivitiesDemo

DIAL

com andoid MecontactsDiskeTabActviy

DIAL :tel

VIEW: rtsp

com e seangiayer VideoPayeraciviy

VIEW/SENDTO : mailto

com e andrid e ComposeActviy

VIEW :video : http

com e cveapiayer VdeoPayericiy

VIEW : http://maps. google.com/

schemes)
ptiesior p—

VIEW : tel
com andoid WeconactsDikTabActviy

MAIN

com e launcher Launcher

OEBPS/tilemode3a.png

OEBPS/sysram5.png
sn
e

i K9 Mail

useoeTALS
Average RAM use
Maximum RAM use

Run time

servces

PushService

PollService.

Mailservice
NotificationActionService

Force stop

49mB
49mB
100%

100%
53
%
%

1]

OEBPS/sysram4.png
2 Process Stats

Background apps o!
Device memoryis currer

)

K-9 Mail
—

3hours
6 hours.
12 hours

1day

OEBPS/sysram3.png
2 Process Stats e

Background apps o Duration
Device memory is currert

K-9 Mail
— Stats type

Show system

Use Uss

OEBPS/sysram2.png
sn wdui237
X Process Stats oo

Background apps over 1h 47m
Devce memarys curenty normal

‘ K9 Mail 100
. Tripit 100

‘Google Keyboard To0x

‘Google Play services (com.g. 100%
—

Google Play services oo,
—

‘Google Play services (com g. 100%
—

(=} (=) =

OEBPS/sysram1.png
su 0 ©®du 235
2 Developer pions o

Select runtime

Enable Bluetooth HCI snoop log
Capture ol blutootn i packes i a e

Process Stats.
Geeky stats s runing processes

oeBuGame

USB debugging v
Debug mode when USB i comected

Revoke USB debugging authorizations

Power menu bug reports
Include optionin g e oraking
Blarepen

Allow mock locations
Mo macklocatons

(=}

1]

OEBPS/sidecar2.png

OEBPS/fullscreen5.png
Full-Screen De

Display Nommal
Display Low Profe
Display Hide Navigation
Hide Status Bar

® Display Full-creen

‘Something At the Bottom

OEBPS/sidecar1.png
Ll L1

ET YL

OEBPS/activities2.png
48923
4" Explicit Intents Demo

| am the other activity!

OEBPS/fullscreen3.png
Display Nommal

Display Low Profe
 Display Hide Navigaton
Hide Status Bar
Display Full-Screen

‘Something At the Bottom

OEBPS/activities1.png

OEBPS/headerdetail1.png
lorem
Size:5
ipsum
Size:s

dolor
Size:s

4 sit

Size:3

\/ amet

Size: 4

Batch #2

consectetuer
Size: 12

u adipiscing

size: 10

OEBPS/fullscreen4.png
Full-Screen De

Display Nommal
Display Low Profle
Display Hide Navigaton

© Hide Status Bar

Display Full-Screen

‘Something At the Bottom

OEBPS/activities8.png
LaunchDemo

https://eff.org

Show Me!

OEBPS/fullscreen1.png
Full-Screen Demo

® Display Nommal
Display Low Profe
Display Hide Navigaton
Hide Status Bar

Display Full-Screen

‘Something At the Bottom

OEBPS/activities7.png
LaunchDemo

Show Me!

OEBPS/fullscreen2.png
Full-Screen Demo

Display Nommal

® Display Low Profe
Display Hide Navigaton
ide Status Bar

Display Full-Screen

‘Something At the Bottom

OEBPS/fullscreen0.png
Full-Screen Demo

@ Display Normal
Display Low Profile

Display Hide Navigation

Something At the Bottom

OEBPS/mapsv2-25-fs8.png
LAAY L]
MapsV2 All The Markers

© The Town Hall
he Roosevet © 1o
i o

OEBPS/classiccontainers8.png

OEBPS/classiccontainers9.png
. 1vdinae

& Developer options

on

OEBPS/atv-nexusplayer.jpg

OEBPS/firetv3-fs8.png

OEBPS/layouteditor2.png

OEBPS/advpager4.png
Fatore1

OEBPS/advpager5.png

OEBPS/layouteditor5.png

OEBPS/studio_download.png
@ Oomkpers Twin st G > & G

androidstudio

et o et iy vy ot e

OEBPS/layouteditor6.png

OEBPS/layouteditor3.png
Palette
Common
Text
Butions
Widgets
Layouts
Containers
Google
Legacy

Q #-

a
‘= Button

m ImageView
RecyclerView
<> <fragment>

m ScrollView

-0 Switch

OEBPS/layouteditor4.png
My Application

OEBPS/layouteditor9.png
Component Tree 1

“\ ConstraintLayout
b TextView - “Hello World

OEBPS/remoteplayback3.png

OEBPS/remoteplayback4.png

OEBPS/layouteditor7.png

OEBPS/remoteplayback1.png

OEBPS/layouteditor8.png

OEBPS/remoteplayback2.png
Sarted

£ connectto device:

OEBPS/remoteplayback5.png

OEBPS/spl-1.png
'AK09915 magnetomeer
{uncatorated)

AK09915 magnetometer

BMINGD accelerometer
(uncalbrated)

BMI60 accelerometer
BMITGD gyoscope (uncalbrated)
BMING0 gyroscope

BMP285 pressure

BMP28S temperature

Device Orentaton

Doutle Tap

Double Touch

Double Twist

OEBPS/p-9.png
My Old App

This app was built for an older version
of Android and may not work properly.

Try checking for updates, or contact the
developer.

Check for update oK

OEBPS/t8-5.png

OEBPS/t8-4.png

OEBPS/mslp1.png

OEBPS/spl-3.png

OEBPS/mslp2.png
LA Rk, Aiond

OEBPS/spl-2.png
0230/ 0148/ 9315/ 9919

0235/ 0158/ 98%. 9900
0220/ 0158/ 9901/ 9905
0220/ 0134/ 9872/ 9876
0206/ 0153/ 9891/ 9895
0216/ 0153/ 9906/ 9909
0211/ 0158/ 9901/ 9905
0244/ 0153/ 9930/ 9934
0230/ 0177/ 9901/ 9905
0235/ 0129/ 9891/ 995
0220/ 0168/ 98%. 9900

0230/ 0144/ 9911/ 9314

OEBPS/p-7.png
‘Simulate a dispay with acutout

None

Narrow dsplaycutout

Tal display cutout

Wide dispay cutout

OEBPS/p-1.png
Thisis the title
.

OEBPS/databases2.png
4 358

*4’ Constants DB Demo @
Gravity, Death Star | 3.53036e-07
Gravity, Earth 9.80665

Gravity, Jupiter 23.12
avity, Ma 1

7
6
1
6
b
5
6

Gravity, Uranus 8.69
Gravity, Venus 8.87

OEBPS/p-2.png
Thisis the title

OEBPS/databases1.png
357

*4’ Constants DB Demo @
Gravity, Death Star | 3.53036e-07
Gravity, Earth 9.80665
Gravity, Jupiter 23.12
Gravity, Mars 3N
Gravity, Mercury 37
Gravity, Moon 1.6
Gravity, Neptune 1
Gravity, Pluto 06
Gravity, Saturn 8.96
Gravity, Sun 275
Gravity, The Island 4.81516
Gravity, Uranus 8.69

Gravity, Venus 8.87

OEBPS/p-3.png

OEBPS/DynamicList2.png
48546

[E sound

Volumes

Silent mode
of

"RINGTONE & NOTIFICATIONS

Phone ringtone

Sient

Default notification
Sient

Vibrate and ring
svsTem

Dial pad touch tones v

OEBPS/DynamicList1.png
*4’ DynamicDemo

consectetuer
Size: 12

. adipiscing

Size: 10

v elit
Size: 4

WN 735

OEBPS/diagnostics1.png
Picasso Diagnostics

LastUpdnted -

Avrage Origns Biomap ize .

Cache s
Dovnlosd Count o

Original Bitmap Count o
Total Download size

e o =

OEBPS/diagnostics2.png
Action Bar Demo

Action Bar Overlay Demo.

Action Mode MC Demo

& oo
Calcultor
Calendar

g Comen

OEBPS/diagnostics3.png
& Configure apps

App permisions
App inks

Advanced

Default Apps
Oraw over other apps.
Moy system settings

Battery optimization

OEBPS/diagnostics4.png
Draw over other apps

) Sooworir s

s Coepyseces

A o

Recyclrview Video List

OEBPS/diagnostics5.png
Draw over other apps

&’ RecyclerView Video List ©

Permit drawing over other apps °

OEBPS/classiccontainers1.png

OEBPS/classiccontainers2.png

OEBPS/classiccontainers3.png

OEBPS/classiccontainers4.png

OEBPS/classiccontainers5.png

OEBPS/classiccontainers6.png

OEBPS/switch3.png
Palette Q #- 1
Common | ® Button

_— = ImageBution
dutons ¥ CheckBox

© RadioGroup
WAgEts @ RadioButton
Layouts FERF

Containers «e Switch
Google @ FloatingActionButton

Legacy

OEBPS/classiccontainers7.png
| AN:-BIG I

OEBPS/junit13.png
G New

Mmoo x|
DemoAtOR 15 Copy cutec
4 DeMOATMYT Copypan Criesnitec.
@ DemoConexT Copyas PlanTet
Swrest CopyReterence CutarSheC
L) ol paste cun
i grade B Jumpto Saurce: Fal
risimi =
= Findusages =
oguard pojecton Aen
oectproperies Esr
nal Lbranes. LR
Browse Type Herarchy oo |
Refomat Code cuteate
Optmize mpons a0
Delete... Delete
P Run DemoAciyTest CufeShiF10
6 Debug DemorctviyTest

Create DemoActvyTest.

OEBPS/junit10.png

OEBPS/junit12.png
eTest
pubttc vota Lstcount()

hssart assertEquals(25, st gethdapter().getcomt(1)
)

OEBPS/junit11.png

OEBPS/field3a.png

OEBPS/table5.png
Palette Q #- 1

common L ConstraintLayout
+1 Guideline (horizontal)

Text e ‘
sutons | I Gideline (verical)

[LinearLayout (horizontal)
Widgets | 5| inearl ayout (vertical)

Layouts =] FrameLayout

TableLayout

TableRow
-1 Space

OEBPS/mirrorfl2.png
2100w Pages.. And Gromingt
—

=

2,100+ Pages... And Growing!

OEBPS/mirrorfl1.png
21000 Pages.. And ot

gl
©@ CommonsWare Books Servces Toaining

2,100+ Pages... And Growing!

OEBPS/mapsv2-14-fs8.png

OEBPS/firetv4-fs8.png
Bloomberg WATCH
- T

OEBPS/classiccontainers10.png
Developer options >

on

Foro L lsyout diection

OEBPS/wear-voice5.png
Talk to Me!

Talk to Me!
testing testing

c Cancel

OEBPS/wear-voice4.png
testing testing

OEBPS/actionmodes8.png
"4 8 510

*¢’ Action Mode MC Long Press D.
lorem

ipsum

dolor

sit

amet

consectetuer

adipiscing

elit

Word

Q

OEBPS/wear-voice6.png
Talk to Me!
testing testing

Cancel

o

OEBPS/actionmodes9.png
4 B 635
Modify Word
v (U]
lorem

ipsum

dolor

sit

OEBPS/wear-voice1.png
Talk to Me!

OEBPS/datausage3.png

OEBPS/wear-voice3.png
° Hello
e World

OEBPS/wear-voice2.png

OEBPS/pref2.png
&0

Your Favorite Color

- —
6 ——i
8 —@

Cancel set

OEBPS/pref1.png
&0
181 CWAC: ColorMixer

Your Favorite Color
Blue. No yel-- Auuuuuuuught

OEBPS/datausage2.png

OEBPS/datausage1.png

OEBPS/actionmodes3.png
LR
+/ ModityWord oz o

0

Torem

OEBPS/actionmodes4.png
i}

OEBPS/firetv1.png

OEBPS/firetv2.png

OEBPS/cover.jpg
FINAL
,» Version
7. supports Through

Android 9.0!
‘ r

Naanr

The Busy Coder’s Guide to

Android

Development

Mark L. Murphy

OEBPS/studio-startup-2.png
®

Android Studio

OEBPS/studio-startup-1.png

OEBPS/media3.png

OEBPS/ct3-10.png

OEBPS/media2.png
DOCUMENTARI!
AND

OEBPS/studio-startup-3.png
Configure ~ GetHelp +

Settings
Plugins
Import Settings
Export Settings

Settings Repository.
Create Desktop Entry
Check for Update
Project Defaults

OEBPS/media4.png
¢

DOCUMENTARIES
AND

OEBPS/as-heapsnapshot9.png

OEBPS/as-heapsnapshot4.png
TIPS

S A

e

Pt o s St R

B [
,

Been-maggasgesaan-

;m.,

5
o
=

OEBPS/field2a.png
Palette Q #- 1
Common Ab TextView

Butions 4 Password
4 Password (Nu...
WIOGESS 1 E-mail

Layouts s Phone
Containers 4> Postal Address
Google 4b Multiline Text
4 Time

4 Date

4 Number

Legacy

OEBPS/snackbar3.png
Ld

Snackbar Async Demo.

e

OEBPS/as-heapsnapshot3.png
0 My @ Mttt sypty |+ Ay P <

H

PICTLITLEM 1
H
H

sypusk

OEBPS/as-heapsnapshot6.png

OEBPS/snackbar1.png
L4

Snackbar Async Demo.

e

OEBPS/as-heapsnapshot5.png
i
/]
i
sof

!!!!!!!!!!!!!!!!!!!i!!!!!!!!ﬁ!

OEBPS/sigdump-1.png
Signature Dump Demo

OEBPS/as-heapsnapshot2.png
e o

T L PRI T

OEBPS/snackbar5.png

OEBPS/sigdump-2.png
Signature Dump Demo

yacayada

Font Scale

30px Normal
30px Bold

30dp Normal
30dp Bold
30sp Normal
30sp Bold

30px Normal
30px Bold

30dp Normal
30dp Bold
30sp Normal
30sp Bold

30px Normal
30px Bold

30dp Normal
30dp Bold
30sp Normal
30sp Bold

OEBPS/andcorder2.png
v e

OEBPS/actionbar-9a.png
lorem

ipsum
dolor
sit

amet

&+
Q
€]

Reset About

30px Normal
30px Bold

30dp Normal
30dp Bold

30sp Normal
30sp Bold

OEBPS/andcorder3.png
2w v:00

© L
O =

OEBPS/durabledoc2.png

OEBPS/durabledoc1.png

OEBPS/field1m.png
u w2

FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License’); you may
not use this file except in compliance
with the License. You may obtain a
copy of the License at http://
www.apache.org/licenses/
LICENSE-2.0

OEBPS/t11-6.png
Help

Resl o text sk go e stac, o, we e

Lorer psu dlo it ey, consectetu acpising i,
Nl et oo, siauam o ol o bt vl
lorem Crassceenscue massa e dcum pors
05 i Rune st nbh 1 magna il
Vel o3 augue Al ratohtpat. Sed &
e Com socs ntoqe pretbn e mogia .
Dartant monte,naetr s e el
e s acpeletesie corseciescoron
Jortoa Cursiur okt skcuam tcnt.
Mauris iafondalgsom auct: Mours wamod
i ot rc urices S, D Sosciot egestas
oinegesan

st s s mets vt moeste e o
mattis o enm.Fusce moleste convalls i, Nunc
Conmentum s Ve o eO! Ut e
S Fusce s uma ot et lore e
Consecetn Sed porior siaue ula ot malesuads.
Fusceurices erm 31 non prtham it oncus
e Mauris moles, e sae congimentun
Sectun, sopen et oot o5, ok rem,
oo . Fuscepalletasaue doior o sapen rm
diempor et ieend Maccens vl dlr o

OEBPS/andshooter1.png
‘andshooter will start capturing everything
that's displayed on your screen.

3 Dont show again

Cancel Startnow

OEBPS/t11-5.png

OEBPS/LiberationSans-Regular.ttf

OEBPS/toolbar-sab-3.png
psum

dolor

OEBPS/toolbar-sab-1.png

OEBPS/toolbar-sab-2.png
Fi1.t

OEBPS/studio-create-3.png

OEBPS/studio-create-2.png

OEBPS/studio-create-5.png

OEBPS/studio-create-4.png

OEBPS/assist3.png

OEBPS/studio-create-1.png

OEBPS/assist1.png

OEBPS/assist2.png

OEBPS/t11-2.png
& EmPubLLite

About

Real“abaut pose should go here.Intead,
ere, we have some

Lorem ipsum dolor st amet, consectetur
adipscing et Quisque aucior bero congue:
arcu scelrisque vita pellentesque quam
llamcorper Morb fermentum condimentum
Solicitudin. Vestbulum magna porus.
Scelrisque eu vestbulum auis, sodales et
magna. Nullam ac erosrsus. Guisave at
‘gestas dolor. Ut rurum faucibus Ieo at blandi.
Sed portitor,risus ut fringila pretium, nunc vl
honcus liguia, fermentum consectetur wrpis
Sem eget magna

Sed non placerat turpis. Donec varius sodales
eque,nec convallispurus vehicula on. Morbi
at isus ligula,sed allquam nisi Duis arcu just,
convals vitae preium eget, scelrisque ami.
Donec e vell eu quam tempus accumsan.
Aenean aliqet sagitis nisl commodo pretium.
Pellentesque tempus vestibulum s, sed
malesuada lctus aliquam id. Vestbulum ante

OEBPS/t11-1.png
4" EmPub Lite

Help

Real help text should o here nstead, here,
we have some.

Lorem ipsum dolor st amet, consectetur
adipacing et Nulam est door aliquam ac
fringila t lobortisvellorem Cras scelrisque
massa eu purus dictum a pora eros

solicitudin Nune volutpatribh at magna
fringila vehicula et a augue. Aliqam erat
Volutpat. S et arcu nunc.Cum socis natoaue
penatibus et magis dis parturient montes,
Rascetur idculus mus. Phasellus ve fels sed
arcu pellentesaue consectetur e non tortr,
Nl ringila molls justo non malesuada.In
non justo ligula. Curabitur volutpat aliquam
tincidunt Mauri eeiend aliguam auctor
Mauris euismod maris et orc lrices
tincdunt, Duis suscipt egestas estn egestas

Curabitur quam quis metus volutpat moleste
vitae dolor. Vivamus nunc ipsum, postere non
Semper viae, matis a i Fusce molesie

onvall is, Nunc condimentum pulinar vel,
non temporpurus viverraat.Fusce ultices uma

OEBPS/t11-4.png
v [iapp
» Cibuild
v Disrc
» ClandroidTest
v Cimain
v [aassets
mi
» Cljava

» Cires
& AndroidManifest.xml
[il ic_launcher-web.png

OEBPS/t11-3.png
v Ceapp
» E1build
v Osrc
» ElandroidTest
v Cimain

» Djava

» Cires
& AndroidManifest.xml
[# ic_launcher-webpng

OEBPS/tv1a.png
Palette

Common [0
Text = Bution
sutons | ™ ImageView

RecyclerView

OEBPS/routeprovider2.png
Route selected

Connected

Payrequested

e session) Payng

(e ession) Pase requested
e session) Pased

e session) Resume requested
(e session) Resumed

der session) Stoprequested
(e seasion) Stopped

OEBPS/mapsv2-15-fs8.png

OEBPS/routeprovider1.png
3 Connect to device:
oW Development

Demoote
[t —

OEBPS/soundrecordintent1.png
vas ¥/ #0956

@ Record your message

00:00

OEBPS/gmailfrags.png

OEBPS/as-bwmonitor2.png

OEBPS/notify-visibility-2-fs8.png
1030

OEBPS/actionbar-7a.png

OEBPS/as-bwmonitor1.png

OEBPS/app_restrict1.png

OEBPS/app_restrict2.png

OEBPS/MediaRouter10.png
MediaRouter Routelnfof uniqueld=android/
suppor 7. media SystembediafouteProvider DEFAUL

providerPack ity

OEBPS/app_restrict3.png

OEBPS/MediaRouter11.png
o
volumeHandill T
presentation ikl

providerPack SN

OEBPS/app_restrict4.png

OEBPS/app_restrict5.png
B
[P

“

OEBPS/notify2.png
18:49 « &

OEBPS/ndp-18.png
4 MessagngStle Sample - now ~
AFoke Chat
‘Somebody Want 10 chat?

TALKTOME!

OEBPS/datepicker5.png

OEBPS/notify1.png

OEBPS/ndp-19.png
1 Messagostye sampie - now
AFoke Chat

‘Somebody Wan to chat?

Me Yes, 4 love to

Me U, s anybodythere?

TALKTO ME!

OEBPS/datepicker4.png

OEBPS/t4-6.png

OEBPS/notify4.png
18:50

Saturday, May 19,2012
 Nolnternet connection B 95%

= ©®© 8 C 0

st s
W ws Sl om S
A — Ao

Ongoing (1)
¢ Commnlssemadodaiss

Touch for other USB options.

OEBPS/ndp-16.png
Aot ot g

Dragtoadd s

E

ke

L]
[,

-

L]

o

OEBPS/datepicker7.png

OEBPS/notify3.png

OEBPS/ndp-17.png
09 -

OEBPS/datepicker6.png
AU AL

wow v ow oW

1% Show Calendar

OEBPS/ndp-14.png
< Display size

HiPete!

Larger

Make the tems on your sreen smaller
orlarger. Some apps on your screen may.
change position.

OEBPS/tilemode3.png
tileMode Sampler

DEANT cLWP REPET MIRROR

OEBPS/datepicker1.png
4635
*4' DatePicker Demo

June 2012

21282030311 2

sassfsls
Jun 08

2 s

fE—

- - 24252627282930

1234567

 show Calendar

OEBPS/tilemode4.png
tileMode Sampler

DEANT cLWP REPEAT MIRROR

OEBPS/ndp-15.png
5:28PM - Sun, Mar 27

e %
E—

v a

D

o Dot dss

1 IS} 3
it rsorte o

3 °
ot g

Jrm— ocaton
s,

OEBPS/ndp-12.png
~

& Language preference

American English

Add alanguage

OEBPS/tilemode1.png
tileMode Sampler

DEANT cLMP REPET MIRROR

OEBPS/lockscreenlocker1.png
Lockscreen Locker

You need to set up this app as a device
administrator to be able to use it. Click

the button to visit the Settings app to
make this change. On the Security
screen that should appear after
pressing the button, look for a Device
administrators entry, tap on it, then
check Lockscreen Locker in the list.

Visit Settings

oFF

oFF

OEBPS/datepicker3.png
4" DateickerDemo

463

o 2
2

= e

e

- s

¥ Show Calendar

BRI
s
s e
nnn

OEBPS/ndp-13.png
€ Display size

Preview

OEBPS/tilemode2.png
tileMode Sampler

OEFAAT CMP REPEAT MRROR

OEBPS/lockscreenlocker2.png
Lockscreen Locker

Allow the camera on the
lockscreen?

Allow widgets on the
lockscreen?

OEBPS/datepicker2.png
"% 8636

*@' DatePicker Demo
Jun 08 2012

‘Show Calendar

OEBPS/ndp-20.png
0539
Appinfo

et FagmentDemo o

Openby deaunt

OEBPS/ll-studio20.png

OEBPS/ll-studio21.png

OEBPS/sdkmgr1c.png

OEBPS/notify9.png
i

09:32 B =

Title: Inbox
Line One.

Touch to copy filesto/from your co.

USB debugging connected
Touchto disable US3 debugging.

OEBPS/loremwidget1.png

OEBPS/notify8.png
o

09:31 B =

Title: Big Text 031
‘This s a very long piece o ext. This
s a very long piece of text. This s a

very long piece o text. This i a very
long piece of text. This is a very ong
piece oftext. This s a very long
piece of text. This is a very ong
piece of text.

USB connected
Touch to copy filestoffrom your co

USB debugging connected
Touch o disabl USB debugging

OEBPS/notify7.png
v 3 @
Foi.Dec 1 2 %

OEBPS/eventbus-1.png
08:29:04 = eddb270c

08:20:19 = ddc25125

08:29:34 = 58e6a79d

08:20:49 = T1cfbaf2

08:30:04 = c2f8f1a0

08:30:19 = 9de6df06

OEBPS/eventbus-2.png
8:30 s cronsna

You got a random num! 3o
66894161

ANOROID

OEBPS/t13-8.png

OEBPS/tasks-5.png

OEBPS/t13-7.png

OEBPS/prefcust2.png
Checkbox Preference o
heckiton,checkitf

Ringtone Preference.
Picka tone,anyone

Text Enty islog
sometnngusetu

Selection Dislog
Clckio opup et 0 chaose fom

OEBPS/tasks-3.png

OEBPS/tasks-4.png
304 ans

Remenber The ik

= Stockexchange

x

@ cox

[VISRIV]

Mon,Toe, Wed, The, i

08050 o

OEBPS/t13-4.png
EmPublLite

Kesp Screen O

OEBPS/t13-6.png
B prot_dsplay

Prorerces - EacToxpraarce

Cowa = Lsprerce
Moot s
e

— .

‘usgn

OEBPS/tasks-7.png
N

OEBPS/tasks-8.png

OEBPS/tasks-1.png

OEBPS/tasks-2.png
Constants DE g
S Sy

OEBPS/prefnest2.png
Moar Settings!

On. O 1t really doesrit matter =

OEBPS/prefnest1.png
Nested Pref Screens Demo

Creckoosprefrence =
Ringtone Preference

Text EntryDialog

selctonileg

Moar Setings!

OEBPS/exif1.png

OEBPS/tv5a.png
TextView

text

 text
contentDescrip

» textAppearan

Hello World!

[Material Small_|

OEBPS/t13-2.png
EmPublLite Setings

[:

OEBPS/prefcust1.png
hd v ¢ @ass

Checkbox Preference o
heck ton,checkitf

Ringtone Preference.
Pickatone,anytone

Text Enty islog
(atenotyer et

Selection islog
Clckio 0pup st 0 chaose fom

OEBPS/autofill_3.png
o
AFClient

OEBPS/autofill_4.png
Save usemame and password to Multi-Dataset X

Autofill Service?

OEBPS/autofill_5.png
€ Languages & input °

OEBPS/autofill_6.png
° $4Vam

€ Autofll service

OEBPS/seekbar2.png
wl & 142
Seaibarbemo’)

42 e

OEBPS/seekbar1.png
SeekBarDemo

2 —s

OEBPS/seekbar3.png

OEBPS/ndp-10.png
i
Another Entry
Anenty

OEBPS/ndp-11.png
426 PM - Tue, Mar 15

* 0

Another Entry

Anknty

OEBPS/t2-9.png
$ EmPubLite

Heloword

OEBPS/as-heapsnapshot12.png
{HHH

OEBPS/as-heapsnapshot13.png

OEBPS/as-heapsnapshot14.png

OEBPS/actionbar-17.png

OEBPS/actionbar-16.png
4l 1817

amet

OEBPS/iv2a.png
P Ima

® WebView
3 VideoView

4 CalendarView
© ProgressBar

OEBPS/actionbar-15.png

OEBPS/notify-custom1.png
1:08PM
Monday, April 18

Downloading: Android-1_1-CC.pdf

OEBPS/junit8.png

OEBPS/junit9.png
[W unitTests ~| B ¥ B

OEBPS/junit6.png

OEBPS/junit7.png
+ =R ¥+iD

Add New Configuration

ndroid Application

© App Engine DevAppServer
Applet

& Application

(® Gradle

@ Griffon

@ Groovy

&) Junit

4 Maven

@ Remote

G TestNG

OEBPS/coordfab2.png

OEBPS/drawing3.png

OEBPS/coordfab3.png

OEBPS/drawing2.png

OEBPS/actionbar-1e.png
Action Bar Demo

lorem

ipsum

dolor

sit

amet

a

Q

7.00

OEBPS/coordfab1.png
L4

FAB Async Demo

OEBPS/leakcanary1.png

OEBPS/leakcanary2.png
€ ButtonDemoActiviy leaked

[— +
Ventrtesed o Loss +
P ——— +

R——

S——— +

o ottt o
o oot +
sae

OEBPS/leakcanary4.png
Leaks in com.commonsware.androidb...
2 ButtonDemoActiviy lesked Aot 42270

1. ButtonDemoActiviy leaked et 4197

OEBPS/style1.png
* Now, Styled

Sun Jul 27 14:48:22
“ EDT 2014

OEBPS/as-heapsnapshot10.png

OEBPS/iv3a.png
ImageView

src
contentDescrip
background
scaleType |
adjustViewBou
cropToPadding
Favorite Attribi
visibility ftCenter

OEBPS/actionbar-1d.png
A BN

B oo 4

18

P |

OEBPS/actionbar-1c.png
1 471 Demos
Accessibily
Animation

App.

Content
Graphics

Media

NFC

os

s Bar

Action Bar

OEBPS/actionbar-1b.png

OEBPS/actionbar-1a.png
App

Content
Graphics
Media
0s

Text

Views

‘o Ml @ 10:57 Am

OEBPS/titleprog2.png
Title Bar Progress L/

Hello world

OEBPS/dragdrop4.png

OEBPS/dragdrop3.png
A

HE AR

OEBPS/dragdrop6.jpg

OEBPS/leanback1-fs8.png
Video Browse Demo

OEBPS/dragdrop5.jpg

OEBPS/t15-2.png
EmPublLite

these arecoolnotes

OEBPS/multiwindow-samsung.png
MultiWindow Legacy Demo
6:19:38PM onCreate()
6:19:38PM onStart()
6:19:38PM onResume()

My Files Q

()

Music

o

Documents Downloaded
™ apps.

OEBPS/t15-4.png

OEBPS/progressbar17.png

OEBPS/dragdrop2.png
HE AR

OEBPS/t15-3.png
these arecoolnotee

OEBPS/titleprog1.png
12:26
Fitie Bar Progress

Helloworld!

OEBPS/dragdrop1.png
HE AR

OEBPS/mvp1.png
Page3 Page 4

OEBPS/tablayout.png
L

Tablayout Demo.

OEBPS/dragdrop8.png
HE AR

OEBPS/dragdrop7.jpg

OEBPS/dragdrop9.png

OEBPS/locationclient3.png
For best results, let your device turn on
location, which uses Google's location
service.

CANCEL 0K

OEBPS/tv9a.png

OEBPS/actionbar-8.png
*4 Action Bar Demo
lorem

ipsum

dolor

sit

amet

4 R730

+ 2

OEBPS/actionbar-9.png
lorem

ipsum
dolor
sit

amet

OEBPS/actionbar-7.png
LR RIS

OEBPS/actionbar-4.png
UnT29
*¢’ ActionBarDemo + O

lorem
ipsum
dolor
sit

amet

OEBPS/actionbar-10.png
1 et vers
alilresources>

2 eeator nameztprimaryvorafsivsc/cator>

4+ <colar name="prinary._darkvouazs7ec/color>
51 Ceotor namesvaccentvosffeesac/estors

Bl /resourcess

OEBPS/firetv-unit.jpg

OEBPS/actionbar-14.png

OEBPS/actionbar-12.png
4 ¥ 818

lorem

ipsum

dolor

sit

amet

OEBPS/actionbar-11.png
U %74

lorem
ipsum
dolor
sit

amet

OEBPS/advactionbar-1.png
*9’ SearchViewDemo (B Q

OEBPS/advactionbar-2.png
(&g

OEBPS/anim1.png
b 204

*4" Sliding Panel Demo

OEBPS/device_restrict1.png

OEBPS/anim2.png
4205
*4’ Sliding Panel Demo

OEBPS/widget_theme3.png
¥ 703
RelativeLayoutDemo

|

OEBPS/advactionbar-3.png
unon

¢ m X

morbi

mollis.

OEBPS/widget_theme2.png
4 8700

*4’ RelativeLayoutDemo

URL

OEBPS/tv8a.png
e ——]

OEBPS/widget_theme1.png
O 11540

OEBPS/actionbaroverlay1.png
ipsum

dolor

st

OEBPS/sensor1.png

OEBPS/revchron1.png
®! ReverseChronometer

1:26

OEBPS/revchron2.png
®! ReverseChronometer

0:07

OEBPS/revchron3.png
®! ReverseChronometer

0:00

OEBPS/icons-1.png

OEBPS/icons-2.png
@ee
LT

OEBPS/icons-3.png

OEBPS/icons-4.png

OEBPS/icons-5.png

OEBPS/mapsv2-13-fs8.png
9. AL

Carnegie Hall
e— om

OEBPS/layouteditor17.png
&%

cursorVisible &

OEBPS/picasso1.png
Cannot populate ListView with SGlte

. database query

[Usng revalnevork archiectues na
mobik application

iy Goosle map sty not receningntent
sent fom previous activity

FirebaseRecyclerAdapter forcing me 1o

implement methods that | dort want/

need

Button setOnClickLstener doesrit work
tall

BB8 Anroid 8 Oreo Coendarchanges

173 How 10 convert Lat/Longs to Poels(xy)
ot g

P —

=

R 25 6 e moge o show vt
Iayou

i Ao debvogeprevers s
o
LS e ot uiopining on

Y

OEBPS/tv7a.png

OEBPS/layouteditor13.png
loyoutwide wrap_conient [

loyou ot wiap_cortent]
Textviow

w o Vi
conertDeser

» toxrppeasa el sl [
Favorke Aubutes.

ot

wpeace oo B
vty rone -]

OEBPS/layouteditor14.png
Ains. Q e
S
ayout_widh wap_ conent
layou_heghturap_ conent
+ Constains
> Layou Margi.2.2.2.7]
+ poddng [.2.2.2.7]
+ Thame

clovason

e Hello Word:

* vy
accessibin.
apna

OEBPS/layouteditor10.png

OEBPS/layouteditor11.png
[SEZXCKON)

OEBPS/acra2.png

OEBPS/acra4.png
A ACEADemo - row ~

Something went ‘kaboom!
ap here to et us know what went wrong

0K CANCEL

OEBPS/progressbar15.png

OEBPS/progressbar16.png

OEBPS/progressbar13.png

OEBPS/progressbar14.png

OEBPS/progressbar11.png

OEBPS/screencast_as1.png
[——

OEBPS/progressbar12.png
8 styled ProgressBar Sampler

OEBPS/mapsv2-26-fs8.png
398 0u
MapsV2 Flat Markers

OEBPS/projects-1.png

OEBPS/stackview.png

OEBPS/introspection9.png

OEBPS/mnc7.png
“ ¥ 640

API Demos

Received text selection
Asfasdf

REPLACE

OEBPS/autofill_diagram.png

OEBPS/mnc6.png
B New message

SELECTALL

REPLACE.

APIDEMOS

i

o

OEBPS/mnc9.png
o

OEBPS/mnc8.png
o

OEBPS/cl_intro10.png

OEBPS/ndp-8.png
s

Remate Input Test

OEBPS/ndp-7.png
8:46 AM - Mon, Mar 14

v 0 (SIS

i
Remote Input T

OEBPS/cl_intro11.png

OEBPS/ndp-9.png
311PM - Tue, Mar 15

* a & v

OEBPS/cl_intro14.png

OEBPS/projstruct8.png

OEBPS/projstruct9.png

OEBPS/projstruct6.png

OEBPS/cl_intro15.png
o e s . o S O o ook .

T I S e

[y er—
e e s s eyt s
et e i e 0 S0 80
g s o e .

o o g i Ry i st

et o ey S oy
o g e o s s ey

OEBPS/projstruct7.png

OEBPS/cl_intro18.png

OEBPS/projstruct4.png

OEBPS/projstruct5.png

OEBPS/projstruct2.png

OEBPS/cl_intro19.png
3

[24

@W

OEBPS/projstruct3.png

OEBPS/ndp-4.png
[T ———

128126 onpase)

OEBPS/lists_main.png
o

2uneust

st mitae cosy sweter otcher.Foe e rookn

Jumcust

Put b o it oy pack, portand oy s apiure.
Done henrerk el ne s dopis

Vi abors o ehical,agsicing asumend berd.
P evepiode ot s g

OEBPS/ndp-3.png

OEBPS/projstruct1.png

OEBPS/ndp-5.png

OEBPS/t4-16.png

OEBPS/cl_advanced4.png

OEBPS/t4-17.png
S)) B

OEBPS/cl_advanced5.png

OEBPS/cl_advanced6.png

OEBPS/t4-15.png

OEBPS/cl_advanced7.png

OEBPS/cl_advanced8.png

OEBPS/cl_advanced9.png

OEBPS/cl_advanced1.png

OEBPS/cl_advanced2.png

OEBPS/t4-19.png

OEBPS/stetho1.png

OEBPS/stetho2.png

OEBPS/iv5.png
' ImageViewDemo

OEBPS/iv6.png

OEBPS/iv7.png

OEBPS/field1.png
*’ FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License’)
not use this file except
compliance with the License. You
may obtain a copy of the License at
http://www.apache org/licenses/
LICENSE2.0

OEBPS/iv1.png
*9 ImageViewDemo

OEBPS/cl_advanced15.png
Twas b, and he sy oves i gyt and gimble n e wabe
A memay wire th borogoves, And 15 mame e utrabe

Tuas i
toves, Didgyre

OEBPS/WakeLock1.png

OEBPS/iv4.png
»

722

ImageViewDemo

OEBPS/cl_advanced16.png

OEBPS/WakeLock2.png

OEBPS/stacked1.png
13:03 sm.ocrosns &

. Dowload complee! e
antoty
e

‘Summary Goesere

. Debugging over Bluetooth s
. USB debugging connected
Touchia Gt 108 b

§ Comectedas meda device
Toueh o ther USB optons

Android Wear e
Comected

OEBPS/cl_advanced13.png

OEBPS/stacked2.png

OEBPS/cl_advanced14.png
o N

OEBPS/ndk5.png
8 anddownc.
B com commonsware_cwac_anddown

OEBPS/cl_advanced11.png

OEBPS/cl_advanced12.png
<«

>

e 7

OEBPS/docconsume-1.png

OEBPS/cl_advanced10.png

OEBPS/docconsume-2.png

OEBPS/ndk4.png

OEBPS/elv2.png
ExpandableListView Demo

Group E

Group B
Child B1

Child B2
Group A
Group D

Group C

OEBPS/elv1.png
Group E
® P

Group B
® P
Child B1
Child B2

Group A
® P

Group D
® P

Group C
® P

OEBPS/lint6.png

OEBPS/stetho9.png

OEBPS/lint5.png
{ol _ tinishateinityO:

¥ Add @TaromABUELLY_BEAN) Artion .
| X Okbleropecion .
| - Callog e mthods o ldr v rpecionattg:

 Add method contract to TrishaFinty’

OEBPS/lint4.png
finishAffinity();

OEBPS/stetho7.png

OEBPS/lint3.png

OEBPS/stetho8.png

OEBPS/stetho5.png

OEBPS/stetho6.png

OEBPS/stacked3.png
Another Entry

OEBPS/stetho3.png
iom © & B+ @ obmises & W 4 irst

Devtoois Devices

Remote Target
News 6p
J———

OEBPS/stetho4.png

OEBPS/mnc3.png
306 PM

© s

OEBPS/mnc2.png
andpojecor
® oz

o

OEBPS/mnc5.png
B New message

CUT COPY SHARE

Asfasdf
o —

OEBPS/mnc1.png
Mot opimized

OEBPS/launchmode1.png

OEBPS/launchmode5.png

OEBPS/timepicker4.png
a

OEBPS/launchmode4.png

OEBPS/timepicker3.png
%825

TimePickerDemo

8:25..

OEBPS/launchmode3.png
sinleTask

sogtnsance

OEBPS/pdf2.png

OEBPS/launchmode2.png
sngletask

sogensance

OEBPS/pdf3.png
Pdfium Demo

OEBPS/notify10.png
09:33 Svs e &

0 Courtesy Romain Guy 09
itpfcuous-creaure o

l!’ USB connected

s USB debugging comnected

ouch to disable USB debugging,

OEBPS/notify11.png
i o
X Appinfo

0 Cigtoneationsample

version 1.0

Force stop Uninstall

+ Show notifications

STORAGE
Total 864KB
App 864KB
USB storage app 0008
Data 0008
SD card 0008

cACHE

OEBPS/pdf1.png
a3
PdfRenderer Demo

OEBPS/notify12.png

OEBPS/launchmode7.png

OEBPS/timepicker2.png

OEBPS/notify13.png

OEBPS/launchmode6.png

OEBPS/timepicker1.png
4637

*4 TimePickerDemo

7 3 AM

OEBPS/videolist1-fs8.png
Contributing to Apache
Cordova
‘ CordovaJs

Dan Whaley _The
Revolution Will Be
Annotated _ PDF13

¢ DevBytes_Intro to
ActionBarCompat
Support Library

Y| DevBytes_Restricted
M Profiles in Android 4.3

x DevBytes_ UiAutomation

OEBPS/lock2.png
#1038
[# Device admi

rators

Sample Device A

‘Sample code for
witing a DeviceAdmin
class. This
implementation

ag? Lockietow -

OEBPS/lock1.png
"4 81036
[E Activate device administrator?

*g" LockMeNow

Activating this administrator will allow the
app LockMeNow to perform the following
operations:

© Lock the screen

‘Control how and when the screen
locks

Cancel Activate

OEBPS/t19-2.png

OEBPS/t19-1.png
This s Updatedt No,Realy!

The War of the Words

OEBPS/t19-4.png

OEBPS/inserter3.png
o oo

Phone-only, unsynced co.

Jim{
y

dd organization
PHONE
17085551212

4

dd ne

EmAIL

4
ADDRESS

OEBPS/t19-3.png

OEBPS/inserter2.png
Find contact

Jane Doe

John Smith

CREATENEW CONTACT.

OEBPS/views3.png
Pick a Color

OEBPS/views2.png
< i Ml 8 12:420

- c—
& G ——

OEBPS/t19-5.png

OEBPS/t2-26.png

OEBPS/t2-23.png

OEBPS/t2-22.png

OEBPS/t2-20.png

OEBPS/views1.png

OEBPS/studio-7a.png

OEBPS/studio-7b.png

OEBPS/selection10.png
%’ Checklist Demo
lorem

ipsum

dolor

sit

amet

consectetuer
adipiscing

elit

morbi

UnT25

OEBPS/t2-40.png
Toake intageot ltne et et sch o an) fmoroversns
e e o sty yos o e Ao e
Blntoveion 10 sng et vemon

F VP —

KT | remimetonanon | | Dortremidmespu ot poft

OEBPS/studio-10b.png
(Wapp~) > & % O G W

OEBPS/blame.png
vore 0 O v4No855

[# Battery ()

93% - Charging (USB)

p s 3
=
@ Cell standby i
—
Android System 100
—
Phone idle [

OEBPS/studio-10c.png
(GRapp~] P, 4+ #

OEBPS/t2-34.png
Developer options.

s dabunoing

Revoke U3 debugaing auharzstons

OEBPS/t2-35.png
Allow USB debugging?

The computer's RSA key fingerprint s
DA L4, EC 0090 92 WD IEARERIASE

3 Aways allow from this computer

OEBPS/t2-33.png
Developer options.

on

Deskiopbackp passwor

Ensble Butootn W1 op og

OEBPS/t2-30.png

OEBPS/t2-31.png

OEBPS/focus1.png
18303
*@" Sample: <requestFocus>

_ IstField 2nd Field

OEBPS/focus3.png
#8313
*&’ sample: requestFocus()

[istField 2nd Field _

OEBPS/focus2.png
k4l KA

*&" Sample: requestFocus()

1stField 2nd Field -

OEBPS/inserter1.png
L RIS
*#’ Contactsinserter

Firstname:

Phone:

OEBPS/t2-39.png

OEBPS/cl_intro23.png
E—
,
BUTTON

[]=

OEBPS/cl_intro22.png

OEBPS/cl_intro25.png

OEBPS/cl_intro24.png
Add Vertical Guideline
-1 Add Horizontal Guideline
T Add Vertical barrier

11 Add Horizontal Barrier

o Add Group

OEBPS/firetv-remote.jpg

OEBPS/vectorasset4.png
Confim icon Path

OEBPS/t2-45.png

OEBPS/vectorasset1.png
‘Configue Vector Asset

)

OEBPS/manifest3.png
@® Unmount SD card

If you unmount the SD card,
some applications you are
using will stop and may be
unavailable until you remount
the SD card.

Cancel

OEBPS/vectorasset2.png
Qom0

OEBPS/manifest4.png
e Ml € 9:200

Selector Demo
20.00k8

NooYawk
184K8

Quicksender
20.00k8

com.commonsware.android
8.00KB

TS Prefs
64.00K8

API Demos
230M8

@ mddd

OEBPS/jobsched-1.png
¥ 733

Power Hungry

e ExactAlarm ~
perod Minte ~
Download Fil: @

Shoduies: @D

OEBPS/t2-44.png
© Coldboot: snapshot 1
doesn't exist

OEBPS/jobsched-2.png

OEBPS/t2-41.png

OEBPS/vectorasset5.png

OEBPS/fab4.png
Metropolitan Pavilion, West. X &

B NAS
>

O G5

Metropolitan Pavilion

OEBPS/atv-emulator-images.png
5o B e
Lo FR e

Ssogerne a
g s | 31 | 3
ot ameen s e | | 3

N —
ot oozt

e s

OEBPS/progressbar9.png

OEBPS/toggle2.png
4 015
*@" ToggleButton Demo

OEBPS/progressbar8.png

OEBPS/as-memmonitor1.png

OEBPS/toggle1.png
4 mona
*&’ ToggleButton Demo

OEBPS/mapsv2-11-fs8.png
LAA YL]
MapsV2 Popups

egfLincoln Center St

OEBPS/progressbar7.png

OEBPS/as-memmonitor2.png

OEBPS/progressbar6.png

OEBPS/as-memmonitor3.png

OEBPS/progressbar5.png

OEBPS/progressbar4.png

OEBPS/progressbar3.png

OEBPS/progressbar2.png

OEBPS/progressbar1.png

